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Abstract.

In the field of computer animation the process of creating an animated
character is usually a long and tedious task. An animation character is
usually defined by a 3D mesh (a set of triangles in the space) that gives
its external appearance or shape to the character. It also used to have an
inner structure, the skeleton. When a skeleton is associated to a character
mesh, this association is called skeleton binding, and a skeleton bound to a
character mesh is an animation rig.

Rigging from scratch a character can be a very boring process. The
definition and creation of a centered skeleton together with the ’painting’,
by an artist, of the influence parameters between the skeleton and the mesh
(the skinning) is the most demanding part to achieve an acceptable behavior
for a character. This rigging process can be simplified and accelerated using
an automatic rigging method. Automatic rigging methods consist in taking
as input a 3D mesh, generate a skeleton based in the shape of the original
model, bound the input mesh to the generated skeleton, and finally to
compute a set of parameters based in a chosen skinning method. The main
objective of this thesis is to generate a method for rigging a 3D arbitrary
model with minimum user interaction. This can be useful to people without
experience in the animation field or to experienced people to accelerate the
rigging process from days to hours or minutes depending the needed quality.
Having in mind this situation we have designed our method as a set of tools
that can be applied to general input models defined by an artist. The
contributions made in the development of this thesis can be summarized
as:

• Generation of an animation Rig (Chap. 2): Having an arbitrary
closed mesh we have implemented a thinning method to create first
an unrefined geometry skeleton that captures the topology and pose
of the input character. Using this geometric skeleton as starting point
we use a refining method that creates an adjusted logic skeleton based
in a template, or may be defined by the user, that is compatible with
the current animation formats. The output logic skeleton is specific
for each character, and it is bounded to the input mesh to create an
animation rig.

• Skinning (Chap. 3 and 4): Having defined an animation rig for
an arbitrary mesh we have developed an improved skinning method;
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this method is based on the Linear Blend Skinning(LBS) algorithm.
Our contributions in the skinning field can be sub-divided in:

– We propose a segmentation method (Chap. 3) that works as
the core element in a weight assigning algorithm and a skinning
algorithm, we also have developed an automatic algorithm to
compute the skin weights of the LBS Skinning of a rigged polyg-
onal mesh (Sec. 4.2).

– Our proposed skinning algorithm uses as base the features of the
LBS Skinning (Sec. 4.4). The main purpose of the developed
algorithm is to solve the well-known ”candy wrap” artifact; that
produces a substantial loss of volume when a link of an animation
skeleton is rotated over its own axis. We have compared our
results with the most important methods in the skinning field,
such as Dual Quaternion Skinning (DQS) and LBS, achieving
a better performance over DQS and an improvement in quality
over LBS.

• Animation tools (Chap. 5): We have developed a set of Autodesk
Maya commands that works together as rig tool, using our previous
proposed methods.

• Animation loader (Sec. 5.1): Moreover, an animation loader tool
has been implemented, that allows the user to load animations from
a skeleton with different structure to a rigged 3D model.

The contributions previously described has been published in 3 research
papers, the first two were presented in international congresses and the
third one was acepted for its publication in an JCR indexed journal.
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centré en lo que realmente importaba fue cuando las cosas comenzaron a
funcionar, ¿por qué fue aśı?, no lo sé; pero creo que era lo que necesitaba
para madurar. Si el proceso fue doloroso es porque siempre he sido duro
de cabeza y muy terco... al final creo que tu mejor virtud también ter-
mina siendo tu peor defecto. De esta experiencia puedo decir una cosa: me
encanta jugar con una computadora, y me pierde adentrarme en este tipo
de temas, espero que la vida me siga brindando la oportunidad de seguir
divirtiéndome.
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Chapter 1

Introduction.

In the field of computer animation, the process of creating an animated char-
acter is usually long and tedious. A character in computer animation is a 3D
polygonal mesh that is “sculpted” by a graphic artist; the sculpting process
can be made by using a variety of techniques like: Box/Subdivision Mod-
eling, Edge/Contour Modeling, Nurbs/Spiline Modeling, Digital Sculpting,
Procedural Modeling, Image Based Modeling and 3D Scanning. As an ex-
ample, Box/Subdivision Modeling consists in taking a geometric object as
a base (a cube, tetrahedron, sphere, etc.), modify it, add or join its ver-
tices, and refine them in their surface until the desired shape is achieved. A
brief recapitulation of all the mentioned methods can be found in [41]. The
animation of a sculpted character can be achieved in different ways: cage
based and skeleton driven.
In the case of skeleton-drive animation, a skeleton is defined inside of the
character’s 3D mesh. A skeleton is a set of points that represent the limbs
of a character and is defined through joints and links. A link is the equiva-
lent to a bone, and each link consists of two joints, which are points in the
space that define the local space where rigid transformations (rotations and
translations) are performed. The positions of the joints are computed in a
hierarchy; therefore, any rigid transformation over a joint will impact all
the joints that are in a lower hierarchical level. The association of a skeleton
to a character mesh is called skeleton binding, and a skeleton bound to a
character mesh is known as an animation rig. A set of rigid transforma-
tions in a specific amount of time over the joint’s character are known as
an animation sequence. Once the input model was rigged, a set of influence
parameters are painted by a digital artist to define the way that a limb
must deform.
Rigging a character can be a tedious process, as has been mentioned in [3],
[8] and [30], the definition and creation of a centered skeleton is time con-
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suming; but the process of painting the influence parameters by an artist
is the most demanding part in the process to achieve an acceptable limb
behavior for a character. The rigging process can be simplified and acceler-
ated using an automatic rigging method. These automatic rigging methods
take a character’s 3D mesh as an input, a skeleton is then generated based
on the shape of the original model. After the skeleton is created, the input
mesh is bounded to it, and finally a set of parameters based on a chosen
skinning method are computed. The most relevant work in this field is the
method proposed by Baran and Popovic [3] called Pinocchio. Pinocchio
takes a closed mesh as an input, and creates a rig though skeleton embed-
ding; Linear Blend Skinning(LBS) is used as a deformation method for the
character’s animation.

(a) Pinocchio automatic rig (image taken
from [3]).

(b) Automatic rigging with 3D silhouette
(image taken from [34]).

(c) Automatically Rigging Multi-component Characters [4].

Figure 1.1: Automatic rigging methods.

An automatic rigging method can be subdivided in the next sub-problems:
skeleton extraction, skeleton adjusting, skinning algorithm parameters and
animation transfer. Each one of these “sub-problems” are interesting and
important on their own. Skeleton extraction is a problem that has been
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studied in medical imaging, pattern recognition, scientific visualization and
CAD. Algorithms related with skeleton extraction, such as thinning, work
with solid voxelized models [33] and medial axis extraction from vertices
clouds [43]. The mentioned algorithms were developed to be applied in a
different research field than computer animation but they can be applied
to solve one of the previous sub-problems.
An extracted skeleton is a set of points in space with no additional informa-
tion; to be useful in an animation context, the extracted skeleton must be
transformed into a connected inverse kinematic graph. Methods like [34],
[48] and [2] create an animation skeleton from a set of rules or a defined algo-
rithm which produces a rigged model without an animation file associated;
therefore, an animation sequence must be adapted or made specifically for
the extracted skeleton.
Creating or adapting an animation sequence to a rigged model is not easy.
The created skeleton can be more complex (having more joints than a mo-
tion capture skeleton) than the one defined in the animation source, there-
fore complicating the task even more. That is the reason why we believe
that a good automatic rigging method should have a skeleton adjust stage,
or an equivalent method. An interesting approach is the one taken in [3];
where a skeleton with animation information to be embedded was used (in-
stead of adjusting an extracted skeleton) on a 3D model with similar shape
and posed as the input model.
A more traditional process was made in [4], where after extracting a skele-
ton from an arbitrary mesh with similar shape and pose, an equivalent
animation skeleton was created and refined by a joint re-targeting process
from the chosen animation skeleton, completing the skeleton adjust stage.
The rigging process is inevitably attached to a deformation method; the
chosen deformation method is the engine part that allows us to move the
input 3D model along with the extracted skeleton. In computer animation,
a deformation method bounded to a skeleton is commonly called skinning.
Skinning the most popular and researched of the three tasks listed, the
meaning of skinning in computer animation is an algorithm that deforms
or changes the position of the vertices on a 3D polygonal mesh; therefore
a skinning algorithm is a function that takes as input vertices and changes
their position based on a set of arguments and external factors. The func-
tion nature can be linear (linear blend skinning (LBS ) is the classic linear
algorithm in skeleton driven animation) or non-linear (mean value coordi-
nates (MVC ) and dual quaternion skinning (DQS ) are good examples of
non-linear algorithms in cage and skeleton driven animation respectively).
The external factors can be a set of points (control points in a cage based
deformation scheme) outside the input model, or a set of points inside the
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mesh (points that form a skeleton in skeleton driven animation scheme).

(a) Harmonic coordinates
used by Pixar.

(b) HC used in Ratatouille. (c) Cage used in HC.

(d) MWE. (e) MWE. (f) MWE. (g) MWE.

Figure 1.2: Skinning methods used in film industry, Harmonic coordinates
from Pixar (images a-c taken from [15] and [7]) and Multi-Weight En-
veloping from Industrial Light and Magic (images d-g taken from [46]).

On film and video game industries, skinning is used extensively; there-
fore is one of their main research topics, although the focus from each one
is different. Film industry puts an emphasis on realism, leaving aside com-
putation times. Game industry is the opposite, focusing their efforts in
a fast and efficient algorithm. That difference of perspectives is the rea-
son behind the variety of skinning algorithms, animated film industry uses
mostly free form deformation (FFD) or cage based skinning methods; such
as Pixar with their harmonic coordinates [7], that allow the animator to
have control over the deformed parts to create some cartoon-like effects.
FFD and cage based skinning uses control points instead of a skeleton to
control the volume inside of a defined cage. In film industry, cage based
skinning and FFD are not the only alternatives, an expansion of LBS called
Multi-Weight Enveloping [46] was used by Industrial Light and Magic in the
episode II of star wars saga; an interesting alternative that combines the
two skinning methods has emerged like [17]. Where the authors use cage
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based skinning along with an animation skeleton using a set of templates
with the objective of creating a cage that fulfills the same function as a
skeleton. The cage is deformed with a modification of the LBS and the
mesh inside the cages are deformed with positive mean value coordinates.
In game industry, the most used method of skinning is the efficient LBS ;
all the graphic engines in the industry supports it, such as Unreal Engine
that its native skinning algorithm is LBS. If another skinning algorithm is
going to be used, it has to be developed as an extra library (at least that
is the case in Unreal Engine 3 ); but recently Crytek has introduced Dual
Quaternion Skinning in their CryENGINE 3, using one of the most sophis-
ticated non-linear skinning method nowadays. Dual Quaternion Skinning
can use the same weights parameters as LBS, but to improve the quality of
the deformations in the model, the rigging and the weight painting has to
be done exclusively for DQS.

(a) LBS candy wrapper artifact (image
taken from [20]).

(b) DQS with the same twist rotation as
LBS (image taken from [20]).

Figure 1.3: Candy wrapper artifact in LBS, same rotation solved properly
with DQS.

Motivation.

The motivation behind the elaboration of this thesis is to automatize the
rigging process of an animation character. To achieve this goal, we are going
to divide the pipeline of the rigging process and treat them as individual
problems, developing tools and solutions for each part. Our set of tools will
be designed to help people with low knowledge about animation; but we
also want to create a set of tools that can be used by experienced users,
such as digital artist, to use it as a base to their work. Our methods can
also be used to obtain a preliminary version of a rigged character in the
fields of research, video game development and those affine to animation
that needs a fast preliminary result.
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Objectives.

The main objective of this thesis, is to generate a rig method for arbitrary
3D models that need a minimum interaction from the user. Our method
has to be useful to people without experience in the animation field, and at
the same time be useful to experienced users that wants to accelerate the
rigging process from days to hours or even minutes, depending the needed
quality. This objective is ambitious, because inexperienced users ignore
most of the core elements in the process, and on the other hand, we have
experts that want all the control over the rigging process. Having in mind
this situation, we have designed our method as a set of tools that can be
applied separately to an input model but with a specific sequence to rig
a model. For unexperienced users, we have a predefined skeleton that is
used as a template to generate a rig from a closed 3D model. Expert users
can change this template with a more suitable skeleton that fulfills their
needs, or modify the output of the rig tool to improve the position of the
created joints that could not be achieved by an automatic algorithm. Along
with the rigging tool, other of the objectives is to create a tool to assign
the influence weights automatically for the widely used LBS deformation
scheme. The common approach taken to produce the influence weights
automatically is: treat the weight assignment as a minimization problem,
using a high-order function as the base to create smooth transitions be-
tween influence joints. On the contrary we want to propose a segmentation
algorithm to deal with the weight assign problem based on segmentation.
We believe that a segmented model simplifies and makes easier the weight
assignment problem; simplifying the problem to a diffused one between a
reduced number of influence joints, that can be solved using a normalized
diffusion function. Our weight assigning tool will be designed to be applied
independently of the rig tool; with a rigged mesh as the input that can be
created with our rig tool, or manually.

The LBS algorithm is known for being the most efficient of the deforma-
tion algorithms, but it’s also known for producing candy wrapper artifact
(a collapse of the model’s volume around a joint when a twist rotation is
performed). We want to propose an alternative to the LBS algorithm that
has the main feature of being fully compatible with the influence weights
used for the LBS algorithm, but without their known artifacts and with
the characteristic of being a separated module that can be used when more
quality is needed instead of the LBS deformation scheme.
A rigged mesh is not useful if it is not associated to any animation file.
In the case of artists in the animation industry, there is no problem with
getting animations for a specific rig, but users without this possibility will
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have to edit animation files by hand or find an option in commercial soft-
ware. Having this in mind, we want to complete our set of tools with an
animation loader tool that will find equivalences between two animation
skeletons and transfer and adapt the rigid transformations (rotations and
translations) from a skeleton defined by an animation file to a rigged model.
All the developed software in this thesis will be created as a plug-in to one of
the major animation software packages available in the industry: Autodesk
Maya. This will allow the final user to combine our set of tools with all the
possibilities that offers one of the best animation package ever created.

To achieve our objective of creating a set of tools to rig a 3D model, we
will summarize the contributions of this thesis as:

• Generation of an animation Rig: Having an arbitrary mesh (a 3D
sculpted character), we want to automatize most of the process by
achieving the next sub-objectives:

1. To implement a voxelizing and thinning algorithm over an input
3D model, to create an unrefined geometry skeleton. (sections
2.1 and 2.1 )

2. To classify the kinds of nodes in an unrefined skeleton and design
a transversal skeleton algorithm that transforms the geometric
nodes into a data structure This data structure will make the
analysis of the position, neighborhood and dimensions of the
skeleton branches easyer(sections 2.2 and 2.3).

3. To propose a method to create a geometric skeleton that captures
the topology, dimension and pose of the character mesh. Refining
the extracted skeleton by trimming unnecessary branches; using
the labeled end nodes by a human user as base of our method’s
reffining process(section 2.3).

4. To generate an adjusted logic skeleton for the polygonal mesh
using one defined by a user or taking a predefined template. The
adjustment of the logic skeleton will be made using a geometric
skeleton (section 2.4).

• Skinning: Having defined an animation rig for an arbitrary mesh we
will develop a skinning method which will be based on the Linear
Blend Skinning algorithm. Our objective in the skinning field can be
sub-divided in:

1. To propose an innovative segmentation method that works as the
core element in a weight assigning algorithm and skinning algo-
rithm. Two kinds of algorithms will be developed: one mainly
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designed to work with models in an ideal T-pose based entirely
on the geometry of the input model; and other two that work
with models in arbitrary poses: one based on a voxelized version
of the input model and other that will be geometrically based
(section3.2).

2. To create an automatic algorithm to compute the weights of the
LBS for a rigged polygonal mesh. The algorithm will have the
main purpose of being used by people with low knowledge about
skinning, or the initial approximation of a professional work used
by an experienced user (section 4.2).

3. To build a skinning algorithm that have as its base the features
of the LBS Skinning. The main objective of the developed algo-
rithm is to solve the well-known ”candy wrap” artifact created
when a twist rotation is performed over one of the joints of the
character (section 4.4).

• To show and explain the set of created Autodesk Maya commands
that work together as a rigging tool (section5).

• To generate an animation loading tool that allows the user to load
animations from an animation file with a different skeleton structure
to a rigged 3D model.

The contributions mentioned in the “Generation of an animation Rig”
field has been published in [36] and [37]. Contributions made to the “Skin-
ning” field has been sumbmited and accepted for publication in [38].

1.1 Thesis overview.

After this brief introduction we will discuss about automatic skeleton ex-
traction and will adjust a predefined logic skeleton to a 3D model in Chapter
2. Chapter 2 starts with the state of the art in skeleton extraction, followed
by all the algorithms and methods used to extract and adjust an extracted
skeleton, ending with a results section.
In Chapter 3, mesh segmentation will be introduced; starting the chapter
with a state of the art in segmentation and a discussion about how it is ap-
plied to computer animation, followed by the methods proposed to segment
a polygon mesh, ending with its respective results section.
Chapter 4 will be focused in Skinning; starting with the state of the art
in skinning methods, followed by a LBS skinning weight assign method
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section, which uses one of our proposed segmentation algorithm as an in-
put. Finally we will show an innovative deformation algorithm without the
candy wrapper artifact based in the LBS algorithm and the segmentation
of a 3D mesh character, ending this section with a discussion about the
volume preservation feature of the proposed method.
The implementation of the tools to rig a 3D model will be discussed in
Chapter 5. The implementation of the algorithms developed in this the-
sis will work as a set of commands developed for Autodesk Maya, loaded
through their plug-in interface, followed by the explanation about an an-
imation loader tool that can be used to load animations in the BVH file
format with a different structure than the input rigged model.
The conclusion of this thesis will be in Chapter 6, where the results and
limitations of each of the algorithms developed in this thesis are shown;
followed by a comparative between some of the main algorithms and meth-
ods of each area, and concluding with ideas about improvements and future
work.
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Chapter 2

Automatic skeleton extraction.

Although the skeletization of 3D models is not directly related with the
computer animation field; it’s a useful tool to make a geometric skeleton.
This geometric skeleton can be used as a basis to adjust a template logic
skeleton; witch is one of the main elements in skeleton driven animation. As
it is defined in the work published in [5], a skeleton (also known as curve-
skeleton) is defined as the locus of centers of maximal inscribed (open) balls
(or disks in 2D). More formally, let X ⊂ R3 be a 3D shape. An (open)
ball of radius r centered at x ∈ X is defined as Sr(x) = y ∈ R3, d(x, y) < r;
where d(x, y) is the distance between two points x and y in R3. A ball
Sr(x) ⊂ X is maximal if it is not completely included in any other ball
included in X. The skeleton is then the set of centers of all maximal balls
included in X.
In [5] a set of desirable curve-skeleton properties are defined such as:

• Homotopic (topology preserving)

• Invariant under isometric transformations

• Reconstruction(it refers to the ability to recover the original object
from the curve-skeleton)

• Thin(curve-skeletons should be one-dimensional: that is one voxel
thick at most in all directions, except at connectivity voxels)

• Centered

• Reliable(it refers to the property of the curve-skeleton where every
point on the objects surface is visible from at least one curve-skeleton)

21



• Junction Detection and Component-wise Differentiation(the
curve-skeleton should be able to distinguish the different components
from the original object, reflecting its part/component structure)

• Connected

• Robust(a desirable property of the curve-skeleton is to exhibit a weak
sensitivity to noise on the objects surface)

• Smooth

• Hierarchy(a hierarchical approach is useful because it can generate
a set of curve-skeletons of different complexities that can be used in
different applications), and related to the algorithm used to compute
the curve-skeleton.

Some applications need one or both of the following properties: effi-
cient(if the algorithm used to compute the skeleton needs to feed a real
time application) and can handle point sets(where the connectivity is
not specified and there is no inside/outside information). Not all properties
are useful for some applications; furthermore some of this properties may
be conflicting each other because of their nature.
The process of extracting the skeleton from a 3D model is called skeletoniza-
tion. The skeletonization methods can be classified in the next categories:

• Thinning and boundary propagation: The thinning methods
produce curve skeletons by removing voxels from the surface of a solid
voxelized 3D model iteratively; until the desired thickness or thinness
is obtained. All the algorithms of thinning operate in a discrete space
(a voxel set) and are based in the concept of simple point. A simple
point is an object that can be removed without changing the topology
of the object. The simple points have the property of being locally
characterized; this is important because we can know if a voxel is
a simple point by inspecting its neighborhood. If a simple point is
removed; the algorithm has to take care of not removing any end
point(which are also simple points) in an excessive way, because it
will produce a shrinkage of the curve-skeleton branches. To avoid
this condition, additional conditions must be added to the thinning
algorithm to maintain the geometric properties of resultant curve-
skeleton. The thinning algorithms can be classified into two categories
based in the way of computing the simple points of a voxel set.
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– Sequential thinning: Within this category we can find two
kinds of algorithms: subfield sequential thinning and directional
sequential thinning. The subfield sequential thinning is a kind of
method that divides the space into several subfields, and at each
sub-iteration a set of voxels belonging to a subfield are considered
for deletion. Directional sequential thinning algorithms works
similar to subfield sequential thinning ; but instead of grouping
the voxels into a subset by using some sort of distance function,
the deletions of voxels are made by tagging them as candidates
to removing some of the surface voxels when the algorithm is
working in a sub-iteration (a specific direction: up, down, front,
rear, left, right); at the end of the iteration depending of the
properties of the candidates and the set of rules of the algorithm,
some of the candidate voxels are going to be removed from the
surface of the object [33].

– Fully parallel: This algorithms take into account all the surface
voxels for their deletion in a single iteration. To maintain the
object’s topology the neighborhood must be inspected; to decide
if a voxel is deletable, its neighborhood must be greater than the
26 neighbors. Some algorithms use templates to produce a curve-
skeleton; others uses a sophisticated set of rules to delete surface
voxels in the first stage, and continue until a curve-skeleton with
a single voxel size is produced ([26][32]).

• Distance Field: In this skeletonization category, the distance field
is defined for each interior point P of a three dimensional object O.
A great number of distance functions can be used, such as Euclidean
distance [45], or any other desired distance function. In [3], a distance
field algorithm is used as a base to create a medial surface by choosing
the C1 discontinuities in the distance field; from the medial surface a
process based on the distance to the components of the medial surface
to the input mesh surface vertices is applied to create a set of spheres.
Finally the centers of the spheres will be the vertices of a graph. This
graph is an unrefined approximation of the input mesh’s shape for
their skeleton embedding.

• Geometric Methods:This methods are applied to objects represented
by polygonal meshes or to points sets. Within this category we can
find: Voronoi diagrams. A Voronoi diagram is generated by the
vertex of a 3D polygonal object or directly from a set of disorganized
points. The edges and faces of the voronoi diagram can be used to
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extract an approximation of the medial surface; this medial surface
can be reduced (or pruned) to a 1D structure that will be used as the
skeleton.
Cores and M-reps, this methods are also based in medial surfaces:
A core is a set of points in space which coordinates are position,
radius, and associated orientations. M-reps are a generalization of
cores ; the M-reps model the medial surface using a set of connected
atoms. Reeb graphs: this descriptors has its roots in the Morse the-
ory; they are 1D structures that encode the topology and geometry
of the original shape [43]. After being computed, the Reeb graph can
be embedded by mapping the edges of the Reeb graph 3D points that
will define a curve-skeleton of an object.
An alternative method can be found in [34], where a skeleton is ex-
tracted from a 3D mesh by taking two silhouettes (2D projections of
visible vertices from some visualization angles), using the silhouette
with the highest number of visible vertices as the primary silohuette.
Then the problem is treated as a triangulation problem in 2D where
some central points are computed in 2D and finally, using the second
silhouette, the deep component is computed.
In [4] a contact graph is built for each mesh input, then from each
mesh a point cloud is created and if any point of that point cloud
has a defined distance with another point of a different input mesh,
a link is generated between the two points, creating a first skeleton
approximation that is refined by a graph clustering algorithm.

• General-field functions: Is one of the ways used to extract curve-
skeletons. General-field functions functions are not based in a dis-
tance function or transformation, but functions that mimic potential
field, electrostatic field or a sort of repulsive force where the poten-
tial of a point internal to an object is determined by the sum of all
the potential generated from the object’s surface. In the particular
discrete case, the voxels in an object’s frontier are considered charged
points that generate a potential field, then a skeleton is extracted by
linking the detected filed local extremes.

2.1 Skeleton extraction.

To adjust a logic skeleton to an arbitrary 3D model we need to extract
it from the 3D model. Our main objective in this chapter is to obtain a
logic skeleton from an extracted one. To achieve this objective, we needed
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a simple and effective method of skeletonization; from the diversity of al-
gorithms exposed in the previous section, we believe that the ones based
on a discretized space (a set of voxels) are good and efficient enough to our
particular purpose (see [5] for a more general approach) of the universe of
skeletonization methods. Therefore we had chosen a sequential thinning
method as skeleton extraction algorithm.
Thinning algorithms are based on removing surface voxels from a voxel set
that represents a solid object. The particular algorithm we are using was
published in [33]; it removes voxels from the surface until it reaches the point
where the voxels that remain will retain the original shape and topology
of the input voxel set. Algorithm [33] was chosen because of its simplicity
and low computation cost; more sophisticated and complex thinning algo-
rithms exist but their main target is to be applied in parallel architectures.
Although we can use parallel algorithms like [26] and [32]; algorithm [33]
fulfills our main objective which is to adjust an animation skeleton to a
skeleton extracted from a model’s mesh.

Mesh voxelization: Surface and interior voxels.

We decided to implement our own voxelization method in order to have a
complete pipeline inside of our final Maya plug-in. Sometimes the skeleton
can be provided by the animation team, but in the case of starting from
only a triangulated mesh we need this kind of tool to continue our rigging
process. Moreover, the final geometric skeleton will be associated with a
logical one (for instance taken from a motion capture data) and we need
to achieve enough precision in this step. As it will be explained later,
we consider in our pipeline the possibility of user interaction in case the
automatic results must be improved.

Because we decided to apply a thinning approach to compute the skele-
ton, the first part of the algorithm consists on building a voxelized model
from the original mesh. This goal can be achieved with high performance
using GPU approaches (see [5] and [31]) but in our case we implemented a
non-optimized version based on two steps:

1. First we voxelize the original triangles. This is how we obtain the
surface voxels of our model.

2. Then we fill the voxelized surface by using a 3D flood algorithm,
obtaining the interior voxels of the model.

This is the information needed to apply our thinning algorithm approach
described in [33]. As we pointed out, there are other approaches [5] not
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based on thinning, like geometric approaches to compute the skeleton or
general potential-field methods. Although sometimes they can be more
efficient, we have chosen the thinning one because it’s very intuitive and
easy to code in our plug-in. Of course, this can be changed in the case of a
greater speed being needed.

(a) Original polygon
mesh.

(b) Voxelized surface. (c) Set of filling vox-
els, without fusion in
the legs.

(d) Thinned solid.

Figure 2.1: Transformation of a polygon mesh into a skeleton.

Sequential thinning algorithm.

The detail algorithm [33] is based on the concept of removing surface voxels
in a set of voxels in a voxelized solid until it has reached a state where
no more voxels can be removed without affecting the original shape and
topology of the resultant solid; the remain set of voxels can be considered
as a geometric skeleton. The thinning algorithm is applied iteratively in
six directions (one for each face of a voxel): UP, DOWN, LEFT, RIGHT,
FRONT, REAR. These stages of the algorithm are called sub iterations.
Each time that a sub iteration is applied to the solid, a set of n surface
voxels are removed depending on a set of rules. The algorithm stops if the
number n of deleted voxels is equal to zero. Each sub iteration is basically
the same process, but applied in different directions, specifically the set of
surface voxels were the sub iteration is applied. The directions on the sub
iteration process are defined by the neighborhood on the surface voxels. If
the direction is UP that means that the process is going to be applied to
all the surface voxels whit a null voxel in its upper face.
In the development of this thesis we have programmed algorithm [33] with
some modifications and optimizations.
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2.2 Voxel classification.

The extracted skeleton obtained with the algorithm depicted in section 2.1
gives us more information about the voxels that are part of the skeleton
than only about their position. This extra information is based on the
number of neighbors that have a voxel in a skeleton. Therefore we can infer
which part of the skeleton has correspondence with a part of a human-
like skeleton. A voxel from the extracted skeleton can be classified by the
number of neighbors within its 26-adjacency in the next categories:

• Flow nodes: This are voxels with two elements in its neighborhood.
The flow voxels are named like that because they are part of the
segments that represents the limbs in a skeleton.

• End nodes: Voxels with only one neighbor voxel in their neighbor-
hood. They usually represent the end of the limbs (arms, legs, fingers,
etc.) or the head.

• Connection nodes: Voxels with more than two elements in their neigh-
borhood. These voxels usually represent a solid-rigid part of the
model; like the hips or the chest.

(a) Flow node. (b) End node. (c) Connection node.

Figure 2.2: Voxels classified by their neighborhood.

To classify the voxels in the extracted skeleton we have two options: To
check all the voxels in the space to classify the ones who are part of the
skeleton, or use an algorithm that classifies the extracted skeleton’s voxels
by traversing all the voxels within it. We have chosen the second option
by creating a simple algorithm that traverses the voxels of the extracted
skeleton to fulfill our needs.
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2.3 Creation and refinement of a geometric

skeleton.

The traversal algorithm is simple, it allow us to transform the extracted
skeleton into a data structure to extract useful information such as: the
number of segments that are connected, the length between two elements
in the data structure, or the length of a segment of consecutive flow nodes.

Algorithm 2.3.1 Voxel traversal algorithm.

Require: v . A random voxel in the extracted skeleton.
Require: inter . A stack to store voxels in the traversal.
1: pushStack(inter, v)
2: while StackLenght(inter) > 0 do
3: neighNum← GetNumNeighbors(v)
4: if neighNum > 2 then
5: RegInternaNode(v)
6: pushStack(inter, v)
7: else if neighNum = 1 then
8: RegEndNode(v)
9: v ← popStack(inter)

10: else
11: RegF lowNode(v)
12: end if
13: v ← getF irstNeighborLeft(v)
14: end while

function GetNumNeighbors(v)
Returns the number of neighbors of the voxel v.
end function

function getF irstNeighborLeft(v)
Returns the first unregistered neighbor of the voxel v
end function

Geometric skeleton data structure.

We have chosen a n-ary tree data structure to map an extracted skeleton
into a data structure that we call: geometric skeleton. We have two main
advantages form representing a geometric skeleton as a tree data structure:

1. Fast and easy traversal over all the skeleton: When the thin-
ning procedure has been applied to the model; we define a node for
each remaining voxel. All the operations (position change, neighbor-
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hood and classification of the nodes) done over the voxelized space
are applied and stored in a data structure.

2. Allows us to perform operations over nodes: Modify or delete
a node or an entire set of nodes (loops).

Geometric Skeleton refinement.

Once the geometric skeleton is created, we apply a post-process to refine it.
This post-process will have the following steps:

1. Deleting of loops and redundant nodes: The result of the thin-
ning process over a voxelized model is a set of voxels that represents
a skeleton. Usually, this set has voxels which are noisy or redundant
nodes (voxels which cannot be removed because of their topology con-
dition [33] on the thinning stage). We must have in mind that the
size of the voxel in our space can change the number of details and
noise in the geometric skeleton. If the voxel size is small, the thin-
ning algorithm tends to introduce more voxels as end nodes, this will
generate more branches in the geometric skeleton (fig. 2.3).

(a) Voxel size at 1%
of height.

(b) Voxel size at
0.65% of height.

(c) Voxel size at 0.4%
of height.

Figure 2.3: Extracted skeleton at different voxel sizes.

2. Root node adjusting: Because we use a random voxel as starting
point in the creation of a geometric skeleton, the root node must
be adjusted. Only connection nodes can be root nodes; the main
reason is that practically in all animation formats the hips are taken
as the center of mass for translations and rotations; the hips can be
considered as a solid-rigid. If the root node in the geometric skeleton is
not a connection node, the nearest connection node will be assigned as
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the root, and the geometric skeleton tree will be balanced for the new
root node. The assigned connection node is the first approximation to
the model’s hip; the appropriate assignment will be done in a posterior
step.

3. Skeleton smoothing: A smoothing step is mandatory because in
a voxelized space, change of position between nodes of the skeleton
in the same neighborhood are produced in the edges of the voxel.
This will lead to undesirable artifacts if this data is used to calculate
direction changes between two voxels. By changing the position of
the voxels that share an edge as their contact surface to a position
where they share part of their faces, a smooth transition is granted.
We use a window based method as our smoothing process.

2.4 Logic skeleton adjustment.

Segments are the core elements in the adjustment of a logic skeleton (rig),
to a geometric skeleton. We define a segment as:
Segment: A set of nodes traversing the skeleton from a connection node
to an end node.(fig.2.4. b.).
Using our definition of segment, a skeleton (geometric or logic) can be de-
fined as:

Skeleton: A set of segments with the same connection node as starting
point (fig.2.4. a).

In full body animation, only five end nodes are needed (head, hands and
feet) [3], furthermore the great majority of full body motion capture data is
produced with five end nodes [1]. Therefore we have restricted our method
to logic skeletons with five end nodes.

2.5 Node selection and root assignment.

The main problem of adjusting a logic skeleton to a geometric skeleton is
finding the correspondence between their body segments (head, hands, and
feet). Logic skeleton’s limbs are specified by a tag which can be obtained
from a file, a user interface, or if the model was in a specific pose it can be
tagged automatically by the positions of its segments in the space.
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(a) Extracted skeleton. (b) Isolated segments.

Figure 2.4: Extracted skeletons and their segments, the third segment (root
to nose) will be deleted.

End node selection.

Geometric skeleton’s limbs are not specified or tagged, mainly because the
input 3D models can be in an arbitrary pose; therefore, there is no simple
method capable of automatically tagging the limbs of a 3D model; more-
over, there are models with human like forms but with an extra limb (for
instance the tail of an armadillo model). Limbs detection is a difficult and
challenging task that is out of the scope of this thesis. To solve this problem
we have implemented an interface that allows the user to select which are
the end nodes that correspond to their appropriate limbs.
In our user interface, the end nodes are marked with a sphere and the
flow nodes are represented by small cubes(big cubes represent connection
nodes). The user must decide which end node corresponds to its logic limb
by selecting the appropriate sphere (fig. 2.3 b and c).

Root assignment.

Once the limbs are assigned; we delete all the nodes that are not part of an
assigned segment.(fig.2.4 b.).
When segments are assigned, the number of connection nodes will de-
crease and only connection nodes that represent non-articulated parts of

31



the model(hips and chest) will be preserved.
It is customary to set the hip as the root node; in our case, the hip will be
one of the connection nodes but depending on the number of connection
nodes the next situations can arise:

(a) Skeleton with two connec-
tion nodes.

(b) Skeleton with three con-
nection nodes.

Figure 2.5: Root assignment cases.

• Two connection nodes:In this case, the difference between the
chest and the hip is caused because the chest will have three segments
without connection nodes(the hands and the head, fig. 2.5 a.), and
the hip will have two (the feet). To apply this rule we are going
to build two sets of segments (one per connection node); each set of
segments will have its starting node in one of the connection nodes.
Finally we will assign the set with the least number of segments as
the hip (root) of our skeleton.

• Three connection nodes: In this case we calculate the addition of
the Euclidean distances between flow nodes from one connection node
to another. The two nearer connection nodes will represent the chest
and the other one the hip. Therefore, to find the hip we create three
set of segments: one per connection node. For each set we select
the segment with the minimum number of flow nodes between the
segment’s starting node and its nearest connection node, then from
these three segments we choose the one with the maximum number of

32



flow nodes. The starting node of the selected segment will be assigned
as the hip (root) of the skeleton.

Skeleton adjustment.

A logic skeleton can also be viewed as a set of segments. If we have followed
the previous steps correctly; we must have the same number of segments
in the geometric and logic skeletons but in the logic skeleton we will have
additional tagged nodes (elbow, neck, ankle...) that are not tagged in the
geometrical one. Adjusting a logic skeleton to a geometric one is reduced
to finding the correspondence between logic tagged nodes and geometric
untagged nodes.

Scaling segments.

As it is mentioned in the section 2.5, our skeletons will be represented
by a set of five segments. Since a segment in the logic skeleton has its
equivalent in the geometric skeleton, we can define a normalized distance
in our skeleton’s segments; being zero the starting node position and one
the end node position. With this distance we can find the position of the
logic skeleton’s tagged nodes and map them to the remaining geometric
skeleton’s untagged nodes (as an example, the segment in the geometric
skeleton that represents an arm will have the elbow, shoulder and other
untagged nodes that will be tagged in the logic one).
The distance of the logic skeleton segments is defined as the sum of the
distance between two neighbor nodes (joints) in a segment from the root
node to the end node. We have defined the distance of the geometrical
skeleton segment as the sum of the distances between the center of two
neighbors nodes (voxels) in a segment from the root node to an end node.
Since a geometric skeleton can have a different pose than that of the logic
skeleton, only the distance between nodes of the geometric skeleton will be
used to map from the logic skeleton’s internal nodes to their equivalent in
a geometric skeleton. Suppose we have a segment SLi in the logic skeleton
with n internal nodes and their equivalent segment in the geometric skeleton
SGj with m internal nodes and m ≥ n; then, the mapping process will start
from the initial nodes vl0 ∈ SLi and vg0 ∈ SGj (that are equivalents) and
we will traverse each internal node vlk : 1 ≤ k ≤ n in the logic skeleton
and find their equivalent within the geometric skeleton nodes set vgl : 1 ≤
l ≤ m that have approximately the same normalized distance of vlk for
being tagged. Basically, adjusting a logic skeleton to a geometric skeleton
is finding a partition of the node graph formed by the logic skeleton segment,
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and map their internal nodes to the set of untagged nodes that are available
within the geometric skeleton segment. The union of all this mapped nodes
(with its hierarchy implicit) will be the adjusted skeleton.

(a) Logic skeleton segment. (b) Geo. skel. seg-
ment.

(c) Logic segment
adjusted to a geo.
skel. segment.

Figure 2.6: Segment adjustment.

2.6 Results.

In fig.2.6 we show the results obtained by applying our method to arbitrary
models in different positions, the voxelization and skeletization time will
depend on the model’s pose and its number of triangles. The chosen voxel
size is 0.65% of the model’s height with processing times in the range of
2 and 3 seconds. The geometric skeleton creation, and the logic segment
adjustment processing time will be increased if more connection nodes and
segments are obtained. Our times are in the range of 2 to 3 seconds for
models with a density of 20K and 28K triangles (a more detailed discussion
about results can be found in 6.1).

The skin attachment of the skeleton has been done through Maya’s
mesh binding that generates automaticlly the set of weights for the LBS(the
default deformation method used in Maya) as can be seen in figure 2.7 last
column.
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Figure 2.7: Columns:Skeleton from an animation file, arbitrary model,
geometric skeleton, adjusted logic skeleton, binded model.
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Chapter 3

Mesh Segmentation.

The main objective of the 3D mesh segmentation is to make a partition of
an object into smaller objects (or patches if we take the segmented object
as a surface), with a specific purpose or application in mind. In com-
puter graphics, mesh segmentation has different applications like: texture
mapping, morphing, compression and animation. The main categories for
segmentation algorithms according to [40] are part-type segmentation and
surface type segmentation. Part-type segmentation is oriented to parti-
tioning the object into semantic components; surface type uses geometric
properties of the mesh to create surface patches.
Another common application for mesh segmentation is skeleton extraction:
an input mesh is taken and partitioned in segments that will represent a re-
gion that belongs to a skeleton bone. An example can be found in [6], where
a segmentation method is described. The method takes a set of meshes that
represent an animated mesh sequence through time as an input, then the
input mesh is segmented in patches that undergo approximately the same
rigid transformation over time. A curvature-based segmentation method is
used to decompose the model into l surface patches (part-type segmenta-
tion); then a skeleton is estimated by finding the mesh’s kinematic topology
(where parts of the input mesh body are adjacent) using the patches of the
segmentation stage. In [14] an indirect segmentation is made: first an es-
timation of the mesh’s bones is made using a set of related meshes (that
represents the desired set of deformation); the estimation is made using
a main shift clustering algorithm, that computes an estimated number of
bones in a density function gradient, the estimation is made over a vertex
in the target mesh in a period of time; then the mesh vertices are mapped
to a set of stationary points that will be used to estimating a set of bones
statistically. The described process will be used in a modified version of the
LBS algorithm. Our approach is different because instead of extracting a
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skeleton from a previously segmented mesh, we segment a mesh using an
existing skeleton. The purpose of segmenting a mesh is to create what is
known as a rigid skinning, using it as the initial value for the weights of
the LBS skinning algorithm. One of the algorithms shown in this thesis
is similar in essence to the one showed in [39]: Our segmentation method
based in voxelization. The mentioned algorithms share some characteris-
tics: both use a defined skeleton to perform the mesh segmentation, use
voxelization of the input mesh, and are used as an initial guess to compute
skinning weights. But our main algorithm is based on part-type partition
segmentation, applied to a rigged mesh instead of a single input mesh.

3.1 Segmentation of a polygon mesh.

Figure 3.1: A point of a Mesh.

Our first segmentation algorithm is based in measuring the distance
between the vertex and the elements of the rigged skeleton (joints and
links). For each vertex vi we compute two distances: the distance Jd to
the closest joint Jk in the skeleton, and the distance ld to the closest link
if vi is on the region delimited by each link. When we say that a vertex is
on a link’s region we mean that a vertex vi is inside the cylinder of infinite
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radius made by a link lj.
The first step of the segmentation algorithm is made into a list LJdi of
distances Jd. The list is sorted using Euclidean distances as a sorting
parameter; therefore the minimum distance Jd will be the first element on
the list.

Figure 3.2: Projection of a point p on the link (vector) formed by (b − a)
line segment.

The second step is to create the list Lldi that stores the distance of a
vertex vi to a link lj, but the list Lldi will be filled only with the region’s
links were the vertex vi is inside. To know if a vertex vi is on the region
of a link lj we use a δ function introduced in [44]. The δ function is ap-
plied to a vertex vi and the elements of a link lj (as is showed in the fig.
3.2). Basically it is a formula that takes a vertex vi, the joints ja and jb
(the joints that form the link) as input parameters and gives us an out-
put. The output value will be positive if the vertex is on the link’s region,
with a value between 0 and 1; otherwise the vertex is out of the link’s region.

The δ function

The δ function is defied as:

δ =
(p− a) · (b− a)

‖b− a‖2
(3.1)

In a shell, the δ function is the projection of the point p over the line parallel
to the vector (b − a) divided by ‖b − a‖; δ is a function that allows us to
know if the projection is outside or inside a vector. If the projected points
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p′ of p are inside ~ba, the δ value will be between 0 and 1; if its outside but
p′ is after b, δ will be greater than 1; and if p′ is before a, δ value will be
negative, as can be seen in the next equations:

δ =
(p− a) · (b− a)

‖b− a‖2
=
‖p− a‖‖b− a‖ cos θ

‖b− a‖2
=
‖p− a‖ cos θ

‖b− a‖
(3.2)

A relation involving the triangle formed by a,p′,p and the vectors (p′ − a)
and (a− b) can be written:

‖p− a‖
‖b− a‖

=
‖p− a‖
‖p′ − a‖n

=
1

(cos θ)n
(3.3)

substituting 3.3 in 3.2, δ is reduced to:

δ =
1

n
=


δ < 0 if n < 0
0 < δ < 1 if n > 1
δ > 1 if 0 < n < 1

(3.4)

With n being a scale factor of (p′−a) over (b−a), and δ being the reciprocal
of n.

Distance to link.

If vi is on the link lj’s region; the distance of vi to lj will be computed as:

l = ‖(p− a)− δ(b− a)‖ (3.5)

That is equivalent to the classic point-to-line length formula, because of the
equivalences:

l =

∥∥∥∥(p− a)× (b− a)

‖b− a‖

∥∥∥∥
=
‖p− a‖‖b− a‖ sin θ

‖b− a‖

= ‖p− a‖ sin θ

and

sin θ =
‖p− p′‖
‖p− a‖

cos θ =
‖p′ − a‖
‖p− a‖
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or

‖p− p′‖ = ‖p− a‖ sin θ

‖p′ − a‖ = ‖p− a‖ cos θ

if
(p′ − a) = δ(b− a)

then

(p− p′) = p− (p′ − a+ a)

= (p− a)− (p′ − a)

= (p− a)− δ(b− a)

finally

‖(p− a)− δ(b− a)‖ = ‖p− p′‖
= ‖p− a‖ sin θ

= l

Joint distance and Link distance comparative.

Once the lists LJdi and Lldi are computed and sorted, we start by checking
if the list Lldi has elements (there is a possibility that the vertex vi does
not belong to a link region). If that is the case, we compare the minimum
distances of the lists Lldi and LJdi, and the vertex vi will be assigned to
the closest segment defined in any of these two lists.
When the list Lldi is empty (as in the case of vertices that forms the hand
or the top of the head); vi will be assigned to the first element of the sorted
list LJdi.
Finally we can have false assignments when a vertex is associated to a
wrong link, because it belongs to a different part of the model. This can be
detected when the line between the vertex and the corresponding link passes
through a region that is external to the model. To detect this situation the
best that can be done in an fast way, is using ray-triangle intersections [35].
In our case, because we have already build a voxelized representation of
our model, and also for including other models not necessarily defined as a
triangular mesh; we decided to use the voxelized space to determine when
you pass through an external voxel, and therefore, discard this link. We
have to admit that this is not an optimal solution and of course, it is not
the one we will choose if the voxelized model was not available.
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3.2 Segmentation algorithm.

We present a couple of pseudo-codes for the segmentation algorithm: the
original (algorithm 3.2.1) and the voxelized version (algorithm 3.2.2.

(a) Segmentation algorithm. (b) Voxelized segmentation algorithm.

Figure 3.3: Comparative between versions of the segmentation algorithm,
mesh segmentation colors per link.

The version including the voxelization is almost the same, but we use
four lists instead of two to make the comparatives between distances (link
distance, joint distance).
List one (dL1) and list three (dL3) will be used with the voxelizated mesh;
dL1 will have the list of joints that had a line without null voxels. If a line
had a null voxel, is stored in dL3 instead. dL2 and dL4 are used in the same
way that dL1 and dL3 respectively, but are sorted by the distance between
the links and a vertex. Lists dL3 and dL4 are in fact a precautionary
measure if none of the two first list had elements. They will be filled and
sorted using the distance from the joints and links to the vertex if the line
between a vertex and joint, or a vertex and a link is outside the mesh. In
algorithm 3.2.2 a post process is needed because this algorithm relies heavily
in the voxelization of a Mesh. The result is dependent of the density of the
voxelizated space (the voxel size). In some cases, a vertex is not assigned
properly because of the voxelization density. This improper assignation can
be solved by incrementing the density of the voxelizated mesh at expense
of the computation time. But there are some cases where the mesh has
not convex vertices. If that is the situation, the result will be the same
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Algorithm 3.2.1 Segmentation algorithm.

Require: JL . List with the joints data.
Require: LkL . List with the links data.
1: for x = 0→ nV tx do
2: V tx← GetV ertexData(x)
3: point← V txWCoord(V tx)
4: for y = 0→ nJoints do
5: jntpnt← JntWCoord(y)
6: jd← euDst(point, jntpnt)
7: InsSortedList(dL1, y, dJ)
8: end for
9: for y = 0→ nLinks do

10: lnkElem← LnkData(y)
11: sf ← delta(V tx, lnkElem)
12: if sf > 0 & sf < 1 then
13: ld← euDst(point, lnkdata)
14: InsSortedList(dL2, y, dLk)
15: end if
16: end for
17: JdlElem← GetListFstElem(dL1)
18: LnkdlElem← GetListFstElem(dL2)
19: elemFlg ← isV alidElem(LnkdlElem)
20: if elemFlg then
21: dLk ← GetLnkElmdst(LnkdlElem)
22: dJ ← GetJntElmdst(JdlElem)
23: if dLk < dJ then
24: SetSeg(V tx, LnkdlElem)
25: else
26: SetSeg(V tx, JdlElem)
27: end if
28: else
29: SetSeg(V tx, JdlElem)
30: end if
31: end for

function InsSortedList(Lst, indx, data)
Inserts in a double list the element from the list Lst with index indx; the list is sorted
using the value of the data parameter.
end function

function delta(V tx, lnkElem)
Compute the value of the δ function depicted in 3.1 over the vertex data V tx, and the
link data lnkElem.
end function

function SetSeg(V tx,Elem)
Assign the vertex data V tx to link in Elem. If Elem is a joint, it assigns V tx to the
link where Elem is the point a in the delta function.
end function
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(a) Incorrect assigned vertices front. (b) Incorrect assigned vertices side.

Figure 3.4: Comparative between versions of the segmentation algorithm,
yellow vertices with different segment assigned.

independently of whether the voxelization density and the analyzed vertex
will be assigned to the closest link or joint that had a line without null
elements.

Watershed based segmentation.

Algorithms 3.2.1 and 3.2.2, give us goods results in specific cases but are lim-
ited as algorithms for general purposes; in specific, 3.2.1 is limited to rigged
meshes in T-Pose, and 3.2.2 is only applicable to closed rigged-meshes, and
its computation and memory consumption are high and in some cases invi-
able. To solve this particular situation we have designed an algorithm based
on part-type segmentation. In our particular case the semantic parts of the
part-type segmentation are already created: the underlying logic-skeleton.
Therefore our algorithm has the purpose of detecting vertices that belong
to each semantic part. In this case, that will be the link between a joint
and its child. Although our algorithm works for non-closed and multiple
meshes, we will explain the method with the assumption that we have a
single closed mesh as input. In the same fashion, like algorithms 3.2.1 and
3.2.2, we map the skeleton to a tree data structure, which allows us to tra-
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Algorithm 3.2.2 Voxelized segmentation algorithm Part 1.

Require: JL . List with the joints data.
Require: LkL . List with the links data.
Require: V xSpc . Solid voxelized version of the mesh.
1: for x = 0→ nV tx do
2: V tx← GetV ertexData(x)
3: point← V txWCoord(V tx)
4: for y = 0→ nJoints do
5: jntpnt← JntWCoord(y)
6: lnF lg ← isInOutLine(V xSpc, jntpnt, point)
7: dJ ← euDst(point, jntpnt)
8: if lnF lg then
9: InsSortedList(dL1, y, dJ)

10: else
11: InsSortedList(dL3, y, dJ)
12: end if
13: end for
14: for y = 0→ nLinks do
15: lnkElem← LnkData(y)
16: sf ← delta(V tx, lnkElem)
17: if sf > 0 & sf < 1 then
18: lnF lg ← isInOutLine(V xSpc, lnkdata, point)
19: dLk ← euDst(point, lnkdata)
20: if lnF lg then
21: InsSortedList(dL2, y, dLk)
22: else
23: InsSortedList(dL4, y, dLk)
24: end if
25: end if
26: end for
27: V xJdlElem← GetListFstElem(dL1)
28: JdlElem← GetListFstElem(dL3)
29: V xLkdlElem← GetListFstElem(dL2)
30: LkdlElem← GetListFstElem(dL4)
31: elemV xLFlg ← isV alidElem(V xLkdlElem)
32: elemV xF lg ← isV alidElem(V xJdlElem)
33: if elemV xLFlg then
34: if elemV xF lg then
35: dLk ← GetLnkElmdst(V xLkdlElem)
36: dJ ← GetJntElmdst(V xJdlElem)
37: if dLk < dJ then
38: SetSeg(V tx, V xLkdlElem)
39: else
40: SetSeg(V tx, V xJdlElem)
41: end if
42: else
43: SetSeg(V tx, V xLkdlElem)
44: end if
45: else if elemV xF lg then
46: SetSeg(V tx, V xJdlElem)
47: else
48: elemLFlg ← isV alidElem(LkdlElem)
49: elemFlg ← isV alidElem(JdlElem)

45



Algorithm 3.2.3 Voxelized segmentation algorithm Part 2.

50: if elemLFlg then
51: if elemFlg then
52: dLk ← GetLnkElmdst(LkdlElem)
53: dJ ← GetJntElmdst(JdlElem)
54: if dLk < dJ then
55: SetSeg(V tx, LkdlElem)
56: else
57: SetSeg(V tx, JdlElem)
58: end if
59: else
60: SetSeg(V tx, LkdlElem)
61: end if
62: else
63: SetSeg(V tx, JdlElem)
64: end if
65: end if
66: PostProcAssg(V tx, 1)
67: end for

function isInOutLine(V xSpc, lnkdata, point)
Returns true if the line in the voxelizated space has only solid elements; false if the
line has empty voxels (null value voxels).
end function

function PostProcAssg(V tx, hLevel)
Check hierarchically the distances from the links of the skeleton to the vertex V tx.
hLevel will be the hierarchical grade of parents and children of the elements used in
this process. If hLevel value is 1; the check will be on the first grade parent and
children of the link assigned to V tx. If one or more of the links traversed during this
check are closer to the vertex V tx than the assigned at that moment; then V tx will
be assigned to the closer link in the set.
end function

verse the skeleton by its hierarchy. Our mapping of the skeleton is not by
joints, but instead we use a pair of joints: joint ja and its child jb (a segment
that we will reference as sj) to define a node in our tree data structure; that
has end joints as special cases. Therefore, a skeleton will have m number
of segments for a skeleton with n joints, with m > n (m is larger than n
due to the fact that the end nodes are counted as segments of their own)
and will be related directly by their hierarchy depending on their position
within the tree data structure. Our algorithm is composed by three stages:

1. Region growing. In this stage we assign to each vertex, a set of seg-
ments that can be the segment where it belongs.
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2. Belonging test. For each candidate segment in a vertex defined in
the previous step, we apply a set of rules to discriminate which is the
most suitable segment to be assigned.

3. Region merge. If false positives exist, we merge them with one of their
surrounding neighboring regions.

Region Grow method.

We start our algorithm using one of the root node related segments as initial
growing region; as any region grow algorithm a seed is needed; in the case
of the first segment we can use a vertex manually chosen, or we can use the
closest vertex measured in Euler distances to the root node that belongs
to the initial segment. We apply our test for each segment in the skeleton
hierarchically, using the delta function combined with region-grown as tool
to check if this vertex is candidate to being inside a segment for each vertex
traversed.

Region-grow needs a vertex as a seed to begin with. In our particular
case, we used a vertex that had a delta value between 0 and 1 as seed (the
vertex is in the influence space of the segment). If the value of delta is
greater than 1, we compute the delta value output for the child segment
(next segment in hierarchy). If its value is not in the child segment influ-
ence space; we mark it as candidate for being part of the current segment;
therefore only vertices with delta value greater than 0 can be candidates if
all the conditions are accomplished, and as consequence only a portion of
the vertices of the mesh are checked per segment.

The region-growing method marks a vertex for an specific segment as
a candidate; therefore when all the segments are computed, we will have a
list of segments for each vertex vi, being vi a candidate vertex to be part of
the influence space of a segment sj.

Belonging test.

As we can see in fig. 3.5, because of the nature of the δ function, some
vertex that are not part of a particular segment are marked as candidates;
and therefore a discrimination of the segments in a candidate vertex vi is
needed. We apply the following test to select the segment sj in the segment
list Ls for each vertex vi:

• For each segment sj in the segments list Ls, we compute the angle θij
between the weighted normal npi (the mean value of the sum of the
normal of the vertex and its 1− connected neighbors) and the vector
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(a) Vertices of the right hip segment. (b) Right hip influence space(red color).

Figure 3.5: Candidate vertices of the right hip segment.

~sjvi (the vector that had the shortest distance dij from a segment sj
to the vertex vi)

• The segments with an angle θij > 90 between npi and ~sjvi are dis-
carded.

• End nodes cannot be discarded by the anterior rule.

• We assign the vertex vi to the segment sj with the lowest distance
dij, measured from the segment to the vertex.

This simple set of rules allow us to apply our algorithm in meshes that are
not in the ideal T-Pose, as can be seen in fig 3.7 it can be applied to rigged
meshes with arbitrary poses.

Region merge.

As is shown in fig. 3.6(a), the vertex assignation with our region-grow
algorithm and the belonging test can create “false positives” in meshes
with arbitrary poses. This problem is caused due to the orientation of
the pondered normal of some vertices with the vector ~sjvi, and it depends
basically of the face orientation in some vertices. We solve this problem
using region-merging. Our region-merging method creates for each region
sj(corresponding to a segment), a list with subsets of vertices connected;
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(a) False positives in a segmented mesh. (b) Segmented mesh after merge region.

Figure 3.6: Comparative between the same mesh before and after apply the
merge region procedure.

we basically create subsets of vertices interconnected in a segment region.
The largest subset in the list will be the definitive set for the computed
segment region sj, the remaining subsets will be merged each one with its
largest neighbor region (the region that had the highest number of vertices
connected with the analyzed subset).

The complexity of our segmentation method is O(Sn2), being n the
number of vertices in a 3D mesh, and S the number of segments created
from a skeleton, the O complexity analysis of our method is included in
section 3.2.

Algorithm 3.2.4 Watershed based segmentation algorithm.

1: function getInitialSeed()(inputMesh) Selects a vertex iV tx from the input mesh,
to be the initial seed for the region grow algorithm.

2: end function
3: for i = 0→ nSgt do
4: RegionGrow(iV tx)
5: end for
6: for i = 0→ nV tx do
7: V ertexBelongTest(V txi)
8: end for
9: RegionMerge(ouputMesh)
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(a) T-Pose. (b) Pose A. (c) Pose. B

Figure 3.7: Segmentation in meshes with different poses.

Complexity analysis of the segmentation algorithm.

The analysis of the complexity O of the segmentation algorithm 3.2.4, based
in our code implementation is:∑S

i=1 a1inv · a2inv+ Region Grow.∑n
j=1(a3jvjs+ a4jvjs) + nvS+∑m
k=1(vka5knv) + a6nvS+

Vertex belong test.

nv +
∑s

l=1(nva7l · a8lnv + a9lnv) Region merge.

where 0 5 a1 . . . a9 5 1 are constants, nv is the total number of vertex
in a 3D rigged mesh, and S is the total number of segments produced by
the skeleton bounded to the mesh.
The simplification of this formula taking some of the constants a1 . . . a9 as
1 is:

n 2vS+ Region Grow.

3nvS +mn2
v + a6nvS+ Vertex belong test.

nv + n2
vS + nvS = Region merge.

2n2
vS + n2

v + Snv(4 + a6) + nv =
2(S + 1)n2

v + nv(S(4 + a6) + 1) =
n2
vS + nvS(b+ 1

s
) =

n2
vS

Therefore, the complexity of our segmentation algorithm is O(Sn2).
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3.3 Results.

Algorithms 3.2.1 and 3.2.2 are similar and therefore the output will be
similar. In polygonal meshes that are in T pose and all its vertices are
convex the output will be practically the same (fig. 3.3). The differences
rises when a polygon mesh is in an arbitrary pose. When a polygon mesh
is in an arbitrary pose, the complexity of the problem is greater; therefore
the need to know if the line connecting a vertex with a link or a joint is more
transcendent to know which joint or link is closest to the vertex. Results
in both algorithms depend on three factors: the correct position of the
skeleton within the mesh, the pose and the convexity of the target mesh.
The correct position of a skeleton means that all the links and joints of an
animation skeleton must be within the mesh. If any joint or link is outside
the mesh the results are not correct; and the vertices will be assigned to
another joint or link (the assignation will be different depending on which
kind of segmentation algorithm we are using) because of the input skeleton’s
position (fig. 3.8.). Although this particular situation is minimized with the
post process in algorithm 3.2.2 there are some cases that cannot be solved if
the input skeleton is not properly assigned. Algorithm 3.2.4 is the one that

(a) (b) (c) (d)

Figure 3.8: Comparative of algorithms 3.2.1 and 3.2.2. a and c, joints
correctly positioned inside the mesh; b and d, joints wrongly positioned(link
outside).

had better results in diverse situations, it can manage rigged-meshes with
arbitrary poses, as well as rigged meshes in T-Pose or even meshes (with
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its respective bound skeleton) that are not human-like as can be seen in fig.
3.11 ,where algorithm 3.2.4 is applied to 3D meshes that aren’t human-like.
algorithm 3.2.4 is also dependent of the skeleton position to have the best
output, but their output quality is better than algorithm 3.2.2 because of its
set of rules and the region merge post-process. The fact that it works solely
with vertices of the rigged-mesh makes it a more flexible solution than
algorithm 3.2.2, because it can manage meshes with any genus(not only
closed meshes) and it can be easy adapted to rigged meshes with a single
skeleton and multiple meshes(sub meshes, fig. 3.9). Their processing times
are usually lower than algorithm 3.2.2 because it’s based on the number of
vertices instead of the number of voxels in the space; algorithm 3.2.2 can
have low processing times if the space is voxelized at low resolution, but at
expense of a lack of quality in the output segmentation.

(a) (b) (c)

Figure 3.9: Segmentation applied over a multi-mesh character.

Limitations.

The algorithm 3.2.4 is the most flexible of the three algorithms, because it
can manage an arbitrary pose. Algorithm 3.2.1 is the simpler one and is not
dependent of the voxelization of the input mesh. Algorithm 3.2.2 without
the post process part will give us poorer results in parts of the mesh that
will be no problem in the algorithm 3.2.1 as can be seen in the little finger
(fig.3.8 d) that is assigned to the link instead of the wrist joint (algorithm
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3.2.2 assigns a vertex to the link of joint that had the shortest solid 3D line
between each other). The errors in the assignation of vertices in algorithm
3.2.2 had a close relationship with the voxelization of the input mesh. The
density or “resolution” of our voxelized mesh varies inversely in relation of
the voxel size; therefore we can improve the results of the algorithm 3.2.2 by
increasing the density of our voxelized space at exchange of computing time.

Density is also an influential factor at the time to convert the voxelized
mesh to from a “voxelized surface” to a “voxelized solid”. As can be seen
in fig. 3.12, the step to transform a voxelized surface into a voxelized solid
has had errors and the fingers of the left hand have been left as a hollow
surface because of the voxelized space density. As a comparison, if we take
the results over a mesh on T pose as the one in fig.3.3, and the output of the
algorithm3.2.1 as the ideal case; the algorithm 3.2.2 without post process
produces an error of 153 over 15576 (0.982 %) wrongly assigned vertices
with a voxel size of 0.49 % of the total height of the mesh.
The post process in algorithm 3.2.2 is necessary because of the multiple er-
rors generated with the voxelization process. If post process is introduced,
the output in the case of fig.3.3 has an error number that goes from 153
to 43 wrongly assigned vertices (giving us a 0.27603% error over the ideal
case). If we check fig. 3.4 a and b, we can verify that almost all the wrongly
assigned vertices are in the eye balls, specifically in the right eye ball (the
eye lashes that are a particular non convex area); with only one in the clav-
icle area giving us a more than acceptable result.

The results presented have been made with a hLevel parameter of one,
the hLevel controls the deep level (up, and down) of search over the siblings
of the vertex segment assigned, we suggest a value of hLevel between 1 or
2. Going deeper into the tree hierarchy can cause the opposite effect and
assign a vertex to the nearest link; instead of making the assignation to
the nearest link with a solid line between the vertex and the skeleton (an
undesired case that happen in meshes with an arbitrary pose).

Algorithm 3.2.4 has some problems related to the post-process region-
merge. In input meshes with low density of vertices (low resolution), a
sub-region can be incorrectly assigned because of the low amount of data.
The low resolution combined with the set of rules can produce isolated sub-
regions of correctly assigned vertices that will be surrounded with another
correctly assigned vertices. Therefore, when the region merge algorithm de-
tects this sub-regions, they are deleted and assigned to the neighbor region
that had more vertices in common. Since algorithm 3.2.4 uses Euclidean
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(a) Segmentation algorithm. (b) Voxelized segmentation algorithm.

Figure 3.10: Vertices wrongly assigned in segmentation algorithms 3.2.1 and
3.2.2. Red edges highlights the wrongly assigned areas.

distances to measure the distance from a vertex to a segment, the position
of the logic skeleton had a great influence over the output segmentation. In
some cases it can produce false positives because the assignation depends
on the shortest Euclidean distance, instead of having a skeleton mapping
function over the mesh that could give us better results. Because of the

(a) (b) (c) (d)

Figure 3.11: Watershed segmentation algorithm applied over meshes with
different shapes and number of joints in their skeletons.

limitations of algorithms 3.2.1 and 3.2.2; we suggest to apply algorithm
3.2.4 for an input rigged-mesh in any pose. Algorithm 3.2.2 can handle a
mesh in an arbitrary position but is limited to closed meshes, depending on
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the voxelization space density, and it is common that some vertices are not
assigned properly. Although algorithm 3.2.2 had a post process to correct
wrongly assigned vertices, some cases cannot be corrected and had to be
properly assigned by hand. Algorithm 3.2.1 had good results with meses in
T-Pose, but cannot manage arbitrary poses; it is also entirely geometric as
algorithm 3.2.4 but their results are only comparable to algorithm 3.2.4 in
that specific case.

(a) (b) (c) (d)

Figure 3.12: Uncompleted filling in a hollow mesh a and b, generates a
connection line with a null voxel.
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Chapter 4

Skinning.

Skinning is the process of changing the position of the vertex in a 3D object
(usually a polygon mesh) in relation to the position of a animation skele-
ton (or logic skeleton). The skeleton scheme has the main advantage that
it has no requirement specificity for each vertex on how to move, therefore
the vertex movements are the result of an underlying skeleton movements.
Only vertex associated to a specific link (or bone) will be affected by the
bone’s change of orientation or position (that is the reason why skinning
is often related with skeleton-drive animation; although skinning methods
based on cages does not depend directly on a skeleton). Skinning is used in
fields related to computer animation: such as animation films, video games,
and also in medical applications as a presentation tool. There is a great
variety of methods to skinning a character (or 3D object); this methods
can be classified in one of the next categories:

Linear Blend Skinning (LBS) or Skeleton Subspace Deformation
(SSD).

In this deformation method, each vertex deformation (change of position) is
the product of the sum of each joint in the skeleton multiplied by a weight.
This technique is known in the literature by the name of Skeleton Subspace
Deformation (SSD)[24], Linear Blend Skinning (LBS), Enveloping or Ver-
tex Blending [11]. It has not been published properly, but it is widely used
in video games and films since 1998 [23]. In LBS the vertices positions pi
are computed by a linear combination of rigid transformations (rotations
and translations) of the influence joints jk multiplied by a weight wik (where
j is the vertex number and i is the skeleton’s joint number). If a vertex
has a weight wj2 = 0, this means that the joint 2 has no influence over
the vertex j. It is desirable that the set of weights wik for each vertex is
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normalized (
∑n

k wik = 1); if it’s not normalized, the possible rotations can
produce serious artifacts related to magnifications of one of the joints jk
rigid transformations.

p′i =
∑

wikMδkMLkpi

A detailed discussion about the LBS will be elaborated in section 4.4. The
main advantages of the LBS algorithm is its simple and efficient compu-
tation. This algorithm is used natively in professional animation software
(such as Autodesk Maya, where it is called smooth skinning); but as it’s
known, it suffers from artifacts when some rotations are made by the in-
fluence joints, leading to the artifacts: “collapsing elbow” [24] and “candy
wrapper” [11]. This well-known artifacts cannot be prevented by any means
by a user painting the weights in the target mesh (usually the weight distri-
bution is “painted” or assigned by an artist to achieve the desired effects.
Automatic software fills the weighs in with an initial approximation). Since
the artifacts are inherent to the LBS deformation scheme, an important
number of works have been published to solve this problem; this methods
can be categorized by the way they compute the influence weights for the
LBS algorithm:

• Example based: The number of works developed within this cat-
egory make it a populated one; in this category the most relevant
works are: ([24],[46],[42],[14],[28],[27],[29]). In all the cited methods,
the main idea is to compute the weights of a 3D mesh using a set of
examples (a set of 3D meshes in different poses). New poses (poses
that are not in the examples) will be the result of the interpolation
scheme to compute the vertices position on the target mesh. The
approach used in PSD, is to solve the skinning problem as an inter-
polation one [24]; they take the LBS main equation and substituted
it by a radial basis equation system, which is similar in essence to
LBS because it’s also a linear combination; but PSD is a linear com-
bination of nonlinear functions of the vertex’s distance (a Gaussian
radial basis function).
The method known as MWE [46] is an extension of the LBS algo-
rithm; in this method instead of having one weight per rigid transfor-
mation in the skinning’s main equation, a weight is assigned to each
element (rows and columns) of the rigid transformation matrix (the
matrix obtained by the product of the MδkMLk matrices). The main
advantage of having a weight for each element of the transformation
matrix is that the influence of the weights is not limited only to the
rigid transformation as a single operation; but each part of the rigid
transformation can be assigned with a different influence weight to
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achieve the desired deformation. The weights values are computed by
a minimum square lineal system using a set of input poses as defor-
mation examples. A similar approach to MWE is [28], where a set
of input meshes and skeletons in different poses are called examples.
The examples can or cannot represent a realistic pose; the objective of
this examples is being a tool to define the degrees of freedom of each
influence joint, and for every vertex in the target mesh to find their
influence joints. This is done by solving a bilinear minimum square
system to find the desired parameters. This method is an extension of
LBS with the particularity that new joints are added to the original
skeleton. This new joints are created to allow new deformations to
the target mesh; the new joints are added automatically to the tar-
get skeleton, but users are allowed to modify the final skeleton. A
more recent approach is the work described in [14]. The main idea
of this work is to use proxy bones to compute the weights of the tar-
get mesh. The proxy bones are a division of the 3D mesh that are
created through a set of meshes; this meshes are the target model in
different poses. The division of the target mesh is made by grouping
a set of triangles that has the same rotation sequence within a time
line from a starting position. Once the target mesh has been divided
in influence areas, influence areas are assigned for each vertex. Influ-
ence areas had the same function of the skeleton’s links (no skeleton is
defined in this method; and the influence areas are used to create an
underlying skeleton). The joint’s weights are computed by using two
methods of minimum squares; for poses defined within the example
meshes TSVD is used; otherwise NNSL is the chosen method.

• Function based: This methods had two modalities:

1. Based on compute automatically the weights of the LBS.

2. Based on replacing partially or completely the blending method
(substituting the rigid transformation matrix with a different
rigid transformation tool), or adding a correcting method for
the deformation achieved with the LBS.

In the first category we found [49]; its main approach uses a non-linear
model to compute the weights of the LBS. The computation of the
weights is calculated using a polynomial function that is based on a
quantity called influence ratio r. The ratio r is computed using the
angles between the skeleton’s joints in their initial pose and a vertex
point p; r needs the arbitrary constant α to be defined by the user.
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Then r is the argument of a weight distribution function(the polyno-
mial W (r) =

∑d
i=0 air

i) that is used to compute the value of a weight
wji of the vertex pj in the joint ji. In [3], a function based on heat
diffusion (−∆wi +Hwi = Hpi) is used to compute the weights of the
LBS algorithm; where ∆ is the Laplacian of a discrete surface, pi is
a vector where the element pjj = 1(rigid skinning) if the nearest bone

to vertex j is i and pjj = 0 otherwise. H is a diagonal matrix which
will have in Hjj the closest weight contribution to the vertex j.
One of the latest methods to compute weights automatically is [13],
where the weights are computed by using a Laplacian energy function
subject to an upper and lower bound constraint minimizer. Solved
through a Finite Element Method (FEM) where the weights wj are
the elements to be minimized and computed following a set of desir-
able properties; this work is relevant in particular due to its general
approach to the problem. The weights are values that depend of the
elements called handlers; the handlers can be the elements of a cage
(in 2D or 3D) or the joints in a skeleton. Therefore it can be applied
to images or skinning in 3D cage-based or skeleton-driven anima-
tion. The same authors later proposed a method in [12] where new
weights are appended to the existing ones adding weights generated
with isotropic B-spilne functions in weight space centered at some seed
locations. The seeds are spread using a discrete multi-dimensional ver-
sion of optimized farthest points, improving the deformation behavior
of the models where the method is applied; specially the ones with
small number of original weights.

In our second category we find methods like [23], where we find a
change in the interpolation method; from LBS to spherical blend
skinning (SBS). SBS uses quaternions to blend the final position
of a deformed vertex; all the matrix in the LBS are changed to its
equivalent in quaternions. For each vertex influenced by the set of
joints j1, ..., jn a rotation center rc is computed; the rotation matrix
defined as Q is used in quaternion linear interpolation (QLERP)
between multiple quaternions (which interpolate the rotation part).
The used formula is: v′ = Q(v−rc)+

∑n
i=1wiCjirc; where the matrix

Cj is the Matrix used in the LBS algorithm. Inspecting the formula
used in SBS is easy to see why SBS is slower than LBS; basically
It’s the addition of two position vectors: the vector obtained with the
LBS method applied to rc(computed with a based least squares op-
timization method SVD), plus the position vector from the QLERP
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applied to the vertex in a local reference frame defined by rc.
A more sophisticated approach is introduced by the author of [23]
in [21], where dual quaternions are used to solve in an efficient way
the well-known problems of LBS. Dual quaternions are quaternions
whose elements are dual numbers (q̂ = ŵ+ix̂+jŷ+kẑ). Dual numbers
are similar to complex numbers (â = a0+εaε) with the property ε2 = 0
and a complex numbers analogous conjugation. Dual quaternions
had a defined set of rules and algebra (that is similar to conventional
quaternions). The advantage of using dual quaternions as interpola-
tion tool is the possibility of perform interpolations in a simplified,
elegant and efficient way (38% slower than LBS). The interpolation
methods in dual quaternions are based on their quaternions coun-
terparts, without the problem of solving a different rotation center
for each vertex (dual quaternions can also represent 3D translations
that are interpreted geometrically as screw motion). Because of the
equivalence of operations between quaternions and dual quaternions, a
version of QLERP for dual quaternions is made (called Dual quater-
nion linear blending DLB ) DBL(w; q̂1, ..., q̂n) = w1q̂1+...+wnq̂n

‖w1q̂1+...+wnq̂n‖ . One
problem with DLB is that its interpolation is not linear; and could, in
the most extreme cases, produce a difference of 8.15 degrees and a 15
% of the translation with the linear interpolation of dual quaternions
(ScLERP). If a more exact approximation is needed, the authors
have proposed an algorithm that can be controlled by a precision pa-
rameter(in animation such precision is not needed) called Dual quater-
nion iterative blending DIB. Interpolation with SBS and DQ elimi-
nates the candy wrapper artifact and produces better results than the
LBS algorithm. In [50], the candy wrapper artifact is corrected by
computing an additional weight δαi per vertex; based on the angles in
animation at binding time. δαi is used to compute a rotation matrix
(restricted to the X canonical axis in the paper) that is multiplied
prior to Mδk in the LBS equation; also an operation over the ver-
tices to compensate the collapsing joint is introduced. This operation
consists in choosing a collapsing joint; then the vertices affected by
this particular joint will be re-computed by a stretch operation that
is basically a vector length compensation from the chosen joint to the
affected vertex. This is done by taking the length of the deformed
vertex as the base; then an extra length is added based on the dis-
tances and weights from the influence joints to the deformed vertex.
One of the methods that adds a post processing to the LBS is [39]
which adds a volume correction stage after the skinning deformation
of a target mesh. The volume correction is treated as a minimization
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problem of a correction vector u that is computed using Lagrange
multipliers. The volume change of a mesh after its deformation is
defined as ∆V = V (p)− V (p̄) where p is the surface of the deformed
model and p̄ is the original one. The Lagrange multiplier used to
solve this problem is: Λ(u, λ) = ‖u‖2 +λ(V (p+u)−V (p̄)), satisfying
∇Λ(u, λ) = 0. To achieve a uniform correction by the vector u the
process is divided in 3 steps (one step per coordinate axis). Where the
correction is made by a percentage of µn;n = 0, 1, 2 per axis. Along
with the set of weights µ, a set of weights γ are used (the γ set of
weights are applied directly to the u vector along with the weights µ
at the moment of solve the Lagrangian) to achieve a localized defor-
mation effect applied to each local frame joints. A similar method can
be found in [44], which is also a post process to correct the deformed
volume obtained with LBS. To compute the original mesh volume,
it uses signed tetrahedron volume created between each of the input
mesh triangles and the origin. The change of volume is computed
by: vol(P ′ + λ ◦ V = vol(P ) where P are the mesh vertices; V is a
displacement vector field and λ is a scale factor applied to V . The
last equation can be written as an implicit third grade equation where
the independent variable will be λ. The displacement vector field will
be computed (a blend of the vector computed between a vertex and
the joints) based on a δ function. By solving λ’s value, the correc-
tion of volume is performed over the deformed mesh. This method
uses a set of new weights S to control the correction in a localized
level. S is a set of weights multiplied to each of the vectors in V
(a weight si is defined for a vertex pi) to achieve custom effects like
muscle bulging. The set S can be painted by an artist, or can be
computed automatically. This method can only deal with a defor-
mation at time because the correction performed is global; therefore,
the correction must be applied for each joint one after the other in a
hierarchical order to preserve the volume locally. The two previous
methods share a feature that can be considered as a major drawback:
they cannot correct the candy wrapper artifact when the twist angle
is of exactly 180◦ and all their multipliers; this is due to both methods
were designed as a correction stage, but when the twist angle value
is 180◦, the trajectories of the points cannot be corrected because
some vertices will intersect in one point position inherent to its linear
behavior. Two of the latest methods are [20] and [22]. In [20], blend-
ing bones are used to approximate non-linear skinning with a set of
weights computed specifically to work with the extra blending bones.
The blending bones approximate the deformed output of a non-linear
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deformer using a precomputed deformer output. The precompute is
calculated as a minimization error optimization method, that takes
the desired deformer as an input in some key frames, and computes
the weights of the blend bones to minimize the error of the output
vertex’s position.

In [22], a different approach is taken by combining two deformers. For
twist rotations they use a quaternion based deformation solver, and
linear blend deformation is used for any other kind of deformation.
Each deformer had its own set of weights; the weights are computed
and optimized using examples for some representative poses using
bi-harmonic weights as base.

For an easier understanding and comparison of some of the main skin-
ning methods, we have created the comparative table 4.1.

Features [49] [3] [13] [21] [23] [50] [44] [39] [20] [22]

Non-linear Polynomial weight func.
√ √ √

× × × × × × ×
Heat-diffusion weight function. ×

√
× × × × × × × ×

Rigid skinning pre-proc. ×
√

× × × × × × × ×
Quaternion based. × × ×

√ √
× × ×

√
×

LBS Matrix modification. × × × × ×
√

× × × ×
Post-proc. Volume correction. × × × × × ×

√
× ×

√

Non-lin. aprox. using addnl. bones. × × × × × × ×
√

× ×
Two deformers combination. × × × × × × × ×

√
×

Table 4.1: Weight distribution and Skinning methods features compari-
son. Methods: RSDSD [49],Pinocchio[3], BBW[13],DQS/DIB [21],SBS
[23],Strech-it [50],VPMS [44],EVPSSC [39], ALNS [20], EIDCA [22]

Cage Based Skinning.

Cage based skinning is a general technique were the objects are deformed
by embedding them into an object that has a simpler structure. The con-
trol volume is usually defined using a structure with control points (the
cage). The spatial deformations are achieved through the manipulation of
control points because the vertices of the object to deform are mapped to
the control object vertices.
An influential work is: [18] called Free Form Deformation (FFD). It was
originally presented by Parry and Sederberg in 1986 as a general technique
where objects are deformed by warping a volume space where the objects
are embedded. FFD share some similarities with LBS; both use weights to
control the number of influence that had each of the control vertices in FFD
(the influence joints in LBS will be their equivalent) over the target’s mesh
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vertices. FFD uses a “cage” to control the deformation that is basically a
low resolution version of the target mesh. The deformation algorithm has 3
phases. First: the cage is sculpted and bound to the target mesh. Second:
the vertices of the cage are registered (an influence weight is computed)
based on the Euclidean distance from the cage vertices to the target mesh
vertices that can be modified manually by the user. Third: the deformation
phase, which is computed with the equation: Pdef =

∑n
k=1 u

P
k P

def
k . Where

Pdef is the deformed vertex, uPk is the weight for a specific control element

k and P def
k = PR

k Q
D
k and QD

k is the transformation matrix corresponding
to the local coordinated system of the control element k of the cage; PR

k is
the representation of the vertex P in the local coordinated system of the
control element k on the original cage R. The parameters such as uPk can
be edited to obtain better results and avoid artifacts; the technique was
implemented in Maya 2.0.
In [16] mean value coordinates (MVC) are applied to skinning using a
cage; this new interpolant was proposed by Floater [9] to generate smooth
coordinates for star-shaped polygons (later it was demonstrated that MVC
generates smooth coordinates for any simple polygon). The coordinates are

defined as the set of weight functions: wj =
tan[

αj−1
2

]+tan[
αj
2

]

‖pj−v‖ For a polygon

with vertex pj, a point inside this polygon can be expressed as the linear
combination of this weights. The 3D generalization consist in projecting
each triangle of a triangular mesh over a unit sphere; a set of weights wi per
triangle are computed creating a system that depends on the normalized
set of weights of all the triangles in the target mesh.
To apply MVC in skinning, the target mesh weights are precomputed be-
fore any deformation; then taken as a constant. The deformation is made by
computing any change in the position of the cage vertices as a linear combi-
nation. The main problems in MVC are: negative weights and absence of
locality. Negative weights can produce artifacts; when a vertex of the cage
is deformed, a close vertex of the target model is affected due to its negative
value. The absence of locality is present in this artifact because a vertex
of the cage had influence over a vertex of the target mesh that it supposed
not to have. This particular problem has been solved in [25]; where all the
weights values of the affine combination are positive. This is achieved by
projecting a sphere into the cage instead of projectting the cage into the
sphere. Computing the weights of PMVC is more time consuming than
MVC, and to accelerate this process GPU computing is used to compute
the cage weights. The result is a better framework to cage deformations
without the artifacts of the original MVC.
An application of the PMVC cage deformation is found in [17]; the cage
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based deformation is taken as a base and adapts it to skeleton driven skin-
ning. The basic idea is to apply a variation of LBS skinning to the cage in
what they call templates. The templates are specific behaviors to deform
the cage based on the part where the cage vertices had influence. The cage
vertices that are over a skeleton joints are deformed by the joint template;
the joint template deforms a vertex in a spherical way. The vertices that
are between two joints are deformed by the bone template; bone template
vertices are deformed in a cylindrical way with a skew parameter. Therefore
the cage is skinned, the skeleton operates over the cage, and the cage oper-
ates over the target mesh vertices using PMVC deformations. To obtain
custom deformation behavior; an additional pose needs to be defined. A
rigid transformation matrix is computed (and later multiplied to the tem-
plate matrix) to adjust the deformation of a cage to the desired one. An
automatic cage fitting is used to obtain the first approximation of an ar-
bitrary model cage; then a user manually modifies the model fitted cage
to obtain the desired deformation behavior. Harmonic Coordinates (HC
[7]) Harmonic coordinates are a cage based deformation method, based on
Laplace equation ∇2hi(p) = 0, p ∈ Int(C); where hi(p) is a weight func-
tion defined in a close cage C with vertices Ci; with

∑
i hi(p) = 1 for all

p ∈ C. To solve the weight values, a hierarchical finite difference solver is
used by applying a grid division of the space to allocate the cage; then the
cells of the grid are tagged by their neighborhood and intersection with the
cage. Then the weight values are computed to the vertices of the cage and
a Laplacian smoothing is performed by iteratively computeing the weight
value of the interior cells (points of the target mesh); until the average
change of a cell drops below a specific threshold. An elegant and sophis-
ticated cage based skinning deformation are the Green Coordinates (GC).
Based on the green theorem where a green function is a fundamental func-
tion of the Laplace equation (therefore is a harmonic function); the GC are
defined as η 7→ F (η;P ′) =

∑
i∈IV φi(η)v′i +

∑
j∈IT ψj(η)sjn(t′j). Where P ′

is the deformed cage, η is an interior point (a point of the target mesh), v′i
and t′j are the vertices and faces of P ′. One main feature in GC is shape
preservation, achieved by combining the vertices and the normals of the
cage faces; where the exact relation is coded in the coordinate functions φi,
ψj. The scalars sj are used to control the stretch that the faces tj undergo
as the cage is deformed. Another feature about GC is that it allows the
use of partial cages. Partial cages are cages that only had effect (or deform)
the vertices of the target mesh that are inside the partial cage, leaving the
exterior vertices with a smooth transition of the deformation of the partial
cage. As PMVC and HC, GC are computed once and then stored to
compute the deformation at interactive levels.
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4.1 Segmentation and its application to

skinning.

One of the main applications of the segmentation algorithms described in
section 3 is to generate weights automatically for the LBS skinning algo-
rithm. The weights for the LBS algorithm can be generated by different
approaches such as ones mentioned in section 4. We use our segmentation
algorithm as a base to compute the weights values. The main advantage of
generating weights based on the segmentation of an input mesh is that we
have identified the main influence joint for each vertex in a mesh, even if
that mesh is in an arbitrary pose. Having assigned the vertex to a specific
joint(the base of a segment) allows us to generate weights in a hierarchical
way, involving only the joints that were directly related to the main joint;
instead of distributing the weights with a geometric method (the common
approach), where the joint’s influence is calculated using their distance to
a vertex. As an example, we can see that Autodesk Maya’s automatic
weight algorithm generates artifacts because, apparently, the weights are
calculated using the measured euclidean distance from a sphere centered in
a joint to a vertex within a specific radio,

(a) Autodesk Maya automatic weight. (b) Segmentation based automatic
weight.

Figure 4.1: Artifacts generated in an animation frame of a mesh due to a
improper weight assignation by the Autodesk Maya automatic weight assig-
nation algorithm.

creating an artifact that is the direct result of an improper weight as-
signment caused by the proximity of joints (an example can be seen in the
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artifact generated on feet of the model in figure 4.1).

4.2 Segmentation based weight assign

algorithm.

Our weight assigning algorithm is based on the segmentation algorithms
described in chapter 3. For each vertex vi we store in a data structure the
main influence joint jk, then using a metric distance (it can be euclidean,
geodesic, or something else), the weight for the main joint an its “siblings”
are computed based on a chosen distribution function wik = F (dik). The
term siblings is used as a reference to the child nodes for the parent node on
the hierarchy tree within a logic skeleton, the equivalence between a logic
skelton and its hierarchy tree is showed in figure 4.2. As an example: if the

(a)

Figure 4.2: Equivalence between a logic skeleton and a n-ary hierarchy tree.

hierarchy hvi of the skinning weight assigning algorithm is 0; the algorithm
will be applied only on the joint that is assigned as the main influence
joint for each vertex vi. If hvi = 1, the weight assigning algorithm will

67



be applied, if possible, over the direct child and parent nodes of the main
influence joint. In the same fashion, if hvi = n, the weight algorithm will
be applied iteratively over the sibling nodes of the main influence node.

Algorithm 4.2.1 Automatic weight assigning algorithm.

1: for x = 0→ nV tx do . where nV tx is the total number of vertices in a mesh.
2: cV rt← V ert(x) . current vertex in the loop.
3: pnt← GetPos(cV ert) . current vertex’s position in the space.
4: mNod← GetMnJnt(cV ert)
5: cmpStWght(dstbFn, dstFn,mNod, pnt, cV rt)
6: for y = 0→ nhrchy do . where nhrchy is the number of levels up and down in

hierarchy.
7: pNod← GetPrntNod(mNod, y) . gets the parent node of mNod in the

upper level y.
8: ndLst← GetChlds(mNod, y) . gets the children nodes of mNod in the

lower level y.
9: pushLst(ndLst, pNod)

10: szL← SizeLst(ndLst)
11: for z = 0→ szL do
12: cNod← getElmLst(ndLst, z)
13: cmpStWght(dstbFn, dstFn, cNod, pnt, cV rt)
14: end for
15: end for
16: end for

function cmpStWght(dstbFn, dstFn, nod, pnt, vrt)
dElm = dstFn(pnt, nod)
wght = dstbFn(dElm)
setWeight(wght, vrt, nod)

end function
The function cmpStWght computes and stores the weight value for a specific vertex;
using dstFn as the function that calculates the distance from the vertex vert to a
joint nod. Finally the weight is calculated by the distribution function dstbFn and it
is stored into a data structure.

4.3 Distribution Function and Distance

function.

In general, the algorithms that calculates automatically weights for the LBS
had two components:

1. Distance function or DstF . A function that calculates a value. This
value can have a direct or indirect relation with a kind of distance
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from a vertex to the main influence joint (and consequently the main
influence link).

2. Distribution Function or DtbF . This function takes a set of values,
and maps it to a range between 0 and 1. Its output will be the weights
assigned to a vertex for each joint of the character. If the sum of the
weight values is either more or less than 1 the produced deformation
will have artifacts depending on the influence of each joint.

The DstF and DtbF generates weights that will produce rotations with
general behavior, because are applied to all the parts of the body indis-
tinctly. The works made by [39] show that effects can be added by com-
puting the weights with a distinct distribution function than other parts of
the mesh, using a method (like assigning manually the distribution function
to a set of vertices or using precomputed templates) that will modify the
behavior of the vertices where the distribution function was applied.

Distance function.

The distance function (DstF ) is important because its output will be used
directly by the distribution function. Therefore, a function that calculates
the Euclidean distance will give us a different output than other one that
uses a geodesic distance. We can find an example of an indirect DstF in
[49] instead of using some kind of measure they compute r, which is an
influence ratio that involves the angles between the main influence links of
a vertex and the vector formed by the vertex and the main influence joint.
Therefore r has an inverse proportional relation with the distance from the
influence joint to the vertex. In our particular case, we use the δ function
described in 3.1 as DstF because its output is a normalized measurement
based on distance of the projection of the vertex over the link; instead of
the euclidean distance from the vertex to a joint, that depends on the shape
of the input mesh (fig. 4.3).

Distribution Function.

The distribution function (DtbF ) is the most important part in the weight
calculation for the LBS algorithm; the deformation behavior of a mesh
depends entirely on the chosen distribution function. Any function can be
used as distribution function, but the quality of the output deformation
will depend on this function. In [49] their DtbF is: W (r), where r is the
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(a)

Figure 4.3: Comparative between distances. a) euclidean distance. b) pro-
jection over link distance.

product of an indirect DstF . The distribution function W (r) = −6.4r5 +
16r4 − 14.8r3 + 6.2r2 is a polynomial function of fifth degree to ensure
smoothness, continuity and symmetry. This equation was calculated by
a set of linear equations that satisfy a set of constraints. In [3], a heat

equilibrium equation is used as DtbF ; ∂wi

∂t
= ∆wi + H(pi − wi) = 0 where

∆ is the discrete surface Laplacian, pi is a segmentation vector and H is
a diagonal matrix of n × n degree(being n the number of vertexes in the
mesh), where Hjj is the heat contribution from the nearest bone to a specific
vertex. Hjj uses the Euclidean distance as DstF combined with a constant
value Hjj = c

d(j)2
if the shortest line segment from the vertex to the bone

is inside of the volume, Hjj = 0 If not, in [39] uses volumetric geodesic
distances as an initial value, like DstF and DtbF ; but within its method
of volume correction they use Gaussian and sinusoidal function as DtbF to
achieve effects on specific parts of a character’s body. We currently use the
most widely DtbF used; which is a Gaussian function defined as:

f(x) = ae−
(x−b)2

2c2 (4.1)

where:

• The constant a is usually one.

• The variable x is the output value from the distance function.

• Constant b will be the place where the value will have its greatest
value. Usually is in the center of the link where the vertex is assigned.
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• The inflexion point is controlled by the value of the constant c and
it is important because if we put a very low or a very high value, we
might have rotational continuity artifacts.

After assigning the weight value to the joints that had influence over a
vertex, we normalize the values. If the weight values are not normalized,
artifacts are produced in a vertex as result of the sum greater than one in
the weight values of the influence joints.

wTi =
n∑
j=0

wij

wNij =
wij
wTi

(4.2)

In our test over multiple meshes we had used a hierarchy number of
one. For most of the vertices this produce a three influence joints for each
vertex; which is the number of influence joints that is regularly used for the
vertices of a rigged character. The values used for the Gaussian function
are a = 1.3,b = 0.5 and c = 0.25, this parameter values have produced the
best results in our tests.

4.4 Segmentation based LBS Skinning.

Linear Blending Skinning is the most common skinning algorithm used in
industry nowadays. The technique was unpublished as it’s stated in [24],
but is commonly used as a base of more general or complex deformation
schemes. One of the main problems of this widely used deformation scheme
is the “candy wrapper” artifact. The candy wrapper artifact is generated
when a link rotates more than 60◦, and is at its max when the rotation
reaches over 180◦ in the axis that is aligned with the link direction (a twist
rotation). The candy wrapper, in plain words, is a loss of volume over the
mesh caused mainly because of an abrupt change of position between two
sets of vertices when this two sets are part of a neighborhood in a surface
(fig. 4.4 (c)). Specifically this artifact is generated when a joint rotates
over the axis that is closest to the direction of the link created by the joint
that rotates and the previous joint in the hierarchy. To fully understand
why the candy wrapper artifact is created, we will give a short explanation
of how the LBS scheme works.
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(a) Original mesh. (b) Rotation of 60◦ in the x
axis.

(c) Rotation of 180◦ in the y
axis.

Figure 4.4: Linear Blending Skinning deformation method.

LBS Skinning deformation scheme.

The LBS Skinning is basically the sum of a set of vectors for each vertex of
a polygonal mesh defined by the formula:

p′i =
∑

wikMδkMLkpi (4.3)

where wik is the weight defined per each joint k in the skeleton, and only
the joints that had influence over a vertex can be greater than zero. Mδk

is the rigid transformation matrix in world coordinates for a joint k in the
current position of the skeleton, and MLk is the rigid transformation matrix
used to transform from world coordinates to local coordinates for a joint k.
In detail, for each joint jk in a vertex pi, the operation is: MLkpi transforms,
from world coordinates, the point p to the local frame defined by the joint jk,
resulting in the position of pi in the local coordinates of jk. Then this local
position is transformed from the current frame position of the skeleton by
the multiplication of Mδk rigid transformation matrix, a common example
of a rigid transformation matrix will be Mδk = Mrk∗Mtk. In this particular
case, the rigid transformation is a rotation followed by a transformation.
The operation MδkMLkpi will give us as result a vector that is finally scaled
by the multiplication of the weight factor wik as can be seen in figure 4.5.

The LBS Skinning is a simple and low cost scheme of deformation in
floating point operations. It can produce good results for deformations in
the limbs of a character in skeleton driven animation, depending on the
weights assigned for each vertex. When a twist rotation is made, the mesh
tends to lose volume due to the addition of vectors with opposite direction
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Figure 4.5: Skinning process for a vertex pi. Up: Operations in local frames
of joints jk.Left: Unscaled position for each joint jk. Right: Result of the
sum of the scaled points for the influence joints jk.

in their jk local frame as is showed in fig. 4.6 (a). Because of the vertices
position, the reduction of the volume forms concentric squares that reduce
its area until it becomes zero when the weight wk from the joint that was
rotated and its predecessor wik−1 had approximately the same orientation.

The candy wrapper artifact can be compared with the action of having
two frames of rigid material with a set of threads attached to each one.
Therefore when one of the frames is rotated 180◦ in the axis that had
the same direction of the threads that joints the frames(linear rotation
trajectories); they intercept each other in the center fig. 4.6 b. This behavior
is created by the difference between the vectors added by the linear blend
in equation 4.3. The vectors with approximately the same weight value in
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(a) (b)

Figure 4.6: Candy wrapper artifact.

the influence link (the two most influential joints for the vertex vi) will be
the vertices that had the most volume lost. Because of this behavior, there
is no set of weights that can achieve a volumeless deformation in LBS ; the
angles that are multiples of 180 will produce the artifact due to the indirect
subtraction of vectors because of the rotation around an axis.

Our approach.

To eliminate the loss of volume in a twist rotation; we have identified that
an abrupt change of rotation angle in the joints which are part of the axis
in the closest link to a vertex is the main reason of the loss of volume in
LBS. Our approach is based on keeping the same twist rotation angle over
the link of all the influence joints in a vertex when a rotation is applied.
Although the angle will be the same for all the joints in a vertex; this will
progressively change depending on the position of the computed vertex and
its projection on the link segment (the closest link). This value will be
computed using the δ function.
In our modification over the LBS deformation scheme, we use the segmen-
tation algorithm; therefore, two consecutive joints make a segment(a link
in skeleton drive animation). A link had two joints: joint a is the vertex
with lowest hierarchy and b will be its “child” joint. In our rotation scheme
we apply the rotation over the link axis only to the vertices of that specific
segment; rotations over the joint a will be applied as normally in the LBS
algorithm. When a rotation is made over the joint b; we compute the ro-
tation angle progressively for each vertex on that specific segment. As can
be seen in fig. 4.7 when we make a 180◦ rotation over its link axis; the LBS
applies the deformation in two segments (fig. 4.7 a); but our deformation
scheme is applied only in one segment (fig. 4.7 b). We believe that this is
a more natural behavior if we take the way of how a human limb deforms
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itself.

(a) (b) (c) (d)

Figure 4.7: Deformation of a bar with the LBS (b), and our approach
(c),(d).

Simplest case.

To explain our modification to the LBS we start with the simplest case:
when a link had the same direction of a canonical axis, a link rotation over
its axis will be a rotation over the chosen axis (twist rotation). A twist
rotation over a link axis can be classified by the hierarchy that has the
rotating joint jk in the segment sj of a particular vertex vi (Fig. 4.8).

Figure 4.8: Elements involved in the deformation of the vertex vi, when a
twist rotation θ of the joint b is performed.

1. One of our segmentation algorithms: (3.2.1, 3.2.2, or 3.2.4) is applied
to the target mesh obtaining an additional weight (wδi); that will be
the value of the δ(vi) function defined in 3.1, for each vertex and its
assigned segment sj. This value will be stored to be used in step 4.
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2. For a vertex vi in the target mesh, all the joints that influence vi (the
weight wki for a joint jk that had influence in vi is greater than zero)
are sorted in a list by their hierarchy (the root joint j0 has hierarchy
0). Every time a child joint is added, its hierarchy will be increased
by one of its father hierarchy value.

3. If a rotation with an angle θi is performed over the joint b of the
segment assigned to vi, then θi is stored for computation. As we have

mentioned, a segment made by the joints: a and b (
−→
ba), is parallel to

the canonical axis in this case.

4. For a joint jk that is the joint a in the link defined as segment sj
assigned to a vertex vi. We will compute the rotation angle as: θ′i =
θiδ(vi), therefore if vi is closest to the joint a of the segment sj (in
this case the joint jk in hierarchy) the value will be near to 0, or will
be θ if its closer to jk+1. The rotation matrix Mjδk is computed with
θ′i; in the chain of rotations, Mj′δk will be multiplied by Mjk:

Mj′δk = (
k∏
i

Mji)Mjδk (4.4)

5. The joints with lower hierarchy than jk will need to be rotated in the
same angle of the assigned segmentation link axis; then the expression
for any joint with a hierarchy lower than jk will be:

M ′
δk−n = (

k−n∏
0

Mji

k∏
k−n+1

Mj′h)Mjδk (4.5)

Where
∏k−n+1

k Mj′h is an iterative product of rotation matrices; that
will had a rotation over the link axis of every joint with higher hi-
erarchy between the joint jk−n and jk. Therefore a joint with the
lowest hierarchy in the chain of rotations; will have its rotation ma-
trix multiplied by all the rotation matrices of all the joints with higher
hierarchy in a rotation over the link axis. Having jk as the joint with
the highest hierarchy in the chain of matrix multiplications.

6. Joints with higher hierarchy than jk will have to be also the same
rotation of the assigned segmentation link axis. In a similar way, as
the previous point; any joint with higher hierarchy than jk (jk+n) will
need to be multiplied by the negative angle of the link axis of each of
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the previous joints. The expression for a joint with higher hierarchy
than jk will be:

M ′
δk+n = (

k+n∏
0

Mji

k+n∏
k+1

Mj′h)Mjδk (4.6)

Where
∏k+n

k+1 Mj′h is an iterative product of rotation matrices that will
had the negative rotation over the link axis of every joint with lower
hierarchy between the joint jk + 1 and jk+n.

7. If a rotation over the parent segment of vi assigned segment is per-
formed; a rotation has been made over the joint ja of the segment and
it has to be taken into account, otherwise the candy-wrapper artifact
will be present again (fig 4.9). To prevent this situation, the chain
of rotations for influence joints with hierarchy lower than ja must be
multiplied by the rotation chain described in equation 4.5, but with
the rotation matrix Mjδk as Identity(θ = 0).

Figure 4.9: Candy-wrapper artifact in the upper part of a segment produced
by not apply our method for joints with hierarchy greater than jn.

In the original LBS; if we take the perpendicular plane of the segment
link axis and the link as its origin, we can see that the projected vectors
from the influenced joints will subtract each other depending of the weights
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assigned; producing a new position that moves towards the axis center
instead of rotating around it fig. 4.10. As it has been mentioned previously;
the idea of avoiding the loss of volume is based on having the same rotation
of the segmented link in all the influence joints when a rotation is performed.
But only if that rotation it over the segmented link of a vertex. As it can

(a)

Figure 4.10: Addition of LBS vectors from the influence joints, red, blue
and light green. In cyan the resultant vector in the LBS algorithm, in dark
green the vector of our approach.

be seen in 4.5; the rotation expressed by
∏k−n+1

k Mj′h product has to be
applied before any rotation from the skeleton space to world coordinates
is performed. If the product is applied after the original set of rotation
(
∏k−n

0 Mji ), volume loss artifacts are produced. Putting all the previous
cases and information in one expression we obtain:

p′i =
∑

wmM
′
δmMLmpi (4.7)

Where M ′
δm will be Mj′δk, M

′
δk−n or M ′

δk+n depending of the hierarchy of
the joint.

Our approach is similar to [50]; but with substantial differences. Our
approach has been created with a close relationship with our segmentation
algorithms. Since we use the δ function to obtain an additional weight,
it has the purpose of being the rotation amount of the total rotation over
a link for a vertex assigned to that segment. In [50] they use a similar
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parameter (δαi) that is based on torsion angles(limited to the X axis) at
binding and animation time. (δαi) in [50] is computed by ∆αi = α′ − αb,
where α′ =

∑n
i=0 wiαi, therefore

∆αi =
n∑
i=0

wiαi − αbi

where αi = αci − αbi , α
c
i is the torsion angle at a time t of the skeleton

animation; and αbi is the angle at binding time. Due to this particular way
of computing (δαi), the output deformation (as can be seen in 4.11) is not
as smooth as our method and it may produce some discontinuity artifacts
in the vertices that are over the rotated joint. This is a direct consequence
of the product with the weights wi in the computation of δαi; where wi will
had its higher values in the joints that are closest to the deformed vertex
vi. Adding to the differences between the method that is used to compute

(a)

Figure 4.11: The result of 180◦. rotation over the X axis with the Stretch
it deformation method (figure taken from [50])

the extra weight in both deformation schemes; we believe that the main
difference between our method and Stretch it [50] is the way the rotation
matrix is computed. In [50], the deformation of a vertex is computed by:

Vc =
n∑
i=1

wiMi,cMi,rM
−1
i,d Vd (4.8)

where

Mi,r =


1 0 0 0
0 cos(∆αi) − sin(∆αi) 0
0 sin(∆αi) cos(∆αi) 0
0 0 0 1
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Mi,c is the rigid transformation matrix that transforms from world coordi-
nates to local joint ji coordinate system; and M−1

i,d is the rigid transforma-
tion matrix that transform from the local coordinates of joint ji the vertex
Vd. As we can see in equation 4.8; the rotation matrix Mi,r is restricted
to a specific axis (the X axis) and its applied before any rotation is made.
The result is similar to our method; but with the difference that the mul-
tiplication of the matrix rotation matrix Mi,r is applied to any joint that
influences the target vertex vi without distinction. Therefore, the applied
extra rotation will introduce an additional rotation in the axis where Mi,r

is defined, creating an artifact if a precise angle of rotation is required.
Another restriction of having the same rotation matrix for every influence
joint in vi; is that the rotation compensation introduced by the matrix Mi,r

is only correct for the rotated joint jk. For joints with hierarchy k + n and
k − n with n > 1 the authors do not specify which is the procedure to
apply (as it’s documented in our method). Therefore, the compensation of
the rotated joint jk will affect the vertices that are close jk; and its area
of effect will be the links that had jk as one of its elements. Our approach
has a different approximation. Since we apply a different matrix depending
on the hierarchy level of the influence joints, we are able to affect only the
vertices that are over the link where jk is the the joint with the highest hi-
erarchy (we use a segmentation algorithm to identify the main link for each
vertex), creating a smoother and more natural way of deforming the mesh’s
vertices. Another important difference between our proposed method and
Stretch it is that we are not restricted to canonical axis only. In section
4.4 we detail a generalization of our method that allows us to successfully
deform limbs that are not aligned with the canonical axis.

General case.

The general case of our approach takes into account the possibility that a
limb of a virtual character is not aligned with the canonical axis; therefore
when a rotation over a limb is made the rotation had to be over the axis
made by link the joints a and b. In equation 4.7 we made the assumption
that the link formed by a and b is aligned with one of the axis; in the general
case we will take the axis made by the link and we will rotate around the
link the segmented vertices of the mesh. The rotation over an arbitrary link
can be done with quaternions or with their equivalent in matrix rotation
computed by Rodrigues rotation formula given by the next expression:

vR = v cos θ + (u× v) sin θ + u(u · v)(1− cos θ) (4.9)
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if we express the cross product (u× v) as the rotation matrix Mu×v:

Mu×v =


0 −u3 u2 0
u3 0 −u1 0
−u2 u1 0 0

0 0 0 0



v1

v2

v3

0


Rodrigues formula can be expressed as:

Ru = I +M2
u×(1− cos θ) +Mu× sin θ

therefore vR = Ruv.

When a rotation is applied in a link lk with an arbitrary position; we
use the next procedure to compute the rotation over a vertex.

1. We identify the nearest axis axk in orientation with lk.

2. The angle θ is extracted if a rotation over the axk exist.

3. If the angle between axk and lk is greater than 90◦; we take the
negative value of θ as the rotation angle using the negative of Mu×.

4. We apply equations 4.4 or 4.5 depending of the case. But Mj′k is
replaced with Ru with θ′i = θiδ(vi) as rotation angle; and ‖lk‖ as
u. Being lk the link of the segment where the influence joint jk is
assigned.

Volume preservation.

To know how much volume is lost when a rotation is made over a mesh
with our rotation scheme; we have made a set of rotations over a mesh.
The volume is computed using tetrahedral with negative areas; the result
is in the next table with their corresponding set of images. In all cases,
the set of weights for the deformation methods are the same. We apply 6
rotations over the joints j1 to j3 of the five joints in the bar mesh with an
initial volume of 32 units, excluding the end joints (j0 and j4) of the test.
The set of rotations are planned to show the behavior of every deformation
scheme; the results that are shown in table 4.2 are error percentages, where
ei = (V0−Vi)100

V0
. The rotations in sequence are:

1. 180◦ in the Y axis, joint j1.

2. 200◦ in the Y axis, joint j2.
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3. 120◦ in the Y axis, joint j3.

4. 90◦ in the X axis, joint j1.

5. 60◦ in the Z axis, joint j2.

6. 80◦ in the Z axis, joint j3.

Table 4.2: Comparative between output volumes from deformation methods
(error percentage).

Rotation # DualQuat LBS P. Method

1 0.0265625% 6.515625% 0.1084375%
2 0.6575% 12.236525% 0.2421875%
3 1.0221875% 16.5721875% 0.3034375%
4 0.9415625% 14 .9853125% 1.9740625%
5 0.6759375% 13.9378125% 2.71875%
6 0.8696875% 13.404375% 3.934375%

In table 4.2 as expected, the method that had lost volume the most is
LBS; followed by our method with DQ with the best perform of the three
methods. Figures 4.12 and 4.13 shows the surface areas were DQ and LBS
operate. The surface areas are each lower than the area were our method
operates. This is caused because of the weights values and their behaviour
within LBS and DQ. In LBS and DQ the set of weights operates directly
over a vertex; but in our method we have two sets of weights. The main
(the ones taken directly from LBS) will affect over all the rotations that are
not aligned with the segmented link axis. The second one is obtained from
the δ function (our DstF and DtbF ). If a behavior different than the lineal
one obtained through the δ function is desired; an output function must be
applied over the results δ.
One more difference between our method, LBS, and DQ is its area of action:
our method only operates in one segment, LBS and DQ operate in the
segments were the weights value is present. This is the main reason of the
difference in the affected surface area, but it is also the reason that our
method can manage degenerated cases such as rotations equal and greater
than 180◦ because of their progressive nature. As an example of this feature
we can see in LBS that if a rotation angle θ is greater than 180◦; θ will be
equivalent to the difference between θ and 360◦. In general, the rotation
angle θ in LBS will behave by the relation: θ′ = θ−360(| θ

180
|−| θ

360
|); in DQ

the rotation about 360◦ produce serious artifacts as is showed in [20]. Only
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(a) Org.
Mod.
Weights.

(b) Rot. 1 (c) Rot. 2 (d) Rot. 3 (e) Rot. 4 (f) Rot. 5 (g) Rot. 6

(h) DQ Rot. 6 Perspective.

Figure 4.12: Output volumes from deformation method: Dual Quaternions.

DIB (Dual Quaternion Iterative Blending) produces a correct output. In
our method this degenerated case is properly solved; because θ is changing
smoothly between vertex by the δ function instead of changing θ depending
on the weights values.
To test how stable is our deforming method, we have modified the bar
model. We had made two modifications: one varying down the total volume
of our bar and other increasing the volume. The same set of rotations have
been applied to this modified models; with the next output data:

As can be seen in 4.3 the variation between the two models are indicative
of a stable method. When the results of the set of rotations of the original
model (table 4.2) and the result of the output errors on the modified volume
models are compared; the output errors are similar.
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(a) Org.
Mod.
Weights.

(b) Rot. 1 (c) Rot. 2 (d) Rot. 3 (e) Rot. 4 (f) Rot. 5 (g) Rot. 6

(h) LBS Rot. 6 Perspective.

Figure 4.13: Output volumes from deformation method: Linear Blending
Skinning.

Table 4.3: Comparative between output errors from two models with different
volume magnitude.

Rotation # 20.8 units Model 72 units Model

1 0.09230765% 0.10833333%
2 0.26634615% 0.24222222%
3 0.34278846% 0.30347222%
4 1.96682692% 1.95611111%
5 2.67355765% 2.71450333%
6 3.89855769% 3.94291667%
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(a) Org.
Mod.
Weights.

(b) Rot. 1 (c) Rot. 2 (d) Rot. 3 (e) Rot. 4 (f) Rot. 5 (g) Rot. 6

(h) Our method; Rot. 6 Perspective.

Figure 4.14: Output volumes from deformation method: Angular Linear
Blending Skinning.

(a) 20.8 u Mod (b) 20.8 u Mod (c) 72 u Mod (d) 72 u Mod

Figure 4.15: Modified models comparison.
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Chapter 5

Application in Autodesk Maya.

In the development of the methods described in this document, we have
used the Autodesk Maya’s API; using C++ and MEL languages to imple-
ment them as a plug-in. As it’s described in the Maya API Guide http://

download.autodesk.com/global/docs/mayasdk2012/en_us/index.html,
we have written our plug-in as a set of commands that are loaded and ex-
ecuted within Autodesk Maya. This commands can be called using the
command interface of Autodesk Maya, or can be called defining a custom
button in Maya’s User Interface that executes the respective command (or
commands) with its arguments as a piece of code in the MEL script lan-
guage.

5.1 Pipeline and commands.

Each part of our pipeline that animates an arbitrary mesh has a specific
task associated, and each task or method has a command that performs
that specific task. To have control over the pipeline we have developed a
Finite-state machine, because each part of our pipeline can be considered
as a state. The current state of the mesh is stored as a Maya attribute
that is added to the mesh’s associated data file in the proprietary Maya file
format. The state of the Mesh is saved and loaded inside one of our classes
within our Maya plug-in project because it is stored as an attribute.

Skel Command.

The Skel command has been made to manage all the tasks that involve the
first stages of the creation of a skeleton driven 3D character.
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vox flag.

The first stage of our pipeline is to voxelize and fill a closed mesh, as it is
explained in section 2.1. The voxelization needs a voxel size, and the voxel
size we use is a relation between the size of the longest axis in the bounding
box that contains the 3D model, and the subdivision number n. The vox
flag voxelizes and fills 3D model when the Skel command is summoned and
the target mesh is selected in the Maya interface. If it’s specified, the sz
flag argument defines the number n that is used to compute the voxel size.
If sz is not specified, the default value of n will be 155.
Example: Skel -vox sz 101 .

thn flag.

Once the target mesh has been voxelized and filled, a geometric skeleton is
obtained through a thinning method (section 2.1); the flag we use in the
Skel summoning is thn, when the target mesh is selected. This flag takes
the result of the voxelization process as input, and it only will produce
a result if the voxelization was executed previously; Therefore the Finite-
state Machine needs to be in a specific state that will be achived only, if
the Skel -vox command has been applied previously.
Example: Skel -thn .

snd flag.

The snd flag allows the selection of end nodes (individually or the entire
set) for a geometric skeleton; this selection is made by the user. The argu-
ment of snd is an integer n that specifies if all the end nodes are going to
be registered in the same action, or if the selection will be made one limb
at a time.
The values of n are from [0, 4] and −1; where −1 means that the five end
nodes are going to be registered at the same time. Starting by the end node
that is going to be head, followed by the left hand, right hand, left foot and
right foot respectively. If n has a different value than −1, only an end node
is assigned, 0 for the head, 1 left hand, 2 right hand, 3 left foot and 4 right
foot. The snd flag needs to be applied after the thinning; the finite-state
machine will be change to the correct state until the five limbs are assigned.
A user interface window has been made to make easier the end node selec-
tion to the user (fig. 5.2).
Example: Skel -snd -1.
The snd flag applies a geometric skeleton refinement. This means that a
pruning over the branches of the geometric skeleton that does not belong
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(a) Target Mesh,the Armadillo Monster.

(b) Geometrical Skeleton.

Figure 5.1: Process of a target mesh in Maya, (b) voxelization and thinning.

to any of the selected branches is made; also, the root node adjust and a
skeleton smoothing (section 2.3) is performed. The result is a refined ge-
ometric skeleton such as the one showed in (fig. 5.3) for the case of the
Armadillo Monster.

scl flag.

The scl flag takes a template skeleton, and based on the length of the
geometric segments, the joints are scaled and distributed to the geometric
skeleton (section 2.4). During the execution of the Skel command with
the scl flag, an animation skeleton is created (fig.5.4) based on our logic
skeleton proxy data.
Example: Skel -scl.
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Figure 5.2: End node selection window

Figure 5.3: Refined Skeleton in Maya user interface.

ajM flag.

The ajM flag is useful to manually adjust the joints position of the auto-
matic adjusted skeleton; from an assigned node’s position to a different one
that can be a better choice to avoid artifacts in the animation stage. The
flag needs to be invoked with the target joint, and the desired geometric
node (represented in Maya by a cube) selected. As it can be seen in fig.
5.5, the position of the target joint will change to the node center.
Example: Skel -ajM.
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Figure 5.4: Adjusted animation Skeleton.

Figure 5.5: A joint manually adjusted, from one node to another.

anm flag.

The anm flag is a shortcut to the SmoothBindSkin command in Maya,
with the convenience that only the target mesh needs to be selected, instead
of selecting the root of the animation skeleton and the target mesh.

Ajc Command.

The Ajc command is created to contain all the methods that are related
to animation when the logic skeleton has been created. The application of
this command and its set of flags does not involve a finite-state machine to
give the user a more flexible environment.
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sGt flag.

The sGt flag executes the segmentation method 4 on a bound mesh; the
flag needs the bound logic skeleton selected to be executed. The argument
of the sGt is an integer n used to define which method of segmentation is
going to be applied to the target mesh. If n is 0 the simple segmentation
method (alg. 3.2.1) is applied, if n is 1 the voxelized segmentation method
(alg. 3.2.2) is executed, and finally if n is 2 algorithm 3.2.4 will be applied;
the default value of n is 0.
After applying one of the three segmentation methods to the target mesh,
the segmentation based weight assigning algorithm (sec. 4.2 is applied to
the mesh; the weights of the LBS skinning algorithm used in Maya are
replaced (using the Maya Skincluster handler) with the set of weights com-
puted by one of the segmentation methods.
Example: Ajc -sGt 1.

bSk flag.

The bSk flag is used to bind our deformation (skinning) method (sec. 4.4)
to a previously bound skeleton in Maya. This restriction is necessary to
avoid object inconsistency inside Maya. To implement a new deformation
method inside Maya a deformer object is developed (deformers are the
base class to develop a deformation scheme inside the Maya API [10]).

The deformer needs to be programmed inside a Maya plug-in; loaded
with the plug-in and added to the target mesh using the deformer-type nameDeformer

command in Maya. The type flag is used with a string argument that must
have the name of the class object of the desired deformer (in the command
the deformer’s class name is nameDeformer). If a smooth bind is applied
to a mesh, a LBS deformer is created by default; if the deformer com-
mand is invoked after the smooth binding, the new deformer object will be
attached to the output of the Maya’s LBS deformer. Therefore the output
of the target mesh geometry modified by the LBS will be the input to of
the new deformer.
The bSk flag takes the connections made to the LBS deformer as a base
to the joint objects inside Maya and reconnect them to the SkinDeformer
object (the deformer with our deform method), detaching and deleting the
Maya’s LBS deformer, to give the SkinDeformer object total control over
the target mesh geometry. The bSk flag has an integer n as the argument;
if n is 0 a Skindeformer will be created and attached to the target mesh.
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If n’s value is 1, the plug-in command will search in the target’s mesh hier-
archy of Maya objects if a SkinDeformer is attached to a LBS deformer,
and the unbound and bound of the SkinDeformer object process previ-
ously described will be executed.
Example: Ajc -bSk 1.

anm flag.

The anm flag had the purpose of loading an animation file into Maya using
the animCurves handler. Because of its simplicity and the amount of doc-
umentation available, the input format of the animation files we use is the
Biovision Hierarchy file format (BVH). Inside the command implementa-
tion, we have developed a proxy set of classes to represent a logic skeleton,
its animation related data and methods. The main advantages of having
an internal set of classes are flexibility and autonomy. As an example: if we
load a new animation format into our project; we only have to program a
class that loads the information of the new format into our internal skeleton
set of classes, without needing to change any of the internal functionality
of our classes already defined.
The template we use to create a humanoid logic skeleton, is a skeleton with
21 joints that represents the human body, 21 joints does not offer great
detail, but we believe it is the minimum number of joints needed to create
quality animations.
Animation Skeletons in the BVH are defined in the first part of the file, and
animation data (animation frames) in the second one. Having a definition
part in every BVH file has the advantage of defining an arbitrary number
of joints per file. At the same time it generates an incompatibility between
an already defined animation skeleton and a source animation file, because
the animation file can have a logic skeleton with a different number of joints
than the animation skeleton. To overcome this problem we programmed the
anm flag for the Ajc command; with the functionality of loading any logic
skeleton defined in an animation file and adjusting the animation data (the
skeleton’s set of rigid transformations that involves its joints), to the joints
of our logic skeleton template.
The Ajc command used with the flag anm, needs the file path of the BVH
animation file as an argument to be executed.
Example: Ajc -anm filePath.

The execution of the command with the defined flag will load an animation
into Maya and our project will be ready to be used.
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The adjustment between two different logic skeletons needs a more detailed
explanation than the one given in the description of the command; due to
the relevance of the tool we will give a detailed explanation of the adjust
process in the following section.

Adjust between two logic skeletons.

To adjust a source animation skeleton to a target skeleton we borrowed the
concept of segments used in section 2.5, and we group them based on their
hierarchy level. In this case, a segment is a linked set of joints and these
joints are a simple traversal from joint A to joint N, only joint A and
joint N can have a different number of children than one (cannot be flow
nodes). All the joints between the first and end joint will be linked to only
one joint (they only have a predecessor joint and a successor joint); and the
first and end joint can have more than one or zero children linked, but not
one child.
The creation of segments starts from a joint in a logic skeleton (joint A);
every time a joint with more than one children is found, a new set of seg-
ments are created (one segment per child) and the segment that was being
created is ended. Segments are classified by their hierarchical level. The
concept of hierarchy and segments are closely related; the hierarchy levels
are defined every time a joint with more than one child is found during the
creation of the segments. The hierarchy value will be increased by one over
the hierarchy level of the segment that was used in that moment. Therefore
all the segments from a specific level will share the same start element and
will end in an element with multiple children as successors (this element
will be the start node from a new hierarchy level), or in an element with
no children as successors (fig. 5.6). By grouping the segments by their hi-
erarchy, we automatically get a way of creating a correspondence between
two skeletons; this is because the joints with more than one child repre-
sents specific parts of the human skeleton such as: hips, chest, palms of
the hands, etc., and the segments will represent the limbs of a human, the
abdomen, the neck, fingers and body parts that are represented by a set of
links. Therefore when the segments are grouped by their hierarchy level, it
means that we are grouping together body parts and limbs that have the
same part of the body as its starting point (fig. 5.6).
To make a correct correspondence between two logic skeleton we have im-
posed a restriction: the two skeletons need to have the same orientation.
This means that the front of the skeletons, the rear, the upper and down
needs to be the same, otherwise it could produce artifacts. As an example,
imagine that if the front of skeleton A is the rear of skeleton B; then

94



E00

1
L
E
V
E
L

H

R
A
R
C
H
Y

E
I

2

E0

E4

E11 E20

E0 E0

E4 E4

E20 E20 E20 E20 E20

E11 E11 E11 E11 E11

E4

Figure 5.6: Segmented Logic Skeleton.

the left leg of skeleton A could be assigned to the right leg of skeleton
B as its corresponding segment. The assignment of the correspondence for
two segments of the same hierarchy level is made by a unit vector that has
the main orientation of the segment; the segment of skeleton A with the
same hierarchy level and with the closest orientation to a segment of skele-
ton B will be assigned as its correspondent segment. The correspondence
between two skeletons is used to load the animation from a source skeleton
(skeleton B) to a target skeleton (skeleton A).
Once a correspondence between two segments is established, a more refined
correspondence is needed, because the number of elements of each segments
can be different; as an example: if the segment that represents the left arm
of skeleton A had 5 elements, and the segment of the left arm of skeleton
B has 4 elements, the relationship is not direct between the two segments.
To solve this problem we compute the length of each segment and normal-
ize it; then a relationship of matching between elements is created. This
relationship will be established by assigning the elements with the closest
relative length between segments.
If the source segment (the segment from skeleton B) has more elements
than the target segment (skeleton A segment); then the rotation and
translation information of the target segment will be a combination of the
elements data for the correspondent joint. Therefore, first a map between
the elements of the skeleton B with the same normalized length of the el-
ements in skelton A will be made. Then logically there will be unmapped
elements of skeleton B to skelton A, the unmapped elements will be
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solved by combining their transformation information with the next ele-
ment of skeleton B, using its relative length from the previous element to
the next element as a factor that multiplies and blend all the intermediate
elements between a mapped element in skelton B and skeleton A. As
an example, from the figure 5.7, we can see that the element of skeleton
B with a length equal to 0.583 maps to an element in skeleton A, but
the element mapped in skeleton A will have combined the information
from two elements in skeleton B: the mapped and its predecessor, with a
factor of 0.6 for the element that has the correspondence and 0.4 from the
predecessor.
On the contrary if the source segments have fewer elements than the target
segment; the elements of the source segment will be assigned to the element
with the closest normalized length in the target segment. The elements in
the target segment that has not assigned a correspondence element will be
loaded with information equal to zero (zero rotation and translation). If the
two segments have the same number of elements a direct relationship will be
created. The result of this adjustment between logic skeletons is a method
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Figure 5.7: Correspondence between segments.

that is useful to load any BVH file without restriction of its number of
joints, that has the right orientation into our generated logic skeleton. As
it’s shown in fig. 5.8, not all the logic skeletons can have the same initial
pose defined. To solve this problem, we computed a set of rotations from
the initial pose of our target skeleton to the source skeleton’s initial pose.
We call this set of rotations over the skeleton: a rotation offset, and is added
to all the frames loaded into our target skeleton in Maya.
Once the offset is added to the set of translations and rotations of the target
skeleton, the results in an animated character are appropriated; but are also
dependent of the position of the joints within the target mesh. If joints’
positions of the target skeleton are refined by a human user, the results are
better than the ones that are taken from the automatic ones generated from
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the Skel -scl command; as an example in fig 5.9 (a) we show the effects
of a bad positioned joint within the armadillo monster mesh (the head is
assigned to the nose and an animation artifact in the target mesh is created
because of this bad choice); fig. 5.9 (c) shows the same animation with a
correct head joint position.
A correct correspondence between logic skeletons is dependent of the pose
of the target skeleton. The closest that the target skeleton pose is to the
source skeleton pose; the lower than an artifact will appear in the loaded
animation.

(a) Target Skeleton. (b) Source
Skeleton 1.

(c) Source Skeleton 2. (d) Source Skeleton 3.

(e) Trgt. Skel. 1
wrfrm.

(f) Trgt. Skel.
1.

(g) Trgt. Skel.
2 wrfrm.

(h) Trgt. Skel.
2.

(i) Trgt. Skel. 3
wrfrm.

(j) Trgt. Skel.
3.

Figure 5.8: Target Skeleton (a), and different Source skeletons (c-d), the
animations of each source skeleton adjusted to the target skeleton (e-j).
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(a) Target Skeleton with artifact (wireframe). (b) Target Skeleton with artifact (shaded).

(c) Target Skeleton without artifact (wireframe). (d) Target Skeleton without artifact (shaded).

Figure 5.9: Effects of the positions of the joints in the target skeleton when
loading an animation file.
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Chapter 6

Results, Future Work, and
Conclusions.

The main objective of this thesis was to create a method to animate a
character mesh without an animation rig, skeleton, or animation technique
associated. Our method has the intention of being a tool that can be used
to automatize or speed up the process made by a digital artist. Our target
users are people without previous experience or with minimum knowledge
about the topic, and experienced users who wants to save time on the rigging
process. We believe that we have succeed in general terms in this main
objective, but with certain limitations. Our method is restricted to human-
like closed meshes due to the difficult task that is rigging any arbitrary
mesh.

In this chapter we are going to show the results of each of the elements
involved in every stage of the proposed methods to create an animation
rig; a discussion about the drawbacks and advantages of the selected and
developed methods, a comparative with existing methods, and finally the
future work and the lines of research to improve and extend the capabilities
of the presented algorithms and methods.

As it has been mentioned in chapter 5, all the developed algorithms
are single thread and were coded in C++ as an Autodesk Maya c©plug-in;
the method’s invocation are through a Maya command within the Maya
framework. The Autodesk Maya version used in the development of this
thesis has ranged from the 8.5 64-bit up to Autodesk Maya 2013 64-bit
edition. The Operating systems used was Windows XP-64 bit with Visual
Studio 2008 C++ compiler and a Windows 7-64 bit with a Visual Studio
2010 C++ compiler. All the plug-in versions have been coded with the
64-bit platform option. The hardware used in all the test and screen shots
was an Intel COREi3-2310M at 2.10 GHz with 6 GB of DDR3 RAM and a
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NVIDIA Geforce GT-540M with 1 GB of dedicated video memory.

6.1 Voxelization, thinning, and Skeleton

adjust algorithms.

Voxelization and thinning algorithms are some of the most time consuming
part of a character rigging within our pipeline. As we had mentioned in
section 2.6, we have used as default voxel size an approximated of 0.65%
of the model’s height (we define the default value as the variable nV = 155
voxels length of the longest axis in the bounding box that surrounds the
target model mesh). The default voxel size was chosen based on tests with
different voxels sizes applied to three different meshes with: low(6, 488),
medium(15, 576) and high(172, 974) number of vertices respectively; 0.65%
was the size that give us the best results in terms of processing time and
space resolution to extract a geometric skeleton through the thinning pro-
cess, this is a common way of choosing the voxel size for methods that work
whit voxels [8]; due to the complexity to propose a clear set of rules to
determine the optimal voxel size that depends on the number of vertices
and other important features for the applied method. Table 6.1, graphs 6.1,
6.2, and 6.3 shows the results from the voxelization and thinning processing
times with different voxel resolutions; with nV ranging from 75 to 211.

(a) Processing times VS voxel resolution.(b) Processing times VS voxel resolution
VS voxel number.

Figure 6.1: Processing times of voxelization.

As is seen in graph 6.1, the processing times of the voxelization increase
along with the resolution in voxels, but the slope is not as pronounced
as the slope in the thinning process. The reason is that the voxelization
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(a) Processing times VS voxel resolution
VS voxel number.

(b) Processing times VS voxel resolution
nV VS voxel number.

Figure 6.2: Processing times of thinning process.

(a) Processing times VS voxel resolution.(b) Processing times VS voxel resolution
VS voxel number.

Figure 6.3: Processing times of Skeleton Adjust.

algorithm depends more on the vertex number than in the voxel resolution.
In the case of the thinning and the adjustment, they are dependent on
the voxel number due to the thinning algorithm nature of deleting voxels
iteratively from the surface of the voxelized model. The adjusting algorithm
creates voxel segments and traverse them to adjust the logic skeleton to the
extracted geometric skeleton; therefore, the processing times will grow along
with the number of voxels.
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Model Vxlztn.(sec.) Thn.(sec.) Vxl. Num Vxl. Res. Adj.(sec).

Low res. 1.4 0.18 77700 75 0.38
Low res. 1.73 0.33 139230 91 0.43
Low res. 1.9 0.69 256410 111 0.86
Low res. 2.06 1.23 422475 131 1.14
Low res. 2.31 2.58 687735 155 1.91
Low res. 2.34 3.81 999075 175 2.64
Low res. 2.38 4.71 1292688 191 3.37
Low res. 2.45 6.02 1755520 211 6.82
Mid res. 2.77 0.08 61200 75 0.18
Mid res. 2.94 0.17 113295 91 0.27
Mid res. 2.99 0.34 201798 111 0.62
Mid res. 3.45 0.57 327369 131 1.08
Mid res. 3.87 1.17 542500 155 1.75
Mid res. 3.98 1.87 779100 175 2.14
Mid res. 4.07 2.87 1024333 191 3.62
Mid res. 4.65 3.9 1370234 211 3.74
High res. 25.28 0.47 274050 75 1.83
High res. 27.54 0.95 490490 91 3.31
High res. 28.25 2.12 886890 111 5.32
High res. 33.28 4.48 1441000 131 13.42
High res. 35.28 8.84 2416295 155 25.94
High res. 35.54 14.49 3447150 175 31.23
High res. 37.11 21.01 4489646 191 34.28
High res. 39.25 32.39 6046838 211 47.64

Table 6.1: Processing times.

Comparative.

The main methods for comparison are the works developed by Baran and
Popovic [3], Pan and Xiaosong [34], and Bharaj and Thormählen [4]. In all
these works, the skeleton extraction is different from the voxelization and
thinning used in our work. In [3], instead of extracting a geometric skeleton
and adjusting a logic animation skeleton; they embeded an animation skele-
ton to the target mesh. The embedding of a skeleton is an interesting idea
that allows to animate a character with an approximate pose to the skele-
ton; but with low resemblance to the shape that is going to be animated by
a skeleton. However we believe that this is a plus feature and is not a com-
mon case when someone is animating a character mesh since the common
case is to create a skeleton that has the same general shape and topology
information of the target mesh. In [4] the input can be a multi-component
mesh (a character made by multiple meshes), and the skeleton is extracted
by computing a contact graph for each mesh; the skeleton is generated by
joining each contact graph with a clustering algorithm. We believe that
this is an important feature; because it allows the use of a wider variety of
input 3D models than our method and any other methods mentioned here.
Finally in [34], they produce a curve skeleton from a single input mesh; us-
ing two 3D silouettes (a 2D projection with its Z coordinate) by computing
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the mid points of the internal edges of the Delaunay triangulation over the
main silhouette. The z axis is refined with the second silhouette.
Methods depicted in [3] and [4] automatically adjust and rig an animation
skeleton to a character mesh; method [34] only produces a rig based on the
input mesh geometry. Therefore its output lacks the practical application
that our method and methods [3] and [4] had. Our method, on the con-
trary, needs the assistance of a human user; we have taken this strategy
because it allows us to apply it to a wider range of input 3D models than
[34] and [4]. In both compared methods after extracting a curved skeleton
(or skeletons in [4]); the main problem lies in finding the nodes that had a
correspondence with the animation skeleton joints from the extracted skele-
ton. In [34], a minimization method is applied to the end nodes of a reduced
skeleton. In a similar fashion, in [4] the final nodes of the reduced skeleton
are detected to feed a minimization problem; to find a mapping between
the high resolution graph (their version of an extracted skeleton) and the
animation skeleton. In [4] the root node is found by applying an algorithm
to find the betweenness-centrality of the internal nodes in a graph. In [34]
the root node is founded implicit by the penalty functions used to embed
the animation skeleton to a reduced skeleton. In both works [34] and [4],
one of its main limitations is that the input meshes must have a similar pose
as the input animation skeleton to work in a proper way. We have proposed
a method that, as the mentioned works, use the position of the end nodes
to automatically map the animation skeleton end joints to the end nodes
of the extracted skeleton [36]. For that reason we decided to leave the end
joints labeling task to a human user to allow him to apply the skeleton
adjust tool to any closed human-like mesh in an arbitrary pose. Whit an
automatic rigging tool, another problem raises: the animation captured or
designed for the original mesh will not be reproduced with the same poses
in the target meshes; if the target meshes have little resemblance in their
pose with the initial pose of the original animation skeleton. In papers [34]
and [4] this problem was not addressed. In the developing of this thesis
we have designed an animation transfer tool 5.1 that creates correspon-
dences between an animation skeleton and an arbitrary animation file with
a human-like animation skeleton. One of the problems that we faced was
the difference between initial poses. We had solved this problem by adding
an extra animation frame to the loaded animation to correct the initial pose
from the extracted skeleton to the loaded animation file.
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Future work.

As future work we would like to develop a skeletization algorithm that
can work with multiple input meshes, without the restriction of having a
closed mesh as an input as in [4]. The voxelization is a powerful tool,
but is restrictive and depending on the voxel resolution it can have high
processing times. A tool based solely in the mesh vertices is desirable.
Another natural step to improve our work will be designing an algorithm
that identifies the end nodes in the extracted skeleton of an input mesh with
arbitrary pose and orientation (not restricted such as the [3] and [4]); and
find their correspondence for an animation skeleton. We believe that this
problem is in particular challenging; and a novel way to find an alternative
to solve it will be through a geodesic mapping of both skeletons (in a similar
way as the one used in [19]) producing an invariant pose. Having defined
this invariant pose we will find the correspondences between the nodes from
the extracted skeleton to the animation skeleton; even for non human-like
meshes using a set of template skeletons. A way to improve our skeleton
adjustment tool would be implementing a more effective method to place
grade two joints (such as elbows and knees) of the adjusted skeleton;
whenever the shape and pose of the input mesh allow it.

6.2 Segmentation, Weight Generation, and

Skinning algorithms.

The segmentation algorithm is the core concept we use to generate the
weights for the LBS, and is also used in our skinning algorithm; due to its
close relationship with the two algorithms we decided to put the results of
each one in the same section. As it can be seen in table 6.2, the times of
our segmentation algorithms depend on the number of vertices of the input
model mesh. In the case of the Voxelized Segmentation algorithm, when the
number of voxels is too high as in the case of the High resolution model, our
equipment was unable to complete the task due to a memory limit problem
(the quantity of memory demanded was too high). This is because a test
is applied to every vertex of the input mesh model; using a test to check
if the lines that joins the vertex with each one of the joints are inside or
outside of the model. Our region-grow based algorithm (algorithm 3.2.4)
has the best processing times of the three, it is also the most flexible and
has good results with characters in T-Pose and with arbitrary poses as well;
their processing times are from 7.30 to 1.4 times faster than algorithm 3.2.1
restricted to T-Poses ; and it’s about 106.34 times faster than algorithm
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3.2.2, which uses voxelization to manage arbitrary poses. Algorithm 3.2.4
also has the best results in terms of segmentation quality, surpassing the
results obtained with algorithm 3.2.2.

The weight assignment algorithm uses segmented vertices; therefore the
segmentation method used on the input mesh does not have an impact on
their processing times (the processing time depends of the number of ver-
tices in the input mesh). But their output values depend on the segmenta-
tion output. As we mentioned in 4.3, the values of the weight assignment
algorithm are the result of the distribution function used along with algo-
rithm 4.2.1; any function can be used in our algorithm because the weight
assignment algorithm focuses in the joint hierarchy assigned by the segmen-
tation algorithm. Therefore, the chosen distance and distribution functions
depend on the desired effect or behavior that the artist wants to apply to
the segmented input mesh.

Model Num. Vert. Seg.(sec.) Vxl. Seg.(sec.) Reg-Grow. Seg.(sec.) Wght. Assg.(sec.)

Low res. 6,488 2.85 41.53 0.39 16.53
Mid res. 15,576 4.41 93.46 0.88 21.45
High res. 172,974 45.49 - 32.3 293.51

Table 6.2: Segmentation processing times.

Is customary in the skinning subject to make a comparative of the per-
formance of a new proposed skinning algorithm with the most popular
algorithm due to its simplicity and its linear nature: LBS; LBS has the
best performance of all the skinning algorithms used up to date. We also
compared the performance of our algorithm with another popular skinning
solution: DQS. DQS has a lower performance than LBS ; but it solves one
of its main problems: the well-known candy wrapper artifact. Therefore
this are the two main algorithms to compare with a new proposed method
in the field. As we have done in section 4.4; we applied a sequence of six
deformations in a test model (a bar) that are reported in table 6.3. As it
can be seen, our method without any optimization is about six times slower
in the worst case compared with LBS and three times in the best case.
When compared with DQ, our method performance is four times slower in
the worst case and two times in the best one. The slower performance of
our method is caused by the extra matrix multiplication on the influence
joints of each vertex; according to the hierarchy of the influence joint, is
the number of extra Matrix multiplication that are needed to be done. An-
other situation that affects the performance of our skinning method is: for
each vertex, the joints need to be sorted by hierarchy. We use a Quicksort
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base 2 algorithm to solve this problem in the most optimum way; but the
extra computation is reflected in the final processing times. Although the
LBS and DQ algorithms are faster than our algorithm in performance; our
algorithm shows proper results without the candy wrapper artifact of the
LBS or the artifacts caused by the weight distribution showed in the DQ
algorithm. To improve the performance of our Segmentation Based Linear
Blend Skinning method (SLBS ), we have decided to make an optimization;
our main idea to improve our computation performance was to restrict the
influence joints for each vertex to a maximum of four. Four joints per ver-
tex is enough to have quality deformations, and a common practice among
the animation of human-like characters. Another optimization made to our
code was to precompute the matrix chain for all the vertex in a segment,
leaving only to compute the twist rotation matrix specific for each vertex.
With the optimization, SLBS has a great improvement in its processing
times, having a better performance than DQ and being almost as fast as
LBS, but with a superior deform quality than the two compared methods.

Table 6.3: Comparative between deformation methods (Processing time).

Rotation # DQ LBS SLBS op. SLBS

1 0.06 ms 0.05 ms 0.12 ms 0.05 ms
2 0.07 ms 0.04 ms 0.14 ms 0.05 ms
3 0.05 ms 0.05 ms 0.20 ms 0.05 ms
4 0.05 ms 0.04 ms 0.15 ms 0.05 ms
5 0.06 ms 0.05 ms 0.16 ms 0.05 ms
6 0.06 ms 0.04 ms 0.16 ms 0.05 ms

Comparative.

The segmentation in the automatic rigging algorithms [4] and [34] are a
direct consequence of their respective skeletonization methods. In [4] the
segmentation is called rigid skinning; the value of the weights of a vertex
for all joints will be 0 with exception of the assigned joint that will be 1.
The segmentation in this case is obtained by automatically collapsing the
vertices in the high resolution graph of the skeletonization process. The
method proposed in [34] segments the vertices of the target mesh in one
of the steps of the skeleton generation; using a distance function from the
set of vertices to the branches (their equivalent to our segments) of a 2D
silhouette for each vertex on the target mesh.
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(a) Processing times of Skinning algorithms.

Figure 6.4: Comparative of processing times of Skinning algorithms.

The methods previously mentioned, share one main feature in their seg-
mentation: the segmentation is part of the skeleton extraction process;
therefore, their segmentation will fit perfectly with the segments of their
output skeleton. Our case is different: we are not working directly with the
vertices of the target mesh in the skeleton extraction stage; instead we work
with a voxelized version of the input 3D mesh, and in the thinning process
we lose track of voxel equivalences with the input mesh vertices; therefore
we were in the need for an algorithm that works with a rigged mesh as an
input. If the segmentation algorithm is not dependent of a skeletonization
algorithm, it can be applied to any rigged input mesh. The segmentation
can be useful as a guide to digital artist to known which is the main influ-
ence joint for every vertex in the input mesh. The disadvantage is that the
difficult is greater than the segmentation made by an algorithm that works
with the vertices positions to extract a skeleton. The main problem in a
segmentation algorithm that uses a rigged mesh as input is knowing which
is the main influence joint for every vertex; specially if the input mesh is not
in the ideal T-pose. When a model is in T-pose, the segmentation problem
is easier; there is no overlapping of any of the limbs in a 2D projection of
the mesh, and the closest link segment to a vertex is the correct choice. In
an input mesh with an arbitrary pose that is not the case; the problem relies
in knowing which is the closes link in the skeleton to a particular vertex
with a valid traverse within the target mesh volume.
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Algorithms like [14] and [6] uses as input a set of meshes; with the main
inconvenience that most of the 3D modeling in films and video-games are
created as a static input mesh, and then animated. Both of this methods
use segmentation to extract an animation skeleton that fits the animation
of its input mesh. We instead adjusted an animation skeleton to an existing
one from a static mesh. The method used in [39] is similar to one of our seg-
mentation algorithms; they also uses a voxelized version of the input model.
But their distance measure method is based on geodesic distances instead
of using Euclidean distances; they also use their segmentation algorithm as
the base to a weight assignment algorithm such as the one presented in [3].
Their segmentation algorithm seem to be effective with models with a large
non-convexities, but they apply it only to quadrupeds models in a “neutral
pose” (the pose equivalent to a T-pose in human-like mesh models) and
does not shown if it is effective in arbitrary poses.

Our automatic weight assignment algorithm was developed with the
same objective as the one showed in [3] that is: to create a set of weights
having only a 3D mesh as an input. Other algorithms such as [24], [46],
[28], [29], [27], [47], [22] and [12], had a set of examples to compute (or ex-
tend in some cases) the weights of each vertex in a character 3D mesh. As
it’s noted in [39], a good segmentation is a good starting point for a weight
assignment algorithm, such as [4] and [39]; in these works they use their
segmentation (rigid skinning) as a base for the heat diffusion automatic
weight assign algorithm proposed in [3]. In [49], an alternative based on a
high order function of an influence ratio r is depicted; which is dependent
of the neighbors joints and a user defined parameter α. In this work the
α parameter is used to work properly without a segmentation algorithm.
Their weight distribution is based on three rules such as symmetry, smooth-
ness within and in the boundaries of the influenced region; such features
are important and are present in the heat distribution algorithm described
in [3] and in the Gaussian functions used in our distribution function. So we
can say that the main features that an automatic weight algorithm needs
to work properly are a good segmentation and a distribution function that
fulfilling the three features previously mentioned. Our developed algorithm
has all those three features, but this features are a consequence of the cho-
sen distribution function.
The core of the weight assignment algorithm is the segmentation that not
only creates a rigid skinning weight distribution (such as [39]) it also stores
information about the segmentation (the main influence link per vertex and
neighborhood information of the skeleton); allowing us to create an easier
and straight forward algorithm to assign weights to a LBS based deforma-
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tion scheme. Another key piece to improve the output of the weight assign
algorithm is a correct joint placement. In [22] an elastic energy-minimizer
is used to improve the weights obtained with Bounded Biharmonic Weights
(BBW) [13]. In our case some artifacts can be solved by a correct placement
of the skeleton joints (manual placement) as can be seen in fig. 6.5.

Our developed skinning method is an extension of the LBS algorithm;

(a) Incorrect joint
placement.

(b) Correct joint place-
ment.

(c) Correct joint place-
ment(shaded).

(d) Autodesk Maya de-
fault automatic weight
assign output.

Figure 6.5: Artifacts generated by a incorrect joint placement using our
weight assign algorithm, figure d artifact induced by the Maya default weight
assign algorithm.

which works on rotations over the links axis of the input mesh model to
overcome the well-known candy wrapper artifact. As we mentioned at the
end of section 4.4, our method is similar to the one published by Yang [50]
with their respective differences (differences we described in section 4.4).
Another main point of comparison in the case of the skinning algorithm
is the work developed by Kavan in [21]; DQS uses the same weight influ-
ence base of LBS and also corrects the candy wrapper artifact by using
non-linear trajectories in the deformations over the link axis, but it also
introduces bulging artifact in rotation over limbs such as elbows or knees
by the non-linear (similar to a sphere) of DQS. Another problem addressed
in [20] is the artifacts that DQS creates when the rotation over the link axis
is close to 360◦. Artifacts that our solution does not have with the tradeoff
of having longer computing times than LBS and DQS in the non-optimized
version of our algorithm, but similar in quality to Dual Quaternion Iterative
Blending (DIB) which is more than five times slower than DQS [20], when
our method is approximately from two to three times slower, and four times
slower in the worst case; and in the optimized version is 0.01ms slower than
LBS and faster than DQ. The most recent and sophisticated algorithms are
[20], [12], and [22]; all three cited algorithms had something in common:
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they are an extension of LBS and use additional weights to improve the
LBS behavior.

In [20] a set of additional bones along with their respectively weights are
used to mimic the behavior of nonlinear deformer, such as DQS or DIB ;
the technique adds virtual bones to a skeleton (which are controlled by a
βmax parameter defined by the user) by an optimization problem where
the energy error is minimized and the original and extra weights are re-
computed. This method is a fast one, because it’s essentially LBS and the
overhead in time and memory is caused by the extra bones added to the
skeletal structure; therefore it’s faster than our non-optimized method but
at the price that the desired behavior needs to be approximated with a set
of samples in the precomputed stage. Also, an analysis of the derivatives of
the non-linear method that wants to be approximated must be done; and
the well-known artifacts of the LBS may be present for cases that were not
being considered as an input while in our method no additional analysis
or input frames are needed. The method developed in [12] is similar to
[20] because it uses abstract handles (a concept that close resembles virtual
bones) to improve the LBS deformer. The abstract handles came along
with their set of weights that are appended to the rest-pose matrix of the
LBS algorithm. Abstract handles are spread in a region automatically by
a multi-dimensional farthest point method in some vertices of the input
mesh. The result of this method improve greatly the quality of the LBS
when dealing with the usual loss of volume and their performance is good;
but is not clear whether if this method can remove properly the candy
wrapper artifact or how it behaves with twist rotations higher than 360◦

a feature that it is properly solved by our method. The method used in
[22] is similar to our approach in the sense that they use LBS as the base
for rotations in local coordinates XY planes (swing rotation); for rotations
over local z axis (twist rotation) they change to a nonlinear interpolation
method (an approximation to DQS ). They also apply the twist rotation in
the middle of the link segment and not over the target joint; in a similar way
we apply our extension to LBS when a rotation is made over a segment link
axis. Their performance is not clear due to its lack of times on the skinning
stage; their main overhead is present when the two deformers are evaluated.
Because of its close relation to DQS, we believe that deformations closer or
higher than 360◦ can lead to artifacts present also in [20] that are properly
solved by DIB, we created the table 6.4 that shows the features that our
method share with other geometry based skinning methods for a better
understanding and comparison of their main advantages.
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Features DQS [21] SLBS LBS DIB [21] ALNS [20]

Uses LBS weights.
√

×
√ √

×
Solves candy wrapper artifact.

√ √
×

√ √

Solves or not produce bulging artifact. ×
√ √

×
√

Prod. correct res. with rot. over 360◦. ×
√

×
√

?
Short processing times.

√ √ √
×

√

Table 6.4: Skinning algorithms main advantages comparison.

Future Work.

Our method is far for being perfect and can be improved in each of its stages.
The segmentation stage would be easier if the input rigged mesh was in the
ideal T-Pose; if an arbitrary mesh is downloaded from Internet or some
other source there is a high possibility that the selected mesh is in an ar-
bitrary pose. To solve this problem we would like to explore an algorithm
that uses geodesic distances (such as [19]) to unfold the arbitrary pose to
something closer to T-Pose; and then appling our simple but reliable seg-
mentation algorithm that is based solely in the closest Euclidean distance
between a vertex and a segment instead, of a more restrictive, demand-
ing and complicated algorithm like algorithm 3.2.2 based on a voxelized
mesh. Another way will be to improve algorithm 3.2.4 using a different
way to measure distances than Euclidean distances, we would like to apply
geodesic distances as the method to measure distances. We believe that
the region merge post-process needs improvement, because in some cases it
can assign areas in an improper way if the data in the model (number of
vertices) is low.
To improve our skinning weight assignment algorithm we would like to ex-
plore an algorithm based on examples; such as [22] that allows us to apply
the information obtained by examples in models with similar shape. We
use a Gaussian function as weight distribution function; but we want to test
which are the results with different kinds of functions such as bezier curves
or a function of high order to produce a smoother transitions between two
connected segments to avoid weight based artifacts. The algorithms de-
picted in this thesis are sequential due to the nature of our implementation
as a Maya plug-in; an alternative will be a parallelized version on CUDA
to improve its performance. The distribution function of the extra weight in
our skinning algorithm is linear; different distribution functions may lead
to different twist behaviors. Our skinning method is always plugged in
its implementation; we believe that a more efficient method will achieve
lower processing times, in a similar fashion as [22] that plugs and unplugs
the method when a twist rotation is detected. An interesting topic to
explore in our deformation algorithm is the possibility of implementing a
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self-intersection mechanism and dynamics to improve the realism in the
deformations. The main problem we saw is the extra computation that a
dynamics module would imply; pushing the processing times farther from
real time deformations. A method that approximates the dynamic behavior
based on pre-computed data will be a viable option. Another interesting
topic to explore as future work will be a volume preservation algorithm with
an error of 0% or closer. As we have shown in 4.4, the volume loss of our de-
formation algorithm is low but it can be perfected with a volume-correction
algorithm such as [44] that works as an extra module of a deformation
algorithm.

6.3 Conclusions.

The main objective of this thesis was to create a set of tools that can work
together to rig an arbitrary input model, and to make the whole rigging
process easier to people with a low level of knowledge about the process.
With this objective in mind we developed our method as a sequence of algo-
rithms that can be stopped in different points of the process; or can take as
an input rigged models that were not created with our method. Specifically
our method can be subdivided into three sub-process: Skeleton extraction
and adjustment of a template skeleton (to create a rig based on a template
animation skeleton), Segmentation and weight assign and Skinning method,
and can be used as a single process or in sequence.
Our contributions in the develop of this thesis are in a nutshell:

• We successfully created a skeleton extraction and adjustment method
that can be used to rig a mesh in an arbitrary pose; using user defined
markers while other methods are restricted to the ideal T-pose in
human-like input meshes.

• To work along with our rig method we have developed a weight assign
algorithm based on a novel segmentation algorithm, as its core. The
segmentation is important because is a concept that simplifies and
makes easier the weight assignment process, while other algorithms
depend on minimization algorithms, or uses the weights assigned by
other methods as a starting point. A good segmentation can be useful
even for digital 3D artist as a base to paint influence weights on a
desired model.
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• The widely-used LBS algorithm has the well-known candy wrapper
artifact, and to overcome this problem we developed a skinning algo-
rithm based on LBS. Our algorithm can handle advance deformations
(twists over a link greater than 180◦), without volume loss or unreal-
istic artifacts; it’s not dependent on examples using weights generated
for a LBS deformation scheme and generates automatically the extra
weights needed.

• Additionally, we have developed an animation tool that can load an
animation file with a different skeleton, and adapt the data to a rigged
mesh with some minor restrictions.

Our method was developed entirely in Autodesk Maya as a plug-in in
ANSI C++; with the objective of making the diffusion around the anima-
tion community easier, independently of the hardware used. Although the
project was made using the Visual C++ compiler of Microsoft; with some
changes a port to Mac, Linux or another operating system that support
Maya and a C++ compiler will be possible. Although the development in
such a sophisticated platform was sometimes a challenge, our implemen-
tation was beneficed by a robust framework with solid math libraries. By
teaming up our method of automatic rigging with the best animation soft-
ware in the industry, we have achieved our goal of creating a method that
can help a wide range of users with or without previous knowledge that
need to rig and animate a three dimensional model with minimum interac-
tion and low adjustment parameter number.

We conclude this thesis with a wider vision about the animation area, the
problems faced in this thesis are far from being completely solved. The
methods proposed in this work have too much room left to be improved.
By its nature, computer animation is a fascinating field with a bright future
that grows along not only with the computer hardware power; it is a mul-
tidisciplinary field that incorporates mathematics, dynamics, programming
languages, and art. All this features make it one of the most demanded and
interesting research fields up to date and in the future.
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