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Abstract. The objective of the present work is to validate the compressible Large-Eddy
Simulation (LES) models implemented in the in house parallel unstructured CFD code
TermoFluids. Our research team has implemented and tested several LES models over the past
years for the incompressible regimen. In order to be able to solve complex turbulent compressible
flows, the models are revisited and modified if necessary. In addition, the performance of the
implemented hybrid advection scheme is an issue of interest for the numerical simulation of
turbulent compressible flows. The models are tested in the well known turbulent channel flow
problem at different compressible regimens.

1. Introduction

The aim of this work is to validate the compressible extension of the existing incompressible
Smagorinsky (SMG), Wall-Adaptive Large-Eddy (WALE) and Variational Multiscale (VMS)
turbulence models implemented in the in-house software TermoFluids [1]. This models have been
tested in several cases, such as the flow over a NACA0012 airfoil [2] [3] and a circular cylinder [4].
The compressible solver implemented in TermoFluids uses a kinetic-energy preserving second-
order spatial scheme, carefully hybridized with a low-order dissipative upwind scheme in order
to stabilize the method in the presence of flow discontinuities. Our objective is to study the
performance of the LES methods, along with the hybrid advection scheme, in the turbulent
channel flow in order to validate them and then explore its application in more complex problems,
such as turbulent flows with SBLIs.

Direct numerical simulation (DNS) has the advantage of resolving all scales of fluid motion,
but its high computational requirements restirct its use for the study of simplified problems,
specially for high-speed and high-Reynolds flows. The Reynolds Averaged Navier Stokes
(RANS) approach has been widely used to overcome DNS restrictions. It allows less expensive
simulations, since turbulence is not directly resolved, introducing the need of turbulence
modeling [5]. However, the time averaging procedure leads to extra correlations that appear
throughout the equations of motion, and turbulence modeling must close these new unknowns
[6]. The extension of the RANS methods to the compressible solver was already examined
in previous works [7], concluding that such approach may lead to unsatisfactory predictions
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of flows with significant SBLI. Discrepancies can be attributed to various deficiencies in the
models, such as a failure to resolve anisotropy of the normal stresses. It is also a concern
that steady state solvers will be in error if the flow is naturally unsteady and the shock
location oscillates. On the other hand, LES solve the largest scales of motion and model
the smallest non-resolved scales, resulting in a less-demanding approach than DNS that can
overcome the inherent problems of the RANS approach (but at higher computational cost).
Hence, LES seems to be perfect candidate to carry out computations of high-Reynolds, high-
speed turbulent flows. LES have been extensively developed for incompressible flows, and the
compressible approach usually consists of an extension of existing models [8]. LES has not
been widely applied to shock/boundary-layer interaction problems [9], so its performance is an
issue of increasing interest. We explore in this work the ability of the LES models to deal with
compressible turbulent flows in different compressible regimens. To that purpose, the well known
turbulent channel flow is simulated with the aforementioned turbulence models and compared
with reference DNS and experimental data.

The first DNS of incompressible turbulent plane channel flow was performed by Kim et al.
[10], used to compare nearly incompressible results (here referred as KIM). The Reynolds number
based on friction velocity was around 180 (Reτ ≈ 180). A large number of turbulence statistics
including turbulence intensities, Reynolds shear stress, vorticity, high order statistics, etc., were
compared with experimental data with good agreement.

DNS of turbulent compressible supersonic channel flow between isothermal walls was
performed by Coleman et al. [11] (here referred as COL). The Mach numbers based on the
bulk velocity and sound speed at the walls were 1.5 (used for the supersonic results comparison)
and 3. The Reynolds numbers were 3000 (Reτ ≈ 222) and 4880 (Reτ ≈ 451) respectively, based
on the bulk velocity and channel half-width. They found that the mean density and temperature
gradients caused enhanced streamwise coherence of near-wall streaks. Other works exist focused
on the study of compressiblity effects and turbulence scaling in turbulent supersonic channel
flow with isothermal walls, such as Foysi et al. [12] (here referred as FOY).

2. Numerical Model

2.1. Favre-averaged Navier-Stokes Equations

In LES the contribution of the large, energy-carrying structures to momentum and energy
transfer is computed exactly and only the effect of the smallest scales of turbulence is modeled.
While a substantial amount of research has been carried out into modeling for the LES of
incompressible flows, applications to compressible flows have been significantly fewer, due to
the increased complexity introduced by the need to solve an energy equation, which introduces
extra unclosed terms. Furthermore, the form of the unclosed terms depends on the chosen
energy equation [13]. To obtain the equations governing the motion of the resolved eddies, we
must separate the large from the small scales. LES is based on the definition of a spatial filter
operator:

f(x) =

∫

D
f(x′)G(x, x′;∆)dx′ (1)

where D is the entire domain, G is the filter function, and ∆ is the filter-width associated with
the wavelength of the smallest scale retained by the filtering operation. Thus, the filter function
determines the size and structure of the solved scales. In compressible flows it is convenient
to use Favre-filtering to avoid the introduction of SGS terms in the equation of conservation of
mass. Applying the Favre-filtering operation to the Navier-Stokes (NS) equations, we obtain
the following system of equations:

ρt +∇ · (ρũ) = 0 (2)
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(ρũ)t +∇ · (ρũũ) = ∇ · (τ − ρu′′u′′)−∇p (3)

Et +∇ · (Hũ) = ∇ · (ũ(τ − ρu′′u′′))−∇ · (q+ u′′H ′′ − τu′′ + ρu′′k) (4)

where φ refers to the mean value in time of the varibale φ and φ̃ = ρφ/ρ is its Favre average.
ρ is the fluid density, u = (u1, u2, u3) is the velocity vector referred to the coordinate system
x = (x1, x2, x3), p is the pressure, and E is the total energy. The subscript (·)t refers to the time
derivative ∂/∂t. The fluid total enthalpy is H = E + p. The viscous stress tensor is defined as,

τij = 2µ(Sij −
1

3
Skkδij) (5)

where µ is the fluid viscosity and Sij =
1
2(

∂ui

∂xj
+

∂uj

∂xi
). Finally, q = −κ∇T is the heat flux, where

κ =
µcp
Pr and T is the temperature. In the present study the working fluid is air with the ideal

gas hypothesis, with γ = 1.4, cp = 1004 [Jkg−1K−1], and Pr = 0.72.

E =
p

γ − 1
+

1

2
ρu · u (6)

The system of equations is closed with the equation of state,

p = ρRT̃ (7)

being R = 287 [Jkg−1K−1]. The viscosity is computed with the Sutherland’s law,

µ = 1.461−6 T 3/2

110.3 + T
(8)

Equations (2) (3) and (7) differ form their laminar counterpart only by the appearance of the
Favre-averaged Reynolds-stress tensor, τT = −ρu′′u′′. Several terms appear in equation (4),
the turbulent transport of heat qT = u′′H ′′, the molecular diffusion τu′′ and the turbulent
transport of turbulent kinetic energy ρu′′k. The definition of the total energy is also modified,
E = p

γ−1 + 1
2ρũũ+ ρk.

The closure approximations used in the present study are [5]:

τT = 2µT (S̃ij −
1

3
S̃kkδij)−

2

3
ρkSGSδij (9)

qT = −
µT cp
PrT

∇T̃ (10)

Where µT and kSGS depend on the subgrid model (see Secs. 2.3 to 2.5). PrT = 0.6 is the
turbulent Prandtl number The molecular diffusion and the turbulent transport of turbulent
energy are approximated together as follows:

τu′′ − ρu′′k = (µ +
µT

σk
)∇k (11)

Although this term is only relevant for hypersonic flows, where σk is a constant. The problem
reduces, therefore, to the computation of the eddy viscosity µT .
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2.2. Numerical schemes

TermoFluids is a unstructured parallel finite volume solver. After discretization of the
computational domain in a finite number of control volumes, NS equations are solved for each
volume,

∂φ

∂t
=

1

Vc

∑

f

f(φf )nAf (12)

Where φ = (ρ, ρu, E) contains the conserved variables, Vc is the volume of the finite volume,
n is the face normal vector corresponding to the face with surface Af and with flux f(φf ), where
φf is the variable vector at the face and depends on the numerical scheme. A hybrid advection
numerical scheme is used for the discretization of the convective flux. The scheme is based
on a kinetic-energy preserving numerical scheme, FKEP , that ensures kinetic-energy preserving
at all scales, this is important for DNS and LES since numerical diffusion can dissipate the
smallest scales altering the result. Convective terms are discretized in split form in order to
ensure temporal stability [14]. To avoid instabilities in the presence of shock-waves, a low-order
upwind scheme, FUP , is used when a discontinuity in the flow is detected. The shock detection
is carried out with a Larsson discontinuity sensor [15].

F inv(φf ) = (1− Φ)FKEP (φf ) + ΦFUP (φf ) (13)

where Φ stands for the sensor, which only takes values of 0 (smooth flow) or 1 (discontinuity
detected).

Viscous terms are discretized with a central-difference approximation and a second-order
Adam-Bashford scheme is used for the temporal integration.

2.3. The Smagorinsky model

The compressible version of the Smagorinsky model was proposed in [16],

µt = fvdCRρ∆
2
√

S̃mnS̃mn (14)

with CR = 0.01. The SGS isotropic stress tensor term is given by,

kSGS = CI∆
2S̃mnS̃mn (15)

where CI = 0.0066. The Smagorinsky model is known to fail in the inner portion of the boundary
layer, this is why a van Driest damping factor is used.

fvd = 1− e(−y+/26) (16)

2.4. The WALE model

The WALE model by Nicaud and Ducros [17] is based on the square of the velocity gradient
tensor. In its formulation the SGS viscosity accounts for the effects of both, the strain and the
rotation rate of the smallest resolved turbulent fluctuations. In addition, the proportionality of
the eddy viscosity near walls is recovered without any dynamic procedure,

µt = ρC2
w∆

2 (s̃ij s̃ij)
3/2

(S̃ij S̃ij)5/2 + (s̃ij s̃ij)5/4
(17)

where Cw = 0.325 is a true model constant, S̃ij is the strain rate tensor of the resolved field and
s̃ij is the traceless symmetric part of the square of the resolved velocity gradient tensor.
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s̃ij =
1

2

(

∂ũi
∂xl

∂ũl
∂xj

+
∂ũj
∂xl

∂ũl
∂xi

)

−
1

3

∂ũm
∂xl

∂ũl
∂xm

δij (18)

The aforementioned expressions are developed for incompressible flow, and it thus gives only
µt. The modification is to use the relation between µt and kSGS from the original Smagorinsky
model in order to close equation (9) in the computation of the isotropic SGS tensor.

τT = 2µT (S̃ij −
1

3
S̃kkδij)−

2

3

C ′

I

ρ

(

µt

∆

)2

δij (19)

where C ′

I = 45.8. With that we have updated the model to deal with compressible flows.

2.5. The Variational Multiscale model

In the Variational Multiscale approach three classes of scales are considered: large, small and
unresolved scales. If a second filter with filter length l̂ is introduced (usually called test filter),
a splitting of the scales can be performed,

f ′ = f − f̂ (20)

Neglecting the effect of unresolved scales, we only need to model the small scales. Here, we close
these terms using the WALE model.

3. Turbulent Channel Flow

3.1. Description of the LES

The channel flow is a good candidate to study wall turbulence because it is homogeneous in two
directions, avoiding uncertainties of the boundary conditions. Isothermal walls at Tw = 500K
are imposed in the remaining boundaries. The flow is initialized with a Pouseille function that
introduces early disturbances to the flow. Once the turbulent state is achieved, average of the
flow is computed in order to further evaluate turbulent statistics.

Six different cases were studied at two different compressibility regimens. First, a M = 0.3
and Re = 2820 (based on the bulk velocity, wall properties and channel semi-height) turbulent
channel flow was simulated in order to evaluate the LES models in the near incompressible
regimen. Reference results are available for comparison: Kim et al. [10], Foysi et al. [12]
and also experimental data can be found for the incompressible channel flow [18]. Afterward, a
M = 1.5 and Re = 3000 channel flow was studied to asses the LES performance in the supersonic
regimen. Reference results are available for comparison: Coleman et al. [11] and Foysi et al.
[12]. See table (1) for all the details.

In this paper the performance of the LES models on the compressible channel flow are explored
with reference to mean profiles and second-order statistics of velocity and thermodynamic
properties, compared to reference DNS and experimental data.

3.2. Results

We begin with the analysis of mean flow properties. The time evolution of uτ for the case M03
is depicted in figure (1) for the different LES models. WALE and VMS models converge well
to the DNS average value (marked with solid line), the SMG model over-predicts this value.
Figure (2) shows the law of the wall for both cases. Results show good tendency and match
reference data except for the SMG model. For the subsonic case, results for the WALE and
VMS models match slightly better experimental data by Eckelmann et al. [18] but they also
approximate very well to the wall of the law and DNS data. The failure of the SMG model
in reproducing flow mean properties is more visible. Results for the supersonic case agree with
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Table 1. Data for the different cases.

Case M Re Reτ Lx Ly Lz Nx Ny Nz ∆x+ ∆y+w ∆z+

M03 0.3 2820 181 12 2 6 64 64 96 19 0.5 6
KIM 0 2300 180 4π 2 2π 192 129 160 12 0.05 7
FOY 0.3 2820 181 9.6 2 6 192 129 160 9.12 1.02 6.84

M15 1.5 3000 221 12 2 6 64 64 96 19 0.5 6
COL 1.5 3000 220 4π 2 4π/3 114 119 80 19 0.1 12
FOY 1.5 3000 221 4π 2 4π/3 192 151 128 14.46 0.84 7.23

 5

 6

 7

 8
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 10

 11

 12

 100  200  300  400  500

uτ

t

VMS
WALE

SMG

Figure 1. Time evolution of uτ for the case M03.
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Figure 2. Law of the wall for the case M03 (left) and M15 (right) compared against references.
For the inner boundary layer the law u+ = 2.5 ln(y+) + 5.5 is used, meanwhile u+ = y+ is the
expression for the outer boundary layer.

Coleman et al. [11] DNS when the WALE or VMS model is used, again the SMG fails in the
outer boundary layer. We can see how the logarithmic law rises when the Mach number is
increased. Alternative definitions of u+ can be found in the literature, such as the Van Driest
transformation, that accounts for the density variations that causes this difference.
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Figure 3. Root-mean-square velocity fluctuations for the case M03, compared to Kim et al.
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Figure 4. Reynolds shear stresses compared against reference data.

Following with second-order statistics, the root-mean-square velocity fluctuations for the case
M03 are presented in figure (3). All three methods give good approximations to reference data,
being VMS results slightly better and SMG the worst among the three models. Reynolds shear
stresses are depicted in figure (4), showing that for the subsonic case the use of the WALE and
SMG models miss-predict the shear stress, due to energy accumulation and over-dissipation,
respectively, while the use of VMS match exactly reference DNS. Concerning the supersonic
case, both WALE and VMS give fairly good results, being the VMS model slightly better. The
use of the SMG model results again in the shear stress over-prediction.

Finally, Q iso-contours of instantaneous fields using the VMS model are presented in figure (5)
to evaluate near-wall turbulence structures. It can be seen how near-wall streaks are elongated
and more sparsely distributed as Mach number increases.

4. Conclusions & Further Work

Compressible extension of the incompressible LES models implemented in TermoFluids has been
carried out. The main differences between the compressible and incompressible formulations are
due to the use of a different system of equations (which cause the appearance of extra terms),
the isotropic stress tensor (which is null for incompressible flows) and the Favre-averaging.
The approximation of the turbulent viscosity is carried out in the same fashion that for the
incompressible approach, and no compressible corrections are introduced (also due to the lag of
them in the literature).

Concerning the results of the considered SGS models, the WALE and VMS models show
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Figure 5. Iso-contours of Q = 0.1 colored by Mach number for the case M03 (left) and M15
(right).

good performance on the compressible turbulent channel flow. The SMG model, however, does
not perform as good as the other methods. Between the WALE and VMS models, the VMS
gives better solutions but results in a more expensive method in terms of computational costs.

The presented results give us confidence to apply the LES models in more complex problems,
such as turbulent flows with SBLI. Also, the performance of the models in unstructured meshes
and at higher Reynolds is an issue that must be explored. This will be the focus of our future
work.
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