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Carlos López-Mart́ınez

A thesis submitted to the Universitat Politècnica de Catalunya (UPC)
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Abstract
This thesis is dedicated to the study of texture analysis and physical interpretation of
polarimetric SAR data. As the starting point, a complete survey of the statistical models
for polarimetric SAR data is conducted. All the models are classified into three categories:
Gaussian distributions, texture models, and finite mixture models. The texture models,
which assume that the randomness of the SAR data is due to two unrelated factors,
texture and speckle, are the main subject of this study. The PDFs of the scattering
vector and the sample covariance matrix in different models are reviewed.

Since many models have been proposed, how to choose the most accurate one for
a test data is a big challenge. Methods which analyze different polarimetric channels
separately or require a filtering of the data are limited in many cases, especially when it
comes to high resolution data. In this thesis, the l2-norms of the scattering vectors are
studied, and they are found to be advantageous to extract statistical information from
polarimetric SAR data. Statistics based on the l2-norms can be utilized to determine
what distribution the data actually follows.

A number of models are suggested to model the texture of polarimetric SAR data, and
some are very complex. But most of them lack a physical explanation. The random walk
model, which can be interpreted as a discrete analog of the SAR data focusing process,
is studied with the objective to understand the data statistics from the point of view of
scattering process. A simulator based on the random walk model is developed, where
different variations in the scatterer types and scatterer numbers are considered. It builds
a bridge between the mathematical models and underlying physical mechanisms.

It is found that both the mixture and the texture could give the same statistics such
as log-cumulants of the second order and the third order. The two concepts, texture and
mixture, represent two quite different scenarios. A further study was carried on to see if it
is possible to distinguish them. Higher order statistics are demonstrated to be favorable
in this task. They can be physically interpreted to distinguish the scattering from a single
type of target from a mixture of targets.
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Chapter 11
Introduction

1.1 Motivation

Remote sensing is the acquisition of information about a distant object or phenomenon
without direct contact with it. Human beings and many other animals may achieve this
goal through their senses of sight, hearing or smell. However, they provide a very limited
amount of information. This situation can be improved by exploiting the interaction with
the matter of some propagated signal such as electromagnetic (EM) waves or sonic waves.
Since World War I, a considerable effort has been devoted to this topic, and a large number
of technologies have been developed for gathering additional data from our environment.
Nowadays, the term remote sensing generally refers to a wide set of techniques dedicated
to the collection information about different Earth features and their dynamics. This
concept comprises the whole process of acquisition, processing and interpretation of data.

Early imaging sensors for remote sensing were camera or camera-like systems with de-
tectors that were sensitive to either reflected solar radiation or thermal radiation emitted
from the Earth’s surface. Instruments measuring the radiation emitted or reflected by the
target from an external source are called passive sensors. Although they are capable of
providing fine spatial resolution and excellent multi-spectral details, passive sensors are
inhibited by clouds and depend on solar illumination, thus limited to daylight observation.
In contrast, systems having their own illumination source are called active sensors. They
have the advantage of providing control over imaging factors such as power, frequency,
and polarization, all of which are important to the extraction of target information [1].

However, active sensors employing microwaves usually suffer from poor spatial resolu-
tion. In order to obtain high-resolution images one has to resort either to an impractically
long antenna or to very short wavelengths which makes the sensor contend with severe
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attenuation in the atmosphere. Another way to achieve better resolution is signal process-
ing. Synthetic Aperture Radar (SAR) is a technique to improve the resolution beyond the
limitation of the physical antenna aperture via signal processing. The forward motion
of actual antenna is used to ’synthesize’ a very long antenna. The result is that SAR
allows the possibility of using longer wavelengths and still achieving good resolution with
antenna structures of reasonable size. This characteristic makes the SAR an extremely
valuable instrument for space observation [2].

There is currently a great deal of interest in the use of polarimetry in SAR. It is
known that the polarization states of the EM waves will change when they interact with
the Earth’s surface due to the index of permittivity, permeability, and other properties
such as geometry of the observing targets. The change in polarization gives an insight to
the underlying scattering mechanisms, and remote sensing tools exploiting this kind of
information are known as Polarimetric SAR (PolSAR) instruments. Many PolSAR sys-
tems, including both airborne ones and spaceborne ones, have been successfully launched
in the last 30 years. They provide sufficient data for a wide range of applications, such
as land-use classification, soil moisture estimation, disaster monitoring, and so on. Dif-
ferent results reported in the literature have demonstrated the usefulness of polarimetry
for the study and characterization of the Earth surface because of its ability to retrieve
biophysical and geophysical information from the scene [3].

In most SAR or PolSAR systems, the size of a resolution cell is much larger than
the wavelength. The measured signal is then a coherent addition of the echoes from all
individual targets within that cell. Depending on the relative phases of each scattered
wave, the coherent addition may be constructive or destructive, and it produces a salt-
and-pepper appearance known as speckle over SAR images. Although the speckle is a real
electromagnetic measure, from the point of view of an acquisition system, it is considered
as noise since it can not be predicted accurately and contaminates the measure of the
reflectivity. The useful information, therefore, must be extracted from the statistics of
the data. Consequently, an accurate statistical model becomes very important to the
extraction of target information.

Gaussian statistics for the radar returns have been frequently assumed [4,5]. In mod-
erate or low spatial resolution images, the number of targets in a resolution cell is large,
according to the Central Limit Theorem (CLT), Gaussian statistics could give a proper
approximation to the data distribution. However, as the spatial resolution improves, the
analysis of real PolSAR images reveals that non-Gaussian models give a better represen-
tation, implying that processing algorithms based on such models should improve their
performance [6–10]. In the last two decades, a considerable research effort has been ded-
icated to finding accurate and efficient non-Gaussian models for PolSAR data. The basic
idea is to assume that the radar return is a product of two independent components, the
speckle and the texture. The former is assumed to follow a complex Gaussian distribu-
tion, whereas the latter is a positive random variable modeling the variation of the radar
cross section.

Let the texture be a scalar random variable obeying different distribution laws, the
product scheme could result in a number of statistical models known as scalar texture
models. They are found to be suitable in various scenes. The K distribution [6,7], the G0

distribution [9], and the Kummer-U distribution [10,11] are the ones studied extensively.
The K distribution assumes that the texture variable follows a gamma distribution. It has
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been proved to be useful in characterizing the distribution of echoes from various objects,
including sea surface, forests, etc. In certain areas such as urban environment, the G0

distribution with a inverse gamma distributed texture variable has been demonstrated to
give a more accurate representation. The Kummer-U distribution was recently proposed
which models the texture fluctuation with a Fisher distribution with the capability to
represent a large set of texture distributions. Other scalar texture models include the
W distribution and the M distribution with beta and inverse beta distributed texture
variable, respectively [12]. In addition, the Probability Density Function (PDF) of the
texture random variable can be not explicitly specified. Texture variable is estimated for
each pixel independently. This relaxes the ”texture stationarity” condition required by
the previous models [13].

If the electromagnetic wave sees different geometrical or dielectric properties of the
target according to the wave polarization, and if those properties are spatially modulated,
then the image texture should also be a function of polarization [14]. This implies that
different texture parameters are required for different polarimetric channels. All these
texture parameters make up a vector having the same size as the speckle component.
Several models exploiting this idea are proposed in literature and they are referred to
multi-texture models. For example, Lombardo et al. assume the texture parameters to
follow the partially correlated gamma distribution [15–17], Khan et al. assume that the
co-pol and cross-pol channels have independent textures that follow Generalized Inverse
Gaussian (GIG) distributions [18], and in the work of Eltoft and Doulgeris [19–21], the
texture parameters can be either independent or totally correlated, or co-pol texture
parameters are identical but different from cross-pol ones.

With the currently operational spaceborne PolSAR sensors, including RADARSAT-2,
TerraSAR-X and ALOS-2, high-quality images of the Earth’s surface with meter reso-
lution are available. The decrease of resolution cell dimension offers the opportunity to
observe much smaller spatial features, which means exploring the structures in the images
could be possible. Texture information, therefore, becomes more and more important in
the analysis of these images. In order to represent the texture information accurately,
statistical models with generality, robustness and low computation cost are expected.
The models mentioned above could be employed, but some limitations are noticed. For
example, many parameters are required to represent complex scenes, and most of those
models lack a physical explanation. Thus, there is an need to create connections between
the mathematical models and the scattering process.

Another way to model the statistical behavior of SAR data or PolSAR data is the so
called finite mixture model [22–24], which assumes the data under analysis is a discrete
mixture of different targets. This makes sense in certain scenes such as urban areas which
usually consist of coherent targets like houses and roads, as well as distributed targets
like trees and grass. The backscattering from the urban area represents a combination of
different scattering mechanisms. Another example of mixtures is the forest area, which
sometimes can be treated as a composite of bright clutters and dark ones, corresponding to
the strong returns from the crowns of trees and the shadows behind them. Texture models
have also been proved to be appropriate for forest areas in many reports. Therefore,
whether the data should be treated as mixture or texture needs to be verified. Or saying
in a different way, we have to discriminate the concept of the mixture from that of the
texture.
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To determine whether a statistical model is suitable for the data or not, some mea-
surable and comparative statistics are required. The univariate Mellin Kind Statis-
tics (MKS), also known as log-cumulants, was first suggested by Nicolas [25] to analyze
the compounded distributions used to model single-channel SAR data, and later was ex-
tended to matrix variate case by Anfinsen et al. [26]. It is demonstrated that MKS are
of great value to texture analysis of SAR data because contributions from the texture
and the speckle can be separated. The Method of Moment (MoM) is also an important
approach in statistical analysis of SAR data. For example, the normalized intensity mo-
ments are used as a measure of non-gaussianity by many authors [14,27,28]. Other tools
for statistical analysis of PolSAR data include copulas which are employed to analyze the
correlation between different polarimetric channels [29].

The MoM and the univariate MKS are applicable to single channel data. In the case
of PolSAR data, different channels need to be considered separately, and the correlation
information between polarimetric channels are usually discarded. The matrix variate
MKS needs to be performed on sample covariance matrices. A multilook processing is
required before calculating the data statistics, and information could be lost during this
process. As the original data obtained by a PolSAR system is the scattering matrix, some
methods extracting statistical information directly from scattering matrices or scattering
vectors are necessary. Nevertheless, no effective tools to accomplish this task are found
in the literature.

To summarize, although the statistics play an important role in PolSAR applications
such as speckle filtering [30], segmentation [31], ground cover classification [32, 33], etc.,
there still exist many issues remaining to be solved in this field, with a few examples listed
as follows:

• Is it possible to extract texture information from scattering vectors directly and
avoid any filtering?

• What is the physical meaning of the statistical models? Or do they have any physical
explanation?

• How to distinguish the texture and the mixture? And which model is better for the
testing data?

Therefore, it is worthy of a further investigation. This PhD thesis is devoted to the
study of statistical modeling and texture analysis of PolSAR data, with the goal of giving
answers or solutions to the above questions.

1.2 Objectives of the thesis

The detailed objectives of this thesis are listed as follows.

• The first objective is to make a comprehensive survey of the statistical models for
PolSAR data. In addition, a review of the methods employed to determine what
distribution the data follows is requisite.
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• How to compute statistics from scattering matrices or scattering vectors directly is
the second objective. It is important to avoid analyzing each polarimetric channel
separately, or using any filter when it comes to high spatial resolution data.

• Another objective is to find physical interpretations for different texture models, as
many models are just the results of pure mathematical calculations. The random
walk model, especially the multi-dimensional random walk model, will be investi-
gated, because it provides an insight to the SAR data formation process. How to
simulate PolSAR data under different circumstances also will be studied, as it is
possible to verify different assumptions with simulated data.

• At last, the texture and the mixture represent two quite different scattering sce-
narios. Which model gives a true representation of the data needs to be clarified.
Higher order statistics will be studied in order to see if they could offer an effective
way to distinguish the texture from the mixture.

1.3 Structure of the thesis

This manuscript is divided into seven chapters that are described briefly in the following.

• Chapter 1 introduces the motivation of this thesis.

• Chapter 2 provides an overview of the preliminary knowledge. Some basic con-
cepts of SAR imaging are introduced, with emphasis on the data formation process,
which is the start point of the random walk model. Wave polarimetry and scat-
tering polarimetry are also reviewed, as well as how to represent PolSAR data
mathematically. In addition, the most advanced PolSAR sensors launched recently
are introduced, of which the data are exploited in this thesis.

• The review of the state-of-the-art is given in Chapter 3. First, statistics of the fully
developed speckle is detailed. Properties of the single look scattering vectors and the
multilook sample covariance matrices are studied under the Gaussian assumption.
Then, the concept of texture is explained, along with the widely studied texture
models, including both the scalar texture models and the multi-texture models. At
last, finite mixture models, which are widely used to analyze the heterogeneity of
data, are introduced.

• In Chapter 4, a method computing statistics from the scattering vectors is proposed.
It exploits the l2-norm of the single look scattering vectors, thus considering all po-
larimetric channels together and avoiding any filtering of the data. The distribution
of the l2-norm is studied based on the product model. And statistics such as normal-
ized moments and log-cumulants are also computed. Experiments using the l2-norm
for texture analysis are implemented on both simulated data and real SAR data. In
that chapter, existing methods are also reviewed, including the Normalized Inten-
sity Moment (NIM), and the log-cumulants in both cases of univariate and matrix
variate.
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• In Chapter 5, the random walk model is studied with the objective of finding physical
explantions of texture models. The two-dimensional random walk is introduced first,
which leads to the Gaussian statistics or K distribution by changing the distributions
of scatter number. Then, a PolSAR data simulator based on the multi-dimensional
random walk is detailed. Algorithms on how to simulate different scatterer types
and scatterer numbers are given, as well as mixtures of targets. Experimental results
on both simulated data and real SAR data are shown at the end of that chapter.

• Chapter 6 details the method on how to compute the log-cumulants of the finite
mixture model. A comparison between the log-cumulants of finite mixture model
with log-cumulants of texture models is drawn, which leads to an important finding
that can be employed to distinguish the texture from mixture. The method is tested
on both simulated data and real SAR data.

• The conclusions are summarized in Chapter 7.
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Chapter 22
SAR Polarimetry and

PolSAR Systems

SAR systems are widely used in remote sensing nowadays. It was started in 1951 by Carl
Wiley, and the first focused image was obtained at the Michigan University in 1958 [34].
The capability of SAR sensors to image Earth both during the day and the night for
almost all weather conditions becomes more and more attractive in Earth monitoring.
As an active remote sensing tool, SAR has the advantage of providing control over such
factors as power, frequency, phase, polarization, incident angle, spatial resolution and
swath width, all of which are important when designing an operational system for the
extraction of target information. The ability of radar to penetrate persistent cloud cover
have produced improvements in newscasts, forecasts and climatologist analyses because
diurnal and seasonal variances can be monitored [1].

By collecting a near-simultaneous and mutually coherent versions of the scattered field
in a minimum basis set of polarizations, PolSAR instruments allow for a more complete
characterization of the targets’ scattering characteristics [1]. PolSAR systems measure
the EM polarimetric information of the scattered wave in addition to the backscattered
power, offering the surplus advantage of exploiting different responses of scatterers to
different polarizations of the incident wave [3]. PolSAR data, as a result, can lead to a
significant improvement in information retrieving algorithms by adding knowledge about
scattering mechanisms.

Airborne PolSAR sensors were firstly developed due to their flexibility and lower cost,
which helped later on the planning of much more expensive satellite missions. In 1985,
the Jet Propulsion Laboratory (JPL) successfully implemented the first practical fully
polarimetric AIRSAR at L-band that is mounted aboard a modified National Aeronautics
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and Space Administration (NASA) DC-8 aircraft. After that, many airborne PolSAR
systems flourished. Systems with higher spatial resolution such as E-SAR were developed
[3]. The spaceborne PolSAR era started in 1994, when the SIR-C/X-SAR was successfully
launched onboard the Space Shuttle. Recently, several fully PolSAR satellites operating
at different frequencies have been successfully launched. They provide sufficient data
for remote sensing the Earth’s environment, such as hazard monitoring, soil moisture
estimation, forest sensing, and so on [3].

This chapter provides an overview of SAR imaging and SAR polarimetry. The re-
mainder is organized as follows. First, some basic concepts of a SAR are introduced, with
emphasis on the data formation process, which is the core concept of the random walk
model detailed in later chapters. Then, SAR polarimetry is reviewed, as well as PolSAR
data descriptors are introduced. At last, a general review of the most advanced PolSAR
sensors is also provided, including spaceborne, airborne and ground based instruments.
All the SAR data used in this manuscript are from these systems.

2.1 SAR Imaging

Illustration of a typical stripmap SAR is shown in Fig. 2.1. The antenna is mounted on a
platform such as an aircraft that travels along a flight path at a height of H with velocity
v. It illuminates a certain area, known as footprint, on the ground as the aircraft moves.
The flight path is referred to as the azimuth direction, or along-track direction. The
across-track dimension perpendicular to the flight path is called slant range direction, or
simply range direction, and the ground range is its projection on Earth [1–3,34]. A SAR
makes observation in both the range direction and the azimuth direction, resulting into
a two-dimensional measurement.

When a radar works, the antenna illuminates an area by transmitting EM pulses of
duration τp repeatedly at a given interval, Pulse Repetition Interval (PRI). Each pulse
travels to the target area and illuminates targets at that location. The same antenna
collects the reflected return echos during the pulse interval. By precisely measuring the
properties such as amplitude and phase of the reflected wave, as well as the time delay, the
radar is able to extract certain information of the reflecting object at a specific distance.
SAR ”works” because the radar pulse travels to and from the target at the speed of light,
which is much faster than the speed of the aircraft [1].

The angular spread of the radar beam is determined by the antenna size. Suppose
that the antenna has a length of La and a width of Wa, the half-power beam width in
the horizontal and vertical directions are given by [34]

θH = λ

La
, θV = λ

Wa
(2.1)

where λ is the wavelength of the transmitted signal. Let γ0 denote the look angle and
R0 the slant range to the midpoint of the footprint, the ground swath width then can be
approximated by

Wg ≈
θVR0

cos γ0
= λR0

Wa cos γ0
. (2.2)
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2.1 - SAR Imaging

Figure 2.1: SAR imaging geometry.

An important parameter to evaluate the performance of a SAR instrument is the
spatial resolution, both in the range direction and in the azimuth direction. The range
resolution of a radar system is its ability to distinguish two objects separated by some
minimum distance in that direction. As shown in Fig. 2.2b (top), two targets can be
discriminated only if the time delay of their echos is larger than the pulse length, that is,
∆t ≥ τp. The range resolution, therefore, is given by

δr = cτp
2 (2.3)

with c denoting the speed of light. The value is proportional to the pulse length, im-
plying that a short pulse results in better resolution. Unfortunately utilizing short pulse
decreases the average power, which degrades radar signal detectability and measurement
precision [2, 34]. Since the average transmitted power is directly linked to the receiver
Signal to Noise Ratio (SNR), it is desired to increase the pulse width while simultane-
ously maintaining adequate range resolution. This can be accomplished by using pulse
compression technique, such as Linear Frequency Modulation (LFM) or chirp, that allows
achieving the average transmitted power of a relatively long pulse, while obtaining the
range resolution corresponding to a short pulse. A linear chirp waveform can be described
by

s(t) = A exp
[
j2π

(
fct+ βt2

2

)]
, −τp2 ≤ t ≤

τp
2 (2.4)

where A is the amplitude, fc is the carrier frequency and β is the chirp rate. The
instantaneous frequency is fc + βt, and the bandwidth is given by Bt = βτp. The echo
from a point target at distance R will be a replica of the transmitted pulse with a time
delay τ = 2R/c. If we apply a matched filter to the received echo, the output turns out
to be [35]

g(t) = Aτp exp(j2πfct) exp
(
−j4πR

λ

)
sinc(πBt(t− τ)), −τp2 ≤ t− τ ≤

τp
2 (2.5)
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(a) (b)

Figure 2.2: Illustration of range resolution. (a) Geometry of target scattering. (b) The
received echo (top) and the result after pulse compression (bottom). If two targets are too
close, the received echo will be overlapped (the red echo and the blue echo for example),
meaning that the radar system will treat the echos as from one target. But after pulse
compression, the overlapped echos are separated, then the radar is able to determine the
ranges using the processed echos.

where sinc(x) = sin x/x. The length of the main lobe of this processed echo is given by
τ ′p = 1/Bt. A proper value for β could lead to τ ′p < τp. And an instant consequence is
that the overlapped long echos are ”compressed” and can be separated (see Fig. 2.2b).
The targets then could be distinguished if we exploit the processed echo instead of the
received echo, the range resolution in this case is given by

δr = c

2Bt
. (2.6)

Azimuth resolution is the minimum distance on the ground in the direction parallel
to the flight path at which two targets can be separately imaged. Two targets located
at same slant range can be resolved only if they are not in the radar beam at the same
time. The azimuth resolution of a conventional radar is determined by the width of the
footprint [34]

δa ≈ R0θH = R0λ

La
. (2.7)

The azimuth resolution is dependent on aperture length. In order to improve resolution,
a longer antenna needs to be employed. However, the constructing and maintaining
of a long antenna is impractical, especially for spaceborne sensors which are at a high
altitude. To handle this problem, SAR instruments use a virtual large antenna or a virtual
antenna of large ”aperture” [34]. As the aircraft moves along the flight path, a target
under illumination has different angles to the radar at different times, which gives rise to
a changing frequency in the returns. A very narrow equivalent azimuth main lobe can
be synthesized by exploiting the frequency history via signal processing techniques. The
end result is as if an antenna of great length (up to a kilometer) is generated. Suppose
that the distance from the radar to a target in the azimuth direction is x (see Fig. 2.3),
the squint distance can be approximated by [34]

R ≈ R0 + x2

2R0
, −R0θH

2 ≤ x ≤ R0θH
2 . (2.8)
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Figure 2.3: Illustration of azimuth resolution.

Substituting it into (2.5) yields

g(t, x) = Aτp exp(j2πfct) exp
(
−j4πR0

λ

)
exp

(
−j2πx

2

λR0

)
sinc(πB(t− τ)). (2.9)

As the aircraft moves, the relative distance x changes and a Doppler frequency shift will
occur in the echos from the same target. Its effect approximates to a linear chirp with
chirp rate 2/λR0. The bandwidth is given by Bx = 2θH/λ. Applying a matched filter to
the result again, we have the output waveform as

g(t, x) = Aτp exp(j2πfct) exp
(
−j4πR0

λ

)
sinc(πBxx) sinc(πB(t− τ)) (2.10)

and two targets can be resolved if they are located in the along-track direction of a
distance greater than

δa = 1
Bx

= La
2 . (2.11)

The signal described by (2.10) can be further demodulated to remove the carrier
frequency, and the time variable can be converted to range distance, giving

g(r, x) = Aτp exp
(
−j4πR0

λ

)
sinc

(
πx

δa

)
sinc

(
πr

δr

)
. (2.12)

It is equivalent to a rectangular low-pass filter. By considering the complex reflectivity
σs, a SAR image could be modeled as follows [34]:

S(r, x) =
∫ ∞
−∞

∫ ∞
−∞

σs(t′, x′)g(r − r′, x− x′)dt′dx′. (2.13)

A resolution cell in a SAR image is represented as the coherent sum of the responses from
the whole cell. This is the core concept of the random walk model that will be detailed
in Chapter 5.

2.2 SAR Polarimetry

Now let us consider the polarizations of the transmitted EM pulses. Polarimetry refers
specifically to the vector nature of the EM waves. A PolSAR system generates EM
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pulses at specified polarization states and transmits them to the Earth’s surface. When
the EM pulse impinges on a target, the polarization state changes due to the index of
refraction, permittivity, magnetic permeability, and conductivity of the target as well
as its geometry. The PolSAR system then measures the change in polarization of the
backscattered pulse and extract target information [3]. Polarimetry provides a strong
link to the physics of the scattering process, which allows the identification of distinct
scattering mechanisms [3]. Consequently, radar polarimetry is becoming an indispensable
technology in modern remote sensing. Wave polarimetry and scattering polarimetry are
explained separately in the following sections.

2.2.1 Wave Polarimetry

The Maxwell’s equations are the starting point to solve electromagnetic problems as they
govern the generation and propagation of EM waves, as well as the interaction of these
waves with matter. For EM sources in a non-conducting, lossless, isotropic media with
electric permittivity ε and magnetic permeability µ, the formulation of the Maxwell’s
equations in differential form can be expressed as follows

∇ ·D(r, t) = ρ(r, t)
∇ ·B(r, t) = 0

∇×E(r, t) = −∂B(r, t)
∂t

∇×H(r, t) = J(r, t) + ∂D(r, t)
∂t

(2.14)

where E is the electric field, B is the magnetic field, D = εE is the electric displacement
field, and H = B/µ is the magnetic field strength [36]. All of them are functions of the
position r and the time t. EM energy comes from the current intensity J and the free
change density ρ.

The electric field and the magnetic field described by (2.14) can be decoupled by
raising their order. For source free media, i.e., ρ = 0 and J = 0, the result takes the form

∇2Φ− 1
εµ

∂2Φ
∂t2

= 0 (2.15)

where Φ can be either E or B. Equation (2.15) is usually referred as the wave equation,
which has an infinite number of solutions [36]. Among those, one special solution is the
constant amplitude monochromatic plane waves [36]. Considering a frequency modulation
for the EM fields as described by (2.4), the plane waves can be written as

E = Re {E0e
−jk·rejθ(t)+δr}

B = √εµ k
|k| ×E

(2.16)

where E0 is the constant amplitude, δr is the initial phase term, θ(t) = ωt+ πβt2 is the
time dependence, and k is the propagating vector. The electric field E and magnetic field
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B are perpendicular to each other. The wave propagates along the direction k̂ with wave
number k:

k = |k| = 2π
λ

k̂ = k
k

(2.17)

Equation (2.16) indicates that the electric field and magnetic field have similar forms.
From now on, only the electric field will be considered, since the same analysis applies to
both fields.

Let ĥ and v̂ denote the horizontal direction and the vertical direction respectively.
The electric field may be represented in an orthogonal Cartesian basis (ĥ, v̂, ẑ) so that
the direction of propagation k̂ = ẑ. The expression of the electric field given by (2.16)
becomes

E =
[
Eh
Ev

]
=
[
E0h cos(θ(t)− kz + δh)
E0v cos(θ(t)− kz + δv)

]
. (2.18)

Let us consider the geometric locus by describing the electric field as a function of time
at a particular point in space, saying z = 0. It can be shown that the field components
Eh and Ev satisfy [3] (

Eh
E0h

)2
+
(
Ev
E0v

)2
− 2 EhEv

E0hE0v
cos δ = sin2 δ (2.19)

where δ = δh − δv. The above equation describes an ellipse that is called polarization
ellipse, of which the shape depends neither on time nor on space position. The polarization
ellipse defines the polarization state of an EM wave, that can be expressed as the so-called
Jones Vector

E =
[
Eh
Ev

]
=
[
E0he

jδh

E0ve
jδv

]
(2.20)

The polarization ellipse can be also characterized using three parameters as shown in
Fig. 2.4:

1. The polarization amplitude A that can be obtained as

A =
√
E2

0h + E2
0v. (2.21)

2. Orientation or tilt angle φ ∈
[
−π2 ,

π
2
]
. This angel gives the orientation of the ellipse

major axis respect to the horizontal direction. Its value is

tan(2φ) = 2E0hE0v

E2
0h − E2

0v
cos δ (2.22)

3. Ellipticity angle τ ∈
[
−π4 ,

π
4
]
. This angle represents the ellipse aperture in such a

way that
| sin(2τ)| = 2E0hE0v

E2
0h + E2

0v
| sin δ|. (2.23)

The sign of the ellipticity angle determines the sense in which the polarization ellipse
is described: for τ < 0 the polarization sense is right-handed whereas for τ > 0 it is
left-handed.

13



Chapter 2. SAR Polarimetry and PolSAR Systems

Figure 2.4: Polarization ellipse.

The two sets of field parameters, {E0h, E0v, δ} and {A, φ, τ}, are equivalent. The electric
field given by (2.18) can be written as

E = Aejα
[
cosφ − sinφ
sinφ cosφ

] [
cos τ
j sin τ

]
(2.24)

where α is the initial phase respect to the phase origin at t = 0.
One can identify some important particular polarization states by considering special

values for the polarization ellipse parameters, including linear polarization state where δ =
mπ,m = 0,±1,±2, . . . , and circular polarization state with δ = mπ/2,m = ±1,±3, . . .
and E0h = E0v.

2.2.2 Scattering Polarimetry

One property that can characterize distant targets is the change of the polarization state
that a target may induce to the incident field. Let the polarized incident wave and
scattered wave be expressed as the Jones Vectors

Ei =
[
Eih
Eiv

]
Es =

[
Esh
Esv

]
(2.25)

It is possible to relate the incident and scattered wave by means of a 2 × 2 complex
matrix [3] [

Esh
Esv

]
= e−jkz

z

[
Shh Shv
Svh Svv

] [
Eih
Eiv

]
(2.26)

where z is the distance between the target and the receiving antenna, and k is the wave
number of the illuminating wave. The coefficient z−1 is produced by the spherical nature
of the scattered wave. The phase factor e−jkz represents the delay of the travel of the
wave from the scatterer to the receiving antenna. The 2 × 2 transformation matrix is
generally referred to as scattering matrix and denoted by S. It characterizes the target
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(a) (b)

Figure 2.5: Scattering Coordinate Systems. (a) BSA. (b) FSA.

under observation with four complex-valued scattering coefficients. The diagonal elements
of the scattering matrix receive the name ”co-pol”, since they relate the same polarization
for the incident and the scattered fields. The off-diagonal elements are known as ”cross-
pol” terms as they relate orthogonal polarization states.

It is important to note that the definition of S depends on the coordinate systems.
There are two principal conventions concerning the coordinate systems where the polari-
metric scattering process can be considered: Forward Scattering Alignment (FSA) and
Backscattering Alignment (BSA). In the FSA, the polarization states of the incident and
the scattered wave are defined with respect to their propagation vectors, meaning that
the coordinate systems are different since the propagation directions are different. In the
BSA, the coordinate systems employed for both incident wave and scattered wave are the
same, with respect to the wave radiated by the antenna. The difference lies in the way the
coordinate system is selected to describe the polarization state of the scattered wave, as
illustrated in Fig. 2.5. The FSA is usually used when the transmitter and the receiver are
not placed at the same spatial location, for example, the bistatic radar measurements. In
contrast, the BSA is often adopted in monostatic radar measurements, in which the trans-
mitting and receiving antennas are collocated in space. Unless otherwise specified, the
BSA is employed through all this manuscript. Nevertheless, the same scatterer matrices
under FSA and BSA can be converted mutually using

SFSA =
[
−1 0
0 1

]
SBSA (2.27)

The interaction between the EM waves with a reciprocal medium follows the vector
reciprocity theorem, which states that if we transmit a polarization state PA from posi-
tion A, then the component polarized in the PB direction at position B is equal to the PA
component of the scattered radiation when we illuminate the same object from B with
polarization PB [37]. The reciprocity theorem applies to ground targets generally. Al-
though there exists a class of non-reciprocal backscatter problems, these are not common
in the remote sensing of natural land and sea surface [37]. In the BSA coordinate system,
the reciprocity theorem says that the cross-polar channels of the scattering matrix are
equal, that is Shv = Svh. Therefore, there are only three independent complex coeffi-
cients required to characterize the scatter under observation. In this manuscript only the
reciprocal medium is considered.
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When the radar transmits a perfectly monochromatic wave and this wave reaches
a fixed or stationary target, it results into a perfectly polarized scattered wave. The
scattering process can be completely represented by the scattering matrix. This type of
targets is referred to as point targets or coherent targets. Point targets have deterministic
responses to the incident wave. Some important point targets, known as canonical bodies,
are shown in Table 2.1 [3]. Canonical bodies are the basic elements making up a complex
scene.

2.2.2.1 Scattering Vector

In many cases, it is more flexible to represent the scattering matrix as a vector which is
known as scattering vector. The vectorization can be performed through [38]

k = 1
2 Tr(SΨ) (2.28)

where Tr(·) is the matrix trace and Ψ is a 2×2 complex matrix from a basis set which are
constructed as an orthonormal set under an Hermitian inner product. The lexicographic
basis and Pauli basis are the most common ones in the context of radar polarimetry.

The lexicographic basis set consists of the straightforward lexicographic ordering of
the elements of the scattering matrix. For a reciprocal target, it is defined as

{Ψl} =
{

2
[
1 0
0 0

]
, 2
√

2
[
0 1
0 0

]
, 2
[
0 0
0 1

]}
(2.29)

The scattering vector in this case can be expressed as

kl =

 Shh√
2Shv
Svv

 (2.30)

The Pauli basis consists of the set of Pauli spin matrices usually employed in quantum
mechanics

{Ψp} =
{√

2
[
1 0
0 1

]
,
√

2
[
1 0
0 −1

]
, 2
√

2
[
0 1
1 0

]}
(2.31)

The vectorization result under this basis set is known as Pauli scattering vector

kp = 1√
2

Shh + Svv
Shh − Svv

2Shv

 (2.32)

The selection of the basis to vectorize the scattering matrix depends on the final
purpose of the vectorization itself. When studying the statistical behavior of the PolSAR
data, the lexicographic basis is more convenient due to its simplicity. If the objective is
the physical interpretation of the scattering coefficients, it is more reasonable to consider
the Pauli basis. The first component in kp can be interpreted as the single scattering from
a sphere or plane surface, the second one represents a dihedral scattering, and the last
one corresponds to an anti-symmetric helix-type scattering that transforms the incident
wave into its orthogonal circular polarization state. The amplitudes of these components
can be used to build a color code, as shown in Fig. 2.15 and Fig. 2.16. This representation
of data is called Pauli decomposition [3] which is widely employed in the later chapters.
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Table 2.1: Scattering Matrix of Point Canonical Bodies

Canonical Body Diagram S

Sphere a
2

[
1 0
0 1

]

Trihedral kl2√
12π

[
1 0
0 1

]

Dihedral kab
π

[
1 0
0 −1

]

Dipol k2l3

3(ln(4l/α)−1)

[
sin2 α − sinα cosα

− sinα cosα cos2 α

]

Left-handed Helix 1
2

[
1 j
j −1

]

Right-handed Helix 1
2

[
1 −j
−j −1

]
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2.2.2.2 Covariance Matrix and Coherency Matrix

Targets under observation are commonly situated in a dynamically changing environment
and are subjected to spatial and temporal variations, for example, forests affected by the
wind and water surfaces in motion. Under this situation, despite the radar system trans-
mits a perfectly polarized wave, the wave scattered by the target is partially polarized.
The electric field vector does not longer describe an ellipse in the plane perpendicular to
the propagation direction. Such scatterers are called distributed targets. The analysis
of this type of targets can not be performed exactly by one target but a population of
targets. More precisely, they are analyzed by introducing the concept of space and time
varying stochastic processes, where the targets are described by the second order moments
such as the polarimetric coherency or covariance matrices.

The covariance matrix is defined as the expectation of the outer product of the target
vector with its transpose conjugate

C = E{klk†l } =

 E{ShhS∗hh}
√

2 E{ShhS∗hv} E{ShhS∗vv}√
2 E{ShvS∗hh} 2 E{ShvS∗hv}

√
2 E{ShvS∗vv}

E{SvvS∗hh}
√

2 E{SvvS∗hv} E{SvvS∗vv}

 (2.33)

where (·)† and (·)∗ denote the transpose conjugate and conjugate, respectively. In the
same way, the coherency matrix is defined as T = E{kpk†p}, giving

T = 1
2

 E{|Shh + Svv|2} E{(Shh + Svv)(S∗hh − S∗vv)} 2 E{(Shh + Svv)S∗hv}
E{(S∗hh + S∗vv)(Shh − Svv)} E{|Shh − Svv|2} 2 E{(Shh − Svv)S∗hv}

2 E{(S∗hh + S∗vv)Shv} 2 E{(S∗hh − S∗vv)Shv} 4 E{|Shv|2}


(2.34)

The two matrices are related by the following unitary transformation

T = 1
2

1 0 1
1 0 −1
0
√

2 0

C

1 1 0
0 0

√
2

1 −1 0

 (2.35)

The covariance matrix is preferred in this thesis, but all the results can be easily applied
to the coherency matrix by the transformation (2.35). Table 2.2 shows some covariance
matrices of simple distributed targets [3].

In practice, the number of scattering vectors used to calculate the expectation is
limited. Let L denote the number of pixels to compute the average, the PolSAR data are
then represented by the so-called sample covariance matrices

CL = 1
L

L∑
i=1

kik†i (2.36)

where ki is the ith scattering vector. The averaging is also called multilook processing
which can be employed to reduce the speckle of PolSAR data. The L is known as the
number of looks.
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Table 2.2: Covariance Matrix of Distributed Canonical Bodies

Mechanism Diagram C

Volume (Forest etc.) fv

 1 0 1/3
0 2/3 0

1/3 0 1



Reflection Symmetry

C1 0 C3
0 C4 0
C∗3 0 C6



Rotation Symmetry

C1 C2 C3
C∗2 C4 −C∗2
C∗3 −C2 C1



Azimuth Symmetry

C1 0 C3
0 C4 0
C∗3 0 C1



2.3 PolSAR Systems

PolSAR systems probe their environment with specially designed waveforms, such as dif-
ferent polarization states, to identify targets of interests and extract desired information
from them. The two most common polarization states employed are horizontal linear
or H, and vertical linear or V. Any arbitrary polarization can be created using these
two orthogonal basis [3]. Fig. 2.6 shows a typical implementation of a PolSAR antenna.
On transmit, waves of different polarizations are transmitted separately, using a switch
to direct energy to the different parts of the antenna in sequence. But the radar an-
tenna is often designed to receive the different polarization components of the EM wave
simultaneously [35]. The same antenna are used to transmit and receive EM waves. A po-
larimetric SAR implemented in this fashion actually acquires four SAR images: one each
for the horizontal-horizontal (HH), horizontal-vertical (HV), vertical-horizontal (VH), and
vertical-vertical (VV) combinations. The basic measurement for each pixel is, therefore,
a complete scattering matrix, or four complex scattering coefficients. Data in this kind
of configuration is referred as quad-pol or full-pol data. Other simpler configurations
include: 1) single-pol (HH or VV or HV or VH), and 2) dual-pol (HH and HV, VV and
VH, or HH and VV).

A general review of the most advanced civilian SAR sensors launched recently that
offer fully polarimetric functionality are presented in the following sections. All test SAR
data in this thesis are from these sensors.
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Figure 2.6: Implement of PolSAR sensors (this figure comes from [35]). A polarimetric
radar is implemented by alternatively transmitting signals out of horizontally and vertically
polarized antennas and receiving at both polarizations simultaneously.

2.3.1 Spaceborne Sensors

Satellite radars have the advantage of being able to collect imagery more quickly over a
larger area, and provide consistent viewing geometry. Once a spaceborne imaging sensor
becomes operational, the data product should be very consistent and predictable, allowing
end users to develop robust applications for exploitation of the imagery.

2.3.1.1 TerraSAR-X

TerraSAR-X is a German Earth-observation satellite that uses an X-band SAR sensor
to acquire images of very high spatial resolution. The system was launched on June 15,
2007, with the objective to provide high-resolution SAR data for scientific and commercial
applications, such as: hydrology, geology, climatology, oceanography, environmental and
disaster monitoring, and cartography (DEM generation, with TanDEM-X) [39,40].

The satellite is in a near-polar orbit around the Earth, at an altitude of 514 kilome-
ters, with inclination of 97.44 degrees and nominal revisit period of 11 days. TerraSAR-X
can cover any point on Earth within a maximum of 4.5 days, 90% of the surface within
2 days [41]. It has three imaging modes, the Stripmap mode, the Spotlight mode and
the ScanSAR mode, to meet the different requirements of spatial resolutions by various
applications [42]. The X-band SAR sensor offers measurements using different polariza-
tions, single or dual. But unfortunately, the full-polarization imaging is experimental.
Full-Pol data is obtained by employing the redundant receiving antenna and splitting
the receiving channel into two halves electronically [43]. TerraSAR-X can work both in
the right-looking mode with incident angles defined by the full performance range, or in
the left-looking mode with a wider range of incidence angles specified by the data access
range. System parameters corresponding to the full-polarization imaging are summarized
in Table 2.3.
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Figure 2.7: TerraSAR-X satellite. Image credit: DLR, available at http://www.dlr.de/
dlr/en/desktopdefault.aspx/tabid-10377/565_read-436/#/gallery/350

Table 2.3: System Parameters of TerraSAR-X

Parameter Value
Frequency X-band (9.65 GHz)
Pulse Repetition Frequency (PRF) 2.0 KHz − 6.5 KHz
Bandwidth 150 MHz (300 MHz experimental)
Obit Altitude 514 km
Repetition Rate 11 days
Spatial Resolution (rg × az) 1.9 m × 6.6 m
Swath Width 15 km

Incidence Angle 20◦ − 45◦ (full performance)
15◦ − 60◦ (access range)

2.3.1.2 RADARSAT-2

RADARSAT-2 was successfully launched on December 14, 2007. As the Canada’s next-
generation commercial radar satellite, it offers powerful technical advancements that en-
hances marine surveillance, ice monitoring, disaster management, environmental moni-
toring, resource management and mapping [44,45].

RADARSAT-2 is a follow-on mission of RADARSAT-1. They have the same orbit,
798 km altitude sun-synchronous orbit with 6 p.m. ascending node and 6 a.m. descend-
ing node [46]. The satellite has a SAR sensor operating at C-band, which has minimal
interference from severe weather conditions and offers consistent and reliable data. It can
operate in multiple polarization modes, including two fully polarimetric modes, Standard
Quad-Pol and Fine Quad-Pol. The instrument has three fundamental imaging modes:
Single Beam (or Stripmap), ScanSAR, and Splotlight. Data of different spatial resolutions
are obtained in these modes [46, 47]. The RADARSAT-2 SAR sensor is very flexible. It
is possible to reprogram the sensor, adding new modes for example to meet the require-
ments of resolution and swath width [48]. Table 2.4 shows the satellite characteristics
corresponding to the full polarization modes.
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Figure 2.8: RADARSAT-2 Satellite. Image credit: CSA, available at http://www.asc-csa.
gc.ca/eng/satellites/radarsat2/default.asp.

Table 2.4: System Parameters of RADARSAT-2

Parameter Value
Frequency C-band (5.405 GHz)
PRF -
Bandwidth 100 MHz
Obit Altitude 798 km
Repetition Rate 24 days

Spatial Resolution (rg × az) 5.2 m × 7.6 m (Fine Quad-Pol)
9.0 m × 7.6 m (Standard Quad-Pol)

Swath Width 25 km
Incidence Angle 18◦ − 49◦

2.3.1.3 ALOS-2

The Advanced Land Observing Satellite-2 (ALOS-2), also called Daichi-2, is a Japanese
satellite which was launched on May 24, 2014. As a successor of ALOS, ALOS-2 provides
data continuity to be used for cartography, regional observation, disaster monitoring, and
environmental monitoring [49,50].

The satellite, in a sun-synchronous orbit at altitude 628 km, is equipped with a global-
leading L-band SAR sensor, PALSAR-2 [51]. Using radio waves of long wavelength makes
ALOS-2 especially advantageous to measure forests in tropical areas which are covered
by clouds almost all around the year. It is possible to choose one of the three optional
frequencies in L-band to avoid the interference into Radio Navigation Satellite Service
(RNSS) signal [52]. The sensor also allows Stripmap, ScanSAR and Spotlight observations
covering scenes of different sizes, which is the same as TerraSAR-X and RADARSAT-2.
Two full-polarization imaging modes, named High-sensitive and Fine, respectively, are
available, with system parameters shown in Table 2.5.
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Figure 2.9: ALOS-2 satellite. Image credit: JAXA, available at http://www.eorc.jaxa.
jp/ALOS-2/en/about/overview.htm.

Table 2.5: System Parameters of ALOS-2

Parameter Value
Frequency L-band (1.237, 1.258 or 1.279 GHz)
PRF 1.5 KHz − 3.0 KHz
Bandwidth 42 MHz (High-sensitive), 28 MHz (Fine)
Obit Altitude 798 km
Repetition Rate 14 days

Spatial Resolution (rg × az) 5.1 m × 4.3 m (High-sensitive)
8.7 m × 5.3 m (Fine)

Swath Width 40 km (High-sensitive), 30 km (Fine)
Incidence Angle 8◦ − 70◦

2.3.2 Airborne Sensors

Airborne sensors are flexible to collect data from different flight paths and look directions.
An airborne radar is able to make measurements anywhere and at any time as long as
weather and flying conditions are acceptable, which make it a tool of great importance
in disaster monitoring. In addition, any problems that may occur to the sensor can be
inspected conveniently, and upgrades can be easily implemented.

2.3.2.1 F-SAR

F-SAR, as the successor of the E-SAR system developed by DLR, is among the most ca-
pable, advanced and flexible radar systems in the world. Its development was triggered by
the strong demand of E-SAR users and customers for data being simultaneously acquired
at different wavelengths and polarizations [53]. The new system offers very high spatial
resolution, excellent radiometric accuracy, and low noise level SAR data in X-, C-, S-, L-
and P-band with full polarimetry functionality. And it can obtain remote sensing images
up to 4 wavelengths simultaneously (multispectral SAR) [54]. Furthermore, F-SAR sup-
ports fully reconfigurable operation. It is very easy to mount other antennas and change
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Figure 2.10: Artist’s view: F-SAR acquiring data simultaneously in X-, C-, L- and P-
bands. Image credit: DLR, available at http://www.dlr.de/hr/en/desktopdefault.aspx/
tabid-2326/3776_read-5691/.

Table 2.6: System Parameters of F-SAR

X C S L P
Frequency (GHz) 9.6 5.3 3.25 1.325 0.35/0.45
Range Resolution (m) 0.2 0.4 0.5 1.0 1.5
Azimuth Resolution (m) 0.2 0.3 0.35 0.4 1.5
Swath Width (km) 3− 5
Incidence Angle (deg) 25◦ − 60◦

antenna configuration while avoiding individual airworthiness certification procedures at
the same time [53]. Though its first flight took place in November 2006, F-SAR had been
under heavy development until 2013, in which year all subsystems were completed and
an optimization of their performance was started [55]. A F-SAR X-band image is shown
in Fig. 2.16. It can be seen that very high spatial resolution is achieved. Table 2.6 shows
some radar parameters of this new system [55].

2.3.2.2 Pi-SAR2 / Pi-SAR-L2

Pi-SAR2 is an airborne X-band polarimetric and cross-track inteferometric SAR designed
by National Institute of Information and Communications Technology (NICT), Japan.
Its development was started in 2006 with the goal of providing images at finer resolution
as well as quick data delivery for disasters, and it had been completed in 2009 [56,57]. The
system provides high-resolution polarimetric data with spatial resolution of 0.3 m in the
azimuth and the slant range directions. A similar instrument is the Pi-SAR-L2 developed
by JAXA in 2011-2012 which operates at L-band. It has a lower spatial resolution but
larger swath width [58, 59]. Both Pi-SAR2 and Pi-SAR-L2 are new versions of the Pi-
SAR instrument which is a dual-frequency (X-band and L-band) airborne polarimetric
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Figure 2.11: Pi-SAR2. Image credit: NICT, available at https://pi-sar.nict.go.jp/.

and interferometric SAR. They are mounted on the same Grumman Gulfstream 2 jet
plane with a nominal altitude of about 12 km [57, 60]. Detailed radar parameters about
these two sensors are shown in Table 2.7 [56,59].

2.3.2.3 UAVSAR

UAVSAR is a pod-based L-band SAR for interferometric repeat-track observations that
is developed at JPL. The radar is designed to be operable on a Unmanned Aerial Vehicle
(UAV), but was initially demonstrated on a NASA Gulfstream III aircraft in 2007 [61].
The primary objective of the side-looking UAVSAR instrument is to accurately map
crustal deformations associated with natural hazards, such as volcanoes and earthquakes
[62]. The radar is fully polarimetric, with a range bandwidth of 80 MHz, 2 m range
resolution, and supports a 16 km range swath. The UAVSAR project also serves as a
technology test bed. As a modular instrument with numerous plug-and-play components,
it is possible to test new technologies for airborne and spaceborne applications. For
example, the P-band polarimetry capability was added to UAVSAR to study subcanopy
and subsurface soil moisture for a 3-year period in 2011 [63]. Radar characteristics of
UAVSAR are shown in Table 2.7 [61].

2.3.2.4 EcoSAR

EcoSAR is a state-of-the-art beamforming SAR recently developed at the NASA’s God-
dard Space Flight Center (GSFC) for the measurement of ecosystem structure and biomass.
The airborne instrument operates at a center frequency of 435 MHz (P-band), and uses a
multi-channel reconfigurable architecture to implement fully polarimetric [64]. Utilizing
Radio waves with long wavelength makes the instrument very suitable to study canopy
layer of forests. The finest resolution of the EcoSAR data is 0.5 m in the azimuth and 0.75
m in the slant range. The instrument architecture allows for the real-time configuration
of radar parameters, including center frequency, resolution, incidence angle, and number
of beams, among others. Its development was recently completed, and the first flight
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Figure 2.12: UAVSAR. Image credit: JPL, available at http://uavsar.jpl.nasa.gov/
education/what-is-uavsar.html.

Figure 2.13: EcoSAR. Image credit: NASA, available at http://neptune.gsfc.nasa.gov/
bsb/index.php?section=301.

campaign was successfully conducted in March 2014 over areas of Bahamas and Costa
Rica [65]. Table 2.7 shows more details about this radar system [65].

2.3.3 Ground-Based Sensors

Continuous terrain monitoring of fast changes such as subsidence and landslide is difficult
to implement via spaceborne or airborne SAR systems, mainly due to the lack of flexibility
and low revisiting frequency. Small and simple ground-based systems that are easy to
deploy wherever are needed, must be considered. Ground-based SAR instruments could
offer advantages of portability, size, weight, power consumption and cost [66]. In this
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Table 2.7: System Parameters of Pi-SAR2, Pi-SAR-L2, UAVSAR and EcoSAR

Pi-SAR2 Pi-SAR-L2 UAVSAR EcoSAR
Frequency (GHz) 9.55 1.27 1.26 0.435
Range Resolution (m) 0.3 1.72 1.67 0.75
Azimuth Resolution (m) 0.3 0.8 0.8 0.5
Swath Width (km) 7.2 20 16 4
Incidence Angle (deg) 10◦ − 65◦ 7◦ − 60◦ 25◦ − 65◦ –

(a) (b)

Figure 2.14: RiskSAR instrument. (a) The deployment of RiskSAR. (b) The illustration
of resolution cells of a RiskSAR measurement [67].

section, a ground-based SAR developed by Universitat Politècnica de Catalunya (UPC)
is explained.

2.3.3.1 RiskSAR

RiskSAR is a polarimetric and interferometric SAR developed by the Remote Sensing
Laboratory (RSLab) of UPC. It is flexible and easy to change frequency bands among L,
C, X, and Ku-band using interchangeable active frequency multiplication modules. The
whole radar, weighting 8.5 kg, is mounted on a linear motion rail to make a synthetic
aperture up to 5.5 meters long. And it has a working range from 100 m to 10 km, with
a base band signal dynamic range of around 80 dB between targets in near range and far
range [66]. As it happens in all ground-based SAR systems available, there is a restriction
in the cross-range resolution due to the limited length of the aperture. In fact, the cross-
range resolution is not constant along the range direction. Considering the X-band of
RiskSAR for example, the center frequency is 9.65 GHz with a bandwidth of 120 MHz.
The range resolution reaches 1.25 m while the cross-range resolution differs from 0.75
m at near range up to roughly 5 m at a far range of 1500 m [67]. A plot of a typical
measurement setup used in the RiskSAR campaigns is shown in Fig. 2.14.
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(a)

(b)

Figure 2.16: PolSAR data acquired by different airborne sensors. Color coding: red =
|Shh + Svv|, green = |Shh − Svv|, blue = |2Shv|. (a) F-SAR X-band Data. (b) UAVSAR
Data.
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Chapter 33
Statistical Models for

PolSAR Data

PolSAR systems are mainly employed for observation of natural scenes. Most geophys-
ical media, forests, vegetation and water surface for instance, have a very complicated
structure. As a consequence, the scattered wave has a complex behavior. It is un-
practical to analyze the scattering process of each target individually due to the lack
of knowledge about the detailed structure. Furthermore, the coherent interference be-
tween scattered waves makes the PolSAR image have a noise-like appearance which is
known as speckle [68]. It is, therefore, more reasonable to analyze the scattering process
stochastically, and knowledge of the exact statistical properties of the signal plays an im-
portant role in the applications of PolSAR data, such as speckle filtering [69–71], land-use
analysis [11,31], ground cover classification [72–74], etc.

Gaussian statistics for the radar return signals have been frequently assumed, based on
the hypothesis that the spatial resolution of PolSAR images is moderate, and the speckle
is fully developed [4, 5, 68]. However, the analysis of real PolSAR data reveals that non-
Gaussian models give a better representation in certain regions like urban areas, forests,
as well as sea surface, implying that processing algorithms based on such models should
improve their performance [27,75]. In the last two decades, a considerable research effort
has been dedicated to finding accurate and efficient non-Gaussian models for PolSAR
data [6–10].

This chapter provides a review of the statistical models proposed in the literature.
First, statistics of the fully developed speckle will be discussed. Properties of the single
look scattering vectors and the multilook sample covariance matrices are studied under
the Gaussian assumption. Then, the concept of texture will be introduced, along with the
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widely studied texture models, including both the scalar texture models and the multi-
texture models. At last, finite mixture models, which are widely used to analyze the
heterogeneity of data, are detailed.

3.1 Gaussian Statistics

The phenomenon speckle is very common in coherent imaging systems such as laser, SAR,
and medical ultrasound. It is primarily due to the interference of the returning waves
at the transducer aperture, where the scattered signals add coherently; that is, they
add constructively and destructively depending on the relative phases of each scattered
waveform [68, 76]. The effect can be clearly noticed in SAR images, as the amplitude
or the intensity of the echo signal present a salt-and-pepper aspect (see Fig. 3.2a and
Fig. 3.3a for example), which causes difficulties for image interpretation. Nevertheless,
useful information can be also extracted from the speckle, particularly when it is linked
to the dynamic speckle phenomenon, where the changes of the speckle pattern, in time,
can be a measurement of the surface’s activity [77]. Therefore, modeling the statistics of
the speckle accurately is very important.

Under the assumption that the speckle is fully developed, it has been experimentally
verified that the Gaussian statistics generally provide a good fit to SAR data, especially
in homogeneous natural areas [4, 78–81]. The multivariate Gaussian distribution, which
is both mathematically tractable and efficient, is proper to model the scattering vectors,
when the surface roughness is relatively low, the spatial resolution is moderate, and a
large number of scatterers are present [3, 68]. The Gaussian assumption indicates that
the statistical properties of the data is determined by the covariance matrix. The sample
covariance matrix, as a result, follows a complex Wishart distribution, which is widely
used in the applications of PolSAR data. There are also some variations of the Wishart
distribution that are shown to be more accurate in certain circumstances.

3.1.1 Gaussian Distribution

When a radar illuminates an area of a random surface containing many elementary scat-
terers, the scattering vector (Section 2.2.2.1), z, can be modeled as having a d-dimensional
complex Gaussian distribution with zero mean. The PDF is given by [82]

p(z; Σ) = 1
πd|Σ| exp(−z†Σ−1z) (3.1)

where | · | is the determinant operation, and Σ is the covariance matrix. The complex
Gaussian distribution is denoted by k ∼ CN (0,Σ) for brevity. The real and imaginary
parts of any complex element of k are assumed to follow a circular Gaussian distribution.
For example, consider the ith element zi = xi + jyi, the joint PDF of the real and
imaginary parts can be written as

p(xi, yi;σi) = 1
πσ2

i

exp
(
−x

2
i + y2

i

σ2
i

)
(3.2)
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where σ2
i = Σii. Let ri be the amplitude and θi be the phase of a complex value, then the

real part of zi can be written as xi = ri cos θi, and the imaginary part as yi = ri sin θi.
The Jacobian determinant of the transform from (xi, yi) to (ri, θi) is given by

J =
∣∣∣∣cos θi −ri sin θi
sin θi ri cos θi

∣∣∣∣ = ri. (3.3)

As a result, the joint PDF of the amplitude and the phase can be obtained from (3.2)
after changing variables, giving

p(ri, θi;σi) = ri
πσ2

i

exp
(
− r

2
i

σ2
i

)
. (3.4)

The circular Gaussian assumption implies that the phase θi is uniformly distributed over
(−π, π], and independent from the amplitude. Averaging over the phase, therefore, gives
the PDF of the amplitude

p(ri;σi) = 2ri
σ2
i

exp
(
− r

2
i

σ2
i

)
. (3.5)

Equation (3.5) is known as the Rayleigh distribution, with mean value σi
√
π/2. The

intensity of the ith channel, Ii = x2
i + y2

i = r2
i , can be easily proved to have a negative

exponential distribution

p(Ii;σi) = 1
σ2
i

exp
(
− Ii
σ2
i

)
(3.6)

with mean value E{Ii} = σ2
i and variance Var{Ii} = σ4

i . This distribution shows that the
useful information is described by a single degree of freedom, corresponding to the mean
intensity.

Besides the intensity, the joint properties of two different polarimetric channels are of
great interest. Considering two polarimetric channels zi = xi + jyi and zk = xk + jyk,
the complex correlation coefficient is determined by

ρejϕ = Σik√
ΣiiΣkk

(3.7)

and the joint PDF of the real parts and imaginary parts of the two channels can be
derived from (3.1), which is given as follows [83]

p(xi, yi, xk, yk) = 1
π2ψ2(1− ρ2) exp

(
−σ

2
k(x2

i + y2
i ) + σ2

i (x2
k + y2

k)
ψ2(1− ρ2)

+2ψρ[(xixk + yiyk) cosϕ+ (xkyi − xiyk) sinϕ]
ψ2(1− ρ2)

) (3.8)

where σ2
i = Σii, σ2

k = Σkk and ψ = σiσk. Write the complex values in the polar form,
i.e., riejθi = xi + jyi and rkejθk = xk + jyk, by changing variables from (xi, yi, xk, yk) to
(ri, θi, rk, θk), the previous distribution becomes

p(ri, θi, rk, θk) = rirk
π2ψ2(1− ρ2) exp

(
−σ

2
kr

2
i + σ2

i r
2
k − 2ψrirkρ cos(θi − θk − ϕ)

ψ2(1− ρ2)

)
. (3.9)
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We are interested in the distributions of the product of the two amplitudes z = rirk,
and the phase difference φ = θi − θk, since their values reflect the correlation between
different polarimetric channels. It can be shown that the Jacobian determinant of the
transform from (ri, rk, θi, θk) to (ri, z, θi, φ) is −1/ri. Thus the following distribution can
be obtained after changing variables

p(ri, z, θi, φ) = z

π2ψ2(1− ρ2)
1
ri

exp
(
−
σ2
kr

2
i + σ2

i z
2

r2
i
− 2ψρz cos(φ− ϕ)

ψ2(1− ρ2)

)
(3.10)

from which the joint PDF of z and φ can be further derived by integrating over θi and ri
and employing the equality (3.87)

p(z, φ) = 2z
πψ2(1− ρ2) exp

(
2ρz cos(φ− ϕ)
ψ(1− ρ2)

)
K0

(
2z

ψ(1− ρ2)

)
. (3.11)

Here Kv is the modified Bessel function of the second kind of order v [84]. The marginal
distribution of the product of the amplitudes, subsequently, is found to be

p(z) = 4z
ψ2(1− ρ2)I0

(
2ρz

ψ(1− ρ2)

)
K0

(
2z

ψ(1− ρ2)

)
(3.12)

where I0(z) is the modified Bessel function of the first kind [84] resulting from the integral
identity (3.88). Similarly, integrating (3.11) over the amplitudes and following the identity
(3.89) gives the marginal distribution of the phase difference

p(φ) = 1− ρ2

2π(1− β2)

{
β√
β2 − 1

ln(−β +
√
β2 − 1) + 1

}
(3.13)

with β = ρ cos(φ−ϕ). Note that −β+
√
β2 − 1 is a complex number since β is less than

1. Therefore, it can be represented in the polar form, e.g., −β +
√
β2 − 1 = exp(j(π −

arccosβ)), and as a result, (3.13) becomes

p(φ) = 1− ρ2

2π(1− β2)

{
β(π − arccosβ)√

1− β2
+ 1
}
. (3.14)

The PDFs shown in (3.12) and (3.14) can be also found in [83,85].
The Gaussian assumption implies that the statistics of the PolSAR data is completely

determined by the covariance matrix. The properties described by the multivariate distri-
bution (3.1) can be analyzed separately by the intensity (3.6), the product of amplitudes
(3.12) and the phase difference (3.14). To demonstrate this, two homogeneous Region Of
Interest (ROI)s over the crops area of a RADARSAT-2 image are analyzed, as shown in
Fig. 3.2. The histograms of the intensity, product of amplitudes and phase difference are
plotted, as well as the corresponding PDFs computed using the estimated parameters. It
shows that the Gaussian assumption is valid in the test areas.

3.1.2 Wishart Distribution

SAR data are frequently multilook processed for speckle reduction. Under the Gaussian
assumption, the sample covariance matrix CL defined in Section 2.2.2.2 follows a complex
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3.1 - Gaussian Statistics

Wishart distribution, CL ∼ CW(L,Σ), with PDF given by [82]

p(CL;L,Σ) = LLd|CL|L−d exp(−L Tr(Σ−1CL))
Γd(L)|Σ|L (3.15)

where L is the number of looks, and Tr(·) denotes the matrix trace. The normalization
factor Γd(L) is defined as

Γd(L) = πd(d−1)/2
d∏
i=1

Γ(L− i+ 1) (3.16)

with Γ(·) referring to the gamma function. The random variables of this distribution are
the diagonal terms of CL and the real and imaginary parts of the upper (or lower) off-
diagonal terms. For d-dimensional radar signal, the total number of independent variables
is d2.

Considering only one polarimetric channel, from (3.15), we have the distribution of
the intensity as

p(Ii;L, σi) = 1
Γ(L)

(
L

σ2
i

)L
IL−1
i exp

(
− L

σ2
i

Ii

)
. (3.17)

It is known as the gamma distribution with mean value E{Ii} = σ2
i and variance Var{Ii} =

σ4
i /L [86]. The number of looks can be estimated using the mean and the variance of the

intensity

L̂ = E2{Ii}
Var{Ii}

. (3.18)

When L is equal to 1, the gamma distribution reduces to the exponential distribution
(3.6). The variances of the two different distributions show that the multilook process
reduces the speckle by scaling down the fluctuation magnitude with a factor 1/L.

For two polarimetric channels, saying channel i and channel k, the sample covariance
matrix can be written as

CL =
[

Ii Rik + jIik
Rik − jIik Ik

]
. (3.19)

Let ρejϕ represent the complex correlation coefficient, the joint distribution of Ii, Ik, Rik
and Iik can be derived from (3.15), giving

p(Ii, Ik, Rik, Iik) = L2L(IiIk −R2
ik − I2

ik)L−2

πΓ(L)Γ(L− 1)ψ2L(1− ρ2)L×

exp
(
−Lσ

2
i Ik + σ2

kIi − 2ρψ(Rik cosϕ− jIik sinϕ)
ψ2(1− ρ2)

) (3.20)

where σ2
i = Σii, σ2

k = Σkk, and ψ = σiσk. Write the off-diagonal element in the polar
form, zejφ = Rik + jIik, by changing variables from (Ii, Ik, Rik, Iik) to (Ii, Ik, z, φ), the
following result can be obtained

p(Ii, Ik, z, φ) = zL2L(IiIk − z2)L−2

πΓ(L)Γ(L− 1)ψ2L(1− ρ2)L×

exp
(
−Lσ

2
i Ik + σ2

kIi − 2zρψ cos(φ− ϕ)
ψ2(1− ρ2)

)
.

(3.21)
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The determinant of CL must be greater than 0, therefore, we have IiIk − z2 > 0. Inte-
grating Ii over (z2/Ik,∞) using (3.90) and then Ik over (0,∞) using (3.87) gives

p(z, φ) = 2LL+1zL

πΓ(L)ψL+1(1− ρ2) exp
(

2Lzρ cos(φ− ϕ)
ψ(1− ρ2)

)
KL−1

(
2Lz

ψ(1− ρ2)

)
(3.22)

Subsequently, the marginal distribution of the amplitude can be obtained following the
integral identity (3.88)

p(z) = 4LL+1zL

Γ(L)ψL+1(1− ρ2)I0
(

2Lzρ
ψ(1− ρ2)

)
KL−1

(
2Lz

ψ(1− ρ2)

)
(3.23)

and the distribution of the phase difference by identity (3.91)

p(φ) = (1− ρ2)L

2
√
π(1− β)2L

Γ(2L)
Γ(L)Γ(L+ 3

2 ) 2F1

(
2L,L− 1

2 , L+ 3
2 ,
β + 1
β − 1

)
. (3.24)

where β = ρ cos(φ− ϕ), and 2F1(a, b; c; z) is the Gauss hypergeometric function [84].
Again, the statistical properties of the the multilook data can be analyzed separately

using (3.17), (3.23), and (3.24). Fig. 3.3 shows a testing area of an ALOS-2 data over
the ocean, where sample covariance matrices are obtained using two different multilook
processing window size, 3 × 3 and 5 × 5. As it can be seen, the histograms fit the
corresponding PDF very well. The variance of the data reduces as increasing the multilook
window size, or increasing the number of looks. The Wishart distribution is widely used
in the modeling of PolSAR data [4,70,87,88], and there are several variations that make
the model more accurate or efficient.

3.1.2.1 Relaxed Wishart Model

Compared with the multivariate complex Gaussian distribution, the Wishart distribution
depends on an additional parameter, L, the number of looks. Assume that the multilook
processing has different contributions to different types of targets, Anfinsen et al. pro-
posed a refined model called relaxed Wishart distribution [89], in which the number of
looks L is treated as a variable shape parameter. In other words, the number of looks
is assumed to be distinct in different areas. It is observed that varying L gives a better
representation of the data than using a constant L over all regions [89].

3.1.2.2 Wishart-Kotz Distribution

Another variation of the Wishart distribution is the Wishart-Kotz model [90, 91], which
exhibits the heavy tails needed to fit the data found in high resolution PolSAR images. In
addition, there are no special mathematical functions involved that limit the usefulness
by inflicting high computational cost and numerical instability. The sample covariance
matrix in the Wishart-Kotz model is assumed to follow a Wishart-Kotz type I distribution
with PDF defined as [90]

p(CL;L,Σ, ρ, β) = c|CL|L−d

|Σ|L (Tr(Σ−1CL))β−1 exp(−[L Tr(Σ−1CL)]ρ) (3.25)
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with additional parameters ρ and β, and a normalization constant factor c

c = ρLβ+Ld−1Γ(Ld)
Γd(L)Γ(β+Ld−1

ρ )
. (3.26)

Here Γd(L) is the same as that in Wishart model, see (3.16). The Wishart-Kotz distri-
bution is a generalization of the Wishart distribution, which reduces to the latter when
ρ = 1 and β = 1.

3.2 Texture Model

As the image resolution increases, the analysis of real PolSAR images reveals that non-
Gaussian models give a better representation of the natural areas like forests and rough
sea surface [6,7,27,74,92]. It is widely accepted that the randomness of the radar images
is commonly due to two unrelated factors, texture and speckle. The texture models
the natural spatial variation of the radar cross section, whereas the speckle, following a
complex Gaussian distribution, represents the polarimetric information. The texture and
the speckle are incorporated with a product operation which leads to a doubly stochastic
model called product model [93]. It has been shown to be successful for modeling and
prediction purposes in SAR data [6, 7, 27].

The properties of the speckle are detailed in the previous section. This section illus-
trates how to model the texture statistically. There are two main manners to manage
this: 1) consider the texture as a scalar random variable, or 2) consider it as a vector
having the same dimension as the speckle component. They lead to the so called scalar
texture model and multi-texture model, respectively. Furthermore, the texture random
variable is assumed to be positive with unity mean, therefore, it models the variation of
the radar cross section only, leaving the intensities to the speckle component [4,26]. The
statistical properties could be described by a certain distribution, or just a stochastic
process without a specific PDF.

3.2.1 Scalar Texture Model

The scalar texture model assumes that the texture component in the product model is a
positive scalar random variable. The scattering vector in this case can be written as

k =
√
τz (3.27)

where τ is the texture parameter with mean value equal to 1, and z is the speckle vector,
following a multivariate Gaussian distribution (3.1). The scalar texture model is also
referred to as scale mixture of Gaussian [74], or Spherically Invariant Random Vector
(SIRV) [13,94,95]. For the multilook data, the sample covariance matrix can be expressed
as

CL = 1
L

L∑
i=1

τiziz†i = τ

L

L∑
i=1

ziz†i (3.28)

under the assumption that the texture has a higher spatial correlation than the speckle
and the texture parameter is constant over the multilook processing window [7].
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For a known τ , (3.27) implies that the scattering vector k follows a complex Gaussian
distribution (Section 3.1.1) with PDF given by

p(k|τ ; Σ) = 1
πd|Σ|

1
τd

exp
(
−k†Σ−1k

τ

)
(3.29)

where Σ = E{kk†} is the covariance matrix. And the distribution of the sample covari-
ance matrix is given by

p(CL|τ ;L,Σ) = LLd|CL|L−d

Γd(L)|Σ|L
1
τLd

exp
(
−L Tr(Σ−1CL)

τ

)
(3.30)

which is known as the Wishart distribution detailed in Section 3.1.2.
If the PDF of the texture random variable is not explicitly specified, τ can be viewed

as an unknown deterministic parameter from pixel to pixel [13]. According to the concept
of SIRV, an approximate Maximum Likelyhood (ML) estimator for the texture parameter
of each pixel is found to be [13,94]

τ̂i = k†i Σ̂−1ki
d

Σ̂ = 1
N

N∑
i=1

kik†i
τ̂i

(3.31)

where τ̂i is the texture parameter of ith pixel, d is the dimension of the target vector, and
N is the number of pixels in the neighborhood. The problem can be solved recursively
by [13,94,95]

Σ̂k+1 = d

N

N∑
i=1

kik†i
k†i Σ̂

−1
k ki

(3.32)

where k is the number of iteration. The initialization and the criterion to stop the recursive
process are detailed in [13]. This estimator is referred to as fixed point estimator [13].

On the contrary, if the texture random variable is specified by a distribution, averaging
all possible τ gives the unconditional or marginal PDF of the scattering vector

p(k; Σ) =
∫ ∞

0
p(k|τ ; Σ)p(τ)dτ (3.33)

which is analytically solvable for some choices of p(τ). The PDF of the sample covariance
matrix can be obtained similarly by

p(CL;L,Σ) =
∫ ∞

0
p(CL|τ ;L,Σ)p(τ)dτ. (3.34)

A number of models have been proposed in the literature by introducing different distribu-
tions for the texture component, including the K distribution [7], the G0 distribution [8,9],
the Kummer-U distribution [10], theW, and theM distribution [12], to represent different
scenes of PolSAR data.
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3.2.1.1 K Distribution

The K distribution, assuming that the texture is gamma distributed, is widely used to
model forests, sea surface, and it can be arguably regarded as one of the most successful
radar models [6, 7, 27,74]. The gamma distribution is given by [86]

p(x;α, θ) = 1
Γ(α)θαx

α−1 exp
(
−x
θ

)
(3.35)

with shape parameter α and scale parameter θ. The mean value is µ = αθ. Let τ = x
µ to

ensure the mean value of the texture is equal to 1, the texture distribution can be written
as

p(τ ;α) = αα

Γ(α)τ
α−1 exp(−ατ). (3.36)

See Fig. 3.1a for examples of the PDF plots. The PDF of the scattering vector k can be
obtained by substituting the texture distribution into (3.33) and employing the integral
equality (3.87)

p(k;α,Σ) = 1
πd|Σ|

2αα+d
2

Γ(α) (k†Σ−1k)
α−d

2 Kα−d

(
2
√
αk†Σ−1k

)
. (3.37)

By the same procedure, inserting (3.36) into (3.34), we have the PDF of the sample
covariance matrix as follows

p(CL;α,L,Σ) =LLd|CL|L−d

Γd(L)|Σ|L
2αα+Ld

2

Γ(α)
(
L Tr(Σ−1CL)

)α−Ld
2

×Kα−Ld

(
2
√
αL Tr(Σ−1CL)

)
.

(3.38)

3.2.1.2 G and G0 Distributions

It is shown that the G distribution and the G0 distribution have a good representation in
extremely heterogeneous regions such as urban areas [9]. Especially, the G0 distribution
has the same number of parameters as the K distribution, but without complex special
functions like the Bessel function which requires intensive computations [8, 9].

The G distribution assumes that the texture parameter obeys the GIG law which is
characterized by the PDF [8,96]

p(x; a, b, p) = 1
2Kp(

√
ab)

(a
b

) p
2
xp−1 exp

(
−1

2

(
b

x
+ ax

))
(3.39)

where a > 0, b > 0 and p is a real parameter. The mean value of this distribution is
µ =

√
b
a
Kp+1(

√
ab)

Kp(
√
ab) . Letting τ = x

µ gives

p(τ ; a, b, p) = 1
2
Kp
p+1(
√
ab)

Kp+1
p (
√
ab)

τp−1 exp
(
−
√
ab

2

(
Kp(
√
ab)

Kp+1(
√
ab)

1
τ

+ Kp+1(
√
ab)

Kp(
√
ab)

τ

))
(3.40)
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which can be further rewritten as follows by replacing
√
ab with ω

p(τ ;ω, p) = 1
2
Kp
p+1(ω)

Kp+1
p (ω)

τp−1 exp
(
−ω2

(
Kp(ω)
Kp+1(ω)

1
τ

+ Kp+1(ω)
Kp(ω) τ

))
. (3.41)

Substituting (3.41) into (3.33) and (3.34), and calculating the integral using (3.87) leads
to

p(k;ω, p,Σ) = 1
πd|Σ|

1
ηpKp(ω)

(
η2 + 2η

ω
k†Σ−1k

) p−d
2

×Kp−d

(√
ω2 + 2ω

η
k†Σ−1k

) (3.42)

and

p(CL;ω, p, L,Σ) =LLd|CL|L−d

Γd(L)|Σ|L
1

ηpKp(ω)

(
η2 + 2η

ω
L Tr(Σ−1CL)

) p−Ld
2

×Kp−Ld

(√
ω2 + 2ω

η
L Tr(Σ−1CL)

) (3.43)

where η = Kp(ω)
Kp+1(ω) . The above expressions are the PDFs of the scattering vector and the

sample covariance matrix following G distributions [8, 97].
The G0 distribution can be obtained from the G distribution by letting a → 0. Rep-

resenting the modified Bessel function Kv(z) using (3.92), (3.39) becomes

p(x; a, b, p) =
2p−1Γ

(
p+ 1

2
)

bp
√
π

xp−1 exp
(
−1

2

(
b

x
+ ax

))
×
(∫ ∞

1
e−
√
abt(t2 − 1)p− 1

2 dt

)−1
.

(3.44)

If a→ 0, p = −λ, b = 2β, then the PDF of the GIG distribution is reduced to

p(x;λ, β) = βλ

Γ(λ)x
−λ−1 exp

(
−β
x

)
. (3.45)

after calculating the integral via (3.93). Equation (3.45) is known as the inverse gamma
distribution, or the reciprocal of the gamma distribution (see Fig. 3.1a for examples),
with mean value µ = β

λ−1 . Let τ = x
µ to ensure the mean value of the texture τ is equal

to 1, the PDF becomes

p(τ ;λ) = (λ− 1)λ

Γ(λ) τ−λ−1 exp
(
−λ− 1

τ

)
. (3.46)

The PDFs of the scattering vector and the sample covariance matrix of the G0 distribution
can be obtained by plugging the texture distribution into (3.33) and (3.34), and calculating
the integral by (3.95), giving

p(k;λ,Σ) = 1
πd|Σ|

Γ(λ+ d)(λ− 1)λ

Γ(λ)
(
λ− 1 + k†Σ−1k

)−λ−d (3.47)
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and

p(CL;λ, L,Σ) =LLd|CL|L−d

Γd(L)|Σ|L
Γ(λ+ Ld)(λ− 1)λ

Γ(λ)

×
(
λ− 1 + L Tr(Σ−1CL)

)−λ−Ld (3.48)

Another extreme case of the GIG distribution is the gamma distribution when b → 0,
which leads to the K distribution [8].

3.2.1.3 Kummer-U Distribution

Assuming that the texture parameter follows a Fisher distribution, also known as the
F-distribution or the Fisher-Snedecor distribution, with PDF given by [86]

p(x; d1, d2) = 1
B(d1

2 ,
d2
2 )

(
d1

d2

) d1
2

x
d1
2 −1

(
1 + d1

d2
x

)− d1+d2
2

(3.49)

where d1 > 0 and d2 > 0, the scattering vector or the sample covariance matrix are
Kummer-U distributed, with the ability to model different types of textures, because the
Fisher distribution covers a large range of distributions [10, 32]. The mean value of the
Fisher distribution is µ = d2

d2−2 . Let τ = x
µ , ξ = d1/2, and ζ = d2/2, we have the

distribution for the texture as

p(τ ; ξ, ζ) = Γ(ξ + ζ)
Γ(ξ)Γ(ζ)

ξ

ζ − 1

(
ξ

ζ − 1τ
)ξ−1(

ξ

ζ − 1τ + 1
)−ξ−ζ

. (3.50)

Inserting the texture distribution into (3.33), the PDF of the scattering vector can be
calculated by

p(k; ξ, ζ,Σ) = Γ(ξ + ζ)
Γ(ξ)Γ(ζ)πd|Σ|

(
ξ

ζ − 1

)ξ
×∫ ∞

0
τ ξ−1−d

(
ξ

ζ − 1τ + 1
)−ξ−ζ

exp
(
−k†Σ−1k

τ

)
dτ

(3.51)

Replacing τ by ζ−1
ξ t−1, and using (3.96) to calculate the integral results into the distri-

bution of the scattering vector

p(k; ξ, ζ,Σ) = 1
πd|Σ|

Γ(ξ + ζ)Γ(ζ + d)
Γ(ξ)Γ(ζ)

(
ξ

ζ − 1

)d
× U

(
d+ ζ, d− ξ + 1, ξ

ζ − 1k†Σ−1k
) (3.52)

where U(a, b, z) is the hyper-geometric function of the second kind [84]. By the same
procedure, the distribution of the sample covariance matrix can be obtained as

p(CL; ξ, ζ, L,Σ) =LLd|CL|L−d

Γd(L)|Σ|L
Γ(ξ + ζ)Γ(ζ + Ld)

Γ(ξ)Γ(ζ)

(
ξ

ζ − 1

)Ld
× U

(
Ld+ ζ, Ld− ξ + 1, ξ

ζ − 1L Tr(Σ−1CL)
) (3.53)
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As a matter of fact, Fisher distributions are the Pearson VI solutions and cover a large
range of distributions. It is not only confined to urban scenes, but also fits reasonably in
forest and agricultural fields [10,32]. The behavior of the head and tail of the distribution
can be controlled by the two parameters ξ and ζ.

3.2.1.4 W Distribution

The W distribution assumes the texture to follow a beta distribution [12], which is given
by [86]

p(x;α, β) = 1
B(α, β)x

α−1(1− x)β−1, x ∈ [0, 1] (3.54)

The mean value of the beta distribution is µ = α
α+β . Let τ = x

µ , ξ = α, ζ = α + β, the
distribution of the normalized texture can be written as

p(τ ; ξ, ζ) = Γ(ζ)
Γ(ξ)Γ(ζ − ξ)

ξ

ζ

(
ξ

ζ
τ

)ξ−1(
1− ξ

ζ
τ

)ζ−ξ−1
, τ ∈ [0, ζ

ξ
] (3.55)

The distribution of the scattering vector in this case can be calculated by

p(k; ξ, ζ,Σ) = Γ(ζ)
Γ(ξ)Γ(ζ − ξ)πd|Σ|

(
ξ

ζ

)ζ−1
×∫ ζ

ξ

0
τ ξ−1−d

(
ζ

ξ
− τ
)ζ−ξ−1

exp
(
−k†Σ−1k

τ

)
dτ

(3.56)

which leads to the following result according to the integral identity (3.97)

p(k; ξ, ζ,Σ) = 1
πd|Σ|

Γ(ζ)
Γ(ξ)

(
ξ

ζ

) ξ+d−1
2 (

k†Σ−1k
) ξ−d−1

2 ×

exp
(
− ξ

2ζ k†Σ−1k
)
W d+1+ξ−2ζ

2 , ξ−d
2

(
ξ

ζ
k†Σ−1k

) (3.57)

where Wa,b(z) is Whittaker W function [84]. The distribution of the sample covariance
matrix can be obtained by the same way

p(CL; ξ, ζ, L,Σ) = LLd|CL|L−d

Γd(L)|Σ|L
Γ(ζ)
Γ(ξ)

(
ξ

ζ

) ξ+Ld−1
2 (

L Tr(Σ−1CL

) ξ−Ld−1
2 ×

exp
(
− ξ

2ζ L Tr(Σ−1CL)
)
WLd+1+ξ−2ζ

2 , ξ−Ld
2

(
ξ

ζ
L Tr(Σ−1CL)

) (3.58)

3.2.1.5 M Distribution

Another possible distribution for the texture is the beta prime distribution, also known
as inverted beta distribution, with PDF given by [86]

p(x;α, β) = 1
B(α, β)x

α−1(1 + x)−α−β , x > 0 (3.59)
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3.2 - Texture Model

The mean value can be calculated by µ = α
β−1 . Again, scale the random variable to

ensure the mean value is equal to 1 by letting τ = β−1
α+β−1 (1 + x), the above distribution

becomes

p(τ ; ξ, ζ) = Γ(ζ)
Γ(ξ)Γ(ζ − ξ)

ζ − 1
ξ − 1

(
ζ − 1
ξ − 1 τ

)−ζ (
ζ − 1
ξ − 1 τ − 1

)ζ−ξ−1
, τ >

ξ − 1
ζ − 1 (3.60)

where the parameters are changed to ζ = α + β, ξ = β. Equation (3.60) is the texture
distribution of theM distribution [12]. According to the product model, the distribution
of the scattering vector can be calculated by

p(k; ξ, ζ,Σ) = Γ(ζ)
Γ(ξ)Γ(ζ − ξ)πd|Σ|

(
ξ − 1
ζ − 1

)ξ
×∫ ∞

ξ−1
ζ−1

τ−ζ−d
(
τ − ξ − 1

ζ − 1

)ζ−ξ−1
exp

(
−k†Σ−1k

τ

)
dτ

(3.61)

Employing the integral identity (3.98), we have the PDF of the scattering vector as

p(k; ξ, ζ,Σ) = 1
πd|Σ|

Γ(ζ)Γ(ξ + d)
Γ(ξ)Γ(ζ + d)

(
ζ − 1
ξ − 1

)d
M

(
ξ + d, ζ + d,−ζ − 1

ξ − 1k†Σ−1k
)

(3.62)

and the PDF of the sample covariance matrix as

p(CL; ξ, ζ, L,Σ) =LLd|CL|L−d

Γd(L)|Σ|L
Γ(ζ)Γ(ξ + Ld)
Γ(ξ)Γ(ζ + Ld)

(
ζ − 1
ξ − 1

)Ld
×M

(
ξ + Ld, ζ + Ld,−ζ − 1

ξ − 1L Tr(Σ−1CL)
) (3.63)

Here M(a, b, z) is the confluent hypergeometric function of the first kind, also known as
the KummerM function [84]. The W distribution and the M distribution are able to
model data with low variance but extreme skewness, which is particularly relevant to
data with textural variability after a speckle filtering [12].

3.2.1.6 Wishart-Generalized Gamma Distribution

The Wishart-Generalized Gamma (WGΓ) distribution employs the generalized gamma
distribution to model the texture. The generalized gamma distribution has a more com-
pact form and a larger variety of alternative distributions, with the gamma, the Weibull,
the Rayleigh, and the exponential distributions being its special cases, and is of greater
flexibility in the statistical modeling compared with the gamma and the Fisher distribu-
tions [98]. The PDF of the generalized gamma distribution is given by [86]

p(x; v, θ, k) = v

θΓ(k)

(x
θ

)kv−1
exp

(
−
(x
θ

)v)
, v > 0, θ > 0, k > 0 (3.64)

which reduces to the gamma distribution (3.35) when v = 1. The mean value is given by
µ = θΓ(k + 1

v )/Γ(k). Scaling the mean value to 1, the PDF for the texture is obtained

p(τ ; v, k) = vβkv

Γ(k) τ
kv−1e−(βτ)v (3.65)
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where β = Γ(k + 1
v )/Γ(k). Examples of the PDFs can be found in Fig. 3.1b. The

distribution of the scattering vector k then can be calculated by

p(k; v, k,Σ) = vβkv

Γ(k)πd|Σ|

∫ ∞
0

τkv−d−1 exp
(
−(βτ)v − k†Σ−1k

τ

)
dτ. (3.66)

There is no closed form expression for the above equation, but it can be solved numerically
[98]. The distribution of the sample covariance matrix can be calculated by

p(CL; v, k, L,Σ) =vβkvLLD|CL|L−d

Γ(k)I(L, d)|Σ|L

×
∫ ∞

0
τkv−Ld−1 exp

(
−(βτ)v − L Tr(Σ−1CL)

τ

)
dτ.

(3.67)

It is reported that the WGΓ distribution could provide better fitness than the K and
Kummer-U distributions for different land cover types of homogeneous, heterogeneous,
and extremely heterogeneous terrains [98].

3.2.1.7 Generalized K Distribution

The well-known gamma distribution sometimes cannot fit the texture distribution accu-
rately in very heterogeneous areas. In order to improve the flexibility of the model, it is
assumed that the texture follows a Laguerre expansion of the gamma distribution [99],
with its PDF given by

p(τ ;α, µ) = τα−1

Γ(α)

(
α

µ

)
exp

(
−ατ
µ

) ∞∑
u=0

ξu
Γ(α)u!

Γ(u+ α)L
α−1
u

(
ατ

µ

)
(3.68)

where µ, the mean value, is normally assumed to be equal to 1, and

ξu =
u∑
k=0

(−1)k
(
u+ α− 1
u− k

)
1
k!

(
α

µ

)k
E{xk}. (3.69)

The Laguerre polynomial Lα−1
u (x) is given by

Lα−1
u (x) =

u∑
k=0

(−1)k
(
u+ α− 1
u− k

)
xk

k! . (3.70)

The PDF of the sample covariance matrix in this case can be expressed as

p(CL;α, µ, L,Σ) =LLd|CL|L−d

Γd(L)|Σ|L
αα

Γ(α)µα ×
∞∑
u=0

ξu
Γ(α)u!

Γ(u+ α)

u∑
k=0

(−1)k

2
k!

(u+ α− 1)!
(u− k)!(α− 1 + k)!

(
α

µ

)k (
LµTr(Σ−1CL)

α

)α+k−Ld
2

Kα+k−Ld

(
2
√
α

µ
LTr(Σ−1CL)

)
(3.71)

which is a weighted combination of a series of K distributions based on a Laguerre polyno-
mial expansion. It shows that the generalized K distribution gives a better approximation
than the K distribution when there exist strong scatterers in the scene [99].
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Figure 3.1: PDFs of different texture distributions. (a) PDFs of gamma, inverse gamma
and GIG distributions. (c) PDFs of Fisher, beta, inverted beta, and generalized gamma
distributions.

3.2.2 Multi-texture Model

In the scalar texture model, different polarimetric channels are assumed to have a com-
mon texture variable. However, if the electromagnetic wave sees different geometrical or
dielectric properties of the target, and if those properties are spatially modulated, then
the texture of each channel should be different [14]. For example, in scattering from for-
est areas, volume scattering will affect the cross-pol component stronger than the copol
channels, whereas surface scattering will have the opposite effect [19]. The scalar texture
model must, therefore, be extended to take into consideration the different radar cross
section modulations in polarimetric channels. One solution is to allow for a vector com-
ponent of the radar cross section in the product model. This kind of models are called
multi-texture model.

Under the assumption of reciprocity, there are only three independent complex coef-
ficients required to characterize the scatter under observation. The multi-texture model
then can be formulated as [17,19,20,100]

k = Λ1/2z (3.72)

where z represents the speckle, following a multivariate Gaussian distribution (see Sec-
tion 3.1.1), and Λ is a diagonal matrix containing texture variables for each channel

Λ =

τhh 0 0
0 τhv 0
0 0 τvv

 . (3.73)

The texture parameters are assumed to be positive, and we have E{Λ} equal to I, the
identity matrix. Assuming that the texture variables are constant on the scale of the
multilook processing window, the sample covariance matrix can be written as

CL = 1
L

L∑
i=1

kikTi = Λ1/2WΛ1/2 (3.74)
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where W is Wishart distributed, see Section 3.1.2.
Provided that the distributions of the texture variables are known, the PDF of the

scattering vector can be calculated using

p(k; Σ) =
∫

Ω+
p(k|Λ; Σ)p(Λ)dΛ (3.75)

where Ω+ is the set of all diagonal matrices with non-negative entries. After changing
variable by z = Λ−1/2k, the conditional distribution of k on Λ can be obtained from
(3.1), giving

p(k|Λ; Σ) = 1
πd|Σ||Λ| exp

(
−k†Λ−1/2Σ−1Λ−1/2k

)
. (3.76)

By the similar way, we have the distribution of the sample covariance matrix as [19,100]

p(CL;L,Σ) =
∫

Ω+
p(CL|Λ;L,Σ)p(Λ)dΛ (3.77)

where

p(CL|Λ;L,Σ) = LLd|CL|L−d

Γd(L)|Σ|L|Λ|L exp
(
−L Tr(Σ−1Λ−1/2CLΛ−1/2)

)
. (3.78)

Different texture variables for the multi-texture model can be: 1) totally dependent, in
which case it reduces to the scalar texture model, 2) independent from each other, that is,
texture variables follow different distributions with different parameters, or 3) partially
correlated [15, 17]. In many cases, it is reasonable to assume copol channels have the
same texture but different from that of the cross-pol channels, which is usually referred
to as dual-texture model [18, 19, 100]. For reciprocal media with reflection symmetry for
example, the PDF of the sample covariance matrix can be expanded as [100]

p(CL;L,Σ) =L3L|CL|L−3

I(L, 3)|Σ|L

∫ ∞
0

exp
(
−Lq22c22

Tx

)
p(Tx)
TLx

dTx×∫ ∞
0

exp
(
−Lq11c11 + q13c31 + q31c13 + q33c33

Tco

)
p(Tco)
T 2L
co

dTco

(3.79)

where qij and cij denote the (i, j)th entry of matrix CL and Σ respectively. The texture
of the copol channels is represented by Tco and that of the cross-pol channel by Tx.

3.2.2.1 Correlated K Distribution

The correlated K distribution assumes that the texture variables of different polarimetric
channels are partially correlated, each following a gamma distribution [15, 17]. Unfortu-
nately, there is no explicit expression for the joint distribution of the texture variables,
or the correlated gamma distribution. The texture of polarimetric channel i, specified by
the PDF (3.36) with parameter α, is given by [15]

τi = 1
2α

2α∑
k=1

[g(k)
i ]2 (3.80)
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where g(k)
i is the ith element of the vector g(k), k = 1, · · · , 2α, which is Gaussian dis-

tributed with zero mean, variance one, and correlation matrix T. The correlation prop-
erties of the texture variables is also specified by T. The characteristic function of the
vector containing all texture variables is [15]

C(ω) = 1
|I + j(1/α)TW|α (3.81)

where W is a diagonal matrix having the entry (i, i) equal to the ith element of the
characteristic function variable ω. This model requires that all polarimetric channels
have the same half-integer distribution parameter α, e.g., 0.5, 1.5, 2.5 and so on.

3.2.2.2 Dual-Texutre G Distribution

The dual-texture G distribution is derived by considering different texture variables for
copol and cross-pol channels. The copol and cross-pol texture variables are modelled by
the GIG distribution (3.39) separately, which yields a more flexible multivariate distri-
bution [18]. Under the assumption of reciprocity and reflection symmetry, the statistical
properties of the single look complex data is characterized by the distribution [18]

p(k; Σ,θ) = 1
πd|Σ|

2∏
i=1

(η2
i + 2ηisi/ωi)

pi−d+i
2

ηpii Kpi(ωi)
Kpi−d+i

(√
ω2
i + 2ωisi/ηi

)
(3.82)

where θ = {ω, pi, ηi} consists of all parameters for the GIG texture distributions (see
Section 3.2.1.2), s1 = z11c11 + z13c31 + z31c13 + z33c33, and s2 = z22c22, with zij and cij
indexing entries of Z = kk† and Σ respectively.

3.3 Finite Mixture Model

The heterogeneity that appears in PolSAR data may result from the mixture of different
targets. For instance, from an urban area which usually consists of different objects
like houses, trees and roads, the backscattering is a combination of different scattering
mechanisms. The forest areas sometimes can be treated as a mixture of bright clutters and
dark ones, corresponding to the strong returns from the crowns of trees and the shadows
behind them. To represent this type of data, a simple model would be inappropriate.
Finite mixture models, instead, could achieve reasonable level of accuracy [22–24].

Assume that the region under analysis can be modeled by a mixture of K components,
then the overall PDF of the data can be written as a weighted sum of the probabilities
of each component [101]

p(x;θ) =
K∑
k=1

wkpk(x;θk) (3.83)

where θ is a vector collecting all the parameters of the distribution and the mixing pro-
portions obey

K∑
k=1

wk = 1, wk ≥ 0. (3.84)
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It has been shown that for complicated regions with more irregular histograms (multi-
modal, spiky), the finite mixture model is more accurate than a single distribution [22–24].

There are many options for the distributions of the mixing components, but here we
mainly focus on the mixture of Wishart distributed components. For different mixing
components, the number of looks are the same. The PDF, therefore, can be written as

p(CL;L,θ) = LLd|CL|L−d

Γd(L)

K∑
k=0

wk exp(−L Tr(Σ−1
k CL))

|Σk|L
(3.85)

where θ = {Σk, k = 1, · · · ,K} and Γd(L) is given by (3.16). The PDF of the ith channel
intensity, which is also a finite mixture, is found to be

p(Ii;L,θ) = IL−1
i

Γ(L)

K∑
k=0

(
L

σ2
k,i

)L
exp

(
− L

σ2
k,i

Ii

)
(3.86)

where σ2
k,i = [Σk]ii. The most interesting property of a mixture density is that the shape

of the density is extremely flexible. A mixture density may be multimodal, or even if
it is unimodal, may exhibit considerable skewness or additional humps. For this reason,
finite mixture distributions offer a flexible way to describe rather heterogeneous data by
summarizing the characteristics of the data in terms of the number and the spread of the
mixture components [101].

Integral Identities

Some integral identities used in this chapter are listed out here.

1. [102, p.368, Eq 3.471-9]∫ ∞
0

xv−1 exp
(
−β
x
− αx

)
dx = 2

(
β

α

)v/2
Kv

(
2
√
βα
)

Reβ > 0,Reα > 0
(3.87)

Kv is the modified Bessel function of the second kind of order v.

2. [102, p.340, Eq 3.339] ∫ π

0
exp(z cosx)dx = πI0(z) (3.88)

I0(z) is the modified Bessel function of the first kind.

3. [102, p.702, Eq 6.624-1]∫ ∞
0

xe−αxK0(βx)dx = 1
α2 − β2

×

 α√
α2 − β2

ln

α
β

+

√(
α

β

)2
− 1

− 1


(3.89)
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4. [102, p.347, Eq 3.382-2]∫ ∞
u

(x− u)ve−µxdx = µ−v−1e−uµΓ(v + 1), u > 1,Re v > −1,Reµ > 0 (3.90)

5. [102, p.700, Eq 6.621-3]∫ ∞
0

xµ−1e−αxKv(βx)dx =
√
π(2β)v

(α+ β)µ+v
Γ(µ+ v)Γ(µ− v)

Γ(µ+ 1/2)

× 2F1

(
µ+ v, v + 1

2;µ+ 1
2; α− β
α+ β

)
Reµ > |Re v|,Re (α+ β) > 0

(3.91)

2F1(a, b; c; z) is the Gauss hypergeometric function.

6. [102, p.917, Eq 8.432-3]

Kv(z) =
(
z
2
)v Γ

( 1
2
)

Γ
(
v + 1

2
) ∫ ∞

1
e−zt(t2 − 1)v− 1

2 dt, Re (v + 1
2) > 0, |arg z| < π

2 (3.92)

7. [102, p.325, Eq 3.252-3]∫ ∞
1

xµ−1(xp − 1)v−1 = 1
p
B

(
1− v − µ

p
, v

)
p > 0,Re v > 0,Reµ < p(1− Re v)

(3.93)

8. The gamma function is defined as

Γ(t) =
∫ ∞

0
xt−1e−xdx. (3.94)

Let x = β
y where β > 0, we have the following equation after changing variables∫ ∞

0
y−t−1 exp

(
−β
y

)
dy = Γ(t)β−t (3.95)

9. [84, p505, Eq 13.2.5]∫ ∞
0

e−ztta−1(1 + t)b−a−1dt = Γ(a)U(a, b, z) (3.96)

U is the confluent hypergeometric function of the second kind, or KummerU func-
tion.

10. [102, p367, Eq 3.471-2]∫ u

0
xv−1(u− x)µ−1 exp

(
−β
x

)
dx =β

v−1
2 u

2µ+v−1
2 Γ(µ)

× exp
(
− β

2u

)
W 1−2µ−v

2 , v2

(
β

u

)
Reµ > 0,Reβ > 0, µ > 0

(3.97)

W is Whittaker W function.
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11. [102, p368, Eq 3.471-5]∫ ∞
u

xv−1(x− u)µ−1 exp
(
β

x

)
dx =B(1− µ− v, µ)uµ+v−1

×M
(

1− µ− v, 1− v, β
u

)
0 < Reµ < Re (1− v), u > 0

(3.98)

M is the confluent hypergeometric function of the first kind, also known as the
KummerM function.
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Figure 3.2: Histograms of two homogeneous areas of a RADARSAT-2 image and PDFs
under Gaussian assumption. (a) Pauli decomposition (Section 2.2.2) of the RADARSAT-2
data and two ROIs. (b) and (c), Histograms and PDFs of the Shh intensity. (d) and (e),
Histograms and PDFs of the amplitude product of Shh channel and Shv channel. (f) and
(g), Histograms and PDFs of phase difference between Shh channel and Shv channel.
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Figure 3.3: Histograms of a homogeneous area in a ALOS-2 image and PDFs under Gaus-
sian assumption. The first column shows the results using a 3 × 3 filtering and the second
column the results using a 5×5 filtering. (a) and (b), Pauli decomposition. (c) and (d), His-
tograms and PDFs of the Shh intensity. (e) and (f), Histograms and PDFs of the amplitude
product of Shh channel and Shv channel. (g) and (h), Histograms and PDFs of the phase
difference between the Shh channel and Shv channel.
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Chapter 44
Statistics for Texture

Analysis

As shown in the previous chapter, there are many models proposed to represent the
statistical behavior of PolSAR data. How to determine the actual distribution of the
data correctly is a critical challenge. Some comparative statistics, as well as tools to
visualize the fit of the models to data, are required. There are three widely employed
approaches.

The most intuitive way is to calculate the histogram, or empirical PDF of the data, and
then compare it with the theoretical distribution channel by channel [4, 8]. To quantify
the difference, measures such as Kolmogorov-Smirnov (KS) distance and correlation coef-
ficient can be employed [10,22], where the KS distance is an estimate of the discrepancy
between the empirical distribution function of the samples and the cumulative distribu-
tion function of the reference distribution, and the correlation coefficient provides a simple
quantitative measure of the similarity between two distributions. Methods based on the
empirical PDF, however, depend on the bin size of the histogram, and the comparison of
PDFs is not visually effective.

Another important approach is the MoMs. Especially, the NIMs are used to measure
the heterogeneity of SAR data in many works by scaling the mean value of the intensity to
unity [14,75,103,104]. One can calculate the NIMs of different orders from data samples,
and compare them with those of a specific model to see if the model is proper. In the case
of PolSAR data, the comparison is accomplished for each polarimetric channel separately.
How to combine results of different channels needs to be carefully considered. Further-
more, the method based on NIMs exploits only the intensities of the data, regardless of
the correlation between polarimetric channels.
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At last, the MKS, also known as log-cumulants, can be used to examine the fit of a
distribution to the PolSAR data [10, 12, 26]. They were first proposed by Nicolas [25] to
analyze the compounded distributions used to model single-channel SAR data, and later
was extended to the case of covariance matrix by Anfinsen et al. [26]. It is demonstrated
that MKS are of great value for the analysis of PolSAR data, and that they can be used
to derive estimators for distribution parameters with low bias and variance. However, to
obtain the sample covariance matrices, a multilooking process of the scattering vectors
is required, which may change the distribution of the original data, especially when it
comes to high spatial resolution images.

There are some limitations of the mentioned approaches due to the multidimension-
ality of the PolSAR data. In this chapter, the use of the l2-norm [105], or Span, of the
scattering vectors is suggested for texture analysis, with the following benefits:

• The polarimetric channels are not analyzed separately, and the correlations between
polarimetric channels are considered.

• No filter is required which may average out the texture or give rise to mixture in
certain scenes like urban areas.

• No estimation of the Equivalent Number of Looks (ENL), which is a challenging
task in the analysis of PolSAR data, is needed.

• The Span is polarimetrically invariant, the statistics of the Span are consistent when
the scattering vectors are expressed in different polarization basis.

The idea is to map the multidimensional signal to a scalar using the l2-norm, of which
the statistics take into account both the intensities of the polarimetric channels and the
correlations between them. Results on both simulated data and real SAR data show that
this approach brings advantages in several aspects compared with the method of NIM or
matrix variate log-cumulants.

This chapter is organized as follows. First of all, related knowledge is reviewed, includ-
ing the NIM, and the log-cumulants in the cases of both univariate and matrix variate.
Then, the distribution of the l2-norm is studied based on the scalar texture model, as well
as statistics such as normalized moments and log-cumulants. At last, experiments exploit-
ing the l2-norm are implemented on both simulated data and real SAR data. Conclusions
are given at the end.

4.1 Statistical Techniques

The PDF contains all information needed to understand a distribution. An intuitive way
to test the fit of a distribution to the samples is the comparison of the PDF and the
histogram. In practice, however, this kind of comparison is not effective, especially when
it comes to multi-dimenisional signals. Instead, statistics derived from the PDF are of
great advantage in this task. This section provides a review of two widely used statistics
to analyze the texture of SAR or PolSAR data, the NIMs and the log-cumulants. Several
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4.1 - Statistical Techniques

scalar texture models (Section 3.2.1) are analyzed thanks to their mathematical tractabil-
ity, including the K, G0, Kummer-U , W and M distribution, with texture following the
gamma, inverse gamma, Fisher, beta and beta prime distribution, respectively.

4.1.1 Normalized Intensity Moments

One way to quantitatively evaluate the non-Gaussian behavior of the data is to compute
the NIM [75,103]

nimv{I} = mv{I}
mv

1{I}
(4.1)

where mv{I} refers to the vth order moment of the intensity, and mv
1{I} is the vth power

of the mean intensity of a polarimetric channel. On the one hand, for Gaussian distributed
data, the intensity, denoted by Ig, follows an exponential distribution [3], and the NIM
of the vth order is given by

nimv{Ig} = Γ(v + 1). (4.2)
On the other hand, over texture areas modeled by the product model (3.27), the NIM
can be factorized into two parts

nimv{I} = mv{τ}mv{Ig}
mv

1{τ}mv
1{Ig}

= mv{τ}nimv{Ig} (4.3)

because the texture component and speckle one are independent, and the mean value of
the texture parameter is equal to 1 (Section 3.2). It can be shown that mv{τ} ≥ 1 holds
for all the texture distributions in Table 4.1. Therefore, the nimv of textured data is
larger than that of Gaussian distributed data when v > 1.

The NIM of the second order is widely used. It follows that the second order NIM of the
exponential distribution is nim2{Ig} = 2, and nim2{I} > 2 for all texture distributions in
Table 4.1. Therefore, we can determine whether the data can be modeled by a Gaussian
distribution or not simply by comparing the nim2{I} estimated from data with 2: if the
difference between the estimated value and 2 is very large, the data shows non-gaussianity.
The method of NIM requires to analyze the different polarimetric channels separately, as
shown in Fig. 4.1, where the moments of the intensity calculated from an ALOS-2 image
and a TerraSAR-X image are depicted. Test sites over the sea area are chosen. As we can
see, the ALOS-2 data follows a Gaussian distribution, while the TerraSAR-X data shows
non-gaussian behavior. In addition, the moments of different polarimetric channels may
be different, see Fig. 4.1c for example.

4.1.2 Univariate Log-Cumulants

The Mellin transform is widely used in computer science and signal processing [106]. It
is demonstrated that the statistics derived from the Mellin transform can be employed to
design estimators for the distribution parameters with low bias and variance [25,26]. Let
p(x) be a function defined on the positive real axis 0 < x < ∞, the Mellin transform is
the operation mapping the function p into the function φ defined on the complex plane
by the relation [106]:

φx(s) =
∫ ∞

0
xs−1p(x)dx. (4.4)
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Figure 4.1: Intensity moments on ALOS-2 data and TerraSAR-X data. Both test sites are
over the sea area. The test sites are divided into patches of 20× 20 pixels, and an estimation
of the mean value m1{I} as well as the second order m2{I} are computed for each patch,
plotted as a point. (a) Test site of the ALOS-2 data. (b) Test site of the TerraSAR-X data.
(c) Moments of the ALOS-2 data. (d) Moments of the TerraSAR-X data.

The function φx(s) is also known as the Mellin kind characteristic function [26], which
can be viewed as the (s−1)th order moment of a positive random variable. Writing xs−1

as e(s−1) ln x and expanding it using the Taylor series [102], the Mellin Transform can be
further written as a formal power series [107]

φx(s) =
∞∑
v=0

(s− 1)v

v! µv{x} (4.5)

where the coefficients are known as log-moments [25,26]

µv{x} =
∫ ∞

0
(ln x)vp(x)dx. (4.6)

Let ϕx(s) = lnφx(s), then ϕx(s) is called the Mellin kind characteristic function of the
second kind [26], that can also be formulated as a formal power series according to the
composition of formal power series [107]

ϕx(s) =
∞∑
v=0

(s− 1)v

v! κv{x} (4.7)
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with coefficients as log-cumulants [25,26]

κv{x} = µv{x} −
v−1∑
k=1

(
v − 1
k

)
µk{x}κv−k{x}. (4.8)

The above equation is known as the combinatorial version of Faà di Bruno’s formula,
which is denoted by the function gv(µ1{x}, · · · , µv{x}) in the remainder of this chapter.
It shows that the log-cumulants are polynomials of the log-moments. As a matter of
fact, the log-moments (or log-cumulants) are the moments (or cumulants) of the random
variable mapped at the logarithmic scale, so the rules between the moments and the
cumulants also apply to the log-moments and the log-cumulants, for example, we also
have

µv{x} = Bv(κ1{x}, · · · , κv{x}) (4.9)
where Bv(·) is the vth complete Bell polynomials [108]. More details about the moments
and the cumulants can be found in [109].

According to (4.5) and (4.7), the log-moments and the log-cumulants can be calculated
using

µv{x} = dv

dsv
φx(s)

∣∣∣∣
s=1

(4.10)

κv{x} = dv

dsv
ϕx(s)

∣∣∣∣
s=1

(4.11)

And from independent and identically distributed samples {xi, i = 1, · · · , N}, the log-
cumulants can be estimated using the Faà di Bruno’s formula, κ̂v{x} = gv(µ̂1{x}, · · · , µ̂v{x})
where µ̂v{x} is the estimated log-moments

µ̂v{x} = 1
N

N∑
i=1

(ln x)v. (4.12)

We can determine whether a statistical model is proper for the data or not by comparing
the theoretical log-cumulants with the estimated ones. A plot called log-cumulant diagram
is presented in [25, 26] to visualize the comparison by plotting κ3{x} against κ2{x} in a
plane, where different distributions take up different parts. Table 4.1 shows the log-
cumulants of several well known texture distributions making up a complete coverage of
the diagram [12], see Fig. 4.2. By plotting the estimated values in the same diagram and
checking in which part the values fall, we are able to examine what distribution the data
follow.

Furthermore, log-cumulants can be employed to derive parameter estimators. Since
the log-cumulants are functions of distribution parameters (see Table 4.1 for example),
the parameters can be estimated simply by solving the following equation [110]

f(θ) = κv{x} − κ̂v{x} = 0. (4.13)

For all texture distributions in Table 4.1, two equations are enough to get a solution of the
parameters. Normally the second order and the third order log-cumulants are employed.
Though the univariate log-cumulants have many advantages, they are only suitable for
analyzing the polarimetric channels one by one. It is worthy reminding that the estimator
of the log-cumulants based on the Faà di Bruno’s formula is biased [111,112].
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Figure 4.2: A complete coverage of log-cumulant κ2-κ3 space. In this diagram, different
texture distributions shown in Table 4.1 are plotted. The compound models are called the
K, G0, Kummer-U , W and M distributions.

4.1.3 Matrix Variate Log-Cumulants

The univariate log-cumulant is extended to the matrix case by Anfinsen et al. to analyze
the sample covariance matrices of PolSAR data [26] with the advantage of considering all
the polarimetric channels together. Define the Mellin kind matrix variate characteristic
function as

φX(s) =
∫

Ω+

|X|s−dp(X)dX (4.14)

with d denoting the dimension of the sample covariance matrix and Ω+ the space of
positive semi-definite Hermitian matrices, then, the vth-order log-moment and vth-order
log-cumulant can be calculated by

µv{X} = dv

dsv
φX(s)

∣∣∣∣
s=d

κv{X} = dv

dsv
ϕX(s)

∣∣∣∣
s=d

(4.15)

where ϕX(s) = lnφX(s). The properties of the univariate log-cumulants and the matrix
variate log-cumulants are very similar. The relations (4.8) and (4.9) also apply to the
matrix variate log-cumulants [26].

By inserting the PDF of sample covariance matrix as expressed by (3.34) into (4.15),
the matrix variate log-cumulant of the sample covariance matrices under the product
model assumption can be obtained as [26]

κv{CL} = κv{T}+ κv{ZL}. (4.16)

It is a combination of the contribution from the texture and that from the speckle. For
the same texture distribution, the matrix variate log-cumulant is an amplified version of
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the univariate one [26]
κv{T} = dvκv{τ}. (4.17)

Some examples of κv{τ} can be found in Table 4.1. The contribution from the speckle is
given by [26]

κv{ZL} = ψ
(v−1)
d (L) + δ(v − 1)(ln |Σ| − d lnL) (4.18)

where Σ is the covariance matrix, δ(·) is the Dirac function, and ψ(v)
d (L) is the multivarite

extension of the polygamma function defined as

ψ
(v)
d (L) =

d−1∑
i=0

ψ(v)(L) (4.19)

with ψ(v)(L) = dv+1

dLv+1 ln Γ(L) denoting the polygamma function.
The estimation of matrix variate log-cumulants is the same as illustrated in the previ-

ous section. For both univariate and matrix variate cases, the covariance of the estimated
log-moments is given by [110]

Cov{µ̂v, µ̂ν} = 1
N

(µv+ν − µvµν). (4.20)

Here the curly brackets are omitted because the log-moments can be either univariate or
matrix variate, and notations for the log-cumulant in the following text are treated in the
same way. As the log-cumulants are the polynomials of the log-moments, once we know
the covariances of the log-moments, the variance of the estimated log-cumulant can be
calculated using [110]

Var{κ̂v} = ∇gTv Mv∇gv (4.21)

where Mv is the covariance matrix of the log-moments with entries [Mv]ij = Cov(µ̂i, µ̂j),
and ∇gv is the vector of the partial differentials of gv

∇gv =
[
∂gv
∂µ1

, · · · , ∂gv
∂µv

]T
. (4.22)

The estimation variance depends on the sample size. When the sample size N is not
very large, we can employ the bootstrap algorithm [113] to show the statistical behavior
of the estimated values. The idea is to resample N times randomly, with replacement,
from the original samples to build a new data set called a bootstrap sample. Statistics are
then calculated from this bootstrap sample. By generating a large number, saying M , of
independent bootstrap samples, we will obtain M estimated statistics, which can be used
for further analysis like parameter estimation. The number of bootstrap samples, M , can
be very large. With a large number of samples, the estimation error will be reduced. As
shown in Fig. 4.3, when increasing the sample size, the estimated values from bootstrap
samples (represented by the + marks) become less widely spread in the log-cumulant
diagram.
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Figure 4.3: Matrix variate log-cumulants over a forest region of RADARSAT-2 data. The
test region covers 50 × 50 pixels. Different number of samples, 1200 and 2500, are used to
calculate the log-cumulants. 100 bootstrap samples for each test are drawn, each represented
by a + mark in (b) and (c). (a) Test region. (b) Log-cumulants estimated using 1200 samples.
(c) Log-cumulants estimated using 2500 samples.

Table 4.1: Texture Distributions and Properties

Distribution Moments mv{τ} Log-Cumulants κv{τ}

Gamma
( 1
a

)v Γ(v+α)
Γ(α) ψ(v−1)(α)− δ(v − 1) lnα

Inverse Gamma
(α− 1)v Γ(α−v)

Γ(α)

α > v
(−1)vψ(v−1)(α) + δ(v − 1) ln(α− 1)

Fisher

(
ζ−1
ξ

)v Γ(ξ+v)Γ(ζ−v)
Γ(ξ)Γ(ζ)

ζ > v

ψ(v−1)(ξ) + (−1)vψ(v−1)(ζ)

+δ(v − 1) ln ζ−1
ξ

Beta
(
ζ
ξ

)v Γ(ξ+v)Γ(ζ)
Γ(ξ)Γ(ζ+v) ψ(v−1)(ξ)− ψ(v−1)(ζ) + δ(v − 1) ln ζ

ξ

Beta Prime

(
ξ−1
ζ−1

)v Γ(ζ)Γ(ξ−v)
Γ(ξ)Γ(ζ−v)

ξ > v, ζ > v

(−1)v(ψ(v−1)(ξ)− ψ(v−1)(ζ))

+δ(v − 1) ln ξ−1
ζ−1

Notes: ψ(v)(·) is the polygamma function defined as ψ(v)(x) = dv+1

dxv+1 ln Γ(x), and δ(·)
is the Dirac function.

4.2 Norm Statistics

4.2.1 Distribution

The l2-norm, denoted by ‖k‖2 =
√

k†k, is a non-negative mapping from the d-dimensional
complex space Cd to the set of non-negative real numbers R+ [105]. The square of the
l2-norm, which can be written as

Ik = k†k (4.23)
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is mainly studied in this chapter, since the square root operation can be avoided. Never-
theless, the statistics of the l2-norm can be obtained from those of Ik by transformations.
Ik is also known as the Span of a scattering vector, which can be interpreted as the to-
tal scattered power from a target. It is polarimetrically invariant, independent from the
choice of the polarization basis in which the scattering matrix is decomposed. Therefore,
the statistics of the Span are consistent when the scattering vectors are expressed in dif-
ferent polarization basis. As a matter of fact, the Span is also employed in some other
works [3,13]. Assuming that the scattering vector can be modeled by the product model
(3.27), the square of the l2-norm can be further rewritten as

Ik = τIz (4.24)

where Iz = z†z, independent from τ , is the square l2-norm of the speckle vector.
Based on the assumption that the speckle vector z follows a multivariate complex

Gaussian distribution with PDF as (3.1), it can be proved that the PDF of Iz is given by
(see Appendix A.1)

p(Iz) =
d∑
i=1

pi
λi

exp
(
−Iz

λi

)
(4.25)

where λi, i = 1, · · · , d are the eigenvalues of the covariance matrix Σ, and pi are the
corresponding weights

pi = λd−1
i∏d

j=1,j 6=i(λi − λj)
. (4.26)

The distribution is known as hyperexponential distribution [114], or mixed exponential
distribution, a weighted sum of exponential distributions. The eigenvalues are assumed to
be distinct. When there exist repeated eigenvalues, we have to substitute the correspond-
ing exponential distribution for a gamma distribution. One can refer to [115] for more
details. In this chapter, the case where there are distinct eigenvalues is mainly discussed.

Provided that the distribution of the texture parameter p(τ) is known, the PDF of Ik
can be calculated by

p(Ik; Σ) =
d∑
i=1

∫
pi
λi

exp
(
− Ik

τλi

)
1
τ
p(τ)dτ. (4.27)

For instance, when the texture parameter is gamma, inverse gamma or Fisher distributed,
the PDFs can be calculated as shown in Table 4.2. These distributions are univariate
ones. Therefore, it is much easier to use them for texture analysis than those of the
sample covariance matrix or scattering vector.

4.2.2 Normalized Moments

It is known that the moments of a mixture model is a weighted average of those of the
mixing components [101]. The vth order moment of the speckle Iz, therefore, can be
written as the combination of the vth order moments of exponential distributions [86]

mv{Iz} = Γ(v + 1)
d∑
i=1

piλ
v
i (4.28)
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Table 4.2: Distribution of the l2-Norm

Texture PDF of the l2-Norm, p(Ik)

Gamma 2α
α+1

2
Γ(α)

∑d
i=1

pi
λi

(
Ik
λi

)α−1
2
Kα−1

(
2
√
α Ik
λi

)
Inverse Gamma α(α− 1)α

∑d
i=1

pi
λi

(
α− 1 + Ik

λi

)−α−1

Fisher Γ(ξ+ζ)
Γ(ξ)

ξζ
ζ−1

∑d
i=1

pi
λi
U
(

1 + ζ, 2− ξ, ξ
ζ−1

Ik
λi

)
Beta Γ(ζ)

Γ(ξ)

(
ξ
ζ

) ξ
2 ∑d

i=1
pi
λi

(
Ik
λi

) ξ−2
2 exp

(
− ξ

2ζ
Ik
λi

)
W 2+ξ−2ζ

2 , ξ−1
2

(
ξ
ζ
Ik
λi

)
Beta Prime (ζ−1)ξ

ζ(ξ−1)
∑d
i=1

pi
λi
M
(
ξ + 1, ζ + 1,− ζ−1

ξ−1
Ik
λi

)
Notes: Kv is the modified Bessel function of the second kind of order v, U is the
confluent hypergeometric function of the second kind (Kummer U function), W is
the Whittaker W function, and M is the confluent hypergeometric function of the
first kind (Kummer M function).

with λi denoting the eigenvalues, and pi given by (4.26). Let hv(λ1, · · · , λd) =
∑d
i=1 piλ

v
i ,

as shown in [116], it can be further rewritten as

hv(λ1, · · · , λd) =
∑

1≤i1≤···≤iv≤d
λi1 · · ·λiv (4.29)

which is known as the Complete Homogeneous Symmetric Polynomials (CHSP) [117].
Some examples of the CHSP when d = 3 are listed as follows

h1(λ1, λ2, λ3) = λ1 + λ2 + λ3 (4.30)
h2(λ1, λ2, λ3) = λ2

1 + λ2
2 + λ2

3 + λ1λ2 + λ1λ3 + λ2λ3 (4.31)
h3(λ1, λ2, λ3) = λ3

1 + λ3
2 + λ3

3 + λ2
1λ2 + λ2

1λ3 + λ2
2λ1

+ λ2
2λ3 + λ2

3λ1 + λ2
3λ2 + λ1λ2λ3

(4.32)

Various calculations become easier based on (4.29) as there are only multiplications and
additions. For instance, the asymptotic limits when there are repeated eigenvalues can
be easily computed.

When the covariance matrix Σ is scaled by a factor, the moments shown in (4.28) will
change accordingly. To eliminate this effect and make the moments under circumstances
of different covariance matrices comparative, we normalize the eigenvalues by

λ̃i = λi∑d
k=1 λk

(4.33)

and substitute them for the eigenvalues in (4.28), the normalized moment of the vth order
is obtained

nmv{Iz} = Γ(v + 1)hv(λ̃1, · · · , λ̃d) (4.34)
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which is found to be the fraction of the vth order moment and the vth power of the mean

nmv{Iz} = mv{Iz}
mv

1{Iz}
. (4.35)

In the case of d = 1, the normalized moment is reduced to the NIM of single channel data
as expressed by (4.1).

For Gaussian distributed speckle, the vth order normalized moment is not a fixed
value, it varies in a range instead. The value reveals the polarimetric information to some
extent. Let λ̃i = 1/d, i = 1, · · · , d, meaning that the polarimetric scattering Entropy is
equal to 1 [3], the smallest value of the normalized moment is obtained from (4.29)

min{nmv{Iz}} = Γ(v + d)
dvΓ(d) . (4.36)

When the polarimetric scattering Entropy is equal to 0 (λ̃i = 1 and λ̃j = 0,∀j 6= i), the
normalized moments will reach the upper boundary

max{nmv{Iz}} = Γ(v + 1). (4.37)

Taking into account the texture part, the vth order moment of the l2-norm of the total
scattering vector can be written as

mv{Ik} = mv{τ}mv{Iz} (4.38)

since the texture and the speckle in (4.24) are independent. Under the assumption that
the mean value of texture parameter is equal to 1, the normalized moments of Ik are then

nmv{Ik} = mv{Ik}
mv

1{Ik}
= mv{τ}nmv{Iz}. (4.39)

Different distributions for the texture parameter will result into different values. As a con-
sequence, the normalized moments could be employed to reveal the texture information,
besides the polarimetric information of PolSAR data.

Given N independent and identically distributed samples {ki, i = 1, · · · , N}, the
sample moments can be estimated using

m̂v{Ik} = 1
N

N∑
i=1

(k†iki)
v (4.40)

and the normalized moments by

n̂mv{Ik} = m̂v{Ik}
m̂v

1{Ik}
. (4.41)

This estimator is biased [118, 119]. As shown in Appendix A.2, the bias is of the order
O(1/N)

B = 1
2N (v(v + 1) · nm2{Ik}nmv{Ik} − 2v · nmv+1{Ik} − v(v − 1) ·mv{Ik}). (4.42)
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When the sample size N is large, the mean value and the variance of n̂mv{Ik} can be
approximated by

E {n̂mv{Ik}} ≈
mv{Ik}
mv

1{Ik}
= nmv{Ik} (4.43)

Var {n̂mv{Ik}} ≈
1
N

[nm2v{Ik} − (v − 1)2 · nm2
v{Ik}

−2v · nmv{Ik}nmv+1{Ik}+ v2 · nm2{Ik}nm2
v{Ik}]

(4.44)

See Appendix A.2 for more details. Simple goodness-of-fit tests can be designed with the
estimator and the estimation variance.

4.2.3 Log-Cumulants

As shown in the previous section, the moments can be viewed as functions of the order
v, which are distinct for different distributions. They can be employed to identify data
models therefore. Letting v = s− 1 and computing the logarithm on both sides of (4.38)
gives the following relation:

ϕIk(s) = ϕτ (s) + ϕIz(s) (4.45)

where ϕx(s) is the Mellin kind characteristic function of the second kind (Section 4.1.2).
The log-cumulant can be obtained further by calculating the vth order differential and
setting s = 1

κv{Ik} = κv{τ}+ κv{Iz}. (4.46)

It is an addition of the values from the texture part and the speckle part. The log-
cumulants of the texture part are well studied in [25, 26], and the results of some widely
studied distributions for the texture are listed in Table 4.1. For the speckle part, (4.28)
shows that the Mellin kind characteristic function of the second kind is

ϕIz(s) = ln Γ(s) + ln hs−1(λ1, · · · , λd), (4.47)

and the log-cumulants can be calculated by (see Appendix A.3)

κv{Iz} = ψ(v−1)(1) + βv (4.48)

where ψ(v)(·) is the polygamma function (4.19), and βv is solved recursively using

βv = h̃(v)−
v−1∑
k=1

(
v − 1
k

)
h̃(k)βv−k (4.49)

with h̃(v) =
∑d
i=1 pi(lnλi)v. A great advantage of the log-cumulants for texture analysis

is that the contribution of the texture and the speckle can be separated using the logarithm
operation [26]. The log-cumulants of the l2-norm are calculated from the scattering vectors
directly. As a result, no filtering is required to obtain the sample covariance matrices,
where the procedure may change the statistical properties of the original data.

To test the fit of a model to PolSAR data using the log-cumulants, we can employ
the biased estimator based on the Faà di Bruno’s formula as shown in Section 4.1.2, or
the unique unbiased estimator with minimum variance, k-statistics [109, 111]. Given N
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independent and identically distributed samples {ki, i = 1, · · · , N}, the k-statistics of the
first three orders are given by [109]

κ̂1{Ik} = M1

N
(4.50)

κ̂2{Ik} = NM2 −M2
1

N(N − 1) (4.51)

κ̂3{Ik} = 2M3
1 − 3NM1M2 +N2M3

N(N − 1)(N − 2) (4.52)

where Mv is the sums of the vth powers

Mv =
N∑
i=1

[
ln(k†iki)

]v
. (4.53)

The variance of the first three k-statistics are given by [109]

Var{κ̂1{Ik}} = κ2{Ik}
N

(4.54)

Var{κ̂2{Ik}} = κ4{Ik}
N

+ 2κ2
2{Ik}
N − 1 (4.55)

Var{κ̂3{Ik}} = κ6{Ik}
N

+ 9κ2{Ik}κ4{Ik}
N − 1 + 9κ2

3{Ik}
N − 1 + 6Nκ3

2{Ik}
(N − 1)(N − 2) (4.56)

In addition, the covariance of the second order and third order k-statistics is [109]

Cov{κ̂2{Ik}, κ̂3{Ik}} = κ5{Ik}
N

+ 6κ2{Ik}κ3{Ik}
N − 1 . (4.57)

K-statistics of higher orders can be found in Appendix A.4 or [109]. The second order
and third order log-cumulants are widely used to determine the texture distribution. Let
κ = [κ2{Ik}, κ3{Ik}]T and κ̂ = [κ̂2{Ik}, κ̂3{Ik}]T , then the covariance matrix of κ̂ is

K =
[

Var{κ̂2{Ik}} Cov{κ̂2{Ik}, κ̂3{Ik}}
Cov{κ̂2{Ik}, κ̂3{Ik}} Var{κ̂3{Ik}}

]
. (4.58)

Consider the test statistic

Qp = (κ̂− κ)TK−1(κ̂− κ), (4.59)

the asymptotic distribution follows as [110]

Qp
D−→ χ2(2) (4.60)

where χ2(p) is the χ2 distribution with degrees of freedom equal to p. The PDF is given
by [86]

p(x; p) = xp/2−1e−x/2

2p/2Γ(p/2)
. (4.61)

For a significance level αc, we can calculate the acceptance region of the κ̂, saying zαc , via
p(Qp > zαc) = αc. The comparison of the theoretical log-cumulants with the estimated
ones thus can be quantitatively evaluated.
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Table 4.3: KS Distance of Simulated Data

None Gamma InvGamma Fisher Beta Beta’
KS1 0.0040 0.0020 0.0065 0.0069 0.0072 0.0021
KS2 0.0040 0.0574 0.0683 0.0889 0.0249 0.0237

4.3 Experimental Results

Experiments on both simulated data and real SAR data are designed. With the former,
we can validate the distributions and statistics of the l2-norm derived in the previous
section, whereas the latter aims to demonstrate the applications as well as advantages of
the l2-norm to SAR data analysis.

4.3.1 Simulated Data

First, experiments are carried out to validate the PDFs in Table 4.2. Simulated data
with different texture distributions are tested, including the gamma distribution (Gamma),
the inverse gamma distribution (InvGamma), the Fisher distribution (Fisher), the beta
distribution (Beta) and the beta prime distribution (Beta’), as well as constant values
(None). The parameters for the gamma and inverse gamma distributions are α = 8, and
ξ = 8, ζ = 12 for the other three ones. All the data share the same covariance matrix

C1 = 10−3 ×

 161 −7− 4j 39− j
−7 + 4j 82 −4 + 4j
39 + j −4− 4j 100

 (4.62)

which is estimated from a forest area of an AirSAR image acquired over the Netherlands.
The PDFs in Table 4.2 are calculated, and compared with the histograms of the

simulated data. The result is shown in Fig. 4.4, where the solid lines stand for the PDFs,
and the points represent the histograms. It shows that the histograms conform to the
corresponding PDFs closely, and different distributions can be discriminated by the PDFs,
though not effectively. This is also validated by the KS distance, which is defined as

KS = sup
x
|Fn(x)− F (x)|. (4.63)

Here F (x) is the cumulative distribution function, Fn is the empirical distribution for
n independently and identically distributed observations, and sup is the supremum of
the set of distances. The results are shown in Table 4.3. The first row refers to the
distances between the histograms and the corresponding PDFs (KS1), and as a reference,
the second row shows the distances from the histograms to Gaussian PDF (KS2). As it
can be seen, the KS1 is smaller than 0.01 for all the simulated data, while KS2 is larger
than 0.02 for data with textures. The values confirm that the histograms can be employed
for texture analysis. It is necessary to remind that the KS distance depends on the bin
size to calculate the histogram, therefore, the results are meaningful only when the bin
size is same.
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Figure 4.4: Histograms and PDFs of the l2-norms. The solid lines represent the PDFs in
Table 4.2, and the points the histograms of simulated data. (a) Simulated data. (b) Gamma,
Fisher, and beta prime distributed texture. (c) Inverse gamma, beta distributed texture as
well as non-texture.

The Entropy given by the covariance matrix C1 in (4.62) is 0.9275, which is high as
the correlation coefficients between polarimetric channels are very small. By keeping the
intensities and increasing the correlation, another two covariance matrices, with Entropy
0.6940 and 0.5187 respectively, are obtained

C2 = 10−3 ×

 161 79.6− 46j 39− j
79.6 + 46j 82 −4 + 4j

39 + j −4− 4j 100

 (4.64)

C3 = 10−3

 161 79.6− 46j 39− j
79.6 + 46j 82 51.2 + 51.2j

39 + j −51.2− 51.2j 100

 (4.65)

Gaussian distributed data are simulated using these covariance matrices, each containing
40000 samples. The normalized moments up to the fifth order are shown in Fig. 4.5b, in
which the theoretical values are represented by lines, and estimated ones by asterisks. It
shows that the estimated values fit the theoretical ones very well, and data with different
Entropy are distinguished in the plot, laying between the two boundaries representing
Entropy 0 and Entropy 1. Table 4.4 shows the distances between the estimated normal-
ized moments and theoretical ones, d = |nmv − n̂mv|, as well as the square root of the
estimation variance, σ =

√
Var{n̂mv}. Based on the 3σ rule, we can judge that the data

is characterized by the corresponding distribution, as all d < 3σ. In addition, it shows
that the estimation variance of higher order normalized moments, the fifth order for ex-
ample, is very large, therefore, higher orders should be avoided to data analysis unless
the sample size is very large.

Normalized moments are also tested on simulated data with different texture distri-
butions, including the gamma, the inverse gamma and the Fisher distribution. Texture
distribution parameters (see Table 4.1) are given by α = 8 and ξ = 8, ζ = 12, and covari-
ance matrix by (4.62). The result is shown in Fig. 4.5c. The values of Gaussian distributed
data is also plotted as a reference. The quantitative assessment based on the estimation
variance is shown in Table 4.5. Similar results are obtained and it demonstrates again
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Figure 4.5: Normalized moments of the l2-norms on simulated data. The theoretical values
are represented by lines, and estimated ones by asterisks. (a) Pauli decomposition of sim-
ulated data. (b) Gaussian distributed data with different Entropy. (c) Data with different
textures but the same covariance matrix (Entropy of 0.9275).

Table 4.4: Estimation Variance and Distance on Homogeneous Data

Tests Distance v = 2 v = 3 v = 4 v = 5

C1
d 0.0025 0.0189 0.1236 0.7691

3σ 0.0106 0.0638 0.3395 1.9337

C2
d 0.0005 0.0126 0.1513 1.3032

3σ 0.0153 0.1073 0.6927 4.8918

C3
d 0.0010 0.0143 0.0981 0.5775

3σ 0.0182 0.1379 0.9769 7.6351

Table 4.5: Estimation Variance and Distance on Textured Data

Tests Distance v = 2 v = 3 v = 4 v = 5

Gamma d 0.0013 0.0080 0.0077 0.6125
3σ 0.0196 0.1701 1.5148 16.7464

InvGamma d 0.0160 0.1074 0.3839 8.1539
3σ 0.0301 0.4614 - -

Fisher d 0.0193 0.1490 0.7832 3.3680
3σ 0.0335 0.4588 9.2493 436.6224

that the normalized moments can be employed to determine the distribution of SAR data.
That textured data have a larger normalized moment than Gaussian distributed data can
be also observed. In Table 4.5, the variance of the 4th and 5th order normalized moments
for the inverse gamma distributed texture is not defined, as the variance involves 8th and
10th order moments which do not exist when α = 8, see the expression in Table 4.1.
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Figure 4.6: Log-cumulants of the second and the third order. The point clouds represent
the estimated values using bootstrap, and the + markers represent the theoretical values. (a)
Log-cumulants of the l2-norms. (b) Matrix variate log-cumulants with 3×3 filtering window.
(c) Matrix variate log-cumulants with 5× 5 filtering window.

In addition to the normalized moments, the log-cumulants of the l2-norms are calcu-
lated. Again, simulated data with texture distributions in Table 4.1, as well as non-texture
data, are tested. The result is shown in Fig. 4.6a. For each trial, 100 κ3-κ2 pairs are esti-
mated using the bootstrap method [26], with each bootstrap sample consisting of 20000
pixels. The estimated pairs are plotted in the log-cumulant diagram (point clouds), and
are compared with the theoretical values (the + markers). The acceptance regions with
significance level αc = 0.05 are also depicted (the black ellipses). As we can see, the
estimated log-cumulants are congruent with the theoretical ones, as there are only several
points falling out of the ellipses.

Multilook processing is applied to the scattering vectors using two different window
sizes, 3 × 3 and 5 × 5 pixels, and with the obtained sample covariance matrices, matrix
variate log-cumulants are estimated. The results are shown in Fig. 4.6b and Fig. 4.6c.
As the correlation length of the simulated texture is 3 pixel, the sample matrix variate
log-cumulants are different completely. With a window size smaller or equal than the
correlation length, the estimated statistics are in agreement with the theoretical ones.
While a large window size will average out the texture significantly, resulting in Gaussian
statistics. Therefore, with the matrix variate log-cumulants, the choice of the window
size is critical in some circumstances.

From Fig. 4.6a and Fig. 4.6b, we can see that the matrix variate log-cumulants are
well separated for different distributions, while the log-cumulants based on the l2-norm
are overlapped for some distributions. This is because the matrix variate log-cumulants
of the texture part are scaled by a non-linear function of the order as shown in (4.17),
and the difference between distributions is amplified. From this point of view, the matrix
variate log-cumulants are of advantage when the multilook window size is properly chosen.

4.3.2 Real SAR Data

Real SAR data including RADARSAT-2 Fine Quad-Pol data (RST2) as well as F-SAR
X-band full-pol data (FSAR) from the DLR are analyzed using the l2-norm. The two data
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have quite different spatial resolutions, 11.1m × 7.6m (Range × Azimuth) for the RST2
data, and 0.25m× 0.25m for the FSAR data. Original data are in the single look complex
format.

Three ROIs over the crops area from each data are tested, see Fig. 4.7c and Fig. 4.7d.
For the RST2 data, each ROI covers 50 × 50 pixels. It can be seen that the ROIs are
represented by very different colors from the Pauli decomposition, implying that the
polarimetric information they convey are different. The ROIs in the FSAR data are much
larger, each covers 200 × 200 pixels. Compared with the appearance of the RST2 data,
the differences among these ROIs are not so significant. The Pauli decomposition shows
that the ROIs in both image are very homogeneous, no appreciable texture is observed.

The normalized moments are computed on all ROIs, and the values are compared with
those of Gaussian distributions, since the normalized moments can be used to evaluate
the non-gaussianity as demonstrated before. Because the true covariance matrices are
not known, they are estimated using the fixed point estimator (3.32) which is proved to
be robust on both homogeneous and textured areas. The results are shown in Fig. 4.7c
and Fig. 4.7d. As we can see, the normalized moments estimated from the RST2 data
fit those calculated using the covariance matrix very well, and they are well separated
between the boundaries representing Entropy 0 and Entropy 1. It is rational to conclude
that these ROIs can be modeled by Gaussian distributions. In contrast, the result on
the FSAR data shows different behaviors. First of all, all the ROIs seem to have similar
Entropy. Applications such as classification based on the Entropy, as a consequence, may
not work. Secondly, there are large discrepancies between the estimated values and the
theoretical values for all ROIs. Apparently, Gaussian distributions are not accurate any
more. Statistical information, or texture information, is of great value to identify different
types of crops in this case.

Further validations using the log-cumulants based on the l2-norm are performed, see
Fig. 4.8a and Fig. 4.8b. Here only the impact from the texture part is shown by removing
the contribution of the speckle part in (4.46). This is because the contribution from the
speckle part is not the same for different ROIs since the covariance matrices of these
ROIs are different. The acceptance regions of Gaussian distributions with significance
level αc = 0.05 are also plotted. Fig. 4.8a shows that most of the points fall inside the
corresponding ellipse, indicating that Gaussian distributions are proper for these ROIs.
For the FSAR data, it seems that the ROI 1 and ROI 3 can be modeled by beta prime
distributed textures, whereas the inverse gamma distribution is proper for the ROI 2.
That the width of the acceptance regions depends on the number of samples gives rise
to the large difference in the sizes of the ellipses in Fig. 4.8a and Fig. 4.8b, as there are
much more pixels in the ROIs of the FSAR data than the RST2 ROIs.

The matrix variate log-cumulants are also computed for the FSAR data, after applying
a multilook process to the scattering vectors with a 5×5 sliding window. Each bootstrap
sample contains 500 sample covariance matrices. And the ENL is estimated as 6.4885.
From Fig. 4.8c, we can see that most points from ROI 2 and ROI 3 fall inside the black
ellipse, which refers to the acceptance regions of a Wishart distribution with significance
level αc = 0.05. It demonstrates again that the non-gaussianity can be removed during
the multilook processing. To obtain the correct statistical properties, filtering should be
avoided as much as possible.
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Figure 4.7: Normalized moments on RST2 data (the first column) and FSAR data (the second
column). The theoretical values are represented by lines, and estimated ones by asterisks.
(a) and (b), Pauli decomposition and test areas. (c) and (d), Normalized moments both
calculated using the covariance matrix and estimated from the data samples.

The calculation of matrix variate log-cumulants involves the estimation of the ENL,
which is a difficult task in the analysis of PolSAR data. One needs to select a Gaussian
distributed homogeneous area manually, and then use the trace moment-based estimator
or log-determinant moment-based estimator [120]. Another option is the texture-invariant
estimator [121] suggested by Liu et al., which can be applied on textured data. But it
requires that the texture is constant in the multilook window, which is not guaranteed
in all circumstances, the crops area of the FSAR data for example. On the contrary,
the log-cumulants of the l2-norms depends on the covariance matrix instead of the ENL,
which can be estimated either on homogeneous area or textured area using a sample mean
estimator or the fixed point estimator (3.32).

Apart from the crops areas, two forest sites from the FSAR data are analyzed, one is
with short trees, and the other with high trees. Six ROIs of 200× 200 pixels are selected
for each test site, see Fig. 4.9. The Pauli decomposition shows that the test regions are
very heterogeneous due to the alternative appearance of the strong backscattering from
the crowns of trees and the weak one from the shadows.
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Figure 4.8: Log-cumulants of the l2-norms on the RST2 data and FSAR data. Estimated
values are plotted as points and the acceptance regions as ellipses. (a) Log-cumulants of the
l2-norms on RST2 data after removing the effect of the speckle part. (b) Log-cumulants of
the l2-norms on FSAR data after removing the effect of the speckle part. (c) Matrix variate
log-cumulant of the sample covariance matrices on FSAR data after a 5× 5 filtering.
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Figure 4.9: Test sites of forest areas on the FSAR data. Two different types of forest are
tested. (a) Pauli decomposition and test areas of the first site. (b) Pauli decomposition and
test areas of the second site.

Log-cumulants of the l2-norms, as well as matrix variate log-cumulants are calculated.
Fig. 4.10a and Fig. 4.10b show the values of the the first site, and those of the second site
are in Fig. 4.10c and Fig. 4.10d. It seems that the textures of all the ROIs can be modeled
by Fisher distributions. The absolute values of κ2 and κ3 are very large. This implies that
there exist strong fluctuations in the radar cross sections over these areas. We can also
see that different ROIs from the same test site have similar results, for example, the κ2 of
the first site is less than 1.5 and the κ3 is less than 0, which are well separated from the
second site, where the κ2 is larger than 1.5 and κ3 larger than 0. This means the forests
can be further classified into different types using statistical information. The textures
are not affected too much by the multilook processing, see Fig. 4.10a and Fig. 4.10b for
example. That the window size of the filtering, 5 × 5 pixels, is smaller than the size of
trees could be the reason.
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Figure 4.10: Log-cumulants of the test areas in Fig. 4.9. (a) Log-cumulants of the l2-norms
(first site). (b) Matrix variate log-cumulants (first site). (c) Log-cumulants of the l2-norms
(second site). (d) Matrix variate log-cumulants (second site).

4.4 Conclusions

Analyzing the statistical properties of PolSAR data is a difficult task due to the multi-
dimensionality of the signal. A common way doing this is to study the statistics of each
polarimetric channel separately. The correlation between different polarimetric channels
are usually neglected, though it provides very useful information that makes the multidi-
mensional SAR system differ from a single SAR system. In this chapter, the l2-norm, or
the Span, of the scattering vector is studied, and it is found to be a useful tool for texture
analysis of PolSAR data, which takes into account both the intensities and correlations.
In addition, the Span has a physical meaning, and it is polarimetrically invariant.

Two important kinds of statistics of the l2-norm are studied. The normalized moments
is an extension of the normalized intensity moments, which can be employed to evaluate
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the non-Gaussian behavior of the data easily. The values of different orders could reveal
the polarimetric properties of PolSAR data, as well as the texture properties. The log-
cumulants can be used to identity the texture distribution of the data. No multilook
processing is required to compute these values, which is an advantage in the analysis of
high spatial resolution data or urban areas, since the statistical behavior may change and
mixtures of targets may appear after a filtering. In addition, no ENL is required to obtain
these quantities. Thus the difficult task, estimating the ENL, can be avoided.

Estimators for the normalized moments and log-cumulants are provided. The former
is biased but the bias asymptotically vanishes as increasing the sample size. The latter is
an unbiased estimator. The variances of the estimators are also given. One can further
develop parameter estimators and design goodness-of-fit tests using these statistics.

Results on real SAR data show that texture information is of great importance. When
different targets belong to a same category, saying crops or forest, the scattering mecha-
nisms may be same, and similar polarimetric information will be observed. It is difficult
to discriminate these targets by the polarimetric information only. Combining infor-
mation conveyed by the texture, however, could give a better identification of targets.
Crops of different types, and forests with trees of different characteristics can be further
distinguished.

The statistics are derived based on the assumption that the texture for all polarimetric
channels is the same. Multi-texture, where the correlations of polarimetric channels are
important since the textures may be correlated, will be considered in the next step.
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Physical Interpretation

of Data Models

Physically, the signal received by the SAR sensor from a resolution cell can be regarded
as a sum of various complex phasors, each resulting from an individual scatterer. The
addition of the independent and randomly located complex contributions gives rise to
speckle. The classical model for homogeneous data assumes that the scatterer number in
a resolution cell is big enough to give Gaussian distributed speckle [68]. However, the K
distribution (Section 3.2.1.1) obtained by letting the scatterer number follow a negative
binomial distribution, is demonstrated to be more accurate for the speckle in areas such as
sea surface and forest [6,27,122]. As proved in [93], the K distribution can be formulated
into a product of two independent random variables, one is gamma distributed, and the
other follows a Gaussian distribution. The former is referred to as texture parameter
and the latter as speckle [28, 123]. Since then, a number of models have been proposed
by altering the distribution of the texture parameter based on this product scheme, see
Section 3.2 for more details.

However, unlike the Gaussian distribution and the K distribution, most of the texture
models lack a physical explanation of the underlying scattering process. They give no clues
about why data following a specific distribution is obtained. In this chapter, a simulator
based on the random walk model [27, 68] is developed. With it, we can simulate data
under certain scattering scenarios by controlling the factors that may appear in the data
formation process. And then, a suitable texture model, G0 distribution (Section 3.2.1.2)
for example, can be found for the simulated data via statistical analysis using the tools
detailed in Chapter 4. The scattering process and the statistical data models, thus, are
bridged, and possible physical explanations can be given to some models.
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The remainder of this chapter is organized as follows. First of all, the two-dimensional
random walk is introduced, which leads to the Gaussian distribution or K distribution
by changing the distributions for the scatterer number in each resolution cell. Second,
the PolSAR data simulator based on the multi-dimensional random walk is detailed.
Algorithms on how to simulate different scatterer types and scatterer numbers are given,
as well as mixtures of targets. At last, experimental results on both simulated data and
real SAR data are shown.

5.1 Random Walk Model

Under the assumption of Born approximation or simple scattering approximation [124],
the observing surface can be regarded as a collection of independent discrete scatterers. If
the wavelength of the EM waves is much smaller than the dimension of a single resolution
cell, it is impossible to separate the contributions from different scatterers in that cell [82].
This is related to the SAR data focus process that has been detailed in Section 2.1. As
unveiled by (2.13), the received signal is a coherent sum of echoes from all the scatterers
in the resolution cell. This sum of complex phasors can be described by a two-dimensional
random walk as shown in Fig. 5.1b. Mathematically, it can be expressed as [68]:

Aejϕ =
N∑
i=1

aie
jϕi

Re
{
Aejϕ

}
=

N∑
i=1

ai cosϕi

Im
{
Aejϕ

}
=

N∑
i=1

ai sinϕi

(5.1)

where A is the amplitude of the signal and N refers to the number of targets within
the resolution cell. The amplitude ai and the phase ϕi of each phasor are statistically
independent. This fact states that the strength of a given scattered wave bears no relation
to its phase. Furthermore, the phases are uniformly distributed in the interval (−π, π] by
assuming the scatterers to be randomly located in the resolution cell.

With this model, it is possible to calculate a number of useful statistical properties of
the resultant field. The average value of the signal can be seen immediately [125]

E{Aejϕ} = 0. (5.2)

The correlation of two phasor echos is given by

E{aiejϕiake−jϕk} = aiakδ(i− k) (5.3)

where δ(·) is the Dirac function. From this it follows that the mean intensity of the
received signal can be written as

E{I} = E{a2}
N∑

i,k=1
E{ej(ϕi−ϕk)} = N E{a2}. (5.4)
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v

Resolution Cell

Scatterers

(a) (b)

Figure 5.1: Illustration of the received echo from a resolution cell. (a) SAR resolution cell.
(b) The received data can be viewed as a two-dimensional random walk.

Here the amplitudes of all phasors are treated as observations of the same random variable
a. The second moment of the intensity is

E{I2} =
N∑

i,k,l,m=1
E{aiakalam}E{ej(ϕi−ϕk+ϕl−ϕm)}

= 2N(N − 1) E2{a2}+N E{a4}

(5.5)

due to the non-zero terms fall into two categories: the pairs {i = k, l = m} and {i =
m, k = l} that give 2N(N − 1) terms, and the special case i = k = l = m that gives N
terms [125]. The normalized moments of the second order takes the form

E{I2}
E2{I}

= 2
(

1− 1
N

)
+ 1
N

E{a4}
E2{a2}

. (5.6)

When N is very large, we have the normalized intensity moment of the second order equal
to 2, which is the same as an exponential distributed random variable, see Section 4.1.1
for more details.

As a matter of fact, when N →∞, equation (5.1) states that both real and imaginary
parts of a distributed target have a zero-mean Gaussian distribution, as the number of
scatterers inside the resolution cell is large enough to fulfill the CLT [68]. Each pixel of an
image, therefore, can be described as a complex Gaussian random variable as characterized
by (3.2). Its amplitude is defined by a Rayleigh distribution, and its intensity by an
exponential distribution.

However, the condition that N →∞ does not hold in many circumstances:

• In high resolution SAR systems, only a few number of scatterers are present within
the resolution cell, N is supposed to be small.
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• In the extreme case of an isolated target inside the resolution cell, the intensity is
given by the deterministic impulse response of the SAR system, this is the case of
deterministic targets.

• In addition, the scatterer number is supposed to be random, since the imaging scene
is usually a coarse surface with variations in height. The fluctuation of the scatterer
number generally will give rise to non-Gaussian distributions.

For a certain N , the PDF of the intensity can be calculated from the random walk
model, see Appendix B.1 or [125, Chapter 4], which is as follows:

p(I|N) = 1
2

∫ ∞
0

uJ0(u
√
I) EN{J0(ua)}du (5.7)

where J0(z) is the Bessel function of the first kind [84], and the expectation EN{J0(ua)}
is computed on the amplitudes of random phasors, a. Further, if N follows a negative
binomial distribution

p(N ;α, p) =
(
N + α− 1

N

)
pα(1− p)N (5.8)

with a large mean value µ = α(1−p)/p, it can be proved (Appendix B.2) that the intensity
will follow a K distribution [122]

p(I) = 2α
µIΓ(α)

(
αI

µI

)α−1
2

Kα−1

(
2

√
αI

µI

)
(5.9)

where µI = E{A2}. The negative binomial distribution is a solution of the stable state
of the birth-death-migration process [6,27], which resembles the process of the scatterers
going into and out a resolution cell.

5.2 PolSAR Data Simulator

5.2.1 PolSAR Data Model

Considering only the simple scattering again [124], if there are N individual scatterers
randomly distributed inside a resolution cell, the received polarimetric SAR data can be
written as the sum of their responses

k = 1√
N

N∑
i=1

si (5.10)

where si denotes the response from a single scatterer. The normalizing factor 1/
√
N is

introduced to assure that the average intensity of the speckle is independent of N . When
the pixels are correlated, N is the equivalent number of scatterers per resolution cell,
which could be non-integers. But in this chapter only the uncorrelated cased is considered,
where N is a positive integer. The dimension of k is taken to be 4, corresponding to the
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5.2 - PolSAR Data Simulator

polarimetric channels Shh, Shv, Svh and Svv respectively, where h denotes the horizontal
polarization basis and v the vertical one. For the backscattering from a reciprocal medium
(Section 2.2.2), the cross polarization channels are equal (Shv = Svh), and then the
dimension is reduced to 3, which is the case mainly discussed here. The covariance
matrix is given by

Σ = E{kk†} = E{ss†}. (5.11)

There are several factors having contribution to the statistics of the vector k. The
first one is the scatterer type that characterizes the response of each scatterer [126]. Let
a denote the amplitude and φ the phase, a scatterer can be represented by

s =
[
ahhe

jφhh , ahve
jφhv , avve

jφvv
]T
. (5.12)

For each polarimetric channel, the amplitudes and the phases are statistically indepen-
dent. Furthermore, the phases are assumed to be uniformly distributed over (−π, π].
This assumption arises from the fact that the differences of paths from scatterers in one
resolution cell to the antenna are much greater than the wavelength, so that any value
of phase is equally probable [28]. Different scatterer types can be distinguished by the
distributions of their amplitudes. The variances of the amplitudes could reflect the rough-
ness of the observing surface, large values meaning rough surface, whereas small values
meaning smooth surface. In addition, the scatterer type can show the proportions of the
weak scatterers and strong scatterers by means of skewness. The polarimetric information
conveyed by the scatterers is determined by the covariance matrix Σ.

The second factor is the scatterer number N . On one hand, a lot of research has shown
that the fluctuation of scatterer numbers will give arise to texture [6, 27], which carries
information that may enable a user to identify different cover types. On the other hand,
for the high resolution data, where the scatterer number is finite and small, it is known
that the classical models such as Gaussian distribution usually fail to give an accurate
representation [127]. Therefore, the scatterer number could reveal the changing of the
surface properties such as the height, as well as the features of the radar system.

At last, the heterogeneity appeared in PolSAR data can be resulted from the mix-
ture of different targets. For instance, from an urban area which usually consists of
discrete objects like houses, trees and roads, the backscattering is a combination of dif-
ferent scattering mechanisms. To represent this type of data, a simple model would be
inappropriate [22]. Mixture models as introduced in Section 3.3, instead, could achieve
reasonable level of accuracy [22,23,128].

To summarize, the random walk model is linked to the underlying scattering process,
and (5.10) provides a physical insight into the scattering problem, as physical explanations
can be given to the mentioned factors of the random walk model. Taking into account
all the above aspects, a simulator that helps to study the statistics of PolSAR data is
designed. Details of the implementation are given in the following sections, provided that
the algorithms to sample the univariate uniform, Gaussian, gamma and beta distributions
exist.
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5.2.2 Scatterer Type

In this section, different distributions are introduced to describe the scatterers, with the
purpose of exploiting different variations, which can be related to the physical properties
of the observing surface. As detailed in Section 2.2.2, the scatterers can be classified into
point (or coherent) ones and distributed ones depending on whether only one scattering
matrix is enough to characterize the target or not. The Gaussian scatterer, K-scatterer,
Constant scatterer and Beta scatterer shown as follows belong to the distributed targets.

5.2.2.1 Point Scatterer

Man-made targets can be treated as point like scatterers. It is important to simulate
this type of targets when modeling urban areas. The response from a point scatterer to
the incident wave should be deterministic. Consider several point scatterers of the same
kind, however, the scattered waves are random due to their different positions. Let φ
denote the phase difference due to the position and s′ the scattering vector regardless of
the position, the simulation of a point scatterer can be described as Algorithm 5.1. The
phase difference is uniformly distributed over [0, 2π) by assuming that the scatterers are
randomly located.

Algorithm 5.1 Simulation of a Point Scatterer
1: procedure PointScatterer(s′)
2: φ ∼ U(0, 2π) . U , uniform distribution
3: s← s′ · ejφ
4: return s
5: end procedure

5.2.2.2 Gaussian Scatterer

A Gaussian scatterer can be represented by a vector that follows a multivariate com-
plex Gaussian distribution with zero mean, as expressed by (3.1). For each polarimetric
channel, the amplitude is Rayleigh distributed. Gaussian distributions are widely used
to analyze random variables whose distributions are not known. Many complex problems
can be derived analytically in explicit form when the relevant variables are assumed to
follow Gaussian distributions, due to their mathematical tractability. Therefore, it is in-
teresting to test Gaussian distributions as the distributions of scatterer responses. The
procedure of simulating a Gaussian scatterer is shown in Algorithm 5.2.

5.2.2.3 K-Scatterer

A K-scatterer is defined by the multivariate K distribution given by (3.37). The K dis-
tribution has a wide range of shapes, which makes it well suited to describe scenes where
there are scatterers with a variety of geometries and orientations [74]. As already men-
tioned, the K distributed random variable can be viewed as the product of two ran-
dom variables, one follows a Gaussian distribution and the other a gamma distribution.
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5.2 - PolSAR Data Simulator

Algorithm 5.2 Simulation of a Gaussian Scatterer
1: procedure GaussianScatterer(Σ)
2: L← Cholesky decomposition on Σ
3: Rhh, Ihh, Rhv, Ihv, Rvv, Ivv ∼ N(0, 1/2) . N , Normal distribution
4: u← [Rhh + jIhh, Rhv + jIhv, Rvv + jIvv]T
5: s← Lu
6: return s
7: end procedure

Therefore, to simulate a K-scatterer, we can first simulate a Gaussian scatterer, and
then multiply it by a gamma distributed random variable τ characterized by (3.36), see
Algorithm 5.3.

Algorithm 5.3 Simulation of a K-Scatterer
1: procedure KScatterer(Σ, α)
2: z← GaussianScatterer(Σ)
3: τ ∼ Γ(α, 1/α) . Γ, Gamma distribution
4: s← τ · z
5: return s
6: end procedure

5.2.2.4 Constant Scatterer

For each polarimetric channel, the response of a Constant scatterer to the incident wave
has a nonrandom amplitude [126]. In reality it is difficult to find any Constant scatterers,
but as a contrast to the variable amplitudes, the study of constant ones is instructive.
The Constant scatterer is equivalent to the equal length component in the random walk
model [129].

Consider the simplest case first, where the amplitudes of all polarimetric channels are
equal to 1

u =
[
ejφhh , ejφhv , ejφvv

]T (5.13)

The covariance matrix is given by R = E{uu†}, which is also the correlation matrix. If all
diagonal elements of the covariance matrix are equal to 1, like the R, the corresponding
scatterer is referred to as a normalized scatterer. To the best of our knowledge, there
is neither closed form expression for the PDF, nor well known simulation algorithm of
the random vector u for a given covariance matrix. A simulation procedure based on
numerical analysis is designed.

Given a set of normalized Gaussian scatterers with covariance matrix Rg, if we let
all the amplitudes be 1, they are transformed into a set of normalized Constant scat-
terers with a different covariance matrix R. From tests with different correlations, see
Fig. 5.2a, it is found that for the matrix entries, Rg(i, k) = ρge

jφg and R(i, k) = ρejφ,
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the relationship is given approximately by{
ρg = 0.3701ρ5 − 1.1215ρ4 + 0.9406ρ3 − 0.5643ρ2 + 1.3875ρ− 0.0078
φg = φ

(5.14)

This means a normalized Constant scatterer can be obtained by setting the amplitudes
of a normalized Gaussian scatterer to 1, and the covariance matrix used to simulate the
latter is calculated according to (5.14).

To simulate a scatterer for any covariance matrix Σ, we first simulate a normalized
Constant scatterer u with covariance matrix given by R with entries

R(i, k) = Σ(i, k)√
Σ(i, i)Σ(k, k)

(5.15)

where i and k are the row number and column number. Then multiply a factor for
each polarimetric channel, s = (diag(Σ))−1/2u, where diag(Σ) is a diagonal matrix with
diagonal elements equal to those of Σ. The total simulation process is described in
Algorithm 5.4.

Algorithm 5.4 Simulation of a Constant Scatterer
1: procedure ConstantScatterer(Σ)
2: R ← Calculate (5.15)
3: Rg ← Calculate (5.14)
4: z← GaussianScatterer(Rg)
5: u← Set amplitudes of z to 1
6: s← (diag(Σ))−1/2u
7: return s
8: end procedure

5.2.2.5 Beta Scatterer

The amplitudes of the responses from Beta scatterers are assumed to follow a beta dis-
tribution. A useful property of the beta distribution is that it has nonzero value over
only a finite interval, and therefore does not allow amplitudes larger than a certain max-
imum [126]. For 0 ≤ a ≤ 1, and shape parameters α, β > 0, the PDF of the beta
distribution is given by (3.54). It has been shown that the statistic of the speckle will fol-
low a beta distribution if introducing a constraint to the total wave intensity received by
the sensor [130]. This is also known as the saturation effect. But here the introduction of
the Beta scatterer is mainly because it allows exploration of the effects of various shapes
of possible distributions, rather than a particular scattering problem.

A multivariate generalization of the beta distribution, known as the Dirichlet distri-
bution, has a limited dependence structure, where the correlation coefficients are nega-
tive [131]. It is not suitable to model the amplitudes of different polarimetric channels. In
order to model a more general correlation, the numerical method based on copulas theo-
rem is employed, where correlated beta random variables are produced by transforming
correlated normal random variables [132].
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Similar as the Constant scatterers, Beta scatterers are obtained by replacing the ampli-
tudes of Gaussian scatterers with correlated beta random variables. Through the Monte
Carlo simulations, it is found that the inter-channel correlation of the normalized Beta
scatterer (ρejφ) is a function of that of the normalized Gaussian scatterer (ρgejφg ) and
the correlation of beta distributed amplitudes (ρb), see Fig. 5.2b. The relationship can
be approximated by{

ρ = 0.6721ρb + 0.0050ρg − 0.2884ρ2
b + 0.145ρbρg + 0.3563ρ3

b + 0.0756ρ2
bρg

φ = φg
(5.16)

By letting ρg be 1, the phases of Beta scatterers are obtained from Gaussian scatterers,
and amplitudes from correlated beta distributions. The simulation procedure is described
as Algorithm 5.5.

Algorithm 5.5 Simulation of a Beta Scatterer
1: procedure BetaScatterer(Σ, α, β)
2: R ← Calculate (5.15)
3: φg ← Calculate (5.16)
4: Rg(i, k)← 1× ejφg
5: z← GaussianScatterer(Rg)
6: ρb ← Calculate (5.16), letting ρg = 1
7: a ∼ B(α, β, ρb) . B, Beta distribution
8: u← Set amplitudes of z as a
9: s← (diag(Σ))−1/2u

10: Return s
11: end procedure

5.2.3 Scatterer Number

As the PolSAR sensor moves along the azimuth direction, the scatterers going in and out
of the resolution cells can be modeled by a stochastic process. The number of scatterers,
as a result, varies from one resolution cell to another. In addition, the changing of the
surface height could also give rise to the variation of scatterer number. The fluctuation
of the scatterer number plays an important role in characterizing the statistics of the
scattering vector. Normally, the equivalent number of scatterers in different resolution
cells could be any positive values due to the spatial correlation, but here only integers are
considered regardless of the correlation, including the following cases.

5.2.3.1 Constant

For middle or low resolution data, it is reasonable to assume that there is a large number
of scatterers inside each resolution cell, and in different resolution cells, the number keeps
the same. At this point, the CLT can be brought to bear. No matter what distribu-
tion the scatterers follow, the resulting scattering vector will be asymptotically Gaussian
distributed [68]. In contrast, the area covered by a resolution cell becomes smaller in
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Figure 5.2: The relationship between the correlation coefficient of the amplitudes and
that of Gaussian scatterers is approximated using Monte Carlo simulations. (a) Correlation
relationship between the Constant scatterer (ρ) and the Gaussian scatterer (ρg). (b) Corre-
lation relationship between the Beta scatterer (ρ) and the Gaussian scatterer (ρg), as well as
correlated beta distribution (ρb).

the high resolution data, and the CLT doesn’t hold any more. The distribution of the
received data will be affected by the scatterer type [126]. To meet all these situations,
any positive integer is allowed as the scatterer number.

5.2.3.2 Negative Binomial

In many cases of practical interest, the number of scatterers N is a random variable [27].
The distribution of the resulting field then is non-Gaussian. For example, if N follows
a negative binomial distribution (5.8), the scattering vector will follow a multivariate K
distribution [6]. The variation of the scatterer number is due to the changing of the radar
cross section, which is related to the geometry properties (height for example) of the
observing surface. It is supposed that the changing of the surface is not very fast. The
scatterer number is fluctuating at a larger scale than the scale of a resolution cell.

5.2.3.3 Compound Distribution

In [133], the number of scatterers is modeled by a Poisson distribution [86] with the
mean value λ also randomly distributed according to some other distribution f(λ;α).
Integrating the intermediate parameter λ out, the distribution of the scatterer number is
then given by

p(N ;α) =
∫ ∞

0

λNe−λ

N ! f(λ;α)dλ. (5.17)

There are several distributions from the Pearson’s system suggested for f , including
gamma distribution, inverse gamma distribution, beta distribution, and beta prime dis-
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Table 5.1: Compounding Distributions

Distribution PDF

Gamma f(λ;α, β) = 1
Γ(α)βαλ

α−1 exp(−λ/β)

Inverse Gamma f(λ;α, β) = βα

Γ(α)λ
−α−1 exp(−β/λ)

Beta f(λ;α, β) = Γ(α+β)
Γ(α)Γ(β)λ

α−1(1− λ)β−1, λ ∈ [0, 1]

Beta Prime f(λ;α, β) = Γ(α+β)
Γ(α)Γ(β)λ

α−1(1 + λ)−α−β

tribution [133], see Table 5.1. They provide a wide variety of the scatterer number
fluctuations. In particular, when λ is gamma distributed, the resulting distribution is
equivalent to negative binomial distribution. Algorithm 5.6 shows the simulation pro-
cess of a scatterer number that follows compound distributions. Notice that if Y = 1/X
where X is gamma distributed, then Y follows an inverse gamma distribution. And Y
follows a beta prime distribution, if Y = X

1−X and X is beta distributed. Therefore, it’s
possible to draw samples from inverse gamma distributions and beta prime distributions
by transforming samples from gamma distributions.

Algorithm 5.6 Simulation of Compound Scatterer Number
1: procedure CompoundNum(α)
2: Get a sample λ from f(λ;α).
3: Get a sample from Poisson distribution, N ∼ Po(λ).
4: end procedure

5.2.4 Mixture of Scatterers

Generally, the scatterers in (5.10) are assumed to belong to the same category, one of the
Gaussian scatterer, K-scatterer, Constant scatterer or Beta scatterer. But there are many
cases where more than one scatterer type appears in the same resolution cell. In addition,
a region under analysis can be divided into several subregions on many occasions, each
with a different scatterer type. These will be regarded as mixtures of scatterers at the
pixel level (in the same resolution cell), or at the spatial level (in different resolution cells).

5.2.4.1 Mixture at Pixel Level

The mixture at pixel level assumes that each resolution cell contains scatterers from
more than one type. Take urban areas for example, the backscattering can be viewed
as the combination of echos from distributed targets (trees and grass), and point targets
(buildings). Or according to scattering mechanisms, the scatterers inside a resolution cell
can be classified into volume scattering, double-bounce scattering, surface scattering and
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so on. In this case, the random walk model can be written as

k =
√

1
N1 +N2 + · · ·

(
N1∑
i=1

s(a)
i +

N2∑
i=1

s(b)
i + · · ·

)
(5.18)

where N = N1 +N2 + · · · is the total number of scatterers.

5.2.4.2 Mixture at Spatial Level

In PolSAR data, the bright clutters and dark ones usually appear alternatively in the
forest areas, corresponding to strong returns from the crowns of trees with shadows behind
them. The similar phenomenon also appears in the sea surface when there exist wave
crests and troughs. The received data can be treated as the mixture of two types of
scatterers located alternatively. Assume that the region of interest can be modeled by a
mixture of K components, then the overall PDF of the scattering vector can be written
as (3.83). It has been shown that for complicated regions with more irregular histograms
(multimodal, spiky), the mixture model is more accurate than a single distribution [22,23].
The mixture of pixel level and spatial level are illustrated by Fig. 5.3.

(a) (b)

Figure 5.3: Different types of mixtures. Rectangles represent resolution cells, whereas
ellipses represent scatterers. Different colors mean different scatterer types. (a) Mixture at
pixel level. (b) Mixture at spatial level.

5.3 Simulated SAR Data

5.3.1 High Resolution Data

In high resolution data, where the resolution cell is only a few wavelength wide, the
usual hypothesis underlying the speckle phenomena, i.e., a large number of scatterers
per resolution cell, may be not true [126]. The distribution of the data may depend
on the distribution characterizing the individual scatterers. To validate this hypothesis,
simulated data with different scatterer numbers and scatterer types are implemented,
using the algorithms detailed in the previous section.

In each simulation, all the resolution cells have the same number of scatterers. Integer
values from 1 to 10 are tested. Different scatterer types including Gaussian scatterer (GS),
K-scatterer (KS), Constant scatterer (CS), as well as Beta scatterer (BS) are simulated,
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Table 5.2: Parameters for Simulating High Resolution Data

Case Covariance Matrix Additional Parameters

GS (5.19) None

KS1 (5.19) α = 3

KS2 (5.19) α = 6

CS (5.19) None

BS1 (5.19) α = 2, β = 2

BS2 (5.19) α = 2, β = 5

with the same covariance matrix

C1 =

 1
√

3× 0.3e−j π2
√

2× 0.7ej π5√
3× 0.3ej π2 3

√
6× 0.2ej π4√

2× 0.7e−j π5
√

6× 0.2e−j π4 2

 (5.19)

The matrix is chosen for academic study only, with consideration of different values for
the intensities, as well as different correlation coefficients between polarimetric channels.
Simulation parameters are summarized in Table 5.2. For the K-scatterer, two values are
chosen to test different variances, KS1 with a large variance and KS2 with a relatively
small variance, the former represents a rougher surface than the latter. Two kinds of
Beta scatterers, BS1 with skewness equal to zero and BS2 with a positive skewness, are
simulated. The skewness indicates the relation between the number of strong scatterers
and that of weak scatterers. In the first case, the number of strong scatterers and the
number of weak scatterers are comparable, whereas there are more weak scatterers in
the second case. For each testing case, a 300 × 300 pixel single look complex image is
generated.

The first row of Fig. 5.4 shows the Pauli decomposition (Section 2.2.2) of the simu-
lated data where the scatterer numbers are 1, 2 and 10, respectively. We can see that
all simulated images are homogeneous, but there are rather different colors in the Pauli
decompositions, especially for the Constant scatterers. The empirical PDF of the am-
plitudes are compared with the Rayleigh distributions. The results show that not all
homogeneous data have Gaussian statistics. The statistic information plays an important
role in defining the homogeneous data, besides the covariance matrix. As a consequence,
covariance matrix is not enough to accomplish the analysis in some cases of homogeneous
data, and higher order moments are necessary.

To quantitatively evaluate the fit of Rayleigh distribution to the simulated data, the
KS distance (l), defined by (4.63), and the correlation coefficient (ρ) are employed [10,22].
The values are shown in Table 5.3. As it can be seen, the statistical distribution of the sum
of N Gaussian scatterers is independent of the value of N . This is because the addition
of Gaussian scatterers on an amplitude basis does not change the statistics. The results
calculated from Gaussian scatterers provide a reference for the comparison. The largest
KS distance, 0.0034, is choosen as the limit to determine whether the data can be modeled
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5.3 - Simulated SAR Data

Table 5.3: Correlation coefficients and KS distances on Simulated Data

Test Number GS KS1 KS2 CS BS1 BS2

l

1 0.0019 0.0713 0.0376 0.6088 0.0651 0.0348
2 0.0034 0.0364 0.0179 0.1352 0.0264 0.0095
3 0.0025 0.0262 0.0122 0.0580 0.0158 0.0046
4 0.0022 0.0199 0.0114 0.0438 0.0129 0.0053
5 0.0029 0.0164 0.0077 0.0250 0.0097 0.0037
6 0.0031 0.0138 0.0068 0.0190 0.0080 0.0045
7 0.0023 0.0118 0.0072 0.0184 0.0076 0.0042
8 0.0027 0.0100 0.0069 0.0170 0.0057 0.0032
9 0.0024 0.0095 0.0054 0.0138 0.0064 0.0034
10 0.0034 0.0091 0.0052 0.0132 0.0054 0.0031
50 0.0020 0.0032 0.0034 0.0026 0.0032 0.0031

1000 0.0020 0.0030 0.0022 0.0025 0.0021 0.0028

ρ

1 99.96% 97.56% 99.29% 16.65% 96.79% 99.21%
2 99.95% 99.31% 99.82% 61.81% 99.58% 99.92%
3 99.96% 99.65% 99.90% 93.52% 99.83% 99.96%
4 99.96% 99.78% 99.91% 98.44% 99.87% 99.95%
5 99.96% 99.85% 99.94% 99.57% 99.93% 99.96%
6 99.96% 99.88% 99.94% 99.73% 99.94% 99.95%
7 99.96% 99.91% 99.95% 99.80% 99.95% 99.95%
8 99.96% 99.93% 99.94% 99.82% 99.95% 99.96%
9 99.97% 99.92% 99.95% 99.88% 99.94% 99.97%
10 99.95% 99.94% 99.96% 99.88% 99.96% 99.96%
50 99.97% 99.97% 99.97% 99.97% 99.97% 99.96%

1000 99.96% 99.97% 99.97% 99.97% 99.96% 99.97%

by a Gaussian distribution or not. It can be seen that the value of N from where Rayleigh
distribution can be concerned depends on the scatterer type. For the KS1, KS2, CS and
BS1, when the scatterer number is equal or larger than 50, the resulted distributions can
be well approximated by Rayleigh distributions. The correlation coefficients between the
estimated and empirical distributions are higher than 99.97% and the KS distances are
less than 0.035, but for the BS2, this value is 9. It has been shown that modern spaceborne
SAR (e.g., TerraSAR-X) can record data with equivalent number of scatterers less than
10 based on the classical surface model [134]. In this case, the scatterer type should be
concerned to understand the distribution of data.

Multilook PolSAR data are usually represented by sample covariance matrices, to
which analyzing statistics such as matrix variate log-cumulants (Section 4.1.3) can be
applied. As has been demonstrated in Chapter 4, special attention should be paid when
performing the multilook processing on the high resolution data, as this procedure is
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Figure 5.5: Matrix variate log-cumulants of the simulated high resolution data. (a) Multi-
look processing using a 2× 2 window. (b) Multilook processing using a 5× 5 window.

equivalent to increasing the number of scatterers in the resolution cells. In Fig. 5.5,
we show the matrix variate log-cumulants of the sample covariance matrices which are
obtained after applying the multilook processing with 2× 2 and 5× 5 sliding windows on
the simulated data when N = 1. It shows that after applying the multilook process with a
large window size, e.g. 5×5, the resulted sample covariance matrices can be approximated
by a Wishart distribution, even if there are only one K-scatterer or Constant scatterer in
each resolution cell. The statistics of the simulated PolSAR data approaches to Gaussian
statistics more rapidly after the multilook procedure. Therefore, for high resolution data,
preference should be given to the scattering vectors over the covariance matrices when
coming to statistical analysis.

In addition, it is interesting to note that the sample covariance matrices of BS2 after
the multilook processing can be modeled by a K distribution. Accordingly, the K statistics
of the sample covariance matrices may not come from texture at all, it is just a side effect
of the multilook processing. The log-cumulants of the l2-norms (Chapter 4) are also
computed from the simulated data, see Fig. 5.6. It shows the log-cumulants from BS2 is
far away from the curve representing the K distributions.

5.3.2 Scatterer Number Fluctuation

In the middle or low spatial resolution data, a data cell covers a large area, and the number
of scatterers inside it is considered to be large. Due to the variations of the properties of
the targets and the roughness of the observing surface, the scatterer number will fluctuate
from cell to cell. This situation will give rise to texture, bunching clutters in the data [93].
In the following, simulations of different distributions for the scatterer number are shown,
including negative binomial distribution and compound Poisson distributions.
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Figure 5.6: Log-cumulants of the l2-norms on simulated high resolution data. The case
that each resolution cell contains only one scatterer is simulated, this can be validated by
the result of the Constant scatter (black + mark), where the value is non-random.

Table 5.4: Parameters for Simulating Textured Data

Case Covariance Matrix Additional Parameters

NB1 (5.19) α = 5, p = 0.001

NB2 (5.19) α = 6, p = 0.001

C (5.19) None

IG (5.19) α = 5, β = 0.001

B (5.19) α = 5, β = 1000

BP (5.19) α = 5, β = 1000

Again, in each case, a 300 × 300 pixel single look image is generated to ensure there
are enough samples. For the negative binomial distribution, two cases are tested, denoted
as NB1 and NB2, respectively. Inverse gamma, beta and beta prime distributions are
examined as the compounding distribution in (5.17). To make results comparative, a
same shape parameter is tested for each of them, denoted as IG, B, and BP, respectively.
All the parameters are listed in Table 5.4. The average value of scatterer numbers is larger
than 1000 by choosing a proper scale parameter β. The sample covariance matrices are
obtained by applying a multilook process with 3× 3 sliding windows. In the simulations,
the randomness of scatterer numbers is assured to have a lower frequency than that of
scatterers by letting the scatterer numbers of pixels inside a neighboring window be the
same. Since we know the correlation length of the texture exactly, matrix variate log-
cumulants are enough to analyze the data. They are the true statistics of the simulated
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Figure 5.7: Simulated data and the matrix variate log-cumulants by employing different
distributions for the scatterer number, including negative binomial distribution (NB1 and
NB2), compounding Poison distribution with inverse gamma (IG), beta (B) and beta prime
(BP) distribution, as well as constant value (C). (a) Pauli decomposition of the data. (b)
Log-cumulants of simulated data.

data if a window size less than the correlation length is chosen during the multilook
processing.

Only the results of Gaussian scatterers are shown here, since the scatterer type has
little influence on the final result when the scatterer number is large. From Fig. 5.7,
it can be seen that K, G0 and Kummer-U distributed data are obtained by varying the
distributions of the scatterer number. In the results of Pauli decomposition, there are
bunching of scatterers, which is known as texture. Altering the shape parameters of
the distributions for the scatterer number, data with different texture parameters are
obtained, see NB1 and NB2 for example.
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5.3 - Simulated SAR Data

5.3.3 Mixture

Mixtures of ground cover types within a resolution cell or a region are common in PolSAR
images since the observing scene usually covers a large area. To see the influence on the
statistical properties of PolSAR data, mixtures at pixel and spatial levels are simulated.

First, the simulation of mixing two Gaussian scatterers of different classes is imple-
mented, one is given by the covariance matrix (5.19), and the other by (5.20). As we can
see, the two covariance matrices have different elements. They are chosen only for aca-
demic study and no particular scattering mechanisms are considered. The polarimetric
information they convey are different.

C2 =

 1 0.5ejπ/3 0.4e−jπ/4
0.5e−jπ/3 1 0.5ejπ/6
0.4ejπ/4 0.5e−jπ/6 1

 (5.20)

For the scatterer number, the negative binomial distributed random variables (NB), Pois-
son distribution compounding with inverse gamma distribution (IG), as well as constant
values (C) are tested. Mixtures at both pixel level (P) and spatial level (S) are applied,
where each class takes up 50% proportion. The simulated data and the matrix variate
log-cumulants calculated from them are shown in Fig. 5.8. It is noticed that the mix-
ture at spatial level gives heterogeneous data that follows Kummer-U distributions. The
mixture of distributed scatterers at pixel level changes the covariance matrix, but the
texture of the obtained data is determined by the fluctuations of the scatterer numbers,
for instance, negative binomial distributed scatterer numbers give a K distribution.

Fig. 5.9 shows the matrix variate log-cumulants of the simulated data which are ob-
tained by changing the mixing proportion of the first class, given by covariance matrix
(5.19), from 0 to 100%. It is observed that changing the proportions leads the log-
cumulants of the simulated data to cover all the κ2-κ3 space. This is also validated by
Nicolas on single channel data [25]. From Fig. 5.7 and Fig. 5.9, we notice that changing
either the distribution of scatterer numbers or mixing proportion can give K, Kummer-U ,
and G0 distributed data. However, they have rather different polarimetry meanings. In
the first case, the data represents only one type of scattering mechanism, while the second
case represents a complex combination of different polarimetric scattering mechanisms.

In urban areas, man-made targets and natural targets are usually arranged alongside
each other. The received data of a PolSAR system will be a mixture of responses from
both distributed scatterers and point scatterers. To show the statistics of these areas,
distributed scatterers with covariance matrix given by (5.19) and point scatterers given
by (5.21) are generated and mixed:

S1 = [5, 0, 0]T

S2 = [0, 5, 0]T

S3 = [10, 0, 0]T
(5.21)

Different percentages of point scatterers are tested, from 0.1% to 90%. From Fig. 5.10a to
Fig. 5.10c, the log-cumulants of the simulated data where the distributed scatterers are
mixed with one point scatter S1, two point scatterers S1 and S2, and one point scatterer
S3, respectively, are shown. As it can be seen, adding up point scatterers of different
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Figure 5.8: Simulated mixtures at spatial level and pixel level. Spatial mixtures with
negative binomial distributed scatterer number (NB-S), constant scatterer number (C-S) and
compound Poison distributed scatterer number (IG-S) are tested, as well as pixel level mix-
tures with the same scatterer number distributions, denoted by NB-P, C-P, and IG-P. The
data are filtered using a 3× 3 window.

types increases the heterogeneity of the simulated data, see Fig. 5.10a and Fig. 5.10b.
By comparing Fig. 5.10a and Fig. 5.10c, we can see that increasing the amplitudes of the
point scatterers result into more heterogeneity.

5.4 Experiments on Real SAR Data

Apart from simulated data, real PolSAR images, including the RADARSAT-2 Fine Quad-
Pol data (RST2), the ALOS-2 level 1.1 data in High-sensitive Full-Pol mode (ALOS2), and
the TerraSAR-X Stripmap Quad-Pol data (TSX) are analyzed. The first two images were
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Figure 5.9: Simulated mixture of targets at spatial level with different mixing proportions.
Matrix variate log-cumulants of the mixtures of scatterers specified by C1 and C2 are cal-
culated. A 3 × 3 filtering is applied to simulated data. (a) Constant number. (b) Negative
binomial distribution. (c) Compound Poison distribution.
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Figure 5.10: Simulated mixture of distributed targets and point targets. Log-cumulants
cover the whole κ2-κ3 plane by changing the percentage of point scatterers. (a) Mixture
with point scatterer S1. (b) Mixture with point scatterer S1 and S2. (c) Mixture with point
scatterer S3.

acquired over Barcelona (Spain), and the third one over Vancouver (Canada). Original
data are in the single look complex format, from which the sample covariance matrices are
obtained after a multilook processing. Table 5.5 shows the size of the filtering window,
as the pixels are correlated, the ENL is estimated using the log-determinant moment-
based estimator [120]. Additional parameters such as the wave frequency, incidence angle,
and the spatial resolution are also listed as a comparison. ROIs in the urban area, the
agriculture area, the ocean and the forest area are selected to test, each covering 30× 30
pixels. The Pauli decomposition and ROIs are shown in Fig. 5.11.

Fig. 5.12 shows the second-order and third-order matrix variate log-cumulants of the
ROIs. The two ROIs in urban areas (ROI 2 and ROI 3) of the RST2 data and the ALOS2
data represent two different urban structures, one is of tall and densely distributed apart-
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5.4 - Experiments on Real SAR Data

Table 5.5: Parameters of Real PolSAR Data

ID Freq. Res. Rg × Az Incidence Angle Window Size ENL
(m) (degs)

RST2 C Band 11.1× 7.6 28.9 3× 3 5.61
ALOS2 L Band 3.49× 3.84 33.9 5× 5 15.15
TSX X Band 1.18× 6.60 32.6 / 24.6 5× 5 7.77
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Figure 5.12: Matrix variate log-cumulants of real PolSAR data. Statistics show that the
test ROIs can be modeled by different distributions, including K, G0 and Kummer-U law.
(a) RST2. (b) ALOS2. (c) TSX.

ments, the other is of short and sparse houses. This may be an explanation why different
statistics, the G0 vs the Kummer-U , are obtained. In agriculture areas (ROI 5 and ROI
6), K distribution is shown to be the most suitable model, due to the mixtures of differ-
ent crop types. The forest area (ROI 4) shows weak texture in the RST2 and TSX data.
But in the ALOS2 data, there is a strong fluctuation in the backscattering due to the
radar foreshortening. To avoid the effect of radar image distortions, another forest region
(purple rectangle) is analyzed, which is found to follow a K distribution. In most cases,
texture is not observed in the sea areas. The results on the RST2 data and the ALOS2
data are similar, but quite different from that on the TXS data. One possible reason could
be that they are calculated from different areas. In addition, the data of TerraSAR-X
Stripmap Quad-Pol mode is an experimental product, before applying statistical analysis,
a simple calibration is accomplished, where pixels with intensities below the noise level
are discarded. This may be the reason why the results on the TSX data indicate a different
behavior as those on RST2 and ALOS2 data.

Besides the space-borne sensors, data from a ground based SAR sensor, the UPC
RiskSAR sensor [67], is also tested. More details about the RiskSAR system can be
found in Section 2.3.3.1. The data was acquired in a small town called Sallent near
Barcelona (Spain), see Fig. 5.13. Test ROIs covering different ground targets are chosen,
including grass (ROI 1), houses (ROI 2 and ROI 3), trees (ROI 4 and ROI 5). There are
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25 × 25 pixels in each ROI. The log-cumulants based on the l2-norms are calculated,
as shown in Fig. 5.14. We can see that the grass and the forest area show very weak
texture, while the ROIs covering houses are extremely heterogeneous, where the second
order log-cumulant can reach as large as 4. The backscattering from these areas are very
strong [135], and the Pauli decomposition shows there exist very bright pixels as well as
very dark pixels, see ROI 2 for example.

5.5 Conclusions

The random walk model is studied, with the objective to give a physical insight of sta-
tistical PolSAR data texture models. Variable aspects of this model, including scatterer
types, distributions of the scatterer number, as well as mixtures at pixel and spatial levels
are considered, and corresponding simulation algorithms are provided. When simulating
the scattering process, the scalar product model has been considered by assuming the
same texture for all the polarimetric channels due to the complexity to properly simulate
this type of variability. Statistical analysis are applied on simulated data obtained under
different assumptions, as well as real SAR data acquired with different SAR sensors, wave
frequencies and incidence angles.

From the simulated data, it is demonstrated that, according to the log-cumulants,
i.e., the κ2-κ3 diagram, the same PolSAR data distribution could come from different
scattering scenarios.

In the case of homogeneous data, it is demonstrated that the type of data distribution
depends on both the scatterer number and the type of scatterer. Nevertheless, it is
necessary to distinguish between low and high spatial resolution data. In the former case,
the PolSAR data distribution is essentially determined by the distribution of the scatterer
number, whereas in the later, the data distribution is affected by the distribution of the
scatterer number as well as by the type of scatterer. The difference between these two
cases is due to the number of scatterers inside the resolution cell. When this number is
large, larger than Nmax for example, the obtained data will be fully developed speckle.
It has been also demonstrated that the value of Nmax depends on the scatterer type. In
addition, the effect of the scatterer type can be easily removed by the multilook processing.
When a relatively large window is employed during the multilook processing, the non-
Gaussianity mainly comes from the fluctuation of scatterer numbers.

In case of heterogeneous data, the PolSAR data distribution is determined by the
mixture of different scatterers. This mixture can be considered at pixel, as well as at
spatial level. The mixture of distributed scatterers at pixel level changes the covariance
matrix, but the texture of the obtained data is determined by the fluctuations of the
scatterer numbers. In the case of mixture at spatial level, the data distribution is deter-
mined not only by the distribution of scatterer number, but also by the proportion of the
different scatter types in the mixture. Finally, the mixture of different targets will lead
to extremely heterogeneous data, which provides a clue to analyze heterogeneous areas
in PolSAR data, instead of introducing distributions with many parameters.

The configuration of a SAR sensor, for instance, frequency, incidence angle, and spatial
resolution, could affect the distribution of some targets, as the information obtained by
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Figure 5.13: Test site of the RiskSAR data. (a) Photo of the test site. (b) Pauli decompo-
sition of the SAR data and different ROIs.
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Figure 5.14: Log-cumulants of the l2-norms on the RiskSAR data.

the different configurations is not the same. Normally, with higher frequency and higher
resolution, more details could be observed, which will give stronger texture. A further
thorough study on this topic is required.

It is observed that the same PolSAR data statistics can be obtained from different
scattering scenarios. One possible physical explanation for different statistical PolSAR
data models is the fluctuations of the scatterer numbers. Specially, negative binomial
distributed scatterer number gives the K distribution, and compound Poisson distributed
scatterer number gives the Kummer-U and the G0 distribution. Another possible ex-
planation is the mixture of scatterers, where different data statistical models represent
different mixture proportions. In other words, there is an ambiguity between the concept
of texture and the concept of mixture in terms of the κ2-κ3 log-cumulants. How to dis-
tinguish these two explanations or to eliminate this ambiguity may require knowledge of
the higher-order statistics or the spatial correlation.
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Chapter 66
Higher Order Statistics

for Data Analysis

It has been shown that non-gaussianity is a common fact in natural scenes of PolSAR
data such as forests and wild open oceans, as well as human-made scenes like urban
areas. There are two main ways to model the non-gaussian behavior of data: product
model (or texture model) and finite mixture model. They represent two quite different
scattering scenarios. Texture model describes targets from a single type. The polarimetric
information (or scattering mechanism) conveyed by the targets is determined by the
speckle vector, while the variation of radar cross section due to the changing of surface
height or roughness is determined by the texture. On the contrary, finite mixture model
describes combinations of various targets, each may give a specific scattering mechanism.
More details about these models can be found in Chapter 3.

In the previous chapter, however, it was shown that the same log-cumulants of the
second order and the third order may result from both of them. There is an ambiguity
between the texture and the mixture according to those statistics. As they have different
physical meanings, it is necessary to discriminate the two different concepts. In this
chapter, higher order statistics, the fourth order log-cumulant in particular, are studied
and they are found to be useful to accomplish this task.

The chapter is organized as follows. First, a simple review of texture models, scalar
texture models specifically, is provided. Method on how to compute their log-cumulants is
also reviewed. Then, log-cumulants of the finite mixture model are studied. A comparison
with those of the texture models is drawn, which leads to an important finding that can
be employed to distinguish the texture from the mixture. Experiments on both simulated
data and real SAR data are presented in the last.
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6.1 Non-Gaussian Models

As shown in Chapter 4, in order to visualize the fit of a statistical model to the testing
data, some comparative statistics are required. The matrix variate log-cumulants are
employed in this chapter. Log-cumulants of the texture model and finite mixture model
are studied in the following sections.

6.1.1 Texture Model

The product model concerning various texture distributions was detailed in Section 3.2.
Here, only the scalar texture distributions are considered as they provide explicit expres-
sions of the PDFs and log-cumulants. The product model is also referred to as scale
mixture of Gaussian distributions [74]. In fact, it can be viewed as some kind of mixture,
where the mixture components have the same correlation structure. The correlation co-
efficients between different polarimetric channels are the same for all mixing components.
The only difference is the radar cross section, which has the same effect on all channels.
From the polarimetric point of view, all the mixing components can be viewed as the same
kind of targets. The main objective of the product model is to describe the fluctuation
radar cross section, also known as texture. Therefore, it is essentially different from the
finite mixture model, as it will be shown later.

Theoretically, the texture could be modeled by any distribution, but first we confine
ourselves to the Pearson ones, including gamma, inverse gamma, Fisher, beta and beta
prime distributions, since they are the most common and widely studied distributions to
model textures [12, 25, 26, 136]. The PDFs of the scattering vector or sample covariance
matrix under the Pearson assumption are known as the K, G0, Kummer-U , W and M
distributions, see Section 3.2.1. The vth order matrix variate log-cumulant of the sample
covariance matrices is given by (Section 4.1.3)

κv{CL} = dvκv{τ}+ ψ
(v−1)
d (L) + δ(v − 1)(ln |Σ| − d lnL) (6.1)

where Σ is the covariance matrix, δ(·) is the Dirac function, and κv{τ} is the log-
cumulants of the texture listed in Table 4.1. By varying the values of distribution param-
eters, the plotting of the second order log-cumulant against the third order log-cumulant
will cover the whole 2D log-cumulant diagram, as shown in Fig. 6.1a. If we further con-
sider the fourth order log-cumulant, the values could make up a continuous surface in the
3D space as illustrated in Fig. 6.1b. This 3D diagram will be called log-cumulant cube in
the remainder of this chapter for simplicity.

Another well known distribution for the texture modeling is the GIG law, which leads
to a G distribution for the product model [8]. PDFs about the G distribution can be
found in Section 3.2.1.2. The matrix variate log-cumulants in this case can be calculated
using [97]

κv{τ} = δ(v − 1) ln η + lnK(v)
p (ω) (6.2)

where

lnK(v)
p (ω) = dv

dsv
lnKp+s−1(ω)

∣∣∣∣
s=1

(6.3)
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Figure 6.1: Log-cumulant diagram and log-cumulant cube concerning the Pearson’s distri-
butions. The whole log-cumulant diagram is covered by distributions from Pearson’s family.
And they make up a continuous surface in the log-cumulant cube. (a) Log-cumulant diagram.
(b) Log-cumulant cube.
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Figure 6.2: Log-cumulant diagram and log-cumulant cube of the Kummer-U and the G
laws. Same region is covered by the two distributions, but the fourth order log-cumulant is
quite different. (a) Log-cumulant diagram. (b) Log-cumulant cube.

is the vth derivative of the logarithm of the modified Bessel function of the second kind,
with respect to order. No special function exists for directly computing lnK(v)

p (ω), there-
fore, we must resort to numerical differentiation. It can be shown that the second order
and the third order log-cumulants cover the same range as those of the Fisher distributed
texture. And they share the same boundaries, the K distribution and the G0 distribu-
tion, as illustrated in Fig. 6.2a. However the fourth order log-cumulant is quite different.
Fig. 6.2b shows that the points representing the GIG texture is below the surface repre-
senting the Fisher texture.
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6.1.2 Finite Mixture Model

The finite mixture model was detailed in Section 3.3. Assume that the mixing components
follow complex Wishart distributions such that the matrix-variate Mellin transform [26]
of the PDF in (3.85) can be written as

φ(s) =
(

K∑
i=1

wi|Σi|s−d
)

Γd(L+ s− d)
Γd(L) (6.4)

where Σi is the covariance matrix of the ith component, and Γd(L) is the normaliza-
tion factor given by (3.16). Let |Σ|min denote the minimum determinant, |Σ|min =
min({|Σi|, i = 1, · · · ,K}), and ρi = |Σi|/|Σ|min ≥ 1, then the Mellin transform can be
reformulated as

φ(s) =
(

K∑
i=1

wiρ
s−d
i

)
|Σ|s−dminΓd(L+ s− d)

Γd(L) . (6.5)

By differentiating lnφ(s) v times with respect to s and then letting s = d, the vth order
log-cumulant is found to be

κv{CL} = ψ
(v−1)
d (L) + βv + δ(v − 1) ln |Σ|min (6.6)

where ψ(v−1)
d (L) is the multivariate extension of the polygamma function, as expressed

in (4.19), due to the multilook, and βv is the result from the mixture which can be solved
recursively by

βv = rv −
v−1∑
k=1

(
v − 1
k − 1

)
βkrv−k (6.7)

with rv =
∑K
i=1 wi(ln ρi)v. Some examples of expanded expressions for βv are listed as

follows:
β1 = r1

β2 = r2 − r2
1

β3 = r3 − 3r1r2 + 2r3
1

β4 = r4 − 4r1r3 − 3r2
2 + 12r2

1r2 − 6r4
1

β5 = r5 − 5r1r4 − 10r2r3 + 20r2
1r3 + 30r1r

2
2 − 60r3

1r2 + 24r5
1

(6.8)

In the case of two mixing components, we have rv = w1(ln ρ1)v+w2(ln ρ2)v, and either
ρ1 or ρ2 is equal to 1 according to their definition. Ignoring the subscript, rv is reduced
to w(ln ρ)v, and the log-cumulants of the first several orders are

κ2{CL} = ψ
(1)
d (L) + w(1− w)(ln ρ)2

κ3{CL} = ψ
(2)
d (L) + w(1− w)(1− 2w)(ln ρ)3

κ4{CL} = ψ
(3)
d (L) + w(1− w)(1− 6w + 6w2)(ln ρ)4

κ5{CL} = ψ
(4)
d (L) + w(1− w)(1− 2w)(1− 12w + 12w2)(ln ρ)5

(6.9)

By changing the mixing proportions through w, the log-cumulants of the second order
and the third order cover the whole κ2-κ3 plane, which has the same effect as by changing
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Figure 6.3: Log-cumulant diagram and log-cumulant cube of mixtures of Wishart dis-
tributed components. (a) Log-cumulant diagram. The finite mixture model could cover
the whole diagram by changing the mixing proportions and the ratio ρ. (b) Log-cumulant
cube. Mixtures lie below the blue surface representing the product models concerning texture
distribution from the Pearson’s family.

the texture distribution of the product model as illustrated in Fig. 6.3a. However, they
represent two rather different scattering scenarios, and there is a need to distinguish them.

The log-cumulants calculated from sample covariance matrices, κv{CL}, are repre-
sented by κv for short in the remainder of this chapter. Denote the log-cumulants of the
product model by κv whereas those of the finite mixture model by κ̃v to avoid confusion.
When there is an ambiguity between the product model and the finite mixture model,
that is κ̃2 = κ2 and κ̃3 = κ3, the difference of the fourth order log-cumulant can be
calculated from (6.1) and (6.9), giving

f = κ̃4 − κ4 = k2
3 − 2k3

2 − k2k4

k2
(6.10)

where kv = κv{τ} −ψ(v−1)
d (L). For all the Pearson’s distributions in Table 4.1, it can be

shown numerically that f ≤ 0 holds for all the possible values of distribution parameters.
Therefore, if we employ the log-cumulant cube, the result from the finite mixture models
will be always below that from the product models considering Pearson texture, as shown
in Fig. 6.3b, where the blue surface represents the log-cumulants of the product model
and the points represent examples of mixtures of two components with different mixing
proportions. Same result can be obtained from the G distribution, statistics from a finite
mixture model always lie below those from the G distribution in the log-cumulant cube,
see Fig. 6.4.

To determine whether the product model or the finite mixture model is better for the
testing data, a simple approach based on the estimation error is proposed. By the central
limit theorem, the estimation κ̂4 is Gaussian distributed when the sample size N is large,
with variance given by (see [110] and Section 4.1.3 for more details)

σ2 = 1
N

[
κ8 + 16κ2κ6 + 48κ3κ5 + 34κ2

4 + 72κ2
2κ4 + 144κ2κ

2
3 + 24κ4

2
]
. (6.11)
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(a) (b)

Figure 6.4: Log-cumulant cube of mixtures and product models. Texture distribution
from the Pearson’s family and the GIG distribution are compared with the log-cumulants of
discrete mixtures. They can be easily distinguished using the log-cumulant cube because the
fourth order log-cumulants are quite different.

The theoretical log-cumulants κv are calculated from the product model distribution,
where the distribution parameters are estimated using κ̂2 and κ̂3 [26] (see also Sec-
tion 4.1.2). A test statistic to quantitatively evaluate the fit of a product model to
the data can be defined as

T = κ̂4 − κ4. (6.12)

The absolute value |T | can be interpreted as the vertical distance from a point representing
the estimated statistics to the product model surface in the log-cumulant cube. If |T | ≤ σ,
we can justify that the product model is appropriate for the data, otherwise, the choice of
the finite mixture model is preferable. The whole procedure is described in Algorithm 6.1.

Algorithm 6.1 Texture or Mixture
1: procedure TextureMixture(CL)
2: κ̂v ← Estimate log-cumulants (Section 4.1.3)
3: θ ← Estimate distribution parameters (Section 4.1.2)
4: κv ← Calculate (6.1)
5: σ2 ← Calculate (6.11)
6: |T | ← Calculate (6.12)
7: if |T | ≤ σ then
8: Return ”Texture”
9: else

10: Return ”Mixture”
11: end if
12: end procedure
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6.2 Experiments

The log-cumulants of different orders, including the fourth order, are tested on both
simulated and real SAR data. In the following sections, only distributions from the
Pearson’s family are considered, as the same procedure can be implemented on GIG
distributed texture.

6.2.1 Simulated Data

First, we mix two Wishart distributed targets with different proportions. The covariance
matrix of the first type is given by (6.13), which represents an X-Bragg surface scattering
with a moderate roughness and a moisture of 40% [137]. The other covariance matrix
is given by (6.14), representing a simple volume scattering. For each covariance matrix,
10000 samples are simulated.

Cxbragg =

 1.41 0 1.89− 0.05j
0 0.08 0

1.89 + 0.05j 0 2.57

 (6.13)

Cvol = 1
8

3 0 1
0 2 0
1 0 3

 (6.14)

Log-cumulants calculated from the simulated data using the bootstrap method as intro-
duced in Section 4.1.3 are shown in Fig. 6.5a. The result is in agreement with the descrip-
tion of the log-cumulants of the finite mixture model in the previous section, where the
sample log-cumulants assume a manifold similar to those in Fig. 6.3b. Mixture of targets
can be easily discriminated from the product model by the fourth order log-cumulants
κ4.

Mixtures of three targets are also simulated, with an additional covariance matrix
given by (6.15), which is estimated from a forest area of an AirSAR data acquired over
the Netherlands

Creal = 10−3 ×

 161 −7− 4j 39− j
−7 + 4j 82 −4 + 4j
39 + j −4− 4j 100

 . (6.15)

Again, the proportions of the mixing components are changed to see their effect on the
log-cumulants. It demonstrates once more that the mixture of targets have κ̃4 smaller
than κ4 of the product model for the same κ2 and κ3 as shown in Fig. 6.5b.

The κ2 and κ3 are frequently employed to determine the texture distribution of SAR
data. However, when the data are very heterogeneous, the use of only the κ2 and κ3 is
not enough, as the data may be also a mixture of different targets. To show this, a pure
target following the Kummer-U distribution, the mixture of two targets, and the mixture
of three targets are simulated, each containing 10000 samples. From Fig. 6.6a, we can
see that all the simulated data have similar values of κ2 and κ3. In this case, wrong
conclusions will be drawn from the log-cumulant diagram, as the discrete mixtures will
be interpreted as Kummer-U distributed data. Using the log-cumulant cube, the mixtures
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(a)

(b)

Figure 6.5: The log-cumulants of the mixture of 2 components as well as mixture of 3
components. (a) Mixture of 2 targets (Cxbragg - Cvol). The point clouds representing
different mixtures lie below the product model surface. (b) Mixture of 3 targets (Cxbragg-
Cvol-Creal). Mixture of 3 targets also have κ4 smaller than the product models that have
the same κ2 and κ3.

are distinguished from the pure target by the κ4, see Fig. 6.6b. This is also validated by
the quantitative assessment as shown in Table 6.1, where the mixtures have |T | larger
than σ.

The PDF contains complete information to characterize a distribution, all statistics
including the moments and the cumulants are derived from the PDFs. In principle, the
histograms would give a useful indication as to where the product model and the finite
mixture model are different when κ2 and κ3 are equal. Fig. 6.7 shows the intensity
histograms of the simulated data for each polarimetric channel separately. Indeed, there
are some differences between the histograms from the pure targets and the mixtures. This
is mainly due to the different mean values. But it is impossible to determine which one
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Figure 6.6: The use of κ4 to distinguish texture from mixture. (a) Log-cumulant diagram.
Both textured data and mixtures produce the similar κ2 and κ3. (b) Log-cumulant cube.
The textured data and mixtures have different κ4.

Table 6.1: Quantitative Assessment on Simulated Data

Test κ̂4 κ4 |T | σ2 σ

Pure 0.2772 0.3910 0.1138 0.0841 0.2900
Mixture 2 -7.0766 0.3863 7.4629 0.0827 0.2876
Mixture 3 -3.7337 0.3982 4.1319 0.0861 0.2934

represents the mixture only from the histograms, since all of them are unimodal. If we
approximate the data using one-dimensional Kummer-U distributions with different mean
values (Section 3.2.1.3), the HH and HV channels of all simulated data seem to be well
fitted. But for discrete mixtures, there is a large discrepancy between the histogram and
the PDF of the VV channel data, especially for the mixture of 3 components. Although,
histograms can be employed in this case, we need additional information about the data
such as the knowledge of the Kummer-U distributions. As detailed in Chapter 4, statistics
like Mellin kind statistics, or log-cumulants, are preferable. That’s why here the log-
cumulants are studied to discriminate the different concepts of texture and mixture.

6.2.2 Real SAR Data

Log-cumulants are also tested on an ALOS-2 High-sensitive Full-Pol mode data, which
was acquired over Barcelona (Spain) in March 2015. The original data are in single-look
complex format with processing level 1.1 and spatial resolution 3.49m× 3.84m (Range ×
Azimuth). Before calculating the log-cumulants, a multilook process is applied using a
5 × 5 sliding window. The estimated equivalent number of looks is 14.46. Several ROIs
over the urban area and sea area are tested, each covers 20× 20 pixels.

The results are shown in Fig. 6.8. According to the log-cumulant diagram, the urban
areas could be modeled by different distributions, depending on the composition of the
area. For instance, the area with lots of trees (ROI 4) follows a K distribution, the
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Figure 6.7: Histograms of the simulated pure target and mixtures. Histograms are rep-
resented by points and PDFs of the Kummer-U distributions by solid lines. All PDFs are
unimodal, and they are not very spiky. It is difficult to tell which one represents the mixture
and which one represents pure targets. (a) HH. (b) HV. (c) VV.

Table 6.2: Quantitative Assessment on ALOS-2 Data

ROI κ̂4 κ4 |T | σ2 σ

1-Blue 9.7922 9.4141 0.3781 116.8194 10.8083
2-Cyan 5.0368 3.1012 1.9356 27.0272 5.1988
3-Black -6.3097 15.6604 21.9701 376.4956 19.4035
4-Red -1.9748 3.4908 5.4656 22.5360 4.7472
5-Green -0.0097 0.0028 0.0125 2.3339× 10−4 0.0153

area with tall apartments (ROI 2 and ROI 3) follows a Kummer-U distribution, and area
with short houses (ROI 1) can be modeled by a G0 distribution. The sea area is very
homogeneous, which can be modeled by the Wishart distribution. However, the log-
cumulant cube shows that the product model is not appropriate for some urban areas.
There are two ROIs (ROI 3 and ROI 4) producing a κ4 smaller than 0, which is far below
the surface representing the product model. Two ROIs (ROI 1 and ROI 2) have part of
points above the product model surface as well as part below it, and the quantitative
assessment demonstrates that they can be modeled by product models, see Table 6.2.
Note that the differences between |T | and σ of the ROI 3 and ROI 4 are not so significant
as those of the mixtures in Table 6.1, the main reason is that the sample size here is 400,
which gives a larger estimation error.

Another experiment is performed on an airborne SAR data, a UAVSAR image (NASA
2010, retrieved from ASF DAAC 12 May 2016). The test site is in the West Panhandle
of Florida (USA), and the data is in the multilook cross-product slant range format,
with number of looks in the range dimension and azimuth dimension equal to 3 and
12 respectively. The ENL is estimated as 12.73 over a homogeneous ocean area. Four
ROIs covering land types in ocean area (ROI 1), forest (ROI 2), wetland (ROI 3), and
urban area (ROI 4), are analyzed, see Fig. 6.9. Thanks to a higher spatial resolution,
1.67m× 0.8m (Range × Azimuth), each ROI contains 90× 70 pixels, much more samples
than the experiment on ALOS-2 data.
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Figure 6.8: The log-cumulants on the ALOS-2 data. (a) Regions of interest. (b) Log-
cumulant diagram. ROIs show different statistics depending on their composition. (c) and
(d) Log-cumulant cube at two different perspectives. It shows some ROIs can be modeled by
product models, while others should be represented using finite mixture model as κ4 < 0.

The log-cumulants are shown in Fig. 6.10. From the log-cumulant diagrams, we can see
that different ROIs show different statistical behaviors. The ocean area can be modeled
by a Wishart distribution, and the forest by a K distribution. The wetland and the
urban area are very heterogeneous, especially the urban area, which has a very small
κ3. The point clouds representing estimated statistics are less widely spread than those
in Fig. 6.8b. This is because more samples are used to estimate the values. From the
log-cumulant cubes, we can say that product models are proper for the sea area and forest
area, while a finite mixture model make a better representation than a product model
for the wetland area and the urban area, because the point clouds estimated from ROI 1
and ROI 2 are on the product model surface, whereas those from the ROI 3 and ROI 4
produce are below the surface. Actually, the Pauli decomposition in Fig. 6.9 shows that
the first two ROIs are very homogeneous and ROI 3 consists of different targets. Urban
area, made up of distributed targets and point targets usually, has very large variance.
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Figure 6.9: Test regions on the UAVSAR data. Four ROIs over different land types are
tested, including sea, forest, wetland and urban area.

Table 6.3: Quantitative Assessment on UAVSAR Data

ROI κ̂4 κ4 |T | σ2 σ

1-Red 0.0001 0.0044 0.0042 2.7551× 10−5 0.0052
2-Black 0.5103 0.2521 0.2582 0.0229 0.1512
3-Cyan -3.1126 3.6393 6.7520 2.4089 1.5521
4-Blue 27.8549 67.0174 39.1626 294.2683 17.1542

This can be verified by the log-cumulant cube in Fig. 6.10d, where both of the absolute
values of κ3 and κ4 are very large.

A further validation by quantitative values is also performed. As shown in Table 6.3,
the difference |T | is large for both ROI 3 and ROI 4, much larger than the estimation error.
The values also show that a finite mixture model is more accurate than a product model
for ROI 2. But from the log-cumulant cube, we can say that the area can be modeled
by a K distribution, because the point cloud passes through the surface representing
product models. As a matter of fact, when the fourth order log-cumulant is very small,
the comparison using the estimation error is not quite effective. More robust methods
must be introduced.
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6.3 Conclusions

Higher order statistics are important to characterize PolSAR data, but there is little
knowledge about how to make use of them. In this chapter, it is demonstrated that the
fourth order log-cumulant is able to discriminate between different scattering scenarios.
In particular, it can be physically interpreted to distinguish the scattering from a single
type of target from a mixture of targets. As demonstrated both theoretically and exper-
imentally, the mixture of two Wishart distributed components will have a smaller fourth
order log-cumulant than the product model distributions with the same second and third
order log-cumulants. This result is also extended to other mixtures covering more than
two components. As a consequence, it is important to use higher order statistics for
texture analysis of PolSAR data, especially when the data are very heterogeneous, as it
may result from a mixture of different targets. A diagram combining the second, third
and fourth order log-cumulants is proposed to distinguish the product model from finite
mixture models, where texture distributions from the Pearson’s family as well as the GIG
distribution are considered.

The way to distinguish different models according to log-cumulants can be summarized
as follows. For some product models, the use of κ2 and κ3 is enough to distinguish them,
the K distribution and the Kummer-U distribution for example. To distinguish a product
model from a finite mixture model, κ4 is required, based on the results from the tested
distributions (K distribution, Kummer-U distribution, the G0 distribution, the M and
the W distribution). Regarding to how to distinguish the product models when the κ2
and the κ3 are the same, the Kummer-U distribution and the G distribution for instance,
κ4 also seems to be helpful, several validations show that the surface representing the G
distribution is below that representing the Kummer-U distribution, but above the finite
mixtures.
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Figure 6.10: Log-cumulants on the UAVSAR data. The right column and left column are
the same results but with different axes limits. (a) and (b), Log-cumulant diagrams. ROIs
over different ground targets show different statistics. (c), (d), (e), and (f), Log-cumulant
cubes. It shows some ROIs can be modeled by product models, while others should be
represented using finite mixture model. (f) may be confusing because the blue point cloud
seems to be over the product surface. But it is below the surface actually if we extend the
surface.
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Chapter 77
Conclusions and Future

Lines

7.1 Conclusions

This thesis is dedicated to the study of texture analysis and physical interpretation of
PolSAR data. It starts with a thorough review of the statistical models proposed in the
literature. As exhibited, many models have been proposed. How to choose the most ac-
curate one for a test data is a big challenge. In this thesis, the l2-norms of the scattering
vectors are studied, and they are found to be useful to extract statistical information from
PolSAR data. Statistics based on the l2-norms can be utilized to determine what distri-
bution the data actually follow. As also noticed, more and more complex distributions
are suggested by introducing various distributions to model the texture in the framework
of the product model. Does these complex models make sense from the physical point of
view? To answer this question, the random walk model is studied with the objective to
obtain physical explanations for data statistics. It is found that both the mixture and
the texture could give the same statistics such as log-cumulants of the second order and
the third order. The two concepts, texture and mixture, represent two quite different
scenarios. A further study was carried on to see if it is possible to distinguish them. And
higher order statistics are demonstrated to be favorable in this task.

Knowledge of the exact statistical properties of the signal plays an important role in
the applications of PolSAR data, such as speckle filtering, ground cover classification,
etc. In the last two decades, a considerable research effort has been dedicated to finding
accurate and efficient data models. As the starting point, a survey of the statistical
models proposed to model PolSAR data is made. All the models are classified into three
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categories: Gaussian, texture models, and finite mixture models. The texture models,
widely studied due to their mathematical tractability, are the main concern of this thesis.
They assume that the randomness of the SAR data is commonly due to two unrelated
factors, texture and speckle, which are incorporated with a product operation leading to
a doubly stochastic model called product model. The PDFs of the scattering vector and
the sample covariance matrix in different models are reviewed.

The statistical properties of PolSAR data are characterized totally by the PDFs of
the scattering vectors or the sample covariance matrices. However, it is difficult to use
these PDFs directly, because they are multivariate ones. Normally, the statistics of each
polarimetric channel are studied separately, and the correlation between different polari-
metric channels are neglected. Another way is to analyze the determinant of sample
covariance matrices. The widely used matrix variate log-cumulant is an example. But
we need to filter the data to obtain the sample covariance matrices, which could change
the true statistical properties of the data. To overcome these problems, the l2-norms of
the scattering vectors are investigated, and they are found to be a useful tool for texture
analysis of PolSAR data. There are several advantages of using the l2-norms.

• The polarimetric channels are not analyzed separately, and the correlations between
polarimetric channels are considered.

• No filter is required which may average out the texture or give rise to mixture in
certain scenes like urban areas.

• No estimation of the ENL, which is a difficult task in the analysis of PolSAR data,
is needed.

• The norm is polarimetrically invariant, and the statistics are consistent when the
scattering vectors are expressed in different polarization basis.

Two important statistics of the l2-norm are studied, the normalized intensity and the
log-cumulant. The former is an extension of the normalized intensity moments, which
can be employed to evaluate the non-Gaussian behavior of the data easily. The values of
different orders could reveal the polarimetric properties of PolSAR data, as well as the
texture properties. The latter can be employed to identity the texture distribution of the
data. Well established tools such as log-cumulant diagram can be reused. Estimators
for those statistics are also provided. The estimator of normalized moments is biased,
but the bias asymptotically vanishes as increasing the sample size. The estimator of log-
cumulants is an unbiased one. For a given sample set, the variance of these estimators are
deducted, therefore, further applications exploiting estimation error can be developed.

With the l2-norm, we can extract statistical information from the measured data by
most PolSAR sensors, scattering vectors, directly.

Based on the product model, a number of models have been proposed by introducing
various distributions to model the texture, and more and more are coming. However, most
of them are just results of pure mathematical calculations. In this thesis, the random walk
model, which can be interpreted as a discrete analog of the SAR data focusing process, is
studied with the objective to explain the statistical behavior of PolSAR data. Variations
in the scatterer number and individual scatterers are introduced, as well as mixtures. By
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simulating data under different circumstances, and analyzing them using tools such as
log-cumulants based on the l2-norms or matrix variate log-cumulants, several interesting
ideas are found, as listed in the following.

• In the case of homogeneous data, it is demonstrated that the type of data distri-
bution depends on both the scatterer number and the type of scatterer. For data
of low or moderate spatial resolution, the statistics are essentially determined by
the distribution of the scatterer number, whereas in high resolution data, the data
distribution is affected by the distribution of the scatterer number as well as by
the type of scatterer. The difference between the two cases is due to the average
number of scatterers inside resolution cells. When this number is large, larger than
Nmax for example, the obtained data can be treated as fully developed speckle. It
has been also demonstrated that the value of Nmax depends on the scatterer type.

• In case of heterogeneous data, the PolSAR data distribution is determined by the
mixture of different scatterers. The mixture can be considered at pixel and at
spatial level as well. The mixture of distributed scatterers at pixel level changes
the covariance matrix, but the texture of the obtained data is determined by the
fluctuations of the scatterer numbers. When there is a mixture at spatial level, the
data distribution is determined not only by the distribution of scatterer number,
but also by the proportion of the different scatter types in the mixture.

• According to the second order and the third order log-cumulants, the same data
statistics can be obtained by different scattering scenarios. One possible physical
explanation for different statistical PolSAR data models is the fluctuations of the
scatterer number in different resolution cells, in particular, negative binomial dis-
tribution for the K distribution, and compound Poisson distribution for Kummer-U
and G0 distributions. Another possible explanation is the mixture of scatterers,
where different data statistical models represent different mixture proportions. In
other words, there is an ambiguity between the concept of texture and the concept
of mixture in terms of the log-cumulants κ2 and κ3.

Same values of the statistics such as κ2 and κ3 can physically interpreted as either
mixtures of targets or texture of the data. Models suggested to represent textured data
in the literature may be just validated on mixtures instead of texture, especially those
models proposed to model extremely heterogeneous data, as the mixture of different
targets usually gives rise to very heterogeneous data.

Higher order statistics are important to characterize PolSAR data, but there is little
knowledge about how to make use of them. In this thesis, it is demonstrated that the
fourth order log-cumulant is able to discriminate between different scattering scenarios.
In particular, it can be physically interpreted to distinguish the scattering from a sin-
gle type of target from a mixture of targets. As demonstrated both theoretically and
experimentally, the mixture of two Wishart distributed components will have a smaller
fourth order log-cumulant than the product model distributions with the same second
and third order log-cumulants. This result is also extended to other mixtures covering
more than two components. Higher order statistics, as a consequence, are important to
texture analysis, especially when the data are very heterogeneous, as it may result from
a mixture of different targets. A diagram combining the second, third and fourth order
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log-cumulants is proposed to distinguish the product model from finite mixture models,
where texture distributions from the Pearson’s family as well as the GIG distribution are
considered.

Log-cumulants are of great value to texture analysis since the contribution of the
texture and that of the speckle can be separated. The way to distinguish different models
according to log-cumulants of the first several orders is summarized as follows.

• For some product models, the use of κ2 and κ3 is enough to distinguish them, the
K distribution and the Kummer-U distribution for example.

• To distinguish a product model from a finite mixture model, κ4 is required, based on
the results from the tested distributions (K distribution, Kummer-U distribution,
the G0 distribution, the M and the W distribution).

• Regarding how to distinguish the product models when the κ2 and the κ3 are
the same, the Kummer-U distribution and the G distribution for instance, κ4 also
seems to be helpful. Several validations show that the surface representing the G
distribution is below that representing the Kummer-U distribution, but above the
finite mixtures.

In this thesis, several experiments on real SAR data are also implemented. The results
confirm further that statistical information or texture information is of great importance.
When different targets belong to a same category, saying crops or forest, the scattering
mechanisms may be same, and similar polarimetric information will be observed. It is
difficult to discriminate these targets by the polarimetric information only. Combining
information conveyed by the texture, however, could give a better identification of targets.
Crops of different types, and forests with trees of different characteristics can be further
distinguished. In addition, the configuration of a SAR sensor, for instance, frequency,
incidence angle, and spatial resolution, could affect the distribution of some targets, as
the information obtained by the different configurations is not the same. Normally, with
higher frequency and higher resolution, more details could be observed, which will give
stronger texture.

7.2 Future Research Lines

There are several important topics in the field of statistical analysis of PolSAR data but
not discussed in detail in this thesis, with a few examples listed as follows.

• This thesis details how to extract texture information from PolSAR data. It demon-
strates that the statistical information is very important in characterizing SAR data
by experiments on simulated data and real SAR data. But how to exploit the tex-
ture information in applications such as classification is not involved. Apparently,
combining polarimetric information and texture information could improve the per-
formance of classification algorithms as more knowledge is introduced. Therefore,
a further study in this aspect is of great value.
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• In many works, it is demonstrated that different polarimetric channels may have
different textures and the correlation of texture parameters could be an important
feature. Models exploiting this concept are referred to as multi-texture models. In
this thesis, the multi-texture models are not studied intensively. Many results are
based on the assumption of a scalar texture parameter. To make a more sound
conclusion, some further work in multi-texture models is in need, especially in the
direction of physical explanation of texture correlations between different polari-
metric channels.

• In the finite mixture model, only Gaussian distributed components are considered
in this thesis. So a further step is to take into account various mixing components.
Robust algorithms to estimate the mixing number and the mixing weight are also
necessary.

In summary, texture analysis of PolSAR data covers a wide range of topics. To make
a better understanding of texture and to make good use of it, we still have a lot of work to
do. The texture analysis and statistical modeling of PolSAR data is worthy of a further
investigation.
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Appendix AA
Statistics of the l2-Norm

A.1 Distribution of The Norm

Assume that z follows a complex Gaussian distribution, z ∼ N (0,Σ), where the covariance
matrix can be diagonalized by Σ = PTDP with P orthogonal and D = diag(λ1, · · · , λd)
diagonal. Then if u = Pz, by changing the variables, we have u ∼ N (0,D). The square
of the l2-norm of u can be written as a sum

Iu = u†u =
d∑
i=1

Ii (A.1)

where Ii follows an exponential distribution

p(Ii) = 1
λi

exp
(
− Ii
λi

)
(A.2)

with Moment Generating Function (MGF) given by

Mi(t) = 1
1− λit

(A.3)

Since all Iis are independent (as the covariance matrix D is diagonal), the MGF of Iu is
then the product of all components

M(t) =
d∏
i=1

1
1− λit

=
d∑
i=1

pi
1− λit

(A.4)
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where

pi = λd−1
i∏d

j=1,j 6=i(λi − λj)
(A.5)

The PDF of Iu, therefore, can be obtained from the MGF as

p(Iu) =
d∑
i=1

pi
λi

exp
(
−Iu

λi

)
. (A.6)

The square of the l2-norm of z can be calculated by

Iz = (P−1u)†(P−1u) = Iu (A.7)

which means p(Iz) = p(Iu).

A.2 Estimation Mean and Variance

In the following text, all the moments and normalized moments are calculated on the
l2-norm of the scattering vector. For simplicity, mv{Ik} and nmv{Ik} are replaced by
mv and nmv. The mean value of m̂v is given by [110]

E{m̂v} = E
{

1
N

N∑
i=1

(k†iki)
v

}
= mv (A.8)

and the covariance by

Cov{m̂v, m̂ν} = E

{(
1
N

N∑
i=1

(k†iki)
v −mv

)(
1
N

N∑
i=1

(k†iki)
ν −mν

)}

= −mvmν + 1
N2E


N∑
i=1

(k†iki)
v+ν +

N∑
i=1

N∑
j=1,j 6=i

(k†iki)
v(k†jkj)

ν


= 1
N

(mv+ν −mvmν)

(A.9)

Let ν = v, the variance of m̂v is obtained as

Var{m̂v} = 1
N

(m2v −m2
v). (A.10)

Define a function f(x, y) as

f(x, y) = x

yv
, (A.11)
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then it can be expanded at (µx, µy) using the Taylor series [102]

f(x, y) =µx
µvy

+ (x− µx)∂f
∂x

∣∣∣∣
µx,µy

+ (y − µy)∂f
∂y

∣∣∣∣
µx,µy

+

1
2(x− µx)2 ∂

2f

∂x2

∣∣∣∣
µx,µy

+ 1
2(y − µy)2 ∂

2f

∂y2

∣∣∣∣
µx,µy

+ (x− µx)(y − µy) ∂
2f

∂x∂y

∣∣∣∣
µx,µy

+O

((
(x− µx) ∂

∂x
+ (y − µy) ∂

∂y

)3
f

)
(A.12)

Ignoring all the terms higher than two and applying the expectation to individual terms
gives the expectation of the function f

E{f(x, y)} = µx
µvy
− Cov{x, y} v

µy
+ V ar{y}v(v + 1)µx

2µv+2
y

(A.13)

Similarly, the variance of f can be obtained using the first-order terms of the Taylor series
expansion:

Var{f(x, y)} = V ar{x} 1
µ2v
y

+ V ar{y} v2µ2
x

µ
2(v+1)
y

− Cov{x, y} 2vµx
µ2v+1
y

(A.14)

Let x = m̂v, y = m̂1, µx = mv and µy = m1, we have the mean value and variance of the
estimator n̂mv as

E{n̂mv} = mv

mv
1

+ 1
N

(
v(v + 1)m2mv

2mv+2
1

− vmv+1

mv+1
1

+ v(1− v)mv

2mv
1

)
(A.15)

and

Var{n̂mv} = 1
Nm2v

1

[
v2m2m

2
v

m2
1
− (v − 1)2m2

v +m2v −
2v ·mvmv+1

m1

]
= 1
N

[v2 · nm2 · nm2
v − (v − 1)2 · nm2

v + nm2v − 2v · nmv · nmv+1]
(A.16)

As we can see, the bias of the estimator n̂mv is given by

B = 1
N

(
v(v + 1)m2mv

2mv+2
1

− vmv+1

mv+1
1

+ v(1− v)mv

2mv
1

)
= 1

2N (v(v + 1) · nm2 · nmv − 2v · nmv+1 − v(v − 1) · nmv)
(A.17)

which asymptotically goes to 0 when increasing the sample size N .

A.3 Log-Cumulant of the Speckle

The ϕIz(s) shown in (4.47) consists of two parts. The first part is the logarithm of the
gamma function, and there is a well known solution to the differential of it, the polygamma
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function [25,26]. For the second part, the logarithm of the CHSP (4.29), we can write it
as

G(s) = ln hs−1(λ1, · · · , λd) (A.18)

which leads to
hs−1(λ1, · · · , λd) = eG(s). (A.19)

Calculating the differential on both sides, the following is obtained

h′s−1(λ1, · · · , λd) = eG(s)G′(s)
= hs−1(λ1, · · · , λd)G′(s)

(A.20)

and according to the Leibniz’s Rule, the (v− 1)th order differential of the above equation
is

h
(v)
s−1(s) =

v−1∑
k=0

(
v − 1
k

)
h

(k)
s−1(s)G(v−k)(s) (A.21)

with the differential of the CHSP is given by

h
(v)
s−1(s) =

d∑
i=1

piλ
s−1
i (lnλi)v. (A.22)

Rearranging the result we get

G(v)(s) = h
(v)
s−1(λ1, · · · , λd)−

v−1∑
k=1

(
v − 1
k

)
h

(k)
s−1(λ1, · · · , λd)G(v−k)(s) (A.23)

Let βv = G(v)(s)
∣∣
s=1 and h̃(v) = h

(v)
s−1(λ1, · · · , λd)

∣∣∣
s=1

, the result shown as (4.46) is
obtained.

A.4 K-Statistics

This section list the k-statistics upto the fifth order. In the following, κ̂v{Ik} is denoted
by κ̂v for brevity. Let N [v] =

∏v−1
i=0 (N−i), the fourth order and the fifth order k-statistics

are

κ̂4 = 1
N [4] [(N

3 +N2)M4 − 4(N2 +N)M3M1 − 3(N2 −N)M2
2 + 12NM2M

2
1 − 6M4

1 ]

κ̂5 = 1
N [5] [(N

4 + 5N3)M5 − 5(N3 + 5N2)M4M1 − 10(N3 −N2)M3M2+

20(N2 + 2N)M3M
2
1 + 30(N2 −N)M2

2M1 − 60NM2M
3
1 + 24M5

1 ]
(A.24)
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The variances are given by

Var{κ̂4} = κ8

N
+ 16κ6κ2

N − 1 + 48κ5κ3

N − 1 + 34κ2
4

N − 1 + 72Nκ4κ
2
2

(N − 1)(N − 2)

Var{κ̂5} = κ10

N
+ 25κ8κ2

N − 1 + 100κ7κ3

N − 1 + 200κ6κ4

N − 1 +

125κ2
5

N − 1 + 200Nκ6κ
2
2

(N − 1)(N − 2) + 1200Nκ5κ3κ2

(N − 1)(N − 2)+

850Nκ2
4κ2

(N − 1)(N − 2) + 1500Nκ4κ
2
3

(N − 1)(N − 2) + 600N2(N + 1)κ4κ
3
2

N [4] +

1800N2(N + 1)κ2
3κ

2
2

N [4] + 120N3(N + 5)κ5
2

N [5]

(A.25)

The covariances are

Cov{κ̂2, κ̂4} = κ6

N
+ 8κ4κ2

N − 1 + 6κ2
3

N − 1

Cov{κ̂2, κ̂5} = κ7

N
+ 10κ5κ2

N − 1 + 20κ4κ3

N − 1

Cov{κ̂3, κ̂4} = κ7

N
+ 12κ5κ2

N − 1 + 30κ4κ3

N − 1 + 36Nκ3κ
2
2

(N − 1)(N − 2)

Cov{κ̂3, κ̂5} = κ8

N
+ 15κ6κ2 + 45κ5κ3 + 30κ2

4
N − 1 + N(60κ4κ

2
2 + 90κ2

3κ2)
(N − 1)(N − 2)

Cov{κ̂4, κ̂5} = κ9

N
+ 20κ7κ2 + 70κ6κ3 + 120κ5κ4

N − 1
N(120κ5κ

2
2 + 600κ4κ3κ2 + 180κ3

3)
(N − 1)(N − 2) + 240N2(N + 1)κ3κ

3
2

N [4]

(A.26)
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Appendix BB
Statistics of the Random

Walk Model

B.1 PDF of Intensity

Let the complex reflectivity of a resolution cell be R̃ =
∑N
k=1 ake

iϕk = Rr + jRi, then
the joint characteristic function of the real part and the imaginary part of R is

C(ũ) = E
{

exp
(
j(urRr + uiRi)

)}

= E
{

exp
(

N∑
k=1

jak(ur cosϕk + ui sinϕk)
)}

← R̃ =
N∑
k=1

ake
iϕk

= E
{

exp
(

N∑
k=1

juak(cosφ cosϕk + cosφ sinϕk)
)}

← u = |ũ|, φ = arg ũ

= E
{

exp
(

N∑
k=1

juak cos(ϕk − φ)
)}

= E
{

N∏
k=1

exp [juak cos(ϕk − φ)]
}
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with complex parameter ũ = ur + jui. Using the Jacobi-Anger Expansion [102, p933, Eq
8.511-4]

ejz cos θ = J0(z) + 2
∞∑
n=1

jnJn(z) cos(nθ)

where J0(z) is the Bessel function of the first kind, the following is obtained

C(ũ) = E
{

N∏
k=1

[
J0(uak) + 2

∞∑
n=1

jnJn(uak) cos(n(ϕk − φ))
]}

= E
{

N∏
k=1

J0(uak)
}

← p(ϕk) = 1
2π , ϕk ∈ (0, 2π]

= EN {J0(ua)} ← ak are independent

Here the samples ak are replaced with the random variable a. Apply the inverse Fourier
Transform on characteristic function

p(R̃;N) =
(

1
2π

)2 ∫ ∞
−∞

∫ ∞
−∞

exp[−j(urRr + uiRi)] EN
{
J0

(√
u2
r + u2

i a

)}
durdui

=
(

1
2π

)2 ∫ 2π

0

∫ ∞
0

u exp[−j(uRr cosφ+ uRi sinφ)] EN{J0(ua)}dudφ

Letting R̃ = A exp(ϕ) yields

p(A,ϕ;N) =
(

1
2π

)2 ∫ 2π

0

∫ ∞
0

Au exp [−juA(cosϕ cosφ+ sinϕ sinφ)] EN{J0(ua)}dudφ

=
(

1
2π

)2 ∫ 2π

0

∫ ∞
0

Au exp[−juA cos(ϕ− φ)] EN{J0(ua)}dudφ

=
(

1
2π

)2 ∫ ∞
0

AuEN{J0(ua)}
(∫ 2π

0
exp[−juA cos(ϕ− φ)]dφ

)
du

=
(

1
2π

)2 ∫ ∞
0

AuEN{J0(ua)}
(∫ 2π

0
J0(uA)dφ

)
du ← Jacobi-Anger Expansion

= 1
2π

∫ ∞
0

AuJ0(uA) EN{J0(ua)}du

As a result, the PDF of the amplitude and the intensity can be obtained as

p(A;N) =
∫ 2π

0
pA,ϕ(A,ϕ;N)dϕ

=
∫ ∞

0
AuJ0(uA) EN{J0(ua)}du

p(I;N) = 1
2

∫ ∞
0

uJ0(u
√
I) EN{J0(ua)}du
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B.2 K Distribution

Let µN denote the mean value, the negative binomial distribution shown as (5.8) can be
written as

p(N) =
(
N + α− 1

N

)
(µN/α)N

(1 + µN/α)N+α

Averaging the scatterer number, the PDF of the intensity becomes

p(I) = 1
2

∫ ∞
0

uJ0(u
√
I)
( ∞∑
N=0

EN{J0(ua)}p(N)
)
du

= 1
2

∫ ∞
0

uJ0(u
√
I)
(

1
(1 + µN/α)α

∞∑
N=0

(
N + α− 1

N

)
EN{J0(ua)}(µN/α)N

(1 + µN/α)N

)
du

With the Binomial Theorem

1
(1− x)s =

∞∑
k=0

(
s+ k − 1

k

)
xk

the following can be obtained

p(I) = 1
2

∫ ∞
0

uJ0(u
√
I)

(1 + µN/α)α
1(

1− E{J0(ua)}µN/α
1+µN/α

)α du
= 1

2

∫ ∞
0

uJ0(u
√
I)du

(1 + µN [1− E{J0(ua)}]/α)α

The Bessel function of first kind can be written in the form of power series [102, p918,
Eq 8.440]

J0(z) =
∞∑
k=0

(
−z

2

4

)k ( 1
k!

)2

It follows that the expectation E{J0(ua)} takes the form

E{J0(ua)} = E
{ ∞∑
k=0

(
−u

2a2

4

)k ( 1
k!

)2
}

=
∞∑
k=0

E{a2k}
(
−u

2

4

)k ( 1
k!

)2

From the random walk model (5.1), the mean intensity of the complex phasors can be
calculated by

E{a2} = µI
µN

where µI = E{A2} is the mean intensity from a resolution cell. As a matter of fact, the
moments of the phasor amplitudes can be written as a function of µkN

E{a2k} ∝
(

1
µN

)k
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when µN is very large, we have the following approximation by keeping only the first two
terms in the sum

E{J0(ua)} ≈ 1− u2µI
4µN

The distribution of the intensity then becomes

pI(I) ≈ 1
2

∫ ∞
0

uJ0(u
√
I)du

(1 + u2µI/4α)α

= 1
2

(
4α
µI

)α ∫ ∞
0

uJ0(u
√
I)du

(4α/µI + u2)α

and following the integral identity [102, p678, Eq 6.565-4]∫ ∞
0

Jv(bx)xv+1

(x2 + a2)µ+1 dx = av−µbµ

2µΓ(µ+ 1)Kv−µ(ab)

gives

p(I) = 2α
µIΓ(α)

(
αI

µI

)α−1
2

Kα−1

(
2

√
αI

µI

)
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