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About this work and organization 

i. About this work and organization 

Having completed the U.P.C. course called Digital Systems for Embedded Linux (DSX), an 

interest about Linux and device drivers has been growing for me. 

This interest finally materialized as the desire to start and develop the PFC project as a 

personal research project to gain further knowledge on Linux programming, covering 

some kernel-space concepts. So in some sense this work is kind of a continuation to the 

work done during DSX course using the BeagleBone board. 

First part of this work is a small overview of what is GNU/Linux, along with some context 

including statistics and some of its selected applications, which show the diversity of 

purposes for which Linux is being used nowadays apart from classical server/desktop 

computing. 

Then, a description of the working environment is given, including the steps needed to 

set up a virtualized development machine. 

Next, programming guides (prepared specifically for this work) with proposed exercises 

(anyone who is reading this work and willing to put in practice the concepts exposed 

here) related to various aspects of kernel programming are included. 

The guides cover advances programming aspects related to kernel-side such as: 

- GPIO programming 

- interrupt programming 

- blocking I/O programming 

- file drivers 

- kernel probes 

Also, and specifically related to the BeagleBone, a guide which covers programming of 

the DMA controller found at the Board is included. 

As a bonus track, a guide (not related to kernel programming) which covers a topic not 

seen during the DSX course is included: TLS. 

Finally, a conclusion to the presented work is exposed, encouraging readers to explore 

other advanced topics. 

  



 



Tools used for the creation of this work 

ii. Tools used for the creation of this work 

Tools are an essential part of any digital work, and following have been the ones used: 

Following hardware has been used: 

- old PC: laptop HP Pavilion DV3, Intel Core i5 with (8 GB RAM, 500 GB HDD) with 

Windows 7 Home Premium 

- new PC: laptop Dell XPS13 (9350), Intel Core i7 (16 GB RAM, 500 GB HDD) with 

Windows 10 Home 

- both with external mouse (Logitech) and keyboard (Dell) 

Following software has been used: 

- Oracle Virtual Box with Ubuntu 14.04 guest as development machine (both freely 

available for non-commercial usage) 

- Vim for edition of all code presented in this document (freely available) 

- Microsoft Word for the edition of this document (work license) 

- yED for the creation of vector diagrams embedded into this document (freely 

available for non-commercial usage) 

- Firefox as the internet browser (freely available) 

- Notepad++ for taking quick notes (freely available) 

- and the set of command-line utilities bundled with Ubuntu 14.04 and some of its 

packages (freely available) 

Following third party services have been used: 

- Drop Box for regular backups 

- Google Drive for sporadic backups 

Apart from the links explicitly referenced though this work, following sources have been 

consulted to obtain information: 

- Linux Kernel 3.8 source code 

- man pages 

- Texas Instruments Forums 

- The AMM335x processor programming manual 

- Material from the course on Digital Systems for Embedded Linux (DSX) 

- And finally google to search for generic topics  
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1. Introduction 

1.1. Motivation for this work 

It all begin at a course given at U.P.C. called Digital Systems for Embedded Linux (DSX), where 

some programs were developed for the BeagleBone board, illustrating that this embedded 

device can effectively power a Linux distribution, with less than 1 GB RAM and a permanent 

storage of about 4 GB (using a SD-card), featuring Ethernet connectivity. 

Its size makes it fit in a hand: 

 

In addition to playing with the BeagleBone, some practices included developing programs for 

the TT01-v1 Cape (which is a board add-on) developed by a previous student featuring as fancy 

gadgets as a push button, some individual LEDs, a LED matrix, an accelerometer and an external 

16-bit memory bus: 

 

Approximately in the middle-end of the DSX course, a driver had to be programmed. It was a 

simple file driver for Linux, meant to interface a user-space program with external VHDL-

programmed board through the BeagleBone (using its integrated General Purpose Memory 

Controller (GPMC) via the TT011-v1 Cape connector). 
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Apart from the interest of programming the VHDL code, one aspect of those exercises was 

fascinating: programing a driver. 

In that course, some techniques were learnt, including mapping physical memory addresses to 

virtual processor addresses and a slight introduction to file drivers. But the most important 

lesson was it was not hard to write your own driver for Linux. 

So many possibilities opened… lots of techniques to explore and an open-source Kernel to 

research how all these techniques do work. 

Then, the idea for this work was born: extend the knowledge (related to drivers) acquired during 

the DSX course, and extend it in such a way new students to that course would obtain a benefit 

for it. This led to think that the guide format used at this work was the most suitable for the 

goals of the work. 

This work originally started with the desire to be able to perform a DMA transfer from the 

external memory (via GPMC bus) into some kernel-allocated-memory and expose it in such a 

way that a person who does not know what does DMA mean could follow the reasoning and 

why thinks are done how they are. 

This is just the same process that happens to people when they learn some new concept: 

- first, there is the will to learn something 

- then, this will to learn shows you that there are some other concepts which are pre-

requisites for the original wanted-to-learn 

As it happens usually, the will to learn about DMA transfers led to first learn some other aspects 

related to driver development which are essential to program a decent DMA transfer: extend 

knowledge about file drivers, learn what an interrupt is, how blocking I/O is done… 

And as a side-effect, some other concepts entered scene just to be able to test the acquired 

knowledge: interrupts triggered by GIPO to be able to alter behavior of the tested programs, 

kprobes check code flow… 

And slowly, this work started to grow, to become what is now. 

All explanations done in this work could not have been done without the effort and uncountable 

hours spent by a huge community to give form to what is one of the biggest distributed projects 

nowadays. 

Welcome to Linux. 

1.2. About GNU/Linux 

About 1984, GNU Project had a goal: create a free Unix-type operating system (OS). So, the GNU 

Project created some guidelines which all GNU-like OS should follow, known as Free System 

Distribution Guidelines. 

Basically, it states about those OS distributions that ‘They will reject nonfree applications, 

nonfree programming platforms, nonfree drivers, nonfree firmware “blobs”, nonfree games, and 

any other nonfree software, as well as nonfree manuals or documentation.’  

Nowadays, there are a bunch of OS which follow the GNU Principles of digital freedom.  
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Linux itself officially started on August 1991, with a message from Linus Torvalds on a computing 

Usenet board (comp.os.minix), announcing an early development stage of its Kernel. 

Although the GNU Project had its own planned replacement for its operating system Kernel 

called HURD, nowadays Linux is usually bundled as the core for the operating systems endorsed 

by the GNU Project. This way: 

- the GNU Project provides an ecosystem of helper utilities (command line utilities, 

compilers, editors…) needed to interact with the operating system 

- the Linux Project provides the GNU operating systems with a modern Kernel 

It’s not uncommon to call the entire operating system a Linux OS, but it should be called a 

GNU/Linux OS. 

Of course, there are many distributions of GNU/Linux, each of them having its own particularities 

and advantages for a specific purpose, but the GNU Project only endorses a small fraction of 

them (only those which strictly follow the principles of free software promoted by the GNU 

Project). Other distributions (although they may have more relevance on Google queries) are 

not endorsed by the GNU Project. 

1.3. GNU/Linux: current usage statistics 

Since its introduction in 1991, Linux has slowly found its way among all areas related to 

computing. 

One very successful introduction at the everyday users’ life from Linux is to be the powering 

kernel for all Android devices on the market. Considering all personal computers, Gartner gives 

following market share for consumer electronic devices (corresponding to PCs + tablets + 

smartphones) up to 2015, where it can be appreciated the Linux relevance. 

 

If only desktop and laptop computers are considered for personal computing, an estimate based 

on web browser statistics (this is, based on the user agent perceived by web traffic analyzers) 

gives the following chart, where it can be seen that Linux is not so spread at home computers. 

54%

12%

12%

22%

2015 ALL DEVICES' OS SHARE

Android iOS/OS X Windows Other
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Another area of interest is supercomputing. Evolution of the systems which power 

supercomputers through the last two decades shows how Linux has implacably taken over and 

displaced the rest of the systems: 

 

 

1.4. Relevance of the GNU project in modern IT 

One of the main achievements of the GNU project was to (thanks to its continuous 

striving) be able to assemble an entire family of operating systems and make them 

available not only to the general public but also to developers and researchers. 

Another great achievement accomplished by the GNU Project is that the term free 

stated in the Free System Distribution Guidelines includes not only free availability and 

32%

40%

17%

11%

DESKTOP/LAPTOP BROWSER USAGE STATS
Android based Windows iOS/OSX Other
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usage for the computer programs created using these guidelines, but also free 

availability of the source code which compiles into those programs’ binary files, with 

licenses like the Gnu Public License (GPL). 

It has been of tremendous importance the GPL, which states that if a binary/executable 

file (in such a way that all or parts of its source code contains any piece of code licensed 

as GPL (including static and dynamic linking depending the GPL license version) or 

derived from GPL-licensed code) is distributed to the public, this public also has the right 

to obtain the source code that generates the binary file (thus enforcing open-source 

politics). 

This may seem very like a very aggressive licensing option from an IT company point of 

view, because code open-sourceness may represent a strategic weakness for the 

companies. 

Because of this, some less restrictive (not requiring open-sourceness for derivative 

works derived of licensed code) aroused, such as the MIT License, Apache2 License, etc. 

Slowly people from all around the world started joining the Linux project (imagine it, to 

be able to inspect the source code of a modern OS Kernel and tweak it just for study 

purposes), and today more than 1000 developers contribute to the release of each 

version of the Linux Kernel. 

GPL-like licenses contributed not only to accelerate knowledge sharing between 

programmers all around the world, they also contributed to grow the sharing feeling 

between programmers (of course GPL license is not the reason that led programmers to 

share source code, but Linux is a powerful demonstration of what open-source along 

with collaborative programming can achieve, and impressed many people who were 

later open-source coders). 

It’s enough to take at websites like SourceForge or GitHub to be amazed by the activity 

of open-source projects related to Linux available out there, including Linux. 

So nowadays a combination of open/closed source policies is found between IT 

companies. Some selected examples are: 

- traditional companies which produce closed source products 

It’s not uncommon that these companies use open-source auxiliary components 

like web servers, Linux development tools, GNU Toolchains and so on. 

- small companies which produce open source programs or libraries and sell 

supporting/branding/consulting/customization services related to their product 

- companies which do not produce software but offer consulting services on some 

software products (for either or both open-source / closed-source products) 
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- companies not directly related to IT with very small operational budgets which 

can’t afford buying proprietary licenses, so they use free IT products in 

conjunction with some customization and/or tailoring 

1.5. Devices powered by Linux 

In contrast with proprietary OS components (such those from the wide spread Microsoft 

and Apple), the kernel offered by Linux is so customizable that it has been tailored to 

work in devices which traditionally had custom-made solutions. 

To name a few, here follow some applications powered by Linux: 

- Routers like Linksys WRT54G, powered by the DD-WRT distribution: this is a 

classic among enthusiasts of home networking, and was very popular about a 

decade ago at early stages of networking communities such as guifi.net (they 

even created a distribution base on DD-WRT) and were commonly used as access 

network nodes 

 

 

- airplane entertainment systems, which pursue low costs as well as high degrees of 

customization. Some companies which use Linux for this goal are Virgin America, 

Emirates, United and Air New Zealand 

- related to scientific application, some example facilities which at some degree use 

Linux (formerly the Scientific Linux Distribution) are Large Hadron collider and the 

International Space Station 
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- Toyota Prius (a self-driving car by google), is powered by an OS based on 

Ubuntu/Linux 

 

- BeagleBone.org Foundation, which is a US-based non-profit corporation devoted 

to promote open-source software and hardware in embedded computing, offers 

some embedded boards on top of which Linux can be run: 
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2. Mounting a bootable Ubuntu/Linux image 

This section describes the steps needed to prepare a development machine aimed at: 

- preparing a bootable of Ubuntu/Linux for the BeagleBone 

- being able to compile the code dedicated to kernel-side driver programming 

The steps are described in a detailed way, and include: 

- how to download the packages needed to install and set up the machine 

- description of desired networking layout  

- description and installation of the tools needed to compile binaries for the target 

platform (the BeagleBone) 

- description and installation of other tools which are needed to prepare and 

mount the bootable image 
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2.1. Description of needed components 

 

Previous diagram is based on work done by R. González Muñoz [1], which may be 

consulted for reference. Nevertheless, the image build process will be described here 

for completeness. 

Blue boxes on the diagram correspond to various pieces of software which are already 

prepared and serve as input to the image build process: 

- Linux Kernel 3.8 source code, where primary reason for choosing this kernel 

version is that, as it is stated in [1] (section 4.2.2), “Nowadays, if it is required to 

use capes in the BeagleBone, the best option is to use the 3.8 branch”. As a 

previous step to its compilation, some parameters will be tweaked. 

- Bootloader source code, which is a bootloader targeting embedded boards 

based (among others) on ARM. 

- Device Tree Source, because to enable usage of the TT01v1 cape for the 

BeagleBone (designed by R. Pérez López), a file (the Device Tree Binary Object, 

DTBO) describing how the Cape Manager found at the kernel must configure the 

system in order to allow it interacting with the cape hardware must present at 

the cape. DTBO is generated from the Device Tree Source (DTS). 

- Ubuntu 14.04 Image for ARM, which was the latest Ubuntu image available when 

this work started 

Dark yellow components on the diagram correspond to processes which need to be 

executed as steps in the image build process: 

- GCC cross-compiler, as the source code for the Kernel must be compiled and it 

will be executed on the BeagleBone processor, a compiler which runs on the VM 

guest (which is x86/x64) but generates code for an ARM processor is needed. 
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This is known as a cross-compiler. This compiler will be used later to generate 

the executable files and drivers during the completion of the exercises’ guides.  

- Device Tree Compiler, which compiles Device Tree Source files (DTS) into Device 

Tree Binary Objects, which are the files accepted by the Cape Manager found at 

the Linux Kernel. Although there is also an option to compile DTS files directly 

from the BeagleBone, in order to avoid bloating the BeagleBone with additional 

software, this step will be done from the VM guest (the development machine) 

Purple component on the diagram corresponds to the final result of the image build 

process: 

- Prepared SD-Card, which on the DSX labs were 4 GB cards. Unfortunately, during 

the development of this work there were no 4 GB cards available for purchase, 

so for the prototyping a 16 GB card was used with satisfactory results 

Green components on the diagram correspond to intermediate results which feed the 

process that generates the result: 

- Compiled Kernel, which will be copied into the SD-card ready to be loaded from 

the already prepared Ubuntu 14.04 ARM image 

- Device Tree Binary Object, which will be copied into the SD-card and the boot 

loading process instructed to load it to enable access to the cape hardware  

Now, the process for generating a working Ubuntu image for the Beagle Bone will be 

illustrated. The explanation is highly based on the work done by a previous student [1]. 

The build process will be explained from the point a fresh Ubuntu 14.04 OS installed on 

the guest system. For completeness on the process’ description, excerpts from [1] may 

be included here, with including additional information. 
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2.2. Working environment set-up 

Code presented at the guides has been developed using a VM: 

- Host OS for the VM was Windows 10 64-bit (coding started on an HP Pavilion 

DV3 and finished on a Dell XPS13) 

- Guest OS for the VM was Ubuntu 14.04 Desktop LTS 64-bit 

The software used to set up the VM  is Oracle Virtual Box (chosen based on good 

personal experience with it in the past and because its free availability for this kind of 

work). Setup of the virtual machine is quite straightforward. 

Oracle Virtual Box can be downloaded from the following webpage: 

https://www.virtualbox.org/wiki/Downloads 

Once Oracle Virtual Box was installed, a 64-bit VM with following features was created 

(if the host OS is 64-bit and runs on a 64-bit PC, it’s better to create 64-bit VM’s): 

RAM 2048 MB 

Processors 2 (not really needed, but will speed up kernel compilation 

Storage HDD with 40 GB 

Network type Bridged adapter 

Video 128 MB RAM, 3D acceleration enabled 

Regarding network configuration, the physical connection scheme between all system’s 

components has been the following: 

 

https://www.virtualbox.org/wiki/Downloads
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Thanks to the use of a bridged network configuration, the logical connection scheme 

was the following (which avoided usage of NAT techniques between the guest and the 

host and thus allowed direct bidirectional IP communication between the guest machine 

and the BeagleBone): 

 

When this work started, latest available LTS version of Ubuntu Desktop was 14.04, 

whose ISO image can be downloaded from the following webpage: 

http://releases.ubuntu.com/14.04/ 

Once the ISO file for Ubuntu is downloaded, settings for the VM must be open and the 

ISO attached file to the optical drive of the VM. 

 

Next, start the VM and follow on-screen instructions to install Ubuntu 14.04 on the hard 

disk drive (HDD) of the VM. The process is quite straightforward, but in case of problems 

this webpage contains additional help to aid in the process: 

https://help.ubuntu.com/community/LiveCD 

 

  

HOST machine

(Win10)
GUEST machine

(Ubuntu)

beaglebone

192.168.1.0/24

AP

dynamic IP via DHCPdynamic IP via DHCP

static IP (192.168.1.100)

http://releases.ubuntu.com/14.04/
https://help.ubuntu.com/community/LiveCD
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2.3. Configuring VM workspace 

One very important aspect of the development process is the working directory layout, 

so as it is recommended at the compilation guide in [1], all software will be downloaded 

inside a root directory called workspace, just to keep things together and ease backups. 

This root directory will be located inside the default user home directory, and following 

structure will be used: 

 

2.3.1. Tuning VM 

Once the working environment has been set up, it must be configured. 

Right after booting the freshly installed Ubuntu system on the guest machine, an 

upgrade should be done to the system (this will upgrade system packages to the latest 

version found at the official repositories). 

With this goal, check that that you have internet access pinging one of Google’s DNS 

servers. Responses from the pings should be showed next: 

$ ping 8.8.8.8 

PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data. 

64 bytes from 8.8.8.8: icmp_req=1 ttl=58 time=53.7 ms 

64 bytes from 8.8.8.8: icmp_req=2 ttl=58 time=64.7 ms 

64 bytes from 8.8.8.8: icmp_req=3 ttl=58 time=53.0 ms 

If internet access is available, it’s time to upgrade the system, so type following 

command on a terminal (which may take a while to execute depending on internet 

connection speed): 

$ sudo su -c “apt-get update && apt-get -y upgrade” 

Having finished execution of the previous command and with system up-to-date, the 

VM is ready to be used with latest patches, but if following this guide to reproduce the 

steps it may be useful to enable things such as 3D Hardware acceleration, shared 

clipboard between the guest/host or enabling shared folders from the guest to the host. 
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So an additional utility must be installed, which comes bundled with Virtual Box (this 

utility is called Guest Additions). 

Before installing Guest Additions, open a terminal and type following command (which 

will install some packages needed to properly install Guest Additions): 

$ sudo apt-get install -y linux-headers-generic dkms  

Now, at the running VM menu, click on the following option: Devices -> Insert Guest 

Additions CD image… 

 

An ISO image will be automatically mounted at Ubuntu, which will then show a message 

asking for permission to automatically run the mounted CD. Click on Cancel, and type 

following commands: 

$ cd /media/$USER/VBOXADDITIONS* 

$ sudo ./VBoxLinuxAdditions.run  

Once Guest Additions are installed shutdown the VM, open the VM settings and under 

the General options, enable Bidirectional Shared Clipboard: 

 

Now start the VM again. 

Note: If using a high density display screen, it may be useful to scale up display. To do 

this, go to Configuration -> Display and select a different value for Scale for menu and 

title bars. 
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2.3.2. Needed tools description 

Although now the VM is up-to-date and ready to be used, some tools need to be 

installed to enable preparation of the Ubuntu/Linux image for the BeagleBone: 

- git, which is a source code versioning tool. This is the tool used to get the source 

code for various components (in a process known as cloning) which, once 

compiled, must be assembled to produce the final bootable system image 

- cross-compiler, which, as explained before, will transform the source code into 

executable binary files for the ARM platform 

- complementary tools, which give support to the Kernel compilation process 

- device tree compiler, which, as explained before, transforms the Device Tree 

Source (DTS) files into its binary representation (DTBO files) 

- ssh tools, which in order for the development VM to be accessed remotely or to 

mount remote filesystems on the BeagleBone are needed 

2.3.3. Install system utilities 

Most of the needed software to be installed can be installed through Ubuntu package 

management system. This can be done executing the following command: 

$ sudo apt-get install sshfs ssh git bc build-essential device-tree-compiler 

fakeroot lsb-release lzma lzop man-db 

If host machine, development VM and guest OS are both 64-bit, additional packages 

need to be installed to be able to execute the cross-compiler (which consist on 32-bit 

executables). The packages enable executing 32-bit executable files from a 64-bit 

machine. These additional packages can be installed with the following command: 

$ sudo apt-get install libc6-i386 lib32stdc++6 lib32gcc1 lib32ncurses5 lib32z1 

2.3.4. Install Device Tree Compiler 

The Device Tree Compiler must be installed in a separate step. Commands needed to 

install it are: 

$ cd /tmp 

$ wget -c https://raw.github.com/RobertCNelson/tools/master/pkgs/dtc.sh 

$ chmod a+x dtc.sh 

$ sudo ./dtc.sh  

Last command install DTC at system level, but at the end of the process it will leave a 

folder (~/git/dtc) with its source code. This folder is useless unless the DTC source code 

is to be studied or modified, so it’s safe to remove the folder with the following 

command (just to remove garbage from the system): 

$ sudo rm -Rf ~/git/dtc  
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2.3.5. Configure git command line tools 

To be able to build the Linux Kernel (whose build process implies downloading additional 

patches), username and email must be configured for git command line tools (installed 

on the last command executed). 

Before this, a GitHub user account needs to be configured, which can be freely created 

at this website: https://github.com/ (GitHub is a service which offers free hosting for 

public code repositories with an interface compatible with git tools) 

Once an user account is created, execute following commands, where: 

- {USERNAME} is the user name for the GitHub account 

- {EMAIL} is the email for the GitHub account 

git config --global user.name "{USERNAME}" 

git config --global user.email {EMAIL} 

2.3.6. Creating work directory structure 

Following commands will create structure described previously: 

$ mkdir -p ~/workspace/ubuntu-image 

$ mkdir -p ~/workspace/kernel 

$ mkdir -p ~/workspace/cross-compiler 

$ mkdir -p ~/workspace/boot-loader 

2.3.7. Download cross-compiler 

Note: same compiler version as the one used in [1] has been kept, to avoid compatibility 

problems, but there are newer compiler versions. 

Following commands will install the cross-compiler using the previously mentioned 

folder structure: 

$ cd ~/workspace/cross-compiler 

$ wget -c https://releases.linaro.org/14.09/components/toolchain/binaries/gcc-

linaro-arm-linux-gnueabihf-4.9-2014.09_linux.tar.xz 

$ tar xf gcc-linaro-arm-linux-gnueabihf-4.9-2014.09_linux.tar.xz 

$ rm gcc-linaro-arm-linux-gnueabihf-4.9-2014.09_linux.tar.xz 

Note: as suggested in [1], now it’s possible to set an environment variable pointing at 

the C cross-compiler binary file: 

$ export CC=~/workspace/cross-compiler/gcc-linaro-arm-linux-gnueabihf-4.9-

2014.09_linux/bin/arm-linux-gnueabihf- 

  

https://github.com/
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2.4. Bootable image preparation: download and compile 

Once all tools have been installed into the VM, it’s time to download ingredients needed 

to mount a bootable image. 

Following sub-sections will provide enough detail to make the process repeatable. 

2.4.1. Download and compile boot-loader 

Following commands will download the bootloader source code using git, and apply 

needed patches to it in order to support the ARM processor used by the BeagleBone: 

$ cd ~/workspace/boot-loader 

$ git clone git://git.denx.de/u-boot.git 

$ cd u-boot/ 

$ git checkout v2015.01 -b tmp 

$ wget -c https://raw.githubusercontent.com/eewiki/u-boot-

patches/master/v2015.01/0001-am335x_evm-uEnv.txt-bootz-n-fixes.patch 

$ patch -p1 < 0001-am335x_evm-uEnv.txt-bootz-n-fixes.patch 

Then, the bootloader can be compiled with the following commands: 

$ make ARCH=arm CROSS_COMPILE=${CC} distclean 

$ make ARCH=arm CROSS_COMPILE=${CC} am335x_evm_defconfig 

$ make ARCH=arm CROSS_COMPILE=${CC} 
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2.4.2. Download, configure and compile Kernel 

Kernel source code partial download and preparation for compilation is done by the 

following commands: 

$ cd ~/workspace/kernel 

$ git clone https://github.com/RobertCNelson/bb-kernel.git 

$ cd bb-kernel/ 

$ git checkout origin/am33x-v3.8 -b tmp 

Once partial source code downloaded, following command will check for additional 

dependencies and download the rest of the source code: 

$ ./build_kernel.sh 

Note I: in there is some unmet system package dependency during execution of the 

previous command, a message will be shown, indicating how to proceed. 

Note II: during execution of previous command while reproducing these steps, an error 

related to git and gnutls_handshake and occurred, which was solved by following the 

steps described in this article: 

https://forums.aws.amazon.com/message.jspa?messageID=539373 

Download may take a while depending on Internet connection speed, so be patient. 

Once previous command finishes downloading source code is downloaded and applying 

patches to it, a screen where kernel parameters can be tweaked will be shown: 

 

Navigating through the menus, locate and enable following options: 

- under General Setup -> IRQ subsystem, enable following option: 

https://github.com/RobertCNelson/bb-kernel.git
https://forums.aws.amazon.com/message.jspa?messageID=539373
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o Expose hardware/virtual IRQ mapping via debugfs, this will make a file 

available in the /proc virtual filesystem, with information about IRQ 

assignments 

- under Device Drivers -> DMA Engine Support, make sure following options are 

enabled: 

o TI EDMA support, this will enable support the DMA controller included 

with the BeagleBone processor 

o Async_tx: Offload support for the async_tx api, this will enable 

asynchronous memory copy support at the kernel 

o DMA Engine debugging, this will enable showing debug messages from 

the DMA Engine through dmesg interface 

o DMA Engine verbose debugging, this will enable extended debug 

message info from the DMA Engine through dmesg interface 

- under Kernel Hacking, make sure following options are enabled (which will both 

provide extended debug information through dmesg interface): 

o Enable dynamic printk() support 

o Enable debugging of DMA-API usage 

Make sure that all previous options are set with a * tick, which means built-in support. 

Otherwise compilation may fail. 

Also, make sure (from the menu system) that the following components are disabled: 

- under Device Drivers -> Misc devices 

o Amazing GPIO DMA Event Test Driver(tm), trying to compile this driver 

made the build process stop with errors in a recent revision of this guide 

Once done, exit and confirm to save changes. Compilation process will begin and may 

take a time to complete of about the order of an hour (depending on speed and number 

of processors assigned to the development machine). 

Once compilation finishes, it will show kernel version (write down this version), on a line 

like this: 

Script Complete 

eewiki.net: [user@localhost:~$ export kernel_version=3.8.13-bone80]  

2.4.3. Download prepared Ubuntu 14.04 image for ARM 

Next, an already prepared Ubuntu 14.04 image for ARM will be downloaded. 
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Although there exist newer versions of the OS available at [3], this version has been 

chosen because it was the version selected at [1], has Long Term Support (it’s an LTS 

release), and its size is smaller than that of 16.04. 

Following commands download and decompress the file system: 

$ cd ~/workspace/ubuntu-image 

$ wget https://rcn-ee.net/rootfs/eewiki/minfs/ubuntu-14.04.4-minimal-armhf-

2016-04-02.tar.xz 

$ tar xf ubuntu-14.04.4-minimal-armhf-2016-04-02.tar.xz 
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2.5. Bootable image preparation: image assembly 

Now that the build process is done and all the pieces ready, the image assembly process 

can begin. 

Start with setting an environment variable which stored the compiled Kernel version 

(obtained at the end of kernel compilation): 

$ export kernel_version=3.8.13-bone80 

The SD-card has to be inserted on the host PC. After this, go to the Virtual Box menu for 

the running development VM and attach the SD-card to the VM: 

 

Under Devices -> USB, an option which resembles a card reader should appear. Once 

this is done, the SD-card will be attached to the VM, which can be confirmed executing 

the lsblk utility: 

$ lsblk 

NAME   MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT 

sda      8:0    0    25G  0 disk  

├─sda1   8:1    0    23G  0 part / 

├─sda2   8:2    0     1K  0 part  

└─sda5   8:5    0     2G  0 part [SWAP] 

sdb      8:16   1   3,7G  0 disk  

├─sdb1   8:17   1  70,6M  0 part  

└─sdb2   8:18   1   3,3G  0 part  

sr0     11:0    1  55,6M  0 rom  /media/pepe/VBOXADDITIONS_5.0.22_108108 

From previous command output, it’s known that the SD-card is located at /dev/sdb, so 

execute following command which will cretate an environment variable used during 

subsequent commands execution: 

export DISK=/dev/sdb 

Following diagram depicts components previously prepared which will be used during 

image preparation (blue boxes): 
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Later, when it’s time to configure networking for the BeagleBone, it will be taken into 

account the logical network configuration which during preparation of this guide was 

the following: 

 

Previous scheme takes into account that the DHCP range does not include 192.168.1.100 

address, and will allow the BeagleBone connect to the Internet in order to upgrade 

packages. 

2.5.1. Formatting, installing the bootloader and partitioning SD-card 

Following commands will erase contents at the beginning of the SD-card: 

$ sudo dd if=/dev/zero of=${DISK} bs=1M count=10 

And following commands will install the bootloader into the SD-card. 

development machine beaglebone

192.168.1.1/24

AP

dynamic IP via DHCP 192.168.1.100/24
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$ sudo dd if=~/workspace/boot-loader/u-boot/MLO of=${DISK} count=1 seek=1 

conv=notrunc bs=128k 

$ sudo dd if=~/workspace/boot-loader/u-boot/u-boot.img of=${DISK} count=2 seek=1 

conv=notrunc bs=384k 

Next command will create partition table at the SD-card (command takes 3 lines): 

$ sudo sfdisk --in-order --Linux --unit M ${DISK} <<-EOF 

1,,0x83,* 

EOF 

Note: It is possible that (in order to execute previous command), all filesystems which 

use the SD-card device have to be unmounted first. Filesystems currently mounted can 

be shown using the mount command. 

And finally, following command will create an EXT4 partition which uses all card space: 

sudo mkfs.ext4 ${DISK}1 -L rootfs 

2.5.2. Mount SD-card and prepare image 

Once the SD-card is mounted, it’s time to assemble all software components (prepared 

and compiled before) into it. 

First step is mounting the SD-card filesystem on a local filesystem: 

$ mkdir -p ~/workspace/rootfs 

$ sudo mount ${DISK}1 ~/workspace/rootfs  

Then, copy the Ubuntu image with following command: 

$ sudo tar xvfp ~/workspace/ubuntu-image/ubuntu-14.04.4-*/*.tar -C 

~/workspace/rootfs 

Next, copy the Kernel image into the SD-card: 

$ sudo cp -v ~/workspace/kernel/bb-kernel/deploy/${kernel_version}.zImage 

~/workspace/rootfs/boot/vmlinuz-${kernel_version} 

And the modules: 

$ sudo tar xfv ~/workspace/kernel/bb-kernel/deploy/${kernel_version}-

modules.tar.gz -C ~/workspace/rootfs 

2.5.3. Image configuration 

Up this point, all software is already copied into the SD-card. Now it is needed to tweak 

it and set some basic configuration options: 

Following command is used to set Kernel version information: 

$ echo "uname_r=${kernel_version}" | sudo tee ~/workspace/rootfs/boot/uEnv.txt 

Next, the network configuration must be set. This configuration was exposed before and 

will take into account the logical network topology during elaboration of this guide. 

Following command (take into account that it expands more than one line) does it: 

$ cat | sudo tee ~/workspace/rootfs/etc/network/interfaces <<-EOF 
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# interfaces(5) file used by ifup(8) and ifdown(8) 

# Include files from /etc/network/interfaces.d: 

source-directory /etc/network/interfaces.d 

auto lo 

iface lo inet loopback 

# primary network interface 

auto eth0 

iface eth0 inet static 

address 192.168.1.100 

netmask 255.255.255.0 

network 192.168.1.0 

gateway 192.168.1.1 

EOF 

Finally, the compiled Device Tree Binary Object should be copied into the BeagleBone. 

Refer to [1] for details on this. 

Next flush pending buffers and unmount the SD-card with following commands: 

$ sudo sync 

$ sudo umount ~/workspace/rootfs 
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2.6. Bootable image testing 

Now that everything is configured, SD-card can be inserted into the BeagleBone and the 

board powered on. 

2.6.1. Connection to BeagleBone 

If all previous steps went well, it will be possible to connect the board from development 

VM, using ssh. 

User and password for the system image running at the Board can be obtained executing 

following command: 

$ cat ~/workspace/ubuntu-image/ubuntu-*/user_password.list 

Authentication parameters (if Ubuntu ARM system image has not changed) should be: 

- username: ubuntu 

- password: temppwd 

Hence, it is possible to establish a shell session using ssh with following command: 

$ ssh ubuntu@192.168.1.100 

2.6.2. Mount BeagleBone file system as a local folder 

Although (to send files to the BeagleBone) scp command can be used, it can be more 

interesting to be able to mount some folder from the Beagle at a local folder on 

development machine. To achieve this, sshfs utility will be used. This method has been 

chosen because no root privileges on the development machine are required to do it. 

Executing sshfs is simple, and prior to executing the command the mount point must 

be created. Following commands do that: 

$ mkdir -p ~/workspace/beagle 

$ sshfs ubuntu@192.168.1.100:/home/ubuntu ~/workspace/beagle 

Whenever the remote folder has to be unmounted, it will be seen that executing umount 

requires root privileges at the development VM. 

However, there exists a command which doesn’t require root privileges and can be used 

for unmounting the remote folder (mounted via sshfs). To do it, execute: 

$ fusermount -u ~/workspace/beagle 

 [1] R. González Muñoz. " Improving the BeagleBone board with embedded Ubuntu, 

enhanced GPMC driver and Python for communication and graphical prototypes". M.S. 

thesis, Electrical Engineering department, Technical University of Catalonia (UPC), 

Barcelona, Spain, 2015 
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3. Kernel Programming Techniques 

Following sections contains the programs and guides whose development is the core of 

this work. 

Programs are presented in difficulty order, starting with most basic topics and in 

increasing difficulty level (sometimes understanding how a program works is a pre-

requisite before moving to the next one). 
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3.1. Guides organization and common treats 

An important fact on how the guides for the for the different topics areas are presented 

is that they’re not exposed on a this is done that way fashion. 

Instead, guides are structured in a mode which resembles the way information for this 

work was researched, and almost all of them follow the same structure: 

- Introduction: main guide topic is introduced, exposing the motivations for using 

the technique which supports the topic, sometimes with selected examples 

which illustrate common use-cases 

- Landing into Linux: i.e. how the technique meets Linux, sometimes functionally 

while others explaining the API offered by the kernel supports the explained 

concept, highlighting which are the main points which need to be considered 

when implementing it 

- Previous reader work: some simple exercises (which don’t yet require 

programming) are proposed, which aim to get the reader familiar with the 

concepts and do some further documentation research 

- Technique details: the technique explanation is fully developed, be it with 

explanation or with example (and commented) code 

- In-progress reader work: exercises for the reader are proposed, which are 

increasingly difficult and make use of the concepts illustrated during the 

technique details part. They’re sometimes interleaved with the previous part 

development 

To not bloat the guides with too much information, and not to reveal solutions to the 

proposed exercises to the readers willing to learn by themselves, a section is later 

included in this work which covers details on: 

- extended comments about the guides themselves 

- commented solutions to proposed exercises 

- when suitable, screenshots and/or photos illustrating proper behavior of the 

solutions 

The guides are intended to be taken in same order as they’re presented on this work, 

because some knowledge offered during the first guides is supposed to be acquired on 

later guides. 
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3.1.1. Assumed directory structure 

During all this chapter, and to compile and deploy featured programs into the 

BeagleBone, it will be assumed that the following directory structure is in use at the 

development machine: 

 

During development of the example drivers, following directory structure has been 

used. 

 

3.1.2. Boilerplate code for all developed drivers 

All drivers developed and showed during the guides contain code boilerplate code (code 

which is repeated along all modules), related to the driver (un)load process and some of 

its default configuration. 

As this code is repeated over and over it will not be explained at each guide, but here: 
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- driver (unload), which is done through following code near the end of provided 

code: 

module_init (XXX); 

module_exit (YYY); 

The reason for this code is that it is the part of the standardized user-tweakable 

driver (un)load process, where: 

o the load is delegated to the driver entry point (XXX function). Generally, 

here go all driver-initialization related tasks. 

o the unload is delegated to the driver exit point (YYY function). Generally, 

all resources that have been allocated at driver entry point are released 

at the driver exit point. 

- include directives, needed by the (un)load process are also always the same, and 

are composed of the following C statements at the beginning of every driver 

example: 

// Needed by the driver itself 

#include <linux/init.h> 

#include <linux/module.h> 

#include <linux/kernel.h> 

 

- information for the driver, which in this case is composed of license and version 

number, is some code which is always included at the end of the provided code: 

MODULE_LICENSE ("GPL"); 

MODULE_VERSION ("1.0"); 

3.1.3. All global variables declared static 

Note that generally every driver provided as example on this work declares all its global 

variables with the static modifier. This makes the variables local to that compilation 

unit (that C file), and avoids collision during linkage stage of the compilation process. It 

makes sense because no other part of the kernel space (nor other drivers) should have 

access to the driver variables (unless of course we want this to happen, e.g. by invoking 

kernel functions providing pointers to the local variables). 

3.1.4. Trace mechanism 

Example drivers make extensive use of the printk function, as it is a cheap way of 

validating proper behavior of the drivers which doesn’t require a complex setup. 

This way, using dmesg is enough  to get information about the example drivers’ inner 

working. 



3. Kernel Programming Techniques 

41 

Unfortunately, the Kernel has been compiled with a high verbosity level (specifically for 

DMA-related functions), and this produces the dmesg output to get flooded with debug 

messages from the Kernel. 

For this reason, on the provided examples a macro is defined, of this kind: 

#define MODULE_TRACE KERN_ALERT "example-driver-1: " 

And every time printk is invoked from the driver, it is invoked this way: 

printk (MODULE_TRACE "initializing\n"); 

Thanks to this, the text (this is only an example) “example-driver-1” is prefixed to every 

printk-ed message. 

Then, from the console it’s possible to execute following command to only show 

messages produced by the driver under study: 

$ dmesg | grep "example-driver-1" 
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3.2. GPIO And Interrupts Guide 

3.3.1. Interrupts 

Interrupts are used as a mechanism used to notify the processor of an exceptional situation 

which requires immediate attention.  

When an interrupt occurs, the processor temporarily suspends the code being executed (hence 

the name interrupt) and invokes the associated interrupt handler (or ISR), which contains the 

code needed to manage the exceptional exception. Once the ISR code ends, the processor 

resumes the execution of the code it was previously executing. 

Interrupts can be originated by software, because of some code execution. For example: 

- when some code tries to write to a non-mapped memory address, the MMU generates 

an exception. In this case, usually the behaviour of the OS is to terminate the context of 

the offending code (the process) and optionally generate a core dump file. 

- when some code tries to execute an invalid opcode (a binary code which the processor 

does not know how to implement). This feature is used for example for floating point 

unit emulation.: 

o When the processor encounters an invalid opcode, it invokes the associated ISR 

o Back to the OS, the associated ISR may contain a floating point unit emulator, 

which will decode the invalid opcode and, if it is a floating point unit opcode, 

simulate its execution entirely on software 

o Once finished with the execution, the ISR terminates without error and the 

program continues execution 

Obviously, this kind of mechanism behaves several orders of magnitude slower than a 

real floating point unit, but may allow execution of code in simpler processor for which 

the code was originally designed. 

- when a process tries to access to a memory address which is physically stored inside 

virtual memory (for example the hard disk). Is this case the OS takes care of this situation 

and puts again the swapped memory into the RAM, making it available to the process. 

Interrupts can also be originated by hardware, as a need for some peripheral device to notify 

some situation. For example: 

- when a key is pressed on the keyboard, an interrupt is generated, then the ISR in charge 

may read the newly pressed key’s code and makes it available to the OS 

- when some data is received through a network adapter, an interrupt is generated, then 

the ISR in charge may read the received data and make it available to the OS 

- the system clock may generate an interrupt at each clock tick, then the ISR in charge may 

read the current timestamp and inform the OS, which in turn can trigger the appropriate 

events 
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3.3.2. Who provides each ISR code? 

The OS usually provides the needed device drivers for some standard or highly extended devices 

like common sound card brands, Ethernet adapters, video cards, disk controllers, keyboards, 

mouses, etc…  

These device drivers provide the OS with the needed functions to interact with the devices’ 

hardware: 

 

It is important to remark that the OS code and the device drivers’ code executes in kernel space: 

they have access to all hardware resources and, if not programmed well, they may lead to 

application (or even system) hangs and odd behaviours. 

3.3.3. Basic interrupt management in Linux 

Most modern processors do have an interrupt handler table, which is a memory region which 

contains one address for every possible interrupt. Each one of these addresses is the memory 

address for the ISR associated to a particular interrupt. 

From Linux kernel point of view (and in kernel source code), an interrupt is always referred to as 

an IRQ (for Interrupt ReqQuest). 

In Linux, when drivers wish to install an interrupt handler (an ISR), they do not alter directly the 

interrupt table. What really happens is that the kernel sits in the middle of the hardware 

interrupt and the device driver: 
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Due to this extra layer, the kernel can provide extra functionality around interrupts, like: 

- accounting the number of times an interrupt has been signaled 

- knowing which driver has requested to be notified for every interrupt 

- allowing multiple drivers to register a callback for a single interrupt 

Hence, from a global point of view, interrupt handler table addresses always point to the basic 

interrupt management subsystem, never to a device driver ISR or callback function. 

When the processor (or some device) needs to signal an interrupt, the ISR from the interrupt 

management subsystem is invoked. Then, this subsystem invokes the necessary driver-

registered callbacks. 

3.3.4. Basic API for interrupt management from drivers 

The linux kernel provides two basic functions for processes to be able to register a callback when 

an interrupt happens, which are declared in the following include file: 

linux/interrupt.h 

Functions are: 

int request_irq(unsigned int irq, 

                irq_handler_t handler, 

                unsigned long flags, 

                const char *name, 

                void *dev); 

 

This function registers a callback function for an IRQ. Usually, drivers register IRQ 

callbacks during its initialisation. 

Return value for this function is 0 on success and <0 in case of some error. Its 

arguments are: 

o irq: is the IRQ number (see below for comments on this) 

o handler: is the pointer to the callback function which will be invoked when the 

interrupt is dispatched. The signature of this parameter is the following: 
 

typedef irqreturn_t (*irq_handler_t)(int irq, void * dev); 

 

Where: 
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 irq: is the IRQ number (the same used to invoke request_irq) 

 dev: is the same dev argument used to invoke request_irq 

Return value for this function should always be IRQ_HANDLED. 
 

o flags: define additional behaviour related to the requested IRQ’s processing. 

Only the flags relevant for the exercises are presented here. This argument can 

be a combination of any of the following flags: 

 IRQF_TRIGGER_RISING: the callback function will be invoked on the 

rising flank of the signal wired to the interrupt line. 

 IRQF_TRIGGER_FALLING: the callback function will be invoked on the 

falling flank of the signal wired to the interrupt line. 

 IRQF_SHARED: this IRQ is shared among one or more device driver. This 

is, more than one callback function may be registered for the same IRQ. 

If this flag is not set, trying to register more than one callback function 

for the same IRQ will fail after the first registration. 

o irq: is the IRQ number (see below for comments on this). 

o name: can be an arbitrary null-terminated string, but it is strongly recommended 

to use the driver name for this parameter (this will ease further diagnostics if 

things don’t work).  

o dev: if the IRQ is not shared (this is, there is just a single registered callback for 

this IRQ in the system), this parameter can be NULL. Otherwise, this parameter 

must be some valid pointer at the driver memory. If the same driver tries to 

register more than one callback for the same IRQ, each time the request_irq 

function is invoked the dev parameter must be different. 

void free_irq(unsigned int irq, void * dev); 

This function unregisters a callback function for an IRQ. Usually drivers 

unregister callbacks during its deinitialisation.  

irq and dev arguments must the same as the used to invoke the corresponding 

request_irq function. 

This function has no return value. 

It is very important that each request_irq during driver initialisation has a 

matching free_irq during deinitialisation. Otherwise, system may become 

unstable. 

3.3.5. Notes on IRQ management from a driver 

There are some aspects which have to be taken into account when writing a callback function 

for an IRQ (this is, an ISR) in Linux: 



Analysis of Techniques for Linux Kernel Device Driver Programming 

46 

- asynchronous behaviour:  As the code of the ISR may be executed as a result of an 

interruption of code in other parts of the driver, special care has to be taken when the 

ISR code accessed to data structures. If the code is bad written, the following situation 

would be possible: 

o 1st, the driver is working with some data structure (for example, a linked list) 

o 2nd, during the data structure usage of previous point, an IRQ is generated, and 

it happens that the ISR code manipulates the same data structure. As the 

interrupt code may interrupt the normal flux of the rest of the driver code, it 

happens that the ISR code is working a data structure which has a manipulation 

in course. 

Very probably, the data structure will become corrupted if not designed for such a 

situation. In this case, good re-entrancy practices (only use stack (but not static) 

variables, no shared data manipulation; if strictly necessary to access shared data, do it 

in an atomic way, etc…) may help avoid some data corruptions or race conditions.  

- blocking calls: it may be thought that the previous asynchronous behaviour problem 

could be solved by means of some blocking mechanism, like kernel-semaphores or 

wait events. 

Suppose this scenario: 

o 1st, the driver code decrements a semaphore to gain access to an exclusive 

resource or data structure. 

o 2nd, whilst the driver has gained access to the semaphore, an IRQ is generated 

and the associated ISR tries to gain access to the resource. For this reason, the 

ISR also decrements the same semaphore. 

On the previous scenario: 

o the driver code holds the semaphore, but cannot continue execution until the 

ISR code ends. 

o the ISR code is blocked on semaphore decrement, but it has to wait for the 

driver code to increment it. 

The previous situation is a deadlock situation. 

- type of simple variables: if using simple variables inside an ISR code (for example an int 

typed variable), they should be declared as volatile. 

Otherwise, other driver code which uses the variables but don’t modify them may be 

optimized by the compiler, who is smart enough to know that the other driver code does 

not modify the variable. This way, the compiler may optimize the code assuming that 

the variable’s value does not change. Sadly, the compiler is not smart enough to figure 

that the variable can be modified from some asynchronous code, like the ISR. 

- fast response: the processor may generate thousands of interrupt requests per second. 

So the code of an ISR has to be fast. For debugging purposes it’s fine to use some printk 
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statements (although invocation to printk is slow) inside the ISR code, but be careful not 

to spend much time inside the ISR, because the system may get blocked. 

3.3.6. Mapping between interrupt number and IRQ number 

As the Linux kernel sits in the middle between the interrupt handler and the ISR code from 

drivers, it may alter in the way the interrupts are processed. 

One of these alterations is that usually, for legacy reasons, the IRQ number does not correspond 

to the interrupt number. On modern x86/x64 computers, for historical reasons, there may be 

an offset between interrupt number and IRQ number. In the past this represented a problem 

for device drivers, which could need to guess the IRQ numbers by means of probing. 

Fortunately, for the practices, it will not be needed to guess IRQ numbers. 

Linux kernel can be compiled with a debug option which makes available a file on the debug 

filesystem which shows the mapping between Linux IRQ number and hardware IRQ. On the 

Beaglebone Board used in the lab, the kernel is compiled with such option. 

LAB: Exercise 1 - IRQ mapping file 

Look at the contents of the /sys/kernel/debug/irq_domain_mapping: 

- what does it contain? 

- do you observe any mapping that is different than the others? 

- search in the AMM335X processor datasheet the usage for the interrupts 0x12 and 0x13 

3.3.7. GIPO usage from drivers 

In the kernel source code directory, there is a document named Documentation/gpio.txt which 

describes the API drivers can use to access GIPO functionality. 

As it will be seen, most of the functions available for drivers are also available manipulating the 

files found at the sysfs directory. 

The most important functions are: 

int gpio_export(unsigned gpio, bool direction_may_change) 

Makes it possible to work with the GPIO from the sysfs directory. Its parameters 

are: 

o gpio: the GPIO number. 

o direction_may_change: whether this GPIO direction may be changed on 

the fly. 

void gpio_unexport(unsigned gpio) 

Removes the associated GPIO files from the sysfs directory, and thus not allowing 

to work with the GPIO from the file system. Its parameters are: 

o gpio: the GPIO number. 
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int gpio_request(unsigned gpio, const char *label) 

Allocates memory for a GPIO and reserves it for exclusive use by a driver. Usually, 

this function is invoked during the initialization of the driver. Its parameters are: 

o gpio: the GPIO number. 

o label: a null-terminated string indicating who requested the GPIO. Usually 

this parameter is the driver name. 

A GPIO cannot be requested if has previously been requested and not freed. Return 

value for this function is 0 on success or <0 in case of error. 

As a good practice, a driver should always call this function before using a GPIO. 

void gpio_free(unsigned gpio) 

This function indicates the kernel that the driver is not going to use the GPIO 

anymore. Usually, this function is invoked during the deinitialisation of the driver. 

Its parameter is: 

o gpio: the GPIO number. 

int gpio_direction_input(unsigned gpio) 

Sets the direction of a GPIO to input. Its parameter is: 

o gpio: the GPIO number. 

Returns 0 on success and <0 in case of error. 

int gpio_direction_output(unsigned gpio, int value) 

Sets the direction of a GPIO to output, setting its value. Its parameters are: 

o gpio: the GPIO number. 

o value: the value to assign to the GPIO. May be 0 or 1. 

Returns 0 on success and <0 in case of error. 

int gpio_get_value(unsigned gpio) 

Returns the value of an input GPIO. Its parameters are: 

o gpio: the GPIO number. 

Returns 0 or 1 depending on the value of the GPIO. 

void gpio_set_value(unsigned gpio, int value) 

Sets the value of an output GPIO. Its parameters are: 

o gpio: the GPIO number. 

o value: the value to assign to the GPIO. May be 0 or 1. 

LAB: Exercise 2 - Documentation 
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In the kernel source code directory, look inside the Documentation/gpio.txt file. 

- what is the purpose of the gpio_to_irq function? 

A simple code to turn on a LED from the Beaglebone when the driver module is loaded and turn 

it off when the module is unloaded may be: 

    /* in initialization function of the driver */ 

    if (gpio_request(48, "module.ko") < 0)) 

        printk(“error requesting GPIO 48\n”); 

    else 

        gpio_direction_output (48, 1); 

 

    /* in deinitialization function of the driver */ 

    gpio_set_value (48, 0); 

    gpio_free (48); 

 

LAB: Exercise 3 - Driving LEDS from the driver 

Modify the driver so that: 

- during initialization, it turns on the four LEDS. 

- during deinitialisation, it swaps the current value of the four LEDS 

Take into account that the following situation should be managed well: 

- load the driver module, so all LEDS will be turned on 

- using echo command from the sysfs directory, turn off LEDS 2 and 4 

- unload the driver module, so LEDS 1 & 3 should turn off and LEDS 2 & 4 should turn on 

3.3.8. Event aware drivers 

Drivers are normally used in order communicate user programs with peripheral devices. In some 

of these cases, the execution flow of the code of the driver depends on events triggered by the 

peripheral device: 

- for an ADC converter: the converter may generate an event when the conversion 

finishes. 

- for a frame grabber: frame grabber may generate an event when there is a picture 

available. 

- for an Ethernet card: the card may generate an event when there is data ready to be 

read. 

In the previous case, when the driver needs to act as a consequence of an event generated by 

the external device, two strategies may be used: 

- polling mechanism: using this mechanism, when there is a need to receive data, the 

driver keeps polling the external device until some condition asserts. 

A simple pseudocode illustrating this mechanism may be the following: 

function wait until event happens 
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{ 

    ask the external device if an event has occurred 

 

    while the event has not occurred 

    { 

        sleep some amount of time 

        ask again to external device if an event has occurred 

    } 

 

    // arrived at this point, the event has occurred 

} 

 

main block of code 

{ 

    wait until event happens 

 

    execute some code that depends on event occurred 

} 

 

The problem with this strategy is that the driver continuously keeps asking the device if 

there is data ready to be read, and this implies: 

o resource consumption from the driver 

 CPU usage: because the process of asking if the event occurred uses 

CPU 

 I/O usage: because the process of asking if the event occurred uses I/O 

resources 

o blocking 

 because the driver must keep waiting until the event happens at the 

external device. Meanwhile, the driver keeps blocked waiting until the 

event occurs 

- interrupt mechanism:   using this strategy, the driver subscribes itself to some event, 

and when the event occurs, some code is executed. 

A simple pseudocode illustrating this mechanism may be the following: 

function to execute when event happens 

{ 

    execute some code that depends on event occurred 

} 

 

main block of code 

{ 

    subscribe “function to execute when event happens” to the event 

} 

Previous code implies that the driver tells the processor that the later should execute 

the subscribed code when the event occurs. After this, the driver code may do another 

work (not related to event polling) or even return. The processor will take care of the 

rest. 

Although not all use cases are suitable for an interrupt mechanism, the main advantages 

with respect to the polling mechanism related to acting on event detection are: 
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o resource consumption decreases. As the driver is not continuously asking the 

external device, there is no constant I/O resource occupation. For the same 

reason, as the driver does not spend CPU cycles with the continuous polling. 

o blocking may be avoided. As the driver subscribed itself with the processor to 

the event, the processor will be in charge of notifying the driver when the event 

happens, so the driver no more needs a blocking loop in order to be aware that 

the external event happened. 

All these advantages come at a cost, which also has to be taken into account. For 

example, the subscribed code will be executed in an asynchronous way, in the same 

manner that a signal handler is executed in an asynchronous way related to the rest of 

the code of the program which receives the signal. This implies that the subscribed code 

must take care of issues (explained before in this document) like re-entrancy (related to 

data integrity), low latency, types of variables, possible deadlocks, etc... 

An extreme scenario is when a driver code does all its work triggered by interrupts. Such 

a system is called an interrupt-driven system. 

3.3.9. GPIO and interrupts 

When operating with GPIO signals from the driver code it is possible to instruct the OS that, 

when a GPIO changes its value, an interrupt is generated. 

Following code registers an ISR when a GPIO changes its value from 0 to 1 (for example, when 

the push button on the Beaglebone is pressed). Behaviour of the ISR is to print a trace which 

may be seen executing the dmesg utility or doing a grep on /var/log/syslog file: 

// the ISR code, executed when the push button is pressed 

irqreturn_t gpio_irq_handler(int irq, void * dev) 

{ 

    printk("GPIO: gpio_irq_handler triggered\n"); 

    return IRQ_HANDLED; 

} 

 

int register_ISR_for_GPIO (int gpio, irq_handler_t isr) 

{ 

    int error, irqnumber; 

 

    error = gpio_request(gpio, "module.ko"); 

    if (error < 0) 

    { 

        printk (“ERROR %d: could not request GPIO %d\n”, error, gpio); 

        return error; 

    } 

    printk (“GPIO %d: requested successfully\n”, gpio); 

 

    error = gpio_direction_input (gpio); 

    if (error < 0) 

    { 

        printk (“ERROR %d: could set input direction for GPIO %d\n”, error, 

gpio); 

        return error; 

    } 

    printk (“GPIO %d: input direction set successfully\n”, gpio); 

     

    // TODO: determine the irq number for the GPIO 
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    irqnumber = ... 

 

    printk (“GPIO %d: corresponds to IRQ number %d\n”, gpio, irqnumber); 

 

    error = request_irq(irqnumber, isr, IRQF_TRIGGER_RISING, "module.ko", NULL); 

    if (error < 0) 

    { 

        printk (“ERROR %d: could not request IRQ %d for GPIO %d”, irqnumber, 

gpio); 

        return error; 

    } 

    printk (“GPIO %d: IRQ %d requested sucessfully\n”, gpio, irqnumber); 

 

    return 0; 

} 

 

void unregister_ISR_for_GPIO (int gpio) 

{ 

    int irqnumber; 

 

    // TODO: determine the irq number for the GPIO 

    irqnumber = ... 

 

    free_irq (irqnumber, NULL); 

    printk (“GPIO %d: IRQ %d freed\n”, gpio, irqnumber); 

 

    free_gpio (gpio); 

    printk (“GPIO %d: freed\n”, gpio); 

} 

Previous code can be used in the following way: 

- during driver initialization, use the following code: 

register_ISR_for_GPIO (20, gpio_irq_handler) 

- during driver deinitialisation, use the following code: 

unregister_ISR_for_GPIO (20) 

LAB: Exercise 4 – Completing the GPIO and interrupt code 

a) Complete, in the previous code, the parts marked with TODO: 

    // TODO: determine the irq number for the GPIO 

    irqnumber = ... 

b) Compile the driver code, and copy the binary into the Beaglebone 

c) In the Beaglebone, execute the following command: 

    tail -f /var/log/syslog | grep GPIO 

d) Now load the driver: 

- What do you observe in the console? 

- Which IRQ corresponds to GPIO 20? 

f) Now press the push button (which corresponds to GPIO 20) in the Beaglebone. What do you 

observe in the console? 
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LAB: Exercise 5 - Details on interrupts 

With the driver loaded, look at the contents of /sys/kernel/debug/irq_domain_mapping: 

a) Search for the IRQ that corresponds the Exercise 4.d) 

b) What do you observe related to that IRQ? 

c) Which hardware IRQ corresponds to the GPIO? Is this number related in some way with the 

GPIO? 

Now, you can unload the driver. 

 

LAB: Exercise 6 - Some modifications on code 

Modify the previous code in such a way that when the push button is pressed, the four LEDS are 

alternatively turned on and off. 

It is possible to have more than one ISR registered for the same IRQ. To accomplish this, special 

care has to be taken when invoking request_irq and free_irq functions. 

Search in the documentation (above in in this document) of the mentioned functions for the 

needed parameters to accomplish this. 

LAB: Exercise 7 – Multiple ISRs for the same irq 

Modify the previous code in such a way that: 

- an ISR is registered for when the GPIO 20 value goes from 0 to 1. This ISR will turn of all the 

LEDS. 

- an ISR is registered for when the GPIO 20 value goes from 1 to 0. The ISR will turn off all the 

LEDS. 

For this exercise, it is mandatory to invoke request_irq twice, although the registered ISR may 

be the same. 
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3.3. File Drivers Guide 

3.4.1. Introduction 

In Linux, almost everything is treated as a file and programmers may operate with those files 

obtaining a file descriptor to them and using the appropriate access functions. For example: 

- files found in /proc directory are special files which contain information about the 

system and its running processes. For example, /proc/cpuinfo and /proc/meminfo 

contain information about the system processors and system memory, respectively. 

 

- files found in /dev directory correspond to devices, and allow interaction with all the 

devices present on the system. For example, /dev/sda and /dev/sdb are special files 

used by utilities like mount to allow interaction with the storage disks found on the 

system (like primary HDD and USB drives). 

 

- when a process opens an Internet socket to a remote process, a file descriptor is 

obtained, allowing the process to send/receive data through it. 

 

- processes always have file descriptors 0, 1 and 2 available, which correspond to console 

input, console output and console error output. 

 

- documents found in the user home directory can also be accessed obtaining a file 

descriptor to them, using function open. 

It is important to remark the following points: 

- although files are a widely used abstraction in Linux, not all files do have a 

representation on the filesystem. For example: when creating a socket or a pipe it is 

possible to obtain a file descriptor which does not correspond to a file in the file system, 

and this means that only the process which obtained these file descriptors has access to 

them. 

 

- in some other cases, when obtaining a file descriptor, this file descriptor is backed by a 

file on the filesystem. For example: the file /proc/cpuinfo or a PDF file found in the 

user home directory. 

 

- Among the files found on the file system, not all of them correspond to physical files 

(which are stored on a HDD or a USB drive). For example: /home/user/document.pdf 

usually corresponds to a physical file, but /proc/cpuinfo does not correspond to a 

physical file. 

Files on the file system which do not correspond to a physical file are always managed by drivers. 

This means that when cat /proc/cpuinfo is executed, there is a driver which is in charge of 

returning the file contents, fulfilling it with system processors. 
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Depending on the type of file, different approaches do exist in order to manage access to the 

file, and one simple kind of driver that manages access to non-physical files is a miscellaneous 

driver. 

3.4.2. Miscellaneous driver overview 

One way to program a file driver for Linux is to implement a miscellaneous driver. This kind of 

driver creates a special file on the file system, in such a way that when process access it, the 

ultimate code which manages that access is the driver’s code. 

In a miscellaneous driver, functions which manage following access types can be implemented: 

- open: which manages the case when the application wants to obtain a file descriptor for 

the special file 

 

- close: which manages the case when the application wants to release a previously 

obtained file descriptor for the special file 

 

- write: which is in charge of managing the write access to the special file (this is, when 

the application wants to put some bytes into it) 

 

- read: which is in charge of managing the read access to the special file (this is, when the 

application wants to obtain some bytes from it) 

 

- ioctl: which is in charge of managing the control commands sent from the application 

to the driver (ioctl stands for Input/Output Control).  

A simplified diagram of the components which come into play in a miscellaneous driver is 

depicted here: 

 

Each layer in the above diagram has a specific purpose. Some illustrative examples are: 

system calls

(invocable from

user-space)

open close read write ioctl

kernel glue code (called Virtual File System)

(routes system calls to driver implementation of functions)
transparent to

the programmer

driver

implementation
open close read write ioctl

application invokes

system calls / libc functions

libc functions

(ease

file interaction)

fopen fclose fread fwrite

rely on

delegates

into

use
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- libc functions simplify access to files found on the file system, providing additional 

capabilities such as buffering, opening files in text or binary mode and convenience 

functions like fprintf, etc... The basic data type used when dealing with libc’s file 

related functions is the FILE structure (or FILE* pointers). Although libc functions are 

very useful, they are limited to be used with files found on the file system, and they may 

not be used for example with Internet sockets. 

- system calls represent a lower abstraction level, but may be used with any file 

supported by drivers (even when that file does not exist on the file system). For example, 

functions in this layer can be used to access console file descriptors for console (stdin / 

stdout / stderr), sockets, pipes, etc… 

- kernel glue code sits in the middle between system calls and the driver which 

implements access to the accessed file. For example, when writing into a socket, it is 

the glue code which knows that the file descriptor corresponds to a socket and invokes 

the code from the corresponding driver. 

- and finally, the driver implementation contains the code which performs the actual 

access. In the case of an Ethernet controller, the driver is in charge of communicating 

with the peripheral, with device-specific functions (interrupts, I/O memory mapped 

regions, I/O ports, etc..). 

Related to files which allow interaction with devices:  

- usually, only the code at the driver level contains device-specific code. 

- the rest of the layers (specially libc functions and system calls) are the result of years of 

use from the programmer community and aim to provide standardized functions which 

not depend on the underlying specific device or driver. 

- in some cases, however, applications need to do some specific tweak on the driver (or 

device). In such cases, it is common to interact with the drivers through the functionality 

provided by ioctl. 

Signature (return type and input arguments) of access functions inside a miscellaneous driver is 

the following: 

- file descriptor open function: 

int open (struct inode* pInode, struct file* pFile) 

- file descriptor release function: 

int release (struct inode* pInode, struct file* pFile) 

- ioctl function: 

long ioctl (struct file* pFile, 

            unsigned int cmd, 

            unsigned long value) 

- read bytes function: 

ssize_t read (struct file *filp, 
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              char __user *buffer, 

              size_t count, 

              loff_t *f_pos) 

- write bytes function: 

ssize_t write (struct file *filp, 

               const char __user *buffer, 

               size_t count, 

               loff_t *f_pos) 

 

Exercise 1 (HOME): about API functions 

Search on the book “Linux device drivers”, on the chapter dedicated to “char drivers”, the 

meaning of the arguments and the return value for each of the previous functions from the 

struct file_operations: 

- open 

- release 

- ioctl 

- read 

- write 

3.4.3. Simple implementation of a miscellaneous driver 

To use a miscellaneous driver, some (de)initialization functions must be invoked when 

(de)initializing the driver. 

As open, release, ioctl, read and write correspond to already existing system call function 

names, prefix sd_ is used in the following example, which implements a very simple 

miscellaneous driver (important functions are highlighted in blue, while the rest is initialization 

code): 

// Access functions: declaration 

static int sd_open (struct inode* pInode, struct file* pFile); 

static int sd_release (struct inode* pInode, struct file* pFile); 

static ssize_t sd_write (struct file *filp, 

                         const char __user *buffer, 

                         size_t count, 

                         loff_t *f_pos); 

static ssize_t sd_read (struct file *filp, 

                        char __user *buffer, 

                        size_t count, 

                        loff_t *f_pos); 

static long sd_ioctl (struct file* pFile, 

                      unsigned int cmd, 

                      unsigned long pointer); 

 

// Misc driver structures: declaration and initialization 

static struct file_operations sd_fops =  

{  

    write:  sd_write,  

    read:  sd_read,  

    open:  sd_open,  

    release:  sd_release,  

    unlocked_ioctl: sd_ioctl 
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};  

static struct miscdevice sd_devs =  

{  

    minor:  MISC_DYNAMIC_MINOR,  

    name:   "driver_port",  

    fops:   &sd_fops  

}; 

 

// Access functions: definition 

static int sd_open (struct inode* pInode, struct file* pFile) 

{  

 return 0;  

} 

 

static int sd_release (struct inode* pInode, struct file* pFile) 

{  

 

 return 0;  

} 

 

static long sd_ioctl (struct file* pFile, 

                      unsigned int cmd, 

                      unsigned long pointer) 

{ 

    return 0; 

} 

 

static ssize_t sd_read (struct file *filp, 

                        char __user *buffer, 

                        size_t count, 

                        loff_t *f_pos) 

{ 

    return count; 

} 

 

static ssize_t sd_write (struct file *filp, 

                         const char __user *buffer, 

                         size_t count, 

                         loff_t *f_pos) 

{ 

    return count; 

} 

 

// Driver: (de)initialization functions 

static int __init sd_init_module (void) 

{  

    if (misc_register (&sd_devs)) 

    {  

        printk ("Error, the misc driver cannot be registered\n");  

        return (-ENODEV);  

    }  

    return 0;  

}  

 

static void __exit sd_cleanup_module (void) 

{ 

    misc_deregister (&sd_devs);  

}  
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module_init (sd_init_module); 

module_exit (sd_cleanup_module); 

Code from the previous driver creates a file named /dev/driver_port (see the value of the 

struct sd_devs field name) and makes that each time the file is accessed, the corresponding sd_* 

function is invoked 

- when the file is opened with open function, sd_open is invoked. In this case, function 

returns 0 (success), so the file may be opened and a file descriptor returned as return 

value from open function. 

- when the file is going to be released (when the number of close operations on the file 

descriptor match the number of times the file was open), sd_release is invoked which 

returns 0 (success), to the file is actually released. 

- every time a write function is invoked on the file descriptor, the sd_write function on 

the driver is invoked. In this case, the later function does nothing (it doesn’t write any 

byte) except returning that the requested number of bytes were written (count 

parameter). 

- similar to sd_write, every time a read function is invoked on the file descriptor, the 

sd_read function on the driver is invoked. The function does nothing but return that the 

requested number of bytes were read (count parameter). 

Exercise 2 (HOME): about sd_write and sd_read functions 

a) Look carefully at the second parameter from sd_write and sd_read functions, which is 

declared as const char __user *buffer. 

What do you think the “__user” modifier indicates here? 

You may search on the book “Linux device drivers”, on the chapter dedicated to “char drivers”, 

in the section dedicated to “read and write”. 

b) What is the purpose of the the f_pos parameter? Why this parameter type is “int*” 

instead of “int”? 

 

c) Is it possible for a user-space program to modify the value pointed by f_pos whithout 

invoking system calls read or write? If yes, how can it be done? What else has to be implemented 

in the driver in order to support this functionality? 

 

Exercise 3 (HOME): about address spaces 

a) On the book “Linux device drivers”, on the chapter dedicated to “char drivers”, in the 

section that tells about “read and write”, search and describe the purpose of the following 

functions: 

unsigned long copy_to_user(void *to, 

                           const void *from,  

                           unsigned long count); 

 

unsigned long copy_from_user(void *to, 
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                             const void *from,  

                             unsigned long count); 

 

b) On the same book, on the chapter dedicated to “Enhanced Char Driver Operations”, 

search and describe the purpose of the following macros: 

put_user(datum, ptr) 

get_user(local, ptr) 

c) Explain the differences: 

-  between copy_to_user and put_user 

-  between copy_from_user and get_user 

 

Exercise 4 (LAB): returning some data from the driver 

a) Modify the sd_read function from the driver in such a way that when an application 

wishes to read N bytes, the user-supplied buffer is filled as described next: 

 

- byte 0 of user buffer: 0 

- byte 1 of user buffer: 1 

- … 

- Byte N-1 of user buffer: N-1 

 

b) Install the driver and create a simple test program (in user-space) which: 

 

1. opens the file /dev/driver_port using the open function 

2. asks the user for an integer between 1 and 255 and stores the result in the count 

variable 

3. reads count bytes from the /dev/driver_port file 

4. validates that the each read byte N (with N from 0 to count - 1) has value N 

a. if the validation passes, an “SUCCESS” message is printed to console 

b. if the validation fails, a “FAIL” message is printed to console 

5. closes the file descriptor 

As a method to test the application: 

- if test program is run when installed driver is the provided example, it should print “FAIL” 

- if test program is run when installed driver is your modification, it should print 

“SUCCESS” 
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3.4. Blocking I/O Guide 

3.5.1. Introduction 

Blocking I/O (also called synchronous I/O) is a way to access data in such a way that the function 

which actually performs the read/write blocks until the access is complete. 

Focusing on files and in Linux, to let application programmers read/write data from/to a file 

descriptor, following functions do exist: 

ssize_t write(int fd, const void *buf, size_t count);  

 

ssize_t read(int fd, void *buf, size_t count); 

By default, previous functions will not return until the read (or write) operation completes. 

Note: There is an exception to the previous statement: invoke the function open providing the 

flag O_NONBLOCK. This returns a file descriptor open in non-blocking mode. As this guide purpose 

is to illustrate blocking I/O, the O_NONBLOCK flag will be ignored from now on. 

Blocking I/O must be approached with different strategies depending on programming side: 

- driver-side (executed in kernel space): when writing a file driver, if the driver’s access 

operations (implementation of write/read functions) get blocked, the driver should 

behave well with the rest of the system and not spend unnecessary resources (CPU 

and/or I/O resources) when it waits for the data access to complete.  

 

- application-side (executed in user space): when writing an application that uses 

blocking I/O, latency of accesses and requirements for responsiveness of the application 

have to be taken into account, and depending on it: 

 

o for low latencies (like when writing a small file into the main HDD) or when not 

requiring low response times, normally it is ignored the fact that the I/O is 

blocking, either because the program will remain blocked for a few ms or 

because the program executes a process known to be lengthy and that does not 

need to be highly responsive.  

 

Examples of this scenario are: 

 

 writing a few bytes into a file located in the main (and fast) system 

storage 

 

 executing an off-line process, which acquires large amounts of data 

from a device and then processes it, without user interaction 

 

o for high latencies, and when the program needs to keep responsive even when 

some data access is blocking, normally the access is done in a separate thread 

(or process), to overcome the blocking due to data access. 
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Examples of this scenario are: 

 a TCP/IP server client 

 

 accessing a file located in a distant network mount with high latencies, 

and the user has interaction with the application 

From now on, this guide will focus on blocking I/O from the driver-side. 

3.5.2. Considerations for blocking I/O from a driver point of view 

Blocking I/O is not a bad behaviour per se. As its been explained in the introduction, application 

developers have means to circumvent the block (for example using threads) if they need to. 

But when developing a driver, the driver programmer should take into account the cases where 

the data accesses may be blocking and make the driver behave well with the rest of the system. 

Related to behave well, following aspects will be explained and treated in the exercises proposed 

in this guide: 

- not consuming more system resources than necessary while the block occurs 

 

- let the system interrupt lengthy blocking I/O 

3.5.3. Keeping low resource usage during blocking I/O 

During transfer operations on the driver-side (acquire/send data from/to an external device, 

for example), two data access scenarios do exist: 

- synchronous data accesses: in this scenario, the driver is directly responsible for the 

access operations. 

 

One example of such scenario would be reading/writing data from/into an external 

memory mapped device, where the driver must perform the necessary memory 

reads/writes to/from the user-space memory from/into the mapped memory region in 

order to communicate with the device. 

 

In this scenario, the driver is directly responsible for the copy operation between the 

user and device memory regions. Also, in this case, the data access is done through code 

which executes on the processor (for example using a loop which copies the memory 

byte-to-byte). 

 

A simple pseudo-code which illustrates this scenario is the following: 

 
read function implementation in the driver with synchronous data transfer 

{ 

    // real data access with the external device 

    for each byte to be read from the external memory 

    { 

        copy one byte from external memory into a buffer in the driver 

memory 

    } 
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    // auxiliary code needed to return the read memory to user-side 

    copy memory from the driver buffer into the user supplied memory 

} 

 

As it can be seen, this mechanism: 

 

o is synchronous, because all operations are sequential (it is impossible to reach 

the auxiliary code without first finishing the execution of the loop) 

 

o uses code for the data transfer, so each access in the loop uses processor 

instructions 

 

- asynchronous data accesses: in contrast to the synchronous data access, this scenario 

features: 

 

o data access is asynchronous: which means that the driver code orders the data 

transfer, and then waits for the operation to complete 

 

o the driver code, although responsible for ordering the data transfer, may not do 

the data transfer by itself, but delegate the transfer to some other entity. In this 

case: 

 

 this some other entity has to provide means to notify back the driver 

code when the transfer is complete 

 

 it is possible that this some other entity is implemented in such a way 

that no processor instructions are executed during the transfer 

 

One example of the described situation is where a driver delegates the data transfer to 

a DMA controller. DMA stands for Direct Memory Access, and is used to name a family 

of controllers which have the ability to copy bytes from one memory address into 

another without intervention from the processor. In order to use the mechanism 

provided by the DMA controller, the later has to provide: 

 

o some way to receive data transfer orders 

 

o some way to notify back that the data transfer has ended 

 

To illustrate this mechanism, look at the following code: 

 
read function implementation in the driver with asynchronous data 

transfer 

{ 

    // data access order 

    tell the DMA controller to copy from ext. memory into a driver 

buffer 
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    // dealing with asynchronous nature of the access operation 

    wait for DMA controller to finish the data transfer 

     

    // auxiliary code needed to return the read memory to user-side 

    copy memory from the driver buffer into the user supplied memory 

} 

 

Details on the DMA controller present on the Beaglebone will not be seen on this guide’s 

exercises. What is important here is to note the asynchronous nature of the data access 

operation. Note how the driver instructs the DMA controller to do the actual data 

transfer and then waits for it to finish the operation. 

 

As the data access order is asynchronous, once the transfer is ordered the “order” 

function returns immediately, very probably before the transfer is complete. This is the 

reason for which a wait has to be done until the data transfer completes. 

 

Remember that this is blocking I/O, so the read function shall not return until the data 

is completely read. Do not confuse the blocking nature of the read operation with the 

fact that the real data access is asynchronous. The driver enforces a blocking behaviour 

by waiting until the asynchronous data access completes. 

Examples of drivers which use DMA transfers are: Ethernet drivers, UART drivers, disk 

drivers (for example RAID controllers when they have to replicate data from one physical 

disk to another), etc. 

So in resume: 

- in synchronous data accesses, the driver is responsible for the actual data access 

 

- in asynchronous data accesses, most of the times the driver delegates the actual data 

access to an external entity 

From now on, this guide will focus on asynchronous data accesses and its relationship to 

blocking I/O. 

Two very important aspects of asynchronous data transfers are: 

- how the driver comes to know that the transfer is finished: almost always this depends 

on the mechanism that performs the actual data transfer 

 

- how the driver implements the wait until the data transfer is finished: and this is the 

key to low resource usage 

At this point, it is important to understand well the difference about polling and interrupt 

mechanisms explained in the “GPIO and interrupts from driver point of view” guide. 

From now on, special attention will be put in interrupts as a notification mechanism. 

Keeping in mind that when the device which performs the actual data transfer will generate an 

interrupt whenever the transfer completes, a more concrete example for the read function in 

the diver may be the following (changes in blue): 
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read function implementation in the driver with asynchronous data transfer 

{ 

    // data access order 

    tell the DMA controller to copy from ext. memory into a driver buffer 

     

    // dealing with asynchronous nature of the access operation 

    wait until the "finish of transfer" interrupt is generated 

     

    // auxiliary code needed to return the read memory to user-side 

    copy memory from the driver buffer into the user supplied memory 

} 

And the next question which arises is the following: how to wait until the interrupt is generated? 

A simple pseudo-code may the following (changes in blue): 

"finish of transfer" ISR 

{ 

    transfer_finished_flag = true 

} 

 

read function implementation in the driver with asynchronous data transfer 

{ 

    transfer_finished_flag = false 

 

    // data access order 

    tell the DMA controller to copy from ext. memory into a driver buffer 

     

    // dealing with asynchronicity nature of the access operation 

    // (wait until the transfer has finished) 

    while transfer_finished_flag is not true 

    { 

        do nothing 

    } 

     

    // auxiliary code needed to return the read memory to user-side 

    copy memory from the driver buffer into the user supplied memory 

} 

 

In the previous pseudocode, notice how: 

- until the asynchronous operation is not finished, the auxiliary code is not executed, so 

this is blocking I/O example 

 

- it uses interrupts as a bridge between the asynchronous nature of the memory transfer 

operation and the need to have blocking I/O 

 

Although that pseudocode would work, notice also how: 

- although the “end of transfer” operation is managed asynchronously (using an ISR), the 

while loop is implementing a continuous poll on the “transfer finished” flag 

 

- due to the continuous polling, the driver is using CPU in order to wait. 
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The effect of using CPU in order to wait for an operation to complete is a bad behaviour, in the 

sense that CPU cycles are wasted in order to wait, and not doing real work. 

So another solution has to be found which doesn’t use continuous polling of a state variable.  

For this purpose, a variety of mechanisms may be used in the driver code, but only one of them 

will be presented here: wait queues. 

3.5.4. Wait queues 

A wait queues is (like a semaphore or a mutex) a synchronous event notification mechanism 

between different code flows. 

This synchronous nature of wait queues is presented with the following interface: 

- a declaration and initialization function, which is needed in order to use the wait queue: 

DECLARE_WAIT_QUEUE_HEAD(wait_queue_name) 

This macro must be used in the global scope of the driver code (not inside any function), 

and declares and initializes a queue named wait_queue_name. 

 

- a function that waits for an event notification, in a blocking manner. Code that invokes 

this function gets blocked until an event is notified to the wait queue: 

wait_event(wait_queue_name, condition) 

This macro must be used in the code whenever an event has to be waited on the queue 

named wait_queue_name. an event is notified to the wait queue. Additionally, 

condition must evaluate to a true value 

 

The macro will not return until both conditions apply: 

 

o an event is notified to the wait queue 

 

o the condition evaluates to true 

 

- a function that notifies an event, and unblocks other parts of code which are blocked 

waiting for an event notification on the wait queue: 

void wake_up(wait_queue_head_t *queue_ptr); 

This function sends an event to the wait queue pointed by queue_ptr. 

Remember that in order to use wake_up in conjunction with wait_event, the condition 

parameter on the later has to be used properly. 

The main advantage with wait queues over “waiting within a loop” is that a wait queue uses 

kernel primitives which are more CPU friendly than a continuous poll on a state variable. 

Being more CPU friendly means that the (blocking) function which waits for the event doesn’t 

waste CPU cycles. Instead, while the process which invokes the function that waits for an event 

is blocked, the kernel puts the process to sleep, which means that from an OS scheduler point 
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of view, the process gets assigned no CPU cycles until the awakening event is triggered. Then, 

when an event is notified to the wait queue, the blocked (and sleeping) process is awaken and 

this is the reason to the name of function wake_up. 

A pseudocode which illustrates how to introduce wait queues into the blocking I/O example is 

the following (code related to wait queues in blue): 

// (using wait queue API) 

declare and initialize wait queue 

 

"finish of transfer" ISR 

{ 

    // (using wait queue API) 

    // wake up the process 

    notify wait queue event 

} 

 

read function implementation in the driver with asynchronous data transfer 

{ 

    // data access order 

    tell the DMA controller to copy from ext. memory into a driver buffer 

     

    // (using wait queue API) 

    // puts the process to sleep until event received in wait queue 

    blocking call which waits for an event on the wait queue 

     

    // auxiliary code needed to return the read memory to user-side 

    copy memory from the driver buffer into the user supplied memory 

} 

All the previous explanation has been done to aid in the understanding of the following key 

points: 

- there are accesses (like a memory transfer) which depend on non-processor peripherals 

(like a DMA controller) 

 

- sometimes it is needed to write code which blocks even when the underlying 

functionality is asynchronous 

 

- there are ways to implement bad (resource hungry) blocks and good (resource friendly) 

blocks 

From now on, in this guide, the DMA concept will be left apart, and the focus will be put in the 

blocking nature of this kind of I/O operations and its effect on the programs that use blocking 

I/O. 

3.5.5. Blocking I/O with polling 

Exercise 1 (LAB): block with poll 

Write a simple file driver with the following characteristics: 

- following code may be used for open, release and write operations: 

static int sd_open (struct inode* pInode, struct file* pFile) 
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{ 

    return 0; 

} 

 

static int sd_release (struct inode* pInode, 

                       struct file* pFile) 

{ 

    return 0; 

} 

 

static ssize_t sd_write (struct file *filp, 

                         const char __user *buffer, 

                         size_t count, 

                         loff_t *f_pos) 

{ 

    return count; 

} 

 

- the read operation must implement the following logic: 

When this function is invoked, the function will wait until the push button (GPIO 20) in 

the beagle bone is pressed, then it can simply either write dummy values into user-supplied 

buffer or it can return the count parameter. 

The key to this exercise is to implement the wait with a while (!contidion) { ; } kind of 

construct. 

 

Exercise 2 (LAB): behaviour of block with poll 

Write a simple user-space application which opens the file created on the driver of the exercise 

1 and reads any number of bytes from the file (it can read only byte, this is not important for the 

exercise) and then exits. 

Compile the test application and load the driver from exercise 1 into the Beaglebone. 

Now, open two console sessions into the Beaglebone. 

- In the 1st console, execute the user-space application 

- In the 2nd, execute the top command and search for the test application 

a) What is the CPU usage percentage for the user-space application? What do you think is the 

reason for such CPU usage? 

b) In the console 1, press CTRL+C. What happens? 

c) Now press the push button in the Beaglebone. Verify that the application ends its execution. 

3.5.6. Blocking I/O with interrupts and wait queues 

Exercise 3 (LAB): block with wait queues 

Write a driver similar to the one written for the exercise 1, but with the following differences: 

- in the driver global variables section, declare and initialize a wait queue. 
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- during the driver initialisation, register an ISR for the GPIO 20. The code for the ISR 

must notify an event into the wait queue. 

 

- in the read operation code, wait on the wait queue. After the wait, the function does 

not need to do anything additional. Just return the value of the count parameter of the 

function. 

Note that this will implement the block in a more sophisticated manner than in the exercise 1. 

 

Exercise 4 (LAB): behaviour of block with wait queues 

Make sure that the program created in the exercise 2 is copied into the Beglebone and compile, 

copy and install the driver created in the exercise 3 into the beaglebone. It is possible that you 

need to unload the driver from the exercise 1 in order to load the new driver. 

Open two consoles in the Beaglebone. 

- In the 1st console, execute the user-space application 

- In the 2nd, execute the top command and search for the test application 

a) What is the CPU usage percentage for the test application? Is it different from the CPU 

usage seen during the exercise 2? If yes, what do you think it is the reason? 

b) In the console 1, press CTRL+C. What happens? 

c) Now press the push button on the Beaglebone. Verify that the application ends its exection. 

 

Exercise 5 (LAB): behaviour of signals in previous exercises 

Analysing the result from exercises 2.b and 4.b, what do you think it is happening when a signal 

is sent to a process which is blocked on the underlying driver code? 

3.5.7. Interruptible wait queues 

As it’s been seen on exercise 5, behaviour of wait_event is not very signal-friendly. 

When writing a blocking I/O driver, signals also have to be taken into account, for the sake of 

driver completeness. 

Related to behaviour observed in exercise 5, following alternative functions related to wait 

queues do exist: 

wait_event_interruptible(queue, condition) 

 

void wake_up_interruptible(wait_queue_head_t *queue); 

 

Exercise 6 (HOME): consulting man-pages 

Search for in the man-pages (you may use google) and explain the differences: 

- between wait_event and wait_event_interruptible 
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- between wake_up and wake_up_interruptible 

As its been explained in the guide about File drivers, there exists a glue code (the Virtual File 

System , VFS) between system call functions read / write and driver implementation of 

functions sd_read / sd_write. 

The VFS not only connects system calls to driver implementation of functions, but also has some 

logic inside: 

- if value returned from sd_read / sd_write functions is non-negative, this value is 

returned directly as result of read / write functions. 

 

- if, instead, vale returned from sd_read / sd_write functions is negative, the VFS 

performs further checks on the value, and its behaviour depends of the value. 

 

For example, if sd_read / sd_swrite return value is -ERESTARTSYS, this means that: 

 

o -ERESTARTSYS accounts for RESTARTable SYStem call, which notified to the VFS 

that it may attempt to invoke again the function sd_read / sd_write. 

A use case for this situation is when the STOP signal is sent to a process which 

is waiting on a blocking I/O operation. When the block in the driver is 

interrupted (for example pressing CTRL-Z on the console where the process is 

executing, or issuing a kill -STOP <PID> command to the process), the driver 

may detect this situation (see result from exercise 6) and return -ERESTARTSYS. 

Approximately after the function returns this value to the VFS, the OS puts the 

process in paused state. 

When the process is ordered to continue execution again (executing the fg 

command after the previous CTRL-Z, or issuing a kill -CONT <PID> after the 

previous kill -CONT <PID> on the process), the VFS resumes execution and 

(knowing that the last invocation to the driver returned -ERESTARTSYS, may 

decide to restart the system call. This means that the driver function which 

returned this value will be invoked again using exactly the same parameters. 

From the user-application point of view, all this mechanism is transparent, 

meaning that the user-application will not notice anything special, just a 

successful call to read / write system calls. 

When functions sd_read / sd_write do return a value >= 0, the glue code returns this value as a 

result   

Exercise 7 (HOME): about restartable system calls 

When a file driver function (for example sd_read / sd_write) returns -ERESTARTSYS value, it 

means that this function is a restartable system call. It is commonly said that the function which 

returns this value should be idempotent. 
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Search for the definition of idempotent related to computing and put an example (related to 

accesses to an external peripheral) of why is it desirable that the restartable system call be 

idempotent. 

 

Exercise 8 (LAB): playing with interruptible wait queues 

a) Modify the code from exercise 3 in the following way: 

 

- for the wait code, use the interruptible versions of functions related to wait 

queues 

 

- if the wait on the wait queue (see result of exercise 6) is interrupted due to a 

signal, return value -ERESTARTSYS 

 

- at the beginning of the sd_read function, put this code: 

printk (“entering sd_read function\n”); 

Now compile the driver, open two consoles into the Beaglebone, and: 

b) On the 1st console, load the driver into the Beaglebone with insmod (you may need to 

remove the previous driver with rmmod in order to load the new driver). Now execute the 

application from exercise 2 in this console. 

 

c) On the 2nd console, execute the command dmesg. Check the message “entering 

sd_read function” is shown. 

 

d) On the 1st console, press CTRL+Z and then execute the command fg. This will pause the 

process and resume its execution. 

 

e) On the 2nd console, execute the dmesg command again. Check the message “entering 

sd_read function” is shown twice. 

 

f) Go again to 1st console and press the push button from the Beaglebone. Check that the 

program ends its execution. 
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3.5. Kernel Probes Guide 

3.6.1. Introduction 

Sometimes, it is convenient to have a lean and mean mechanism to intercept invocations to 

functions from the kernel, either because of a wish to avoid the Kernel Debugger or because 

information related to interceptions must be processed in some way which makes the Kernel 

Debugger not suitable for the process. 

Kernel Probes let a driver hook itself into invocations to Kernel functions, and do some action 

when this happens. 

This kind of hooking may be useful for analysis of code that executes on kernel-space (for 

example, to debug or profile a driver), giving insight about invocation to functions-under-study. 

Some scenarios where this kind of help may prove useful are: 

- studying how memory is allocated on the Kernel (for example, using kmalloc) 

- analysing how a driver under study registers callbacks for certain interrupts 

- studying how many times per second a certain Kernel function is invoked (for example, 

open) 

- knowing the list of file descriptors that have been opened system-wide during a period 

of time 

- etc… 

Different types of Kernel Probes allow to gather information on different aspects of function’s 

invocation, and there are three types of probes: 

- kprobes allow to gather information right before a function is executed 

- jprobes allow to gather information about the arguments used to invoke a function 

- return probes allow to gather information right after a function is executed 

3.6.2. General mechanism 

As it is well explained on kernel documentation, kprobes names both the generic mechanism 

and a concrete type of probe. Here, the generic mechanism will be functionally explained. 

kprobes mechanism does a little magic in order to instrument a function. Actually, it does not 

instrument functions, but instructions. So a kprobe can be effectively used to call a hook function 

whenever any instruction on the kernel space is hit. What will be seen on this guide is a concrete 

case where the hooked instruction is the first one of a function. 

Visually, when a function is instrumented via a kprobe, two things happen: 
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Which are explained here: 

1) a copy of first function byte(s) is done, and safely saved because it needs to be executed 

later in order to reproduce original function behaviour 

2) those saved first bytes are replaced with an instruction that triggers a breakpoint, and 

it’s during breakpoint processing (which is managed by the kprobes system) that the 

hook function is called  

Once the function is instrumented, when it comes to execute it, following sequence happens: 

 

Which is explained here: 

1) some code invoked the instrumented function, whose first bytes are now opcodes which 

generate a breakpoint 

2) the breakpoint callback (when invoked) lets kprobes take control of the execution, and 

first thing it does is executing a pre_hook (user-definable via the kprobes API) 
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3) right after the pre_hook code is executed, previously saved first bytes of the function 

are executed with a process known as single-step (which means executing a single 

instruction at a time) 

4) after the original first bytes of the function are executed, the post_hook (also user-

definable) function is executed 

5) at last, control is returned to the original function, which continues its execution 

normally 

Note: during the rest of this guide, only pre_hook will be discussed. 

3.6.3. kprobes 

The basic type of probe is the kprobe, which provides the basic functionality over which other 

types of probes are built. 

kprobes provide a convenient way to tell the Kernel: this function which I provide must be 

invoked whenever the instruction pointer reaches that address. This means that kprobes can be 

used to call a concrete function (the probe) whenever code execution reaches any point. 

Despite of what the previous paragraph says, the kprobes mechanism provides a convenience 

way to supply a function name instead of having to know its address (which is in any case is 

trivial when using C). 

So, it turns out that kprobes give name to both the generic mechanism and a concrete 

interception functionality. If this was invocation flow for a given function: 

 

Following would be invocation flow when using a kprobe: 

 

As it is depicted above, using a kprobe enables intercepting (and only intercepting) invocations 

of selected functions from the Kernel (neither knowing of modifying arguments supplied to the 

hooked function is possible using kbprobes). 

In some cases, it can be interesting to intercept a function call right before the function is 

invoked. For example: 

callee

caller caller

callee

caller caller

hook function
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- for logging purposes, it may be interesting to know when recv is invoked on a socket, 

because waiting until the recv function returns may produce a not desired delay on 

the logs 

- for debugging purposes, if it is known that invoking write on a certain file driver 

sometimes hangs the driver, it is mandatory to long exactly when write is invoked 

before execution of its code 

3.6.4. jprobes 

jprobes are built on top of kprobes, and allow to intercept the moment a function is called, 

providing means to inspect the arguments passed to the intercepted function. 

 

Note that using jprobes it is not possible to alter the arguments passed to the originally called 

function. 

Some cases where knowing the exact moment where a function is invoked as well as its 

additional arguments are: 

- for statistics gathering purposes, it can be useful to know exactly how much memory is 

requested to the kernel (for example using kalloc) during a certain time window. 

Hooking a jprobe into the kalloc function would allow to determine the exact amount 

of RAM requested at each invocation of the memory allocator. 

- for debugging purposes, if is known that invoking write on a certain unknown file 

produces some undesired effect, it may be interesting to capture write calls and log 

some information about the write into a log file. Later, it may be possible to inspect the 

log to obtain further information about the error. 

3.6.5. Return probes 

Return probes are also built on top of kprobes, and allow to intercept a function call, but this 

time at the moment when the function is about to return: 

 

Just as it happens with kprobes, return probes enable to intercept the return from a function, 

but do not allow to either modify or inspect the return value from the inspected function. 

callee

caller caller

hook function

with calee arguments

callee hook function

callercaller
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In some cases, it may be interesting to intercept a function call just before the function returns. 

For example: 

- for modelling purposes, it may be interesting to know the exact moment when the recv 

function returns, because it may take a while for the recv function to execute, and 

perhaps it is needed to know the exact moment when data is available to some driver 

for example to characterize system CPU load as function of received data frequency. 

- for statistics gathering purposes, it may be interesting to know the total time spent on 

the write function, and a return probe can also be used for this purpose. It’s possible 

to specify both a start of function and an end of function hook. In order to match the 

start event with the end event, return probes allow to pass data between the two 

functions using a temporary structure. This scenario is illustrated here: 

 

When using a return probe, and in order to ease matching the event produced at function it is 

also possible to specify an entry hook  

3.6.6. No need for instrumented functions’ source code 

As it’s been roughly sketched through previous examples, kprobes can be useful to gather 

information about Kernel functions’ usage. 

One important fact about them is that it isn’t needed to have the source code for the 

instrumented functions, just its addresses. But, in case it is desired to reference functions by 

symbol name instead of address, it’ll be needed to have a running Kernel with symbolic 

information (which is an option that can be enabled during Kernel compilation). Regarding this 

last point, note that during driver prototyping (and this also applies to more areas of software 

development), it’s usual to have special versions of the Kernel prepared with debug information 

and maybe other options that ease debugging and analysis processes. 

Previous paragraph also means that kprobes can be used to analyse behaviour of third-party 

drivers (although a disassembler could also do a good work here on this scenario). 

3.6.7. kprobes API 

If Linux kernel is built with kprobes support, following functions will be available (examples will 

be seen later): 
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Functions related to kprobes: 

int register_kprobe(struct kprobe *p); 

This function registers a kprobe. Usually drivers register kprobes during its 
initialization. 

Return value for this function is 0 on success and <> 0 in case of some error. 

Argument for this function is a pointer to a kprobe structure, whose most important 

fields are: 

struct kprobe { 

 /* omitting other fields. 

refer to documentation to get further information * 

 ... 

 

/* location of the probe point */ 

kprobe_opcode_t *addr; 

/* Allow user to indicate symbol name of the probe point */ 

const char *symbol_name; 

/* Called before addr is executed. */ 

kprobe_pre_handler_t pre_handler; 

} 

Where: 

o addr is the address of the function which is desired to install the kprobe at 

o symbol_name is the name of the function which is desired to install the kprobe 

at. This filed can be used instead of the addr field. 

o pre_handler is the address of the function which will be called before the 

probed function is executed 

Type of pre_handler fields is defined as follows: 

typedef int (*kprobe_pre_handler_t) (struct kprobe *, struct pt_regs 

*); 

void unregister_kprobe(struct kprobe *p); 

Unregisters a kprobe. Drivers usually unregister kprobes during its deinitialisation. 

Returns no value. 

Argument for this function is a pointer to a previously registered kprobe. 

Functions related to jprobes: 

int register_jprobe(struct jprobe *p); 

This function registers a jprobe. Usually drivers register jprobes during its 
initialization. 

Return value for this function is 0 on success and <> 0 in case of some error. 

Argument for this function is a pointer to a jprobe structure, whose most important 

fields are: 
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struct jprobe { 

struct kprobe kp; 

void *entry;    /* probe handling code to jump to */ 

} 

Where: 

o kp is a kprobe struct which is used to indicate the symbol which is desired to 

install the jprobe at 

o entry is a pointer to a function which will be called with the arguments of the 

probed function, which means that the function pointed to by entry must have 

the EXACT SAME signature (return type and arguments) as the probed function. 

Also, in order for jprobes to be able to continue executing the probes function, 

this must be the return code for the function: 

/* Always end with a call to jprobe_return(). */ 

jprobe_return(); 

return 0; 

void unregister_jprobe(struct jprobe *p); 

Unregisters a jprobe. Drivers usually unregister jprobes during its deinitialisation. 

Returns no value. 

Argument for this function is a pointer to a previously registered jprobe. 

Functions related to return probes: 

int register_kretprobe(struct kretprobe *p); 

This function registers a kretprobe. Usually drivers register kretprobes during its 
initialization. 

Return value for this function is 0 on success and <> 0 in case of some error. 

Argument for this function is a pointer to a kretprobe structure, whose most 

important fields are: 

struct kretprobe { 

struct kprobe kp; 

size_t data_size; 

kretprobe_handler_t handler; 

kretprobe_handler_t entry_handler; 

int maxactive; 

}; 

Where: 

o kp is a kprobe struct which is used to indicate the symbol which is desired to 

install the kretprobe at 

o data_size instructs kprobes library to allocate  data_size bytes of space for 

each kretprobe structure passed as argument to the handler / entry_handler 

functions. This will be explained later. 
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o entry_handler is a pointer to a function which will be called once the probed 

function starts its execution. Can be NULL, then no hook function will be called 

when the probed function starts its execution. Type of this function is: 

typedef int (*kretprobe_handler_t) (struct kretprobe_instance *, 

                                    struct pt_regs *); 

  kretprobe_instance structure has one very important field: 

struct kretprobe_instance { 

    char data[0]; 

}; 

Data is really a pointer to a memory address. Available space at the memory 

address is the value of the data_size field for the kretprobe structure. 

This same pointer to the kretprobe_instance will also be passed to the 

function pointed by the handler field of the kretprobe structure. 

Therefore, this data field can be used to pass data between the entry_handler 

function and the handler function, providing a convenient wat to match the 

two callbacks to the same probed function invocation. 

This means that (for example) if an int value is desired to be passed from the 

entry_handler function to the handler function, first sizeof(int) should be 

assigned to the data_size field of the kretprobe structure. Then, from the 

entry_handler function, an integer could be stored at the address pointed to 

by the data field of the  kretprobe_instance structure pointer, which could 

be later read from the handler function. 

o handler is a pointer to a function which will be called once the probed function 

ends its execution. Type of this function is: 

typedef int (*kretprobe_handler_t) (struct kretprobe_instance *, 

                                    struct pt_regs *); 

kretprobe_instance structure pointer is the same pointer that was passed to 

the entry_ handler function, and this is what allows passing data from 

entry_handler to handler. 

o maxactive sets the maximum concurrent invocations of the probed function 

which can be simultaneously traces. Having this field with a too low value may 

produce the effect of missing some hits of the probed function. A safe value for 

this field is -1. Look kprobes documentation for further information about this 

field. 

void unregister_kretprobe(struct jprobe *p); 

Unregisters a return probe. Drivers usually unregister return probes during its 

deinitialisation. 

Returns no value. 

Argument for this function is a pointer to a previously registered kretprobe. 
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3.6.8. About commented usage examples 

To illustrate behavior of previous functions, some commented code samples are provided next. 

Each example illustrates a very simple driver which uses each of the concepts described at the 

API Usage section: 

- for kprobes, a function is probed and its invocations counted 

- for jprobes, a function is probed and one of its arguments is summed along all 

invocations 

- for return probes, a function is probed before and after execution, and execution time 

is measured 

On all examples, the selected probed function is vfs_write, which is used by the virtual file 

system (VFS) access functions behind the common syscall write function (which is available for 

user-space programs). 

Source code for write function is the following: 

SYSCALL_DEFINE3(write, unsigned int, fd, const char __user *, buf, 

                size_t, count) 

{ 

    struct fd f = fdget(fd); 

    ssize_t ret = -EBADF; 

 

    if (f.file) { 

        loff_t pos = file_pos_read(f.file); 

        ret = vfs_write(f.file, buf, count, &pos); 

        file_pos_write(f.file, pos); 

        fdput(f); 

    } 

 

    return ret; 

} 

Two things can be seen here: 

- This function declaration is a little bit different from the usual. 

Instead of defining the write function directly, SYSCALL_DEFINE3 macro is used. This is 

due to some internal mechanisms for Kernel compilation. 

Generally, all syscall functions which are implemented at the Kernel are defined this 

way. 

There is a file <linux/syscalls.h> which defines what this macro is: 

#define SYSCALL_DEFINE3(name, ...) SYSCALL_DEFINEx(3, _##name, 

__VA_ARGS__) 

This is complex macro (which uses another macro, concatenation operator and variable 

arguments ad), but the important fact is that it ends using the SYSCAL_DEFINEx macro, 

which the most important thing it does is declaring the functions with asmlinkage 

directive. 
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HOME: Exercise 1 - asmlinkage 

Search for the meaning of asmlinkage keyword in GCC compiler. 

What differentiates a function that is declared using asmlinkage from one that does 

not use it? 

- write function internally uses vfs_write function to do its work. 

Due to the write function using asmlikage option (it is a syscall) and not to complicate 

examples’ code, instead of probing the write function (it would provoke the handler 

function for the jprobe case) to also be defined with asmlinkage. 

This is the reason to install the probes at vfs_write function. 

LAB: Exercise 2 - syscall internal kernel functions 

Looking at the previous definition of syscall write function definition, search the definition of 

the following syscalls (on the kernel source) and tell which is the internal kernel function that 

the each of the following syscalls use: 

- open (opens a file and returns a file descriptor) 

- read (reads bytes from a file descriptor) 

- fork (forks the current process creating a child process) 

- unlink (removes a file or directory) 

- send (sends data through a socket) 

And last, all examples use a semaphore to access the counter variables, to avoid race conditions 

when kernel is compiled with preemption enabled. 

HOME: Exercise 3 - kernel preemption 

Search for the definition of preemption and explain it with your own words. 

Does kernel preemption takes effect on uniprocessor systems? 

3.6.9. Commented kprobes usage example 

Here follows source code for a driver which uses kprobes mechanism. This driver counts the 

number of times that the vfs_write kernel-function is invoked. 

// Needed by the driver itself 

#include <linux/init.h> 

#include <linux/module.h> 

#include <linux/kernel.h> 

 

// Needed by kprobes 

#include <linux/kprobes.h> 

#include <linux/ptrace.h> 

 

#include <linux/semaphore.h> 

 

#define MODULE_TRACE KERN_ALERT "kprobes-1: " 

static struct semaphore sem; 
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static volatile unsigned int vfs_write_counter = 0; 

 

// The hook function 

int vfs_write_pre_handler(struct kprobe *p, struct pt_regs *regs) 

{ 

        // Use a semaphore to avoid a race condition for vfs_write_counter 

        down (&sem); 

        vfs_write_counter++; 

        up (&sem); 

        return 0; 

} 

 

// kprobes usage 

static struct kprobe kprobe_write = { 

        .symbol_name = "vfs_write", 

        .pre_handler = vfs_write_pre_handler 

}; 

 

// Module initalization 

static int __init kprobes_module_init (void) 

{ 

        printk (MODULE_TRACE "initializing\n"); 

 

        int error = 0; 

 

        if (0 != (error = register_kprobe (&kprobe_write))) 

        { 

                printk (MODULE_TRACE "error %d registering kprobe\n", error); 

                return -1; 

        } 

        printk (MODULE_TRACE "kprobe registered\n"); 

 

        sema_init (&sem, 1); 

 

        printk (MODULE_TRACE "initialized\n"); 

 

        return 0; 

} 

 

// Module clean up 

static void __exit kprobes_module_exit (void) 

{ 

        printk (MODULE_TRACE "write function hit %u times\n", 

vfs_write_counter); 

 

        unregister_kprobe (&kprobe_write); 

        printk (MODULE_TRACE "kprobe unregistered\n"); 

 

        printk (MODULE_TRACE "cleaned up\n"); 

} 

 

module_init (kprobes_module_init); 

module_exit (kprobes_module_exit); 

 

MODULE_LICENSE ("GPL"); 

MODULE_VERSION ("1.0"); 

Main function of previous code (from a kprobes point of view), is vfs_write_pre_handler, 

which simply counts the number of invocations done to vfs_write function. 
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During static initialization, only two fields are set for the kprobe_write structure: 

- symbol_name, which is set to the name of the probed function 

- pre_handler, which is set to the address of the probe (vfs_write_pre_handler) 

Note how the signature of vfs_write_pre_handler... 

int vfs_write_pre_handler(struct kprobe *p, struct pt_regs *regs) 

... is equal to that of the type kprobe_pre_handler_t: 

typedef int (*kprobe_pre_handler_t) (struct kprobe *, struct pt_regs *); 

And for the hit counter variable (vfs_write_counter): 

- it’s statically initialized to 0 

- it’s increased during each probe hit 

- when the module gets unloaded, its value is printed 

3.6.10. Commented jprobes usage example 

Here follows source code for a driver which uses jprobes mechanism. This driver counts the 

number of bytes ordered to write to the vfs_write kernel-function. 

// Needed by the driver 

#include <linux/init.h> 

#include <linux/module.h> 

#include <linux/kernel.h> 

 

// Needed by kprobes 

#include <linux/kprobes.h> 

#include <linux/ptrace.h> 

 

#include <linux/semaphore.h> 

#include <linux/fs.h> 

 

#define MODULE_TRACE KERN_ALERT "kprobes-2: " 

static struct semaphore sem; 

 

// The hook function 

static volatile unsigned long long int written_bytes_counter = 0; 

 

// Following function is declared at <linux/fs.h>, from there we can extract 

the function signature 

ssize_t vfs_write_hook (struct file * p_file, const char __user * p_buf, 

size_t num_bytes, loff_t * pos) 

{ 

        // Use a semaphore to avoid a race condition for written_bytes_counter 

        down (&sem); 

        written_bytes_counter += num_bytes; 

        up (&sem); 

        /* Always end with a call to jprobe_return(). */ 

        jprobe_return(); 

        return 0; 

} 

 

// jprobes usage 
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static struct jprobe jprobe_vfs_write = { 

        .kp = { 

                .symbol_name = "vfs_write", 

        }, 

        .entry = vfs_write_hook 

}; 

 

// Module initalization 

static int __init jprobes_module_init (void) 

{ 

        printk (MODULE_TRACE "initializing\n"); 

 

        int error = 0; 

        if (0 != (error = register_jprobe (&jprobe_vfs_write))) 

        { 

                printk (MODULE_TRACE "error %d registering jprobe\n", error); 

                return -1; 

        } 

        printk (MODULE_TRACE "jprobe registered\n"); 

 

        sema_init (&sem, 1); 

 

        printk (MODULE_TRACE "initialized\n"); 

 

        return 0; 

} 

 

// Module clean up 

static void __exit jprobes_module_exit (void) 

{ 

        printk (MODULE_TRACE "written %llu KB\n", written_bytes_counter/1024); 

 

        unregister_jprobe (&jprobe_vfs_write); 

        printk (MODULE_TRACE "jprobe unregistered\n"); 

 

        printk (MODULE_TRACE "cleaned up\n"); 

} 

 

module_init (jprobes_module_init); 

module_exit (jprobes_module_exit); 

 

MODULE_LICENSE ("GPL"); 

MODULE_VERSION ("1.0"); 

Main function of previous code (from a jprobes point of view), is vfs_write_hook, which simply 

counts the number of “bytes to be written“ value  from the argument passed to the probed 

(vfs_write) function. 

During static initialization, only two fields are set for the jprobe_vfs_write structure: 

- as explained in the API reference section, to specify the probed address, sub-structure 

kp (which is a struct kprobe) is used to set the probed function name. As in the case 

of the kprobes example, only symbol_name field of the sub-structure is needed to be set. 

- entry, which is set to the address of the probe (vfs_write_hook) 

Note how the signature of vfs_write_hook... 
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ssize_t vfs_write_hook (struct file * p_file, const char __user * p_buf, 

size_t num_bytes, loff_t * pos) 

... matches signature of the probed function (vfs_write): 

ssize_t vfs_write(struct file *file, const char __user *buf, size_t count, loff_t 

*pos) 

And for the counter variable (written_bytes_counter): 

- it’s statically initialized to 0 

- the number of bytes desired to be written is added to it on each invocation to the probed 

function  

- when the module gets unloaded, its value is printed 

3.6.11. Commented return probes usage example 

Here follows source code for a driver which uses jprobes mechanism. This driver counts the total 

time spent inside the vfs_write kernel-function, and the mean time spent for each invocation 

to the function. 

// Needed by the driver 

#include <linux/init.h> 

#include <linux/module.h> 

#include <linux/kernel.h> 

 

// Needed by kprobes 

#include <linux/kprobes.h> 

#include <linux/ptrace.h> 

 

#include <linux/semaphore.h> 

 

#define MODULE_TRACE KERN_ALERT "kprobes-3: " 

static struct semaphore sem; 

 

// The hook functions 

static volatile unsigned long long int 

    vfs_write_total_spent_time = 0; 

static volatile unsigned long long int 

    vfs_write_invocation_counter = 0; 

 

int vfs_write_entry_handler(struct kretprobe_instance *p, struct pt_regs 

*regs) 

{ 

    // Use a semaphore to avoid a race condition for 

    // vfs_invocation_counter variables 

    down (&sem); 

    vfs_write_invocation_counter++; 

    up (&sem); 

 

    // Store current time 

    *((unsigned long long int*)p->data) = ktime_to_ns(ktime_get()); 

 

    return 0; 

} 

 

int vfs_write_ret_handler(struct kretprobe_instance *p, struct pt_regs *regs) 
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{ 

    // Calculate spent time between entry and now 

    unsigned long long int current_time= ktime_to_ns(ktime_get()); 

    unsigned long long int spent_time = current_time - *((unsigned long long 

int*)p->data); 

 

    // Use a semaphore to avoid a race condition for 

    // vfs_write_total_spent_time variables 

    down (&sem); 

    vfs_write_total_spent_time += spent_time; 

    up (&sem); 

    return 0; 

} 

 

// kretprobes usage 

static struct kretprobe kretprobe_write = { 

    .kp = { 

        .symbol_name = "vfs_write", 

    }, 

    .handler = vfs_write_ret_handler, 

    .entry_handler = vfs_write_entry_handler, 

    .maxactive =1,  // use default value 

     

    // data will store start time of the function 

    .data_size = sizeof (unsigned long long int)  

}; 

 

// Module initalization 

static int __init kretprobes_module_init (void) 

{ 

    printk (MODULE_TRACE "initializing\n"); 

 

    int error = 0; 

 

    if (0 != (error = register_kretprobe (&kretprobe_write))) 

    { 

        printk (MODULE_TRACE "error %d registering kretprobe\n", error); 

        return -1; 

    } 

    printk (MODULE_TRACE "kretprobe registered\n"); 

    sema_init (&sem, 1); 

 

    printk (MODULE_TRACE "initialized\n"); 

 

    return 0; 

} 

 

// Module clean up 

static void __exit kretprobes_module_exit (void) 

{ 

    printk (MODULE_TRACE "vfs_write function hit %llu times\n", 

            vfs_write_invocation_counter); 

    printk (MODULE_TRACE "total time spent time in vfs_write function is %llu 

ns\n", 

            vfs_write_total_spent_time); 

    printk (MODULE_TRACE "spent %llu ns per invocation to vfs_write 

function\n", 

            vfs_write_total_spent_time/vfs_write_invocation_counter); 
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    unregister_kretprobe (&kretprobe_write); 

    printk (MODULE_TRACE "kretprobe unregistered\n"); 

 

    printk (MODULE_TRACE "cleaned up\n"); 

} 

 

module_init (kretprobes_module_init); 

module_exit (kretprobes_module_exit); 

 

MODULE_LICENSE ("GPL"); 

MODULE_VERSION ("1.0"); 

From a return probes point of view, previous code has two main functions: 

- vfs_write_entry_handler, which is the hook invoked at the beginning of vfs_write 

function. This hook counts the number of invocations to the probed function and stores 

the invocation time of the probed function inside the data field of the 

kretprobe_instance pointer. 

- vfs_write_ret_handler, which is the hook invoked at the end of vfs_write function. 

This hook accesses the data field of the kretprobe_instance pointer and uses it to 

calculate the time spent on the write function, which sums to a counter. 

During static initialization, following fields of the kretprobe_write structure are set: 

- just as in the jprobes case, kp sub-structure is used to specify the probed function 

- handler is set to the address of the function vfs_write_ret_handler, which will be 

executed upon probed function return 

- entry_handler is set to the address of the function vfs_write_entry_handler, which 

will be executed before probed function starts execution 

- maxactive is set to the recommended (see API section) value -1 

- data_size is to the size of the data that vfs_write_entry_handler will store into the 

data pointer field of the kretprobe_instance structure 

- etry, which is set to the address of the probe (vfs_write_hook) 

It is very important to note that, as both vfs_write_entry_handler and 

vfs_write_ret_handler are specified on the same return probe structure, the pointer to the 

kretprobe_instance argument to both functions will be the same is they both are called for 

the same probed function invocation. This is what allows to store the time there from 

vfs_write_entry_handler  function and use it at vfs_write_ret_handler function to 

calculate time spent on the probed function. 

Note how the signature of both vfs_write_entry_handler and vfs_write_ret_handler... 

int vfs_write_entry_handler(struct kretprobe_instance *p, struct pt_regs 

*regs) 

 

int vfs_write_ret_handler(struct kretprobe_instance *p, struct pt_regs *regs) 

... is equal to that of the type kretprobe_handler_t: 
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typedef int (*kretprobe_handler_t) (struct kretprobe_instance *, 

                                    struct pt_regs *); 

About the hit counter variable (vfs_write_invocation_counter): 

- it’s statically initialized to 0 

- it’s increased during each time the probed function is about to begin execution 

- when the module gets unloaded, its value is printed 

And for the time counter variable (vfs_write_total_spent_time): 

- it’s statically initialized to 0 

- at each probed function invocation, the value for the counter is increased by the time 

calculated as: time probed function ends – time probed function starts 

- when the module gets unloaded, its value is printed 

Also, when the module gets unloaded, value of both counters is used to calculate and print the 

mean time spent on each execution of the probed function.  

LAB: Exercise 3 – testing drivers 

Compile and test the programs. Check them are behaving as expected and show some 

example of its output. 
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3.6. Thread Local Storage (TLS) Guide 

pre-requisite: background in thread programming 

3.7.1. Introduction 

Related to concurrent programming, during the design phase of an application, at some point a 

decision has to be made to choose either a multithreaded or a multiple process approach (or a 

combination of both). 

Regarding this decision, from an application programmer point of view, one of the main 

differences between the two approaches is the memory management implied on these two 

scenarios: 

- in a multiple process scenario, each process is assigned a private memory mapping. 

Thus, by default the memory seen by each process is isolated (one process cannot 

access another process’ memory) 

 

As a side note, when a process is forked it is possible that a Copy-On-Write strategy 

is used to achieve a faster process spawn operation, so during some time interval 

(until either of the processes do a write access to the memory) the physical memory 

seen by each process can be the same, but this is a concern which will not be further 

seen in this guide.  

- in a multithreaded scenario, the memory mapping to which each thread has access 

is the same. Thus, by default the memory is shared between threads (all threads 

access the same physical memory) 
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Broadly looking into which are implications for this difference in memory management, in 

general the following rule applies: 

- in a multiple process scenario, an additional effort has to be done to enable 

communication between the processes (just because the memory model pushes 

towards isolated memory between processes), and therefore a variety of Inter 

Process Communication (IPC) techniques do exist which give support to the 

communication needs (some examples are signals, sockets, shared memory, files, 

…) 

 

- in a multithreaded scenario, if memory is used to communicate data between 

threads, ad additional effort has to be done when accessing this memory (for 

example to avoid race conditions), and therefore a variety of lock mechanisms do 

exist which give support to ensure exclusive access to the memory used to 

communicate the threads (some examples are binary semaphores, mutexes, file 

locks, …) 
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This shared behaviour has more implications than the ones described for thread communication, 

and another example of problems derived from this very nature is when using libraries which 

are not multithread-ready: back in the old days when threads were first introduced, special care 

had to be taken when migrating code to multithread, as some functions might use global 

variables (which due the shared-memory-nature of multithread programming, is subject to race 

conditions). An example of this situation is the strtok function (which splits a string using a 

delimiter token), whose usage implies that a state variable has to be stored as a global variable, 

and thus concurrent invocations of this function from different threads may corrupt this 

variable. To avoid this kind of situations, standardised C functions which are subject to thread-

safety problems usually do have an equivalent version of the function which is suitable for use 

in a multithread environment (the strtok function has the equivalent strtok_r function which 

is thread-safe).  

As is been seen by example, in the scenario of the previous paragraph, the usual workaround is 

to provide the programmer with an equivalent but thread-safe manner of invoking a function, 

and this usually implies using another version of the function with a similar name.  

But there are cases different to that of the previous scenario: for example, the omnipresent (in 

C) errno variable, which is set by system calls and some library functions is the case of an error 

as a hint on what went wrong. This variable is global: it is not scoped (into a file, or a function, 

or whatever), but it’s available from every part of the code. Furthermore, implementation of 

errno in thread-safe programs ensures that writing the value for this global variable from one 

thread does not affect the value another thread sees for this variable. And, at the same time, 

the way of reading/setting this variable is uniform across threads. 

What the previous paragraph suggests is that there exists some kind of storage which is local to 

a thread: 
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And what is more important, the code each thread uses to set this thread-local variable is the 

same, and this enables an important fact: an example with two worker threads which do the 

same processing can use exactly the same code. 

The previous functionality is achieved with which is known as Thread Local Storage (TLS), which 

means that there is some data which is private to a thread. The errno variable can be seen as 

an usage of this concept. 

3.7.2. Outline of TLS’ inner working 

With TLS, an application programmer can store values inside a thread context, in such a way that 

when the value is set/get, the value is stored/read to/from a container which depends on the 

thread. 

More on the previous statement below, but first let’s see the idea behind TLS. 

When using libpthread in order to give multithread functionality to an application, the library 

takes care for some initializations related to the threads it manages, and one part of taking care 

is allocating a dedicated data space related to every existing thread known as specific data.  

Then, if for example an application has N threads, they automatically get some memory assigned 

for specific data purposes: 

 

In order to manage threads, usually the functions from libpthread are used, what gives the 

library control over the threads’ lifecycle, and this allows the library to allocate/free the memory 

related to the specific data for every application thread.  

process memory, shared between threads

 

(does not store value for errno)

one thread

 

sets errno value

another thread

 

sets errno value

errno is stored

locally to

"one thread"

errno is stored

locally to

"another thread"

specific data for thread 1thread 1

specific data for thread 2thread 2

specific data for thread Nthread N

...
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The TLS implementation is built on top of this very basic functionality, and when used from an 

application reminds the usage of a dictionary: 

- first, the keys for the dictionary need to be created 

- then, a thread sets/reads the value for some already created key  

And that’s all. To illustrate the previous explanation, imagine the following scenario, which is 

split across some steps: 

a) an application creates two threads, so the library in charge of managing threads 

allocates some memory for the specific data for each thread: 

 
b) the application wishes to store some value, which will be global in the context of every 

thread but isolated from thread to thread. Then it decides to create a key (calling it 

key1): 

 

What happened here is that the library (when invoked to create a key), initialized the 

key on both threads. 

Now thread 1 stores the value 1234 and thread 2 stores the value 5678, under the 

newly created key: 

 
c) the application creates another thread, so the library takes care of automatically 

creating the key for the new thread (of course with a NULL value, indicating that the 

value is not yet initialized): 

specific data for thread 1thread 1

specific data for thread 2thread 2

specific data for thread 1thread 1

specific data for thread 2thread 2

key 1 for thread 1

(NULL value)

key 1 for thread 2

(NULL value)

specific data for thread 1thread 1

specific data for thread 2thread 2

key 1 for thread 1

( 1234)

key 1 for thread 2

(5678)
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TLS implementation is also done at the libpthread, whose source code is part of the glibc  

(source code for a recent version of the former can be found on [1] under the nptl folder). 

 [1] http://ftp.gnu.org/gnu/glibc/glibc-2.24.tar.gz 

3.7.3. Restrictions to the usage of TLS 

TLS has two main restrictions, which are discussed here: 

- number of keys is not unlimited, so there is a maximum number of keys which may 

be used at the same time. Although this number is high (1024 on the last versions 

of the libpthread), it is limited. 

- stored values must be of type void *, and for this reason entities such as structs nor 

vectors can be stored. However, what can be stored are the pointers to those 

structures, although this requires a little bit more work from a thread perspective, 

because memory for the related entities must be allocated. 

And much more important: if a pointer to (for example) a struct is stored this means 

that at some point the memory for the structure has been allocated independently 

at each thread. Upon finishing the thread, it has to be remembered to invoke free 

with this allocated memory (otherwise a memory leak would be incurred). 

Regarding previous paragraph, fortunately the API offers a way to manage allocated 

memory stored as a value inside the TLS. 

3.7.4. The API for TLS 

This section will outline and describe the API offered by the pthreads library related to TLS 

functionalities: 

int pthread_key_create(pthread_key_t *key, void (*destr_function) (void 

*)) 

Allocates a key for further usage in the rest of functions. Its parameters are: 

o key: a pointer to a pthread_key_t variable. The variable does not need to 

be initialized previous to this function invocation.  

specific data for thread 1thread 1

specific data for thread 2thread 2

key 1 for thread 1

( 1234)

key 1 for thread 2

(5678)

specific data for thread 3thread 3
key 1 for thread 3

(NULL value)

http://ftp.gnu.org/gnu/glibc/glibc-2.24.tar.gz


3. Kernel Programming Techniques 

95 

o destr_function: Address of a function that accepts a void * argument. If 

the supplied value for destr_function is not null, when a thread ends its 

execution, destr_function will be calle d with the value for the key as 

argument. 

Returns 0 on success. Otherwise an error occurred. 

Note that this function must be invoked only once for every key the application uses. 

In order to help with this, the pthread_once function can be used. 

The purpose to have destr_function is aiding in the case described on the section 

Restrictions to the usage of TLS where a thread allocates memory in order to store 

a pointer to the allocated memory. destr_function simplifies freeing that 

allocated memory. Otherwise, threads would have to take care by themselves of 

freeing that memory (which, if the threads’ lifecycle was complex would be not 

trivial to do). If the value of destr_function  is NULL, it is not invoked. 

int pthread_key_delete(pthread_key_t key) 

Deallocates a previously allocated key. Its parameters are: 

o key: a variable whose pointer has been previously supplied during an 

invocation to pthread_key_create. 

Returns 0 on success. Otherwise an error occurred. 

Deallocating a key does not invoke the destr_function associated with that key 

during the invocation to pthread_key_create. 

int pthread_setspecific(pthread_key_t key, const void *pointer) 

Stores the supplied value for the given key. Its parameters are: 

o key: a variable whose pointer has been previously supplied during an 

invocation to pthread_key_create. 

o pointer: the value to store for the key. Remember only pointers can be 

stored. 

Returns 0 on success. Otherwise an error occurred. 

void * pthread_getspecific(pthread_key_t key) 

Obtains a previously stored value for the key. Its parameters are: 

o key: a variable whose pointer has been previously supplied during an 

invocation to pthread_key_create. 

Returns the currently stored value for the key. If the key was not previously 

allocated or a value is not yet stored, returns NULL. 

HOME: Exercise 1 – about pthread_once 

During description of the pthread_key_create function it’s been said that pthread_once 

function may be useful: 
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- what does this function? 

- how can it be useful related to calling pthread_key_create from the threads? 

3.7.5. GCC altrerntive to TLS API 

Although usage for TLS is not complicated once the concept is understood, GCC compiler offers 

a much simpler interface to partially obtain the same functionality, although there is no support 

for value destructors. 

The reader of this guide is encourages to take a look at https://gcc.gnu.org/onlinedocs/gcc-

3.3.1/gcc/Thread-Local.html for an overview of the functionality. 

3.7.6. Example code 1: usage of a global variable 

Here follows an example code which features: 

- code uses a thread to do some arbitrary and non-deterministic processing 

- in order to quantify the non-determinism, a counter global variable is used 

- once the processing finishes, the global variable is printed 

 
#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

#include <time.h> 

 

int counter; // a global var 

 

void sub_work_function () 

{ 

    // Just iterate a random number of times and increase counter 

    int loop_iterations = (rand () % 99) + 1; 

 

    while (loop_iterations--) 

        counter++; 

} 

 

int work_function () 

{ 

    // Just iterate a random number of times and increase counter 

    int loop_iterations = (rand () % 99) + 1; 

 

    while (loop_iterations--) 

    { 

        counter ++; 

        sub_work_function (); 

    } 

} 

 

void* pthread_func (void* arg) 

{ 

    // Reset global var 

    counter = 0; 

 

    // Invoke a dummy processing function 

https://gcc.gnu.org/onlinedocs/gcc-3.3.1/gcc/Thread-Local.html
https://gcc.gnu.org/onlinedocs/gcc-3.3.1/gcc/Thread-Local.html
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    work_function (); 

 

    // And print global var value 

    printf ("thread 1 iterated %d times\n", counter); 

 

    return NULL; 

} 

 

int main (void) 

{ 

    pthread_t thread_id; 

 

    srand((unsigned) time(NULL)); 

 

    pthread_create (&thread_id, NULL, pthread_func, NULL); 

 

    pthread_join (thread_id, NULL); 

 

    return 0; 

} 

A brief analysis of the code: 

- in the main function, a seed for the random number generator is set through the use of 

function srand 

- work_function and sub_work_function represent some arbitrary processing, where 

non-determinism is introduced by doing a random number of iterations 

- to avoid the main function return before the thread finishes, a pthread_join is done to 

await for the thread termination 

Although this code may seem very simple, and one may think that the counter variable could be 

passed as an int* to work_function and sub_work_function, the truth is that the processing 

functions could be really complex accepting a large number of arguments, and adding extra 

arguments to them just to implement a counter could not be a good coding practice, because of 

the complexity overhead in the future maintenance of the functions. 

HOME: Exercise 2 – about the counter global variable 

a) At the above code, the counter variable has been used as a global storage for the worker 

thread: 

- what would happen with this variable if more a total of two worker threads were created 

without modifying the code used by the threads? 

b) A solution could be (if there were a total of two worker threads instead of one), to create 

another variable, but answer this questions about its implications: 

- if two global variables were used (one for each thread), would it be necessary to modify 

the code for the functions work_function and sub_work_function so that they behave 

different depending on the thread? If yes, how would you modify them(illustrate the idea 

without coding, although you can use some pseudocode to show it)? 
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c) Now imagine that more worker threads are needed, and that the number of total needed 

worker threads is unknown beforehand: 

- could the solution proposed at b) adapt to this new scenario? What modifications should 

be done in order to support this new scenario (illustrate the idea without coding, although you 

can use some pseudocode to show it)? Which do you think it would be the most difficult 

technical part if the proposed modifications were to be implemented? 

3.7.7. Example code 2: usage of TLS 

Here follows an example code which illustrates: 

- code uses two threads which do some calculation  

- both threads store the result of its calculation inside a TLS variable and then the threads 

print the result for the calculation 

- important! the code used by both threads to do the calculation and store the result is 

the same 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <pthread.h> 

#include <time.h> 

#include <string.h> 

 

// key used for TLS 

pthread_key_t tls_key; 

 

// some costant operators to do the calculation 

const int operand_a = 10; 

const int operand_b = 20; 

 

// an enum used to add diversity to the program 

typedef enum { 

    multiplication, 

    addition 

} e_operation; 

 

// this structure will be used as the value for the TLS key 

typedef struct { 

    char operation [100]; 

    int result_value; 

} s_result; 

 

// a little helper function 

void fatal_error (char* message) 

{ 

    printf ("fatal error: %s\n", message); 

    exit (1); 

} 

 

void store_result (e_operation operation, int result_value) 

{ 

    // allocate memory for the result 

    s_result* new_result = (s_result*) malloc (sizeof (s_result)); 
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    // print a message related to the operation 

    // done and store it with the result 

    sprintf (new_result->operation, 

             "operation is %s", 

             (operation == multiplication) ? "multiplication" : "addition"); 

 

    // store the result value with the result 

    new_result->result_value = result_value; 

 

    // and assign the value for the TLS key 

    if (pthread_setspecific (tls_key, new_result)) 

        fatal_error ("setting value for TLS key"); 

} 

 

void thread_do_calculation (e_operation operation) 

{ 

    int result_value; 

 

    printf ("doing calulation...\n"); 

 

    // simulate that the calculation takes some time 

    sleep (2); 

 

    // and do the calculation depending on the argument supplied 

    if (operation == multiplication) 

        result_value = operand_a * operand_b; 

    else 

        result_value = operand_a + operand_b; 

 

    printf ("done calculation!\n"); 

 

    // finally store the result 

    store_result (operation, result_value); 

} 

 

int thread_print_result () 

{ 

    // obtain the value for the TLS key 

    s_result *result_ptr = (s_result*) pthread_getspecific (tls_key); 

 

    // just a secutiry check 

    if (result_ptr == NULL) 

        return; 

 

    // and print the result on screen 

    printf ("%s, result = %d\n", 

            result_ptr->operation, 

            result_ptr->result_value); 

} 

 

void* pthread_func (void* arg) 

{ 

    // Obtain the operation to be done from the thread argument 

    e_operation* operation_ptr = (e_operation*) arg; 

 

    // Do the calculation and store the result 

    thread_do_calculation (*operation_ptr); 
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    // And print the result 

    thread_print_result (); 

 

    return NULL; 

} 

 

void free_result (void* ptr) 

{ 

    // as memory for the result was allocated using 'malloc', 

    // 'free' has to be used to free the memory 

    free (ptr); 

} 

 

int main (void) 

{ 

    pthread_t thread_id_1, thread_id_2; 

 

    // Create the TLS key 

    if (pthread_key_create (&tls_key, free_result)) 

        fatal_error ("allocating TLS key!\n"); 

 

    // Create one thread which multiplies 

    e_operation operation_for_thread_a = multiplication; 

    pthread_create (&thread_id_1, NULL, pthread_func, 

&operation_for_thread_a); 

 

    // Create another thread which does the addition 

    e_operation operation_for_thread_b = addition; 

    pthread_create (&thread_id_2, NULL, pthread_func, 

&operation_for_thread_b); 

 

    // And wait for the threads to finish before 

    // exiting the main program 

    pthread_join (thread_id_1, NULL); 

    pthread_join (thread_id_2, NULL); 

 

    return 0; 

} 

A brief analysis of the code: 

- the way to pass an argument to a thread is by using the last argument of the function 

pthread_create, which during thread creation is passed as argument to pthread_func 

function. As these arguments are of type void*, a pointer to the value is passed (instead 

of the value itself casted to void*, which would trigger some compilation warnings), 

which is dereferenced at pthread_func in order to get its value. 

- as allocation for TLS keys has to be done only once for each key, pthread_key_create 

is invoked before any thread is created, although the pthread_once function could be 

used if the key was allocated inside pthread_func. 

- at store_result function, it can be seen that a pointer returned by malloc is set as a 

value for the key. This is because values which can be stored for keys are always of type 

void*, and not of any other type. If the result was a simple value (for example an int), 

it could be stored as a value via a cast, but this would in any case trigger a compiler 

warning. 
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- at thread_do_calculation function two things are done: 

o a delay of 2 seconds invoking the sleep function. This is done to simulate a 

lengthy operation and to ensure the threads overlap its execution. 

o the operation performed depends on an argument to the function. Casually the 

number of available operations coincides with the number of threads, but don’t 

confuse this situation with that of the proposed at exercise 2.b). There could be 

an arbitrary number of threads using the same code, because the if sentence 

at function thread_do_calculation  not related need to store the value 

depending on the thread, but to offer a little diversity to the program. 

- in order to simplify the program, both operand_a and operand_b are constants (they 

have the const modifier and have a fixed value). But the program could be extended to 

pass different values for the operands to function thread_do_calculation. 

- there is a helper function, fatal_error, which simply prints a message and terminates 

execution of the program in the case of some non-recoverable error is found. 

TLS usage in the previous program can be seen as a state holder for the threads of the program, 

where different functions (store_result and thread_print_result) have access to the state 

of the program (respectively for modifying and consulting the state), without the need to 

propagate parameters between them. 

This exercise is manly a showcase for TLS, to have a ready-to-go example which can be consulted 

while doing the next exercises. 

3.7.8. Exercises 

Sometimes, a single-threaded application has to be converted to multithread (sometimes to 

take advantage of multiple cores found in modern processors, sometimes to integrate simple 

processing applications into a more complex application which does different processing in 

parallel and has one main thread coordinating the separate processing). 

While doing this kind of work, it’s important to do as few changes as possible to original in order 

to minimise possible side effects during the transition to multithread. 

LAB: Exercise 3 – extending Example code 1 

This is the only practical exercise of this guide. Through it, the code from Example code 1 will be 

adapted to support an arbitrary number of threads. For the resolution of this exercise, code from 

Example code 2 can be used as a reference. 

a) modify the code from Example code 1 so that a TLS key is created. This key can be created in 

the main function, prior to creating any thread. 

b) create the code at the beginning of pthread_func so that it stores a zero (NULL) value for the 

key. Also, remove the code which does counter = 0. 

c) create a function called increment_counter, which gets the value for the key, increases it 

and stores it again for the key. 
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d) modify functions work_function and sub_work_function, replacing counter ++ by an 

invocation to increment_counter. 

e) finally, at pthread_func,  modify the printf invocation so that it prints the value for the key 

and eliminate the declaration of the global variable counter from the beginning of the program. 

Now compile the program, execute it and test that it works well (it should print a different value 

each time). 

f) what parameter have you used as argument to pthread_key_create argument? Why? 

g) now, modify the program so that it creates 20 threads, sleeping one second after each thread 

creation. 

Execute it again and validate that it works well (the printed value should never exceed 10000). 
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3.7. DMA Transfers Guide 

DMA 

pre-requisite: exercises about GIPO + interrupts 

pre-requisite: exercises about file drivers 

pre-requisite: exercises about blocking I/O 

Introduction 

A DMA (for Direct Memory Access) names a technique in which some system component 

accesses memory directly, without intervention from the main CPU. This means without code 

being executed on the CPU in order to achieve the memory access.  

Although depending on the architecture used names vary a little, on the Beaglebone the 

component which is in charge of using the DMA technique is called DMA Controller. The reason 

of this name is because it is in charge of controlling the direct memory access. 

Generally speaking, when performing a memory access (either using a DMA Controller or not), 

the following functional situation usually occurs: 

 

Previous diagram is very generic, and illustrates a situation which is agnostic on how the 

memory access is done: 

- some component, may represent a user space program, a device driver or even a 

hardware peripheral which notifies the system CPU when a memory access must be 

done. 

- located on the system CPU, there must be some code which can take notice when 

some component is requesting an access and then instructing the CPU to drive the 

access (which is not necessarily doing the actual memory access, but driving it).  

- memory subsystem part is just a placeholder for some memory external to the 

processor. It could be a RAM chip, some memory mapped region, etc… It may also 

contain caches and helper entities (like a DMA Controller). 

So, at the end, the diagram only tells that there is some component which desires to 

access the memory subsystem, and that some component uses the system CPU as a 

helper agent in order to perform the memory access. The way some component 

communicates with the CPU takes the form of some notification mechanism. 

Here are some illustrative examples: 

some component system CPU memory subsystem

requests a memory access drives the memory access
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a) there is an external peripheral which wishes to copy some data into system RAM 

o some component is the external peripheral 

o some code on the system CPU is a device driver which implements two 

things: 

 the receiver part of the notification mechanism which could be 

either based on interrupts or on a polling scheme, and some entity 

could be a device driver 

 the part which drives the memory access operation 

o memory subsystem is composed of two parts: 

 a memory mapped region which points to the device memory 

 a RAM region which will receive the data from the peripheral 

b) there is some system daemon which wishes to flush buffers due certain user-signal 

o some component is the daemon program 

o some code on the system CPU is a signal handler for the daemon 

implementing: 

 the receiver part of the notification mechanism which is the signal 

handler and its registration code 

 the part which drives the memory access operation 

o memory subsystem is composed of two parts: 

 a RAM region which contains the buffers used by the daemon 

 some external memory system where to flush the buffers, like an 

HDD 

c) a disk file driver, which reads the contents of a file in HDD and stores them into RAM 

o some component may be a user space program which invokes the read 

operation 

o some code on the system CPU is the file driver code implementing: 

 the receiver part of the notification mechanism which are the 

sd_open and related functions’ implementation and its registration 

during the driver initialization 

 the part which drives the memory access operation 

o memory subsystem is composed of two parts: 

 the primary HDD, from where to read the file contents 
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 a RAM region which contains the buffers where to store the file 

contents 

Note that on all previous examples, the some code’s part which is in charge of managing 

the memory accesses is references as “the part which drives the memory access 

operation”. The reason for this is to remark that this is referred to a situation which is 

agnostic on how the memory access is done. In order to accomplish this task, some code 

might use some helper entities (like a syscall, a libc call, a DMA Controller) or it may 

actually do the memory access (with a loop that reads/writes memory during each 

iteration). 

Without using the DMA technique, this diagram would depict who is in charge of the memory 

access: 

 

This diagram seems quite similar to the previous one, but in this case the code on the 

system CPU is doing the memory access. 

An example of this situation is the following scenario: 

 

Note how the actual memory access is done by means of some code (executed 

in the processor) which, in this case, is a loop which copies memory byte to byte. 

 Another example of this situation can be following scenario: 

some component system CPU memory subsystem

requests a memory access executes instructions which

do the actual acccess

some component system CPU memory subsystem

user-space program memcpy func code src&dst addrs.

wants to do a

memcpy operation copies memory

byte-to-byte in loop

requests a memory access executes instructions which

do the actual acccess
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Note how the Ethernet driver code is the one which manages the data accesses. 

It contains code that reads mapped memory regions and I/O ports and writes 

some data into RAM.  

Using the DMA technique, this diagram would depict who is in charge of the memory access: 

 

Previous diagram is also very generic, but it will useful to explain the role of a DMA 

controller. 

Here follows an example of the DMA Controller in action: 

 

some component system CPU memory subsystem

network card 	ethernet phy driver src&dst addrs.

a packet has arrived and its

payload must be stored in

a buffer. interrupt is raised

indcating packet arrival

ehternet driver knows

which I/O ports and mapped

memory regions must be

read to get wire data. also,

data is stored into RAM.

requests a memory access executes instructions which

do the actual acccess

some component system CPU

memory subsystem

DMA Controller data & addr bus

requests a memory access programs

DMA controller
does the actual memory

access without executing

CPU instructions

some component system CPU

memory subsystem

DMA Controller data & addr bus

frame grabber video capture driver CPU-independant addressable mem

notifies that there is data for

a frame available and that

it should be provided to the

driver in order to make it

available to user-space

programs

tells DMA controller

to copy memory

from mapped addr.

(from the grabber)

into main RAM

is connected to buses

and able to read/write

from addressable

memory without inter-

vention from CPU

requests a memory access programs

DMA controller
does the actual memory

access without executing

CPU instructions
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Note how in this case the processor only programs the DMA controller: 

o the processor does not do the memory copy operation, but tells which 

operation has to be done to the DMA controller. 

 

o the DMA controller, once configured, performs the memory copy operation 

on its own, without further intervention from the processor. 

Functional overview of the DMA Controller 

As it has been mentioned in the previous examples, the DMA Controller main characteristics 

are: 

a) is external to the main CPU, in the sense that they have separate execution flows. 

Despite this and due to the manufacturing process, the DMA Controller may be 

found either on the same silicon chip as the main CPU (this is the case for the 

BeagleBone processor) or as a separate chip. 

The fact that the DMA Controller is a separate chip from the main CPU is reflected 

also in that the DMA Controller usually has some set of dedicated resources which 

are needed to interact with the main CPU, which may be any combination of: 

o interrupts 

o mapped memory addresses 

o I/O ports 

b) its execution is detached from main CPU execution flow: in order for the DMA 

Controller to access the memory, it must not wait for the processor to execute some 

code. 

Although this, there are mechanisms to order the transfer start of transfer. 

 
The controller, once it is programmed and start of transfer ordered, has direct 

access to the data and address bus. Also, usually there exists some way in which the 

CPU is gets noticed once the transfer ends (event generated annotation on the 

previous diagram). 

Don’t confuse these two facts: 

o the memory transfer operation is done without intervention from the CPU 

some component

system CPU

executed in parallel

DMA Controller endcopies desired memory

CPU can execute other code meanwhile execution continues

requests a

memory access

programs

DMA controller
event

generated
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o some code which executes on the CPU must set up the memory transfer 

operation  

Drivers which use a DMA controller usually contain some code related to 

programming the DMA Controller. The programming usually consists in telling the 

DMA Controller which is the origin address, the destination address and the amount 

of bytes to copy. 

the transfer operation begins right after both having configured the transfer 

operation and ordered DMA Controlller to start the transfer. Is the transfer 

operation which is independent from CPU. 

c) copies memory from one address into another: this means that the DMA Controller 

can access all addressable memory. 

Examples of DMA transfers are: 

 

Although the basic functionality of a DMA are memory copy operations, specific 

systems may make use of the extended bit-wise capabilities of an extended DMA-

Controller. 

For example, a chroma-key video effect might be implemented with intelligent use 

of bit-wise operations, where: 

i) the destination memory-address is some memory which will be presented to 

the user in visual form (such as a bitmap). 

ii) more than one source addresses could be used by means of more than one 

chained DMA operation, each of them using different bit-wise operations (i.e. a 

combination of AND and OR operations) 

Advantages/drawbacks: independent execution flow 

On the previous section it has been told that the execution flow of the DMA controller is 

detached from the execution flow of the main processor. 

memory region 1 (kernel buffer)

memory region 2

(external device mapped memory)

...

memory region 3

(kernel buffer)

memory region 4 (user-space buffer)

...

memory addresses

DMA

transfer 2

DMA

transfer 1
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The main advantage of this is that the CPU can be doing some calculation at the same time the 

DMA Controller is doing I/O. This means that while the DMA Controller is doing memory 

operations, the processor is free to execute (almost) whatever code it wishes. This is the main 

reason which led to the invention of DMA Controllers. 

The main drawback of this is that for the CPU to get noticed that a transfer has finished an 

additional mechanism is needed, which can be either: 

- by polling, via continuously watching some variable related to the DMA Controller which 

lets the driver know that the transfer has finished. 

- by interrupt, letting the DMA Controller raise an interrupt requested by the driver 

Remember the exercises about blocking I/O, where it was explained the difference between 

these two notification schemes. In most cases, an interrupt scheme is used when dealing with 

DMA Controllers. 

Exercise 1 (HOME): interrupt numbers for DMA 

Search on the AMM335x Technical Reference Manual and explain: 

a) Which is the hardware interrupt number for Successful end of DMA transfer? 

b) Which is the hardware interrupt number for Unsuccessful end of DMA transfer? 

Advantages/drawbacks: external to the main CPU 

On the BeagleBone, although the DMA Controller lies on the same physical chip as the CPU and 

is electrically connected to it, functionally they are treated as separated entities. What this 

means is that there are no processor instructions directly related to programming the DMA 

Controller. 

Instead, the way the CPU has to interact with the DMA Controller is through use of the following 

mechanisms which are supported by the CPU: 

- memory mapped regions, composed of slotted memory regions which contain the 

configuration for the transfer operations among the available DMA Channels (more 

on this later on this document)  

- events, which trigger the transfer operations 

- interrupts, that provide support for the asynchronous notification mechanism to the 

CPU when the transfer ends or there is an error 

One advantage of such a separation from the main CPU is that it decouples managing the DMA 

Controller from the specific processor model. This way, the management the DMA Controller 

has its own layer of kernel-code which may be (up to some point) independent from the 

processor itself. For example, the BeagleBone used at the laboratory is an AMM335x model. 

With careful programming it should be possible to program the DMA Controller and have code 

which compiles and executes fine on other processor which use the same DMA Controller. More 

about this paragraph will be seen later. 
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Advantages/drawbacks: direct access to address and data buses 

If the DMA Controller is able to bypass the main CPU when accessing memory is because it is 

connected to the data and address buses. This way, the DMA Controller can claim the usage of 

the buses and do its operations, although this has some implications, which are the basis for the 

main advantages and drawbacks that must be taken into account when dealing with DMA 

Controllers. 

Its advantages are: 

- the CPU is not needed to access the memory, and thus it is free to execute some other code 

during the transfer operation. 

This is THE advantage of using a DMA Controller. 

Its drawbacks are: 

- the DMA Controller accesses physical addresses, which on systems that have a MMU, may 

imply some problems. 

An MMU (among other things) takes care of a memory mapping process. A primary 

parameter for this mapping process is the page/frame size. 

Broadly speaking, a page (which is a word used on systems that support virtual memory) 

is the minimum chunk of RAM memory manageable by the system, so that when physical 

memory is allocated from the OS, it is done in chunks whose size is a multiple of the page 

size. 

The page refers to the memory in the virtual memory space, and the frame refers to the 

physical memory. Page and frame size are equal. 

The processor uses an internal lookup table to map between pages (virtual memory 

addresses) and frames (physical memory addresses). 

The reason for the importance of the page (or frame) size is depicted on the following 

diagram which shows a random allocation scheme for a buffer. In this case: 

- buffer size is 4096 bytes 

- page/frame size is 1024 bytes 
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In the previous diagram some facts can be appreciated: 

- when a buffer is allocated in user or kernel-space, a contiguous logical block of 

memory is returned, so that pointers can be used to access the memory in a linear 

fashion. 

For example, following code would sum the values for all the bytes on the buffer: 

char* p = buffer; 

int i = 0, sum = 0; 

for (i = 0; i < 4096; i++, p++) 

{ 

 sum += *p; 

} 

It can be seen that the buffer contents can be accessed in an incremental way. 

This also allows for example to execute the memcpy function to copy several 

megabytes at once. 

The previous is true even given the fact that the buffer contents are distributed 

among different memory pages. 

- the real layout of the buffer in the physical memory is different. 

Each virtual memory page maps to a physical frame, but as a lookup table is used 

for the mapping, there is nothing which prevents two contiguous pages (in virtual 

memory) to belong to two discontinuous frames (in physical memory). 

The mapping process (may be seen as if it) is arbitrary (and hardly predictable) from 

a user-space program or a kernel driver point of view. 

Now let’s return to the DMA Controller behaviour. As it’s been said, the DMA Controller is 

directly connected to the data bus, so it uses PHYSICAL addresses. 

Now recapitulate some usages for the DMA Controller: 

buffer[0]

buffer[1023]
1024 byte

page

buffer[1024]

buffer[2047]
1024 byte

page

buffer[2048]

buffer[3071]
1024 byte

page

bufer[3072]

buffer[4095]

virtual memory addresses

(used in kernel or user space)

1024 byte

page

frame 6771024 byte

frame

frame 6781024 byte

frame

frame 9716

physical memory addresses

(used to access address bus)

1024 byte

frame

...

...

frame 321
1024 byte

frame
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- copy memory from an external device into a kernel-driver (paged) buffer: 

Suppose that buffer size is 4 KB and page size is 1 KB. 

The DMA Controller basic transfer operation takes as inputs the following 

parameters: 

o source physical address 

o destination physical address 

o transfer size in bytes 

Suppose that buffer size is 4 KB and page size is 1 KB. 

Memory from the external device may correspond to a mapped memory region 

which is 4KB in size, so in this case the device offers 4 KB of contiguous memory. The 

reason for the memory being contiguous here is that the device is directly 

connected to some data bus, and is able to read the address from the address bus, 

acting in such a way that the addresses are contiguous. 

The problem is the kernel-driver buffer. As the buffer physical memory is split across 

different frames, it may be physically stored at some not contiguous frames. 

Following diagram illustrates the situation: 
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What this diagram is telling is that: 

o in order to access the external memory through the address bus, once the 

starting physical address is known and given a length (in bytes), anyone with 

access to the bus can simply access any position inside the external memory 

region adding the desired offset to the start address 

 

o in order to access the buffer memory, one has to know that the memory is 

fragmented across different frames, so for example knowing which address 

place into the bus to access the byte corresponding to buffer [3540] is 

not trivial and of course using a strategy like 

*(ptr_to_start_of_1st_frame_buffer + 3540) is completely wrong 

Remember that the basic transfer operation of the DMA Controller takes three 

arguments: source + destination physical addresses + transfer size in bytes. 

If (following the previous example) a transfer of 4096 bytes is desired, it is very 

tempting to provide the following parameters to the DMA Controller: 

o source physical address: base address of the external mapped memory 

o destination physical address: base address of the 1st buffer frame 

o transfer size: 4096 bytes 

This is what it would happen: 

 

external mapped memory

for the device (contiguous)

4096 bytes block

as this memory is not

managed by the MMU,

there is no frame concept

here and the memory

can perfectly be linear

(contiguous)

frame 321
1024 byte

frame
4th frame

of buffer

frame 6771024 byte

frame
2nd frame

of buffer

frame 6781024 byte

frame

3rd frame

of buffer

frame 9716

physical memory for  

the buffer (discotinous)

1024 byte

frame

1st frame

of buffer

...

...

frame 321
1024 byte

frame
4th frame

of buffer

frame 6771024 byte

frame
2nd frame

of buffer

frame 6781024 byte

frame

3rd frame

of buffer

frame 9716

physical memory for  

the buffer (discotinous)

1024 byte

frame

1st frame

of buffer

...

...

frame 97171024 byte

frame

overflowed

memory

frame 97181024 byte

frame

overflowed

memory

frame 97191024 byte

frame

overflowed

memory

RESULT

(completely wrong)
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What happened here is that the memory transfer operation did not take into 

account the paged nature of destination buffer. 

The first page is copied correctly, but only the 1024 bytes (which corresponds to the 

size of the first page/frame). Remaining bytes (4096 minus 1024) would be copied 

into physical RAM in wrong frames. So the result would be a memory overflow. The 

three frames which are above the 1st one, which don’t belong to the buffer, are 

being written. 

 

- copy memory from an external device into another external device: 

In this case, if both devices map the memory in a contiguous way, it would be safe 

to use a transfer operation with the size up to the memory size which the external 

device has available.  

In this concrete case, as the MMU of the CPU is not managing any of the involved 

physical memory, neither source nor destination memory is spread among different 

pages. 

This kind of copy operation (from external device to external device) would be safe 

if the devices which own the memory addresses expose those addresses in such a 

way that they’re contiguous. 

- copy memory between kernel-driver (paged) buffers: 

The problem here is the same as in the first case, but aggravated. 

This kind of copy operation copies memory between buffers which are both 

contained (source and destination) along different pages (and thus, very probably, 

non-contiguous frames). 

So the problem is duplicated in this case: 

o as in the first case, it is not possible to write into sequential addresses 

starting from the 1st destination frame base address, because bytes not 

belonging to the destination buffer (those which exceed the size of one 

frame) would be written 

 

o similarly, it is not possible to read from sequential addresses starting at the 

1st source frame because bytes not belonging to the source buffer (those 

which exceed the size of one frame) would be read 

Does this mean that a DMA Controller cannot be used to copy memory from/to a paged 

buffer where the size of the transfer exceeds the size of one page? 

Not really, in fact the main problem with DMA transfers comes from the need of 

consecutive memory addresses in order for the DMA Controller to behave as expected, so 

two very simple solutions will be presented here: 

- solution 1: applicable when a buffer is either the source or destination of a DMA 

transfer, if that buffer splits among more than one frame. Instead of doing one 
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single DMA transfer for the desired amount of bytes, split it into multiple DMA 

transfers, each of them operating on a single frame of the buffer. 

 

- solution 2: applicable when the size of the buffer at maximum a few megabytes in 

length. Instead of allocating the memory for the kernel-buffer using the kalloc 

function, use another family of allocator functions which ensure that the buffer is 

reserved always along consecutive frames. 

 

This is THE inconvenient of using a DMA Controller. 

- the DMA Controller accesses the data bus directly, so it must be taken into account that the 

CPU memory cache could be bypassed.  

- The data/addresses bus are shared among all devices which use it, so contention may be 

perceived if two or more devices try to access the buses at the same time. 

For example, if DMA Controller is doing a transfer operation and meanwhile the processor 

needs to access memory, either one of two things may happen: 

- one device must wait while the other device has access to the buses 

- both accesses are interleaved and thus each device perceives a slower access 

Previous effect can be mitigated by some caches connected to the processor, by avoiding 

the processor for the need to access the physical RAM and thus avoiding it to use the buses 

which are connected to RAM. 

 

 

 

 

Exercise 2 (HOME): page/frame size 

Find out how can it be obtained the page/frame size on the BeagleBone and: 

- tell which command has to be used in order to get the parameter 
 

- obtain the value for the parameter 

Limited number of resources for the DMA Controller 

Every device/controller found on an embedded system is composed by a finite set of 

resources. 

And the same goes for the DMA Controller, which uses a resource called DMA Channels. 

The number of available DMA channels indicates the number of simultaneous transfer 

operations that the DMA Controller can have configured at the same time. 

So when a driver wants to do a DMA transfer, it must: 

- during transfer initialization, (maybe during driver load function), request a DMA 

Channel which will get reserved for use by the driver 
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- when there is need to do a DMA transfer, use the DMA Channel returned on the 

previous point for the transfer 

- during transfer shutdown, (when the driver is sure no more DMA transfers will be 

done, e.g. on the driver unload function), release the DMA Chanel so that it can be 

recycled by other drivers 

This way or requesting-using-releasing follows the same schema as in the case of using some 

IRQ / GPIO / memory buffer from the driver. 

Just as any driver which uses limited system resources, the usage of the DMA Controller implies 

that the driver must be responsible for requesting access to resources, using only resources for 

which it has been granted access and releasing the resources after they are not needed 

anymore. 

Exercise 3 (HOME): about DMA Channels and PaRAM sets 

Search on the AMM335x Technical Reference Manual and explain: 

a) How many DMA Channels are available on the AM335X processor? 

b) What is a PaRAM set? 

c) How many PaRAM sets are available on the AM335X processor? 

d) How are PaRAM sets and DMA channels related? 

Linux Kernel DMA layered architecture 

As it has been said, the Linux Kernel provides a layered architecture related to managing DMA 

transfers. 
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Just as always when programming some hardware, one may wonder why it is good to have a 

layered architecture. 

As a general rule, one has to take into account that the Linux Kernel has a codebase which has 

evolved during decades, and usually most aspects of the Kernel have evolved to meet practical 

issues found during usage of its functionalities. 

The previous been said, having a layered design for the DMA (like as with any other hardware) 

allows the kernel to: 

- arbitrate access to the limited resources 

- provide an abstraction layer, which allows a more standardized way to access the 

hardware 

- isolate the driver writers against small changes, and (up to some point) provide the 

ability to adapt to evolutions on the real hardware specifications 

Linux divides the DMA implementation on Kernel through three primary components and one 

optional component: 

- DMA API, which provides auxiliary functions for users of DMA functionalities 

- DMA Engine Client (slave) API, which offers an API to drivers that use DMA 

operations 

- DMA Engine Provider (controller) API, which offers an API with which low-level 

drivers that interact with the DMA Controller must implement in order to enable 

the DMA Engine on the system 

- async_tx (optional), provides a simplified API which uses the DMA in order to do 

memory operations in an asynchronous way 

Following diagram illustrates dependencies between these components. 

 

Some comments can be made on the previous diagram: 

DMA Controller hardware

DMA Engine Provider (usually implemented

by manufacturer of DMA Controller)

DMA Engine Client

(our driver)

DMA API

DMA Engine Client

(async_tx)

our driver as

DMA Engine Client
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- DMA Engine Provider is code which usually is created by the manufacturer of the 

DMA Controller and which controls low-level operations on it (for example, setting 

values on the memory mapped regions which control the DMA Controller). This 

component provides (hence the name provider) low-level functionalities to the DMA 

Engine Clients. 

- DMA Engine Client is code which uses (hence the name client) functionalities 

provided by the DMA Engine. Whenever a component wishes to use DMA 

Operations on systems which have the DMA Engine enabled, should use the DMA 

Engine Client API. 

- DMA API is code which is orthogonal to all the previous code. It provides auxiliary 

functions which are convenient to use when dealing with DMA transfers but which 

are generic to any DMA hardware. For example, special memory allocators. 

- async_tx has two sides: on one side it is a DMA Engine Client, so it uses functions 

of the DMA Engine in order to make DMA transfers; on the other side it also provides 

a simplified API to let drivers make use of the simplified DMA transfers it provides. 

- our driver may use functions provided by any of the previous components. A wise 

choose of functions to be used from each component is up to the driver 

programmer. 

Linux Kernel DMA layered architecture fies 

What comes next may serve as reference when further investigating the code where all the 

components from the previous section. 

EDMA3 Controller 

The DMA Controller which comes bundled into the AM335x processor (the BeagleBone CPU) is 

called EDMA3 (which stands for Enhanced DMA, revision 3). 

Special features of this DMA Controller are: 

- transfers can be configured in order to act on several dimensions: 
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Previous diagram shows how actually BCNT x CCNT transfers are done, being each 

transfer the copy of ACNT bytes 

It is allowed to specify all parameters which define the values for ACNT, BCNT and 

CCNT, and also (for each dimension) distance between the arrays 

- transfers can be triggered in different ways: due to external event, manually 

triggered and due to the end of another transfer (this allows chaining transfers) 

- end-of-transfer can generate an interrupt: either on successful transfer or on error 

- the only supported access operation is copying memory: no extended operations 

(bitwise ones) are supported by this controller. Despite of this, controller allows 

some tuning on how the source and destination indexes are updated during the 

DMA transfer 

- multiple sequential transfers can be automatically done one after the another: using 

either Linking or Chaining 

Exercise 4 (HOME): about DMA Channels and PaRAM sets 

Search on the AMM335x Technical Reference Manual and explain: 

a)  What is the difference between Linking and Chaining? 

b) Find the definition of a scatter-gather operation related to DMA transfers. How can it be 

implemented with the EDMA3 Controller? 

Example code for DMA transfer 

Writing a code which performs a DMA transfer for the BeagleBone may be tricky and there is 

little information available on how to do it apart from some practical code at the Texas 

Instruments Forums.  

Here is a working example of a file driver which does a DMA transfer from the GPMC bus to the 

driver space, using blocking I/O: 

// Needed by the driver 

#include <linux/module.h> 

#include <linux/init.h> 

#include <linux/errno.h> 

 

#define MODULE_TRACE KERN_ALERT "dma-module: " 

 

// Needed by the file driver 

#include <linux/fs.h> 

#include <linux/miscdevice.h> 

 

static int sd_open (struct inode* pInode, struct file* pFile ); 

static int sd_release (struct inode* pInode, struct file* pFile ); 

static ssize_t sd_write (struct file *filp, const char __user *buffer, 

                size_t count, loff_t *f_pos); 

static ssize_t sd_read (struct file *filp, char __user *buffer, 

                size_t count, loff_t *f_pos); 

static loff_t sd_lseek (struct file *filp, loff_t off, int whence); 
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static struct file_operations sd_fops = 

{ 

    write:      sd_write, 

    read:       sd_read, 

    open:       sd_open, 

    release:    sd_release, 

    llseek:     sd_lseek, 

}; 

 

static struct miscdevice sd_devs = 

{ 

    minor:      MISC_DYNAMIC_MINOR, 

    name:       "dma_module_file", 

    fops:       &sd_fops 

}; 

 

// Needed for DMA-related function 

#include <linux/dma-mapping.h> 

#include <linux/platform_data/edma.h> 

 

static volatile int transfer_complete_control = 0; 

static void dma_complete_callback (unsigned lch, u16 ch_status, void *data); 

 

static int edma3_dma (int acnt, int bcnt, int ccnt); 

 

// Kernel-space buffer 

static dma_addr_t dmaphysdest1 = 0; 

static char *dmabufdest1 = NULL; 

 

#define STATIC_SHIFT    3 

#define TCINTEN_SHIFT   20 

#define ITCINTEN_SHIFT  21 

#define TCCHEN_SHIFT    22 

#define ITCCHEN_SHIFT   23 

 

#define MAX_DMA_TRANSFER_IN_BYTES 32768 

 

// Base of external GPMC memory 

#define EXTMEM_BASE 0x09000000 

 

// ************************** 

// Here begins program source 

// ************************** 

static int sd_open (struct inode* pInode, struct file* pFile ) { 

    return 0; 

} 

 

static int sd_release (struct inode* pInode, struct file* pFile ) { 

    return 0; 

} 

 

static ssize_t sd_read (struct file *filp, char __user *buffer, 

                size_t count, loff_t *f_pos) 

{ 

    // Do a 32k transfer 

    edma3_dma (MAX_DMA_TRANSFER_IN_BYTES, 1, 1); 

 

    return count; 

} 
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static ssize_t sd_write (struct file *filp, const char __user *buffer, 

                size_t count, loff_t *f_pos) 

{ 

    return count; 

} 

 

loff_t sd_lseek (struct file *filp, loff_t off, int whence) 

{ 

    return 0; 

} 

 

 

// DMA-related function implementation 

static int edma3_dma (int acnt, int bcnt, int ccnt) 

{ 

    int result = 0; 

    unsigned int dma_ch = 0; 

    int i; 

    unsigned int numenabled = 0; 

    unsigned int BRCnt = 0; 

    int srcbidx = 0; 

    int desbidx = 0; 

    int srccidx = 0; 

    int descidx = 0; 

    struct edmacc_param param_set; 

 

    /* Set B count reload as B count. */ 

    BRCnt = bcnt; 

 

    /* Setting up the SRC/DES Index */ 

    srcbidx = acnt; 

    desbidx = acnt; 

 

    /* A Sync Transfer Mode */ 

    srccidx = acnt; 

    descidx = acnt; 

 

    if ((result = edma_alloc_channel (EDMA_CHANNEL_ANY, dma_complete_callback, 

NULL, 0)) < 0) 

        return result; 

 

    dma_ch = result; 

    edma_set_src (dma_ch, (unsigned long)(EXTMEM_BASE), INCR, W8BIT); 

    edma_set_dest (dma_ch, (unsigned long)(dmaphysdest1), INCR, W8BIT); 

    edma_set_src_index (dma_ch, srcbidx, srccidx); 

    edma_set_dest_index (dma_ch, desbidx, descidx); 

 

    /* A Sync Transfer Mode */ 

    edma_set_transfer_params (dma_ch, acnt, bcnt, ccnt, BRCnt, ASYNC); 

 

    /* Enable the Interrupts on Channel 1 */ 

    edma_read_slot (dma_ch, &param_set); 

    param_set.opt |= (1 << ITCINTEN_SHIFT); 

    param_set.opt |= (1 << TCINTEN_SHIFT); 

    param_set.opt |= EDMA_TCC(EDMA_CHAN_SLOT(dma_ch)); 

    edma_write_slot (dma_ch, &param_set); 

 

    numenabled = bcnt * ccnt; 
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    for (i = 0; i < numenabled; i++) { 

        transfer_complete_control = 0; 

 

        result = edma_start (dma_ch); 

 

        if (result != 0) { 

            printk (MODULE_TRACE KERN_ALERT "edma_start failed\n"); 

            break; 

        } 

 

        while (transfer_complete_control == 0); 

 

        /* Check the status of the completed transfer */ 

        if (transfer_complete_control < 0) 

            break; 

    } 

 

    if (0 == result) { 

        edma_stop (dma_ch); 

        edma_free_channel (dma_ch); 

    } 

 

    return result; 

} 

 

// DMA delegate ISR 

static void dma_complete_callback ( 

unsigned lch, u16 ch_status, void *data) 

{ 

    switch (ch_status) { 

        case DMA_COMPLETE: 

            transfer_complete_control = 1; 

            break; 

        case DMA_CC_ERROR: 

            transfer_complete_control = -1; 

            break; 

        default: 

            break; 

    } 

} 

 

// Placeholder functions which should be replace by working ones 

void pointers_init (void) { } 

void pointers_deinit (void) { } 

int gpmc_init (void) { return 0; } 

 

static int __init dma_module_init (void) 

{ 

    int result = 0; 

 

    printk (MODULE_TRACE KERN_ALERT "Loading module\n"); 

 

    pointers_init (); 

    gpmc_init (); 

 

    if (misc_register (&sd_devs)) 

    { 



3. Kernel Programming Techniques 

123 

        printk (MODULE_TRACE KERN_ALERT "Misc file driver cannot be 

registered\n"); 

                return (-ENODEV); 

    } 

 

    printk (MODULE_TRACE KERN_ALERT "Misc file driver registered\n"); 

 

    dmabufdest1 = dma_alloc_coherent (NULL, MAX_DMA_TRANSFER_IN_BYTES, 

                                                &dmaphysdest1, 0); 

 

    if (!dmabufdest1) { 

        printk (MODULE_TRACE KERN_ALERT "Dma alloc coherent failed\n"); 

        return -ENOMEM; 

    } 

 

    printk (MODULE_TRACE KERN_ALERT "Module loaded\n"); 

 

    return result; 

} 

 

static void dma_module_exit (void) 

{ 

    misc_deregister (&sd_devs); 

 

    dma_free_coherent (NULL, MAX_DMA_TRANSFER_IN_BYTES, dmabufdest1, 

                        dmaphysdest1); 

 

    printk (MODULE_TRACE KERN_ALERT "Module unloaded\n"); 

} 

 

module_init (dma_module_init); 

module_exit (dma_module_exit); 

 

MODULE_LICENSE("GPL"); 

MODULE_VERSION ("1.0"); 

Note that functions used for previous driver in order to trigger the DMA are neither DMA Engine 

functions nor async_tx functions, but the Manufacturer (Texas Instruments) functions (all of 

them prefixed with edma_*). This has been done to show all the implied configuration 

parameters in a DMA transfer using the EDMA3 Controller. 

Also note that previous code uses placeholder function bodies for following functions: 

void pointers_init (void) { } 

void pointers_deinit (void) { } 

int gpmc_init (void) { return 0; } 

These functions must be replaced with the proper ones developed at the DSX course. 

Two things are important in this example driver: 

- memory allocation, using dma_alloc_coherent function during driver load. 

Using this function solves one of the problems when memory buffers are used for 

DMA transfers: it is guaranteed that the allocated memory uses a congruous block 

of physical memory. 
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This solves the problem with physical frames not being contiguous in memory, and 

buffers allocated this way are eligible to participate in a DMA transfer operation. 

Unfortunately, this function is limited to small buffers (32 KB in the example), 

because the Kernel needs to allocate a continuous physical address range for the 

allocated memory size so it’s possible that, if abused, this function invocations begin 

to fail. 

Note how this function returns a virtual-address buffer and a physical address buffer 

(this is the reason to pass an argument as a pointer, because the function will modify 

the pointed value in order to be able to return the physical address). 

- the DMA transfer function, which is split in different stages 

First, the transfer is configured, starting with allocating a channel: 

edma_alloc_channel (EDMA_CHANNEL_ANY, dma_complete_callback, NULL, 

0) 

Note that the channel is linked to a callback function. The ISR in charge of 

listening to DMA-related interrupts will act as a router that notifies the proper 

callback registered for each channel. 

In the invocation to allocate a channel, any channel is good and the callback is 

this one: 

// DMA delegate ISR 

static void dma_complete_callback ( 

unsigned lch, u16 ch_status, void *data) 

{ 

    switch (ch_status) { 

        case DMA_COMPLETE: 

            transfer_complete_control = 1; 

            break; 

        case DMA_CC_ERROR: 

            transfer_complete_control = -1; 

            break; 

        default: 

            break; 

    } 

} 

The only function of the callback is to set a status flag.  

Then, the transfer is configured 

edma_set_src (dma_ch, (unsigned long)(EXTMEM_BASE), INCR, W8BIT); 

edma_set_dest (dma_ch, (unsigned long)(dmaphysdest1), INCR, 

W8BIT); 

  Now how, for the transfer to succeed, PHYSYCAL addresses are used. 

Virtual addresses are very convenient almost in all cases, but is this case keep in 

mind that the DMA Controller has direct access to the data bus, so it uses 

physical addresses. 
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Also, not how the operation desired for both destination and source is INCR. 

Modifying this would enable doing a scatter and gather operation. 

Remember this diagram? 

 

This is what srcbidx desbidx srccidx descidx acnt bcnt ccnt variables 

control. In this case, the transfer only uses 1st dimension (ACNT), so all of them 

but acnt are set to 1. 

Next, the transfer parameters are set 

/* A Sync Transfer Mode */ 

edma_set_transfer_params ( 

    dma_ch, acnt, bcnt, ccnt, BRCnt, ASYNC); 

 

/* Enable the Interrupts on Channel 1 */ 

edma_read_slot (dma_ch, &param_set); 

param_set.opt |= (1 << ITCINTEN_SHIFT); 

param_set.opt |= (1 << TCINTEN_SHIFT); 

param_set.opt |= EDMA_TCC(EDMA_CHAN_SLOT(dma_ch)); 

edma_write_slot (dma_ch, &param_set); 

Most important part of previous code is that the transfer is configured as 

asynchronous (ASYNC flag of edma_set_transfer_params). 

Apart from this, interrupts are enabled for the DMA Channel. 

And finally, the transfer is started 

Note how the DMA transfer process is asynchronous:  

transfer_complete_control = 0; 

 

result = edma_start (dma_ch); 

 

if (result != 0) { 

    printk (MODULE_TRACE KERN_ALERT "edma_start failed\n"); 

    break; 

} 

 

while (transfer_complete_control == 0); 

The DMA Transfer will block the driver execution until it’s completed: 
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- At first, status flag is set to 0 

When the DMA Transfer finishes, the end-of-transfer callback will modify this flag. 

As the callback is executed from a ISR context, the flag is marked with the volatile 

keyword. 

- Then, the DMA Transfer is stared. As it is an asynchronous operation, the function 

will return immediately. It is driver responsibility to wait for the transfer to 

complete. 

- The wait loop symbol waits until the transfer has ended (either successfully or with 

errors) 

Exercise 4 (LAB): the transfer is a bad citizen 

Now, remember (at the Guide about blocking I/O) how was a bad blocking behaviour defined. 

This is just what happens with previous code. The wait done there keeps consuming CPU cycles. 

So, using a wait queue (a semaphore) change this behaviour so that: 

- the process is put to sleep while waiting for the DMA transfer to complete  

- the callback code, in addition to updating the status flag must now awake the process 

It is not needed to implement it as an interruptible sleep. 

Previous exercise allowed the process to behave well, but as the transfer only copies 32 KB of 

memory the timing is almost negligible. 

Exercise 5 (LAB): adding an interruptible wait 

To tweak the process, do following modifications. 

- modify the driver so, once the sd_read function is invoked, the program is put to sleep in 

an interruptible way 

- if the sleep is interrupted, return the value -ERESTARTSYS from sd_read 

- the condition to wake from the interruptible sleep and continue execution (i.e. starting the 

DMA transfer) will be that the push button from the BeagleBone is pressed. This will require: 

- creating another wait queue 

- registering an ISR for the GIPO 20, whose callback will wake up the second wait 

queue 

- modifying sd_read function to add the interruptible sleep  
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4. Conclusions 

4.1. The path to the guides 

Elaborating the guides presented on this work has been an enrichening (yet sometimes 

hard) experience. 

Lots of concepts have been exposed and reviewed through this work, most of them 

being completely unknown to me before starting this work. 

I’ve been working as a professional programmer for some time now (programming over 

IBM/AIX, which is a UNIX variant), and never have had the need to learn the concepts 

exposed here. 

I’m personally very happy with the knowledge gained during the process, and it would 

be awesome if some other student took this guide and follow the steps of this path. 

4.2. Retrospect about Kernel code digging 

Kernel programming is not one the easiest subjects to face. It’s easy to enter a hair-

pulling state when one or more of these things happen: 

- Kernel compilation fails due to a recently introduced patch which has not been 

properly tested 

- kernel functions return unexpected error codes, and there are no google results 

for the error 

- documentation for some kernel-related aspects is missing and there is no other 

choice than dig through code 

- system crashes when a driver is loaded 

- a driver works well but suddenly stops working 

Kernel source code is well structured, but it also: 

- has passed through hands of thousands of people, so there is not a unique coding 

style there 

- has a complex build system, and sometimes it’s hard to know which Kernel 

configuration options are preventing the build to succeed 

- has more than 35 MLOC (million lines of code) and almost 80k code files, so 

(although it’s structured in directories) it’s not obvious where to search for 

further information. 
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- man-pages for the Kernel ignore implementation details of the specified 

functions, so sometimes it’s not obvious the inner-working of certain 

functionalities, which can only be known by looking at the functions’ source 

codes 

- make use of advanced compiler features (such as variadic macros, function 

modifiers, custom idiomatic macros, … and almost every C keyword and 

construct) 

As usually happens, previous statements can be taken as a show-stopper or as a 

challenge awarded with knowledge about one of the most fascinating and portable 

open-source projects of history. 
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