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Abstract

A sequential method for approximating vectors in Hilbert spaces�
called Sequential Approximation with Optimal Coe�cients �SAOC��
is presented� Most of the existing sequential methods choose the new
term so that it matches the previous residue as best as possible� Al�
though this strategy leads to approximations convergent towards the
target function� it may be far from being the best strategy with regard
to the number of terms of the approximation� SAOC combines two
key ideas� The �rst is the optimization of the coe�cients �the linear
part of the approximation�� The second is the 	exibility to choose the
frequencies �the nonlinear part�� The only relation with the residue
has to do with its approximation capability of the target vector f �
SAOC maintains orthogonal�like properties� The theoretical results
obtained proof that� under reasonable conditions� the construction of
the approximation is always possible and� in the limit� the residue of
the approximation obtained with SAOC is the best one that can be
obtained with any subset of the given set of vectors� In addition� it
seems that it should achieve the same accuracy that other existent
sequential methods with fewer terms� In the particular case of L�� it
can be applied to polynomials� Fourier series� wavelets and neural net�
works� among others� Also� a particular implementation using neural
networks is presented� In fact� the pro�t is reciprocal� because SAOC
can be used as an inspiration to construct and train a neural network�

�This work was supported by Consejo Interministerial de Ciencia y Tecnolog��a
�CICYT�� under project TAP����	
���
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� Introduction

The main problem in approximation theory can be stated as follows
��Achieser ����	
 �Lorentz ����	�� Let f be an element of a space M � Given
a space of parameters � and a function F � �� �M 
 determine the subset of
parameters � � � such that the deviation between f and F ��� is minimum��
This statement leads
 in a natural way
 to de�ne the concept of distance� The
spaces where a distance can be de�ned are called metric spaces� Usually
 the
approximation is linear with regard to a subset of parameters called coe��
cients� In this case
 it makes sense working in vector spaces and using the
concepts of vector norm and normed space� Hilbert spaces are a particular
case of normed spaces in which an inner product can be de�ned� Hence
 in
Hilbert spaces we have the concepts of projection and orthogonality between
vectors�

Vector approximation in Hilbert spaces is present in di�erent areas
 such as
polynomial approximation �Weierstrass ����	
 Fourier series �Young ����	

statistics �Huber ����	
 signal processing �Mallat ����	 or neural networks
�Bishop ����	� In most cases
 the Hilbert space of interest is L�
 where the
vector f is a square integrable function de�ned on a subset of RI
 that we
want to approximate by linear combinations of simpler functions� These func�
tions depend on a �nite number of parameters
 that we will call frequencies�
The approximations are usually non�linear with regard to the frequencies�
Due to this fact the problem of �nding the best approximation with a �nite
number of terms is extremely complex �Horst � Tuy ����	�

The techniques developed up to date are strongly dependent on whether
an analytical expression is available or not� In the former case
 we probably
can compute exactly the inner products or at least evaluate the function on
any desired set of points� Without an analytical expression
 all we usually
have is the function value on a �nite set of points �dataset�
 and perhaps
some kind of information about the function behaviour in some regions of
the space �the function to be approximated may be
 for example
 a probabil�
ity function or a �nite signal�� In this latter case
 the concept of interpolation
or generalization is specially important
 since the basic aim is to predict the
function behaviour on points that do not belong to the dataset� Because of
the fact that the dataset could be approximated
 in principle
 by the vectors
associated with many di�erent sets of parameters
 �nding a method that
picks the best one becomes a fundamental problem� It is very easy to verify
that
 if we have a �nite dataset
 the problem of approximating a function in
L� is equivalent to the problem of approximating �by Least Squares� a vector

�



in C T 
 where T is the number of elements in the dataset�

In theory
 the approximation in L� may consist of an in�nite number of terms�
In practical applications
 however
 this is not possible� Suppose we consider
that an approximation is valid if its deviation is less than a �xed � � �� For
every � � � and every basis in L� it is possible to �nd a function f so that
we need a very large number of basis terms to approximate f with deviation
less than �� Linear expansions in a single basis are not �exible enough� The
information can be diluted across the whole basis �Mallat � Zhang ����	�
This happens even with an orthogonal basis�

An attractive way to construct an approximation is
 starting from scratch

adding terms one at a time to the partial approximations
 until the desired
approximation accuracy is achieved� This is the aim of sequential methods�
The goodness of the added terms is essential to yield the desired accuracy�
Most of the existing methods choose the new term so that it matches the
previous residue as best as possible �see Section ��� Although this strategy
leads to approximations convergent towards the target function
 it may be
far from being the best strategy
 as can be observed in the example in Figure
�� When approximating the vector f with v� and v� we obtain X�� Clearly

this is not the best possible approximation
 since v� and v� form a basis of
R�� In this case
 recalculating the coe�cients of the previous added terms
would lead to a much better approximation �exact
 in fact� of the target
function� This recalculation would work as follows� Once we have selected
the vector that matches the residue as best as possible �v��
 �nd the best
approximation of f with the whole set of vectors selected up to the moment
�v� and v��� But recalculating the coe�cients is not enough
 as illustrated
in the example in Figure �� The vector s �not lying on the plane that con�
tains X� and f�
 which best matches the residue r�
 is not necessarily such
that
 together with the previous terms
 best approximates the target vector
f � R�� In this case any vector lying on the plane that contains X� and f �g

for example� allows an exact approximation of the target vector� Trying to
approximate the residue does not take into account the interactions with the
previous selected terms� The vector that best matches the residue has noth�
ing to do
 in principle
 with all the planes that contain f and the vectors of
the subspace spanned by the previuos terms� Any vector lying on the plane
that contains f and a vector of the subspace spanned by the previuos terms
allows an exact approximation of the target vector� In in�nite dimensional
spaces
 this problem can lead to approximations with a very large number of
terms�
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Figure �� Approximation of a vector f in R� maximizing the approximation to
the previous residue� The best approximation is orthogonal to the residue� The
resulting vector �X�� is not the best approximation that can be achieved with v�
and v��

In this paper we present a general sequential method for function approxi�
mation
 named SAOC
 that takes into account these problems� On the one
hand
 the vectors can be selected at every step in a �exible manner� On the
other
 it optimizes the coe�cients
 so that we always achieve the best ap�
proximation with the selected vectors� The only relation with the residue has
to do with its approximation capability of the target vector f � The method is
general in the sense that it can be constructed independently of the concrete
Hilbert space� Under very mild conditions
 it is possible to guarantee that
the approximation given by SAOC can always be constructed �that is
 there
always exists a vector satisfying the conditions in the de�nition that can be
chosen in the next step�� In the limit
 the residue of the approximation ob�
tained with SAOC is the best one that can be obtained with any subset of
the given set of vectors� In the particular case of L�
 SAOC can be applied
to polynomials
 Fourier series
 wavelets and neural networks
 among others�
In fact
 the universal approximation capability of a family of functions is
enough to apply the SAOC method with guarantee of convergence �when�
ever the SAOC construction is feasible��

A particular implementation with neural networks is also presented� Neural
networks are a suitable approach to deal with function approximation prob�
lems when we only have a dataset� A feedforward neural network architecture
with a non�linear hidden layer and a linear output layer leads to very similar
approximations to those provided by SAOC� Therefore
 there are reasons to
think that the method can be implemented in a neural network� In fact
 the
pro�t is reciprocal
 because SAOC can be used as a guide to construct and
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Figure �� Approximation of a vector f in R� maximizing the approximation to
the previous residue and recalculating the coe�cients� The vector g� which is lying
on the plane that contains f and X� allows a better approximation to f that the
vector s �not on this plane�� which is the vector that best matches the residue r��

train a neural network�

Some preliminaries can be found in Section �� The general de�nition and
some basic properties of SAOC are explained in Section �� The main results
of existence and convergence are proved is Section �� The application to
speci�c vectors in L� is described in Section �� An overview of the related
work and a comparison of the previous methods against SAOC in terms of
basic features is presented in Section �� Some practical properties of SAOC
are discussed in Section �� Finally
 a particular implementation using neural
networks is presented in Section ��

� Preliminaries

First
 we refresh the concepts of metric space
 vector space
 normed space and
Hilbert space� More detailed explanations can be found in �Achieser ����	

�Berberian ����	
 �Yosida ����	
 �Kolmogorov � Fomin ����	 or �Reddy ����	�

A metric space M is a set with a distance D � M �M � R� such that
�x� y� z �M
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�a� D�x� x� � ��

�b� D�x� y� � D�y� x��

�c� D�x� z� � D�x� y� �D�y� z� �triangular inequality��

In metric spaces it is possible to de�ne the concepts of continuity and se�
quence convergence� A function f � M� � M� between two metric spaces
�M��D�� and �M��D�� is said to be continuous at x� � M� if

�� � � ����� x�� � � �x �M� D��x�� x� � � �� D��f�x��� f�x�� � ��

If the function is continuous at every point
 we say that it is continuous on
M�� A sequence fxkgk�� of points in a metric space �M�D� is said to be
convergent towards a point x� if

�� � � �N��� � � �n � N D�x�� xn� � ��

The point x� is called the sequence limit� As an equivalent de�nition
 x� is
the limit of the sequence fxkgk�� if

lim
n��

D�x�� xn� � ��

In fact
 the de�nition of continuous function and convergence can be made in
topological spaces� Metric spaces are a particular case of topological spaces

where the topology is de�ned in terms of the distance�

A vector space V is a set satisfying

�a� �V��� is an abelian group with an addition � � V � V � V �

�b� A scalar multiplication � � K � V � V is de�ned such that �	� 
 �
K �x� y � V

��� 	 � �x� y� � 	 � x� 	 � y�
��� �	� 
� � x � 	 � x� 
 � x�
��� 	 � �
 � x� � �	 
� � x�
��� � � x � x�

As a consequence of the de�nition
 �x � V we have

	 � � x � ��

	 �
�� � x � 
x�
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Every element v � V is called a vector� If the set of scalars is C �R�
 V is
named a complex �real� vector space� In this paper we will deal with complex
vector spaces�

A normed space E is a vector space with a norm kk � E � R� such that
�x� y � E

�a� kxk � � if and only if x � ��

�b� k	 � xk � j	j � kxk�
�c� kx� yk � kxk� kyk�

Every normed space is a metric space by de�ning the distance between vec�
tors as D�x� y� � kx
 yk�

A pre�Hilbert space �or inner product space� is a vector space with an in�
ner product h� i � H �H � C such that �	�� 	� � C �x�� x�� x� y � H

�a� hx� yi � hy� xi�
�b� h	� � x� � 	� � x�� yi � 	� hx�� yi� 	� hx�� yi�
�c� hx� xi � � �in particular hx� xi � R��

�d� hx� xi � � if and only if x � ��

As a consequence of the de�nition
 we have

	 hx� 	� � y� � 	� � y�i � 	� � hx� y�i � 	� � hx� y�i�
	 h	 � x� 	 � xi � j	j� hx� xi�
	 hx� �i � h�� xi � ��

	 If �z � H hx� zi � hy� zi
 then x � y�

	 jhx� yij� � hx� xi hy� yi �Schwartz inequality��

	 hx� y� x� yi��� � hx� xi��� � hy� yi����
With these properties
 a pre�Hilbert space is a normed space
 de�ning kxk �

hx� xi���� In this case
 Schwartz inequality says

jhx� yij � kxk kyk � ���

from which we can derive the following properties�
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	 The inner product is a continuous function with regard to every one of
its arguments� That is
 for every y� � H
 the functions p�� p� � H � C

de�ned as p��x� � hx� y�i
 p��x� � hy�� xi are continuous�

	 kx
 yk� � �kxk 
 kyk���
	 The norm is a continuous function� That is
 the function n � H � C

de�ned as n�x� � kxk is continuous�

Hence
 a pre�Hilbert space is in particular a normed space and a metric space�
Another interesting property of pre�Hilbert spaces is the parallelogram law�

kx� yk� � kx
 yk� � �kxk� � �kyk��
In fact
 it can be proved that if a normed space satis�es the parallelogram
law
 then it is possible to de�ne an inner product �Yosida ����	 by means of

hx� yi � �

�
�kx� yk� 
 kx
 yk��

In a pre�Hilbert space H
 two vectors x� y are orthogonal if hx� yi � �� A
vector system is orthonormal if the vectors are mutually orthogonal
 and all
of them have norm �� A set A of vectors is said to be closed in H if every
vector x � H can be approximated to any degree of accuracy by a linear
combination of vectors from A
 that is

�� � � �n � � �x�� � � � � xn�� A �	�� � � � � 	n � C
�����x


nX
k��

	kxk

����� � ��

Equivalently
 it is said to be complete
 total
 fundamental
 or that its linear
span is dense in H�

In a metric space M 
 a sequence fxngn�N converges towards a point x�
if limn��D�xn� x�� � �� By triangular inequality
 this de�nition implies
limn�m��D�xn� xm� � � �Cauchy sequence�� However
 the converse is not
necessarily true� A metric space M is said to be complete if all Cauchy
sequences converge towards a certain element x �M 
 that is

lim
n�m��

D�xn� xm� � � �� �x �M lim
n��

D�xn� x� � ��

A Banach space is a complete normed space� A Hilbert space is a complete
pre�Hilbert space� So
 a Hilbert space is
 in particular
 a Banach space�

Some example of Hilbert spaces are�
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	 RN
 with hu� vi �PN
k�� ukvk�

	 C N 
 with hu� vi �PN
k�� ukvk�

	 l�
 the set of all series such that
P�

k�� jukj� ��
 with

hu� vi �
�X
k��

ukvk�

	 L���� �or simply L��
 the space of measurable functions f � � � C 

with � � RN measurable
 such that the Lebesgue integralZ

�

jf�x�j�dx �

Z
�

f�x�f�x�dx

is �nite� The inner product is de�ned as hu� vi � R
� u�x�v�x�dx �also

�nite by H older inequality�
 and the norm is denoted as kuk�� Clearly

with this de�nition there are functions di�erent from � such that
hx� xi � �� So it would not be a proper Hilbert space� To avoid
this problem
 it is necessary to regard the elements of this space not as
functions
 but rather as the equivalence classes resultant of consider�
ing two functions equivalent if they are equal almost everywhere �a�e�

that is
 equal except in a measure zero set� Abusing of notation
 the
quotient space is denoted L���� again� With this de�nition
 f � � if
and only if kfk� � ��

� De�nition of SAOC and basic properties

The problem of approximation in Hilbert spaces that we will deal with in
this paper can be de�ned as follows� Let H be a Hilbert space
 ! a space
of parameters
 and f � H a vector to approximate with vectors v� � v���

v � ! � H
 � � !
 such that �� � ! kv�k � �� We want to �nd
��� ��� � � � � ! and ��� ��� � � � � C such that

lim
N��

�����f 

NX
k��

�kv�k

����� � ��

We will call frequencies to the elements ��� ��� � � � � !
 and coe�cients to
��� ��� � � � � C ��

This de�nition is
 in essence
 the usual one in approximation of vectors in
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Hilbert spaces� Observe that every vector v� � H depends on a parameter
� � !� Once we �x the parameter
 we have a vector in the Hilbert space�
The fact that with every frecuency �� we only have a vector v���� is not a
real restriction� We could have de�ned v � !� HQ with Q � � and pick one
of its components� For the sake of simplicity
 we will consider this notation�

De�nition� Let H be a Hilbert space
 ! a space of parameters
 and f � H
a vector to approximate with vectors v� � v���
 v � ! � H
 � � !
 such
that �� � ! kv�k � �� A Sequential Approximation of f with Optimal Co�
e�cients �SAOC� is a sequence of vectors fXNgN��
 which terms are de�ned
as�

	 X� � ��

	 XN �
PN��

k�� �
N
k v�k � �NNv�N 
 so that

�a� The coe�cients are optimal� That is
 XN is the best approxima�
tion of f with the vectors v��� � � � � v�N��� v�N �

�b� � � C ��� � ! kf 
XNk� � kf 
 �XN�� � v���k�� That
is
 the approximation of f with XN is better than the best ap�
proximation of the residue f 
XN�� that one could achieve with
only one vector v�� � v�!� �or
 equivalently
 keeping �xed the
coe�cients of XN����

Remarks�

	 We can suppose that kfk � �� If not
 the approximation is trivial
with N � �� The condition kv�k � � is equivalent
 by inner product"s
properties
 to that of v� � �� In fact
 this condition is not a restriction

because the vector � cannot approximate any vector�

	 At step N 
 a new frequency ��N � is considered
 the number of terms
of the approximation is increased by one ��NNv�N �
 and the coe�cients
�N� � �

N
� � � � � � �NN�� are recalculated in order to obtain the best approxi�

mation of f with v��� � � � � v�N��� v�N � The frequencies ��� ��� � � � � �N��

are kept �xed� Observe that �N � � XN � H�

	 Since XN is the best approximation of f with v��� � � � � v�N��� v�N 
 it
holds that �Achieser ����	

�k � � � k � N hf 
XN � v�ki � �� ���

That is
 the residue f 
 XN is orthogonal to the space generated by
v��� � � � � v�N��� v�N � Equivalently
 XN is the orthogonal projection of

��



f onto the space spanned by v��� � � � � v�N � As we will see
 this is one
of the keys of SAOC"s properties� By inner product"s de�nition
 ��� is
equivalent to the following linear equations system��
BBB�
hv��� v��i hv��� v��i � � � hv�N � v��i
hv��� v��i hv��� v��i � � � hv�N � v��i

���
���

� � �
���

hv��� v�N i hv��� v�N i � � � hv�N � v�N i

�
CCCA
�
BBB�
�N�
�N�
���
�NN

�
CCCA �

�
BBB�
hf� v��i
hf� v��i

���
hf� v�N i

�
CCCA � ���

Consequently
 once the frequencies ��� � � � � �N��� �N � ! are �xed
 the
optimal coe�cients �N� � � � � � �NN��� �

N
N � C can be calculated by solving

���� It can be proved easily that the system has only one solution if and
only if v��� � � � � v�N��� v�N are linearly independent� Otherwise
 the sys�
tem has more than one solution� Since the frequencies ��� ��� � � � � �N��

are kept �xed
 the proposed system at step N is equal to the system at
step N 
 �
 but with a new row and a new column� The system solu�
tion is a continuous function of the matrix and the independent vector
elements at any point where the matrix is nonsingular �Ortega ����	�
By inner product"s de�nition
 the matrix in ��� is hermitian� If the
inner product is real
 then it is symmetric�

	 If H � L� and we only have a dataset X
 the inner products can be
approximated with a pass through X�

�
v�i� v�j

� �� �

jXj
X
x�X

v�i�x�v�j�x�

�
f� v�j

� �� �

jXj
X
x�X

f�x�v�j�x��

In this case we will suppose that the integral is de�ned with regard
to the probability measure of the problem represented by the dataset�
This is similar to approximate the expectation of a random variable by
the arithmetic mean� In addition
 solving ��� is equivalent to solving
the Least Squares �LS� problem associated with the dataset�

	 Observe that
 in principle
 there can be more than one frequency �N
such that
 together with its optimal coe�cients
 satisfy the property
�b� of SAOC"s de�nition� On one end there would be those frequencies
that are on the upper limit of the inequality
 that is
 those satisfying

kf 
XNk� � inf
��C ���	

kf 
 �XN�� � v���k��
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In this case
 the residue norm obtained is the same that the one that
would be obtained by approximating in an optimal manner the residue
f 
XN�� with only one vector of v�!�� On the other end there would
be the optimal frequencies
 those satisfying

��� � � �� N��� N � C ��� � !

kf 
XNk� �
�����f 


�
N��X
k��

kv�k � Nv��

������
�

�

Clearly
 the residue norm in the second case is less than in the �rst
one
 and therefore the approximation is better� On the contrary
 the
di�culty of �nding the optimal frequency is probably greater than that
of �nding any other frequency satisfying the aforementioned property
�b�� In practice
 there will be a trade�o� between these two matters�

	 In order to be well�de�ned
 at every step there must be at least one
frequency �N that satisfy the SAOC de�nition� This existence may

in principle
 depend on the Hilbert space H
 the vector f and the set
of vectors v�!�� In the next section we present su�cient conditions to
guarantee the existence of this frequency�

	 The vectors v��� � � � � v�N��� v�N are not necessarily mutually orthogo�
nal� The approximation with orthogonal vectors has been widely stud�
ied �Achieser ����	� The coe�cients of the best approximation of f � H
by means of an orthogonal system g�� � � � � gN only depend on the pro�
jections of f onto the vectors of the system�

YN �
NX
k��

�k gk �
NX
k��

hf� gki
kgkk�

gk�

��



In this case
 we have

kf 
 YNk� �

�����f 

NX
k��

�k gk

�����
�

� kfk� 
 �Re

�	
f�

NX
k��

�k gk


�
�

�����
NX
k��

�k gk

�����
�

� kfk� 
 �Re

�
NX
k��

�k hf� gki
�

�
NX
k��

j�kj�kgkk�

� kfk� 
 �Re

�
NX
k��

hf� gki
kgkk�

hf� gki
�

�
NX
k��

j�kj�kgkk�

� kfk� 

NX
k��

j�kj�kgkk�

� kfk� 

�����

NX
k��

�k gk

�����
�

� kfk� 
 kYNk��

In particular
 �N � � kf 
 YN��k� � kf 
 YNk�� As can be easily
seen
 the information provided by every term is independent of the
others� This allows
 for instance
 the construction of the approximation
in a sequential manner
 where the terms are added one at a time until
the approximation is satisfactory� If the orthogonal system is in�nite

we may wonder about the behaviour of the series

g �
�X
k��

hf� gki
kgkk�

gk�

If the system is closed in H
 then the series is always convergent
 and
kf 
 gk � � �Parseval equation�� As we will see below
 the SAOC
holds most of these properties� The main problem of approximating
with a �xed system resides on the lack of �exibility� Linear expansions
in a single basis are not �exible enough� The information can be di�
luted across the whole basis �Mallat � Zhang ����	� For this reason

to achieve a good approximation
 a very large number of vectors may
be needed
 even if we order them by jhf� gkij� The SAOC keeps the
idea of adding terms one at a time
 but the residue can be reduced in
a �exible and �in some sense� optimal manner� So we can expect to
reduce the necessary number of terms to achieve the same degree of
approximation�
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As a �rst result
 the approximations that satify ��� are characterized�

Lemma �� Let H be a Hilbert space
 f � H and XN �
PN

k�� �
N
k v�k 


such that its vectors and coe�cients satisfy ���� Then


�L�a� �j � � � j � N �Nj �
hf�PN

k���k ��j �
N
k
v�k �v�j i

kv�jk� �

�L�b� �j � � � j � N kf 
XNk� �
���f 
PN

k���k ��j �
N
k v�k

����
 ���Nj �����v�j����
�L�c� kf 
XNk� � kfk� 
 kXNk� �energy conservation��

�L�d� kXNk� �
PN

k�� �
N
k hf� v�ki�

�L�e� hf 
XN � fi � kf 
XNk��
Remarks�

	 As an immediate consequence
 every elementXN of the SAOC satis�es
these properties�

	 There is a great parallelism between these properties and those satis�ed
by an approximation with orthogonal vectors �see above�� The only
di�erences are in �L�a� and �L�b�
 and both are a generalization� Using
orthogonal vectors
 �L�a� and �L�b� would be converted
 respectively

into

�Nj �

�
f� v�j

�
��v�j���

and �����f 

NX

k���k ��j

�Nk v�k

�����
�

� kfk� 

NX

k���k ��j

���Nk ���kv�kk��
Both are known properties for orthogonal vectors� Hence
 an impor�
tant part of the good properties of the approximations with orthogonal
vectors are actually a consequence of the fact that its coe�cients are
optimal
 more than a consequence of the orthogonality itself�

Proof�

�L�a� By ��� we have
D
f 


�PN
k���k ��j �

N
k v�k � �Nj v�j


� v�j

E
� �
 and as a

consequence	
f 


NX
k���k ��j

�Nk v�k � v�j



� �Nj

�
v�j � v�j

�
� �Nj

��v�j����

��



�L�b� Descomposing XN �
PN

k���k ��j �
N
k v�k � �Nj v�j we have

kf 
XNk� �

�����f 

NX

k���k ��j

�Nk v�k

�����
�

�
���Nj �����v�j���


 �Re

�	
f 


NX
k���k ��j

�Nk v�k� �
N
j v�j


�
�

By ��� we can state

kf 
XNk� �

�

�����f 

NX

k���k ��j

�Nk v�k

�����
�

�
���Nj �����v�j���


�Re

�	
XN 


NX
k���k ��j

�Nk v�k � �
N
j v�j


�

�

�����f 

NX

k���k ��j

�Nk v�k

�����
�

�
���Nj �����v�j��� 
 �Re

��
�Nj v�j � �

N
j v�j

��

�

�����f 

NX

k���k ��j

�Nk v�k

�����
�

�
���Nj �����v�j��� 
 �

���Nj �����v�j���

�

�����f 

NX

k���k ��j

�Nk v�k

�����
�


 ���Nj �����v�j����

�L�c� Expressing f as �f 
XN � �XN we have

kfk� � kf 
XNk� � kXNk� � �Re �hf 
XN �XN i� �
By ���
 �Re �hf 
XN �XN i� � � holds�

�L�d� By the de�nition of XN we have

kXNk� � hXN �XN i �
	

NX
k��

�Nk v�k �XN



�

NX
k��

�Nk hv�k�XN i�

Since XN satis�es ��� we have

�k � � � k � N hv�k�XN i � hv�k� fi �

��



Hence


kXNk� �
NX
k��

�Nk hv�k � fi �
NX
k��

�Nk hf� v�ki�

�L�e� kf 
XNk� � hf 
XN � f 
XN i � hf 
XN � fi 
 hf 
XN �XN i�

By ���
 hf 
XN �XN i � � holds�

� Main results

��� Existence

First
 we prove some results that establish su�cient conditions to assure the
existence of the frequency �N in SAOC"s de�nition�

Lemma �� Let H be a Hilbert space
 f � H
 and suppose that the ele�
ment XN�� of the SAOC exists for some N � �� Then


�L�a� The function RN � v�!�� R de�ned as

RN �v�� � inf
������ ��N����N�C

�����f 

�
N��X
k��

kv�k � Nv�

������
�

is always well de�ned and is continuous at every point v� such that
fv��� � � � � v�N��� v�g is linearly independent�

�L�b� The function PN � v�!�� R de�ned as

PN �v�� � inf
��C

kf 
 �XN�� � v��k�

is always well de�ned
 can be computed as

PN �v�� � kf 
XN��k� 
 jhf 
XN��� v�ij�
kv�k�

� ���

and is continuous at v�!��

Remarks�

��



	 Observe that �� � ! RN �v�� � PN �v��� The functions RN and PN
are those that
 in some way
 point out the frontier of the existence of
the frequency �N in SAOC"s de�nition� the frequency �N exists if and
only if ��� � ! such that RN �v��� � inf��	 PN �v��� Observe that
 in
principle
 it can be false �we can think
 for example
 at RN �x� � �

x�

and PN �x� � �
x�

 with x � �������

	 In general
 it is not possible to assure RN to be continuous at the vectors
v� such that fv��� � � � � v�N��� v�g is linearly dependent� For example


suppose that H � R� and X� satis�es kf 
X�k� � �� Every vector
v�� � v�!� linearly independent with regard to v�� makes possible an
exact approximation of any vector lying on the plane generated by
fv��� v��g� As a consequence
 RN�v��� � � if and only if f lies on the
plane generated by fv��� v��g� So there are vectors v�� arbitrarily near
to v�� such that RN �v��� � �� In contrast
 RN �v��� � kf 
X�k� � ��
Observe that
 in order to make the residue zero
 the coe�cient modulus
grows uncontrolably in vectors very near to v��� If RN were continuous

there would be possible to �nd conditions to assure that its in�mum is
attained at v�!� �see Proposition ���

Proof�

�L�a� If fv��� � � � � v�N��� v�g is linearly dependent
 thenRN�v�� � kf 
XN��k�
holds� Let v� be such that fv��� � � � � v�N��

� v�g is linearly indepen�
dent� The value of RN �v�� can be obtained as follows� First
 obtain
�� � � � � N��� N � C imposing ���
 that is
 as the solution of the linear
equations system�

BBB�
hv��� v��i � � � �

v�N��� v��
� hv�� v��i

���
� � �

���
����

v��� v�N��

� � � � �
v�N��� v�N��

� �
v�� v�N��

�
hv��� v�i � � � �

v�N��� v�
� hv�� v�i

�
CCCA
�
BBB�

�
���

N��

N

�
CCCA �

�
BBB�

hf� v��i
����

f� v�N��

�
hf� v�i

�
CCCA �

Next
 compute RN �v�� �
���f 
 �PN��

k�� kv�k � Nv�

����� The previ�

ous system has only one solution
 since fv��� � � � � v�N��� v�g is linearly
independent� Therefore
 RN is always well de�ned�
To prove the continuity
 let v� � v�!� such that fv��� � � � � v�N��� v�g
is linearly independent� Since the norm and the inner product are
continuous functions with regard to every one of its arguments
 there
exists �N � � small enough such that for every vector v�� satisfying��v� 
 v��

�� � �N 
 their associated linear equations systems are as near

��



as desired� As the matrix is nonsingular
 the system solution is contin�
uous with respect to the matrix and the independent vector elements�
Using �L�c� and �L�d�
 we can compute RN �v�� as

RN �v�� � kfk� 

�
N��X
k��

khf� v�ki � N hf� v�i
�
�

a composition of continuous functions and
 therefore
 continuous�

�L�b� Since PN �v�� is the residue of the best approximation of f
XN�� with
the vector v�
 the value of PN �v�� can be obtained as follows� First

impose ��� in order to obtain the optimal coe�cient � � C � In this
case
 � is such that hf 
XN�� 
 �v�� v�i � �� By inner product"s

properties
 � � hf�XN���v� i

kv�k
� � This is always well de�ned
 since the

vectors norms do not vanish in v�!�� Using �L�c� and �L�d� with
f � f 
XN�� and XN � �v�
 we have

PN �v�� � kf 
XN�� 
 �v�k�
� kf 
XN��k� 
 k�v�k�
� kf 
XN��k� 
 �hf 
XN��� v�i

� kf 
XN��k� 
 jhf 
XN��� v�ij�
kv�k�

�

In particular
 PN is always well de�ned� Since the norm and the in�
ner product are continuous functions with regard to every one of its
arguments
 PN is continuous at v�!��

Proposition �� Let H be a Hilbert space
 f � H
 and suppose that the
element XN�� of the SAOC exists for some N � �� Suppose also that exists
C � v�!� such that

�a� �v�C � C �� � ! v� � C �� PN �v�C� � PN �v��� That is
 if PN
attains the in�mum
 it is attained at a vector v�C belonging to C�

�b� Every sequence of vectors in C has a subsequence that converges to�
wards an element in v�!��

Then
 the in�mum of PN is attained at v�!� and the frequency �N of the
SAOC does exist�

��



Proof�
By means of �L�c� we know that Im�PN � � ��� kf 
XN��k�	
 and therefore

it is bounded� Thus
 the in�mum of PN does exist� Let

pN � inf
��	

PN �v���

By hypothesis �a� we have

pN � inf
v��C

PN �v���

By in�mum"s de�nition
 there exists a vector sequence fv��
k
gk�� in C such

that
pN � lim

k��
PN �v��

k
��

By hypothesis �b�
 the sequence fv��
k
gk�� has a subsequence that converges

towards an element in v�!�� Abusing of notation
 we will denote again this
subsequence as fv��kgk��� That is


���
� � ! lim

k��
v��k � v����

The continuity of PN �nishes the proof� by Lemma �
 PN is continuous at
v���� Therefore


�� � � ����� � �
��v��� 
 v�

�� � � �� ��PN �v����
 PN �v��
�� � ��

For every � � �
 let � � ������ as stated in the previous a�rmation� By
de�nition of ��

� there exists k� � N such that �k � k�
��v��� 
 v��

k

�� � �� The
previous a�rmation implies that

�k � k�
��PN �v����
 PN �v��k�

�� � ����

Since pN is the limit of the sequence fv��
k
gk��
 there exists k� � N such that

�k � k�
��PN �v��

k
�
 pN

�� � ����

Let k� � max�k�� k��� Therefore we have

��PN �v����
 pN
�� � ���PN �v����
 PN �v��

k�
�
���� ���PN �v��

k�
�
 pN

��� � ��

Hence
 PN �v���� � pN holds� That is
 the in�mum of PN is attained at v�!��
Since RN and PN are always well de�ned
 and �� � ! RN �v�� � PN �v��
 we
have RN �v���� � PN �v���� � pN � Therefore
 the frequency �N of the SAOC
does exist�

��



Corollary �� Under the same conditions of Proposition �
 suppose that
every sequence of vectors in v�!� has a subsequence that converges towards
an element in v�!�� Then
 the in�mum of PN is attained at v�!� and the
frequency �N of the SAOC does exist�

Proof�
It is derived immediatly from Proposition � with C � v�!��

Corollary �� Under the same conditions of Proposition �
 for every � � �

de�ne P� as

P� �

�
v� � v�!� �

jhf 
XN��� v�ij�
kv�k�

� �

�
�

Suppose that there exist �N � � and C�N � v�!� such that

�a� P�N � � and P�N � C�N �

�b� Every subsequence of vectors in C� has a subsequence that converges
towards an element in v�!��

Then
 the in�mum of PN is attained at v�!� and the frequency �N of the
SAOC does exist�

Proof�
By �L�c� we know that Im�PN � � ��� kf 
XN��k�	
 and therefore
 it is
bounded� Thus
 the in�mum of PN does exist� Let

pN � inf
��	

PN �v�� � kf 
XN��k��

If pN � kf 
XN��k�
 then we can assign �N � �N�� �nishing the proof�
Suppose that pN � kf 
XN��k�� Then it is enough to prove that C�N

satis�es the hypothesis of Proposition ��
By de�nition of P� we have

�� � ! v� � C�N �� v� � P�N �� jhf 
XN��� v�ij�
kv�k�

� �N �

As Lemma � states
 for every � � !

PN �v�� � kf 
XN��k� 
 jhf 
XN��� v�ij�
kv�k�

�

��



Let �C � P�N � Every frequency � � ! such that v� � C�N satis�es

PN �v�� � kf 
XN��k� 
 �N � PN �v�C��

It seems clear that the existence of the frequency will depend on f � But

especially
 it will depend on v�!�� Regarding to the problem of choosing !
and v�!�
 there are two possible problems that must be taken into account
in order to assure that the frequency does always exist�

�� For every convergent sequence of vectors there must exist a frequency
which associated vector is the limit of that sequence� This must happen
at least in a subset of v�!� where we can be sure that the in�mum of
PN is attained� This compactness� condition is necessary in order to
apply Proposition � and its corolaries� Suppose
 for example
 that we
want to approximate a vector that is the limit of a speci�c sequence�
If it does not exist a frequency for that vector
 the in�mum of PN will
not be attained at v�!��

�� The norms of the vectors in v�!� should always be larger than some � �
�� At least
 this must be true for the vectors that matches the residue

f 
XN�� as best as possible� In this way
 the function jhf�XN���v� ij
�

kv�k
�

does never su�er from lack of de�nition when the norms of the vectors
tend to �
 and the application of Corollary � will be surely simpler�

Speci�cally
 one must take special care with the vector �� Suppose that
H � L���
�� �	�
 we are approximating by real Fourier series �! � R�
 and
f�x� � x� A simple calculation allows us to assert that

lim
���

����x
 hx� sin�xi
ksin�xk� sin�x

���� � � and lim
���

hx� sin�xi
ksin�xk� ���

Hence
 the frequency that minimizes PN should be
 by continuity
 the fre�
quency �� But the vector associated with this frequency is the vector �
 that
cannot belong to v�!� because its norm is �� To avoid this problem
 ! should
be a closed subset without any element in a neighbourhood of �� In this way

the existence of the frequency is assured at every step� As will be shown �see
Theorem ��
 this restriction does not reduce the approximation capability
�assuming N� � !��

This kind of re�ections lead us to enunciate the following result�

��



Theorem �� Let H be a Hilbert space
 and f � H� Suppose that it is
possible to de�ne a topology in ! such that

�a� ! is compact�

�b� The function v � ! � H at SAOC"s de�nition is continuous on !
 with
the topology in H induced by the distance�

Then
 for every N � � the in�mum of PN is attained at v�!� and the fre�
quencies of the SAOC do always exist�

Proof�
For a given sequence of vectors in v�!�
 consider its sequence of associated
frequencies in !� Since ! is compact
 it contains a subsequence that con�
verges towards an element �N �that satis�es v�N � ��� Since v � ! � H
is continuous
 the limit of the vectors associated with the frequencies of the
subsequence is v�N � Hence
 every sequence of vectors in v�!� has a subse�
quence that converges towards an element in v�!�� Corollary � �nishes the
proof�

As we will see
 these results can be applied to a number of vector families
that are very usual in the literature� In the rest of the section we will suppose
that the frequencies of the SAOC always exist�

��� Convergence

Since the SAOC is a sequence of vectors
 wondering whether it converges or
not is a natural question� If so
 it would be of interest knowing whether it
converges towards the target vector f or not� In the sequel these questions
are answered�

Proposition �� Let H be a Hilbert space
 and f � H� The SAOC fXNgN��
satis�es the following properties�

�P�a� �N � � kf 
XN��k� � kf 
XNk��
�P�b� If M � N 
 then

�P�b�� kXMk� � kXNk��
�P�b�� hf 
XM � f 
XN i � kf 
XMk��
�P�b�� hXM � f 
XN i � R and hXM � f 
XN i � ��

��



�P�c� Suppose that �NN � �� The vector v�N is orthogonal to the space
spanned by fv��� � � � � v�N��g if and only if the previous existing coe��
cients do not change between the steps N 
 � and N � That is
 if

�j � � � j � N 
 � �Nj � �N��
j �

Remarks�

	 Again there is a great parallelism between these properties and those
satis�ed by an approximation with orthogonal vectors �see above��

	 �P�a� implies that the sequence fkf 
XNk�gN�� is decreasing and
positive� Therefore
 it is convergent� In principle
 it does not imply
fXNgN�� to be convergent �except if limN�� kf 
XNk� � ��� The
convergence could depend
 in principle
 on H
 f and v�!�� We will see
that the SAOC"s convergence is independent of these matters�

	 By �P�c�
 the only directions that guarantee that
 without recalculat�
ing the coe�cients
 the approximation is optimal are the orthogonal
directions� Hence
 if the approximation vectors are not mutually or�
thogonal
 the coe�cients must be recalculated�

Proof�

�P�a� Evident
 by de�nition�

kf 
XN��k� �
��f 
XN � � � v�N��

��� � kf 
XNk��
�P�b�� Evident
 combining �P�a� and �L�c��

�P�b�� Expressing f 
XN as f 
XM �XM 
XN we have

hf 
XM � f 
XN i � kf 
XMk� � hf 
XM �XM 
XN i �

By ���
 hf 
XM �XM 
XN i � � holds�

�P�b�� By �P�b�� and �L�e� we have

kf 
XMk� � hf 
XM � f 
XN i � hf� f 
XN i 
 hXM � f 
XN i
� kf 
XNk� 
 hXM � f 
XN i �

The proof �nishes with �P�a��

��



�P�c� The necessity is clear by ���� To prove the su�ciency
 suppose that
�j � � � j � N 
 � �Nj � �N��

j � Hence XN � XN�� � �NNv�N holds�
By ��� we have

�j � � � j � N
�
f 
XN � v�j

�
� ��

�j � � � j � N 
 �
�
f 
XN��� v�j

�
� ��

Therefore
 �j � � � j � N 
 � we have

� �
�
f 
XN � v�j

�
�
�
f 
XN�� 
 �NNv�N � v�j

�
�
�
�NNv�N � v�j

�
�

Since �NN � �
 the vectors v�N and v�j are orthogonal for every j
between � and N 
 ��

Theorem �� Let H be a Hilbert space
 and f � H� Suppose that the
element XN of the SAOC does always exist for every N � �� Then�

�T�a� The SAOC fXNgN�� is convergent in H� That is


�g � H lim
N��

kg 
XNk � ��

�T�b� In addition
 g satis�es�

�T�b�� ��� � ! limN�� hg 
XN � v��i � ��

�T�b�� ��� � ! hf� v��i � hg� v��i� In particular
 we have

�T�b��� �N � � hf 
 g�XN i � ��

�T�b��� �N � � �j � � � j � N �M � N
�
g 
XM � v�j

�
� ��

�T�b�� hf 
 g� gi � ��

�T�b�� There is no subset of vectors in v�!� that approximate f more
than g� That is


kf 
 gk � inf
k � C
�k � !

�����f 

X
k

kv�k

����� �

�T�c� If there exists A � ! such that the set of vectors fv� � � � Ag is closed
in H
 then fXNgN�� converges towards f � That is


lim
N��

kf 
XNk � ��

��



Remarks�

	 These results are very little restrictive� In order to assure the conver�
gence towards f 
 the family of vectors used in the construction must
have the capability of approximating any vector� Hence
 the SAOC
allows us to choose any of the multiple vector families satisfying this
property�

	 In order to satisfy �T�a�
 it is enough for kf 
XNk� to be decreasing
and positive
 and XN to satisfy ���� Clearly
 this latter condition is
the most important to assure the convergence� Observe
 again
 the
importance of working with optimal coe�cients�

Proof�

�T�a� SinceH is complete
 it is enough to prove that limN�M�� kXM 
XNk� �
�� Suppose thatM � N � Expressing XM
XN as �XM
f���f
XN �

and using �P�b�� we have

kXM 
XNk� � kf 
XMk� � kf 
XNk� 
 �Re �hf 
XM � f 
XN i�
� kf 
XMk� � kf 
XNk� 
 �kf 
XMk�
� kf 
XNk� 
 kf 
XMk��

Since the sequence fkf 
XNk�gN�� is decreasing and positive
 it is
convergent� Hence


lim
N�M��

kXM 
XNk� � lim
N�M��

�kf 
XNk� 
 kf 
XMk�
�
� ��

�T�b�� By Schwartz inequality ��� we have

��� � ! jhg 
XN � v��ij � kg 
XNk kv��k �
Using �T�a�


��� � ! lim
N��

jhg 
XN � v��ij � lim
N��

kg 
XNk kv��k � ��

�T�b�� Let �� � !� By de�nition of XN 
 for every N � � and every  � C
kf 
XN��k� � kf 
 �XN � v���k�

� kf 
XNk� 
 �Re �hf 
XN � v��i� � jj�kv��k�

��



hold� Expressing f 
XN as f 
 g � g 
XN we have

kf 
XN��k� 
 kf 
XNk� �
jj�kv��k� 
 �Re �hf 
 g� v��i� 
 �Re �hg 
XN � v��i� �

Hence


�Re �hf 
 g� v��i�
 jj�kv��k� �
� kf 
XNk� 
 kf 
XN��k� 
 �Re �hg 
XN � v��i�
� kf 
XNk� 
 kf 
XN��k� � � jhg 
XN � v��ij
� kf 
XNk� 
 kf 
XN��k� � � jj jhg 
XN � v��ij �

for every  � C � Let � �
hf�g�v��i
kv��k� 
 and � � �� Since the sequence

fkf 
XNk�gN�� is decreasing and positive
 and using �T�b��
 there
exists N� such that �N � N�


� � kf 
XNk� 
 kf 
XN��k� � ���

and
 in addition

� j�j jhg 
XN � v��ij � ����

Thus we have

�Re �hf 
 g� �v��i�
 j�j�kv��k� � ��

Since

hf 
 g� �v��i � � hf 
 g� v��i � ��kv��k� � j�j�kv��k��
�Re �hf 
 g� �v��i� � �j�j�kv��k� holds
 and therefore

�� � � j�j�kv��k� � �Re �hf 
 g� �v��i�
 j�j�kv��k� � ��

Hence
 j�j�kv��k� � �� Since kv��k� � �
 we have � � �� Thus
 by
de�nition of �
 hf 
 g� v��i � � for every �� � !� In particular we
have

�T�b��� �N � � hf 
 g�XNi � �

�T�b��� Using ���
 �j � � � j � N �M � N�
g 
XM � v�j

�
�
�
g� v�j

�
 �XM � v�j
�
�
�
g� v�j

�
 �f� v�j� � ��

��



�T�b�� Expressing g as g 
XN �XN 
 and using �T�b���
 we can derive

hf 
 g� gi � hf 
 g� g 
XN i � hf 
 g�XNi � hf 
 g� g 
XN i �

By Schwartz inequality ��� we have

jhf 
 g� g 
XN ij � kf 
 gk kg 
XNk �

Using �T�a�
 limN�� jhf 
 g� g 
XN ij � � holds� Therefore

hf 
 g� gi � ��

�T�b�� By �T�b��
 any vector combination
P

k kv�k in v�!� satis�es
hf 
 g�

P
k kv�ki � �� Hence we have

kf 
 gk� � hf 
 g� f 
 gi �
	
f 
 g� f 


X
k

kv�k




 hf 
 g� gi �

Using �T�b�� and Schwartz inequality ��� we have

kf 
 gk� �
�����
	
f 
 g� f 


X
k

kv�k


����� � kf 
 gk
�����f 


X
k

kv�k

����� �
Therefore
 kf 
 gk � kf 
Pk kv�kk� The other inequality is clear

since for every N � �

inf
k � C
�k � !

�����f 

X
k

kv�k

����� � kf 
XNk � kf 
 gk� kg 
XNk �

The proof �nishes using �T�a��

�T�c� It is derived immediately from �T�b���

��� Methodology

A possible methodology to approximate any function f � H with the SAOC
approach could be the following�

�� Choose the desired approximation accuracy � � ��

�� Select ! and v�!� such that

��



�a� The frequencies �N of the SAOC do always exist� �Theorem ���

�b� There exists a set of frequencies A � ! such that it is possible to
approximate f less than � with the set of vectors fv� � � � Ag
�Theorem ���

�� Construct the SAOC fXNgN���
After these steps
 the deviation between f and the obtained approximation
�in the limit� is less than ��

� Speci�c vectors in H � L
�

From now on we will work in the space L�� The vector to approximate is
a square integrable function f��t�� In SAOC"s de�nition there are hardly
restrictions about the vectors v�k��t� � v��k��t� � H used to approximate f �
The only required condition is to have a norm di�erent from �� Thus
 the
method can be applied to a number of vector families that are very usual
in the literature� The vectors discussed here are not
 surely
 the only ones
that can be used within the method� In fact
 the universal approximation
capability of a family of functions is enough to apply the SAOC method with
guarantee of convergence �whenever the SAOC construction is feasible��
Before proceeding to enumerate some of these families
 it is convenient to
remember some results about denseness in L� �a subset M of a topological
space X is said to be dense in X if M � X
 where M is the topological
closure of M��

�� If K is compact
 the set of continuous functions in K is dense in L��K�
�Reddy ����	
 and L��K� � L��K��

�� The set of continuous functions in RI with compact support is dense
in L��RI� �Rudin ����	� The support of a function is the closure of the
set where the function is di�erent from �� Since a continuous function
with compact support belongs to L��K�
 where K is its support
 every
function in L��RI� may be approximated by square integrable functions
on a compact�

��� Approximation by polynomials

The celebrated Weierstrass theorem states that any real continuous function
on �a� b	 � R can be approximated uniformly by an algebraic polynomial
�Weierstrass ����	� By the Stone�Weierstrass theorem for real functions
 this

��



result can be extended to real continuous functions on a compact of RI

�Lang ����	
 with the usual de�nition of a polynomial in several variables�
By �Reddy ����	
 any real function in L��K� can be approximated by poly�
nomials

P �t�� � � � � tI� �
X

�n����nI t
n�
� � � � tnII �

where the coe�cients are real
 and the sum is taken over a �nite number
of I�tuples �n�� � � � � nI� � NI � That is
 the set of polynomials ftn�� � � � tnII �
�n�� � � � � nI� � NIg is closed in the space of real functions of L��K�� Hence

the SAOC can be applied to any function of this space considering vectors
v��t�� � � � � tI� � t��� � � � t�II �! � RI�� Observe that
 in this case
 the coe��
cients of the SAOC can be supposed to be real� If ! is compact
 the existence
is guaranteed �see Theorem ���

��� Approximation by nonharmonic Fourier series

Suppose that H � L���
�� �	� and we are approximating by nonharmonic
Fourier series with vectors v��t� � ei�t �! � R�� Since feikt � k �Zg is closed
in L���
�� �	� �Young ����	
 the SAOC can be applied to any function in this
space� In this case we have ��� � ! kv��k �

p
��
 and hf 
XN � v�i is the

value of the Fourier transform of the residue in the vector v�� By SAOC"s
de�nition
 together with ���
 the vector associated with the new frequency
�N allows a better approximation of f than the vector that maximizes the
modulus of the Fourier transform of the residue� If the function is real and
is directly approximated by sines and cosines
 �v��t� � sin��t� or v��t� �
cos��t�
 � � R�
 the results are the same �Achieser ����	� In this case the
Fourier transform is normalized by the vector norm �see ����
 that may be
nonconstant for the di�erent frequencies� A linear change of variable allows
the obtaining of the same results in L���a� b	�� By the Stone�Weierstrass
theorem for complex functions
 the continuous functions on �
�� �	I can be
approximated by trigonometric polynomials

P ��t� �
X

�	kne
i	kn�	t�

where the sum is taken over a �nite number of I�tuples �kn � ZI
 and
�kn � �t represents the inner product in RI� By �Reddy ����	
 any function
in L���
�� �	I� can be approximated by the trigonometric polynomials afore�
mentioned� Hence
 the SAOC can be applied to any function of this space
with vectors v���t� � ei	��	t
 �! � RI�� As in the one�dimensional case
 a
linear change of variable allows the obtaining of the same results in any hy�
percube of RI
 and therefore in any compact� In this case the existence is
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guaranteed both if ! is compact �see Theorem �� and if ! � RI� A known
result states that the Fourier transform of a function in L��K� tends to �
as the frequency modulus tends to in�nite �Stein � Weiss ����	� Since every
function in L��K� belongs to L��K�
 this also applies to f 
 XN��� Hence

jhf 
XN��� v�ij tends to � if j�j tends to in�nite� The vector norm kv�k is
constant� We can apply Corollary �� for every � � � there exists a hypercube
C� � RI such that P� � v�C�� � C�� Since C� is compact
 every sequence
of vectors in C� has a subsequence convergent towards an element in C��
If the function is real
 it can be approximated by sines and cosines �v���t� �
sin�����t� or v���t� � cos��� ��t�
 �� � ! � RI�� If we use sines
 ! cannot contain
frequencies arbitrarily near to ��

��� Approximation by wavelets

A similar result can be found in the �eld of signal processing� A signal is a
function f � L��R�� A wavelet is a function � � L��R� such that k�k � �
R�
��

��t�dt � � and is centered in the neighborhood of t � �� The wavelets
are translated and scaled to build a family of time�frequency atoms

�u�s�t� �
�p
s
�

�
t
 u

s

�
u � R s � R��

also satisfying k�u�sk � �� In practice
 the most common wavelets are con�
tinuous �except
 maybe
 in a �nite set� and bounded
 such as Mexican hats
�second derivative of a gaussian� or Gabor wavelets ���t� � g�t�ei
t
 with
g�t� a gaussian�� There are wavelets such that a subset of its family of time�
frequency atoms is an orthonormal basis and
 therefore
 closed in L��R�
�Mallat ����	� With the same de�nitions
 and considering v��t� � �u�s�t�
�! � R � R��
 the SAOC can be applied to any signal f � L��R�� To
guarantee the existence it is enough for s to belong to a compact in R�

not containing � �if u tends to in�nite
 jhf 
XN��� v�ij tends to �
 whereas
the norm of v� keeps constant�� With an analogous reasoning to that of
Fourier series
 the vector associated with the new frequency �N allows a bet�
ter approximation of f than the vector that maximizes the modulus of the
wavelet transform of the residue� The wavelet transform is
 in this case
 the
projection of the residue onto the vector�

��� Approximation by neural networks

In Arti�cial Intelligence
 neural networks have been shown to be a very suit�
able mechanism to approximate functions� A feed�forward neural network

��



�FNN� with a single hidden layer and a linear output unit approximates a
function f � RI � R as follows�

fN ��t� � b� �
NX
k��

�k �
�
��k ��t� bk

�
��k � RI bk � R� ���

where ��k � �t represents the inner product in RI
 N is the number of units in
the hidden layer
 �k is the weight of the connection between the unit k in
the hidden layer and the output unit
 ��k is the weight vector associated with
the connections between the input layer units and the unit k of the hidden
layer and � � R� R is the so called activation function� The biases �bk� are
external parameters for each unit
 and can be considered as weights with a
simple transformation� The most usual activation functions are sigmoidal�
like �continuous
 nonconstant
 increasing and bounded�
 such as the logistic
function ��x� � �

��e�x
or the hyperbolic tangent function ��x� � ��e�x

��e�x
� In

�Funahashi ����	 it is proved that FNNs with a hidden layer of sigmoidal
units and a linear output layer can approximate any function f � K � RO

in L��K�
 with K compact� Hence
 the SAOC with sigmoidal functions
�! � RI �R� can be applied to any real function in this space� In this case

the existence is guaranteed as follows� If the modulus of �� can be arbitrarily
large
 there will be necessary to consider the accummulation points of the
selected sigmoidal functions �that will be step functions� to be able to guar�
antee the compactness� of the vector space� If any of the asymptotes of �
is �
 the biases cannot be arbitrarily large �since in the limit we would have
the function ���
More recent results prove that with any activation functions di�erent from
an algebraic polynomial �a�e��
 neural networks are universal approximators
�Leshno et al� ����	�

Other kind of neural networks
 the radial basis function networks �RBFN�

approximate a function f � RI � R as follows�

fN ��t� �
NX
k��

�k g

�
�t
 �uk
sk

�
�uk � RI sk � R� ���

where g � RI � R is the radial basis function �RBF�� The more frequent
RBFs are radially symmetric �only depend on

���t
 �uk
���
 such as the gaussian

function g��x� � e�k	xk
�

� In �Park � Sandberg ����	 it is proved
 among other
things
 that RBFNs can approximate any function f � RI � RO in L��RI�
with a function g integrable in RI satisfying

��



�a�
R
RI g��x�d�x � ��

�b�
R
RI jg��x�j�d�x ���

In the same paper it is proved that a necessary and su�cient condition for
the RBF is to be square integrable and pointable� In particular
 there may
be functions with

R
RI g��x�d�x � �� Observe that it is not necessary for the

function to be radially symmetric� Consequently
 the SAOC with functions g
satisfying the previous conditions �! � RI�R� can be applied to approximate
any function in L��RI�� As for wavelets
 to guarantee the existence it is
enough for sk to belong to a compact in R not containing � �if j �ukj tends to
in�nite
 jhf 
XN��� v�ij tends to �
 whereas the norm of v�
 for sk �xed
 is
constant��

� Related work

��� Projection Pursuit

Projection Pursuit �PP� is a family of optimization methods appeared in the
statistics literature� Its name is derived from the fact that the data are pro�
jected onto several well�chosen directions
 which are selected to maximize a
certain objective function� In general
 given a random variable X
 the meth�
ods based in PP search for a linear projection A optimizing an objective
function Q�FA�
 where FA is the distribution of the random variable A �X
�Huber ����	� By changing the objective function Q�FA�
 the particular PP
methods are obtained� PP is able of bypassing the curse of dimensionality
caused by the fact that a high dimensional space is mostly empty
 and it
is also able to ignore irrelevant variables �noisy and information�poor vari�
ables�� In addition
 PP generalizes classical methods in multivariate analysis

such as principal components and discriminant analysis
 and in factor anal�
ysis �the quartimax and oblimax methods�� As a drawback
 they use to
be high�demanding on computation time� Due to this computational cost

and to the interest in getting an ordered set of projections
 the stepwise
methods are very attractive� As a particular case of function approxima�
tion
 and historically the �rst one
 Projection Pursuit Regression �PPR�
�Friedman � Stuetzle ����	 estimates the conditional expectation of a ran�
dom variable Y � R given X � RI by means of a sum of ridge functions

E�Y j X � �x	 � f��x� ��
NX
j��

gj��aj
t� �x�

��



as follows �the �aj"s act as the frequencies�� Suppose that the �rst n
� terms
of the approximation have been determined� That is
 the vectors �aj and the
functions gj 
 � � j � n
 � have been calculated� Let

rn����x� � f��x�
 fn����x� � f��x�

n��X
j��

gj��aj
t� �x�

be the residue at step n
�� Find �an and gn such that
��rn����x�
 gn� �an

t� �x���
is the minimum� This process is repeated until the residue is smaller than
a user�de�ned threshold� In the original de�nition
 the approximation is de�
�ned from a set of observations �Friedman � Stuetzle ����	� For a given �an

the function gn is constructed from the scatterplot of rn�� against �an

t � X

so that gn is smooth and �ts the scatterplot� In the abstract version
 the
function itself is available instead of just a set of observations �Huber ����	�
In this case it is possible to prove that
 for a �xed �an
 the function gn min�
imizing

��rn����x�
 gn� �an
t � �x��� is gn�z� � E�rn���X� j �ant �X � z	� In order

to be well�de�ned
 f � L� and the integral is de�ned with regard to a proba�
bility measure� The problem of �nding �an is much more di�cult
 and many
times there is no guarantee that the minimum is global
 regardless of its exis�
tence� The process may be improved by back�tting� omit some of the earlier
summands gj
 determine its best possible replacement
 and then iterate� Usu�
ally
 the directions �aj are kept �xed� In �Huber ����	 it is conjectured that
limn�� E�rn	 � � under mild smoothness conditions� In �Jones ����	 those
conditions are pointed out� for a �xed �
 � � � � �
 �an must be such that

E�g�n� �an
t�X�	 � � sup

bt�b��

E�g�n��b
t �X�	�

Later
 �Jones ����	 proved that the convergence may be accelerated approx�
imating by an optimal convex combination� Given a function set Pn
 �nd
� � 	n � �
 �an and gn � Pn so that

��f 
 ��� 
 	n�fn�� � 	ngn� �an
t � �x���� is

the minimum� De�ning relaxed PPR as

fn��x� � �� 
 	n�fn����x� � 	ngn� �an
t� �x��

its approximation error is O���
p
n��

In philosophic terms
 the SAOC could be understood as a function approx�
imation method based on PP and very similar to PPR� However
 there are
at least two important di�erences with respect to PPR�

�� The functions gj 
 while calculated in PPR
 are �xed in the SAOC�
Although the calculation of gj leads to a more �exible model
 there can
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be considerable technical di�culties� In particular
 the choice of the
bandwidth of the smoother used to �nd gj is very critical �Huber ����	�

�� When calculating the new term in PPR
 the coe�cients of the previous
terms are kept constant �in PPR
 the coe�cients are incorporated in
the functions gj�� The possibility that a modi�cation of the coe�cients
can lead to a better reduction of the total error is not foreseen in PPR
�see Figure ��� This is a consequence of trying to approximate the
residue at the previous step with only one term
 regardeless of its in�
teraction with the other terms �observe that back�tting is not enough��
In relaxed PPR
 the optimization is carried out on the segments con�
necting fn�� and gn
 whereas in SAOC the optimization is performed
on the hyperplane that generate g�� � � � � gn��� gn�

The idea of Projection Pursuit has been applied in di�erent areas�

����� Projection Pursuit in Neural Networks

The two layer architecture of a neural network is well suited to implement
PPR �Hwang et al� ����	
 �Hwang et al� ����	� The Projection Pursuit Lear�
ning Network �PPLN� is modeled as a two�layer �one�hidden layer� feedfor�
ward neural network

#yi �
mX
k��


ikfk�

pX
j��

	kjxj��

where f
ik � i � �� � � � � qg are the output�layer weights connecting the kth
hidden neuron to all the output units
 fk is the unknown �trainable� smooth�
activation function of the kth hidden neuron
 and f	kj � j � �� � � � � pg de�
note the hidden�layer weights connecting all the input units to the kth hidden
neuron� The training of all the parameters is based on the criterion of mini�
mizing the error function L� �

Pq
i��WiE��yi
 #yi��	� A PPLN learns neuron

by neuron
 and layer by layer cyclically after all the training patterns are
presented� All the parameters to be estimated are hierarchically divided into
m groups �each associated with one hidden neuron�
 and each group
 say the
kth group
 is further divided into three subgroups� the output�layer weights
f
ik � i � �� � � � � qg
 the smooth nonparametric function fk of the kth hid�
den neuron
 and the input�layer weights f	kj � j � �� � � � � pg connected to
the kth hidden neuron� The PPL starts from updating the parameters as�
sociated with the �rst hidden neuron �group� by updating each subgroup

f
i�g
 f� and f	�jg consecutively �layer by layer� to minimize the error func�
tion L�� It then updates the parameters associated with the second hidden

��



neuron by consecutively updating f
i�g
 f� and f	�jg� A complete updat�
ing pass ends at the updating of the parameters associated with the mth
�the last� hidden neuron� Repeated updating passes are made over all the
groups until convergence �back�tting�� The kth group parameters are esti�
mated as follows� Least Squares �LS� is applied to estimate f
ikg
 �given
fk and f	kj � j � �� � � � � pg
 L� is quadratic in the f
ikg�
 fk is estimated
by a one�dimensional data smoother and a nonlinear optimization algorithm
�Gauss�Newton originally� estimates f	kjg�

Note that in order to compute f
ikg
 the residue resulting of consider all
the units except the kth unit is minimized� Again
 this is the idea of keeping
the coe�cients of the previous terms �xed�

In comparative studies between PPLN and Backpropagation Learning Net�
works �BPLN�
 both have quite comparable training speed and achieve com�
parable accuracy for independent test data
 but PPLN are considerably more
parsimonious in that fewer units are required to approximate the desired
function �Hwang et al� ����	� In addition
 in BPLN the weights �directions�
in the �rst layer may be very di�erent between di�erent simulations with
di�erent number of hidden units
 whereas PPLN is more consistent in that
sense�

����� Projection Pursuit in Signal Processing

Some methods with the same underlying ideas than PP have appeared in the
area of Signal Processing� In �Mallat � Zhang ����	 Matching Pursuit �MP�
is described
 an algorithm that decomposes any signal into a linear expansion
of waveforms that are selected from a redundant dictionary of functions� The
theoretical results in �Mallat � Zhang ����	 are general in the sense that can
be applied to any vector f in any Hilbert space H� They de�ne a dictionary
as a family D � �g����
 of vectors in H
 such that kg�k � � for all � � $�
The MP works roughly as follows� Let R�f � f 
 and suppose that the nth
order residue Rnf is computed
 for n � �� Choose an element g�n � D which
closely matches the residue Rnf 
 that is

jhRnf� g�nij � 	 sup
��


jhRnf� g�ij �

where 	 is an optimality factor that satis�es � � 	 � �� The residue Rnf is
subdecomposed into

Rnf � hRnf � g�ni g�n �Rn��f

��



which de�nes the residue at the order n� �
 so that

f �
nX
i��

�
Rif� g�i

�
g�i �Rn��f�

In �Mallat � Zhang ����	 it is proved that
 if the dictionary D is closed in
H
 then f �

P�
i�� hRif� g�ii g�i � A �nal recalculation of the coe�cients is

made
 called back�projection
 to approximate f at best with the �nally se�
lected vectors�

Although MP was developed independently from PP and in a very di�er�
ent context
 the underlying ideas are similar� We can observe that
 again

the coe�cients of the previous terms remain �xed when calculating the new
term�

��� Cascade Correlation

In the �eld of Neural Networks
 the most used constructive method is Cascade�
Correlation �CC� �Fahlman � Lebiere ����	� Constructive �or additive� me�
thods start out from a small network and then insert additional units and
connections �weights� until the network can represent the required function�
CC combines two key ideas� The former is the cascade architecture
 in which
hidden units are added one at a time� The newly added hidden neuron re�
ceives inputs from the input layer as well as from the previously added hidden
neurons� The latter is the learning algorithm� For each new hidden unit
 the
algorithm tries to maximize the magnitude of the correlation between the
new unit"s output and the residual error signal of the network� The hidden
unit"s input weights are frozen at the time the unit is added to the network�
Only the output connections are trained repeatedly� The learning algorithm
works as follows� It begins with a network without hidden units
 and the di�
rect input�output connections are trained as well as possible over the training
set� To create a new hidden unit
 it begins with a candidate unit that receives
trainable input connections from all of the network"s inputs and from all the
pre�existing hidden units� The output of this candidate is not yet connected
to the active network� The candidate unit"s input weights are adjusted to
maximize the correlation �or
 more precisely
 the covariance�

S �
X
o

�����
X
p

�Vp 
 V ��Ep�o 
 Eo�

�����
where o are all the output units
 p are the training patterns
 Vp is the ac�
tivation of the candidate
 and Ep�o is the residual error observed at unit o
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�without the candidate unit
 which is not yet connected�� The quantities V
and Eo are the values of Vp and Ep�o averaged over all patterns� In order to
maximize S
 a gradient ascent is performed� Once again
 only a single layer
of weights is trained� When S stops improving
 the candidate is installed as
a hidden unit� Its input weights are frozen
 and all the output layer connec�
tions are trained as well as possible over the training set� The cycle continues
until the network"s performance is satisfactory� Instead of a single candidate
unit
 it is possible to use a pool of candidate units
 each with a di�erent set
of random initial weights� Alternatively
 the candidates might have di�erent
nonlinear activation functions
 and let them compete to be chosen for addi�
tion to the active network�

At the original de�nition �Fahlman � Lebiere ����	
 CC is only designed to
approximate datasets
 and there is no result of convergence� Even so
 there
is nothing that prevents to think at an abstract version
 where a function is
approximated instead of a dataset
 and where the numerical optimizations
are the zeros of the derivative of the objective function� Some previous stud�
ies have shown that the idea of maximizing the correlation tends to produce
saturate units �Hwang et al� ����	� Moreover
 the decision boundary may be
very zigzag and unsmooth� This makes the CC method more suitable
 in
principle
 for classi�cation problem than for regression problems�

CC has two main problems �Prechelt ����	�

�� In principle
 the covariance is an ill�suited objective function for train�
ing the candidates� Maximizing covariance trains candidates to have a
large activation �large deviation from average activation� whenever the
error at their output is not equal to the average error�

�� Cascading the hidden units results in a network that can represent very
strong nonlinearities� Although this power is in principle useful
 it can
be a disadvantage if such strong nonlinearity is not required to solve
the problem�

To remedy the �rst problem
 one can change the learning rule and train di�
rectly for minimization of the outputs errors instead of for maximization of
covariance� Virtual output connections must be created for the candidate
units� These connections do not propagate an activation to the output units

but they receive an error signal during the backward pass� This signal is cor�
rected by the would�be contribution of the candidate unit and is then handled
like in normal backpropagation� Only the candidate units are being trained
while the rest of the network is �xed �see �Prechelt ����	 for details�� For the
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second problem
 not cascading hidden units is better than cascading them
for some problems and worse for others� In �Prechelt ����	
 the former case
occurs more often�

The di�erences between the original CC and the SAOC are quite evident�
Neither the architecture nor the optimization function allow to establish a
direct relation� However
 and opposite to PPR
 the idea of optimizing the
coe�cients of the other units
 once the new hidden unit has been added
 ap�
pears in CC� By minimizing the error instead of maximizing the correlation
and removing the cascaded connections �Cand� in �Prechelt ����	
 which
is neither cascaded nor deals with the correlation�
 the di�erences with the
SAOC are reduced� Even so
 the frequencies obtained by these methods are
the result of

�� Approximating the residue at the previous step by only one term �only
one frequency�
 exactly the same as in PPR�

�� Finding the optimal coe�cients of the terms associated with the exist�
ing frequencies�

But the frequencies such that their associated vectors minimize the residue
are not always the best
 even though the coe�cients are optimized �see Figure
��� The SAOCmethod can �nd frequencies muchmore suited to approximate
the function than those minimizing the residue� In fact
 it would be possible
to construct a SAOC with the frequencies found by the Cand� method� So

in this sense
 we may guarantee the convergence of Cand� �abstract version�
to any function in L�
 if the hypotheses of Theorem � are satis�ed�

��� Projection Pursuit and Cascade Correlation

Some hybrid models have appeared in the NN literature that attempt to
pro�t from the advantages of PP and CC� In �You et al� ����	 Cascaded
Projection Pursuit Network �CPPN� is de�ned
 which implements PPLN
with cascaded connections among the hidden units
 to allow high�order non�
linearities� With the aim of optimizing the nonlinearity degree and relax�
ing the necessity of prede�ning it
 the Pooling Projection Pursuit Networks
�Lay et al� ����	 use a pool of Hermite polynomials of several degrees during
the training of a new candidate hidden unit�

��� Other methods in Neural Networks

In �Zhang � Morris ����	 a sequential orthogonal approach to the building
and training of single hidden layer neural networks is described� In the pro�
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posed method
 hidden neurons are added one at a time� The procedure starts
with a single hidden neuron and sequentially increases the number of hidden
neurons until the model error is su�ciently small� When adding a neuron

the new information introduced by this neuron is caused by that part of its
output vector which is orthogonal to space spanned by the output vectors
of previously added hidden neurons� In this context
 a vector is an element
of RT
 where T is the number of patterns� The classical Gram�Schmidt
orthogonalization method is used at each step to form a set of orthogonal
bases for the space spanned by the output vectors of the hidden neurons�
Hidden layer weights cn are found through optimization �gradient descent�
of kEn�� 
 �nRn�cn�k
 where En�� is the network error with the previously
added hidden neurons� Output layer weights �n are obtained from the LS re�
gression� When the training procedure is terminated at the nth step
 output
layer weights need to be recalculated in order to accommodate the e�ects of
the non�orthogonal part of the output vectors of the hidden neurons� Output
layer weights are determined through orthogonal LS using the Gram�Schmidt
orthogonalization results obtained at each step�
Although the coe�cients are recalculated when the training �nishes
 the fre�
quencies are obtained again approximating the residue at the previous step
with only one term �one frequency�
 exactly the same as in PPR�

� SAOC	s practical properties

The SAOC satis�es a number of interesting properties to implement it in an
e�cient and reasonably simple fashion�

First
 observe that the problem of �nding the frequencies and the coe��
cients of XN is reduced to the only problem of �nding the frequencies� once
the frequencies are selected
 the optimal coe�cients can be obtained solving
the linear equations system proposed at ���� From a geometrical point of
view
 it is equivalent to say that the main problem is to �nd good approxi�
mation directions� By the de�nition of XN 
 at every step it is only necessary
to �nd a new frequency �a new direction�
 since the frequencies found at
previous steps remain �xed� This fact reduces considerably the di�culty of
solving the optimization problem proposed� For a �xed N 
 a method trying
to �nd the frequencies and the coe�cients at the same time should search
for �N parameters� The N coe�cients can be obtained from the N frequen�
cies� With the SAOC
 N � � parameters must be found at every step
 but
the N coe�cients are a function of the selected frequency� The di�culty of
�nding the coe�cients is almost null� In contrast
 the di�culty of �nding N
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frequencies at a time seems to be very superior to that of �nding N times
one frequency ��Huber ����	
 �Jones ����	�� Not to forget that
 in general
 it
is impossible to know a priori the number of necessary terms N to achieve a
satisfactory approximation�

Second
 if we only have a dataset
 it would be convenient to have an ef�
�cient mechanism to compute the required operations� Suppose we are at
step N � We have ��� ��� � � � � �N�� � !
 and we want to �nd the new fre�
quency �N � Suppose that we have two candidates ��N and ��N � How can we
decide which is the best one% In a �rst approximation
 we could obtain the
coe�cients
 solving ���
 and compute kf 
XNk� for both frequencies� The
best minimizes the error� This strategy forces to make two passes through
the dataset� the �rst one to propose the linear equations system
 and the sec�
ond one to compute the residue� The �rst one seems unavoidable
 because we
need to know the projections of the vector associated with the new frequency
onto the vector f and the vectors associated with the previous frequencies
�the projections involving the previous frequencies keep constant
 and we do
not need to recalculate them�� In contrast
 the second pass is avoidable� By
�L�c�
 we have kf 
XNk� � kfk� 
 kXNk�� The frequency that minimizes
the error is such that maximizes kXNk�� By �L�d�
 we know that

kXNk� �
NX
k��

�Nk hf� v�ki� ���

Hence
 to compute kXNk� it is not necessary to make a new pass through
the dataset� The values of fhf� v�kig��k�N are the independent vector of the
linear equations system ��� just solved to obtain f�Nk g��k�N � Thus
 we will

select the frequency that maximizes
PN

k�� �
N
k hf� v�ki� The cost of computing

this value is O�N�� Note that the cost of computing kXNk� or kf 
XNk�
directly from the dataset is O�T �N�
 where T is the number of elements in
the dataset�

Finally
 we may wonder whether the vector norm a�ects or not in the ap�
proximation� It could happen systematically that vectors with large norms
were better to approximate than vectors with small norms
 or vice versa� If
the norm of the vector v�� depended on the frequency ��
 we would have
the undesirable property that there are priviligiated frequencies only by the
norm of its associated vector and independently of the target vector� But

fortunately
 this is not the case� Suppose we are at the step N 
 and we have
just selected �N and calculated �N� � � � � � �NN��� �

N
N � Suppose that we mod�

ify the norm of the vector v�N by de�ning v��N � h � v�N h � R� h � �
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�
��v��N�� � jhj � kv�Nk�� Proposing again the linear equations system ���
 we

must �nd �
�N
� � � � � � ��N

N��� �
�N
N such that�

BBB�
hv��� v��i hv��� v��i � � � �

v��N � v��
�

���
���

� � �
����

v��� v�N��

� �
v��� v�N��

� � � � �
v��N � v�N��

��
v��� v

�
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� �
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�
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� � � � �
v��N � v

�
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�

�
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�
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�
�N
�
���

�
�N
N��

�
�N
N

�
CCCA �

�
BBB�

hf� v��i
����

f� v�N��

��
f� v��N

�

�
CCCA �

This system solution is ��
�N
� � � � � � ��N

N��� �
�N
N � � ��N� � � � � � �NN��� �

N
N�h�� Com�

puting the norm of the new X �
N �

PN��
k�� �

N
k v�k � �

�N
N v��N using ��� we have

kX �
Nk� �

N��X
k��

�Nk hf� v�ki � �
�N
N

�
f� v��N

�

�
N��X
k��

�Nk hf� v�ki �
�NN
h
hf� h � v�N i � kXNk��

Therefore
 kf 
XNk� � kf 
X �
Nk�� That means that the goodness of the

new frequency �� with regard to its approximation capability does not de�
pend on the norm of the vector v��� In particular
 we could de�ne v��N �
v�N� kv�Nk
 so that their norm would always be ��


 SAOC and Neural Networks

From now on
 we will focus on Arti�cial Intelligence
 and more precisely in
the �eld of feed�forward neural networks�

LetK be a compact inRI� We want to approximate a function f � K � RO in
H � L��K� by functions fN as de�ned in ���
 where the activation functions
are nonlinear �otherwise
 the whole problem would be resolved by solving a
linear equations system�� We only have the value of the function in a dataset

and the main objective is to achieve a successful interpolation or generaliza�
tion� The dimension of the input space may be very large �of the order
of hundreds� depending on the problem at hand� Although ! � RI��
 the
number of weights needed to approximate the dataset may be much larger
�I �N�� Since we only have a dataset
 the restriction of K being compact is
not a real restriction� It is very easy to verify that
 if we only have a �nite
dataset
 the problem of approximating a function in L� is equivalent to that
of approximating �by Least Squares� a vector �t � C T 
 where T is the number
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of elements in the dataset� The vector component ti is associated with the el�
ement i in the dataset� Every frequency is associated with a speci�c vector in
C T 
 which components depend on the frequency and the point in the dataset�

In practice
 the SAOC method presents a problem� To �nd a valid fre�
quency
 we must verify that kf 
XNk� � inf��C ��	 kf 
 �XN�� � v��k� �
inf��	 PN �v��� Usually
 we will be able to compute inf��	 PN �v�� if we al�
ready know the frequency �� that minimizes PN � But this minimummust be
global in the space of parameters� Global optimization techniques are very
expensive computationally� In a high�dimensional space without any kind
of convexity
 it becames an almost intractable problem �Horst � Tuy ����	�
Anyway
 since we only have a dataset
 and we seek a good generalization
performance
 it may happen that approximating too much the points in the
dataset leads to a performance degradation� This can happen
 for example

if the data is noisy
 or few data are available with respect to the input dimen�
sion �curse of dimensionality� or if the model is too complex �Bishop ����	�
Many times
 �nding a local minumum is enough to achieve a good perfor�
mance�

Neural Networks are a suitable approach to deal with function approxima�
tion problems when only a dataset is available� On the one hand
 they allow
the approximation of the value of the function at the points in the dataset�
On the other
 they o�er a number of techniques to deal with the gener�
alization problem� In addition
 neural networks work in high�dimensional
spaces with nonlinear approximations without �theoretically� problems de�
rived from the dimension
 since the error only depends on the complexity
of the function and the number of units in the hidden layer �Barron ����	�
The existing theory can guarantee that the global minimum exists
 but it
cannot be found �in general� with a reasonable computational cost� The
methods are either non�constructive or computationally prohibitive in the
general case �Scarselli � Tsoi ����	� Most of the times
 a local minimum
is found� An example is o�ered by the celebrated Kolmogorov"s theorem
�Kolmogorov ����	
 which states that any continuous function of several vari�
ables on any compact can be represented as a superposition of one variable
functions� Although the proof is constructive
 its practical applications are
limited ��Girosi � Poggio ����	
 �K &urkov'a ����	
 �K &urkov'a ����	�� Another
similar situation is the use of heuristics �both in Neural Networks and in
other Arti�cial Intelligence areas�
 to solve problems for which we do not
even have an existence theorem� As has been said before
 this is not a major
problem if we are dealing with a dataset and our main aim is the generaliza�
tion�
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Hence
 there are reasons to think that the SAOC method can be imple�
mented in a neural network� In general
 not every theoretical result can be
put into practice in a reasonable manner �Scarselli � Tsoi ����	� In fact
 the
pro�t is reciprocal� The SAOC can serve as an inspiration to train a neural
network� adding hidden units one at a time
 choosing the initial weights in
an optimal manner
 so as to train the network until we have a satisfactory
model �sequential training�� This idea
 in addition
 o�ers a number of ad�
vantages to train the network� First
 it allows to estimate in a reliable way
the optimal number of hidden units that is necessary to approximate the
function �that is
 to be parsimonious�� This is one of the basic problems met
in constructing a neural network� If there are few hidden units
 the dataset
will not be approximated properly� If there are too many
 the generalization
may not be satisfactory
 since the model may be too complex� In addition

the most promising activation function can be chosen at every step
 so that
the network adapts its architecture to the speci�c target function� Other
advantage is related to the training monitoring� With a sequential train�
ing
 it is possible to display some training aspects that one could consider
outstanding �error decreasing
 performance
 weights
 etc�
 together with the
evolution of such aspects� It is possible
 for example
 to save the parameters
of the intermediate steps of the training and recover them if desired�
Concerning the neural network architecture needed to implement the SAOC
method
 it must present the following characteristics�

	 It must be a feedforward architecture with a hidden layer of units �in�
cluding both two�layer perceptrons and RBFNs��

	 There are no restrictions about the dimension of the input and the
output� There will be so many as the target function have� If there
are several outputs
 the total inner products must be calculated as the
summation of the individual inner products of every output�

	 There is no restriction about the biases in the hidden units� The biases
can be treated as part of the frequencies�

	 The output units cannot have biases�

	 There is no restriction about the activation functions in the hidden
units
 provided that the hypotheses in Theorem � are satisfed� In
particular
 they can be sines
 cosines
 sigmoidal functions
 gaussian
functions
 wavelets
 etc� Obviously
 di�erent units may have di�erent
activation funcitons�
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	 The output units must have a linear activation function�

As we can see
 the restrictions only refer to the output units� The biases are
not a real problem
 since they can be considered as frequencies with a simple
transformation� Another solution consists of adding a new hidden unit with
constant activation function� Hence
 the only real restriction in the output
units is the linear activation function�

��� Algorithm

An algorithm to implement the SAOC method using a neural network
 which
is based on the previously discussed ideas
 could be the following�

Algorithm

N �� �(
while the network is not valid

Increase by � the number of hidden units N
Outputmax �� �(
for t �� � upto Nattempts do

Assign randomly a candidate frequency ��t� �weights in the �rst layer�
to the last active hidden unit

Pick an activation function for the new hidden unit
Compute the coe�cients fk�t�g��k�N �weights in the second layer�


by solving the linear equations system ���

Compute the Output kXN �t�k� �PN��
k�� k�t�hf� v�ki� N �t�

D
f� v��t�

E
�

if Output � Outputmax then
Outputmax �� Output(
�N �� ��t�(

end if

end for

Optionally
 train the network
 to tune the frequency �N
Fix the frequency �N in the network
 so that it cannot be

modi�ed at later trainings
Validate the network

end while

end Algorithm

Since kf 
XNk� � kfk�
kXNk�
 to �nd out the minimum error kf 
XNk�
we only need to calculate the maximumoutput kXNk�� The random selection
of weights for the candidate units is not the best possible strategy for sure

but it can be justi�ed if we consider the selected frequencies as the initial
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weights to start the network training �usually
 the initial weights in a neural
networks are selected randomly within a particular �nite interval�� Since the
frequency goodness does not depend on the norm of its associated vector
 the
range of weights to look for candidate frequencies may be as large as desired�
However
 if the range is too large
 the number of attempts needed to �nd
an acceptable candidate frequency may also be very large� In practice
 there
will be a trade�o� between these two matters�

� Future work

There are a number of questions that can be posed after this work�

	 According to SAOC"s de�nition
 if we want to know whether a fre�
quency is valid or not �i�e� whether it satis�es condition �b� in the
de�nition�
 we need to know the best approximation of the residue
with only one frequency� As already mentioned
 this problem may be
very di�cult to solve� A way of relaxing this condition would be allow�
ing an optimality factor �as in �Jones ����	 or �Mallat � Zhang ����	��
Probably
 the convergence property expressed in Theorem � would be
maintained
 and the construction would be easier� Anyway
 it is not
clear how to pro�t this de�nition in practice
 since to be able to �x the
optimality factor
 one will probably need to know the best approxima�
tion of the residue�

	 A very interesting problem that appears in a sequential approximation
deals with studying the error bound as a function of the number of the
approximation terms �see �Barron ����	
 �Jones ����	 or �Mallat ����	��
If this function were known or estimated
 it could provide an estimate of
the minimum number of terms needed to construct the approximation

although this would surely depend on the complexity of the target
function�

	 In the presented particular implementation with neural networks
 there
are also a lot of matters to study�

� To choose the candidate frequencies with di�erent heuristics from
current random selection� In principle
 a more intelligent selection
could lead to better approximations� Another strategy could be
based on genetic algorithms� In the same way
 the selection of the
activation function for the new hidden unit admits any number of
heuristics�
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� Study the optimal criteria to stop adding units� In addition of
validating the approximation by computing the error
 it could be
interesting to know
 for example
 if the error is being diminished
very slowly� In this case we will probably have to change some of
the current strategies
 if we want a small number of terms� In this
sense
 the work of �Zhang � Morris ����	
 �Hwang et al� ����	

�Mallat � Zhang ����	 or �Prechelt ����	 may be an interesting
starting point�

� The approximation interpretation may be of great interest in sev�
eral problems
 especially if we are dealing with real world prob�
lems� The selected frequencies
 together with the projections of
their associated vectors onto the target function may give under�
standing� information about the function behaviour �Huber ����	�
In the neural model used
 it is possible to plot these projections

since the activation functions in the hidden layer are functions of
one variable�
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