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Abstract. Dynamic and thermal interaction problems involving fluids and solids were
studied through a finite volume-based Navier-Stokes solver, combined with immersed-boundary
techniques and the net radiation method. Source terms were included in the momentum
and energy equations to enforce the non-slip condition and the conjugate boundary condition
including the radiative heat exchange. Code validation was performed through the simulation of
two cases from the literature: conjugate natural convection in a square cavity with a conducting
side wall; and a cubical cavity with conducting walls and a heat source. The accuracy of
the methodology and the validation of the inclusion of moving bodies into the simulation was
performed via a theoretical case

1. Introduction
The problem of conjugate heat transfer combined with surface radiative exchange has many
industrial applications such as the design of energy efficient buildings, heat-loss analysis of
furnaces, cooling of electronic equipment, etc. Therefore, the development of efficient and tested
computational tools to study these phenomena is needed. CFD-based codes can produce reliable
fields of flow, temperature and heat flux, useful for identifying potential design problems.

In the present work, an immersed-boundary method (IBM) implemented in our in-house
code TermoFluids [1] presented in an earlier work [2] was improved to simulate the mentioned
phenomena. This allows to simulate thermal flow problems including moving and/or deforming
bodies in static grids. These approaches impose the boundary condition, reconstructing the
solution in the vicinity of the bodies. In this way, it is possible to force the non-slip condition
for the momentum equation and the conjugate condition for the energy equation.
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2. Numerical method
2.1. Navier-Stokes solver
The spatial discretized Navier-Stokes equations can be written as,

Muc = 0 (1)

Ω
∂uc

∂t
+ C (uc)u + νDuc + ρ−1ΩGp + f = 0 (2)

Ω
∂T

∂t
+ C (uc)T + λ

cpρ
DT + s = 0 (3)

where M, C (uc), D and G are the divergence, convective, diffusive and gradient operators
respectively, Ω is a diagonal matrix with the sizes of control volumes, ρ is the fluid density,
ν is the viscosity, p represents the pressure, uc is the velocity, T is the temperature, λ is the
thermal conductivity, cp is the specific heat and f and s are the source terms included due to
the immersed boundaries.

The governing equations have been discretised on a collocated unstructured grid arrangement
by means of second-order, spectro-consistent schemes. The conservative nature of these schemes
ensures the preservation of the symmetry properties of the continuous differential operators and
ensures both the stability and conservation of the kinetic-energy on any grid.

A fractional-step method was employed to perform the time integration of the equations.
The convective and diffusive terms were explicitly treated with a self-adaptive strategy using
the κ1L2 method [3].

2.2. Boundary Reconstruction
The immersed bodies were represented by triangular surface meshes in stereo-lithography format
(STL) allowing the handling of intricate geometries [5]. A signed minimum distance field was
calculated in the pre-process from the control volume centroids to the bodies surface to classify
nodes in interior, exterior, interior-forcing and exterior-forcing points as shown in figure 1.

The procedures utilized to reconstruct the solution at the interface of the bodies are described
in the following sub-sections.

2.2.1. Momentum The time integration of the momentum equation was performed as follows:

Ð→uP −Ð→un
∆t

= RHSn +Ð→f (4)

where Ð→uP is the predictor velocity,
Ð→
un is the velocity at time step n and RHSn includes the

convective and diffusive terms. Ð→uP was first obtained by imposing
Ð→
f = 0 in this equation, and

the value of
Ð→
f was then calculated to impose the desired value

Ð→
V in the corresponding nodes:

Ð→
f =

Ð→
V −Ð→un

∆t
−RHSn (5)

Ð→
V = aW

Ð→uW + anb1Ð→u nb1
P + anb2Ð→u nb2

P + anb3Ð→u nb3
P (6)

Given the movement of the immersed body, the value of
Ð→
V for the interior and interior-

forcing points was directly calculated from their coordinates. An approximation is needed in the
case of exterior-forcing points, since by definition these nodes are located outside the object. A
second-order interpolation is thus employed, which maintains the global accuracy of the scheme
(Fadlun et al. [4]). Four velocities were used in this process (see equation 6): one refers to the
closest point of the object and the remaining three are velocities of exterior nodes which are
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neighbours of the forcing point. Coefficients were calculated making exclusive use of geometrical
information.

The obtained value of
Ð→
f was then introduced in equation 4 to calculate Ð→uP . With this new

field of Ð→uP , Poisson equation was solved and the velocity field Ð→u n+1 updated (see equations 7
and 8).

Dpn+1 = 1

∆t
MÐ→uP (7)

Ð→u n+1 = Ð→uP −∆tGpn+1 (8)

Fluid 
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Body 
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q R
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d fd s

nb f

nb s1
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Figure 1. Representative domain and example of Control Volumes intersected by an object.

2.2.2. Energy In the energy equation, the term s forces the boundary condition in the bodies
interfaces, therefore has a zero value in the exterior and interior points. For a Dirichlet or a
Neumann condition, a desired value of temperature (T ∗) for each forcing point was calculated
by interpolation, using the same neighbours and coefficients as for the estimation of V . After
T ∗ was obtained, s could be calculated as shown in equation 10.

Tn+1 − Tn

∆t
= RHSn + s (9)

s = (T ∗ − Tn)
∆t

−RHSn (10)

For the conjugate problem, for which no temperature value can be imposed, s was calculated
so that the heat fluxes were corrected taking into account the interface. Equation 11 was
employed to that end: qI is the heat exchange between the forcing point and the other region;
and qNb is the heat exchange between the forcing point and the neighbours of the same region.
Equations 12 and 13 show these calculations for an interior forcing point. Af is the area of the

face between centroids, mf is the incoming mass through that face, d⃗ is the distance between
centroids and n⃗ is the normal to the face pointing to the exterior of the solid.

s = qI + qNb + S −RHSn (11)

qI = 1

V olρ
∑
nbfi

[Af(ds + df)
(n⃗ ⋅ d⃗)cP

( ds
λS

+ df

λF
)
−1

(Tn
nbfi − Tn) +mf(Tn

nbfi − Tn)] (12)

qNb = 1

V olρ
∑
nbsi

[ AfλS

(n⃗ ⋅ d⃗)cP
(Tn

nbsi − Tn) +mf(Tn
nbsi − Tn)] (13)
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Moreover, in the interior forcing points a source term S was included for external heat sources
as radiation. S was calculated by equation 14, where Ap is the projected area of the cell into
the body’s interfaces, and qR is the radiative heat per unit area —its calculation is explained in
the following section.

S = qR ×Ap/(cPρV ol) (14)

2.3. Radiative transfer equation
The net radiation problem was solved [6] to calculate the term qR from equation 14. Two kinds
of surfaces are involved in the problem: those from boundaries of the domain, referred to as
”boundary surfaces” in Figure 1, and (ii) those from the immersed bodies, ”body surfaces”. For
both cases, surfaces were defined as a group of faces selected in the pre-process. The number
of surfaces depend on the nature of the problem, therefore, the radiative problem could range
from enormously costly to nearly neglectable.

Once the surfaces were defined, the areas were computed and stored. The view factors
were calculated using ray-tracing [6, 7], an operation that must be repeated when at least
one body moves. The mean temperatures of the surfaces were calculated in each time step
for both ”boundary surfaces” and ”body surfaces”. For the latter, the calculation was done
via interpolation, using the information of the interior forcing points. The radiation system
was solved by the GMRES [8] iterative solver, based on Krylov subspace projection methods.
Finally, the heat fluxes were set to the faces. For the ”body surfaces” S is computed using
equation 14, while for the ”boundary surfaces” it is directly calculated using the face areas.

3. Results
3.1. Case 1. Square cavity with a conducting side wall

gravity

-0.2 0 q=0 1

T=0T=1

q=0

x

y

FluidSolid

(a) (b) (c)

Figure 2. (a) Scheme of the conjugate natural convection problem. (b) Isothermal lines and
velocity vectors for K=1 and for (c) K=5.

A benchmark case, widely used in conjugate heat transfer problems, was employed to perform
the first validation of the code. It is a natural convection problem which consists of a square
cavity with a conducting side wall for which the results from [9] are available. The cavity is
heated at the left side (solid wall) keeping a constant temperature, and cooled at the right side.
All the remaining boundaries are considered adiabatic. For the fluid domain, all boundaries
have the no-slip velocity boundary condition.
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Figure 3. (a) Temperature and (b) Nusselt number distributions at the interface line x = 0.
Lines: reference results. Points: present results.

The computational mesh employed consisted of 14 × 40 CV in the solid domain, with
exponential densification close to the interface and 40×40 CV in the fluid domain, with hyperbolic
densification close to the walls. Air with Pr = 0.71 was utilized as the working fluid. The
test case is of Rayleigh number 71000 and was solved for three thermal conductivity ratios
K = λsolid/λfluid: 1, 5 and 10.

Local comparisons of temperature and Nusselt number distribution along the interface center
line are shown in Figure 3. The good agreement of these local distributions with the benchmark
data for the three ratios of thermal conductivity confirms the adequate performance of the
methodology.

3.2. Case 2. Cubical heated cavity with conducting walls
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Figure 4. (a) Scheme of a cubical heated cavity with conducting walls. (b) Temperature and
(c) vertical velocity distributions at the central line Y = Z = 0.5. Lines: reference results. Dots:
present results.

A surface thermal radiation and conjugate heat transfer case presented by Martyushev et.
al. [10] was employed as a second validation of this work. It consists of a cubical enclosure with
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heat-conducting solid walls of finite thickness. At the bottom, in contact with the fluid, a heat
source is located which maintains the superficial temperature at Tmax. The exterior walls lose
heat by convection with an external fluid at Tmin. The inferior surface, however, is defined as
adiabatic. The configuration is schematically shown in Figure 4(a).

(a) (b) (c)

(d) (e) (f)

Figure 5. Results for Ra = 103: (a) streamlines and (b) isothermal lines at X = 0.5, (c) 3D view
of streamlines and contour plots of V . Results for Ra = 104: (d) streamlines and (e) isothermal
lines at X = 0.5, (f) 3D view of streamlines and contour plots of V .

To completely define the case, the following non-dimensional numbers were specified:
Planck Pl = λfluid(Tmax − Tmin)/(σT 4

maxL), Biot Bi = hL/λsolid, Raiyleigh Ra = gβ(Tmax −
Tmin)L3/ναfluid and the ratio K = λsolid/λfluid, where λ is the thermal conductivity, σ is the
Steffan-Boltzman constant, h is the external coefficient of convection, β is the coefficient of
volumetric thermal expansion, ν is the kinematic viscosity and α is the thermal diffusivity of
the fluid.

Two cases were simulated: for the first case, values of Ra = 103 and Pl = 0.4566 were used, and
for the second case Ra = 104 and Pl = 0.2132. For both cases Bi = 2, K = 7 and the emissivity of
all the internal surfaces was set at ε = 0.6. The mesh was composed by non-uniform hexaedrals,
with a hmin = 0.002 located in the near-interface region and a hmax = 0.04 in the most distant
zone to the walls of the domain. Two bodies were used: one for the heat source and the other
for the conducting walls. For the radiative equation, the internal surfaces were divided in six,
one for the bottom (heat source), one for the top, and the remaining four defined the lateral
walls with 0.25 × i < Z < 0.25 × (i + 1) with i = 0,1,2,3.

Temperature and vertical velocity distributions along the line Y = Z = 0.5 show good
agreement with the reference case, as presented in Figure 4. Figure 5 show the streamlines,
isotherms and a isovelocity contour plot for each case.
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3.3. Case 3. Accuracy study
To the best of the authors’ knowledge, there is no benchmark case available that includes a
moving body, conjugate heat transfer and surface radiation. Therefore, a theoretical case with
these characteristics was utilized to perform a numerical accuracy study. The test problem
designed by Yang et al. [11] was adapted to include the thermal problem. The case consists
of the two dimensional flow around a periodic array of cylinders moving with constant velocity
VC in a channel where the walls have a velocity of VW (see Figure 6(a)). Since the cases with
the same relative velocity VR = VC −VW are equivalent, the problem can be solved either with a
static body or with a moving body. Hence, two combinations are considered: (i) static cylinder:
VC = 0 and VW = 1, and (ii) moving cylinder: VC = −1 and VW = 0.

The diameter of the cylinder is D, the width of the channel is L = 3 × D and the
separation between two cylinders is also L, as can be observed in Figure 6(a). The walls
have constant temperature, Tleft = 0 and Tright = 1 and the thermal conductivity ratio is
K = λsolid/λfluid = 0.2. The Reynolds number based on the diameter of the cylinder and the
relative velocity VR = VC − VW is 100.

For the radiative equation, ten surfaces were defined: one is the right wall, another is the
left wall and the remaining eight walls correspond to an equitative division of the cylinder. The
emissivity of all the surfaces is set to ε = 0.7 and the Planck number is Pl = 0.05279.

Vc

Vw
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Figure 6. Flow around a periodic array of cylinders: (a) streamlines and pressure contour plot;
(b) isothermal lines (c) norm of the error in velocity (◻) and temperature (∎) fields: continuous
lines for static body and discontinuous lines for moving body.

A very fine mesh of 450× 450 cells was used in order to compute the reference solution, with
values of VC = 0 and VW = 1. Consequently, three other meshes of 30× 30, 60× 60 and 120× 120
were employed to perform the accuracy study.

Pressure contour plots and streamlines are shown in Figure 6(a) and iso-temperature lines
in Figure 6(b) for the moving cylinder case using a mesh of 60 × 60. The L1 norm of the error,
which measures the difference between the solutions from coarser grids and the reference grid
is presented in Figure 6(c). The velocity and temperature fields respect the second order of the
N-S solver as was expected. This is true for both configurations: moving and static cylinder,
although the absolute error is larger for the moving cylinder case.

4. Conclusions and future work
An immersed-boundary method (IBM) for simulation of thermal flow problems including
radiative surface exchange was presented. The validation of the code was performed through
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the simulation of two cases from the literature. Moreover, an accuracy study was performed
through a numerical experiment. A problem was designed so that it could be solved either with
a moving immersed body or with a static immersed body. For both configurations the expected
behavior of the method was observed, measuring a second order of accuracy for both velocity
and temperature fields.

A monolithic-approach methodology has been proven to be successful in the solution of
multiphysics problems, resulting especially appropriate for engineering applications, where the
combination of various heat-transfer mechanisms is frequent. By representing the solid-fluid
interfaces using unstructured surface meshes, the method can be applied for all kinds of
geometries. Moreover, the domain mesh generation process is simplified, allowing to simulate
several configurations with the same domain discretization.

Further work is needed to advance in the validation of more generic situations. A case
including all the physics, with more complex geometry and with moving immersed bodies would
be suitable. However, to the best of the authors’ knowledge, there is not a benchmark case with
these characteristics.
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