
General bounds on limited broadcast domination
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Abstract

Limited dominating broadcasts were proposed as a variant of dominating
broadcasts, where the broadcast function is upper bounded by a constant k. The
minimum cost of such a dominating broadcast is the k-broadcast dominating
number. We present a unified upper bound on this parameter for any value of
k in terms of both k and the order of the graph. For the specific case of the
2-broadcast dominating number, we show that this bound is tight for graphs as
large as desired. We also study the family of caterpillars, providing a smaller
upper bound, which is attained by a set of such graphs with unbounded order.
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1 Introduction

Domination in graphs has been shown as an extremely fruitful concept, since it was
originally defined in the late fifties [1] and named in the early sixties [14]. A dominat-
ing set of a graph G is a vertex set S such that any vertex not in S has at least one
neighbor in S. Multiple variants of domination have been defined over the past fifty
years, putting the focus on different aspects. One of them is the broadcast domina-
tion, firstly introduced in [12] and taken up more recently in [6]. This concept reflects
the idea of several broadcast stations, with associated transmission powers, that can
broadcast messages to places at distance greater than one. We recall the formal def-
inition from [6]. For a graph G any function f : V (G) → {0, 1, . . . , diam(G)}, where
diam(G) denotes the diameter of G, is called a broadcast on G. A vertex v ∈ V (G)
with f(v) > 0 is a f-dominating vertex and it is said to f-dominate every vertex u
with d(u, v) ≤ f(v). A dominating broadcast on G is a broadcast f such that every
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vertex in G is f -dominated and the cost of f is ω(f) =
∑

v∈V (G) f(v). Finally, the
dominating broadcast number is

γ
B

(G) = min{ω(f) : f is a dominating broadcast on G}.

A number of issues has been addressed regarding this variation of domination, for
instance the role of the dominating broadcast number into the Domination Chain [5],
the characterization of graphs where the dominating broadcast number reaches its
natural upper bounds: radius and domination number [3, 9, 13] and some computa-
tional complexity aspects [4, 7].

In this paper, we follow the suggestion posed in [5] as an open problem of con-
sidering the broadcast dominating problem with limited broadcast power, say k. We
formally define the concept of dominating k-broadcast in Section 2 and we present
some basic properties, with the focus on the role of spanning trees regarding the
associated parameter: the k-broadcast dominating number. We devote Section 3 to
the study of the particular case in which the broadcast power is limited to k = 2 and
we obtain tight upper bounds for the 2-broadcast dominating number in the family
of caterpillars and also for general graph. Finally, in Section 4 we present a unified
upper bound for the k-broadcast dominating number in terms of both k and the order
of the graph.

All graphs considered in this paper are finite, undirected, simple and connected.
The open neighborhood of a vertex v is N(v) the set of its neighbors and its closed
neighborhood is N [v] = N(v) ∪ {v}. A leaf is a vertex of degree one and its unique
neighbor is a support vertex. For a pair of vertices u, v the distance d(u, v) is the
length of a shortest path between them. For any graph G, the eccentricity of a vertex
u ∈ V (G) is max{d(u, v) : v ∈ V (G)} and is denoted by eccG(u). The maximum
(resp. minimum) of the eccentricities among all the vertices of G is the diameter
(resp. radius) of G, denoted respectively by diam(G) and rad(G). Two vertices u
and v are antipodal in G if d(u, v) = diam(G). A caterpillar is a tree such that the
set of vertices of degree greater than one induces a path. Given a tree T , a vertex
in u ∈ V (T ) and an edge e ∈ E(T ), the tree T (u, e) is the subtree containing u,
obtained from T by deleting the edge e. For further undefined general concepts of
graph theory see [2].

2 Dominating k-broadcast

We begin this section with the formal definition of dominating k-broadcast, following
the ideas proposed in [5]. To our knowledge, this concept has not previously been
studied, except in [10] where their authors focus on the case k = 2 and present some
straightforward properties.

Let G be a graph and let k ≥ 1 be an integer. For any function f : V (G) →
{0, 1, . . . , k}, we define the sets V 0

f = {u ∈ V (G) : f(u) = 0} and V +
f = {v ∈

V (G) : f(v) ≥ 1}. We say that f is a dominating k-broadcast if for every u ∈ V (G)
there exists v ∈ V +

f such that d(u, v) ≤ f(v). In such a case, we say that u hears
v. The cost of a k-dominating broadcast f is ω(f) =

∑
u∈V (G) f(u) =

∑
v∈V +

f
f(v).

Finally, the k-broadcast dominating number of G is

γ
Bk

(G) = min{ω(f) : f is a k-dominating broadcast on G}.
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Moreover, a dominating k-broadcast with cost γ
Bk

(G) is called optimal.

It is clear from the definition that γ(G) = γ
B1

(G) and γ
B

(G) ≤ γ
Bk

(G) for

1 ≤ k ≤ diam(G). For technical reasons, we consider any value of k in our definition
instead of limiting it to the diameter of the graph (see Remark 2), although the
parameter γ

Bk
(G) agrees with γ

B
(G) for large enough values of k.

If r = rad(G), then the function f : V (G) → {0, 1, . . . , r} satisfying f(v) =
r for a central vertex v and f(u) = 0 if u 6= v, is both a dominating broad-
cast and a dominating k-broadcast, for every k ≥ r. Therefore, a dominating
broadcast on minimum cost must be also a dominating r-broadcast so γ

B
(G) =

min{ω(f) : f is a r-dominating broadcast on G} = γ
Br

(G). Moreover, if k ≥ r then
a dominating k-broadcast on minimum cost must be also a dominating r-broadcast,
so γ

Bk
(G) = min{ω(f) : f is a r-dominating broadcast on G} = γ

Br
(G).

Finally, it is clear that every dominating k-broadcast is also a dominating (k+1)-
broadcast, for every k ≥ 1, so γ

Bk+1
(G) ≤ γ

Bk
(G). All these relationships can be

summarized in the following chain of inequalities

γ
B

(G) = γ
Br

(G) ≤ γ
Br−1

(G) ≤ · · · ≤ γ
B2

(G) ≤ γ
B1

(G) = γ(G)

We present next some general properties of these parameters.

Proposition 1. Let G be a graph and let k ≥ 1 be an integer.

1. If e is a cut-edge of G and G1, G2 are the connected components of G− e, then
γ
Bk

(G) ≤ γ
Bk

(G1) + γ
Bk

(G2).

2. There exists an optimal dominating k-broadcast f such that f(u) = 0, for every
leaf u of G.

Proof. 1. Let f1, f2 optimal dominating k-broadcast on G1 and G2 respectively.
Then, the function f : V (G) → {0, 1, . . . , k} such that f(v) = fi(v) for any
v ∈ V (Gi), is a dominating k-broadcast on G with cost ω(f) =

∑
v∈V +

f
f(v) =∑

v∈V +
f1

f1(v) +
∑

v∈V +
f2

f2(v) = γ
Bk

(G1) + γ
Bk

(G2).

2. Suppose that f is an optimal dominating k-broadcast on G that assigns a pos-
itive value to r leaves. Suppose that f(u) > 0 for a leaf u with support vertex
v. In such a case, the optimality of f implies f(v) = 0. Consider the function
g : V (G) → {0, 1, . . . , k} satisfying g(u) = 0, g(v) = f(u), and g(w) = f(w) if
w 6= u, v. It is clear that g is a dominating k-broadcast with cost ω(g) = ω(f),
so g is also optimal and has r − 1 leaves with positive value. Repeating this
procedure as many times as necessary, we obtain an optimal k-broadcast that
assigns the value 0 to all leaves.

Remark 2. Note that the definition of dominating k-broadcast as a function with
fixed range set {0, 1, . . . , k}, not depending on the diameter of the graph, ensures
that the first property described in Proposition 1 makes sense even if the connected
components have small diameters.
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Let T be a tree of order at least 3. We define the twin-free tree associated to T ,
and denote it by T ∗, as the tree obtained from T by deleting all but one of the leaves
of every maximal set of pairwise twin leaves. Observe that rad(T ) = rad(T ∗).

Proposition 3. Let T ∗ be the twin-free tree associated to a tree T . Then, for every
integer k ≥ 1, γ

Bk
(T ) = γ

Bk
(T ∗).

Proof. Let f be an optimal dominating k-broadcast on T that assigns the value 0
to all its leaves. Then, the restriction f∗ of f to the set V (T ∗) is a dominating
k-broadcast on T ∗ such that γ

Bk
(T ∗) ≤ ω(f∗) = ω(f) = γ

Bk
(T ).

Reciprocally, let f∗ be an optimal dominating k-broadcast on T ∗ that assigns the
value 0 to all its leaves and define f : V (T )→ {0, 1, . . . , k} such that f(v) = f∗(v) if
v ∈ V (T ∗) and f(u) = 0 if u ∈ V (T ) \ V (T ∗). Then, f is a dominating k-broadcast
on T satisfying γ

Bk
(T ) ≤ ω(f) = ω(f∗) = γ

Bk
(T ∗).

Spanning trees play a central role in the problem of obtaining the dominating
broadcast number of a graph, as it is shown in [8].

Theorem 4. [8] Let G be a graph. Then,

γ
B

(G) = min{γ
B

(T ) : T is a spanning tree of G} .

The proof of this result essentially uses the existence of an efficient optimal domi-
nating broadcast [5] in every graph, that is, a dominating broadcast f with minimum
cost such that any vertex u in G is f -dominated by exactly one vertex v with f(v) > 0.
Nevertheless, there is no similar property for dominating k-broadcasts in general. For
instance, the cycle C7 satisfies γ

B2
(C7) = 3 and however, it has no efficient optimal

dominating 2-broadcast with cost equal to 3 (see Figure 1). Despite this fact, we can
get a result similar to that in Theorem 4, by means of an specific construction.

2
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Figure 1: There are exactly two non-isomorphic optimal dominating 2-broadcasts on
the cycle C7.
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Theorem 5. Let G be a graph and let k ≥ 1 be an integer. Then,

γ
Bk

(G) = min{γ
Bk

(T ) : T is a spanning tree of G}.

Proof. Let T be a spanning tree of G such that

γ
Bk

(T ) = t = min{γ
Bk

(T ) : T is a spanning tree of G}

and let f : V (T ) → {0, 1, . . . , k} be an optimal dominating k-broadcast on T . Then,
f is also a dominating k-broadcast on G and thus γ

Bk
(G) ≤ t.

Conversely, let g : V (G) → {0, 1, . . . , k} be an optimal dominating k-broadcast
on G. Let V +

g = {v1, . . . , vm} with the property 1 ≤ g(v1) ≤ g(v2) ≤ · · · ≤ g(vm).
Consider, for every i ∈ {1, 2, . . . ,m} and j ∈ {0, . . . , g(vi)}, the sets Lj(vi) = {u ∈
V (G) : d(u, vi) = j} and B(vi) =

⋃g(vi)
j=0 Lj(vi). Let T ′i be the tree rooted in vi with

vertex set B(vi), obtained by keeping a minimal set of edges of G ensuring that
dT ′i (vi, x) = dG(vi, x) and deleting the rest of edges. If V (T ′1), V (T ′2), . . . , V (T ′m) are
pairwise disjoint sets, then define Ti = T ′i . Otherwise, we modify the trees T ′i in the
following way.

Firstly, suppose that vi ∈ V (T ′`) with i > `, denote by T ′`(vi) the subtree of
T ′` rooted in vi and let a be the distance from vi to the farthest leaf of T ′`(vi). If
y ∈ V (T ′`(vi)), then dG(vi, y) ≤ dT ′`(vi)(vi, y) ≤ a ≤ g(v`) ≤ g(vi) so y ∈ B(vi). In this
case, we modify the tree T ′` by deleting the subtree T ′`(vi).

On the other hand, assume that v` ∈ V (T ′i ) with ` < i, denote by T ′i (v`) the
subtree of T ′i rooted in v` and let b be the distance from v` to the farthest leaf of T ′i (v`).
Suppose that g(v`) ≤ b and let y ∈ V (T ′`). Then dG(vi, y) ≤ dG(vi, v`) + dG(v`, y) ≤
dT ′i (vi, v`) + dT ′`(v`, y) ≤ dT ′i (vi, v`) + g(v`) ≤ dT ′i (vi, v`) + b ≤ g(vi), so y ∈ B(vi).
But in this case, the function h : V (G) → {0, 1, . . . , k} satisfying h(v`) = 0 and
h(v) = g(v) if v 6= v` is a dominating k-broadcast with ω(h) < ω(g) which is not
possible because g is an optimal broadcast. Hence, b < g(v`) and if y ∈ V (T ′i (v`)),
then dG(v`, y) ≤ dT ′i (v`)(v`, y) ≤ b < g(v`) so y ∈ B(v`). In this case, we modify the
tree T ′i by deleting its subtree T ′i (v`). In the rest of the proof, we may assume that
vi ∈ V (T ′`) if and only if i = `.

Suppose now that, for i ≥ 2, V (T ′i ) ∩
⋃i−1

r=1 V (T ′r) 6= ∅, being V (T ′1), . . . , V (T ′i−1)

pairwise disjoint and let x ∈ Lj(vi) ∩
⋃i−1

r=1 V (T ′r), where j ∈ {1, 2, . . . , g(vi)} is
the smallest index such that Lj(vi) ∩

⋃i−1
r=1 V (T ′r) 6= ∅. Then, there exists a unique

r ∈ {1, . . . , i − 1} such that x ∈ Lj(vi) ∩ V (T ′r). Denote by T ′r(x) the subtree of T ′r
rooted in x and by dr the distance from x to the farthest leaf of T ′r(x). Similarly,
denote by T ′i (x) the subtree of T ′i rooted in x and by di the distance from x to the
farthest leaf of T ′i (x).

If dr ≤ di, then every vertex y ∈ V (T ′r(x)) satisfies dG(vi, y) ≤ dG(vi, x) +
dG(x, y) ≤ dT ′i (vi, x) + dT ′r(x)(x, y) ≤ dT ′i (vi, x) + dr ≤ dT ′i (vi, x) + di ≤ g(vi) so
y ∈ V (T ′i ). In this case, we modify the tree T ′r by deleting its subtree T ′r(x). If,
to the contrary, dr > di, then every vertex y ∈ V (T ′i (x)) satisfies dG(vr, y) ≤
dG(vr, x)+dG(x, y) ≤ dT ′r(vr, x)+dT ′i (x)(x, y) ≤ dT ′r(vr, x)+di < dT ′r(vr, x)+dr ≤ g(vr)
so y ∈ V (T ′r). In this case, we modify the tree T ′i by deleting its subtree T ′i (x).

We proceed in the same way for every vertex in Lj(vi)∩
⋃i−1

r=1 V (T ′r) and then we
recursively repeat this process for ` ∈ {j + 1, . . . g(vi)}, which is the smallest index
such that L`(vi) ∩

⋃i−1
r=1 V (T ′r) 6= ∅, until we obtain that V (T ′1), V (T ′2) . . . V (T ′i ) are

5



pairwise disjoint. We repeat this procedure as many times as is necessary until we
obtain a family of trees T1, . . . , Tm such that V (T1), . . . V (Tm) provide a partition
of V (G) and, for every i ∈ {1, . . . ,m} and for every z ∈ V (Ti), vi ∈ V (Ti) and
dTi(vi, z) ≤ g(vi).

Finally, it is possible to construct a spanning tree of G by adding some edges
of G to T1, T2, . . . Tm in order to get a connected graph T with no cycles. The
property dTi(vi, x) ≤ g(vi) for every x ∈ V (Ti), ensures that g : V (T )→ {1, . . . , k} is a
dominating k-broadcast on the spanning tree T , so t ≤ γ

Bk
(T ) ≤ ω(g) = γ

Bk
(G).

3 Bounds on γB2

In this section, an upper bound on γ
B2

is given. By Theorem 5, it is sufficient to
provide an upper bound for trees. We begin by proving an upper bound for a concrete
subfamily of trees, the caterpillars. First, we prove a technical lemma about the floor
and the ceiling functions that will be used later.

Lemma 6. If a, b, c, d are integers such that a/b ≤ c/d, then a+dc(n−b)/de ≤ dcn/de.
Proof. Any pair of real numbers x and y satisfy bx − yc ≤ dxe − dye. Therefore,
bbc/dc = bcn/d− c(n− b)/dc ≤ dcn/de − dc(n− b)/de, so it is enough to prove that
a ≤ bbc/dc. We know that a is an integer such that a ≤ bc/d < bbc/dc + 1. Hence,
a ≤ bbc/dc.

Remark 7. If f is an optimal dominating 2-broadcast then we may assume that
f(u) 6= 2 for any vertex u of degree 2, otherwise the function f ′ such that f ′(u) = 0,
f ′(x) = 1 if ux ∈ E(T ) and f ′(x) = f(x) for x /∈ N [u] would be also an optimal
dominating 2-broadcast.

Proposition 8. Let T be a caterpillar of order n ≥ 1, then

γ
B2

(T ) ≤ d2n/5e.

Moreover, there are caterpillars of order as large as desired attaining this bound.

Proof. We proceed by induction on the order of the caterpillar. By inspection of all
cases, we know that the result is true for caterpillars of order at most 6 (see Figure 2).
Now let T be a caterpillar of order n ≥ 7 and assume that the statement is true for

1 11 12 2 2 2 2 2 2 2

1 2 3

11

1 1

65

2

4321

T

d2n5 e
n

γB2

Figure 2: All caterpillars T of order n ≤ 6 satisfy γ
B2

(T ) ≤
⌈
2n/5

⌉
.

caterpillars of order less than n. If T has twins, then the twin-free tree T ∗ associated
to T has order n∗ and n∗ < n, and by inductive hypothesis

γ
B2

(T ) = γ
B2

(T ∗) ≤ d2n∗/5e ≤ d2n/5e.
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If T has no twins, the path u1...ur obtained by removing all leaves from T has order
at least 4. Observe that there is a leaf hanging from u1 and another leaf hanging from
ur. If there is no leaf hanging from u2, then consider the trees T1 = T (u2, u2u3), which
has order 3, and T2 = T (u3, u2u3). By inductive hypothesis and using Proposition 1
and Lemma 6, we have:

γ
B2

(T ) ≤ γ
B2

(T1) + γ
B2

(T2) ≤ 1 + d2(n− 3)/5e ≤ d2n/5e.

If there is a leaf hanging from u2, then consider the trees T1 = T (u3, u3u4), which
has order 5 or 6, and T2 = T (u4, u3u4). The function f such that f(u2) = 2 and
f(x) = 0, if x 6= u2, is a dominating 2-broadcast on T1. By inductive hypothesis and
using Proposition 1 and Lemma 6, we have:

γ
B2

(T ) ≤ γ
B2

(T1) + γ
B2

(T2) ≤ 2 + d2(n− 5)/5e ≤ d2n/5e.

It remains to prove that there is a caterpillar attaining the bound with an ar-
bitrarily large order. For each integer h ≥ 1, consider the caterpillar Tn of order
n = 5h obtained from the path u1, u2, . . . , u3h by hanging a leaf to each vertex ui,
where i ≡ 1, 3 mod 3 (see Figure 3). By Proposition 1 and Remark 7, we know that

u2 u3 u4 u5 u6 u7 u8u1 u9 u3h−2 u3h

Figure 3: The caterpillar Tn of order n = 5h satisfies γ
B2

(Tn) =
⌈
2n/5

⌉
.

Tn admits an optimal dominating 2-broadcast f such that f(x) = 0 if x is a leaf and
f(x) 6= 2 if x = ui, where i ≡ 2 mod 3. Suppose that f(uj) = 1, for some j ≡ 2
mod 3, then uj and the leaf hanging from uj−1 hears the same vertex w ∈ V +

f . There-
fore, the function g : V (Tn)→ {0, 1, 2} defined as g(x) = f(x) if x 6= uj and g(uj) = 0
would be a dominating 2-broadcast with ω(g) < ω(f), which is not possible. Thus,
f(x) = 0 if x is a leaf or x = ui, where i ≡ 2 mod 3. Hence, f(x) = 1 for every
support vertex. Therefore, γ

B2
(Tn) = ω(f) = 2h = d2n/5e.

The previous result provides an upper bound for a special class of graphs, the
caterpillar pure graphs, introduced in [11]. A graph G is called caterpillar pure if
every spanning tree of G is a caterpillar, and are characterized in the same paper as
those graphs with no aster A2,2,2 (that is, the graph obtained by subdividing once
the three edges of K1,3) as a subgraph, not necessarily induced.

Corollary 9. If G is a caterpillar pure graph, then γ
B2

(G) ≤ d2n/5e.

Next, we prove a general upper bound for trees.

Proposition 10. Let T be a tree of order n, then

γ
B2

(T ) ≤ d4n/9e.

Moreover, there are trees of order as large as desired attaining this bound.

7



Proof. We proceed by induction on n, the order of T . It is straightforward to check
that the statement is true if 1 ≤ |V (T )| ≤ 4. Suppose that T is a tree of order n,
n ≥ 5, and the statement is true for trees of order less than n. If T has twins, then the
twin-free tree T ∗ associated to T has order n∗, n∗ < n, and by inductive hypothesis
and Proposition 3

γ
B2

(T ) = γ
B2

(T ∗) ≤ d4n∗/9e ≤ d4n/9e.
Now, assume that T has no twins. If T is a path, then

γ
B2

(T ) ≤ γ(T ) = dn/3e ≤ d4n/9e.

Now, suppose that T is not a path. Let u, u′ be antipodal vertices in T and let
u, u1, . . . , uD−1, u

′ be a shortest path from u to u′, where D = diam(T ). Let v be the
vertex of degree distinct from 2 closer to u lying on this path. Note that v 6= u′ and
it is at distance at least 2 from u, since T has no twins. We distinguish two cases
depending on the distance from u to v.

If d(u, v) ≥ 3, then consider the trees T1 = T (u, u2u3) and T2 = T (u′, u2u3).
Since T1 is a path of order 3, by inductive hypothesis and applying Proposition 1 and
Lemma 6 we obtain

γ
B2

(T ) ≤ γ
B2

(T1) + γ
B2

(T2) ≤ 1 + d4(n− 3)/9e ≤ d4n/9e.

If d(u, v) = 2, then v = u2. Consider the trees T1 = T (u, u2u3), which has order
at least 4, and T2 = T (u′, u2u3). Notice that all the vertices of T1 are at distance at
most 2 from v, because u and u′ are antipodal vertices in T . If |V (T1)| = n1 ≥ 5, then
consider the dominating 2-broadcast function on T1 such that f(v) = 2 and f(x) = 0,
if x 6= v. By inductive hypothesis and applying Proposition 1 and Lemma 6 we obtain

γ
B2

(T ) ≤ γ
B2

(T1) + γ
B2

(T2) ≤ 2 + d4(n− n1)/9e ≤ 2 + d4(n− 5)/9e ≤ d4n/9e.

If |V (T1)| = 4, then there is only a leaf w hanging from v. Consider the trees
T ′ = T (u, u3u4) and T ′′ = T (u′, u3u4). Consider the set S = V (T ′) \ {u, u1, v, w}.
Observe that the vertices of S are at distance at most 3 from u3. We distinguish the
following cases.

i) Every vertex in S is at distance at most 1 from u3. In such a case, T ′ has 5
or 6 vertices and the function such that f(v) = 2 and f(x) = 0, if x 6= v, is
a dominating 2-broadcast function on T ′. By inductive hypothesis and using
Proposition 1 and Lemma 6 we obtain:

γ
B2

(T ) ≤ γ
B2

(T ′) + γ
B2

(T ′′) ≤ 2 + d4(n− 5)/9e ≤ d4n/9e.

ii) There is at least one vertex in S at distance 2 from u3, but there are no vertices at
distance 3. Then T ′ has at least 7 vertices and the function such that f(u) = 1,
f(u3) = 2 and f(x) = 0, if x 6= u, u3, is a dominating 2-broadcast on T ′. By
inductive hypothesis and using Proposition 1 and Lemma 6 we obtain:

γ
B2

(T ) ≤ γ
B2

(T ′) + γ
B2

(T ′′) ≤ 3 + d4(n− 7)/9e ≤ d4n/9e.

8



iii) There is at least one vertex in S at distance 3 from u3. Consider a vertex t
at distance 3 from u3 and let u3, t1, t2, t be the (u3, t)-path in T ′. Consider the
connected component Ct = T ′(t, u3t1) of T1. We may assume that Ct has exactly
4 vertices, otherwise we can proceed as in the preceding cases because t and u′

are antipodal and we are done. Therefore, it only remains to prove that the result
holds when, for every vertex t of S at distance 3 from u3, Ct has exactly 4 vertices.
In such a case, the tree induced by Ct must be a path t′, t1, t2, t. Consider
the function f defined on V (T ′) such that f(u3) = 2, f(u) = 1, f(t) = 1, if
d(t, u3) = 3, and f(x) = 0 otherwise. On one hand, f is a dominating 2-broadcast
on T ′ with cost r + 3, where r is the number of vertices in S at distance 3 from
u3. On the other hand, T ′ has at least 4r + 5 vertices (see Figure 4). It is

u3

t1

t2

t
1

2

1

v

w

u

1

r)

Figure 4: The tree T ′ of case iii) has order n ≥ 4r + 5 and γ
B2

(T ′) ≤ 3 + r.

straightforward to check that r ≥ 1 implies
r + 3

4r + 5
≤ 4

9
. Therefore, by inductive

hypothesis and using Proposition 1 and Lemma 6 we have:

γ
B2

(T ) ≤ γ
B2

(T ′) + γ
B2

(T ′′) ≤ (r + 3) + d4(n− (4r + 5))/9e ≤ d4n/9e.

It remains to prove that the given bound is tight. For this purpose, consider
for every m ≥ 1 the tree Tn of order n = 9m obtained as follows. Let C be the
caterpillar of order 9 obtained by hanging a leaf to the vertices u3 and u5 of the path
u1 . . . u7 of order 7. Take m copies C1, . . . , Cm of C, and add m − 1 edges joining
central vertices of consecutive copies (see Figure 5). Then, Tn has order 9m and

C1 C2 C3 Cm

Figure 5: The tree Tn of order n = 9m satisfies γ
B2

(Tn) =
⌈
4n/9

⌉
.

we claim that γ
B2

(Tn) = 4m ≤ d4n/9e. Observe that the leaves of a copy of C do
not hear any vertex of another copy, and thus, the sum of the values restricted to
the vertices of a copy of C of any dominating 2-broadcast is at least 4. Therefore,
4m ≤ γ

B2
(Tn) ≤ d4n/9e = 4m.

9



Corollary 11. For every graph G of order n,

γ
B2

(G) ≤ d4n/9e.

4 Bounds on γBk
(G)

In this section, we give a general upper bound on γ
Bk

(G) for any graph G. By

Theorem 5, it is sufficient to prove the bound for trees. Herke and Mynhardt (see
[8, 9]) showed that γ

B
(T ) ≤ dn3 e for every tree of order n, and, as we have noticed

before, we have γ
Bk

(T ) = γ
Br

(T ) = γ
B

(T ), whenever k ≥ r = rad(T ). A consequence
of these facts is the following result.

Proposition 12. Let T be a tree of order n. If k ≥ rad(T ), then γ
Bk

(T ) ≤ dn3 e.
Next, we give an upper bound on γ

Bk
(T ) for k < rad(T ).

Theorem 13. Let T be a tree of order n and let k ≥ 1 be an integer such that
k < rad(T ). Then,

γ
Bk

(T ) ≤
⌈
k + 2

k + 1

n

3

⌉
.

Proof. We know that γB1(T ) = γ(T ) ≤ n/2, and Proposition 10 states that the result
is true for k = 2. Now set k ≥ 3. Suppose to the contrary that the bound does not
hold for some tree with radius greater than k. Let T be a tree of minimum order n
and radius greater than k not satisfying the bound. On the one hand, observe that
T is a tree of radius at least k+ 1 and any path of order n satisfies the upper bound,
and thus n ≥ 2k + 2. On the other hand, observe that the given bound holds for
every tree T ′ with radius rad(T ′) ≤ k, since by Proposition 12,

γ
Bk

(T ′) ≤ dn/3e ≤
⌈
k + 2

k + 1

n

3

⌉
.

Consequently, the given bound is satisfied by every subtree T ′ of T , different from T .
Next, we show some more properties of the tree T needed to prove the theorem.

Claim 1. T has no twins.

Proof. Suppose to the contrary that T has twins and let T ∗ be its associated twin-free
tree of order n∗. Then, T ∗ satisfies the given bound, since it has less vertices than T .
By Proposition 3,

γ
Bk

(T ) = γ
Bk

(T ∗) ≤
⌈
k + 2

k + 1

n∗

3

⌉
≤
⌈
k + 2

k + 1

n

3

⌉
.

Now, consider a pair u and u′ of antipodal vertices of T , and the (u, u′)-path
of length D, u, u1, . . . , uk, uk+1, . . . , uD−1, u

′. Observe that k < r < D = d(u, u′)
and D ∈ {2r − 1, 2r}. For i ≥ 1, let T (ui) be the connected component of T −
{ui−1ui, uiui+1} containing ui and let u′i be an eccentric vertex of ui in T (ui). Let
di = d(ui, u

′
i) = eccT (ui)(ui) (see Figure 6). If di = 0, then u′i = ui. Note that d1 = 0,

since T has no twins, and 0 ≤ di ≤ i whenever 1 ≤ i ≤ k + 1, as u and u′ are
antipodal.

10



u1u u2 ui ui+1 u′

u′2
u′i

u′i+1

d2 ≤ 2 di ≤ i di+1 ≤ i+ 1

T (ui)

T (ui+1)

T (u2)

T (u, uiui+1)

Figure 6: Vertex u′i is such that d(ui, u
′
i) = eccT (ui)(ui) = di.

Claim 2. The set of vertices belonging to the tree T (u, uk+1uk+2) does not contain
two adjacent vertices x and y satisfying one of the following conditions: (i) degT (x) =
degT (y) = 2; (ii) degT (x) = degT (y) = 3 and both have a leaf as a neighbor.

Proof. First, suppose that x and y are adjacent vertices such that degT (x) = degT (y) =
2. If the edges incident to those vertices are x′x, xy and yy′, then consider the trees
T (u, x′x), T (u, xy) T (u, yy′), if x and y belong to the (u, uk+1)-path, and the trees
T (u′j , x

′x), T (u′j , xy) T (u′j , yy
′), if x and y belong to a tree T (uj), 2 ≤ j ≤ k + 1. In

both cases, those trees have radius at most k and consecutive orders, so at least one
of them, say T ′, has order multiple of 3. In a similar way, if deg(x) = deg(y) = 3 and
the edges incident to those vertices are x′x, xy, yy′, x′′x, yy′′, where x′′ and y′′ are
leaves, then consider the trees T (u, x′x), T (u, xy) T (u, yy′), if x and y belong to the
u − uk+1 path, and the trees T (u′j , x

′x), T (u′j , xy) T (u′j , yy
′), if x and y belong to a

tree T (uj), 2 ≤ j ≤ k+ 1. In both cases, those trees have radius at most k and order
m, m+ 2, m+ 4 respectively, for some integer m. Thus, at least one of them, say T ′,
has order a multiple of 3.

In both cases, we have a tree T ′ = T (w, e) of radius at most k and order n′ = 3t,
t ∈ Z, for some vertex w and some edge e. If T ′′ is the other connected component
of T − e, then T ′′ has order less than n. Therefore, by Proposition 1 and Lemma 6,

γ
Bk

(T ) ≤ γ
Bk

(T ′) + γ
Bk

(T ′′) = γ
B

(T ′) + γ
Bk

(T ′′)

≤
⌈
n′/3

⌉
+

⌈
k + 2

3k + 3
(n− n′)

⌉
= t+

⌈
k + 2

3k + 3
(n− 3t)

⌉
≤
⌈
k + 2

3k + 3
n

⌉
,

which is a contradiction.

Claim 3. If e is an edge of T , then any dominating k-broadcast f ′ on a connected
component T ′ of T − e satisfies

ω(f ′)

n′
>

k + 2

3k + 3
,

where n′ is the order of T ′.

Proof. Suppose to the contrary that ω(f ′)
n′ ≤ k+2

3k+3 for some dominating k-broadcast
function f ′ on T ′. The other connected component of T − e, T ′′, satisfies Bound 13
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because its order is less than n. Then, by Lemma 6 and Proposition 1 we have:

γ
Bk

(T ) ≤ γ
Bk

(T ′) + γ
Bk

(T ′′)

≤ ω(f ′) +

⌈
k + 2

3k + 3
(n− n′)

⌉
≤
⌈
k + 2

3k + 3
n

⌉
=

⌈
k + 2

k + 1

n

3

⌉
.

which is a contradiction.

Claim 4. There exists i ∈ {2, . . . , k} such that di ≥ 2. Moreover, if k is even, then
di ≥ 2 for some i < k.

Proof. Suppose to the contrary that di ∈ {0, 1} for every i ∈ {2, . . . , k}. By Claim 2,
it is not possible that di = di+1 = 0 or di = di+1 = 1 for some i ∈ {2, . . . , k}.
Therefore, by Claim 1, the vertices u2, u3, . . . , uk have degree 2, 3, 2, . . . respectively,
and there is a leaf hanging from the vertices of degree 3.

For k odd, let T ′ = T (u, ukuk+1). Then, T ′ has order n′ = k + 1 + bk/2c =
(3k + 1)/2. If w is a center of the (u, uk)-path, then we define the dominating k-
broadcast function f ′ on T ′ such that f ′(w) = (k+ 1)/2 and f ′(x) = 0, otherwise. It
is straightforward to check that for any odd integer k ≥ 1,

ω(f ′)

n′
=

k + 1

3k + 1
≤ k + 2

3k + 3
.

For k even, consider T ′ = T (u, uk−1uk). The tree T ′ has order n′ = (k − 1) +
1 + b(k − 1)/2c = (3k − 2)/2. Let w be a center of the (u, uk−1)-path. Consider the
dominating k-broadcast function f ′ such that f ′(w) = k/2 and f ′(x) = 0, otherwise.
It is straightforward to check that for any even integer k ≥ 4,

ω(f ′)

n′
=

k

3k − 2
≤ k + 2

3k + 3
.

In both cases we get a contradiction by Claim 3.

Now, let us calculate a lower bound on the order of some subtrees of T . For this
purpose, let us define the function B : N 7→ N, such that for every i ∈ N,

B(i) =

{
3i+2
2 if i is even,

3i+1
2 if i is odd.

Claim 5. 1. |V (T (u, uiui+1))| ≥ B(i), for every i ∈ {1, . . . , k − 1}.

2. |V (T (ui))| ≥ B(di − 1) + 1, for every i ∈ {1, . . . , k − 1}.

3. |V (T (u, uk−1uk))| ≥ B(k − 1) + 1 = 3k
2 , for k even.

4. |V (T (u, ukuk+1))| ≥ B(k) + 1.

Proof. 1. Besides the i+ 1 vertices of the (u, ui)-path, the tree T ′ = T (u, uiui+1)
contains at least bi/2c vertices adjacent to the (u, ui)-path by Claim 2. There-
fore, T ′ has at least i + 1 + bi/2c vertices, and from here the desired result
follows.
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2. To prove the bound on the order of T (ui), let T ′′ be the connected component
of T −ui containing the furthest vertex u′i from ui in V (T (ui)). Notice that the
tree T (ui) contains vertex ui and at least the vertices of T ′′. Moreover, for the
lower bound on the order of T ′′ we get the same lower bound as for the order of
T (u, udi−1udi) by using Claim 2. Hence, |V (T (ui))| ≥ |V (T ′′)|+1 ≥ B(di−1)+1.

3. Proceed as in the proof of item 1 and take into account that Claim 4 ensures
in such a case the existence of at least one more vertex.

4. As in the preceding item, Claim 4 ensures in such a case the existence of at
least one more vertex.

Claim 6. For every i ∈ {1, . . . , k}, we have di < i.

Proof. We know that d1 = 0 < 1. Suppose to the contrary that di = i, for some
i ∈ {2, . . . , k}. We find an edge e such that one of the connected components of T −e,
say T ′, has order n′ and there is a dominating k-broadcast satisfying ω(f ′)

n′ ≤ k+2
3k+3 ,

contradicting Claim 3. Having this in mind, we distinguish the following cases. In all
of them, we use Claim 5 to calculate a lower bound on the order of T ′.

Case 1. di = i for some odd integer i. Let T ′ = T (u, uiui+1). The function f ′

such that f ′(ui) = i and f ′(x) = 0, otherwise, is a dominating k-broadcast satisfying
ω(f ′) = i. The order of T ′ satisfies n′ ≥ B(i− 1) +B(di − 1) + 1 ≥ 2B(i− 1) + 1 =

2 3(i−1)+2
2 + 1 = 3i. Therefore,

ω(f ′)

n′
≤ i

3i
=

1

3
≤ k + 2

3k + 3
.

Case 2. di = i for some even integer i and i < k. We may assume that di+1 6= i+ 1,
otherwise we proceed as in Case 1. Let T ′ = T (u, ui+1ui+2). We distinguish two
subcases.

2.1 If di+1 ≤ i−1, then the function f ′ such that f ′(ui) = i and f ′(x) = 0, otherwise,
is a dominating k-broadcast on T ′ satisfying ω(f ′) = i. On the other hand,

n′ ≥ 2B(i− 1) + 2 ≥ 23(i−1)+1
2 + 2 = 3i.

Then
ω(f ′)

n′
≤ i

3i
=

1

3
≤ k + 2

3k + 3
.

2.2 If di+1 = i and i ≥ 4, then the function f ′ such that f ′(ui) = i+1 and f ′(x) = 0,
otherwise, is a dominating k-broadcast on T ′ satisfying ω(f ′) = i+ 1. Moreover,

n′ ≥ 3B(i− 1) + 2 ≥ 33(i−1)+1
2 + 2 = 9i−2

2 . Then,

ω(f ′)

n′
≤ 2(i+ 1)

9i− 2
≤ 1

3
≤ k + 2

3k + 3
.

2.3 If di+1 = i and i = 2, then d2 = d3 = 2. Consider the tree T ′ = T (u, u4u5)
of order n′. If d4 ≤ 2, then n′ ≥ 9 and the function f ′ such that f ′(u3) = 3
and f ′(x) = 0, otherwise, is a dominating k-broadcast satisfying ω(f ′) = 3. If
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d4 ∈ {3, 4}, then it is easy to check that n′ ≥ 13 and the function f ′ such that
f ′(u4) = 4 and f ′(x) = 0, otherwise, is a dominating k-broadcast for k ≥ 4,
satisfying ω(f ′) = 4, whenever k ≥ 4. In both cases,

ω(f ′)

n′
≤ 1

3
≤ k + 2

3k + 3
.

Finally, suppose that k = 3 and d4 ∈ {3, 4}. Note that for k = 3, k+2
3k+3 = 5

12 . If
d4 = 3, then n′ ≥ 13 and the function f ′ such that f ′(u4) = 3, f ′(u2) = 2 and
f ′(x) = 0, otherwise, is a dominating 3-broadcast satisfying ω(f ′) = 5. Hence,

ω(f ′)

n′
≤ 5

13
≤ 5

12
.

If d4 = 4, then let x1, . . . , xr be the vertices at distance 4 from u4, where r ≥ 1.
For every i ∈ {1, . . . , r}, let zi be the vertex adjacent to u4 in the unique (xi, u4)-
path. If for some i ∈ {1, . . . , r}, then there are at least 2 vertices at distance 4
from u4 belonging to T ′′ = T (xi, u4zi), then the function f ′′ such that f ′′(zi) = 3
and f ′′(x) = 0, otherwise, is a dominating 3-broadcast on the tree T ′′ of order
n′′ ≥ 9 (see Figure 7a). Thus,

ω(f ′′)

n′′
≤ 3

9
≤ 5

12
.

Now, assume that for every i ∈ {1, . . . , r}, xi is the only vertex at distance 4
from u4 lying on T (xi, u4zi). Consider the tree T ′ = T (u, u4u5) of order n′.

If r ≥ 2, then the function f ′ such that f ′(u4) = 3, f ′(u3) = 2, f ′(xi) = 1, for
i ∈ {1, . . . , r}, and f ′(x) = 0, otherwise, is a dominating 3-broadcast on T ′ and
n′ ≥ 9 + 5r (see Figure 7b).

Moreover, ω(f ′) = 5 + r. Thus,

ω(f ′)

n′
≤ 5 + r

9 + 5r
≤ 5

12
.

If r = 1 and n′ ≥ 15, then the function f ′ such that f ′(u2) = 2, f ′(u4) = 3,
f ′(x1) = 1 and f ′(x) = 0, otherwise, is a dominating 3-broadcast with ω(f ′) = 6
(see Figure 7c) and if n′ = 14, then the function f ′ such that f ′(u3) = 3, f ′(y) = 2
and f ′(x) = 0, otherwise, is a dominating 3-broadcast with ω(f ′) = 5 (see
Figure 7d). In both cases,

ω(f ′)

n′
≤ 5

12
.

Case 3. dk = k and k is even. Let T ′ = T (u, ukuk+1). Consider the dominating
k-broadcast function such that f ′(uk) = k and f ′(x) = 0, otherwise. Then ω(f ′) = k.
Since dk = k, then n′ ≥ 2 3k

2 + 1 = 3k+ 1. It is straightforward to check that if k ≥ 4,
then

ω(f ′)

n′
≤ k

3k + 1
≤ 1

3
≤ k + 2

3k + 3
.
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u1u u2 u3 u4

3zi

xi

T ′′

(a)

u1u u2 u3 u4 3

z1

x1 xr

zr

1 1

2

(b)

u1u u2 u3 u4 3

1

2

(c)

u1u u2 u3 u4

2

3

(d)

Figure 7: Dominating k-broadcasts illustrating case 2.3 of Claim 6.

Now, we proceed with the proof of the Theorem. Let i0 be the minimum integer
such that vertex u′i0 is one of the furthest vertices from u in the tree T (u, ukuk+1),
that is:

i0 = min{i : 1 ≤ i ≤ k and d(u, u′i) ≥ d(u, u′j) for all j ∈ {1, . . . , k} such that i 6= j}.

(see Figure 8a).
Observe that, on the one hand, i0 > k/2, otherwise d(u, u′i0) < k = d(u, uk) ≤

d(u, u′k), which contradicts the definition of i0. So, i0 ≥ 2. On the other hand,
k ≤ i0 + di0 = d(u, u′i0) ≤ 2k. Moreover, di0 ≥ 1, as otherwise di0−1 must be 0 by
definition of i0, contradicting Claim 2.

In all cases, we will find an edge e satisfying that the tree T ′ = T (u, e) has order
n′ and admits a k-broadcast f ′ on T ′ such that ω(f ′)/n′ ≤ (k + 2)/(3k + 3), leading

uku ui0

u′i0

i0 u′

di0

(a)

uku ui0

u′i0

di0≤i0

i0
w

i0+di0
2 i0+di0

2

(b)

Figure 8: Vertex u′i0 is one of the furthest vertices from u in the tree T (u, ukuk+1).
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to a contradiction by Claim 3. A lower bound on the order of T ′ will be calculated
using Claim 5.

Case 1. If i0 ≤ k − 1, then let T ′ = T (u, ukuk+1). On the one hand, all the vertices
of T ′ are at distance at most dd(u, u′i0)/2e from a center w of the (u, u′i0)-path (see
Figure 8b). Thus, the function f ′ such that f ′(w) = dd(u, u′i0)/2e = d(i0 + di0)/2e
and f ′(x) = 0, otherwise, is a dominating k-broadcast on T ′. On the other hand, T ′

contains vertex ui0+1 and the vertices of the trees T (u, ui0−1ui0) and T (ui0). Hence,
n′ ≥ B(i0 − 1) + B(di0 − 1) + 2. Now, we distinguish the following cases taking into
account the parity of i0 and di0 .

1.1 If i0 and di0 are odd, then n′ ≥ 3(i0+di0 )+2

2 and ω(f ′) =
i0+di0

2 . Thus,

ω(f ′)

n′
≤ i0 + di0

3(i0 + di0) + 2
≤ 1

3
≤ k + 2

3k + 3
.

1.2 If i0 and di0 are even, then n′ ≥ 3(i0+di0 )

2 and ω(f ′) =
i0+di0

2 . Thus,

ω(f ′)

n′
≤ i0 + di0

3(i0 + di0)
=

1

3
≤ k + 2

3k + 3
.

1.3 If i0 and di0 have distinct parity, then n′ ≥ 3(i0+di0 )+1

2 and ω(f ′) =
i0+di0+1

2 .
Since 2k + 1 ≤ 2(i0 + di0) + 1 ≤ 3(i0 + di0), it can be easily checked that

ω(f ′)

n′
≤ i0 + di0 + 1

3(i0 + di0) + 1
≤ k + 2

3k + 3
.

Case 2. If i0 = k, then we distinguish the following cases.

2.1 dk > dk+1. Let T ′ = T (u, uk+1uk+2) and consider the dominating k-broadcast

f ′ on T ′ such that f ′(w) =
⌈
k+dk
2

⌉
, where w is a center of the (u, u′k)-path, and

proceed analogously as in Case 1.

2.2 dk ≤ dk+1. Recall that dk+1 ≥ dk ≥ 1. Let T ′ = T (u, uk+1uk+2). The order n′ of
T ′ satisfies n′ ≥ |V (T (u, ukuk+1)|+|V (T (uk+1))| ≥ (B(k)+1)+B(dk+1−1)+1 =
B(k) +B(dk+1 − 1) + 2. We distinguish the following subcases:

(a) dk+1 ≤ k − 1. Since
⌈
(k+1)+dk+1

2

⌉
≤ k, the function f ′ such that f ′(w) =⌈

(k+1)+dk+1

2

⌉
for a center w of the (u, u′k+1)-path, and f ′(x) = 0, otherwise,

is a dominating k-broadcast on T ′

i) If k+1 and dk+1 are even, then n′ ≥ 3k+3dk+1+3
2 and ω(f ′) =

(k+1)+dk+1

2 .
Thus,

ω(f ′)

n′
≤ k + dk+1 + 1

3k + 3dk+1 + 3
=

1

3
≤ k + 2

3k + 3
.

ii) If k+1 and dk+1 are odd, then n′ ≥ 3k+3dk+1+5
2 and ω(f ′) =

(k+1)+dk+1

2 .
Thus,

ω(f ′)

n′
≤ k + dk+1 + 1

3k + 3dk+1 + 5
=

1

3
≤ k + 2

3k + 3
.
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u uk uk+1 u′

dk

z1 zr

x1 xr

1

1 1

k

u′k

Figure 9: Vertex zi is the only vertex adjacent to uk+1 on the (xi, uk+1)-path, for
every i ∈ {1, . . . , r}

iii) If k+1 and dk+1 have distinct parity, then n′ ≥ 3k+3dk+1+4
2 and ω(f ′) =

(k+1)+dk+1+1
2 . Thus,

ω(f ′)

n′
≤ k + dk+1 + 2

3k + 3dk+1 + 4
≤ k + 2

3k + 3
,

where it can be checked that the last inequality holds because 2k ≤
3(k + dk+1) + 2.

(b) dk+1 = k. By Claim 6, di < i for i ∈ {1, . . . , k}, so the function f ′ such
that f ′(uk+1) = k, f ′(u) = 1 and f ′(x) = 0, otherwise, is a dominating
k-broadcast on T ′ satisfying ω(f ′) = k + 1. A lower bound on the order n′

of T ′ is B(k) +B(k − 1) + 2 = 6k+4
2 . Thus,

ω(f ′)

n′
≤ 2(k + 1)

6k + 4
≤ k + 2

3k + 3
.

(c) dk+1 = k + 1. Let x1, . . . , xr, r ≥ 1, be the vertices of T (uk+1) at distance
k+ 1 from uk+1. For each xi, i ∈ {1, . . . , r}, let zi be the vertex adjacent to
uk+1 on the (xi, uk+1)-path (see Figure 9). Since xi and u′ are antipodal, the
preceding claims apply also by interchanging u and xi. Thus, by Claim 6,
xi is the only vertex at distance k+ 1 from uk+1 in T (xi, uk+1zi). Consider
the function f ′ such that f ′(uk+1) = k, f ′(u) = f ′(x1) = · · · = f ′(xr) = 1
and f ′(x) = 0, otherwise. By Claim 6, di < i for i ∈ {1, . . . , k}, and thus f ′

is a dominating k-broadcast function that satisfies ω(f ′) = k + 1 + r.

Let us now calculate a lower bound on the order n′ of T ′ = T (u, uk+1uk+2).
Notice that, n′ = |V (T (u, ukuk+1))| +

∑r
j=1 |V (xj , uk+1zj)| + 1 ≥ (r +

1) (B(k) + 1) + 1.

If k is odd, then n′ ≥ (r + 1) (3k+1
2 + 1) + 1 = (r+1)(3k+3)+2

2 , implying that

ω(f ′)

n′
≤ 2(k + 1 + r)

(r + 1)(3k + 3) + 2
.

If the inequality
2(k + 1 + r)

(r + 1)(3k + 3) + 2
≤ k + 2

3k + 3
,

holds, we are done, but this inequality is equivalent to 3 k2 (r− 1) + 3 k (r−
1) + 4 ≥ 0 and it is easy to check that it is true for r ≥ 1 and k ≥ 3.
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u1 u2 u3 u4 u5 u6 u7 u8 u2k+1u2ku2k−2

u′1 u′2 u′4 u′6 u′8 u′2k+1u′2ku′2k−2

Figure 10: The tree Tk of order n = 3k + 3 satisfies γ
Bk

(Tk) =
⌈
k+2
k+1

n
3

⌉
.

Finally, if k is even, then n′ ≥ (r + 1) (3k+2
2 + 1) + 1 = (r+1)(3k+4)+2

2 . Thus,
taking into account the calculations of the preceding case,

ω(f ′)

n′
≤ 2(k + 1 + r)

(r + 1)(3k + 4) + 2
≤ 2(k + 1 + r)

(r + 1)(3k + 3) + 2
≤ k + 2

3k + 3
.

This concludes the proof of the upper bound on γ
Bk

for any k ≥ 3.

In the following propositions we give some trees attaining the upper bound on
γ
Bk

.

Proposition 14. For every k ≥ 3 and r ≤ k, the path Pn, where n = 2r+1, satisfies
rad(Pn) = r ≤ k and γBk

(Pn) = dn/3e.

Proof. It is known that a path of order n has radius
⌊
n/2

⌋
and broadcast number⌈

n/3
⌉

(see [8, 9]). Therefore, for n = 2r + 1 we have rad(Pn) = r ≤ k, and thus
γBk

(Pn) = γB(Pn) = dn/3e, since we have rad(Pn) ≤ k.

Proposition 15. For every k ≥ 3, there exists a tree T such that rad(T ) > k and

γ
Bk

(T ) =

⌈
k + 2

k + 1

n

3

⌉
.

Proof. Let k ≥ 3 and consider the tree Tk of order 3k+3 and radius r+1 obtained from
a path P = u1u2 . . . u2k+1 by hanging a leaf u′i to each vertex ui, for i = 1, i = 2k+ 1
and for i even with 2 ≤ i ≤ 2k (see Figure 10). We claim that γ

Bk
(Tk) = k+ 2. First

observe that the set formed by the k + 2 support vertices is a dominating set, and
thus γ

Bk
(Tk) ≤ γ(Tk) = k + 2 for every k ≥ 3.

Next, we show that γ
Bk

(Tk) = k + 2 by induction on k ≥ 3. It is easy to check

that γ
B3

(T3) = 5.

Now, suppose that k ≥ 4. We want to prove that γ
Bk

(Tk−1) = k + 1 implies

γ
Bk

(Tk) = k + 2.

Suppose to the contrary that γ
Bk

(Tk) ≤ k + 1. Let f be an optimal dominating

k-broadcast on Tk. On the one hand, by Proposition 1, we may assume that f(u) = 0
for every leaf u. On the other hand, f is a dominating (k − 1)-broadcast on Tk.
Indeed, suppose to the contrary that there is some vertex x with f(x) = k, then there
must be another vertex y such that f(y) = 1 and f(z) = 0, for z 6= x, y. But in such
a case, it is not possible that all vertices hear a vertex of V +

f because there are two
vertices at distance 2k + 2 in Tk.

Notice that Tk−1 is isomorphic to the tree induced by V (Tk)\{u1, u′1, u′2}. Suppose
that u′1 hears vertex x ∈ V +

f . If f(x) = 1, then x = u1 and u′2 hears a vertex y 6= u1.
Hence, u2 hears y and the restriction of f to the vertices of Tk−1 is a dominating
(k − 1)-broadcast with cost k, which contradicts that γ

Bk
mu(Tk−1) = k + 1. If
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f(x) = 2, we can assume that x = u2. Then, the function g defined on the set of
vertices of Tk−1 such that g(u) = f(u) if u 6= u2, u3, g(u2) = 0 and g(u3) = 1 is a
dominating (k− 1)-broadcast on Tk−1 with ω(g) = k, which is again a contradiction.
Finally, if u′1 hears a vertex x = uj with f(uj) = h ≥ 3, then d(u2, uj) ≤ h − 2 and
d(u2, uj+1) ≤ h− 1. In such a case, the function g on V (Tk−1) such that g(u) = f(u)
if u 6= uj , uj+1, g(uj) = 0 and g(uj+1) = h− 1 is a dominating (k − 1)-broadcast on
Tk−1 with ω(g) = k, a contradiction. This completes the proof.
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