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ABSTRACT 

Comprehensive databases are needed in order to extend our knowledge on the behavior of 

vehicular traffic. Nevertheless data coming from common traffic detectors is incomplete. 

Detectors only provide vehicle count, detector occupancy and speed at discrete locations. 

To enrich these databases additional measurements from other data sources, like video 

recordings, are used. Extracting data from videos by actually watching the entire length of 

the recordings and manually counting is extremely time-consuming. The alternative is to 

set up an automatic video detection system. This is also costly in terms of money and time, 

and generally does not pay off for sporadic usage on a pilot test. 

An adaptation of the semi-automatic video processing methodology proposed by Patire 

(2010) is presented here. It makes possible to count flow and lane changes 90% faster than 

actually counting them by looking at the video. The method consists in selecting some 

specific lined pixels in the video, and converting them into a set of space – time images. 

The manual time is only spent in counting from these images. The method is adaptive, in 

the sense that the counting is always done at the maximum speed, not constrained by the 

video playback speed. This allows going faster when there are a few counts and slower 

when a lot of counts happen. 

This methodology has been used for measuring off-ramp flows and lane changing at 

several locations in the B-23 freeway (Soriguera & Sala, 2014). Results show that, as long 

as the video recordings fulfill some minimum requirements in framing and quality, the 

method is easy to use, fast and reliable. This method is intended for research purposes, 

when some hours of video recording have to be analyzed, not for long term use in a Traffic 

Management Center. 

1 INTRODUCTION 

The information given by different freeway sensors, such as loop detectors or License Plate 

Recognition (LPR) devices, is very valuable, but still incomplete in order to address some 

research questions. The detailed measurement of vehicles’ trajectories would be the desired 

and most complete information. However, this is not generally available for all vehicles in 

a traffic stream, and researchers need to use ad-hoc video recordings to complete their 

databases with the required information. 

In such situations, video processing, aimed to extract any type of data from the recordings, 

appears as an issue. Full automatization is not usually feasible. The limited amount of data 

to treat in a research pilot test does not justify the implementation of complex automatic 

image processing systems. Researchers usually face the task with labor, knowing that 

visually extracting data from video recordings is extremely tedious and time consuming. 

CIT2016 – XII Congreso de Ingeniería del Transporte
València, Universitat Politècnica de València, 2016.
DOI: http://dx.doi.org/10.4995/CIT2016.2016.1997

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1989



.  

 

Freeway lane changing activity is the required data to extract from videos in the present 

paper. Lane changes needed to be counted in six different freeway stretches for a total of 

63 hours of video recordings. The development of a method for extracting this information 

in a fast, simple and reliable way is the aim of this paper. 

The paper is structured as follows: Section 2 reviews different methods for video 

processing in order to extract traffic data; next, in Section 3 a detailed description of the 

new methodology for counting lane changes is presented. Recommendations to correctly 

use the method are also described; in Section 4 the method is applied to some video 

recordings taken at the B-23 freeway in Spain; Finally, in Sections 5 and 6 the potential of 

lane changing data is discussed, and some conclusions are outlined. 

2 TRAFFIC VIDEO PROCESSING: A STATE OF THE ART 

There are several methods to extract lane changes or other traffic information from a video 

recording. They range from fully automation, to visual inspection with handwritten notes. 

All of them present advantages and drawbacks. A selection of some methods of interest is 

presented next, starting from the most automatic ones. 

2.1 NGSIM software 

To the authors knowledge, the most automatic video detection tool used for traffic analysis 

is the NGSIM software (Federal Highway Administration, 2015; Federal Highway 

Administration, 2006). The NGSIM (Next Generation SIMulator) is a powerful software 

developed by Cambridge Systematics, Inc. for the Federal Highway Administration of the 

US government. The software is able to automatically detect every single vehicle in the 

study area, and follow its trajectory. It also detects the size of each vehicle. An example of 

usage along with the resulting dataset at I-80 location in California can be found at Punzo 

et al. 2011, and Lu & Skabardonis 2007. 

However, there are several requirements in order to use the software. First, the software 

only works if using special (and expensive) cameras which need to be specifically prepared 

to that end. All cameras must be calibrated, and the video recordings stabilized, rectified 

and georeferenced. Because the software is not able to re-detect a particular vehicle in 

different cameras when it leaves the recording area, video recordings need to overlap. With 

no overlapping, its usage is limited to the coverage of one camera. 

2.2 Multi-purpose video processing tools 

OpenCV (Open Source Computer Vision - http://opencv.org/) is one of the most developed 

automatic image processing environments. This platform includes a set of general purpose 

video analysis tools for real time processing. Some of them have been used to count 

vehicles from video recordings (Uke & Thool, 2013). They work reasonably well, and 

developers claim a reliability around 90% to 95% (Barragán, 2015; Bhaskar, & Yong 

2014). However, they are unable to automatically detect lane changes without human 

interaction. 

Other advanced image processing techniques based on machine learning, focus on vehicle 

tracking using regular video recordings without any special camera requirement (Oliveira 

& Santos, 2008). While they are able to detect and count cars reasonably well in the 

proximity of the camera, problems appear in the vehicle tracking through the camera 

coverage, especially at the furthest part of the recording. The result is that the technique is 
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still not reliable enough to count lane changes, although progress is expected. 

2.3 Semi-automatic video processing 

Semi-automatic processing includes all the methods that cannot completely eliminate the 

human visual intervention, but that can limit it to very specific tasks, improving the 

efficiency with respect to the completely visual and manual processing. The methodology 

developed by Patire 2010 and Patire & Cassidy 2011. for a specific traffic analysis on the 

Tomei expressway accessing Tokyo in Japan, falls under this category. 

Patire’s implementation used 11 cameras spaced about 100 meters, without in between 

on/off-ramps. The method, first converts the video to still images, called epochs. An epoch 

is the image resulting from one pixel line of the video accumulated through time; this line 

is called “the scan line” (see Fig. 1). This implies that, among all the pixels of the video 

scene, only one line is used.  From the epochs, and with a few manual clicks, it semi 

automatically recognizes the vehicles in successive cameras. By inferring between the 

discrete camera locations, it can be detected if a vehicle has changed lane. Also, the 

approximate vehicle trajectory can be obtained. 

2.4 Enhanced visual video processing 

Some options exist to enhance the completely manual procedure, for instance by 

automatically saving the counts when the user “clicks” or enabling to vary the video 

Fixed y coordinate 

or “scan line”. 

Fig. 1 - Transformation from video to epochs. a) Video frames over time. b) Epoch. 

Adapted from (Patire 2010). 

a) 

b) 
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playing speed. These options eliminate the need of note taking and can speed up the visual 

video processing, although the entire video length still needs to be played. Implementations 

for tactile devices (Campbell & Skabardonis, 2013; Campbell 2012) allow including (x,y) 

coordinate reference to the measured variable. 

2.5  Completely visual video processing 

This is the raw option considered as the baseline reference for comparison. It implies 

watching the entire video while taking notes of every lane change seen. Authors’ 

experience confirms that lane changes can only be counted reliably by playing the video at 

a maximum of double speed. The entire video needs to be played for every pair of lanes. 

3 NEW SEMI-AUTOMATIC VIDEO PROCESSING METHOD FOR 

MEASURING LANE CHANGING ACTIVITY 

3.1 The new scan line 

The methodology is based on the idea of the scan line described in (Patire, 2010). 

However, the scan line is no longer a straight horizontal line, but any line on the video 

scene. Therefore the pixel selection to construct the epoch is any set of coordinate points. 

An example of scan line used for measuring lane changing activity is shown in Fig. 2. Note 

that the scan line follows the lane division so that any vehicle crossing the line (i.e. a lane 

change) will appear as a spot in the epoch. 

Fig. 2 - Sample scan line to compute lane changes between shoulder and central lanes. 

n=4 points. 

Then, the inputs for the methodology simply are: 

 The video file

 The scan line definition

 The desired epoch duration

{ 𝑥2,𝑦2 =  197,142 

{ 𝑥3,𝑦3 =  244,238 

{ 𝑥4,𝑦4 =  343,400 

{ 𝑥1,𝑦1 =  204, 89 
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Here, the scan line is assumed to be piecewise linear, defined by the pixels at the (n) 

breakpoints (see Equation 1). This assumption is not limiting in any sense and any type of 

line could be defined. Note that the units of the coordinate points (x, y) axis are pixels. 

{ 𝑥𝑖, 𝑦 𝑖  |  ∀ 𝑖 ∈ [0, 𝑛], 𝑥𝑖 ∈ ℕ,   𝑦𝑖 ∈ ℕ} (1) 

Each segment of the scan line 𝑠𝑖 is defined by a consecutive pair of points (2). Then, the 

coordinates of the ordinal set of pixels belonging to the segment can be computed 

according to Equations 3 and 4: 

𝑠𝑖  =̈ { 𝑥𝑖, 𝑦𝑖 ;  𝑥𝑖+1, 𝑦𝑖+1   |  ∀𝑖 ∈ [1, 𝑛 − 1]}  (2) 

𝑦 = 𝑎𝑖 · 𝑥 + 𝑏𝑖   𝑠. 𝑡.  {
𝑦𝑖 = 𝑎𝑖 · 𝑥𝑖 + 𝑏𝑖

𝑦𝑖+1 = 𝑎𝑖 · 𝑥𝑖+1 + 𝑏𝑖
(3) 

𝑖𝑓: |𝑦𝑖 − 𝑦𝑖+1| ≥  |𝑥𝑖 − 𝑥𝑖+1| 

  𝑥𝑖⃗⃗  ⃗, 𝑦𝑖⃗⃗⃗   =  (‖
𝑦 − 𝑏𝑖

𝑎𝑖
‖ , 𝑦 ) {

𝑦 ∈ [𝑦𝑖, 𝑦𝑖+1] ;  𝑦 ∈ ℕ, 𝑖 = 1

𝑦 ∈  𝑦𝑖, 𝑦𝑖+1];  𝑦 ∈ ℕ, 𝑖 > 1

𝑒𝑙𝑠𝑒: 

  𝑥𝑖⃗⃗  ⃗, 𝑦𝑖⃗⃗⃗   =   𝑥, ‖𝑎𝑖 · 𝑥 + 𝑏𝑖‖   {
𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1] ;  𝑥 ∈ ℕ, 𝑖 = 1

𝑥 ∈  𝑥𝑖, 𝑥𝑖+1];  𝑥 ∈ ℕ, 𝑖 > 1

(4) 

Finally, the complete scan line is simply obtained by merging all the segments, as in 

Equation 5: 

 𝑥 , 𝑦  = ⋃  𝑥𝑖⃗⃗  ⃗, 𝑦𝑖⃗⃗⃗   
𝑛−1

1
  (5) 

And the number of pixels in the scan line (m) is computed by adding up the number of 

pixels per each segment  𝑚𝑖  as in equations 6 and 7: 

𝑚𝑖 = max |𝑦𝑖 − 𝑦𝑖+1|, |𝑥𝑖 − 𝑥𝑖+1| + {
1, 𝑖 = 1
0, 𝑖 > 1 (6) 

𝑚 = ∑ 𝑚𝑖

𝑛−1

1
 (7) 

3.2 Constructing the epoch 

Once the scan line is defined, it is possible to construct the epoch. The epoch size (8) 

depends on 𝑚 (i.e. vertical dimension, corresponding to the number of pixels in the scan 

line), on the video frame rate (𝑓𝑝𝑠 - frames per second) and on the epoch length in seconds 

𝑡𝑒: 

𝐸𝑝𝑜𝑐ℎ 𝑠𝑖𝑧𝑒  ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 ×  𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 𝑤 × 𝑚 [pixels] (8) 

Where: 

𝑤 = 𝑟𝑜𝑢𝑛𝑑  𝑓𝑝𝑠 · 𝑡𝑒  (9) 
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The epoch duration, 𝑡𝑒, needts to be much longer than the typical lane-changing duration,

minimizing the probability of one lane-changing maneuver being split over two or more 

epochs. For the present application (see Section 4), a duration of one minute was selected, 

this being long enough to satisfy the previous condition. In addition, this also corresponds 

to the traffic detectors aggregation period. The result of accumulating the scan line for each 

frame through time is the final epoch, as seen in Fig. 3. 

3.3 Lane change identification 

As seen in Fig. 3, not only lane changes appear in the epochs, but also occlusions. This 

happens when high vehicles occlude the scan line. Occlusions can be easily differentiated 

from lane changes. They appear as big long shapes, covering a significant part of the scan 

a) 

b) 

Fig. 3 - Epochs for semi-automatic lane change count. a) Epoch construction b) 

Sample epoch. 

y 

Time 

Lane change Occlusion 

x 

y 

Time 

Scan line 
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line. The shape and position of the occlusion varies depending on the camera framing and 

the scan line definition, but always shows the same part of the vehicle. In contrast, in a lane 

change the whole vehicle crosses the scan line in a short amount of time and space. This 

appears in the epoch as a small spot with the shape of the vehicle. 

A Graphical User Interface has been coded to enhance the visual counting from the epochs 

(see Figure 4). With this GUI, the counting is done by looking at the epoch (bottom of the 

window) and clicking on the candidate lane change. Then, the video (top of the window) is 

automatically set at the clicked time in the epoch. If looking at the video frame is not 

enough, it is possible to play the video around the clicked point to decide if it is a lane 

change or not. This has the advantage of being more reliable especially for those lane 

changes happening at the limits of the scanline. The counted lane changes appear in the 

rightmost table. 

Fig. 4 – GUI for counting lane changes. 

3.4 Camera configuration 

Cameras must be focused in order to obtain the best possible sharpness. The minimum 

recommended video resolution is 480x360 pixels, although lower resolutions (e.g. 

320x240) can still be used. Regarding the frame rate, 24 fps or higher is recommended, 

although it is possible to start counting lane changes from 10 fps. 

The camera framing is crucial, especially if using low resolution camera settings. The the 

entire image needs to be focused on the freeway. Only "pavement" pixels are useful. The 

sky or surrounding trees add nothing. Some examples are shown in Figure 5. The visible 

freeway length must be much longer than the length taken by the typical lane-changing 

maneuver. To give an approximate value, capturing a freeway length greater than 50 

meters is recommended. This allows clearly differentiating occlusions from lane changes. 

Finally, the frame angle needs to be lined with the line dividing lanes, as much as possible. 

This minimizes occlusions (see Figure 6). 
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Good freeway framing < -------------------------------------------------> Bad freeway framing 

Image 1 Image 2 Image 3 Image 4 

Fig. 5 - Video framing. 

As a consequence of the previous conditions, a correct video framing usually comprises a 

stretch of freeway starting at least 100 m from the camera site and ending up to 500 m 

further away. 

The technique can also be used to count vehicle flow. In this case, the image requirements 

are lower. It is only necessary that the vehicles are clearly seen in the video. Then, they 

will appear in the epochs, and will be counted. However, a frame rate of at least 10 fps is 

still necessary so that the cars will have a clear vehicle shape in the epoch instead of a 

blurry stain. 

It is important to consider that the better the camera configuration, the shorter the visual 

processing time. A bad configuration can even invalidate the method, so, always test each 

camera configuration for a few minutes to see the resulting epoch. 

3.5 Environmental recommendations 

Not only technical aspects must be taken into account. Environmental factors also have an 

impact. Clear daylight conditions are necessary. The method cannot be applied to night 

recordings, because the vehicle headlights dazzle the camera. A similar effect happens 

during dawn and dusk, so it is recommended not to point the cameras towards the sun. Bad 

weather, such as fog or rain, can lead to low quality video recordings. However, this may 

not be a problem, unless the image is so blurry that vehicles cannot be identified. 

3.6 Other general considerations 

The computer time required for constructing the epochs from videos depends on various 

factors: video resolution, video frame rate, number of scanlines, length of the scanlines, 

computational power and video codec used. For the application presented in Section 4, 

using a Matlab implementation on a computer i-7-4790 CPU with 8GB of RAM memory, 

it took about half the video duration to convert the video to the epochs. However, the 

Good frame angle  < ----------------------------------------------------> Bad frame angle 

Image 4 Image 3 Image 1 Image 2 

Fig. 6 - Video recording angle 
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computer remains fully usable during epoch creation. Thus, it does not consume all the 

resources available in the computer. It has also been tested in older desktop computers and 

in a laptop and still remain usable. 

4 APPLICATION TO THE B-23 FREEWAY ACCESSING BARCELONA 

The methodology developed in this paper has been applied to count the lane changes in 

some particular locations on the B-23 freeway accessing Barcelona, in the context of a 

dynamic speed limits (DSL) experiment. See (Soriguera & Sala, 2014) for a complete 

description of the experiment. 

63 hours of standard camera recordings needed to be processed in order to extract lane 

changing activity. In this context, full automation was infeasible, and the proposed semi-

automatic video processing was selected.  

The camera framing and the scan line used to create lane change epochs for each pair of 

lanes in the 6 locations are shown in Figure 7. The video quality consisted on a resolution 

of 536x400 pixels and a frame rate ranging between 10 and 30 fps. The hardware at the 

traffic management center (TMC) could not handle higher video resolution.  

Camera framing with lane 

change epoch lines 
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Camera framing with lane 

change epoch lines 
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Fig. 7 - Lines considered for lane changing counting. 
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4.1 Performance of the method 

The time needed to count the lane changes using the GUI implementation of the semi-

automatic method was around 15% of the real video duration. This is more than three times 

faster than actually watching the video at double speed. In some cameras, with optimal 

framing and good environmental conditions, lane changes could be directly and accurately 

extracted from the epochs, without the GUI help. This allowed speeding up the counting up 

to only 10% of the real video duration. 

Nevertheless, by using the GUI the reliability of the lane change counting increases (see 

Table 1). In such case, the error is small or even zero. In some situations, the usage of the 

method can even identify more lane changes than actually watching the video. For 

instance, it has been found that when two lane changes happen at different points but 

almost at the same time, only one is seen from the video. In the epoch, both can be clearly 

identified. These additional lane changes have been confirmed by playing the video at 

slower speeds. 

Camera 2304 2305 2306 2309 2310 2312 

Lanes 2-3 1-2 1-2 3-4 2-3 1-2 

Day 1 5 6 2 3 4 

Duration of this 

accuracy test (10 min) 

07:10 to 

07:20 

08:00 to 

08:10 

09:00 to 

09.10 

7:30 to 

7:40 

08:30 to 

08:40 

09:00 to 

09:10 

Video count 16 22 21 12 19 21 

Epoch count 14 21 20 3 4 6 

Epoch + GUI count 16 28* 21 12 19 13 

Table 1- Counting lane changes with different methods (*Additional lane changes 

counted with GUI. The error in this case is in the manual counting). 

By only using the epochs, without the GUI, the results are acceptable in cameras 2304, 

2305 and 2306 which have good video recordings. Assuming the manual count as ground 

truth, the average relative error in these cameras is 6,7%. However, cameras 2309, 2310 

and 2312 have errors above 50%. These are greatly improved by using the GUI. Still, bad 

results are obtained in camera 2312. This is due to the bad camera framing, leading to a 

high rate of occlusions, especially for lanes 1-2. 

5 SOME PRELIMINARY RESULTS 

A preliminary analysis of the resulting lane changing database, allowed to empirically 

prove that lane changing peaks at traffic state transitions (i.e. free flowing => congestion, 

or vice versa). This can be clearly seen in Figure 8, where cumulative count (N-curve), 

cumulative occupancy (T-curve), and cumulative lane changes (L-curve) with respect to 

time are plotted. The transition between free flow to congestion is identified by an increase 

of the occupancy (slope of the T-curve) and a decrease of the flow (slope of the N-curve). 

This happens slightly before 8:30 in Figure 8. Free flow recovering is identified by an 

occupancy drop (i.e. around 9:00 in Figure 8). In both situations, the lane changing rate 

peaks (slope of the L-Curve). Although further research is needed, this only pretends to 

show an interesting research direction that the presented method supports. 
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Fig. 5 - Oblique cumulative count (N), occupancy (T) and lane change (L) curves. 

Note 1) Data is obtained from camera 2306 on wed. 13rd June 2013 (Day#6). 2) See 

(Cassidy & Windover, 1995) for a description of the cumulative count curve 

methodology. The subtracted background flow is a 95% of the average. 

6 CONCLUSIONS 

Manually extracting traffic data from video recordings requires multiple video 

visualizations, it is time consuming and extremely tedious. For relatively short 

applications, full automatic methods are overcomplicated. The method presented in this 

paper aims to fill this gap. It develops a semi-automatic and simple video processing tool, 

which eases and speeds up the manual process without falling in the complexities of 

complete automation. 

The method is based on the transformation of the video recordings to a set of adequate 

images (i.e. called "epochs), were lane changes (or vehicle counts) are visually identified, 

easily and fast. The method has been implemented on a user friendly GUI. From the 

application to 68 hours of recording on a Spanish freeway in order to extract lane changing 

movements, it is estimated that the method reduced total human observation time to 10-

15% of the total video duration, without any significant reduction in the accuracy. In some 

cases, (e.g. when two lane changes happen at the same time) the proposed method is even 

more reliable than actually watching the video. 

In order to successfully use the method, it is crucial to follow the recommendations 

regarding the video quality and framing. The better the video quality is, the easier, faster 

and more reliable the counting. 
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