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ABSTRACT 

This paper faces the human factor in driving and its consequences for road safety. It 

presents the concepts behind the development of a smartphone app capable of evaluating 

drivers’ performance. The app provides feedback to the driver in terms of a grade (between 

0 and 10) depending on the aggressiveness and risks taken while driving. These are 

computed from the cumulative probability distribution function of the jerks (i.e. the time 

derivative of acceleration), which are measured using the smartphones’ accelerometer. 

Different driving contexts (e.g. urban, freeway, congestion, etc.) are identified applying 

cluster analysis to the measurements, and treated independently. Using regression analysis, 

the aggressiveness indicator is related to the drivers' safety records and to the probability of 

having an accident, through the standard DBQ - Driving Behavior Questionnaire. Results 

from a very limited pilot test show a strong correlation between the 99th percentile of the 

jerk measurements and the DBQ results. A linear model is fitted. This allows quantifying 

the safe driving behavior only from smartphone measurements. Finally, this indicator is 

translated into a normalized grade and feedback to the driver. This feedback will challenge 

the driver to train and to improve his performance. The phone will be blocked while 

driving and will incorporate mechanisms to prevent bad practices, like competition in 

aggressive driving. The app is intended to contribute to the improvement of road safety, 

one of the major public health problems, by tackling the human factor which is the trigger 

of the vast majority of traffic accidents. Making explicit and quantifying risky behaviors is 

the first step towards a safer driving. 

Keywords: Road safety, driving aggressiveness, driver feedback, smartphone app, driving 

performance. 

1. INTRODUCTION AND OBJECTIVES

Although declining in the recent past, the number of deaths as a result of road accidents is 

still one of the major public health problems in developed countries. Besides, accident 

rates for motorcycles are not following the general trends of road safety progress [CARE 

(2011)]. Moreover motorcycle fleet is experiencing a huge increase (+22% over the period 

2002-2007 as reported by the Association of European Motorcycle Manufacturers - 

ACEM). This situation urges to an increased effort for improving road safety with special 

consideration of motorcyclists. 
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Research efforts on road safety have been concentrated on infrastructures and vehicles. 

There is much less research conducted worldwide in relation to the human factor. In spite 

of this, in over 90% of the cases the human behavior is the trigger of traffic accidents 

[SCT, 2014]. Scientific literature aimed to understand drivers’ behavior is scarce, and even 

more if one focuses on motorbike riders [Chesham et al. (1993); 2BESAFE (2011)]. The 

reason for this gap in the literature lies in the difficulties encountered in the scientific 

analysis of driver behavior. Challenges are technical, but also economical, due to the 

required instrumentation of a large number of vehicles in order to enable data collection 

on-road. 

Understanding drivers’ behavior is essential for the improvement of road safety. The 

design of relevant countermeasures for safety improvement, or the definition of the 

training curriculum in order to obtain the driving permit, must be based upon scientific 

evidences on driver behavior. Also external and objective feedback is needed by the driver 

in order to improve his driving skills. In fact, the lack of feedback to the driver is one of 

the main problems regarding the driving performance. There are studies [Walton and 

Barthurst (1998)] showing that the vast majority of drivers consider their own driving 

skills better than average, regardless of their driving records. This is what psychologists 

call "optimistic bias", also suffered by the investors in the stock market. Even the 

circumstances when the driver is about to have an accident are perceived as proves of the 

ability at the steering wheel. This driving narcissism encourages an aggressive behavior 

[Vanderbilt, 2009]. 

This does not mean that drivers are unaware of the risks of driving. However, an 

overestimation of the social risks and an underestimation of individual risks occur. This 

means, for example, that while every individual driver is in favor of banning the use of 

mobile phones while driving, everyone uses them (see [NHTSA (2007)] for an interesting 

analysis of this phenomenon in relation to safety seat belts). It is common the idea that "it 

is the behavior of others that should be controlled, not mine". A similar phenomenon 

occurs in relation to the use of public transport. 

Many drivers have driving habits with high accident probability without being aware of it, 

at all. One could be a bad driver for years without ever knowing it. Furthermore, because a 

person who cannot write is not able to correctly judge a text, a bad driver will not be in the 

best position to assess their own risk while driving [Vanderbilt, 2009]. External feedback is 

needed. Currently, the feedback available to drivers is limited to the traffic tickets, the 

withdrawal of points in the driving license, and to the accidents suffered, with the 

aggravating fact that, very often, drivers do not consider this feedback as objective. For 

instance, the driver may attribute traffic tickets to the bad character of the police officer 

"that needs to fine in order to meet his quota" and accidents to "external conditions" or 

"pure bad luck." Since most trips end without tickets or accidents, the idea that every day 

we are better drivers is reinforced. 
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This occurs because the feedback is limited to elements close to the apex of Heinrich’s 

pyramid, composed of serious but rare events [Manuele, 2003]. Heinrich’s pyramid is 

nothing more than a classification based on accident frequency and severity (see Figure 1). 

Heinrich proved that the key element to avoid the serious and less frequent events in the 

upper zone lies in the reducing the vast number of small events in the pyramid’s base. This 

view is diametrically opposed to the concept of "accident" which implicitly covers all the 

negligent behaviors. The reality is that road accidents (i.e. the apex of the pyramid) do not 

happen by unpredictable laws, but by the fact that drivers routinely drive in a way (i.e. base 

of the pyramid) so that accidents become inevitable. 

Fig. 1 – An illustration of Heinrich’s theory: The safety pyramid 

One of the first and only initiatives to increase the driver feedback was led by commercial 

vehicle fleets with slogans such as "Tell me how I drive" painted in the vehicle along with 

a phone number. However, in these examples the feedback comes late, it is of dubious 

quality, and it is biased towards the negative elements. Other tools to provide feedback to 

the driver and scientific literature on the topic are both extremely limited. 

In light of this background, the approach proposed in this paper consists on the 

development of a tool capable of monitoring the driver performance and to provide him 

with feedback. The conceptual framework behind this approach lies in the external 

“recording” of the driving activity in order to show to the driver things he is not aware of. 

Similarly as it is done in the learning of multiple sports, like swimming, tennis, golf... The 

obtained “driving grade” will also create a reputation system (indicator in relation to the 

mean) that human nature tends to maximize. Moreover, by simply participating in an 

"experiment" the driver modifies his behavior trying to beat the system. This is known as 

the Hawthorne effect [EMS Insider (2004)]. Knowing it or not, drivers will drive safer. 

The tool will describe the driver performance, in terms of safe driving, with a quantitative 

indicator (i.e. a grade) and represent him in relation to the average driver (e.g. achieved 
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percentile of the distribution of grades). A relationship between the obtained grade and the 

historical records of the driver (i.e. accidents or near accidents, traffic tickets, etc.) will be 

established in order to empirically relate the safety indicator with the risks faced and with 

the probability of an accident. The results of the measurements and model, are translated 

into an easily understandable grade between 0 and 10, so that the final output will be a 

clear and objective feedback from which the driver can improve his safety on the road. 

The tool (i.e. the instrumentation of the vehicle) should be minimal, economical, and 

adaptable to both, cars and motorbikes. Previous research on naturalistic driving studies 

have been undertaken with ad-hoc fully instrumented vehicles (see [SHRP2 (2011)] for a 

literature review), which implied very limited data samples. Here, the monitoring of driver 

performance will use their own smartphones. These fulfill all the technical requirements, 

and are ready available, waiting in the vast majority of travelling vehicles. The monitoring 

tool (i.e. the smartphone app) is designed so that it can be used by motorcyclists, a 

particularly vulnerable group experiencing worsening accident trends. 

The rest of the paper is organized as follows. In Section 2 the methodology used to 

compute the grade is presented. This includes the identification of the driving context, the 

computation of the aggressiveness indicator from jerk measurements, and its relation to 

safe driving through the DBQ - Driving Behavior Questionnaire. Next, in Section 3 a very 

limited pilot test, with only 7 drivers, is presented. This is only intended to illustrate the 

application of the methodology. A more extensive test would be needed in order to derive 

robust results. Finally, in Section 4 some conclusions and directions for further research 

are outlined. 

2. METHODOLOGY

Smartphones are used as the in-vehicle surveillance instrumentation. Its widespread use 

and availability makes them very suitable measuring equipment. Currently, most 

smartphones (e.g. iPhone and Android platforms, see Figure 2) can register position and 

speed (with GPS accuracy). Also, the three component acceleration vector (from the 

internal accelerometer), rotation angles (pitch, roll and yaw) and rotational speed (from the 

internal gyroscope) can be measured. It is possible to select the time averaging interval, 

reaching a maximum discretization of 0.02s (50Hz). These must be the input data. 

The methodology used in order to compute the safe driving indicator from the raw 

measurements, is divided into three steps. First, the driving context is established. The 

dynamics of motion (i.e. speeds, acceleration and jerks) and their impacts on traffic safety 

are different depending on the driving context (e.g. urban vs freeway driving). Second, the 

indicator needs to be computed from the smartphone raw measurements. And third, this 

indicator needs to be related with the safe driving behavior. This third step is accomplished 

by relating the quantitative value of the indicator with the qualitative drivers’ behavior and 
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their historical records in terms of safe driving. The Driver Behavior Questionnaire (DBQ) 

widely used in the study of drivers’ psychology [Parker et al. 1995; Zapf and Reason 1994] 

is used to this end. 

iPhone (app. SensorLog) Android (app. AndroSensor) 

Fig. 2 – Smartphone’s raw accelerometer and gyroscope measurements in different 

platforms 

2.1  Establishing the driving context 

The proposed methodology establishes the driving context (e.g. urban, freeway, congested, 

rural road driving, etc.) using only the smartphone measurements, without any additional 

parameter or source of information. This avoids the complexity of using external 

infrastructures’ cartography and other sources of real time traffic information. 

Two variables are used in order to establish the driving context: the average moving speed, 

“�̅�”, (i.e. only considering speeds above a minimum speed threshold, “Vmin”, below which 

the vehicle is considered to be stopped), and the portion of time stopped “Ps”. Both 

variables are computed from raw GPS measurements with a frequency “”, and averaged 

over a time interval “t”. In the pilot test on Section 3 these parameters take the values of 

“ = 0.1 s (10 Hz)”, “t = 5 min”, and “Vmin = 2 km/h”. 

Finally, the “(�̅�, Ps)” data points are grouped into homogeneous patterns using cluster 

analysis. Cluster analysis is a technique used to classify objects in homogeneous groups, 

called clusters (see [Anderberg, 1973] for a complete description of the cluster analysis 

method). Agglomerative hierarchical clustering is used here. The concept of the technique 

is simple. It consists in computing the “distance” between observations (i.e. the “(�̅�, Ps)” 

vectors) and to bring together, at successive steps, those which are more similar (or 

“close”). The algorithm starts with as many groups as observations and finishes when all 

observations belong to only one group. The results do not provide a single partitioning, but 

only an optimal grouping process in a series of steps. The number of clusters does not need 

to be specified in advance (e.g. like it happens in the k-means clustering method). In order 

to obtain the final classification, it is necessary to cut the hierarchy of clusters at a given 
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height. This allows including the preexisting knowledge, logic and experience in the 

results. 

2.2  Monitoring driving behavior: The tool and definition of the indicator 

Smartphones are equipped with an internal accelerometer. This provides measurements of 

the acceleration vector, in relation to the phone coordinate axis. From acceleration data, the 

jerk (i.e. the derivative of acceleration with respect to time, also called "surge") can be 

estimated. The jerk is a physics measurement considered to describe the aggressiveness in 

movement. Using the central differences method to compute the time derivative from 

discrete data points, the three components of the jerk vector (i.e. longitudinal, transversal 

and vertical jerks) with respect to the smartphone orientation, are obtained. However, the 

longitudinal and lateral jerks with respect to the direction of movement are the ones needed 

(see Figure 3). Therefore, the smartphone coordinate axis need to be reoriented with 

respect to the movement. One option could be to pre-orientate the smartphone in the 

vehicle, so that the coordinate axis of the smartphone and the vehicle coincide. This 

solution would invalidate the use of the app in motorcycles where the orientation of the 

vehicle is variable with the movement. In order to solve this, auto-calibration of the 

smartphone’s coordinate axis is needed. 

Fig. 3 – Coordinate axis with respect to the direction of movement 

The experimental jerk data (presented in Section 3) reveal a useful property to achieve the 

auto-calibration. Jerk vectors are characterized by a primal variance direction. In other 

words, the hull of all jerk vectors is an ellipsoid of revolution (see Figure 4). A Principal 

Component Analysis (PCA) applied to the (x, y, z) jerk vectors, determines that the 

direction of maximum variance always correspond to the direction perpendicular to the 

ground. This has been tested in many random positions of the smartphone, always with 

consistent results. 

This property allows the reorientation of the jerk vector considering time intervals long 

enough to construct the ellipsoid of data. The selection of the time interval, “t”, responds 

x 
y 

z 
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to a trade-off. On the one hand it should be long enough in order to accurately define the 

ellipsoid of revolution (at least 2-3 minutes). On the other hand, it should not extend to 

more than one driving context, and therefore needs to be short. “t = 5 min” has been 

selected, so that all samples include 3000 measurements (i.e. 5 min at 10 Hz). This 

selection allows obtaining an ellipsoidal shape with precision and also to identify 

univocally a driving context. 

The main drawback of the method is that the longitudinal direction “x” cannot be 

differentiated from the transversal direction “y”, and therefore “acceleration-braking” jerks 

cannot be isolated from “cornering” jerks. Only the “x-y” plane, parallel to the ground, can 

be identified. In spite of this, the jerk projection on the “x-y” plane is approximately 

circular (see Figure 4) implying similar magnitudes of these two jerk components. This 

means that the modulus of the jerk projection on the “x-y” plane could be a good indicator 

of the driving aggressiveness. 

Fig. 4 – Jerk projections on coordinate planes in units of [dm/s3] 

Figure 5 shows the cumulative distribution function (cdf) of the jerk measurements of three 

driving samples. Note that, from now on, by “jerk measurement” it is meant the modulus 

of the jerk projections on the “x-y” plane. These observations correspond to the same 

driver, travelling on the same route, but in a markedly calmed, medium-aggressive and 

aggressive driving. The three cdf’s worthily distinguish each driving behavior. 
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Fig. 5 – Cumulative distribution function (cdf) of the jerk measurements of three 

driving samples. 

An indicator of aggressiveness (i.e. one value or a vector with different components) needs 

to be derived from the jerk’s cdf. This selection should allow an easy identification of 

different aggressiveness patterns and clearly relate it to unsafe driving behavior. The mean 

jerk is an option. But probably, unsafe driving is more related to extreme jerks. Therefore, 

extreme value indicators, like the 99, 95, 90 or 85 percentiles, will probably perform better. 

The maximum jerk is discarded as an indicator because of its poor robustness, being 

largely affected by measurement errors. 

2.3  Relating aggressiveness with safe driving 

Safe driving behavior is established through surveying. The approach is based on the 

Driver Behavior Questionnaire (DBQ) [Parker et al., 1995], widely used in the study of 

driving psychology. Recent studies [Helman and Reed, 2015; Rowe et al. 2015] confirm 

the role of the DBQ survey as a valid measure of observed behavior in real driving and 

postulate that factors of the DBQ were significant independent predictors of crash 

involvement. The aim of this survey is to define a "theoretical classification of abnormal 

driving behaviors" [Zapf and Reason, 1994] through different types of factors. These 

include errors of action (i.e. the error in the translation between drivers’ intention and their 

action), and errors of intention (i.e. the driver doing the wrong thing on purpose, either due 

to a mistake or due to a deliberate offense to traffic law). Errors and lapses have to do with 

the limited human capacity to treat and process huge amounts of data. Mistakes and 

violations relate to the experience and culture of the driver. 
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Fig. 6 – Driver Behavior Questionnaire (DBQ) surveying categories. 

The most common version of the DBQ has been used in the present research, consisting of 

28 questions (see Table 1). In addition, the surveying process has also provided other 

sampling information like the age, gender, experience and accidents/tickets rate of the 

driver, together with the characteristics of the vehicle. 

From the DBQ responses, the DBQ index is computed. Factors are aggregated into two 

categories: i) errors of action, ii) errors of intention and deliberate violations. The DBQ 

index for each category is simply the mean of the grades (between 1 and 4) obtained in the 

questions that fall within the category. A global DBQ index is computed by averaging both 

partial indexes. 

To establish the relationship between the DBQ indexes, obtained through the survey, and 

the indicator of the aggressiveness, obtained experimentally from the jerk measurements, 

multiple linear regression analysis is used. Results from this analysis provide a 

mathematical function that allows obtaining the DBQ index from the aggressiveness 

indicator. This derived DBQ index, suitably normalized between 0 and 10, will act as the 

safe driving grade that will provide feedback to the driver. 

3. PILOT TEST AND RESULTS

3.1  Experiment design 

In order to test and calibrate the methodology, a pilot test was performed. The experiment 

required two activities for each participant: i) record his driving activity with the drivers’ 

feedback mobile app, and ii) answer the DBQ survey. Careful attention was paid to ensure 

that both the app and the survey were user-friendly. The pilot was limited to car and 

motorbike drivers. Iphone was selected as the smartphone platform for the pilot test. The 

uniformity in the iOS operating system simplified the SensorLog® app installation on all 

devices, and provided a uniform reliability of sensors. In contrast, this selection greatly 

limited the amount of potential participants. A user manual was created allowing the 

participants to set up the app independently. To help all participants to complete the 

survey, this was implemented in Google Forms®. Finally, all results where automatically 

received in ".csv" files ready to be processed. 

DBQ

ERRORS OF 
ACTION

ERRORS LAPSES

ERRORS OF 
INTENTION

MISTAKES

DELIBERATE 
VIOLATIONS

AGRESSIVE 
VIOLATIONS

RULE 
VIOLATIONS
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# Factor DBQ Questions 

1 Aggressive Viol. 
Become angered by another driver and give chase with the intention of giving 

him/her a piece of your mind. 

2 Error 
Miss “Give Way” signs and narrowly avoid colliding with traffic having right of 

way. 

3 Error Fail to check your rear-view mirror before pulling out, changing lanes, etc. 

4 Aggressive Viol. 
Pull out of a junction so far that the driver with right of way has to stop and let you 

out. 

5 Rule Viol. 
Drive back from a party, restaurant, or pub, even though you realize that you may be 

over the legal blood-alcohol limit. 

6 Lapse Misread the signs and exit from a roundabout on the wrong road. 

7 Rule Viol. Disregard the speed limit on a residential road. 

8 Error 
Fail to notice that pedestrians are crossing when turning into a side street from a 

main road. 

9 Lapse 
Intending to drive to destination A, you “wake up” to find yourself on the road to 

destination B. 

10 Lapse 
Switch on one thing, such as the headlights, when you meant to switch on 

something else, such as the wipers. 

11 Rule Viol. Drive so close to the car in front that it would be difficult to stop in an emergency. 

12 Aggressive Viol. 
Stay in a motorway lane that you know will be closed ahead until the last minute 

before forcing your way into the other lane. 

13 Lapse Attempt to drive away from the traffic lights in third gear. 

14 Rule Viol. Overtake a slow driver on the inside. 

15 Error Attempt to overtake someone that you had not noticed to be signaling a right turn. 

16 Lapse Forget where you left your car in a car park. 

17 Aggressive Viol. Sound your horn to indicate your annoyance to another road user. 

18 Lapse 
Realize that you have no clear recollection of the road along which you have just 

been travelling. 

19 Rule Viol. Cross a junction knowing that the traffic lights have already turned against you. 

20 Error On turning left nearly hit a cyclist who has come up on your inside. 

21 Error 
Queuing to turn left onto a main road, you pay such close attention to the main 

stream of traffic that you nearly hit the car in front. 

22 Aggressive Viol. 
Become angered by a certain type of a driver and indicate your hostility by whatever 

means you can. 

23 Error Underestimate the speed of an oncoming vehicle when overtaking. 

24 Lapse Hit something when reversing that you had not previously seen. 

25 Lapse Get into the wrong lane approaching a roundabout or a junction. 

26 Aggressive Viol. Get involved in unofficial races. 

27 Error Brake too quickly on a slippery road or steer the wrong way in a skid. 

28 Rule Viol. Disregard the speed limit on a motorway. 

Table 1 – Driver Behavior Questionnaire 

A total of 7 drivers participated in the pilot test (4 car and 3 motorcycle drivers). The 

majority were men (6/7). The age range was between 26 and 57 years old, being 35 the 

average. The average driving experience was 14 years, and their driving activity was 

related to both, commuting to work and leisure activities. Most of them have been involved 

in an accident in their driving life. 
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The data collection lasted two months, between March and April 2015. A total of 88 

complete and valid intervals of 5 min. were recorded. Smartphones can record 

accelerometer measurements up to a frequency of 50 Hz. However, frequencies higher than 

10 Hz do not contribute in additional precision. Therefore, “ = 0.1 s” was selected as the 

time interval between measurements. The valid measurements implied a total length of 

approximately 305 km with an average speed of 41.63 km/h. 

3.2  Driving contexts identification 

In order to establish the driving contexts, the previous sample size was extended including 

authors’ own driving measurements, using both motorcycle and car. This allowed 

achieving 469 samples “(�̅�, Ps)” averaged over 5 minutes. This means more than 39 hours 

of recording. Hierarchical clustering using the centroid method with Euclidean distance 

was applied on the IBM SPSS Statistics software. Figure 7 illustrates the clustering 

process. A grouping with 4 clusters was selected (see Table 2 and Figure 8). The decision 

of 4 clusters (instead of 3 which is also one possibility by looking at the dendrogram, see 

Figure 7b) is based on the knowledge of the Catalan infrastructures' classification, which 

differentiates between speed limits below or above 90 km/h. Table 3 summarizes the pilot 

test sample size in each driving context. 

a) 
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b) 

Fig. 7 – Cluster analysis. a) Data belonging to 3, 4, 5 and 6 clusters. b) Dendrogram. 

Fig. 8 – Driving context identification. 

Zone 1: �̅�<50km/h, Ps <60%; (Urban) 
Zone 3: 50km/h<�̅�<90km/h; 

(Conventional roads / main arterials) 

Zone 2: �̅�<50km/h, Ps >60%; (Congested) Zone 4: �̅�>90km/h; (Freeway) 

Table 2 – Boundaries of the different driving contexts 
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Car Z1 Z2 Z3 Z4 Total Motorbike Z1 Z2 Z3 Z4 Total 

D1 8 4 12 D5 6 6 

D2 5 1 6 3 15 D6 3 6 4 13 

D3 24 1 2 27 D7 2 2 

D4 3 8 2 13 Total 11 0 6 4 21 

Total 40 2 20 5 67 

Table 3 – Pilot test sample size in each driving context for each driver 

3.3  Driving aggressiveness indicator and DBQ results 

Tables 4 and 5 summarize the Driving Aggressiveness Indicator, for car and motorbike 

drivers respectively. These are obtained from the cdf of the jerk measurements in each 

driving context. The DBQ results for each driver are also shown in the same tables. Cells 

are colored according to the magnitude of its value, in order to illustrate the existing 

correlation between the aggressiveness indicator and the DBQ results. 

3.4  Driver feedback grade 

With this extremely small sample size, little more than qualitatively suspecting the 

existence of correlation can be done. In spite of this, and only to illustrate the complete 

application of the methodology, linear regression analysis was performed in some of the 

contexts (see Table 6). Statistical robustness and significance of results are, of course, 

neglected. Despite these limitations, it was found that the best aggressiveness indicator is 

the 99th percentile of the jerks' measurements, "𝑗99𝑡ℎ". Therefore, the proposed regression

model follows the form: 

𝐷𝐵𝑄 = 𝐴 + 𝐵 · 𝑗99𝑡ℎ (1) 

Driving Context Type of vehicle A (intercept) B (coefficient) R2

Zone 1 Car 0,995 0,134 0,80 

Zone 3 Car 1,132 0,093 0,51 

Zone 1 Motorbike 0,972 0,366 0,74 

Table 6 – Linear regression analysis 

Finally, the model is applied to the pilot drivers and normalized to values between 0 and 

10, obtaining the feedback grades shown in Table 7. 

Car Driver Grade Motorbike Driver Grade 

D1 9,1 D5 7,1 

D2 9,2 D6 7,9 

D3 8,9 D7 9,1 

D4 8,0 

Table 7 – Feedback grades in the pilot test 
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CAR 

Z1 Jerk%85 Jerk%90 Jerk%95 Jerk%99 Mean Mistakes Lapses 
Aggressive 

Violation 

Rule 

Violation 

Errors of 

Action 

Deliberate 

Violations 

DBQ 

Index 

D1 0,824 0,969 1,186 1,735 0,460 1,13 1,25 1,00 1,33 1,19 1,17 1,18 

D2 0,702 0,824 1,041 1,730 0,426 1,00 1,13 1,17 1,50 1,06 1,33 1,18 

D3 0,769 0,969 1,365 2,730 0,441 1,67 1,33 1,00 2,00 1,50 1,50 1,50 

D4 1,812 2,155 2,722 4,663 1,092 1,38 1,63 1,17 2,17 1,50 1,67 1,57 

Z2 Jerk%85 Jerk%90 Jerk%95 Jerk%99 Mean Mistakes Lapses 
Aggressive 

Violation 

Rule 

Violation 

Errors of 

Action 

Deliberate 

Violations 

DBQ 

Index 

D2 0,656 0,808 1,079 1,741 0,334 1,00 1,13 1,17 1,50 1,06 1,33 1,18 

D3 0,618 0,789 1,013 1,592 0,324 1,67 1,33 1,00 2,00 1,50 1,50 1,50 

Z3 Jerk%85 Jerk%90 Jerk%95 Jerk%99 Mean Mistakes Lapses 
Aggressive 

Violation 

Rule 

Violation 

Errors of 

Action 

Deliberate 

Violations 

DBQ 

Index 

D1 0,967 1,094 1,282 1,728 0,623 1,13 1,25 1,00 1,33 1,19 1,17 1,18 

D2 0,732 0,826 1,000 1,456 0,460 1,00 1,13 1,17 1,50 1,06 1,33 1,18 

D3 0,715 0,838 1,073 1,731 0,425 1,67 1,33 1,00 2,00 1,50 1,50 1,50 

D4 2,129 2,486 3,109 4,807 1,307 1,38 1,63 1,17 2,17 1,50 1,67 1,57 

Z4 Jerk%85 Jerk%90 Jerk%95 Jerk%99 Mead Mistakes Lapses 
Aggressive 

Violation 

Rule 

Violation 

Errors of 

Action 

Deliberate 

Violations 

DBQ 

Index 

D2 0,818 0,910 1,078 1,487 0,522 1,00 1,13 1,17 1,50 1,06 1,33 1,18 

D4 3,044 3,400 4,131 5,856 1,942 1,38 1,63 1,17 2,17 1,50 1,67 1,57 

Table 4 – Car drivers' pilot test measurements 
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MOTORBIKE 

Z1 Jerk%85 Jerk%90 Jerk%95 Jerk%99 Mean Mistakes Lapses 
Aggressive 

Violation 

Rule 

Violation 

Errors of 

Action 

Deliberate 

Violations 

DBQ 

Index 

D5 0,850 1,053 1,441 2,464 0,462 2,00 2,00 1,33 1,67 2,00 1,50 1,75 

D6 0,626 0,766 1,046 1,764 0,368 1,33 1,33 2,67 2,00 1,33 2,33 1,83 

D7 0,152 0,222 0,350 0,783 0,090 1,00 1,00 1,00 1,67 1,00 1,33 1,17 

Z3 Jerk%85 Jerk%90 Jerk%95 Jerk%99 Mean Mistakes Lapses 
Aggressive 

Violation 

Rule 

Violation 

Errors of 

Action 

Deliberate 

Violations 

DBQ 

Index 

D6 0,850 1,053 1,441 2,464 0,462 1,33 1,33 2,67 2,00 1,33 2,33 1,83 

Z4 Jerk%85 Jerk%90 Jerk%95 Jerk%99 Mean Mistakes Lapses 
Aggressive 

Violation 

Rule 

Violation 

Errors of 

Action 

Deliberate 

Violations 

DBQ 

Index 

D6 0,684 0,772 0,933 1,315 0,435 1,33 1,33 2,67 2,00 1,33 2,33 1,83 

Table 5 – Motorbike drivers' pilot test measurements 
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4. CONCLUSIONS

One of the main problems regarding driving performance is the lack of feedback to the 

driver. This paper addresses the methodology behind a smartphone app that provides 

feedback to the driver in terms of a safe driving grade. The methodology is generic and can 

be used in any smartphone platform, provided that accelerometer and GPS measurements 

are available. No other source of information is needed. Aggressive and risky driving 

behavior is established by computing the jerk cumulative distribution function (cdf). This 

is related to safe driving by regression analysis with respect to the results of the DBQ (i.e. 

the Driving Behavior Questionnaire). A pilot test of the methodology allowed identifying 

four different driving contexts (i.e. urban, congested, conventional road/main arterial and 

freeway), and calibrating the correlation between the 99th percentile of the jerks' cdf and 

the DBQ results in some of them. The small sample size of the pilot test, with only 7 

drivers, prevents any kind of statistical significance of the data presented herein. The 

feedback grades for the 7 drivers are only obtained for illustrative purposes. 

The presented method needs to be refined. Further research will include looking for 

solutions that eliminate the need of using GPS data. This would reduce significantly the 

smartphones' battery consumption. An extensive pilot test would be necessary to establish 

robust correlation models between the jerks' cdf and the DBQ results. Finally, a method for 

normalizing the obtained grades, accounting for possible bias in the answers to the survey 

needs also to be investigated. 

The ultimate objective of the driver feedback app is to ease the drivers' learning and self-

assessment, so that they can gradually improve their performance and monitor the 

evolution. This will have an effect on the human factor in driving, the main cause of traffic 

accidents, avoiding near accident situations and finally, reducing accident rates. Other 

applications and sub products are also possible. These might include the establishment of 

detailed cause-effect relationships between aggressive driving and the associated risk, 

valuable information in order to improve road safety as well as for insurance companies, 

applications for vehicle fleet management, geolocation of dangerous spots in a road 

network or as a tool for objective proving driving behavior, in order to qualify for 

premiums in vehicle insurances or for being retrieved the driving license after a revocation. 
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