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Abstract

Generation of curved meshes for high-order unstructured methods

Abel Gargallo-Peiró

In this thesis, a new framework to validate and generate curved high-order meshes

for complex models is proposed. The main application of the proposed framework is

to generate curved meshes that are suitable to perform finite element analysis with

unstructured high-order methods. Note that the lack of a robust and automatic

curved mesh generator is one of the main issues that has hampered the adoption

of high-order methods in industry. Specifically, without curved high-order meshes

composed by valid elements and that match the domain boundary, the convergence

rates and accuracy of high-order methods cannot be realized. The main motivation

of this work is to propose a framework to address this issue.

First, we propose a definition of distortion (quality) measure for curved meshes

of any polynomial degree. The presented measures allow validating if a high-order

mesh is suitable to perform finite element analysis with an unstructured high-order

method. In particular, given a high-order element, the measures assign zero quality

if the element is invalid, and one if the element corresponds to the selected ideal

configuration (desired shape and nodal distribution). Moreover, we prove that if the

quality of an element is not zero, the region where the determinant of the Jacobian

is not positive has measure zero. We present several examples to illustrate that the

proposed measures can be used to validate high-order isotropic and boundary layer

meshes.

Second, we develop a smoothing and untangling procedure to improve the qual-

ity for curved high-order meshes. Specifically, we propose a global non-linear least

squares minimization of the defined distortion measures. The distortion is regular-

ized to allow untangling invalid meshes, and it ensures that if the initial configuration

is valid, it never becomes invalid. Moreover, the optimization procedure preserves,

whenever is possible, some geometrical features of the linear mesh such as the shape,

stretching, straight-sided edges, and element size. We demonstrate through exam-

ples that the implementation of the optimization problem is robust and capable of

handling situations in which the mesh before optimization contains a large number

of invalid elements. We consider cases with polynomial approximations up to degree
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ten, large deformations of the curved boundaries, concave boundaries, and highly

stretched boundary layer elements.

Third, we extend the definition of distortion and quality measures to curved high-

order meshes with the nodes on parameterized surfaces. Using this definition, we also

propose a smoothing and untangling procedure for meshes on CAD surfaces. This

procedure is posed in terms of parametric coordinates of the mesh nodes to enforce

that the nodes are on the CAD geometry. In addition, we prove that the procedure is

independent of the surface parameterization. Thus, it can optimize meshes on CAD

surfaces defined by low-quality parameterizations.

Finally, we propose a new mesh generation procedure by means of an a posteriori

approach. The approach consists of modifying an initial linear mesh by first, intro-

ducing high-order nodes, second, displacing the boundary nodes to ensure that they

are on the CAD surface, and third, smoothing and untangling the resulting mesh to

produce a valid curved high-order mesh. To conclude, we include several examples to

demonstrate that the generated meshes are suitable to perform finite element analysis

with unstructured high-order methods.
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Chapter 1

Introduction

1.1 Motivation

During the last two decades, unstructured high-order methods (Szabo and Babuška,

1991; Schwab, 1998; Deville et al., 2002; Hesthaven and Warburton, 2007; Karniadakis

and Sherwin, 2013) have experimented a remarkable attention from the computational

methods community. One of the main features that attracted the attention to high-

order methods is that if the exact solution of a partial differential equation (PDE)

is smooth and without singularities in the domain, then the approximation obtained

with a high-order method converges exponentially with the order of the approximat-

ing polynomial (Babuška et al., 1981; Szabo and Babuška, 1991). Therefore, it has

been possible to show that high-order methods provide higher accuracy with lower

computational cost than low-order methods in a wide range of applications (Vos et al.,

2010; Cantwell et al., 2011b,a; Löhner, 2011; Yano et al., 2012; Kirby et al., 2012;

Huerta et al., 2012, 2013; Löhner, 2013; Wang et al., 2013).

It is important to highlight that an implicit assumption so that the convergence

rate for high-order methods is realized is that the geometry is also represented with

high-order accuracy. Therefore, the boundary faces have to be curved to match

the domain boundaries with the accuracy determined by the order of the solution

approximation. To this end, element-wise polynomials of the same degree as the

approximating polynomial (iso-parametric) can be also used to represent the curved

elements. In this manner, the integrals on the control volumes are performed on

elements that approximate the curved domain boundaries with the appropriate ac-
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curacy. Furthermore, it has been evidenced that curved elements allow reducing the

spurious artifacts in the PDE solution approximation that arise in specific applica-

tions due to a linear approximation of the domain boundary (Bassi and Rebay, 1997;

Barth, 1998; Dey et al., 1997; Luo et al., 2002; Xue and Demkowicz, 2005; Sevilla

et al., 2011).

Despite the huge interest in the combination of unstructured high-order methods

with curved meshes, two main issues have slowed down their adoption in industrial ap-

plications. First, the difficulty of developing high-order solvers that can compete with

the robustness and simplicity of consolidated first-order and second-order industrial

solvers. Second, the unavailability of industrial curved high-order mesh generators

to provide, in a reliable and automatic manner, valid meshes that match the curved

boundaries of a complex computer-aided design (CAD) model. Therefore, special

attention has to be focused on developing automatic algorithms to generate curved

high-order meshes.

The challenge in developing and implementing a robust and automatic curved

high-order mesh generator arises from the requirements imposed by the unstructured

high-order solver. Specifically, a curved high-order mesh is valid to perform finite

element analysis with an unstructured high-order solver if:

i) Each physical element is the image of a regular straight-sided high-order mas-

ter element. The mapping between the two elements must be differentiable,

invertible and smooth (diffeomorphism), in order to allow the change of vari-

ables required to perform the control volume (area) integrals that appear in the

formulation of 3D (2D) unstructured high-order methods.

ii) The mesh is curved close to the boundary in order to match the geometry and

approximate it with high-order accuracy. In particular, we want a curved mesh

in order to ensure that the error introduced in the solution by the inexact ap-

proximation of the geometry is smaller than the solution discretization error.

Moreover, without a curved mesh that matches the boundary geometry, the

properties from which high-order methods benefit cannot be realized.

iii) Each physical element has a shape close to a regular ideal configuration. In

particular, if we define a mapping between the ideal element configuration and

the physical configuration, the resulting mapping must have a smooth and well-

conditioned Jacobian. If the Jacobian is ill-conditioned, the approximation ac-
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curacy is degraded and the solution may be polluted by the introduced error

(Shewchuk, 2002).

iv) Each physical element has an adequate nodal high-order distribution inherited

from the master element. Otherwise, since it is required to map the physical to

the master element, the mapping between both elements will not be smooth or

even valid. For instance, it is standard to use a point distribution that provides a

quasi-optimal Lebesgue constant (Warburton, 2006; Hesthaven and Warburton,

2007).

1.2 Scope

The scope of this thesis is to generate valid unstructured curved high-order meshes for

complex geometries. To this end, several initial decisions for the used approaches were

considered. In this section, we describe and detail the reasoning behind this initial

decisions. First, we assume that the complex geometry to discretize is represented by

a CAD model. Moreover, we choose a hierarchical approach to generate conformal 3D

(2D) curved high-order meshes by generating first the corresponding surface (curve)

meshes. Finally, we focus on the generation of unstructured meshes by means of an

indirect method (a posteriori) that curves an initial unstructured simplicial linear

mesh to match the curved domain boundary.

1.2.1 Geometry representation: CAD model

In order to generate a mesh, first it is necessary to have a proper representation of

the target geometry to discretize. We highlight that several geometry representations

can be used:

• Triangular mesh. The boundary of the target volume is defined as a piece-wise

linear approximation of the boundary surface.

• Implicit boundary. The surfaces (curves) that conform the boundary of the

target 3D (2D) geometry are described by means of the union and intersection

of implicit equations in terms of the physical coordinates of the points.

3
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• CAD model. The 3D (2D) geometry is described in terms of vertices, parame-

terized curves, and parameterized surfaces that determine the boundary of the

target volumes (surfaces).

Among the different existing representation techniques, in this thesis we focus on the

generation of high-order meshes from CAD models. We do not consider geometries

determined by a triangular mesh since it would limit the accuracy of the geometry

representation to that of a piece-wise linear approximation and therefore, it would

not be suitable for high-order methods. We discard implicit boundary representations

since they are rarely used in industrial applications. On the contrary, CAD models

are the preferred geometry representation in the design, analysis, and manufacturing

stages of an industrial application.

In addition, CAD models provide some specific advantages for curved mesh gen-

eration. For instance, they facilitate the generation of high-order nodes that lie on

the surfaces (curves) that limit the original 3D (2D) model. That is, in a CAD 3D

(2D) model the surfaces (curves) are parameterized and therefore, the distribution

of the high-order nodes can be obtained on the parameter space. Then, the nodes

on the surfaces (curves) of the 3D (2D) model are obtained by using the available

surface (curve) parameterization.

1.2.2 Strategy: hierarchical mesh generation

It is required that a mesh generation algorithm generates volume elements that are

conformal with the surfaces, curves, and vertices that compose the domain boundary.

According to the dimensional order in which the volume (3D) elements are accom-

modated to the surfaces (2D), curves (1D), and vertices (0D) of the domain there are

two main mesh generation approaches:

• Top-down: creates a volume (surface) mesh first, and the surface, edge, and

vertex meshes are extracted from the volume (surface) mesh boundary and

accommodated to approximate the boundary of the initial 3D (2D) geometry

representation.

• Bottom-up (hierarchical): first, for each vertex (0D) of the geometry a mesh

point is generated. Second, each curve (1D) is meshed with segment elements

that are bounded at the extremes by the vertex points (0D). Third, each surface
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(2D) is meshed with polygonal elements (e.g. triangles, quadrilaterals) that are

bounded by the wire meshes (1D) that correspond to the boundary curves.

Finally, each volume is meshed with polyhedral elements (e.g. tetrahedral,

hexahedra) that are bounded by the shell meshes (2D) that correspond to the

boundary surfaces.

In this thesis, we select a hierarchical approach in order to generate curved high-order

meshes. The main reason is that hierarchical approaches, when compared with top-

down approaches, generate discretizations of higher quality of the 3D (2D) domain

boundary surfaces (curves). Recall that the quality of the boundary mesh is important

since it is required that a curved high-order mesh reproduces the domain boundaries

with the proper accuracy.

Moreover, the hierarchical approach simplifies the generation of conformal meshes

for 3D (2D) assembly models. That is, meshes where adjacent 3D (2D) elements

fully share either a face, an edge or a vertex. To obtain conformal meshes between

adjacent volumes (surfaces) it is only needed to share the previously generate mesh

on the boundary surfaces (curves). Note that in this thesis we focus on the generation

of conformal meshes, since they can be used with both conformal and non-conformal

solvers.

1.2.3 Method approach: a posteriori curved mesh

generation

In this thesis, we have decided to pursue the development of an indirect method for

curved mesh generation. That is, instead of considering generating directly curved

high-order elements of a specific type, we have decided to curve an existent initial

unstructured linear mesh (a posteriori). In this manner, the initial mesh can be com-

posed by either tetrahedral (triangular) or hexahedral (quadrilateral) elements gen-

erated with any established 3D (2D) linear mesh generation procedure that provides

control over the size and shape of the elements. Then, the a posteriori algorithm is

only responsible to curve the elements to match the domain boundary while ensuring

that the high-order elements are valid.

Several steps compose standard a posteriori approaches for curved mesh genera-

tion (Dey et al., 1997, 2001a; Luo et al., 2002, 2004; Shephard et al., 2005; Sherwin

and Peiró, 2002; Persson and Peraire, 2009; Xie et al., 2012; Toulorge et al., 2013).
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First, using an established linear mesh generator we obtain a linear mesh with the

desired element size and shape. Second, the polynomial degree of the mesh is in-

creased and the mesh is curved to match the geometry. In this step, tangled elements

arise due to the intersection between the adjacent edges of an element. In particular,

the determinant of the Jacobian of the element representation can vanish or become

negative, invalidating the use of the mesh in a numerical simulation. Hence, it is

necessary a final step to correct the inverted elements and generate a mesh composed

by valid elements. In order to obtain a final valid mesh, different strategies can be

followed. For instance, if the initial topology cannot accommodate the curved faces,

the topology can be modified (Dey et al., 2001a; Luo et al., 2002, 2004). Alterna-

tively, the nodes can be relocated in order to obtain a valid configuration (Sherwin

and Peiró, 2002; Persson and Peraire, 2009; Xie et al., 2012; Toulorge et al., 2013). In

this thesis, we assume that the linear mesher provides a mesh that has the topology

necessary to reproduce the geometry. Therefore, we focus on developing a procedure

to curve the high-order mesh to match the geometry and to relocate the nodes to

ensure a valid final configuration.

1.2.4 Unstructured simplicial meshes

The application of the unstructured high-order methods in 3D simulations requires

using meshes composed by polyhedral elements. In these applications the most com-

mon types are the tetrahedral (four triangular faces) and hexahedral (six quadrilateral

faces) elements. Fast and robust approaches have been developed to automatically

generate tetrahedral meshes for arbitrary domains: the advancing front technique

(Löhner et al., 1985; Peraire et al., 1987, 1988; Löhner and Parikh, 1988), Delaunay

based methods (Baker, 1987; George et al., 1988), and the Octree approach (Shep-

hard and Georges, 1991; Yerry and Shephard, 1984). On the contrary, only a limited

type of geometries can be automatically meshed with high-quality hexahedral meshes.

According to it, in this thesis we focus on the generation of unstructured tetrahedral

(triangular) meshes to exploit the potential geometrical flexibility (arbitrary domains)

provided by 3D (2D) unstructured high-order methods.

As said, we are not focused in the generation of hexahedral (quadrilateral) meshes

for 3D (2D) domains. Nevertheless, all the methods of this thesis have also been

checked for hexahedral (quadrilateral) meshes, see Appendix D. Note that this has

been possible since the proposed curved mesh generation algorithm is based on an a
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posteriori approach.

1.3 Goals and layout of this thesis

Although the extensive development of high-order methods, the generation of curved

high-order meshes is still not automatic. In particular, the lack of a robust and generic

procedure to generate curved high-order meshes that match the boundary geometry

has hampered the adoption of unstructured high-order methods in industry.

The main goal of this thesis is to address this issue by proposing a new method

to validate and generate unstructured curved high-order meshes of any polynomial

degree from CAD geometries. To this end, we have considered the following interme-

diate goals:

• Validation of curved high-order planar and volumetric meshes. In

order to use a high-order element in a numerical computation, it must be the

image of a valid straight-sided master element through an element-wise invert-

ible mapping. Moreover, the size and shape of the element must be close to

an ideal configuration. Hence, to ensure that a mesh is suitable for performing

finite element analysis with an unstructured high-order method, it is required

to develop a technique to validate curved high-order elements.

In Chapter 3, we focus on the development of a technique to quantify the dis-

tortion (quality) of a high-order mesh composed by curved elements. We pose

the measures for high-order elements in terms of the Jacobian-based distortion

measures for linear elements. The defined measures are valid for elements of

any polynomial degree. The quality measure assigns zero value to an invalid

high-order element, and value one if the element is ideal (has the desired shape

and node distribution). Specifically, we prove that if the quality of an ele-

ment is greater than zero, the region where the determinant is not positive has

measure zero. Hence, they allow checking the validity of a high-order element

for simulations performed with unstructured high-order methods. Moreover,

we prove that the defined measures inherit the affine invariance properties of

the Jacobian-based distortion (quality) measures for linear elements. Finally,

we illustrate the behavior of the defined measures, and their applicability to

determine the validity of isotropic and boundary layer meshes.
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• Optimization of a regularized distortion measure to smooth and un-

tangle curved high-order planar and volumetric meshes. To generate

high-order meshes by means of an a posteriori approach, it is necessary to de-

velop a technique to curve the inner elements of the mesh. The method has to

fix the inversions and foldings that arise when the boundary faces of the mesh

are curved to match the boundary geometry.

In Chapter 4, we use the proposed point-wise distortion measure for high-order

meshes to develop a robust smoothing and untangling algorithm to curve a given

straight-sided high-order mesh. The method is able to repair and improve the

quality of a given curved high-order mesh even when a high number of non-valid

elements is present. Specifically, we propose a global non-linear least-squares

minimization of a regularized measure of the mesh distortion. The proposed

algorithm is able to:

– repair invalid curved meshes (untangling),

– ensure that initially valid configurations remain valid after transformation

(consistency),

– deal with arbitrary polynomial degrees (high-order), and

– preserve some geometrical features of the initial linear mesh (size, stretch-

ing, straight-sided interior elements).

We highlight that the unknowns of the optimization procedure are the coor-

dinates of the interior mesh nodes. If the surface mesh is invalid or presents

low-quality elements, we use the procedure presented in Chapter 5 to optimize

the nodes on the exact CAD geometry and to obtain a valid curved high-order

surface mesh.

• Validation and generation of curved high-order meshes on CAD sur-

faces. The meshes obtained with the curving methods have to be composed by

valid high-order elements that approximate the curved boundaries of the initial

CAD model. In this manner, the exponential convergence rates of high-order

methods can be realized. In addition, the quality of a volume mesh is limited

by the quality of the surface mesh. Note that if a boundary face is invalid, the

adjacent 3D element will as well be invalid.
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In Chapter 5, we present a technique to extend Jacobian-based distortion (qual-

ity) measures for planar linear elements to high-order elements of any polyno-

mial degree with the nodes on the parameterized CAD surfaces. The resulting

distortion (quality) measures are expressed in terms of the parametric coordi-

nates of the nodes. These extended distortion (quality) measures can be used

to check the quality and validity of a high-order surface mesh.

Moreover, we derive a simultaneous smoothing and untangling procedure for

high-order surface meshes. This procedure is formulated as a non-linear least-

squares minimization of the extended distortion measure. The minimization is

performed in terms of the parametric coordinates of the nodes and therefore, the

nodes always lie on the CAD surface. Moreover, we prove that both the defined

distortion measure and the derived optimization procedure are independent of

the surface parameterization. Hence, the proposed technique is well suited to

optimize meshes on CAD geometries with low-quality parameterizations.

Finally, we derive an a posteriori approach to generate high-order meshes on

CAD geometries. In particular, given a linear mesh on a parameterized surface,

we increase the polynomial order of the elements on the parametric space and

we use the proposed smoothing and untangling algorithm to obtain a valid and

high-quality mesh on the physical space.

• Curved mesh generation for high-order unstructured methods. The ul-

timate goal of the techniques developed in this thesis is the generation of curved

meshes suitable for finite element analysis with unstructured high-order meth-

ods. In a high-order simulation, it is mandatory that the boundary elements are

curved to match the geometry. Without curved meshes that approximate the

CAD geometry, the high-order accuracy cannot be fulfilled and the properties

from which high-order methods benefit are lost.

On the one hand, in Chapter 6, we detail a new a posteriori approach for

generating curved high-order conformal meshes for CAD models. The main

purpose of the generated meshes is to perform finite element analysis with any

solver based on an unstructured high-order method. Therefore, it is required

that the generated high-order mesh is composed of valid elements that are

curved to approximate the boundaries of the domain. The proposed a posteriori

approach to generate curved high-order meshes is composed of several steps.
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First, we generate a linear mesh. Second, we increase the polynomial degree of

the mesh and we curve it to match the boundary geometry. Note that this mesh

can contain inverted elements in the curved boundary. Hence, the last step is

to optimize the curved mesh using the smoothing and untangling procedure

presented in Chapter 4.

On the other hand, we illustrate several applications where the high-order

curved meshes generated with the proposed procedure have been used. We

point out that we have validated that the meshes can be used in 2D and 3D

applications, and for different problems: wave propagation, inviscid flow, and

viscous flow simulations. We focus on three main computations:

1. Generation of a triangular mesh of polynomial degree seven of the Barcelona

harbor. In Section 6.3.1, we generate a valid curved mesh of polynomial

degree seven of the Barcelona harbor. The main application of this mesh is

to solve a wave propagation problem in highly reflective coastal areas. We

highlight that, for this simulation, having a high-order mesh is essential

in order to reduce the dispersion error and obtain, and to capture small

curved features of the geometry relevant to the computation.

2. Generation of a tetrahedral mesh of polynomial degree four on the exterior

domain of a Falcon aircraft. In Section 6.3.2, we generate a mesh on the

exterior domain of a Falcon aircraft to perform an inviscid flow computa-

tion. In order to fulfill the simulation requirements and obtain a reliable

computation, it is necessary to generate a mesh of polynomial degree four

that approximates with the desired precision the curved features of the

geometry. We point out that to reach an steady state high-order solution

of the Euler equations it is mandatory to have a curved high-order mesh

that matches the boundary geometry.

In Section 6.3.2.1, we describe the mesh generation process and we analyze

the validity of the generated mesh. Finally, in Section 6.3.2.2 we illustrate

the simulation computed with the generated mesh.

3. Generation of boundary layer tetrahedral meshes for exterior domain vis-

cous flow computations. In Section 6.3.3, we present a method to convert

an inviscid mesh into a viscous mesh with the desired boundary layer

around the target CAD geometry. Starting from an inviscid mesh of the

10



1.3. Goals and layout of this thesis

desired polynomial degree, we propose a template to generate the desired

boundary layer. Specifically, we extrude the mesh faces adjacent to the ge-

ometry, and we generate elements with the stretching specified by the user.

Next, we use the optimization procedure proposed in Chapter 4 to ensure

that the final mesh is valid. The obtained meshes are conformal and fully

composed by tetrahedra. Hence, they can be used with any continuous

and discontinuous Galerkin solver that features tetrahedral elements. To

validate the proposed method, we illustrate a solution for the compressible

Navier-Stokes equations for the steady-state flow around a sphere.
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Chapter 2

State of the Art

In this chapter, we review the state of the art of the existent methods and strategies to

generate high-order meshes. We consider three groups of references, that correspond

to the main chapters of this thesis. First, in Section 2.1 we present the previous works

devoted to validate high-order meshes. Next, in Section 2.2 we present an overview

of the algorithms that have been developed to generate planar and volumetric high-

order meshes. Finally, in Section 2.3 we review the techniques previously developed

to validate and generate curved meshes on surfaces.

2.1 Validation of planar and volumetric

high-order meshes

One of the main issues in mesh generation is to quantify the validity of a mesh for

computational purposes. For linear elements, a wide range of quality measures have

been developed (Field, 2000; Shewchuk, 2002). One of the most extended families

of quality measures for linear elements are algebraic quality measures introduced in

Knupp (2001a, 2003a). These measures allow determining the quality (distortion) of a

linear element in terms of an affine mapping between an ideal element and the physical

one. Specifically, the Jacobian matrix of this mapping is used to measure the deviation

of the physical element with respect to the ideal one (distortion). Therefore, the value

of the quality (distortion) measures is determined by the physical coordinates of the

element vertices. However, this is an unresolved issue for high-order meshes. To
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address this issue, in this thesis we develop a technique that allows extending to

high-order elements the set of Jacobian-based measures for linear elements presented

in Knupp (2001a, 2003a). Below we review the previous developed approaches to

quantify the validity and quality of curved meshes.

On the one hand, different techniques have been proposed to determine the validity

of a high-order mesh by means of checking the positivity of the Jacobian mapping from

the master to the physical element. Specifically, it has been studied how to detect non-

positive Jacobian determinants for B-spline based mappings (Dey et al., 1997, 2001a;

Luo et al., 2002, 2004; Shephard et al., 2005) and quadratic iso-parametric elements

(Mitchell et al., 1971; Field, 1983; Baart and Mulder, 1987). Moreover, for higher

polynomial degrees, Johnen et al. (2012, 2013) proposed to compute accurate bounds

on Jacobian determinants of 2D and 3D curvilinear polynomial finite elements.

On the other hand, several approaches have been developed to quantify the qual-

ity of non-linear iso-parametric elements. For elements of quadratic degree, different

definitions of distortion (quality) have been proposed for planar (Salem et al., 1997,

2001; Yuan et al., 1994; Knupp, 2009) and volumetric (Branets and Carey, 2005;

Salem et al., 2001; George and Borouchaki, 2012) elements. We would like to high-

light that we share a similar formulation to the one proposed by Branets and Carey

(2005). However, their work is devoted to extending a particular distortion measure to

quadratic elements, while our goal is to formulate a technique to extend any Jacobian

based distortion measure to any polynomial degree. A different approach to extend

Jacobian based disortion measures was previously proposed by Knupp (2009). The

main difference is that we propose to integrate the distortion measure on the curved

element, instead of computing the minimum, maximum or the mean on a set of sam-

pling points. In addition, we also present numerical tests and mesh optimizations

beyond the quadratic case. The main feature of the distortion and quality measures

defined in this work (Roca et al., 2012; Gargallo-Peiró et al., 2014a) is that we pro-

pose the definition for elements of any polynomial degree. The proposed distortion

is the L2-norm of the regularization of a given point-wise Jacobian-based measure.

This definition allows detecting non-positive values of the Jacobian determinant of

the master mapping for any polynomial degree. That is, if the quality is greater than

zero, the master mapping is a local diffeomorphism on the integration points.
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2.2 Generation of planar and volumetric

high-order meshes

In this section, we present the previous works to generate and optimize high-order

meshes. First, we review the main works on generation by an a posteriori procedure

of an initial linear mesh. Second, we present the main approaches to curve high-

order meshes and ensure that the resulting mesh is valid and matches the boundary

geometry.

2.2.1 Generation by an a posteriori approach

The standard approach to generate curved meshes is to use an a posteriori proce-

dure (Dey et al., 1997, 2001a; Luo et al., 2002, 2004; Luo, 2005; Shephard et al.,

2005; Sherwin and Peiró, 2002; Persson and Peraire, 2009; Xie et al., 2012; Toulorge

et al., 2013). The main idea is to modify an initial unstructured linear mesh to ob-

tain a high-order mesh composed by curved elements that approximate the domain

boundaries. These a posteriori procedures can be divided in three main groups de-

pending on the technique used to curve the mesh and match the domain boundary.

The first group of methods refine, coarsen, and deform the elements, according to a

set of heuristics, until a final valid mesh is properly adapted to the curved features

of the geometry (Dey et al., 2001a; Luo et al., 2002, 2004; Luo, 2005; Sherwin and

Peiró, 2002). The second group of methods use a high-order continuous Galerkin

method to solve a Lagrangian solid mechanics analogy of the curving meshing prob-

lem. Specifically, the mesh curving has been formulated as a non-linear elasticity

problem (Persson and Peraire, 2009) and as a linear elasticity problem (Nielsen and

Anderson, 2002; Oliver, 2008; Xie et al., 2012). In this group of methods, the initial

solid configuration corresponds to mesh composed by straight-sided elements. Then,

the final configuration is obtained by imposing the displacements that correspond to

the curved domain boundaries and solving the corresponding Lagrangian solid me-

chanics problem. The final group of methods optimize the node location of the nodes

according to a goal function that enforces that the obtained elements are properly

curved (George and Borouchaki, 2012; Roca et al., 2012; Gargallo-Peiró et al., 2013a;

Remacle et al., 2013; Toulorge et al., 2013; Gargallo-Peiró et al., 2014a).

The main challenge of any a posteriori mesh curving method is to repair those

invalid or low-quality elements that can arise from curving the boundary of the ini-
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tial straight-sided mesh. Specifically, to repair those elements that have straight faces

that intersect the new curved faces. Once the invalid or low-quality elements have

been detected, it is required to repair them by means of topological and node reloca-

tion techniques. Note that topological modifications are not enough to repair those

elements that have been detected to be invalid. To address this issue, it is required

to relocate the inner high-order nodes (smoothing) while the nodes on the curved

boundary remain fixed. This smoothing capability is required by the three groups of

curved meshing methods. Note that this work corresponds to the third group, since

we relocate the coordinates of the inner nodes by means of an optimization-based

approach.

2.2.2 Curving high-order meshes

In order to curve a high-order mesh in the a posteriori process and obtain a valid

mesh is necessary to relocate the high-order nodes. A node relocation technique can

be formulated in two distinct manners. On the one hand, it can be formulated as a

single problem where the unknowns are the coordinates of all the inner nodes (global

formulation). On the other hand, several problems can be formulated where the

unknowns are just one or few inner nodes (local formulation). The main benefit of

a global formulation is that the number of iterations to solve the problem is smaller

than for a local formulation. However, local formulations require less computational

and memory resources at each iteration. Note that all the curving methods that use

a Lagrangian solid mechanics analogy correspond to a global formulation (Persson

and Peraire, 2009; Xie et al., 2012). On the contrary, optimization-based methods

have been formulated globally (a single objective function) or locally (one objective

function for each single node). For instance, for linear elements there exist several

local (Freitag and Plassmann, 2000; Freitag and Knupp, 2002; Escobar et al., 2003)

and global (Jiao et al., 2011; Knupp, 2001b, 2003b; López et al., 2008; Garimella

et al., 2004; Sastry et al., 2012b; Gargallo-Peiró et al., 2014) approaches. For high-

order meshes, similar relocation methods have also been derived. On the one hand,

in Roca et al. (2012) we presented local method to optimize high-order meshes. On

the other hand, several methods to optimize the high-order nodes location according

to a global objective function have been proposed (George and Borouchaki, 2012;

Gargallo-Peiró et al., 2013a; Remacle et al., 2013; Toulorge et al., 2013; Gargallo-

Peiró et al., 2014a). Note that stating a global formulation allows to choose if the
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implementation is global or local. Therefore, if necessary, the implementation of a

global formulation can be benefited from the advantages of a local formulation. For

instance, coloring for parallelization, optimizing localized sets of nodes, and dealing

with large meshes with a reduced memory footprint. Specifically, a global method

can be casted to a local implementation by using a non-linear Gauss-Seidel solver,

as we proposed in Gargallo-Peiró et al. (2014). In this work, we detail this local

implementation to optimize high-order meshes, see in Appendix B.

One important requirement, is that the node relocation technique penalizes the

appearance of invalid elements. In this manner, the method can enforce that once all

the mesh elements are valid, they remain valid (consistency). This is of major impor-

tance to ensure valid meshes in applications where the domain presents non-convex

boundaries, and when large deformations of the domain boundaries are performed

during the simulation. Several works have addressed explicitly this issue for linear

(Escobar et al., 2003; Gargallo-Peiró et al., 2014; Sastry et al., 2012a) and for high-

order (Persson and Peraire, 2009; Roca et al., 2012; Remacle et al., 2013; Toulorge

et al., 2013; Gargallo-Peiró et al., 2013a, 2014a) elements. In all the cases, this guar-

antee is given by a non-linearity that creates vertical asymptotes in the limit of the

feasible region (null determinant). These asymptotes ensure that if the nodes are in

the feasible region (positive determinant), they cannot be driven to an invalid config-

uration (zero or negative determinant). However, at the same time, these asymptotes

prevent these techniques to repair the invalid elements (untangle).

Optimization procedures are specially suited to overcome the described draw-

backs. Among the reviewed optimization formulations, there are two consistent un-

tangling techniques specialized in curving high-order meshes. On the one hand, a

technique to define a regularized distortion and quality measure for high-order planar

and surface elements applied to generate curved meshes is proposed in Roca et al.

(2012) and Gargallo-Peiró et al. (2013a). This technique is based on the extension

to high-order elements of the definition of quality and distortion measure for linear

elements presented in Knupp (2001a, 2003a). The optimized distortion features a

non-linearity that creates a vertical asymptote that prevent feasible configurations to

become unfeasible (consistency). Moreover, it is regularized to enforce that unfeasible

configurations (tangled) become valid (untangle). Specifically, the regularization of

the reciprocal of the determinant presented in Escobar et al. (2003) and Gargallo-

Peiró et al. (2014) is used in order to allow untangling inverted elements. On the
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other hand, in Remacle et al. (2013) and Toulorge et al. (2013) it is proposed to

optimize a function that penalizes small values of the Jacobian determinants based

on the parameter-dependent log-barrier method presented in Sastry et al. (2012a).

Note that both untangling techniques presented in Escobar et al. (2003) and Sastry

et al. (2012a) for linear elements depend on a parameter that needs to be determined.

In this work, we propose to unequivocally determine the value of the untangling

parameter, originally presented in Escobar et al. (2003), in an element-wise manner

from the ideal mesh configuration. Therefore, the element-wise untangling parameter

remains constant during the untangling process and the derivatives of the objective

function do not depend on its value. When a valid configuration is obtained, we

set this element-wise parameter to zero. According to the discussion above, here we

present a global node relocation technique based on the minimization of non-linear

and regularized distortion measure that untangles in a consistent manner curved

and high-order meshes. The technique proposed in this work to generate high-order

meshes is presented in Roca et al. (2012) for planar triangle meshes and in Gargallo-

Peiró et al. (2014a) for tetrahedral meshes.

2.3 Validation and generation of high-order

meshes on surfaces

In this section, we present the framework of generation and optimization of high-

order meshes on surfaces. Note that to generate high-order meshes by an a posteriori

process it is required to relocate the nodes to curve the mesh to fit the geometry.

However, special attention must be focused on the surface case, since the nodes of

the mesh need to be constrained to ensure that they lie on the exact geometry. Hence,

we divide this section in two parts. First, we review a wide range of techniques on the

optimization of linear meshes on surfaces. Second, we focus on the specific existing

works to generate surface high-order meshes.

2.3.1 Optimization of linear meshes on surfaces

Several relocation techniques for surface linear meshes have been previously devel-

oped. These techniques can be classified into two groups, depending on whether the

nodes are relocated indirectly or directly on a surface representation. On the one
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hand, indirect relocation methods compute an ideal location of the nodes. However,

the resulting node locations can be off the surface. Therefore, an additional step

to relocate the nodes on, or close to, the surface is required (Escobar et al., 2006,

2011; Frey and Borouchaki, 1998; Jiao et al., 2011; Vartziotis et al., 2008; Zhang

et al., 2009; Leng et al., 2012). In particular, Escobar et al. (2006, 2011) present a

simultaneous untangling and smoothing method for triangular surface meshes. They

use, for each surface node, a local projection plane where the patch around the node

is smoothed. Then, the new node location is projected back close to the original

triangulation. On the other hand, direct relocation methods obtain an ideal location

of the nodes on the surface. To this end, the mesh optimization is expressed in terms

of the parametric coordinates of an approximated representation of the original sur-

face (Garimella et al., 2004; Garimella and Shashkov, 2004; Shivanna et al., 2010).

In particular, Shivanna et al. (2010) presents two methods for the smoothing and

untangling of quadrilateral meshes defined on underlying triangulated surfaces. The

first is based on the optimization of the mesh on local parametric spaces, and the

second is based on the projection of the advancing directions on the discrete sur-

face. In Gargallo-Peiró et al. (2014) we also formulated a smoothing and untangling

optimization technique for linear elements in terms of the parametric coordinates of

the nodes. However, we use the original CAD representation instead of a smooth

representation of an initial triangulation. Moreover, the proposed method was in-

dependent of the surface parameterization, well suited then to optimize meshes on

low-quality parameterizations.

It is worth noting that in geometry processing optimization approaches have been

used to reparameterize triangular surface meshes (Mullen et al., 2008). Then, the

obtained parameterization can be used to remesh the discrete representation of the

initial surface (Alliez et al., 2005, 2003). On the contrary, we want to use the initial

continuous parameterization of the CAD surface and not a piecewise linear approx-

imation. In particular, our objective is to generalize for high-order elements the

technique presented in Gargallo-Peiró et al. (2014), that is independent of the pa-

rameterization, avoiding the requirement of reparameterizing to obtain a high-quality

mesh on a low-quality parameterization of the initial CAD surface. Finally, we high-

light that for linear elements, all the reviewed smoothing and untangling methods

except reference Gargallo-Peiró et al. (2014) use an approximated representation of

the geometry of the model.
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2.3.2 Validation and generation of high-order meshes on

surfaces

Similar to the linear case, a high-quality curved surface mesh is a basic prerequisite

to generate high-quality curved volumetric mesh. Therefore, specific procedures have

been developed to generate curved meshes on the boundaries surfaces. These proce-

dures can also be classified according to the same three groups than for planar and

volumetric meshes, Section 2.2.1.

In the first group (Dey et al., 2001b; Luo et al., 2004; Luo, 2005; Jiao and Wang,

2012; Clark et al., 2013) topological operations, such as edge deletion or edge and face

swapping, are first applied in order to adapt the mesh topology to the curved surfaces.

Then, edge nodes and inner face nodes are relocated. For instance, reference Dey et al.

(2001b) deals with quadratic elements, and proposes to relocate the mid-edge nodes

to enforce that the tangent vectors at the vertices of the boundary tetrahedral faces

verify a given criterion. Later, references Luo et al. (2004) and Luo (2005) extended

topology modification techniques to higher order degrees, and proposed a method to

curve the inner edges of the surface mesh according to their distance to the geometry

curves. A similar approach based on topological operations and node relocation is

also used in Jiao and Wang (2012) and Clark et al. (2013) to generate a curved

high-order surface mesh when the exact CAD representation is not available and the

geometry is approximated by a triangulation.

In the second group, reference Sherwin and Peiró (2002) proposes a method to

generate surface meshes by means of solving a linear elasticity problem. In particular,

the surface parameterization is used to write the elastic problem in terms of the

parametric coordinates of the surface nodes, leading to a non-linear minimization

problem.

The third group of methods presents two alternatives to generate surface meshes

by means of optimization procedures. On the one hand, reference Xie et al. (2012)

formulates a local optimization approach that uses the surface geodesics to compute

the location of surface nodes. The proposed algorithm requires an additional projec-

tion step to ensure that the inner face nodes lie on the exact physical surface. On

the other hand, references Remacle et al. (2013) and Toulorge et al. (2013) propose

a global optimization method for high-order tetrahedral meshes that constrains the

displacements of the surface nodes using the surface parameterization. In order to

avoid tangled elements a log-barrier approach (Sastry et al., 2012a) is used to penalize
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small values of the determinant of the Jacobian.

A crucial step in the a posteriori process is to detect invalid elements. As it has

been previously highlighted, for planar and volumetric high-order elements several

approaches have been proposed to detect the validity of the mapping (Mitchell et al.,

1971; Dey et al., 1997, 2001a; Luo et al., 2002, 2004; Shephard et al., 2005; Field, 1983;

Baart and Mulder, 1987; Johnen et al., 2013), and to define suitable quality measures

(Salem et al., 1997, 2001; Yuan et al., 1994; Knupp, 2009; Branets and Carey, 2005;

Salem et al., 2001; George and Borouchaki, 2012; Roca et al., 2012; Gargallo-Peiró

et al., 2013a, 2014a). However, we are not aware of any other work related to the

definition quality measures for curved high-order meshes on parameterized surfaces.

Herein, we present a new technique to extend the Jacobian-based distortion measures

for planar linear triangles presented in Knupp (2001a, 2003a), to high-order nodal

elements of any polynomial degree on parameterized surfaces. Specifically, we define

the distortion and quality measures as the deviation of the physical high-order element

with respect to an ideal triangle, as it is proposed in Roca et al. (2012) and Gargallo-

Peiró et al. (2014a) for planar and volumetric curved high-order elements. Similarly

to our previous work for linear elements (Gargallo-Peiró et al., 2014), the developed

measures are expressed in terms of the parametric coordinates of the mesh nodes and

are independent of the surface parameterization.

In this work, we generate nodal high-order meshes from CAD geometries by means

of an a posteriori procedure. In particular, we propose a global non-linear least-

squares optimization based on the minimization of the defined distortion measure.

However, when the linear mesh is curved to match the geometry, invalid (tangled) el-

ements can appear. To overcome this drawback, the distortion measure is regularized

according to Escobar et al. (2003) and Gargallo-Peiró et al. (2014), penalizing in-

verted element configurations. Moreover, since the distortion measure for high-order

elements is independent of the surface parameterization, we obtain a method that

generates untangled (valid) and smoothed (high-quality) curved high-order meshes

from the exact CAD representation regardless of the quality of its parameterization.
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Chapter 3

Distortion and quality measures

for high-order planar and

volumetric meshes

In the last decades several computational methods have been widely used to solve

partial differential equations (PDE) in applied sciences and engineering. Some of these

methods allow the use of unstructured meshes, such as the finite element method

(FEM), the finite volume method (FVM), and the discontinuous Galerkin method

(DG). The unstructured methods have been proven to be very successful to solve

PDE in complex domains (geometry flexibility). To solve a PDE with these methods,

an unstructured mesh of the domain is generated. Then, a linear system is created

by assembling the contributions of each mesh element to the system matrix. These

contributions can be computed by integrating directly in the physical element or by

changing the variable and integrating in a master element.

To apply the master element approach, it is required to use a differentiable, in-

vertible and smooth mapping (diffeomorphism) from the master element to the mesh

element. Hence, the mapping has to be expressed by means of differentiable functions

and the mesh elements have to be valid (non-folded) and present high-quality (regu-

lar shape). If one element is invalid then the determinant of the mapping Jacobian

presents non-positive values. These non-positive determinant values invalidate the

change of variable, and therefore, the obtained solution. Moreover, if one element
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has low quality then the element is distorted respect a regular element. Thus, the ap-

proximation accuracy is degraded and the solution may be polluted by the introduced

error (Shewchuk, 2002). In summary, quality measures have to be used to assess the

validity and quality of a given mesh.

The main contribution of this work is to present a technique that allows extending

any Jacobian based quality measure for linear elements to high-order elements of

any polynomial degree. Similarly to the linear elements technique, we measure the

deviation of the physical element respect an ideal element. Specifically, we integrate

the selected Jacobian based distortion measure in the curved element. Then, the

quality measure for high-order elements is defined as the inverse of this distortion

measure. The resulting quality inherits some of the properties of the original linear

quality measures, Section 3.2. We also check that the proposed measure detects non-

valid and low-quality elements for different initial Jacobian based quality measures,

Section 3.3.1.

The rest of the chapter is organized as follows. Following, in Section 3.1, we review

the preliminary work and we state the notation used in this chapter. In Section 3.2

we present the definition of distortion and quality measures for high-order simplicial

elements. Next, in Section 3.3.1 we study the behavior of the presented quality

measures. Finally, in Section 3.3.2, we detail present several examples in order to

asses the defined distortion and quality measures.

3.1 Preliminaries and notation

In this section, we first review the definition of Jacobian-based distortion measures for

linear elements. In addition, we present the notation required for high-order elements

and we introduce the different sets of elements that we will require in order to define

the proposed distortion measures.

3.1.1 Distortion and quality measures for linear elements

We start by reviewing the distortion measures for linear elements presented in Knupp

(2001a, 2003a). Consider a linear tetrahedron in the initial configuration, EI , having

the desired shape and size, and the corresponding linear tetrahedron in the physical

space, EP . To measure the deviation between these two elements, we consider the

unique affine mapping, φE, from EI to EP , see Figure 3.1. The mapping φE, can be
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Figure 3.1: Mappings between the master, ideal and physical linear elements.

easily expressed in terms of two additional mapping, φP and φI , between the master

element EM and the initial, EI , and physical element, EP , respectively. Thus, φE is

determined by the composition

φE : EI φ−1
I−→ EM φP−→ EP .

Since φE is affine, its Jacobian, DφE, is constant. Note that the Jacobian of φE

encodes the deviation of the translation-invariant features of the physical element with

respect to the ideal one. Hence, several distortion measures of the physical element

can be defined in terms of DφE. These distortion measures, herein denoted by η,

quantify the deviation of one or several features (shape, size, skewness, degeneracy,...)

of the physical element with respect to the ideal one in the scale range [1,∞). These

measures assign η = 1 to the ideal element, and tend to ∞ as the element features

degenerate. The corresponding quality measure is defined as

q :=
1

η
∈ [0, 1]. (3.1)

For the remaining of this work, we use two different distortion measures. On the one

hand, we use the shape distortion measure presented in Knupp (2001a):

η(DφE) =
‖DφE‖2

d |σ|2/d
, (3.2)

where d is the spatial dimension, ‖ · ‖ is the Frobenius norm, and σ = det(DφE).

This distortion measure quantifies the deviation of the shape of the physical element

with respect to the ideal shape. On the other hand, we consider the Oddy measure
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presented in Oddy et al. (1988):

η(DφE) =
3
(
‖DφTE DφE‖2 − 1

3
‖DφE‖4

)
d σ4/d

, (3.3)

that evaluates the condition number of the metric tensor defined by the element. We

note that these distortion measures are invariant to translation and rotations, equal

1 when the ideal and physical elements only differ by a scale factor, and tend to ∞
as EP becomes degenerate.

To deal with inverted elements (σ ≤ 0), and specially to untangle meshes in the

optimization procedure, we use the regularization of the determinant σ proposed in

Escobar et al. (2003). This regularization can be applied to Jacobian-based distor-

tion measures where the determinant of the Jacobian appears in the denominator.

Specifically, we replace σ in Equations (3.2) and (3.3) by

σδ(σ) =
1

2

(
σ +
√
σ2 + 4δ2

)
, (3.4)

where δ is a numerical parameter that has to be determined (Escobar et al., 2003;

Gargallo-Peiró et al., 2014). In Section 4.2.2 we detail an automatic procedure to

compute the parameter δ for optimization purposes.

In this manner, we consider the regularized distortion measures,

ηδ(DφE) =
‖DφE‖2

d |σδ|2/d
, (3.5)

ηδ(DφE) =
3
(
‖DφTE DφE‖2 − 1

3
‖DφE‖4

)
d σ

4/d
δ

. (3.6)

It is important to point out that without the proposed regularization, η has an asymp-

tote when σ = 0 (where an element becomes non-valid). Note that it is required to

regularize σ to remove this asymptote and therefore, allow to the optimization proce-

dure recovering from the non-valid configuration (tangled). The modified determinant

σδ is always greater or equal than zero. Moreover, for δ > 0, σδ(σ) is a strictly in-

creasing function, such that σδ(0) = δ and that tends to 0 when σ tends to −∞.

Specifically, ηδ is a smooth function with no asymptotes and it is always defined. For

small values of δ, the minimum of ηδ is close to the valid minimum of η0.

To assign quality zero for degenerated elements (negative σ), we compute the limit

of ηδ when δ tends to zero. Therefore, for quality evaluation, we use the following

distortion measure:

η0 := lim
δ→0

ηδ. (3.7)
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We point out that the image of η0 is also [1,∞). For valid elements, the limit is

defined, and hence, η0 is equal to η. Thus, the minimum of η0 is 1. When the element

is not valid (σ ≤ 0), then the limit is not defined. Moreover, the limit of σδ is

σ0 := lim
δ→0

σδ = (σ + |σ|)/2. (3.8)

Hence, when a positive σ tends to zero, σδ tends to zero, and η0 to infinity and

therefore, q tends to zero.

3.1.2 High-order mesh: function spaces and inner products

Analogously to the linear case, for each high-order element we set its corresponding

ideal, EI . In our approach, EI will always be a straight-sided high-order element that

will represent the desired shape of the physical element. It is important to point out

that we allow each element to have a different ideal element. Therefore, we define

the ideal mesh as the set of ideal elements such that

MI =

nE⋃
e=1

EI
e , (3.9)

where nE is the number of elements.

Given the mesh MI , we consider the spaces of scalar functions

UE := {u ∈ Pp(EI)}, (3.10)

U := {u ∈ C0 (MI) | u|
EI
∈ UE, ∀EI ∈MI},

and the space of vector functions

UE := {u ∈
[
Pp(EI)

]d}, (3.11)

U := {u ∈
[
C0 (MI)

]d | u|
EI
∈ UE, ∀EI ∈MI},

where Pp(EI) is the space of polynomials of degree p on the element EI .

Next, we define the inner product of two scalar functions on MI as

〈f, g〉MI
:=

nE∑
e=1

〈f|
EIe
, g|

EIe
〉EIe , (3.12)

expressed in terms of the inner product of two scalar functions in the element EI ,

〈f, g〉EI :=

∫
EI
f(y) g(y)dy. (3.13)
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The norms corresponding to these inner products are

‖f‖MI
:=

√
〈f, f〉MI

, (3.14)

‖f‖EI :=
√
〈f, f〉EI . (3.15)

3.1.3 High-order mesh: representation

Given a physical curved high-order element, EP , and fixed it corresponding straight-

sided high-order ideal element, EI , EP can be expressed as

EP = φE(EI), (3.16)

where φE in UE is the high-order mapping between EI and EP . Moreover, the

physical element can be expressed through a high-order master element EM by means

of the two representation mappings φP from EM to EP and φI from EM to EI . Hence,

Equation (3.16) can be re-written as:

EP = φE(EI) = φP ◦ φ−1I (EI). (3.17)

According to Equation (3.16), we have that each physical element is the image of an

ideal element. Thus, we can assume that the physical mesh is the image of the ideal

mesh by a mapping φh in U . We define the mapping φh element by element as:

φh|
EIe

:= φEe ,

where φEe is the high-order mapping between EI
e and EP

e . Specifically, each physical

element can be written as:

EP
e = φh(E

I
e ) = φh|

EIe

(EI
e ) = φEe(E

I
e ).

Hence, the physical mesh is defined as

MP =

nE⋃
e=1

EP
e .

Remark 3.1. We choose EI as a valid straight-sided element. That is, φI is an

invertible affine mapping and therefore, a global diffeomorphism. Thus, we can use

the change of variable determined by φI to compute the inner product as:

〈f, g〉EI :=

∫
EM

f(φI(ξ)) g(φI(ξ)) | det DφI(ξ)| dξ. (3.18)
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Figure 3.2: Mappings between the master, ideal and physical high-order elements.

To compute this integral, we have to use a numerical quadrature that ensures that

polynomials of degree 6p − 3 are integrated exactly. Specifically, the quadrature uses

(q + 1)(q + 2)/2 integration points for triangles, and (q + 1)(q + 2)(q + 3)/6 for

tetrahedra, where q = 3p− 2, as specified in Huerta et al. (2012, 2013).

3.2 Distortion and quality measures for

high-order simplicial elements

This section is divided in two parts. First, we present the definition of distortion and

quality measure for a high-order simplicial element of any polynomial degree. Next,

we present several properties of the proposed definitions.

3.2.1 Definitions

Given an ideal element EI ⊂ Rd, and a physical element EP ⊂ Rd, we want to

characterize the validity of EP in terms of EI . Note that EP can be computed as the

image of EI by means of the mapping φE in UE, see Equation (3.16). We define the

quality of the element EP in terms of the the mapping φE . Note that, similar to the

linear case, this mapping encodes the deviation of the physical element with respect

to the ideal one. Since φE is non-linear for high-order elements, we need a distortion

measure for non-linear mappings. To this end, given a distortion measure for linear

elements η, we define:
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Definition 3.1. The regularized point-wise distortion measure of φE at a point y in

EI is,

MδφE(y) := ηδ(DφE(y)). (3.19)

Note that the distortion M for a non-linear mapping φE is casted to evaluate a

regularized distortion measure ηδ for linear mappings, see Section 3.1.1. Therefore,

it is well defined since the Jacobian Dφ at a given point is a linear mapping.

Now, we can define the corresponding regularized distortion measure for a high-

order element, and for a high-order mesh:

Definition 3.2. The regularized distortion measure for a high-order element is

ηδ,E :=
‖MδφE‖EI
‖1‖EI

, (3.20)

where ‖1‖EI is the measure of the ideal element.

Definition 3.3. The regularized distortion measure for a high-order mesh is

ηδ,M :=
‖MδφE‖MI

‖1‖MI

, (3.21)

where ‖1‖MI
is the measure of the ideal mesh.

Remark 3.2. The presented distortion measures are always defined (even for inverted

elements), since they are defined in terms of a regularized Jacobian-based distortion

measure.

Next, we define the distortion and quality measures for a high-order element:

Definition 3.4. The point-wise distortion measure of φE at a point y in EI is,

MφE(y) := lim
δ→0

MδφE(y) = lim
δ→0

ηδ(DφE(y))

Eq.(3.7)
= η0(DφE(y)).

(3.22)

Now, we can define the corresponding distortion and quality measures for a high-

order element:

Definition 3.5. The distortion measure for a high-order element is

ηE := lim
δ→0

ηδ,E
Eq.(3.20)

= lim
δ→0

‖MδφE‖EI
‖1‖EI

, (3.23)

where ‖1‖EI is the measure of the ideal element.
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Definition 3.6. The quality measure for a high-order element is:

qE := lim
δ→0

1

ηδ,E
. (3.24)

Similarly, we can state the corresponding distortion and quality measures for a

high-order mesh.

Definition 3.7. The distortion measure for a high-order mesh is

ηM := lim
δ→0

ηδ,M
Eq.(3.21)

= lim
δ→0

‖MδφE‖MI

‖1‖MI

, (3.25)

where ‖1‖MI
is the measure of the ideal mesh.

Definition 3.8. The quality measure for a high-order mesh is:

qM := lim
δ→0

1

ηδ,M
. (3.26)

Remark 3.3. The distortion measures for a high-order element and a high-order

mesh are not defined (diverge) if an element is inverted. Reciprocally, the corre-

sponding quality measures are zero if the element is not valid.

Remark 3.4. The presented measures can be extended to determine the distortion and

quality for other types of representations for curved elements . For instance, changing

the element representation in Section 3.1.2 from triangles/tetrahedra to quadrilater-

als/hexahedra (UE determined by a base defined as the tensor product of 1D poly-

nomials), all the presented definitions are straight forward extended to quadrilaterals

and hexahedra. Specifically, for hexahedra, changing the function spaces in Section

3.1.2 from a polynomial representation to NURBS or B-splines, the proposed defini-

tions are extended to the isogemetrical analysis (Hughes et al., 2005; Höllig et al.,

2012). Moreover, changing also the representation of the physical element in terms

of the ideal, Section 3.1.3, the quality measures can be applied for the homotopy based

representation for tetrahedral elements bounded by NURBS used in NEFEM (Sevilla

et al., 2011).
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3.2.2 Properties

In this section, we analyze the properties of the high-order distortion and quality

measures presented in Definitions 3.5, 3.6, 3.7, and 3.8. First, we detail a set of

properties that guarantee that the measures are well-defined. Second, we proof that

the defined measures preserve some features of the original Jacobian-based distortion

measure for linear elements.

3.2.2.1 Well-defined measures

To guarantee that the proposed measures are well defined, first we show that the

measures for high-order elements are consistent with the existing Jacobian-based

measures for linear elements. Second, we show that they have the same image range

than in the linear case. Finally, we proof that the high-order measures guarantee that

if an element has positive quality, only a region of measure zero can have non-positive

Jacobian.

Lemma 3.1 (Consistency). For the linear tetrahedral case, p = 1, the distortion

measure ηE for a high-order element is equivalent to the Jacobian distortion measure

η0 for linear elements.

Proof. Since φE is affine, DφE is constant on EI . Hence,

η2E = lim
δ→0

‖MδφE‖2EI
‖1‖2

EI

= lim
δ→0

(
1

‖1‖2
EI

∫
EI
ηδ

2(DφE(y))dy

)
= lim

δ→0
ηδ

2(DφE) = η0
2(DφE).

Lemma 3.2 (Distortion range). The distortion measure for high-order elements, ηE

maintains the image range of the respective distortion measure for linear elements,

η0.

Proof. First, we point out that a distortion measure for linear mappings η0 has image

[1,∞). On the one hand, if we consider an element where the region R = {y ∈
EI | det DφE(y) ≤ 0} has non-null measure, the element distortion is divergent.
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On the other hand, if the measure of R is null, we can apply the Lebesgue’s

monotone convergence theorem, re-written for completeness in Remark 3.5. First,

since σδ1(σ) > σδ2(σ) for δ1 > δ2, we highlight that ηδ is an increasing succession

as δ decreases, see Equations (3.4) and (3.6). Next, we take a numerable succession

of functions, {ηδn}n→∞, being δn = 1
n
. Note that, almost everywhere, {ηδn}n→∞

converges point-wise to η0, and is dominated by η0. Then, by Lebesgue’s monotone

convergence theorem, see Remark 3.5, η0 is measurable, and:

ηE = lim
δ→0

1

‖1‖EI

(∫
EI
ηδ

2(DφE(y)) dy

) 1
2

=
1

‖1‖EI

(∫
EI
η0

2(DφE(y)) dy

) 1
2

η0≥1
≥ 1

‖1‖EI

(∫
EI

12 dy

) 1
2

= 1.

In particular, if the element is the ideal, the Jacobian is the identity, and hence,

η0 = 1 on EI , see Knupp (2001a, 2003a). Consequently, for the ideal element we have

that ηE is exactly one. This way, we have that Im(ηE) = [1,∞).

Remark 3.5 (Lebesgue’s monotone convergence theorem). Let (X,Σ, µ) be a mea-

sure space. Let {fn} be a point-wise non-decreasing sequence of [0,∞]-valued Σ−measurable

functions, i.e. for every k ≥ 1 and every x in X,

0 ≤ fk(x) ≤ fk+1(x).

Next, set the point-wise limit of the sequence {fn} to be f . That is, for every x in X,

f(x) := limk→∞ fk(x). Then f is Σ−measurable and

lim
k→∞

∫
fk dµ =

∫
f dµ.

Moreover, if the sequence {fk} satisfies the assumptions µ−almost everywhere, one

can find a set N ⊂ Σ with µ(N) = 0 such that the sequence {fn(x)} is non-decreasing

for every x /∈ N . The result remains true because for every k,∫
fk dµ =

∫
X\N

fk dµ, and

∫
f dµ =

∫
X\N

f dµ,

provided that f is Σ−measurable.
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Corollary 3.1 (Quality range). The quality measure for high-order elements, qE,

maintains the image range of the respective quality measures for linear elements, q.

Proof. Note that qE, Equation (3.24), directly inherits the image range of q from

Lemma 3.2 and from its definition in terms of ηE.

In particular, let q be a quality measure for linear elements with image range [0, 1].

Then, qE is a quality measure for high-order elements with image range [0, 1]. Note

that Lemma 3.2 and Corollary 3.1 also apply to the distortion and quality measures

for high-order meshes.

Proposition 3.1 (Element distortion validation). If the distortion measure for high-

order elements ηE is defined, then the region R = {y ∈ EI | det DφE(y) ≤ 0} has

measure zero.

Proof. We can write ηδ,E as

η2δ,E =
‖MδφE‖2EI
‖1‖2

EI

=

(
‖MδφE‖2EI\R + ‖MδφE‖2R

)
‖1‖2

EI

.

Note that the limit of the regularized distortion MδφE(y) is not defined when σ =

det DφE(y) ≤ 0. Hence the norm on EI \R is always defined, but it is not so for R.

Now, we consider the integral on R:

‖MδφE‖2R = lim
δ→0

∫
R

Mδφ
2
E(y) dy

= lim
δ→0

∫
R

η2δ (DφE(y)) dy.

Since the limit is not defined for this region, the integral ‖MδφE‖2R is only defined if

the measure of R has measure zero. Hence, ηE is defined only if R has measure zero.

Corollary 3.2 (Element quality validation). If the quality measure for high-order

elements qE is not zero, then R has measure zero.

Proof. By means of Definition 3.6, qE is zero if and only if ηE is not defined. By

Proposition 3.1, if ηE is defined, the measure of R is zero. Consequently, if qE > 0,

the measure of R is zero too.
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3.2. Distortion and quality measures for high-order simplicial elements

Corollary 3.3 (Mesh distortion validation). If the distortion measure for high-order

meshes ηM is defined, then the region RM = {y ∈ MI | det Dφh(y) ≤ 0} has

measure zero.

Proof. Following the reasoning of Proposition 3.1.

Corollary 3.4 (Mesh quality validation). If the quality measure for high-order

meshes qM is not zero, then RM has measure zero.

Proof. Following the reasoning of Corollary 3.2.

3.2.2.2 Invariance preservation

In this section, we show that the measure for high-order elements preserves the invari-

ance under affine mappings of the selected Jacobian-based measure. In order to proof

the next proposition, we underline that we can re-write the representation mapping

φE in UE using a high-order basis {Bi}i=1,...,np of degree p, that we choose to be a

partition of the unity, and a set of np control points with coordinates bi in Rd, for

i = 1, . . . , np. Then, the high-order mapping from φE, can be expressed as:

φE : EI ⊂ Rd −→ EP ⊂ Rd

y 7−→ x = φE(y) =

np∑
i=1

Bi(y) bi.
(3.27)

Proposition 3.2 (Affine invariant measures). If η is invariant under an affine map-

ping ψ, then ηE is also invariant under ψ.

Proof. The affine mapping ψ can be written as ψ(x) := Ax +t, where A is the linear

mapping, and t is the translation vector. Rewriting φE in terms of a polynomial

base that is partition of the unity, Equation (3.27), we prove that the transformation

of the high-order element by the mapping ψ is the representation mapping for the
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control points ψ(bi), i = 1, . . . , np:

ψ(φE(y; b1, . . . ,bnp))

= A · φE(y; b1, . . . ,bnp) + t

=

np∑
i=1

AbiBi(φ
−1
I (y)) + t

(∗)
=

np∑
i=1

AbiBi(φ
−1
I (y)) +

np∑
i=1

tBi(φ
−1
I (y))

=

np∑
i=1

(Abi + t)Bi(φ
−1
I (y))

= φE
(
y;ψ(b1), . . . , ψ(bnp)

)
,

where in (∗) we use that Bi is a partition of unity. Thus, the Jacobian for the

transformed element is

D
(
φE(y;ψ(b1), . . . , ψ(bnp))

)
= D

(
AφE(y; b1, . . . ,bnp) + t

)
= A ·DφE(y; b1, . . . ,bnp).

Finally, we can prove the invariance of ηE under ψ:

η2E(ψ(b1), . . . , ψ(bnp))

= lim
δ→0

1

‖1‖EI

∫
EI
η2δ (DφE(y;ψ(b1), . . . , ψ(bnp))) dy

= lim
δ→0

1

‖1‖EI

∫
EI
ηδ

2(A ·DφE(y; b1, . . . ,bnp)) dy

(�)
= lim

δ→0

1

‖1‖EI

∫
EI
ηδ

2(DφE(y; b1, . . . ,bnp)) dy

= η2E(b1, . . . ,bnp),

where in (�) we use that η is invariant under ψ.

Corollary 3.5 (Invariance preservation). If a Jacobian based distortion and quality

measures for linear elements fulfil any of the following properties:

• translation-free,
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3.3. Results

Figure 3.3: Triangle of polynomial degree three.

• scale-free,

• rotation-free,

• symmetry-free,

then the proposed high-order distortion and quality measures, Definitions 3.5 and

3.6, also hold the same properties.

Proof. Since qE is defined as the inverse of ηE, we only have to prove the previous

properties for ηE, Equation (3.23). All the translations, scalings, rotations, sym-

metries, and their compositions are affine mappings. Therefore, by Proposition 3.2,

we have that ηE inherits the invariance of η under translation, scaling, rotation or

symmetry.

3.3 Results

In this section, we present two examples in order to illustrate the applications of the

proposed quality measures. First, we illustrate the behavior of the defined distortion

and quality measures for a triangle of polynomial degree three. Second, we show that

the defined measures allow checking the validity of high-order tetrahedral meshes.

The proposed algorithm has been implemented in C++ in the meshing environment

ez4u (Roca et al., 2010, 2007).

3.3.1 Behavior of the high-order quality measure

In this section, we illustrate the behavior of the proposed quality measure for high-

order elements. We consider a triangle of polynomial degree three and, using Equation
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Figure 3.4: Configurations and high-order qualities for the three tests of a triangle
of polynomial degree three in an equispaced distribution. (a) and (d) vertex node x3

moves on the x direction, (b) and (e) edge node x4 moves on the y direction; and (c)
and (f) face node x10 moves on the y direction.

Free node Location 1 (bue) Location 2 (red) Location 3 (green)

x3

(
−1,
√

3/2
) (

1/2,
√

3/2
) (

2,
√

3/2
)

x4 (1/3,−3/2) (1/3, 0) (1/3, 3/2)

x10 (1/2,−1)
(
1/2,
√

3/6
)

(1/2, 1.5)

Table 3.1: Locations of the free node for displacements restricted to one direction.

(3.23), we compute the distortion measure for the shape and Oddy distortion mea-

sures, presented in Equations (3.2) and (3.3), respectively. Then, we use the defined

quality measure for high-order elements, see Equation (3.24), to evaluate the validity

of the element configurations.

We apply three tests to a triangle of polynomial degree three with nodes located in

two configurations. On the one hand, we consider an equispaced node configuration,
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Figure 3.5: Level sets for the three high-order quality measures (in rows: shape and
Oddy) of a triangle of polynomial degree three with an equispaced distribution when
the free node is: (a,d) the vertex node x3; (b,e) the edge node x4; and (c,f) the face
node x10.

see Figure 4:

x1 = (0, 0) ,x2 = (1, 0) ,x3 =
(

1
2
,
√
3
2

)
,x4 =

(
1
3
, 0
)
,

x5 =
(
2
3
, 0
)
,x6 =

(
5
6
,
√
3
6

)
,x7 =

(
2
3
,
√
3
3

)
,

x8 =
(

1
3
,
√
3
3

)
,x9 =

(
1
6
,
√
3
6

)
,x10 =

(
1
2
,
√
3
6

)
.

On the other hand, we consider a triangle with nodes located on a distribution that

provides a quasi-optimal Lebesgue constant (Warburton, 2006; Hesthaven and War-

burton, 2007). In each test we consider a free node (keeping the rest of nodes fixed in

the original location) and compute the quality of the high-order element in terms of

the location of this node. The free nodes are: the vertex node x3, the edge node x4,

and the face node x10. First, to visualize the configuration of the high-order triangle
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Figure 3.6: Level sets for the two high-order quality measures (in rows: shape and
Oddy) of a triangle of polynomial degree three with a distribution that provides a
quasi-optimal Lebesgue constant, when the free node is: (a,d) the vertex node x3;
(b,e) the edge node x4; and (c,f) the face node x10.

and to analyze in detail the behavior of each high-order quality measure, in Figure

3.4 we restrict the displacement of the free nodes to one direction:

• vertex node x3 =
(
x3,
√

3/2
)

moves along the x direction, x3 ∈ [−2, 3];

• edge node x4 = (1/3, y4) moves along the y direction, y4 ∈ [−2, 2];

• face node x10 = (1/2, y10) moves along the y direction, y10 ∈ [−3/2, 2].

In each column of Figure 3.4 we illustrate the behavior elements and of both qualities

in terms of each free node. In the first row, we display the configuration of the high-

orde elements for three different positions of the free node. In the second row, we

include the value of the shape and Oddy quality measures.
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3.3. Results

Second, in Figure 3.5 we show the contour plots of the previous high-order qualities

for each test when the free nodes are allowed to move in R2. As expected, we realize

that the two high-quality measures have similar behavior. Moreover, both of them

define the same feasible region. However, the Oddy high-order quality is more strict

and tends to zero faster than the shape quality measure. In these tests, the high-

order quality measure detects all the non-valid configurations. Specifically, it detects

tangled elements due to crossed edges or folded areas. Several conclusions can be

drawn from Figure 3.4. From Figures 3.4(a), 3.4(b), and 3.4(c) we realize that moving

away a node from its ideal location induces oscillations in the representation of the

high-order element. Hence, tangled elements can appear, see for instance Figures

3.4(a), and 3.4(b). From Figures 3.4(d), 3.4(e), and 3.4(f) we first realize that the

defined measure properly detects when the high-order element folds and gets tangled.

In Figures 3.4(e) and 3.4(f) all the measures detect the same tangling positions, where

the quality achieves the zero value. Moreover, in all cases, the two measures detect

the proper ideal configurations, with quality equals to 1. Finally, Figures 3.4 and 3.5

show that vertex nodes have larger feasible regions than edge or face nodes. Moreover,

the edge nodes have larger feasible regions than the face ones.

To conclude, in Figure 3.6 we show the behavior of the quality measure when the

triangle has nodes located on the second proposed distribution. We can observe that

the behavior of the defined measures is the same than in the equispaced case presented

in Figure 3.5. Specifically, both measures detect the same feasible regions and the

same ideal configuration. Note that the overall behavior of the defined measures is the

same independently of the selected configuration. However, each node distribution

defines different feasible regions. Nevertheless, we point out that for computational

purposes we will always use the non-equispaced distribution, since it provides a quasi-

optimal Lebesgue constant (Warburton, 2006; Hesthaven and Warburton, 2007).

3.3.2 Applications

One of the main applications of distortion (quality) measures is to check if a mesh

is valid to perform a numerical simulation. Specifically, a quality measure has to

properly detect if an element is non-valid (and assign 0 value). Moreover, the measure

has to penalize the deviation of the element with respect to the target ideal (and assign

value 1 to the ideal). By Lemma 3.2, the distortion for high-order elements, ηE, has

image [1,∞). In particular, it has value 1 when the element is ideal, and tends to ∞
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Table 3.2: Shape quality statistics for a hollow sphere (relative quality). The mesh
is composed by 160 elements.

p #nodes Mesh Figure Min.Q. Max.Q. MeanQ. Std.Dev. #inv

2 302
Initial 3.7(a) 0.00 0.97 0.51 0.40 59

Smoothed 3.7(d) 0.91 0.99 0.98 0.02 0

4 2042
Initial 3.7(b) 0.00 0.97 0.81 0.28 16

Smoothed 3.7(e) 0.95 1.00 0.99 0.01 0

6 6502
Initial 3.7(c) 0.00 0.96 0.81 0.27 15

Smoothed 3.7(f) 0.95 1.00 0.99 0.01 0

Table 3.3: Shape quality statistics for a hollow sphere (absolute quality). The mesh
is composed by 160 elements.

p #nodes Mesh Figure Min.Q. Max.Q. MeanQ. Std.Dev. #inv

2 302
Initial 3.7(a) 0.00 0.92 0.46 0.36 59

Smoothed 3.7(d) 0.57 0.97 0.77 0.11 0

4 2042
Initial 3.7(b) 0.00 0.95 0.74 0.19 16

Smoothed 3.7(e) 0.65 0.97 0.81 0.09 0

6 6502
Initial 3.7(c) 0.00 0.92 0.69 0.24 15

Smoothed 3.7(f) 0.64 0.98 0.81 0.09 0

as the element degenerates. Conversely, the quality measure, qE, has image [0, 1].

The measures defined in Section 3.2 can accommodate different ideal elements.

We select two different type of ideals depending on the framework of the computation.

On the one hand, it is necessary to be able to evaluate the quality of the elements

of a mesh with respect to the same target tetrahedron. Hence, to obtain an absolute

quality measurement, we select the equilateral tetrahedron as ideal (standard ideal

for isotropic meshes (Knupp, 2001a)).

On the other hand, for optimization purposes we use a relative quality measure-

ment. That is, we assume that we have an initial linear mesh, and for each high-order

curved element we select the corresponding initial high-order straight-sided element

as ideal. It is important to point out that we assume that the initial linear mesh

verifies the geometrical constraints required by the numerical simulation Therefore,

by the a posteriori mesh generation procedure, our final goal is to optimize the loca-

tion of the inner nodes to obtain a valid (without tangled elements) high-order mesh

composed by elements with a shape similar to the one in the initial linear mesh.
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Tetrahedral meshes of polynomial degree 2, 4 and 6 colored according
to the shape quality measure (initial straight-sided ideal) on a hollow sphere: (a-c)
initial meshes, and (d-f) smoothed meshes.

3.3.2.1 Validation of isotropic curved high-order meshes

In this section, we illustrate that the defined measure is capable of quantifying the

validity of a high-order tetrahedron. Specifically, we show that the measure detects

when an element is valid or not. Moreover, it properly determines the deviation of a

given element with respect to the considered ideal.

We consider a hollow sphere of inner radius 1 and external radius of 3, and we gen-

erate a coarse tetrahedral mesh. Then, we generate three meshes of polynomial degree

2, 4 and 6 with the same topology, and we tangle them, see Figures 3.7(a), 3.7(b) and

3.7(c). In Figures 3.7(d), 3.7(e) and 3.7(f) we present the meshes smoothed with the

procedure that is presented in Chapter 4. Note that the optimization approach gen-
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Tetrahedral meshes of polynomial degree 2, 4 and 6 colored according to
the shape quality measure (equilateral ideal) on a hollow sphere: (a-c) initial meshes,
and (d-f) smoothed meshes.

erates valid and high-quality meshes. In Table 3.2 we present the quality statistics of

the obtained mesh. Note that all the inverted elements have been untangled and the

overall quality statistics improved. The quality statistics and the displayed quality

in Figure 3.7 are computed taking as ideal the initial linear mesh (relative quality).

Therefore, we observe that in Figures 3.7(d), 3.7(e) and 3.7(f) almost all the elements

are of quality one. That is, the optimized mesh is close to the straight-sided one.

In addition, we can check the validity and measure the shape regularity of the mesh

elements by using the absolute quality, see Figure 3.8. We include the mesh statistics

for the absolute quality in Table 3.3. As expected, the absolute measure detects the

same invalid elements. Furthermore, the obtained quality values are lower than the
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ones obtained with the relative quality measure since each element is compared to a

regular tetrahedron instead of the initial straight-sided configuration. Nevertheless,

the minimum value is 0.57 and the mean is above 0.7. That is, the absolute quality

measure is determining that the curved high-order elements have a shape close to the

ideal regular tetrahedron.

Note that meshes that are composed by regular elements provide higher accuracy

to represent a function that is not known a priori (Shewchuk, 2002). Therefore,

the absolute quality measure can be used to measure the suitability of a curved

high-order mesh to approximate arbitrary functions. If the mesh does not present

enough regularity, we can fix it by adding a pre-process step to the a posteriori

procedure. Specifically, we propose to improve the regularity of the initial linear

mesh by minimizing its absolute distortion measure. Then, this mesh is converted to

a high-order straight-sided mesh and it is set up as the ideal mesh. Now, we can curve

the boundary and minimize the relative distortion measure, respect this new ideal

mesh, to obtain a curved high-order mesh composed by elements of higher regularity.

3.3.2.2 Validation of boundary layer meshes

In this section, we analyze the type of ideal element that it is desired in order to

determine the validity of a high-order boundary layer mesh. We consider a mesh of

polynomial degree 4 on the exterior domain of a SD7003 airfoil. This mesh has been

generated with the procedure presented in Section 6.3.3 from an initial linear mesh

with four layers of stretching around the airfoil.

In Figure 3.9 we present two different views of the same high-order mesh. In Figure

3.9(a) we color the elements with the quality respect an equilateral tetrahedron as an

ideal element (absolute quality). In Figure 3.9(b), we take as ideal the corresponding

straight-sided high-order element from the initial mesh (relative quality). In Table 3.4

we present the statistics of both quality measurements. As we can observe, despite

the fact that the absolute quality is useful in general to measure the validity of all

the elements with respect to the same framework, it is not so when the mesh is not

isotropic. Note that one of the main premises that we have stated is that the a

posteriori procedure assumes that the input linear mesh is valid and has the desired

size and shape for the mesh elements. Hence, in general, for high-order meshes we

will use the relative quality measure. This measure is directed towards quantifying

the validity of an element with respect to its shape before the curving of the boundary
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(a) (b)

Figure 3.9: Tetrahedral boundary layer mesh of polynomial degree 4. Displayed
quality: (a) absolute, and (b) relative.

Table 3.4: Shape quality statistics for a hollow sphere (absolute quality). The mesh
is composed by 160 elements.

Ideal Figure Min.Q. Max.Q. MeanQ. Std.Dev. #inv
Equilateral 3.9(a) 0.05 1.00 0.65 0.19 0

Straight-sided mesh 3.9(b) 0.24 1.00 0.93 0.05 0

faces. A low value of the relative quality after the boundary curving warns that the

Jacobian of the element is not admissible somewhere in the element. However, as we

have observed in Section 3.3.2.1, when dealing with an isotropic mesh, the absolute

quality can be used to measure the mesh validity.

3.4 Concluding remarks

In this chapter, we have presented a new technique to define distortion (quality)

measures for nodal high-order meshes. First, we have defined point-wise distortion

measure that determines the validity of the mesh on each point. The point-wise

measure is defined in terms of a Jacobian-based distortion measure for linear elements.

Second, we have proposed an elemental and a mesh distortion defined in terms of the

norm of the point-wise measure.

The proposed definition is valid for any polynomial degree and allows detecting

the validity of a high-order mesh. The quality measure assigns zero value to an invalid

high-order element, and one if the element is ideal. Moreover, we have proved that
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if the quality is strictly positive, the region where the determinant is not positive

has measure zero. This is of the major importance to check that a curved high-order

meshes is valid for computational purposes. Furthermore, if the selected Jacobian-

based measure is invariant under a given affinity, the defined measure inherits its

invariance.

Finally, we have presented two examples to illustrate the main properties of the

developed techniques. First, we have analyzed the behavior of the developed measures

by means of studying the validity of a planar triangle of polynomial degree three.

Second, we have applied the defined measures to determine the validity of isotropic

and boundary layer meshes.
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Chapter 4

Optimization of a regularized

distortion measure to smooth and

untangle curved high-order meshes

In the last decade, unstructured high-order methods (Szabo and Babuška, 1991;

Schwab, 1998; Deville et al., 2002; Hesthaven and Warburton, 2007; Karniadakis

and Sherwin, 2013) have attracted considerable attention from the computational

mechanics community. This attention has been prompted by the ability of these

methods to approximate with high-fidelity the solution of partial differential equa-

tions on complex domains. It is well known that for problems with smooth solutions,

the approximation obtained with high-order methods converges exponentially with

the order of the approximating polynomial. More generally, high-order methods have

been shown to deliver higher accuracy with a lower computational cost than low-order

methods in many practical applications (Vos et al., 2010; Cantwell et al., 2011b,a;

Löhner, 2011; Yano et al., 2012; Kirby et al., 2012; Huerta et al., 2012, 2013; Löhner,

2013; Wang et al., 2013). In addition, the accurate approximation of the domain ge-

ometry eliminates the spurious effects in the solution that can arise from a piecewise

linear representation of the curved domain boundaries (Bassi and Rebay, 1997; Dey

et al., 1997; Luo et al., 2002; Xue and Demkowicz, 2005; Sevilla et al., 2011). An
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implicit assumption in high-order methods is that the geometry is represented with

sufficient accuracy to enable high convergence rates to be realized.

Despite the attractive features of high-order methods, their adoption for practical

applications has been hampered by technical challenges such as the development of ro-

bust implementations and the generation of suitable 3D curved meshes. In this thesis,

we focus our attention on the generation of high-order meshes for general geometries

that are suitable for high-order finite element analyses. To that end, the generated

meshes must satisfy two requirements. On one hand, each high-order element must be

the image of a valid straight-sided master element through an element-wise invertible

mapping. On the other hand, the boundary elements must be curved to ensure that

the error introduced in the solution by the inexact approximation of the geometry is

smaller than the solution discretization error.

The main contribution of this chapter is to propose a robust smoothing and un-

tangling method to repair and improve the quality of a given high-order mesh. The

main applications is to curve a high-order mesh while matching a given mesh bound-

ary. Specifically, we formulate a global non-linear least-squares minimization problem

of a regularized distortion minimization measure in which the decision variables are

the coordinates of the interior mesh nodes. For each element, we consider the map-

ping between the initial linear tetrahedron and the curved element in the final mesh.

The mapping distortion measure is minimum when the element shape (but not nec-

essarily its size) in the final and initial configurations is preserved. In addition, the

mapping distortion measure is regularized so that it is well defined for both valid

(unfolded) elements, where the mapping between the linear and curved elements is

one-to-one, and invalid (folded), elements where the mapping becomes singular and

the determinant of the transformation Jacobian becomes non-positive. For folded

elements, the value of the distortion measure is a large positive value which forces

the minimization process to untangle the mesh. Once all the elements are untangled,

the regularization can be switched off. In that case, the resulting objective function

tends to infinity if the Jacobian determinant tends to zero. This form of the objective

function prevents untangled (valid) configurations from becoming tangled (invalid)

during the optimization process.

The proposed formulation has the following advantages: first, it is capable of

transforming an invalid curved high-order mesh to a valid mesh, thanks to the use of

the regularized objective function; second, it ensures that initially valid configurations
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remain valid after transformation; third, it can deal with polynomials of any degree;

fourth, it can handle curved boundaries; and fifth, geometrical mesh features features

such as element shape, anisotropy are preserved.

We present several examples that demonstrate the advantages of the proposed

method. Specifically, we show that the proposed approach is able to untangle con-

sistently non-valid initial elements for approximations up to degree ten and large

deformations of the initial mesh boundaries. Moreover, we show that some features

of the initial mesh such as non-uniform element size, and anisotropy (boundary layers)

are preserved.

The remainder of the chapter is organized as follows. In Section 4.1, we present

the proposed optimization formulation. In Section 4.2, we describe the regularization

of the distortion measure to untangle invalid meshes. Finally, in Section 4.3, we

present several examples to illustrate the advantages and application of the proposed

method.

4.1 Formulation of the mesh optimization

In this section, we present a formulation to solve the mesh deformation problem which

is based on the optimization of a measure of the mesh distortion. To this end, we use

the shape distortion measure for linear elements introduced in Section 3.1.1. This

measure can be interpreted as a point-wise measure of the distortion of a deformation

map. The continuous version of the mesh curving problem can be stated as finding a

deformation map that satisfies a prescribed point-wise distortion. Finally, we present

a non-linear least-squares discretization of the continuous problem.

4.1.1 Curving: globally defined smooth mapping

Given an initial domain ΩI ⊂ Rd, and a physical domain ΩP ⊂ Rd, we want to

characterize ΩP in terms of ΩI . We assume that the physical domain can be defined

as the image of a diffeomorphism φ in C1(ΩI ,ΩP ), see Figure 4.1. To determine the

desired diffeomorphism φ, we need a distortion measure for non-linear mappings. To

this end, given a distortion measure for linear elements η, we define the distortion

measure of φ at a point y ∈ ΩI as,

Mφ(y) := η(Dφ(y)). (4.1)
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Figure 4.1: Mapping between the initial and physical domains.

Figure 4.2: Mapping between the initial and physical meshes.

We note that the Jacobian Dφ at a given point y is a linear map and therefore, the

distortion measure M is well defined.

Given the initial domain ΩI and the boundary of the physical domain, ∂ΩP , the

continuous problem is that of finding a diffeomorphism φ∗ between ΩI and ΩP such

that the distortion measure M is ideal. That is,

Mφ∗ = 1, in ΩI ,

φ∗ = g, on ∂ΩI ,

where g is the mapping between ∂ΩI and ∂ΩP .

4.1.2 Curving: element-wise defined smooth mapping

We consider that the domain ΩI is approximated by the mesh MI composed by

the union of the elements EI
e , for e = 1, · · · , nE. In addition, we consider that the

prescribed curved boundary ∂ΩP is approximated by a surface mesh ∂MP determined

by a mapping gh from ∂MI to ∂MP . In this setting, we seek an optimal mapping φ∗h
fromMI toMP , see Figure 4.2, such that for all EI inMI , it has an ideal distortion

measure. That is,

Mφ∗h = 1, in MI , (4.2)

φ∗h = gh, on ∂MI . (4.3)
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Since we want to obtain a conformal nodal high-order mesh, we seek for the mapping

φ∗h, see Figure 4.2 in the space of vector functions

U := {u ∈
[
C0 (MI)

]d | u|
EI
∈
[
Pp(EI)

]d
, ∀EI ∈MI},

where Pp(EI) is the space of polynomials of degree p on the element EI .

For a given mesh MI and a boundary configuration gh, a mapping φh such that

Equation (4.2) and Equation (4.3) are verified may be, in general, not achievable. To

address this issue, we impose the optimality condition in a least-squares sense. That

is, we seek φ∗h in UD such that

φ∗h = argmin
φh∈UD

‖Mφh − 1‖2MI
, (4.4)

where

UD := {φh ∈ U | (Mφh − 1) ∈ L2(MI), and φh = gh on ∂MI}.

In Equation (4.4) we define the norms

‖f‖MI
:=

√
〈f, f〉MI

, (4.5)

‖f‖EI :=
√
〈f, f〉EI , (4.6)

and the inner product for scalar functions f and g in MI

〈f, g〉MI
:=

nE∑
e=1

〈f|
EIe
, g|

EIe
〉EIe , (4.7)

〈f, g〉EI :=

∫
EI
f(y) g(y)dy. (4.8)

Once φ∗h is found, each element in the physical domain can be obtained as

EP
e = φ∗h(E

I
e ),

and therefore, the desired physical meshMP is composed by the union of the elements

EP
e , for e = 1, · · · , nE.

4.1.3 Curving: nodal high-order mesh optimization

The minimization problem stated in Equation (4.4) can be rewritten in terms of

elemental contributions. In particular, according to Equation (4.7) and Equation
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(4.5), we have that

‖Mφh − 1‖2MI
=

nE∑
e=1

‖Mφh|
EIe

− 1‖2EIe =

nE∑
e=1

‖MφEe − 1‖2EIe ,

where φh|
EIe

is the mapping φEe between EI
e and its physical element EP

e . Therefore,

we seek φ∗h in UD such that :

φ∗h = argmin
φh∈UD

‖Mφh − 1‖2MI
= argmin

φh∈UD

nE∑
e=1

‖MφEe − 1‖2EIe . (4.9)

In particular, for nodal high-order elements, and according to Equation (A.2) in

Appendix A, φEe depends on the coordinates of the np element nodes. Thus, the

distortion at a point y in EI
e in Equation (4.9) can be written as:

MφEe(y) = MφEe(y; xe,1, . . . ,xe,np)

where the pairs (e, j) in xe,j denotes the local j-th node of element e. Thus, for

nodal high-order elements, determining φ∗h in Equation (4.9), is equivalent to deter-

mining the coordinates of the nodes of the high-order mesh. Moreover, the element

contribution to the objective function only depends on the nodes of that element.

We reorder the coordinates of the nodes, xi, in such a manner that i = 1, . . . , nF

are the indexes corresponding to the free (interior) nodes, and i = nF + 1, . . . , nN

correspond to the fixed nodes (nodes on the CAD surfaces). Note that the coordinates

of the fixed nodes are determined by the function gh, and can be obtained using the

technique presented in Chapter 5 (Gargallo-Peiró et al., 2013a, 2014). Defining

f(x1, . . . ,xnF ; xnF+1, . . . ,xnN ) :=
1

2
‖Mφh − 1‖2MI

, (4.10)

we can formulate the mesh optimization problem as finding {x∗1, . . . ,x∗nF } ⊂ R3 such

that:

{x∗1, . . . ,x∗nF } = argmin
x1,...,xnF ∈R3

f(x1, . . . ,xnF ; xnF+1, . . . ,xnN ), (4.11)

where xi = g(yi) for i = nF + 1, . . . , nN . In Appendix B, we detail our approach

to solve the global minimization problem stated in Equation (4.11). Moreover, we

highlight that in Appendix C, we propose a p-continuation technique to accelerate

the optimization of curved high-order meshes.
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4.2 Mesh untangling

The minimization problem presented in Equation (4.11) is based on a Jacobian-based

distortion measure presented in Equation (3.2). This distortion measure becomes

infinity when the high-order element is degenerated (when σ = det(DφE) = 0). This

feature precludes its use in an untangling procedure. In order to address this issue,

we replace the distortion measure in Equation (3.2) by a regularized form.

4.2.1 Regularization of the distortion measure

As highlighted in Section 3.1.1, to incorporate the untangling capability to the op-

timization method, we use the regularization proposed in Escobar et al. (2003) and

replace σ in Equation (3.2) by

σδ(σ) =
1

2

(
σ +
√
σ2 + 4δ2

)
,

where δ is a positive element-wise parameter and its selection is discussed in Section

4.2.2. The regularized Jacobian, σδ(σ), is a monotonically increasing function of σ,

such that σδ(0) = δ, and tends to 0 when σ tends to −∞, see Figure 4.3.

Using the regularized Jacobian, the modified shape distortion measure becomes,

ηδ(DφE) =
‖DφE‖2

3|σδ|2/3
.

The use of the regularized Jacobian removes the vertical asymptote at σ = 0, and

therefore, allows the optimization procedure to recover from the non-valid configura-

tions. Moreover, for small values of δ, the minimum of ηδ is close to the minimum of

the original shape distortion measure η. We note that the element-wise parameter δ

is only set to non-zero values when an invalid mesh configuration is considered. Once

all the elements are valid, δ can be set to zero for all the elements. To analyze the

validity of a mesh, we set δ = 0, replacing σδ in Equation (3.6) by σ0 = (σ + |σ|)/2.

In this way, for invalid meshes, σ becomes negative and, ηδ =∞ and q = 0.

4.2.2 Selection of the regularization parameter

The regularization parameter δ needs to satisfy the following criteria. On the one

hand, δ has to be large enough to ensure that δ2 is significant compared to σ2. On
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Figure 4.3: Representation of σδ(σ).

the other hand, it has to be small enough to ensure that the minimum of the modified

mesh distortion function is not too far from the original minimum.

In order to simplify the computation of the derivatives of the distortion measure

we select a constant value of δ for each element. In particular, we determine δ taking

into account the volume of the straight-sided initial element (det φI) and only use

the regularized distortion measure when the element is invalid (σ ≤ 0).

Let σ∗ = −det φI be a reference (negative) value of the determinant of that

element. Then, we determine δ by ensuring that σδ(σ
∗) is always positive. Since

σδ is a strictly increasing function, then we guarantee that σδ > 0 for σ > σ∗. In

particular, we impose

σδ(σ
∗) =

1

2

(
σ∗ +

√
(σ∗)2 + 4δ2

)
= τ > 0,

where τ is a given tolerance. Hence,

δ(σ∗) =
1

2

√
(2 τ + |σ∗|)2 − (σ∗)2 =

√
τ 2 + τ |σ∗|. (4.12)

The parameter τ should be small compared to σ. We propose to select τ according

to

τ = α |σ∗|, (4.13)

where α = 10−3 has been found to work well in practice and used for all the presented

examples. The final expression for δ becomes,

δ(σ∗) = |σ∗|
√
α2 + α. (4.14)

which implies that (see Figure 4.3):

σδ(σ∗)(0) = δ(σ∗),

σδ(σ∗)(σ
∗) = τ.
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Figure 4.4: Triangle with x2 moving on a segment.

In order to illustrate the behavior of the regularized distortion measure presented

in Equation (3.4) we consider a triangular element with two fixed nodes, x0 = (0, 0.5)

and x1 = (0,−0.5), and examine the mesh distortion measure as the third node

x2(x) = (x, 0) is moved along the x-axis, see Figure 4.4. In addition, we select the

equilateral triangle as the initial element and δ = 0.05 for the regularized distortion

measure. Figure 4.5(a) shows the shape distortion measure, Equation (3.2), when

node x2 moves from x = −5 to x = 5. Note that only 0 < x < ∞ correspond

to valid configurations. For x → ±∞ the distortion measure tends to infinity since

the triangle tends to a degenerated configuration. The minimum values (η = 1)

are achieved at x = ±
√

3/2 where the triangle is equilateral (ideal). However, only

x =
√

3/2 corresponds to a valid configuration. At the local minimum x = −
√

3/2 the

element is inverted and has negative area. Moreover, at x = 0, when the triangle has

null area, the shape distortion measure has a vertical asymptote. Figure 4.5(b) shows

the value of the regularized shape distortion measure, Equation (3.6), when node x2

moves from x = −5 to x = 5. To show that the asymptote has been removed, we plot

in Figure 4.5(d) the mesh distortion measure in logarithmic scale. The regularization

removes the vertical asymptote at x = 0, and results in a continuous and differentiable

function with a single minimum near x =
√

3/2 (the ideal configuration). Figure

4.5(e) and 4.5(f) plot the shape quality measure and the regularized shape quality

measure, respectively. Finally, Figure 4.6 shows the distortion and quality measures

when the free node x2 moves in R2. When then regularized distortion measure is

used, the local minimum outside the feasible region is removed and the function is

continuous and differentiable.
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Figure 4.5: Shape distortion and quality measures for the triangle test when node x2

moves from x = −5 to x = 5: (a) distortion, (b) regularized distortion, (c) distortion
in logarithmic scale, (d) regularized distortion in logarithmic scale, (e) quality, and
(d) regularized quality. The ideal configuration of the triangle is plotted with a red
dot.

4.3 Results

In this section, we present several examples to illustrate the main features of the

proposed approach. First, we focus on the robustness of the proposed method. In

particular, we show that our method is capable of smoothing and untangling meshes

of high polynomial degrees that contain a large number of inverted elements. That

is, the method can generate high-quality curved meshes even if it starts from an in-

valid configuration resulting from large deformations or concave curved boundaries.

Second, we show that our method leads to a curved mesh that preserves the features
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Figure 4.6: Shape distortion and quality measures for the triangle test when node x2

moves in a quadrilateral: (a) distortion, (b) regularized distortion, (c) quality, and
(d) regularized quality. The ideal configuration of the triangle is also shown (white).

(size, shape, anisotropy) of the initial linear mesh. Moreover, we highlight that to

narrow the test cases, the examples included in this section are exclusively for tetra-

hedra. In Appendix D we have illustrated several examples where we show that the

proposed procedure can also smooth and untangle planar triangle and quadrilateral

meshes, and hexahedral meshes.

In all figures, the meshes are colored according to the point-wise quality, i.e.

the inverse of the distortion, see Equation (3.1) and Equation (4.1). For each ex-

ample, we present a table summarizing the element quality statistics, see Definition

3.6. Specifically, we show the minimum, the maximum, the mean and the standard

deviation of the mesh quality, and the number of tangled elements before the smooth-

ing/untangling process is initiated. We highlight that in all cases, the smoothed mesh

increases the minimum and mean values of the mesh quality and decreases its stan-

dard deviation.
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Initial and smoothed curved high-order meshes on a cube with a spherical
cavity. Polynomial degrees: (a,d) 2, (b,e) 5 and (c,f) 10.

4.3.1 Robustness for high polynomial degrees

To illustrate the ability of our approach to untangle meshes which may contain a

large number of inverted elements, we consider a cube of side length 5 with an spheric

cavity of diameter 1 placed at the center of the cube. The initial isotropic linear mesh

consists of 1441 elements. Next, we increase the polynomial degree of the elements

to degrees 2, 5 and 10. We then curve the boundary faces to match the geometry. In

order to test our approach, we randomly perturb the interior nodes obtaining meshes

that have 373, 1333 and 1439 inverted elements, respectively (see Table 4.1). Finally,

we apply our optimization procedure to obtain valid meshes for all cases. Figure 4.7

shows the initial meshes containing invalid elements and the final high-quality meshes

for the different polynomial degrees. In Table 4.1 we summarize the element quality

statistics for the initial and final meshes.
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Table 4.1: Quality statistics for the meshes shown in Figure 4.7. The meshes are com-
posed by 1441 elements, and 2327, 32382 and 249387 nodes, for polynomial degrees
2,5, and 10, respectively.

Mesh Figure Min Max Mean Std. Dev. #inv
Initial 4.7(a) 0.00 0.98 0.53 0.35 373

Smoothed 4.7(d) 0.96 1.00 1.00 0.01 0
Initial 4.7(b) 0.00 0.72 0.03 0.11 1333

Smoothed 4.7(e) 0.97 1.00 1.00 0.00 0
Initial 4.7(c) 0.00 0.21 0.00 0.01 1439

Smoothed 4.7(f) 0.96 1.00 1.00 0.01 0

(a) (b) (c)

Figure 4.8: Meshes of polynomial degree 5 on a cube with a spherical cavity. (a) Initial
curved mesh. (b) Mesh optimized with our objective function. (c) Mesh optimized
with an objective function with constant Hessian.

Table 4.2: Quality statistics for the meshes of polynomial degree 5 shown in Figure
4.8. The meshes are composed of 1441 elements and 32382 nodes .

Formulation Figure Min Max Mean Std. Dev. #inv
Initial curved mesh 4.8(a) 0.00 1.00 0.83 0.28 134

Non-linear 4.8(b) 0.15 1.00 0.90 0.12 0
Linear (starting from 4.8(a)) - 0.00 1.01 0.91 0.27 110
Linear (starting from 4.8(b)) 4.8(c) 0.00 1.00 0.99 0.09 15

In the next example, we illustrate the robustness of our approach to deal with large

boundary deformations and non-convex geometries. We consider the valid curved

mesh of polynomial degree five of the previous example and displace the sphere 1.5
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Table 4.3: Quality statistics of a mesh of polynomial degree 2 for a SD7003 airfoil.
The mesh is composed by 104522 elements and 146394 nodes.

Mesh Figure Min Max Mean Std. Dev. #inv
Initial 4.9(a) 0.00 1.00 0.96 0.05 130

Smoothed 4.9(b) 0.52 1.00 0.96 0.04 0

units towards the right boundary. The resulting mesh contains 134 invalid elements,

see Figure 4.8(a). Using the proposed method, we are able to untangle this inverted

configuration obtaining a valid mesh, see Figure 4.8(b). We compare our approach

with a linear method obtained by imposing, for each element, that the Jacobian of

the physical configuration is equal to the Jacobian of the initial configuration in a

least-squares sense. Hence, the objective function in that case is:

f(x1, . . . ,xnF ; xnF+1, . . . ,xnN ) = ‖Dφh − Id‖2. (4.15)

This simpler formulation fails to generate a valid mesh when it starts from the tangled

configuration presented in Figure 4.8(a). The fact that the linear approach is unable

to handle inverted elements is further illustrated by the fact that starting from the

valid mesh obtained by our non-linear method, see Figure 4.8(b), the linear method

generates a non-valid mesh that contains 15 inverted elements, see Figure 4.8(c). The

mesh quality statistics for this example considering the different objective functions

in the optimization process are summarized in Table 4.2. We note that our pro-

posed nonlinear least-squares approach combined with the ability to handle inverted

elements is the only approach capable of consistently producing valid meshes.

4.3.2 Preservation of the features of the initial mesh

including boundary layers

In this example, we illustrate how our approach preserves the features of the linear

mesh such as a stretched boundary layer mesh, see Gargallo-Peiró et al. (2013b). We

consider a linear boundary layer mesh for a SD7003 airfoil. We increase the order of

the polynomial degree to 2. Next, we curve the boundary faces to match the geometry,

see Figure 4.9(a). In Table 4.3 we observe that this initial mesh contains 130 tangled

elements, all of them adjacent to the airfoil. Figure 4.9(c) shows a zoom of the inverted

elements in the lower surface close to the leading edge. Figure 4.9(b) presents the
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(a) (b)

(c) (d)

Figure 4.9: Tetrahedral meshes of polynomial degree 2 with boundary layer around
a SD7003 airfoil. Initial curved high-order mesh (a) overview and (c) zoom. Final
smoothed high-order mesh: (b) overview and (d) zoom. In these two figures we
highlight with white edges the inverted high-order elements that appear in the initial
curved high-order mesh.

final high-order mesh obtained by using the straight-sided high-order mesh as the

initial configuration in our optimization process. All the inverted elements have been

untangled and the final mesh presents a minimum quality of 0.52 and a mean value

of 0.96, see Table 4.3. Figure 4.9(d) shows that the inverted elements in the leading

edge have been untangled.

4.3.3 Preserving straight-sided elements and element size

In this example, we illustrate the capability of the proposed method to maintain the

element size and shape prescribed on the ideal mesh. In addition, with this example

we also show that our formulation can handle different ideal elements. To this end, we

consider a cubic geometry of edge length 5 and we generate an isotropic linear mesh
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(a) (b) (c)

Figure 4.10: Meshes of polynomial degree five for a cube with non-constant element
size. (a) Initial mesh, (b) mesh smoothed taking the equilateral high-order tetrahe-
dron as ideal, and (c) mesh smoothed taking the straight-sided high-order mesh as
ideal.

Table 4.4: Quality statistics of the meshes of polynomial degree 5 presented in Figure
4.10. The meshes are composed by 7394 elements and 79429 nodes.

Figure Min Max Mean Std. Dev. #inv
4.10(a) 1.00 1.00 1.00 0.00 0
4.10(b) 0.40 1.00 0.86 0.10 0
4.10(c) 1.00 1.00 1.00 0.00 0

Table 4.5: Statistics of the scaled Jacobian values of the polynomial degree 5 meshes
for the cubic domain.

Mesh Figure Min Max Mean Std. Dev. #inv

Equilateral tet. 4.10(b) 0.002 0.948 0.339 0.212 0
Straight-sided mesh 4.10(c) 0.990 1.000 0.990 0.001 0

using an element size field of 0.1 inside a spheric region of diameter 1 and an element

size field of 2 on the outer boundary. Figure 4.10(a) presents the initial straight-sided

high-order mesh. Then, we increase the polynomial degree of the elements to five.

Note that after matching the boundary faces to the geometry, the resulting elements

are still straight-sided since the contour of the geometry is planar.

Using the procedure presented in Section 4.1.3 we will optimize the high-order

mesh using two different ideal elements. On the one hand, for each element, we

select the equilateral tetrahedron as the ideal element. Figure 4.10(b) presents the
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optimized mesh. Note that a large number of elements with curved faces appear even

if there are no curved boundaries in the domain. On the other hand, we select for

each element its ideal configuration according to the straight-sided high-order mesh.

Figure 4.10(c) shows the optimized mesh. Table 4.4 details the quality statistics of

the new meshes. Note that the mesh optimized using the straight-sided mesh as ideal

contains higher values of the minimum and mean quality values.

To quantify how the optimized meshes maintain the element size of the initial

linear mesh we compute the relative error in the volume as:

rv =
|ve − v0e |
|v0e |

,

for e = 1, . . . , nE, where v0e and ve are the volume of the e-th element in the initial

and optimized meshes, respectively. It is important to point out that using the

equilateral tetrahedron as the ideal element, the maximum value of the relative error,

rv is 2.013. Moreover, all the elements have a relative error in the volume bigger than

10−3. On the contrary, if we use the straight-sided mesh as the ideal configuration,

the maximum relative error is 2 10−3.

To check if an element is straight-sided we compute the scaled Jacobian measure

µ =

min
ξ∈EM

det DφP (ξ)

max
ξ∈EM

det DφP (ξ)

at the integration points of each element. Recall that if an element is affine to a linear

element, then µ = 1. Table 4.5 summarizes the statistics values for both meshes. We

highlight that using the straight-sided mesh as ideal, we obtain 7387 elements with

µ = 1 (99% of the elements). However, if we select the equilateral tetrahedron as

ideal, all the elements are curved (there are no elements with µ = 1).

4.4 Concluding remarks

In this chapter, we have presented a robust method to smooth and untangle high-

order meshes. Specifically, we propose a least-squares minimization of the regularized

distortion measure for high-order meshes. We highlight that the robustness of the

smoothing and untangling method emerges from the capabilities of the proposed op-

timization, namely: to repair invalid curved meshes (untangling), to transform valid
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configurations to valid configurations (consistency), to deal with any polynomial de-

gree (high-order), and to preserve the geometrical features of the ideal mesh (size,

stretching, straight-sided inner elements). Note that the untangling capability is the

main advantage of the proposed method if we compare it with other consistent curv-

ing methods. Recall that to enable the consistency it is standard to use a non-linear

measure of the point-wise distortion that penalizes non-positive determinants. How-

ever, this is not sufficient to guarantee that a method has the untangling capability.

Furthermore, for the presented method, one scalar parameter has to be chosen

to determine the amount of relative regularization during the untangle procedure.

To this end, we have empirically determined how to chose this scalar parameter.

Moreover, we have detailed how to obtain, from this parameter and from the ideal

mesh, an element-wise constant field that allows the regularization of the non-linear

mesh distortion.

To test the robustness of the untangling capability, we have considered several

examples. Specifically, we have seen that the method untangles meshes composed by

a large number of invalid initial elements for: approximations up to degree ten, large

deformations of the curved boundaries, concave boundaries, and highly stretched

boundary layer elements. This robustness of the method is of practical importance,

since after curving the mesh invalid high-order elements can appear close to the mesh

boundaries.
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Chapter 5

Validation and generation of

high-order meshes on CAD

surfaces

In the past recent years a growing interest for the use of high-order methods to solve

partial differential equations has been awakened in the FEM community. The high-

accuracy (Dey et al., 1997; Cockburn and Shu, 2002) and good convergence rates

(Babuška and Guo, 1988, 1996) given by these methods has motivated an increase

on their use. However, their application to industrial problems with complex ge-

ometries has been hampered by the difficulty to generate high-order discretizations.

In particular, the issue of generating arbitrary high-order meshes for surfaces is still

unresolved.

In 3D applications of high-order methods, the generation of high-quality meshes

on the surfaces that conform the domain boundary is of the major importance. On

the one hand, it has been evidenced that curved surface meshes can reduce the spu-

rious effects that arise in the solution due to piece-wise linear approximation of the

boundary of the domain in specific applications (Bassi and Rebay, 1997; Barth, 1998;

Dey et al., 1997; Luo et al., 2002; Xue and Demkowicz, 2005; Sevilla et al., 2011).

On the other hand, the quality of the volume mesh is limited by the quality of the

surface mesh. If a boundary mesh face is inverted, the corresponding mesh element

is inverted. Hence, to define high-quality 3D meshes it is mandatory to generate
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5. Validation and generation of high-order meshes on CAD surfaces

a high-quality curved surface mesh. Moreover, whereas interior volume nodes can

move freely inside the container volumes, surface nodes can only move on the surface

where they lie. Thus, to optimize a surface mesh, we require to involve the geometry

representation in the optimization procedure. We highlight that several geometry

representations can be used: triangular mesh, implicit entity, or CAD entities are the

most common techniques. However, for industrial applications the CAD surface de-

scription is preferred, since CAD models are generated in the design process. Hence,

in this work we focus on the generation of high-order meshes for CAD geometries.

The standard strategy to generate high-order meshes is an a posteriori procedure

consisting on various steps (Dey et al., 2001a; Sherwin and Peiró, 2002; Shephard

et al., 2005). First, a robust and automatic unstructured mesh generator is used

to obtain an initial linear mesh. Second, the mesh is converted to high-order and is

curved to fit the boundary geometry. In this step, tangled elements can appear. Since

the boundary faces are forced to match the geometry, the determinant of the Jacobian

can become zero, or auto-intersections of the element edges can be originated. Hence,

it is necessary a final step where the position of the mesh nodes is optimized or the

topology is modified to obtain a valid and high-quality mesh.

In this manner, the aim of this work is to generate valid and high-quality high-

order meshes on parameterized CAD surfaces by means of an a posteriori procedure.

We present three main contributions. First, we present a definition of distortion (qual-

ity) measure for nodal high-order meshes with the nodes on parameterized surfaces.

The proposed measure quantifies the deviation between an ideal and a physical sur-

face mesh, and is expressed in terms of the parametric coordinates of the mesh nodes.

Moreover, this definition is independent of the selected surface parameterization.

Second, we derive a smoothing and untangling procedure for high-order meshes

of any polynomial degree (high-order) on CAD surfaces. The proposed optimization

approach is developed on the parametric space of the surface, ensuring that the nodes

always lie on the exact CAD geometry. Moreover, it is capable to transform an invalid

curved high-order mesh to a valid mesh (untangling). In addition, we prove that the

optimization procedure is independent of the parameterization. Hence, the method is

specially suited to generate high-order meshes on low-quality CAD parameterizations.

Finally, we propose an a posteriori curved mesh generation approach based on

the proposed optimization technique. First, we generate a linear mesh. Second, we

increase the polynomial degree of the elements and we curve them to match the
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geometry. And third, we optimize the location of the nodes to ensure that the mesh

is valid.

The rest of the chapter is organized as follows. First, in Section 5.1 we present the

scope of this work, the statement of the problem that we aim to solve, and the selected

approach. Next, in Section 5.2, we set the framework for the definition of point-wise

distortion measures for high-order elements on parameterized surfaces. In Section

5.3, we detail an smoothing and untangling procedure based on the minimization

of the proposed distortion measures. Following, in Section 5.4 we use the point-

wise measures to define a distortion (quality) measure for high-order elements on

parameterized CAD surfaces. Finally, we present several examples to underline the

main properties of the proposed optimization method and the derived nesh generation

procedure, Section 5.5.

5.1 Problem statement and methodology

5.1.1 Input and output

Our input data is a linear mesh M1
x composed by elements with the nodes on a

parameterized surface. We assume that the input linear mesh is valid and that it has

elements of the desired shape and size for the target computation. In addition, we

also assume that the surface Σ is parameterized by a continuously differentiable and

invertible mapping

ϕ : U ⊂ R2 −→ Σ ⊂ R3

u = (u, v) 7−→ x = ϕ(u),
(5.1)

where U is the parametric space of the surface. In this work, we use OpenCASCADE

library (CASCADE, 2012) to retrieve the parameterization of the surfaces from the

CAD model.

The output data is a high-order mesh Mp
x of polynomial degree p with all the

nodes on the parameterized surface, and composed by valid elements (positive deter-

minant of the Jacobian of the representation mapping) that have a shape close to the

initial straight-sided linear elements.

5.1.2 Methodology

The proposed approach is composed by the following three steps.
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5. Validation and generation of high-order meshes on CAD surfaces

(a)

(b)

(c)

Figure 5.1: Process of the generation of a high-order mesh on a propeller: (a) linear
mesh, (b) initial (invalid) curved mesh of polynomial degree five, and (c) optimized
(valid) mesh of polynomial degree five.

1. Generating the ideal mesh.

Using a robust and automatic linear surface mesh generator we create a mesh

with elements of the desired size and shape. Our approach requires to know

both the physical, M1
x , and the parametric, M1

u , coordinates of nodes of the

initial linear surface mesh. There are two strategies to retrieve the parametric

coordinates of the nodes. On the one hand, we can require that the linear mesh

generator stores the parametric coordinates, see Roca et al. (2004, 2006). On

the other hand, we can solve a non-linear problem to obtain the parametric

coordinates of the closest point of the surface to each of the mesh nodes, see
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(a)

(b)

Figure 5.2: Possible tangling issues in the curving procedure: (a) element edge curving
to fit the boundary geometry that creates an auto-intersection with an inner edge, and
(b) anisometric parameterization that produces an invalid element on the physical
space.

Roca (2009). In Figure 5.1(a) we show the linear mesh generated on a propeller.

We have colored the mesh elements according to their shape quality taking as

ideal element the equilateral triangle.

Next, we increase the polynomial degree of the mesh on the physical space

and we set this straight-sided high-order mesh as the ideal configuration in

our optimization procedure. Note that this mesh is of the desired polynomial

degree, and, at the same time, has elements of the desired size and shape.

2. Curving the mesh to match the geometry.

We define a distribution of nodes of degree p on the straight-sided elements

on the parametric space. For elements adjacent to the surface boundary, we

blend the boundary edge to fit the geometry curve. Next, we define a Legendre-

Gauss-Lobatto distribution of the nodes (Warburton, 2006) along the edge using

the arc parameter of the curve. Then, the inner nodes of the elements are

redistributed by means of the blending presented in Warburton (2006). We

name the mesh with nodes on the parametric space as initial parametric mesh,

Mp,0
u . Afterwards, we map Mp,0

u to the surface, obtaining an initial high-order

physical mesh, Mp,0
x , see details in Roca et al. (2004, 2006).
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(a)

(b)

(c)

Figure 5.3: Process of the generation of a high-order mesh on the horizontal stabilizer
of a falcon aircraft: (a) linear mesh, (b) initial (invalid) curved mesh of polynomial
degree four, and (c) optimized (valid) mesh of polynomial degree four.
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The high-order meshes obtained after these steps can contain tangled elements.

For instance, Figure 5.1(b) shows a detail of the degree five mesh for the pro-

peller with a tangled element colored in blue. These inverted elements appear

due to two main issues. First, the a posteriori curving of the boundary edges to

fit the geometry curves can lead to intersections between two element edges, see

Figure 5.2(a). Second, a valid high-order distribution on the parametric space

can be invalid once mapped onto the surface due to a low-quality parameteri-

zation, see Figure 5.2(b).

We highlight that these phenomena appear in real applications. Figure 5.3

shows the mesh generation process of a Falcon aircraft, close to the area of

the horizontal stabilizer. In Figure 5.3(a) we observe the generated valid linear

mesh. Next, Figure 5.3(b) shows the initial curved mesh of polynomial degree 4

where both types of tangling issues are observed. Finally, Figure 5.3(c) presents

the mesh resulting from the optimization procedure that we will present in

Section 5.3. We present further details of this example on Section 5.5.2.1.

3. Optimizing the surface mesh.

We optimize (smooth and untangle) the node locations on the parametric space

to repair the existent inversions and to improve the quality of the high-order

elements on the surface. In this manner, we obtain a mesh Mp
u on the para-

metric space that is valid and of high-quality on the physical surface. Next,

by means of the surface parameterization ϕ, we map the parametric mesh to

the surface, Mp
x = ϕ(Mp

u). In Figure 5.1(c) we show the final surface mesh,

where all the elements are valid and high-quality. Comparing Figures 5.1(a)

and 5.1(c) we realize that we have been able to obtain a valid and high-quality

high-order mesh such that the shape of its elements is similar to the shape of

the elements in the initial linear mesh. Analogously, in Figure 5.3(c) we show

the final configuration for the horizontal stabilizer of the Falcon aircraft, com-

posed by valid elements with similar shape than the straight-sided elements

from Figure 5.3(a).

We point out that this work is devoted to the third step of the presented process.

Specifically, we define a distortion measure to determine the validity of a high-order

element on a parameterized surface, see Section 5.2.2, and we derive an optimization

(smoothing and untangling) process in terms of the parametric coordinates of the
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nodes to improve the quality of the initial mesh, see Section 5.3.3. It is important

to highlight that in this chapter we focus on nodal high-order triangular elements

of degree p. However, changing the element shape functions in Section E, the same

approach is applicable to high-order quadrilaterals.

5.2 Point-wise distortion measures for surfaces

In this section, we present a technique to define the distortion of a non-linear mapping

between surfaces in R3. First, in Section 5.2.1, we propose a technique to extend the

distortion measures for planar linear elements presented in Section 3.1.1 to quantify

the distortion of mappings between pairs of vectors in R3. Second, in Section 5.2.2, we

use the measures presented in Section 5.2.1 to define a point-wise distortion measure

for non-linear deformations between surfaces.

5.2.1 Distortion measures for linear mappings between

planes in 3D

Let Πa,Πb ⊂ R3 be two planes on R3, determined by two pairs of vectors a1, a2 ∈ Πa

and b1,b2 ∈ Πb, respectively. Let J : Πa ⊂ R3 → Πb ⊂ R3 be a linear mapping such

that

bi = J(ai), i = 1, 2.

The distortion measures for linear elements, presented in Section 3.1.1, are defined

in the terms of a mapping between pairs of vectors in R2. However, linear surface

meshes lead to planar elements immersed in R3 and therefore, distortion measures

have to be defined in terms of a mapping between pairs of vectors in R3. Hence, the

distortion measure for linear planar elements cannot be applied directly. To address

this issue, the goal of this section is to determine a linear mapping J̄ in planar

cartesian coordinates that has the same distortion as J.

First, we obtain an orthonormal basis for Πa by means of the Gram-Schmidt

procedure. Specifically, we define

ã1 :=
a1

‖a1‖
,

ã2 := γ
a2 − (aT2 ã1) ã1

‖a2 − (aT2 ã1) ã1‖
,
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as the two orthonormal vectors of the new basis, where γ is defined to ensure a

well oriented orthonormal basis. In particular, we set γ equal to ±1, being 1 for

counter-clockwise oriented vectors, and −1 for clockwise oriented ones.

Note that the 2×3 matrix ÃT , where Ã = [ã1 ã2], expresses ai in the orthonormal

basis ãi. Analogously, we denote by b̃1 and b̃2 the two vectors of the orthonormal

basis of Πb, and B̃ := [b̃1 b̃2]. Therefore, B̃T expresses bi in the orthonormal basis

b̃i.

Finally, we define the vectors

āi := ÃTai, i = 1, 2 (5.2)

and

b̄i := B̃Tbi, i = 1, 2 (5.3)

to determine in cartesian coordinates a linear mapping J̄ such that

b̄i = J̄āi, i = 1, 2. (5.4)

Note that J̄ has the same distortion measure value as J, since ηδ, see Equation (3.6),

is invariant under rotation. To obtain the expression of the matrix J̄, we consider

Equation (5.4) and we substitute āi and b̄i taking into account Equations (5.2) and

(5.3):

B̃Tbi = J̄ ÃTai.

In particular, defining A := [a1 a2], and B := [b1 b2], we have that

B̃TB = J̄ ÃTA.

Since a1 and a2 define a plane Πa, they are linearly independent and therefore, A is

invertible. In addition, they determine the two linearly independent vectors ā1 and

ā2 that lead to a non-invertible matrix Ã. Thus, ÃTA is a 2 × 2 invertible matrix,

and the matrix J̄ can be computed from A and B as

J̄(A,B) := B̃TB (ÃTA)−1. (5.5)

In this manner, we define the distortion of the linear map J in terms of J̄ and of the

regularized distortion measure for linear elements as ηδ(J̄), Section 3.1.1,.
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Figure 5.4: Mappings between the physical, ideal and reference surfaces.

5.2.2 Point-wise distortion measures for non-linear

mappings

In this section, we define a measure of the distortion between two surfaces. We

assume that we have an ideal surface ΣI ⊂ R3 and a physical surface ΣP ⊂ R3, that

are diffeomorphic to the same planar domain ΣR ⊂ R2. In particular, ΣI and ΣP are

also diffeomorphic, and therefore, the physical surface can be defined as the image of

a diffeomorphism φ from ΣI to ΣP , see Figure 5.4. We define the distortion between

the surfaces in terms of the mapping φ. To determine the distortion measure Mφ

for non-linear mappings φ between surfaces, we will pose M in terms of a given a

distortion measure for linear elements ηδ.

We consider two diffeomorphisms between the reference surface, and the physical

and ideal surfaces:

φI : ΣR ⊂ R2 −→ ΣI ⊂ R3,

φP : ΣR ⊂ R2 −→ ΣP ⊂ R3.

Then, the diffeomorphism φ between the ideal and physical surfaces can be expressed

as φ = φP ◦ φ−1I . In particular, φ is a non-linear mapping which Jacobian J(y) :=

Dφ(y) defines a linear mapping between the tangent space at a point y in ΣI , and the

tangent space at a point x = φ(y) in ΣP , see Figure 5.5. Next, using the applications

DφI : TξΣR −→ TyΣI ,

DφP : TξΣR −→ TxΣP ,

we compute the expression of J on cartesian coordinates, J̄(DφI ,DφP ), presented in

Equation (5.5).
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Figure 5.5: Mappings between the tangent spaces of the surfaces.

In this manner, we define the point-wise distortion for the non-linear mapping φ

on a point y in ΣI as:

Mφ := ηδ(J̄(DφI ,DφP )). (5.6)

Note that the distortion M for the non-linear mapping φ is casted to evaluate a

distortion measure ηδ for linear mappings, see Equation (3.6). Therefore, it is well

defined, since J̄(DφI ,DφP ) defines a linear mapping for any y in ΣI .

5.3 Generation of nodal high-order meshes on

parameterized surfaces

In this section, we formulate an optimization problem to generate a valid curved

high-order mesh by means of an a posteriori approach. First, we characterize the

best diffeomorphism between two surfaces, Section 5.3.1. Next, we discretize the

continuous characterization for the desired diffeomorphism, Section 5.3.2. Following,

since our objective is to generate nodal high-order meshes on parameterized surfaces,

we present the resulting optimization problem posed in terms of the parametric co-

ordinates of the mesh nodes. Finally, in Section 5.3.4, we proof that the proposed

distortion measure and the obtained objective function are independent of the surface

parameterization.

5.3.1 Curving: globally defined smooth mapping

Fixed an ideal surface ΣI and the boundary of the physical surface, ∂ΣP , our goal

is to find the best mapping, φ∗ in C1(ΣI ,ΣP ), between both surfaces according to
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(a)

(b)

Figure 5.6: (a) Mapping between the ideal and physical surfaces. (b) Mapping be-
tween the ideal and physical meshes.

the distortion measure M, see Equation (5.6). Specifically, the ideal mapping φ∗, see

Figure 5.6(a), would be a local diffeomorphism φ such that

Mφ∗ = 1, in ΣI , (5.7)

φ∗ = g, on ∂ΣI , (5.8)

where the boundary ∂ΣP is known and determined by the mapping g from ∂ΣI to

∂ΣP .

5.3.2 Curving: element-wise defined smooth mapping

We consider that the surface ΣI is approximated by the mesh MI , composed by the

union of the ideal elements EI
e , for e = 1, · · · , nE, where nE is the number of elements

of the mesh. Given the ideal mesh MI , we consider the space of vector functions on

an ideal element EI in MI ,

WEI :=

{
w ∈

[
Pp(EI)

]d ∣∣∣ w =

np∑
i=1

ϕ(ui)Ni(y)

for u1, . . . ,unp ∈ U
} (5.9)

where Pp(EI) is the space of polynomials of degree p on the element EI , {Ni}i=1,...,np

are polynomial interpolative shape functions of degree p, and np is the number of

element nodes. We point out that the elemental representation is selected to constrain
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the element nodes to the parameterized surface. Specifically, the physical nodes

of an element, xi in ΣP , are expressed in terms of their parametric coordinates as

xi = ϕ(ui), where ui in U , using the surface parameterization presented in Equation

(5.1), see details in Appendix E. Hence, if we modify the parametric coordinates of

a node ui, its physical location computed by the parameterization will always lie on

the surface

Next, we consider the space of vector functions on the ideal mesh

W :=
{
w ∈

[
C0 (M)

]d |
w|

EI
∈WEI , ∀EI ∈MI

}
.

(5.10)

Fixed an ideal meshMI , we seek the optimal mapping φ∗h in W , see Figure 5.6(b),

such that it is an element-wise local diffeomorphism for all EI in MI and it has an

ideal distortion measure Mφ∗h. The best possible mapping φ∗h can be characterized,

in terms of the distortion Mφ∗h, as the element-wise diffeomorphism φh such that

Mφ∗h = 1, in MI , (5.11)

φ∗h = gh, on ∂MI , (5.12)

where the curved boundary mesh ∂MP is known and determined by the mapping gh

from ∂MI to ∂MP .

Note that fixedMI and determined ∂MP in Equation (5.12), a mapping φh such

that Equation (5.11) is verified may be, in general, not achievable. Therefore, this

condition is imposed in a least-squares sense. That is, we seek φ∗h in WD such that

φ∗h = argmin
φh∈WD

‖Mφh − 1‖2MI
, (5.13)

where

WD := {φh ∈W | (Mφh − 1) ∈ L2(MI),

and φh = gh on ∂MI}.

In Equation (5.13), we define the norms

‖f‖MI
:=

√
〈f, f〉MI

, (5.14)

‖f‖EI :=
√
〈f, f〉EI , (5.15)
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in terms of the inner product of two scalar functions on MI as

〈f, g〉MI
:=

nE∑
e=1

〈f|
EIe
, g|

EIe
〉EIe , (5.16)

〈f, g〉EI :=

∫
EI
f(x) g(x) dx. (5.17)

Once φ∗h is determined, we define the meshMP of the physical surface ΣP as the

image of MI by φ∗h. Each physical element can be obtained as:

EP
e = φ∗h(E

I
e ) (5.18)

and we define the physical mesh as the union of the elements EP
e , for e = 1, · · · , nE.

5.3.3 Curving: parametric nodal high-order mesh

optimization

The minimization problem stated in Equation (5.13) can be rewritten in terms of

elemental contributions. In particular, according to Equations (5.16) and (5.14) we

seek φ∗h in WD such that :

φ∗h = argmin
φh∈WD

‖Mφh − 1‖2MI

= argmin
φh∈WD

nE∑
e=1

‖Mφh|
EIe

− 1‖2EIe

= argmin
φh∈WD

nE∑
e=1

‖MφEe − 1‖2EIe .

(5.19)

where φEe := φh|
EIe

is the mapping between EI
e and its physical element EP

e , see

Equation (E.4) in Appendix E, as:

φEe(y; ue,1, . . . ,ue,np) =

np∑
i=1

ϕ(ui)Ni(y),

being ue,1, . . . ,ue,np the parametric coordinates of the nodes of element EP
e . Thus,

the distortion measure at a point y of an element EI
e of MI can be written as:

MφEe(y) = MφEe(y; ue,1, . . . ,ue,np), (5.20)

where the pairs (e, j) in ue,j identify the local j-th node of element e with their

global mesh number i. That is, for nodal high-order elements, determining φ∗h in the
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minimization presented in Equation (5.19), is equivalent to determining the config-

uration of the nodes of the high-order mesh. Moreover, the element contribution to

the objective function only depends on the nodes of that element.

According to the reasoning above, the optimization problem presented in Equation

(5.19) can be expressed in such a manner that the nodal parametric coordinates are

the unknowns of the problem (free nodes). To this end, we reorder the coordinates

of the nodes, ui, selecting i = 1, . . . , nF as the indexes corresponding to the inner

nodes, and i = nF + 1, . . . , nN as the indexes corresponding to the fixed nodes (nodes

on the edges of the CAD surfaces). Note that the coordinates of the fixed nodes are

determined by the function gh, and have been computed using the arc-parameter of

the corresponding curve of the CAD geometry. Defining

f(u1, . . . ,unF ; unF+1, . . . ,unN ) :=
1

2
‖Mφh − 1‖2MI

, (5.21)

we can formulate the mesh optimization problem as finding {u∗1, . . . ,u∗nF } in U ⊂ R2

such that:
{u∗1, . . . ,u∗nF } = argmin

u1,...,unF ∈R3

f(u1, . . . ,unF ;

unF+1, . . . ,unN ),
(5.22)

where ui = ϕ−1(g(yi)) for i = nF +1, . . . , nN . In Appendix B we detail our approach

to solve the global minimization problem stated in Equation (5.22).

Note that the optimal configuration is found between the candidates for the min-

imization presented in Equation (5.22). The candidates are the critical coordinates

(u1, . . . ,unF ) of f . They are characterized by

∂f

∂ui
(u1, . . . ,unF ; unF+1, . . . ,unN ) = 0 i = 1, . . . , nF . (5.23)

5.3.4 Independence on the surface parameterization

In this section, we first prove that the defined point-wise measure is independent of

the surface parameterization.

Proposition 5.1 (Independence on the parameterization). Let ϕ1 : U1 → ΣP and

ϕ2 : U2 → ΣP be two different diffeomorphic parameterizations of ΣP . Let M be

a mesh on ΣP , and EP an element with nodes on the surface. Then, the point-

wise distortion measure M, presented in Equation (5.6), is independent of the surface

parameterization.
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Proof. Each parameterization j = 1, 2 defines a different function space Wj, see

Equation (5.10). In particular, for each parameterization j = 1, 2, it exists a set of

nodal parametric coordinates uji=1,...,np
in Uj, according to Equation (E.4), that we

can write two different mappings φjE in Wj

EI , see Equation (5.9):

φjE(y) =

np∑
i=1

ϕj(u
j
i )Ni(y), y ∈ EI , j = 1, 2.

Since both parameterizations are diffeomorphisms, we can write the element nodes

x1, . . . ,xnp of an element EP as

xi = ϕ1(u
1
i ) = ϕ2(u

2
i )

for unique uji in Uj, j = 1, 2, i = 1, . . . , np. Moreover, in any point y in EI :

φ1
E(y) =

np∑
i=1

ϕ1(u
1
i )Ni(y)

=

np∑
i=1

xiNi(y)

=

np∑
i=1

ϕ2(u
2
i )Ni(y) = φ2

E(y).

(5.24)

Note that φjE is φjP ◦ (φjI)
−1, see Appendix E. Analogously to Equation (5.24), the

mappings φjI and φjP (between the master and the ideal and physical triangles, re-

spectively) are independent of the CAD parameterization. Next, we denote by Mj

the point-wise distortion measure defined using the space Wj

EI . Note that Mj is

strictly determined from DφjI and DφjP , see Equation (5.6). Moreover, since φjI and

φjP are independent on the parameterization, so their Jacobians are. Therefore, from

Eqs. (5.6) and (5.20),

M1φ
1
E(y; u1

1, . . . ,u
1
np) = M2φ

2
E(y; u2

1, . . . ,u
2
np).

Thus, the distortion at a point y ∈ EI is independent of the selected surface param-

eterization.

Second, since the conditions imposed for the optimization procedure in Equation

(5.23) are expressed in terms of M, which is independent of the surface parameteri-

zation, we can proof the following result:

82



5.4. Distortion and quality measures for high-order elements on surfaces

Proposition 5.2. According to the objective function f , defined in Equation (5.22),

the optimal location for the mesh nodes xi = ϕ(ui) in Σ, i = 1, . . . , nF , is independent

of the surface parameterization.

Proof. The conditions for the critical points of f are expressed in terms of M and its

derivatives, Equation (5.23). Since M is independent of the surface parameterization,

Proposition 5.1, the critical points of f are also independent of the surface mesh

parameterization. To finalize, the optimal configurations are also independent of the

surface parameterization, since they are found between the candidate configurations.

Remark 5.1. In Proposition 5.2, we have proved that the candidate configurations

are independent of the surface parameterization. In particular, the candidate con-

figurations have to be the same for high (smooth Jacobian) and low (highly varying

Jacobian) quality surface parameterizations. Therefore, the proposed method can be

applied to obtain candidate mesh configurations on CAD surfaces represented by low-

quality parameterizations.

Remark 5.2. The goal of the proposed method is to obtain the critical points inde-

pendently of the surface parameterization. However, there are meshes that cannot

be untangled by the proposed method, such as when the boundary edges of the mesh

present self-intersections. Nevertheless, the proposed method has properly smoothed

and untangled all the tested meshes with valid boundary configurations.

5.4 Distortion and quality measures for

high-order elements on surfaces

To validate the suitability of a given surface mesh for computational purposes, in

this section, we use the point-wise distortion measure presented in Equation (5.6) to

propose a definition of distortion (quality) for high-order elements.

Definition 5.1. The distortion measure for a high-order surface element is

ηEU :=
‖MφE‖EI
‖1‖EI

, (5.25)

where ηE is a function of the element nodes u1, . . . ,unp , since MφE is. Note that

‖1‖EI is the area of the ideal element.
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Definition 5.2. The quality measure for a high-order surface element is

qE
U

:=
1

ηEU
. (5.26)

Remark 5.3. Since ηEU is defined in terms of MφE, it is also independent of the

selected surface parameterization. Analogously, the corresponding quality measure qE
U

is also independent.

We highlight that to check that the mesh is valid to perform a numerical sim-

ulation, a quality measure has to properly detect if an element it is non-valid (and

assign 0 value). Moreover, the measure has to penalize the deviation of the element

with respect to the target ideal (and assign value 1 to the ideal). In Appendix F we

illustrate the behavior of the defined distortion and quality measures for high-order

elements on parametrized surfaces.

Herein, when we validate a given curved high-order surface mesh, we set δ to 0

in Equation (5.6). Therefore, if there is a region where the Jacobian is non-positive

(σ ≤ 0), then ηE, Equation (5.25), is not defined and the quality qE
U

is 0. Conversely,

if the physical element is the ideal, φE is the identity. Then, the point-wise distortion

MφE(y) is 1 for all y ∈ EI . Thus, by Definition 5.1, the element distortion ηE is also

1. Summarizing, we state the following remark:

Remark 5.4. The distortion measure ηEU for high-order surface elements has image

[1,∞), where 1 corresponds to the ideal configuration and ∞ to a non-valid one.

Hence, by Definition 5.2, qE
U

has image [0, 1], where 0 corresponds to an invalid ele-

ment, and 1 to the ideal one.

5.5 Results

This section is divided in two parts. First, we present three examples to assess the

properties of the proposed smoothing and untangling procedure for nodal high-order

meshes with the nodes on CAD geometries. Second, we present three additional

examples to illustrate the proposed mesh a posteriori mesh generation approach for

CAD geometries.

We highlight that, in all the figures, the mesh elements are colored according to

the quality measure presented in Definition 5.2. Moreover, for all the examples we
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Mesh Min Max Mean SD Tang.
Initial 0.00 1.00 0.98 0.11 6

Figure 5.7(a) 0.96 1.00 0.99 0.01 0
Figure 5.7(b) 0.96 1.00 0.99 0.01 0

Table 5.1: Shape quality statistics for the high-order meshes on a component of a
motorbike brake, presented in Figure 5.7.

present a table summarizing the quality statistics of the mesh elements. Specifically,

we provide: the minimum, the maximum, the mean and the standard deviation (SD)

of the mesh quality, and the number of tangled elements. We highlight that in all

cases, the smoothed mesh increases the minimum and mean values of the mesh quality

and decreases its standard deviation. In all the examples, the resulting high-order

elements are valid and curved, and we ensure that the nodes lie on the exact CAD

geometry.

5.5.1 Properties

In this section, we present three examples to illustrate the main properties of the

defined quality measure and the derived optimization process, namely: consistency,

independence on the surface parameterization, and robustness of the untangling pro-

cedure.

5.5.1.1 Consistency

The goal of this example is to illustrate that the defined measure for high-order

meshes on parameterized surfaces, see Equation (5.6), when applied to planar surfaces

is equivalent to the high-order measure for planar meshes, presented in Roca et al.

(2012). The planar point-wise distortion is expressed as:

ηR2 := η(DφE), (5.27)

since it does not require the embedding of the Jacobian required in the definition

of the surface measure in Section 5.2.2. That is, we show that Equation (5.6) is

consistent with Equation (5.27) when the surface is planar. It is important to point

out that this is true by construction. If the considered surface is planar, the matrix

J̄, Equation (5.5), required to compute the value of the quality measure, corresponds

to the matrix J except by a rotation. Note that we define the high-order measures
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(a)

(b)

Figure 5.7: Optimization of a planar mesh of degree 3 for a component of a motorbike
brake using: (a) the planar technique, and (b) the surface technique.

in terms of Jacobian distortion measures that are invariant under rigid body motion

(such as the shape measure, see details in Knupp (2001a)). Therefore, we have that

ηEU is equal to ηE.

To illustrate this consistency, we consider a planar CAD model of a component of
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Srf. Figure Min.Q. Max.Q. Mean Q. SD Tang.

ϕ1
Σ1

5.8(b) 0.29 0.96 0.67 0.18 0
5.8(d) 1.00 1.00 1.00 0.00 0

ϕ1
Σ2

5.8(f) 0.43 1.00 0.65 0.16 0
5.8(h) 1.00 1.00 1.00 0.00 0

ϕ1
Σ2

5.8(j) 0.16 0.93 0.57 0.22 0
5.8(l) 0.91 1.00 0.97 0.02 0

ϕ2
Σ2

5.8(n) 0.34 0.96 0.63 0.16 0
5.8(p) 0.91 1.00 0.97 0.02 0

Table 5.2: Shape quality statistics of the meshes on Σ1 and Σ2, presented in Figure
5.8.

a motorbike brake, see Figure 5.7. First, we generate a mesh composed by 643 ele-

ments of degree 3 and 5608 nodes. When the mesh is curved to match the boundary

geometry, 8 tangled elements appear. Then, we optimize it using the planar, Figure

5.7(a), and the surface, Figure 5.7(b), distortion measures. Note that the ideal trian-

gle for each element has been selected as the straight-sided high-order element itself

in the initial configuration. To check that we obtain equivalent meshes, we compute

E = max
i=1,...,nF

‖x1
i − x2

i ‖
L

(5.28)

where L is the minimum edge length in the mesh, and x1
i and x2

i are the coordinates

of the free nodes obtained by the planar and the surface measures, respectively. We

obtain that E = 1.3 · 10−4 and hence, the meshes are equal up to minimization

tolerance. Moreover, according to Table 5.1, we obtain the same quality statistics for

both meshes.

5.5.1.2 Independence on the parameterization

The aim of this example is to show that the proposed quality measure and the derived

optimization procedure are independent of the surface parameterization, see Section

5.3.4. To illustrate this property, we consider two surfaces, and for each one we define

two different parameterizations. For both surfaces, Figure 5.8 presents the meshes

on the parametric space (first and third columns) and on the physical space (second

and fourth columns). We generate the same parametric mesh for all surfaces and

parameterizations. The mesh is structured and composed by 128 elements of degree

3 and 625 nodes. Since we are using structured meshes, we select as ideal element
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Initial Smoothed
U Σ U Σ

ϕ1
Σ1

(a) (b) (c) (d)

ϕ2
Σ1

(e) (f) (g) (h)

ϕ1
Σ2

(i) (j) (k) (l)

ϕ2
Σ2

(m) (n) (o) (p)

Figure 5.8: Independence of the optimization procedure on the surface parameter-
ization. Degree three meshes on Σ1 parameterized by ϕ1

Σ1
: (a,b) initial meshes on

U1
Σ1

and on Σ1; (c,d) smoothed meshes on U1
Σ1

and on Σ1. Degree three meshes on

Σ1 parameterized by ϕ2
Σ1

: (e,f) initial meshes; (g,h) smoothed meshes. Degree three

meshes on Σ2 parameterized by ϕ1
Σ2

: (i,j) initial meshes; (k,l) smoothed meshes. De-

gree three meshes on Σ2 parameterized by ϕ2
Σ2

: (m,n) initial meshes; (o,p) smoothed
meshes.

the isosceles rectangle triangle. All meshes in Figure 5.8 are colored according to the
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shape quality of the elements on the physical space.

5.5.1.2.1 Surface 1 Given the parameterization

ϕ
Σ1

: U
Σ1

= [−1, 1]2 ⊂ R2 −→ R3

(u, v) −→ (u, v, 0),

we define the surface Σ1 as ϕ
Σ1

(U
Σ1

). Note that this parameterization has a constant

Jacobian. We define two different parameterizations for Σ1:

ϕ1
Σ1

: U1
Σ1

= [−1, 1]2 −→ Σ1 ⊂ R3

(u, v) −→ (u, v ε(u, v), 0),
(5.29)

and

ϕ2
Σ1

: U2
Σ1

= [−1, 1]2 −→ Σ1 ⊂ R3

(u, v) −→ (u ε(u, v), v ε(u, v), 0),
(5.30)

where ε(u, v) := e−2(1−u
2)(1−v2). Note that these parameterizations have a non-

constant Jacobian.

The elements of the initial mesh on the parametric space are rectangular isosceles

triangles (see Figures 5.8(a) and 5.8(e)). These meshes are mapped to the physical

space according to ϕ1
Σ1

and ϕ2
Σ1

respectively, see Figures 5.8(b) and 5.8(f). There-

fore, the initial meshes on the physical space follow approximately the isolines of the

corresponding parameterization. Note that both meshes contain low-quality elements

due to the use of parameterizations with varying Jacobian matrices. Figures 5.8(c)

and 5.8(g) show the optimized meshes in the parametric domain, and Figures 5.8(d)

and 5.8(h) show the optimized meshes on the surface. We quantify if both optimized

meshes are equal to each other using Equation (5.28) and we obtain E = 1.01 · 10−4.

Hence, both meshes are equal up to minimization tolerance.

5.5.1.2.2 Surface 2 Given the parameterization

ϕ
Σ2

: U
Σ2

= [−1, 1]2 ⊂ R2 −→ R3

(u, v) −→ (u, v, sin(πu) cos(πu)).

we define the surface Σ2 as ϕ
Σ2

(U
Σ2

). We define two different parameterizations for

Σ2:

ϕ1
Σ2

(u, v) := (u, v ε(u, v), sin(πu) cos(πv ε(u, v))) ,
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and

ϕ2
Σ2

(u, v) := (u ε(u, v), v ε(u, v),

sin(πu ε(u, v)) cos(πv ε(u, v))).

In Figures 5.8(i) and 5.8(m) we present the structured parametric meshes. The

image of these meshes on the surface is presented in Figures 5.8(j) and 5.8(n). Again,

the parameterizations lead to low quality meshes on the physical surface. The opti-

mized meshes on the parametric surface are shown in Figures 5.8(k) and 5.8(o), and

on the physical surface in Figures 5.8(l) and 5.8(p). Although in this case we have

a non-planar surface, the smoothing-untangling procedure also provides the same

meshes up to minimization tolerance with E = 5.7 · 10−4.

Table 5.2 presents the quality statistics for both surface meshes. The optimization

procedure can smooth the initial meshes and obtain a high-quality mesh, increasing

significantly in both cases the minimum value of the quality.

5.5.1.3 Robustness of the smoothing and untangling procedure

The goal of this example is to illustrate the capability of the developed procedure to

simultaneously untangle and smooth a high-order mesh with a large number of tangled

elements. We consider a CAD geometry of a propeller and, according to Section 5.1,

we generate an initial mesh of degree five composed by 1374 elements and 18343

nodes. This non-smoothed mesh contains 2 tangled elements, and therefore, is not

valid for computational purposes. Figures 5.9(a) shows a general view of the initial

curved high-order mesh, and Figure 5.9(d) shows a zoom where a tangled element

appears. Recall that using the a posteriori curving approach detailed in Section

5.1, we normally obtain meshes with several tangled elements when the boundary is

curved to match the geometry. These elements are usually located on the boundaries

of the surface and therefore, the number of tangled elements is small compared to

the total number of elements.

To check the capabilities of the proposed method, we increase the number of

tangled elements by applying a random perturbation to the location of the inner

nodes of the surface. The resulting mesh contains 1372 tangled elements, see Figures

5.9(b) and 5.9(e). After applying the optimization procedure we obtain a high-quality

mesh without tangled elements, see Figures 5.9(c) and 5.9(f). The ideal triangle for

each element is the element itself with straight edges in the initial configuration. Table
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(a)

(b)

(c)

(d) (e) (f)

Figure 5.9: High-order meshes of polynomial degree five colored according to the
shape quality measure for a propeller: (a,d) initial curved mesh, (b,e) tangled mesh,
and (c,f) smoothed and untangled mesh.

5.3 summarizes the quality statistics of the three high-order meshes. We highlight

that the smoothed mesh increases the values of the minimum quality of the initial

and randomized meshes.

In addition, we have also smoothed the initial mesh (the mesh with only two tan-

gled elements) and we obtain the same smoothed mesh up to minimization tolerance.

Specifically, the relative distances between the smoothed meshes is E = 1 · 10−10, see

Equation (5.28).
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Figure Min Max Mean SD Tang.
5.9(a) 0.00 1.00 1.00 0.04 2
5.9(b) 0.00 0.23 0.00 0.01 1372
5.9(c) 0.83 1.00 1.00 0.01 0

Table 5.3: Shape quality statistics of the high-order meshes on a propeller, presented
in Figure 5.9.

p Figure Min Max Mean SD Tang.
1 5.10(b) 1.00 1.00 1.00 0.00 0
1 5.10(a) 0.21 1.00 0.93 0.09 0
5 5.10(d) 0.00 1.00 0.97 0.14 45
5 5.10(c) 0.00 1.00 0.91 0.16 45
5 5.10(f) 0.69 1.00 0.99 0.01 0
5 5.10(e) 0.24 1.00 0.93 0.09 0

Table 5.4: Shape quality statistics of the high-order meshes on a Falcon aircraft,
presented in Figure 5.10.

5.5.2 High-order curved meshing

In this section, we analyze several aspects of the proposed a posteriori approach

to generate high-order meshes on parameterized surfaces, see Section 5.1. First, we

illustrate the complete procedure to generate a final valid high-order mesh on a CAD

geometry. Next, we show that the proposed methodology is able to generate meshes

of low and high polynomial degrees for a given geometry. Finally, we analyze the

quality of the obtained meshes in terms of the scaled Jacobian measure, that is a

standard measure of the smoothness of the element representation mapping, see Dey

et al. (2001b); Sherwin and Peiró (2002); Persson and Peraire (2009); Xie et al. (2012).

5.5.2.1 High-order mesh generation on a CAD geometry

The objective of this example is to illustrate the complete process for the generation of

a high-order mesh on a CAD geometry. We consider a CAD model of a Falcon aircraft

and we generate a valid mesh of polynomial degree five. Figure 5.10 shows each one

of the required steps. In the first column, the elements are colored according to the

quality that results from considering an equilateral triangle as an ideal element. This

is an absolute value of the quality, since it uses the same ideal for all the elements.

In the second column, the elements are colored according to the quality measure
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Snap-shots of the meshes involved in the generation of a high-order mesh
for a Falcon aircraft: (a,b) initial linear mesh; (c,d) initial curved mesh of polynomial
degree five, and (e,f) optimized mesh of polynomial degree five. The first column
is colored taking the ideal as the equilateral triangle. The second column is colored
taking the ideal as the corresponding element in the initial linear mesh.

that results from considering the initial straight-sided high-order elements as ideal

elements. This is a relative value of the quality, that allows comparing each element

to a different ideal triangle.

First, we generate an initial linear mesh using any established mesh generation

procedure that provides control over the size and shape of the generated elements, see

Figures 5.10(a) and 5.10(b). Note that these mesh characteristics will be inherited

by the final high-order mesh. Second, we set the ideal mesh increasing the order of

the initial straight-sided linear mesh. Thus, for the optimization procedure, the ideal

triangle for each element is the high-order triangle itself with straight edges in the

initial configuration. Third, we get the parametric coordinates of the linear mesh. If

we do not have access to them, we use the projection technique presented in Roca

(2009) to compute them. Next, we increase the polynomial degree of the mesh in

the parametric space, and we map it to the CAD geometry, see Figure 5.10(c) and

5.10(d). Note that several tangled elements appear. Then, we optimize this mesh on
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the parametric space, and we map it to the surface. To assess that we obtain a valid

high-order mesh composed by elements that preserve the shape of the initial linear

mesh we present the optimized mesh in Figures 5.10(e) and 5.10(f).

Analyzing Figures 5.10(e) and 5.10(f), we realize that the quality distribution is

similar to the quality distribution of the initial linear mesh. Thus, the optimized

mesh has untangled the inverted elements of Figure 5.10(d) and is a valid high-order

mesh that preserves whenever is possible the shape of the elements of the initial

straight-sided high-order mesh.

Table 5.4 summarizes the quality values of the meshes presented in this example.

Note that the optimized mesh does not include tangled elements. Note that the mean

value of the shape quality is 0.99 with a standard deviation of 0.01 when the ideal is

selected as the initial linear mesh.

5.5.2.2 High polynomial degree

The aim of this example is to show the capability of the presented methodology to

generate valid and high-quality meshes for any polynomial degree. To this end, we

first generate an initial linear mesh composed by 832 elements of the CAD geometry

of a component of a gear box. Then, we increase the polynomial degree of the initial

mesh to degree 3, 5, 8 and 10. As expected, these meshes contain tangled elements. In

the first column of Figure 5.11 we present the initial high-order meshes. We observe

that the number of tangled elements changes depending on the polynomial degree

(from 10 tangled elements for degree 3 to 130 tangled elements for degree 10). The

number of tangled element increases with the polynomial degree since the feasible

region of the nodes of the higher degree elements is smaller. Then, we apply the

proposed optimization procedure to each initial high-order mesh, selecting the ideal

for each element as the element itself in the initial straight-sided high-order mesh. In

the second column of Figure 5.11 we present the optimized high-order meshes.

Table 5.5 details the shape quality statistics of the presented meshes. For any of

the tested degrees, the proposed procedure provides a valid and high-quality mesh,

obtaining a valid configuration from an invalid initial one.

5.5.2.3 Validation of the smoothness of the representation mapping

In this section, we present an analysis of the scaled Jacobian measure for the degree

5 meshes generated in Secs. 5.5.1.3 and 5.5.2.1, and for the degree 10 mesh generated
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.11: High-order meshes of polynomial degrees 3, 5, 8 and 10 for a component
of a gear box. (a,c,e,g) Initial curved meshes. (b,d,f,h) Optimized meshes.
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p Figure Min Max Mean SD Tang.
3 5.11(a) 0.00 1.00 0.98 0.11 10
3 5.11(b) 0.98 1.00 1.00 0.00 0
5 5.11(c) 0.00 1.00 0.95 0.19 30
5 5.11(d) 0.98 1.00 1.00 0.00 0
8 5.11(e) 0.00 1.00 0.86 0.34 110
8 5.11(f) 0.98 1.00 1.00 0.00 0
10 5.11(g) 0.00 1.00 0.83 0.36 130
10 5.11(h) 0.98 1.00 1.00 0.00 0

Table 5.5: Shape quality statistics of the high-order meshes on a component of a gear
box, presented in Figure 5.11 .

in Section 5.5.2.2. The scaled Jacobian element quality measure

µ =
minξ∈EM DφP (ξ)

maxξ∈EM DφP (ξ)
(5.31)

is widely used to assess the validity of the high-order mesh elements (Dey et al.,

2001b; Sherwin and Peiró, 2002; Persson and Peraire, 2009; Xie et al., 2012), and

it quantifies the variation of the Jacobian of the representation mapping. In fact,

it quantifies the linearity of the representation mapping, being 1 only for constant

Jacobian matrices, that is, for linear elements.

It is important to point out that we expect an improvement on the scaled Jacobian

quality measure of the meshes obtained with the proposed optimization procedure.

On the one hand, from Equation (5.31) we realize that the scaled Jacobian measure is

constant for linear elements, and penalizes elements with non-constant Jacobian. On

the other hand, we highlight that our approach considers as ideal the initial straight-

sided high-order element. Thus, it tries to transform the physical curved element into

a high-order element similar to the initial straight-sided one, while it maintains the

nodes on the surface.

In Figure 5.12 we color the meshes presented in the previous examples using the

scaled Jacobian quality measure. In the first and second columns of Figure 5.12

we show the initial and optimized high-order meshes, respectively. In Table 5.6 we

display the scaled Jacobian quality statistics for the meshes presented in Figure 5.12.

As expected, using the proposed approach we improve the minimum and the mean

values of the scaled Jacobian quality measure in all the cases. Hence, we obtain valid

and high-order meshes with a good behavior of the Jacobian of the representation

mapping.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Initial and optimized high-order meshes colored according to the scaled
Jacobian quality measure for the examples presented in Section 5.5.2: (a,b) degree 5
meshes on a propeller, (c,d) degree 5 meshes on a Falcon aircraft, and (e,f) degree 10
meshes on a component of a gear box.

5.6 Concluding remarks

The main goal of this work is to validate and generate curved meshes of any poly-

nomial degree on parameterized CAD surfaces. First, we detail a new technique to

extend any Jacobian-based distortion (quality) measure defined for planar triangles

to high-order elements on parameterized surfaces. The proposed measure is expressed

in terms of the parametric coordinates of the mesh nodes, and we prove that it is
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Mesh Figure Min Max Mean Std.Dev. Tang.
Initial 5.12(a) -2.93 1.00 0.89 0.18 2

Smoothed 5.12(b) 0.18 1.00 0.95 0.08 0
Initial 5.12(c) -0.75 1.00 0.85 0.25 50

Smoothed 5.12(d) 0.09 1.00 0.92 0.11 0
Initial 5.12(e) -5.55 1.00 0.36 1.06 130

Smoothed 5.12(f) 0.26 1.00 0.81 0.16 0

Table 5.6: Scaled Jacobian element quality statistics of the high-order meshes pre-
sented on Figure 5.12.

independent of the surface parameterization.

Second, we develop a continuous optimization procedure to smooth and untangle

high-order meshes on parameterized surfaces. Specifically, we propose a non-linear

least-squares formulation to enforce in a weak form that the distortion of the mesh

is minimal. The optimization procedure is formulated in terms of the parametric

coordinates. Thus, it ensures that the nodes always lie on the exact CAD geometry.

Moreover, the distortion measure is regularized to allow untangling inverted elements.

In particular, the presented regularization technique avoids that a valid element be-

comes invalid and is capable of untangling highly meshes composed by a high number

of inverted elements.

In addition, we prove that the optimization procedure is independent of the surface

parameterization. That is, given two diffeomorphic parameterizations of the surface,

the physical candidate locations are the same for both parameterizations. Therefore,

this technique is particularly suited to generate high-order meshes on CAD geometries

represented with by low-quality parameterizations.

Third, we present an a posteriori mesh generation procedure for CAD geometries.

Specifically, given a linear mesh, we increase the polynomial order of the elements on

the parametric space, and then we improve the quality of the resulting mesh by means

of the proposed optimization procedure. Note that it is of the major importance that

the optimization procedure allows untangling, since when the polynomial degree of

the elements is increased, inverted elements appear close to the curved edges.

To conclude, we have included several examples to show the properties of the pre-

sented procedure, and to illustrate the a posteriori approach to generate high-order

meshes. We present two sets of examples. First, we assess the properties of the pre-

sented technique: consistence, the independence of the surface parameterization, and
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robustness of the untangling technique. Second, we analyze the mesh generation pro-

cess for CAD geometries. We show a detailed decomposition of the mesh generation

process, the capability to generate low and high-order meshes up to degree ten, and

a detailed analysis of the meshes obtained on three different CAD models.
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Chapter 6

Hierarchical and a posteriori

generation of curved meshes for

unstructured high-order methods

High-order meshes are usually generated using a posteriori approaches (Dey et al.,

1997, 2001a; Luo et al., 2002, 2004; Luo, 2005; Shephard et al., 2005; Sherwin and

Peiró, 2002; Persson and Peraire, 2009; Xie et al., 2012; Toulorge et al., 2013) whereby

the final mesh is obtained by modifying an initial linear mesh. Starting from an

initial linear mesh that approximates the domain geometry, the first step consists of

adding high-order nodes, either by enriching the linear element uniformly or according

to a suitable distribution aimed at minimizing interpolation errors (Hesthaven and

Warburton, 2007; Warburton, 2006). Next, the boundary nodes are projected onto

exact curved boundary. Finally, the mesh is smoothed and untangled to remove the

non-valid (folded) and low-quality (distorted) elements that might be created during

the curving of the mesh boundary. This last step is indeed the most critical to ensure

the quality of the generated meshes. When the grid deformation dictated by the

projection of the boundary nodes onto the boundary of the domain is small, existing

approaches are effective at producing suitable high-order meshes, but they often fail

for more extreme cases where the required deformation is larger.

The main goal of this chapter is to use an a posteriori approach to generate 3D

curved high-order meshes in which the boundary nodes are on CAD surfaces. To
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this end, we use a hierarchical approach to mesh each of the geometry entities. In

particular, we first generate a valid surface mesh using the approach presented in

Chapter 5. Next, we use the smoothing and untangling method presented in Chapter

4 to convert the initial linear mesh of the volume to the desired valid curved high-order

mesh.

The remainder of the chapter is organized as follows. In Section 6.1 we detail

the hierarchical approach to generate the meshes on each entity. In Section 6.2, we

present the proposed a posteriori approach. Next, in Section 6.3 we present the mesh

generation procedure for three different simulations. First, in Section 6.3.1 we present

the a posteriori generation of a mesh of polynomial degree seven for the Barcelona

harbor, and illustrate a wave propagation problem computed using the generated

mesh. Second, in Section 6.3.2 we present the generation procedure for a mesh of

polynomial degree four on a Falcon aircraft. Moreover, we illustrate an inviscid flow

simulation using the generated mesh. Finally, in Section 6.3.3 we present a procedure

to transform an inviscid mesh into a viscous mesh that has the stretching desired

by the user around a target object. In particular, we illustrate the mesh generation

procedure of a mesh of polynomial degree four on the exterior domain of a sphere,

and the corresponding viscous simulation. In addition, we present the generation of

a boundary layer mesh of polynomial degree four on a SD7003 airfoil.

6.1 Hierarchical approach

In this thesis, we follow a hierarchical procedure to generate high-order meshes. First,

we will generate all the vertices of the high-order mesh. Second, we will generate a

1D mesh of the desired polynomial degree such that it approximates the curved edges

of the geometry. Third, we will generate a 2D high-order mesh of the surfaces, and

finally, once determined the boundary mesh, we will generate the volumetric high-

order mesh. For all entities, we follow an a posteriori approach. That is, starting

from the linear mesh on that entity, we obtain a high-order mesh. In particular, we

follow the next procedure:

1. For each vertex of the linear mesh, we generate the corresponding node of the

high-order mesh.

2. Given an edge from the linear mesh, if it is on a curve of the CAD geometry,
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we will use the arc parameter to find a configuration of the high-order nodes

on the parametric space, such that once mapped to the physical space it corre-

sponds to a Legendre-Gauss-Lobatto distribution (Warburton, 2006; Hesthaven

and Warburton, 2007). If the edge is not adjacent to a curve, we increase its

polynomial order and we keep it straight-sided.

3. Once all the edges are of the desired polynomial order, we follow a similar pro-

cedure for the faces. On the one hand, if a given linear face is adjacent to

the CAD geometry, we use a point distribution on the parametric space that

provides a quasi-optimal Lebesgue constant by means of the blending presented

in Warburton (2006); Hesthaven and Warburton (2007). Next, we map the

nodes to the physical domain using the surface parameterization. Note that

this elements can be invalid, since the physical edges are curved and the surface

parameterization may be anisometric. Hence, we use the optimization proce-

dure presented in Section 5 in order to ensure that the physical configuration

is valid. On the other hand, if the face is not on the boundary, we increase its

polynomial degree directly on the physical space.

4. Once all the faces are of the desired polynomial order, we generate the high-order

volumetric elements. First, we increase the polynomial order of the element

adding the remaining high-order nodes. Note that the resulting elements may be

invalid, since the boundary faces and edges are curved matching the geometry.

Therefore, next we optimize the location of the nodes that are not on the

boundary geometry. In this manner, the volumetric elements are curved close

to the CAD geometry in order to accommodate the curving of the boundary

faces.

6.2 A posteriori generation of curved high-order

meshes

In this section, we use the discrete formulation for curving presented in Section 4.1.2

to propose a new a posteriori approach to generate curved high-order meshes. This

procedure is composed by three steps: generating the ideal mesh; curving the mesh

boundary; and curving the mesh volume. Fig. 6.1 illustrates these three main steps

in 2D.
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(a) (b) (c)

Figure 6.1: High-order mesh generation procedure: (a) ideal high-order meshMI , (b)
initial curved mesh φ0

h(MI), and (c) final optimized mesh φ∗h(MI). Invalid elements
are colored in dark gray.

6.2.1 Generating the ideal mesh: obtain MI

Generate a linear mesh. We generate a linear mesh with any robust and well

established linear mesher. Note that this mesh prescribes the topology and the geo-

metrical requirements (size, shape, stretching...) of the final high-order mesh.

Set the ideal mesh MI. Once the linear mesh is generated, we increase its poly-

nomial degree, see Fig. 6.1(a). We set this high-order straight-sided mesh as the ideal

mesh MI .

6.2.2 Curving the mesh boundary: obtain gh and set φ0h

Obtain a valid curved boundary mesh gh. To generate a valid and high-quality

high-order surface mesh, gh, we use the technique presented in Chapter 5. In these

previous works, we detail an optimization based method to generate valid and high-

order meshes with the nodes on the CAD surfaces. Note that generating a valid

surface mesh is of the major importance for ensuring the robustness of the proposed

procedure. If the boundary mesh contains a single inverted element, then the 3D

mesh will be always invalid.

Set the initial curved high-order mesh φ0
h(MI). We curve the boundary faces

of the straight-sided mesh imposing the curved surface mesh determined by gh and we

set this high-order mesh as the initial configuration, φ0
h(MI), of our procedure. It is

important to point out that this mesh may contain a large number of invalid (tangled)

elements on the boundary, the dark gray element in Fig. 6.1(b) illustrates this issue in
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2D. In Chapter 6.3.2, we show several configurations where invalid tetrahedra appear

close to the curved features of the geometry.

6.2.3 Curving the mesh volume: obtain φ∗h

Finally, we smooth and untangle the curved and high-order mesh using the optimiza-

tion procedure proposed in Section 4.1.2. Specifically, we solve the minimization prob-

lem stated in Equation (4.4) taking as ideal the high-order straight-sided mesh MI .

Fig. 6.1(c) shows the optimized mesh for the 2D analogy. Since the initial approxi-

mation, φ0
h(MI), can contain invalid elements, it is mandatory that the optimization

technique allows untangling invalid elements. Our approach allows untangling by

means of using a distortion measure, see Equation (3.2), that can be regularized, see

Equation (3.6), to explicitly penalize those elements that have negative values of the

determinant of the Jacobian. The final curved high-order configuration is given by

φ∗h(MI).

6.3 Results

The final goal of the methods developed in this thesis is to generate curved high-order

meshes that are valid to perform finite element analysis with solvers that feature high-

order unstructured meshes. In this work we propose an a posteriori mesh generation

procedure to ensure that the high-order mesh is valid, high-quality, and curved to

match the CAD geometry. In this manner, we obtain a mesh with an accurate

approximation of the curved domain that avoids the spurious effects that arise with

piecewise linear approximations (Bassi and Rebay, 1997; Dey et al., 1997; Luo et al.,

2002; Xue and Demkowicz, 2005; Sevilla et al., 2011).

In this chapter, we use the approach proposed in Section 6.2 to generate valid

curved high-order meshes that match the boundary geometry for three different ap-

plications. First, in Section 6.3.1, we generate a triangular mesh of polynomial degree

seven on the Barcelona harbor to solve a wave propagation problem. Second, in Sec-

tion 6.3.2 we generate a tetrahedral mesh of polynomial degree four on a Falcon

aircraft, to solve an inviscid flow computation. Finally, in Section 6.3.3, we present a

technique to generate boundary layer meshes, and we present a viscous flow compu-

tation around an spheric geometry.

105



6. Hierarchical and a posteriori generation of curved meshes for
unstructured high-order methods

Figure 6.2: Wave amplification factor on the Barcelona harbor for an incident wave
of height equal to 1. The solution is obtained on a high-order mesh of polynomial
degree 7.

6.3.1 Barcelona harbor

In this example, we generate a high-order mesh for computing the wave agitation

inside the Barcelona (Spain) harbor. The physical problem that is studied is the wave

propagation in highly reflective coastal areas. The final goal is to obtain the wave

amplification factor for an incident wave of height one. The Barcelona harbor contains

several small geometric features (10 m length) compared to the total extension of the

domain (12 km), requiring fine computational meshes if linear elements are used. On

top of that, high-order elements are needed in order to reduce the numerical dispersion

error, commonly associated with the propagation of high frequency waves in presence

of numerous reflections. Using a mesh composed by 2.4 millions of linear elements

an erroneous solution without physical meaning is obtained. However, using a high-

order mesh of polynomial degree 7 composed by 32802 elements (803649 nodes), the

dispersion error can be reduced obtaining an accurate solution. Figure 6.2 shows

the wave amplification factor for the Barcelona harbor when the angle between the

incident wave and the x-axis is 43 degrees and the period is 6 seconds (Huerta et al.,

2011; Giorgiani et al., 2013).

To generate a high-order mesh for this problem, we first generate a linear trian-

gular mesh, and we increase the polynomial degree, curving the boundary edges and

maintaining straight the interior edges. Figure 6.3 shows the initial and smoothed

curved high-order meshes, displaying also the high-order quality of the elements, for

the four areas marked in Figure 6.2. We apply the optimization procedure using a

Fekete distribution of nodes on the master and ideal element. Figures 6.3(a) to 6.3(d)

present the four selected details of the initial mesh. Note that Figures 6.3(a), 6.3(b)

and 6.3(c) contain non-valid elements. Figures 6.3(e) to 6.3(h) show the four selected
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 6.3: Details of a high-order mesh for the Barcelona harbor: (a) to (d) details
of the initial curved mesh, (e) to (h) details of the smoothed mesh.
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Figure Min. Max. Mean Std.Dev. #inv
6.3(a-d) 0.00 1.00 0.91 0.08 3
6.3(e-h) 0.52 1.00 0.92 0.08 0

Table 6.1: Quality statistics for mesh of polynomial degree 7 on the Barcelona harbor.

Table 6.2: Quality statistics of a mesh of polynomial degree 4 for a Falcon aircraft.
The mesh is composed by 27511 elements and 317854 nodes.

Mesh Figure Min Max Mean Std. Dev. #inv
Straigh-sided 6.4(a) 1.00 1.00 1.00 0.00 0

Initial 6.4(b) 0.00 1.00 0.99 0.02 12
Smoothed 6.4(c) 0.31 1.00 0.99 0.01 0

details of the smoothed mesh. The final mesh is composed by valid and high-quality

elements. Specifically, on the boundary we obtain well shaped elements with curved

edges, whereas inner elements tend to have straight edges. Table 6.1 displays the

quality statistics of the presented meshes.

6.3.2 Generation of curved and high-order tetrahedral

meshes for unstructured methods

In this section, we illustrate the complete a posteriori mesh generation approach on

a 3D domain. Specifically, we present the main steps involved in the generation of a

smoothed and untangled high-order mesh of polynomial degree five for the exterior

domain of a Falcon aircraft. Finally, we show that the meshes obtained with the

presented approach can be used to perform simulations with any unstructured high-

order tetrahedral solver. In all figures, we color the meshes with respect to the quality

at each point of the mesh, i.e. the inverse of the distortion of that point. Moreover,

or all the examples, we present a table summarizing the quality statistics of the mesh

elements. Specifically, we provide: the minimum, the maximum, the mean and the

standard deviation of the mesh quality, and the number of tangled elements.

6.3.2.1 Generation of curved high-order tetrahedral meshes from CAD

models

We consider the CAD definition of a Falcon aircraft and a mesh of degree 4 with

valid and high-quality elements on the exterior domain. The straight-sided high-
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(a) (b) (c)

(d) (e)

Figure 6.4: Tetrahedral meshes of polynomial degree 4 around a Falcon aircraft.
Detail of the: (a) ideal straight-sided mesh, (b) initial curved mesh, and (c) smoothed
mesh. (d,e) General views of the smoothed mesh. In figures (a,b,c) two inverted
high-order elements that appear when the mesh is curved are shown with the edges
in white.

order mesh is shown in Figure 6.4(a). We choose this mesh as the ideal mesh, since

we want to preserve the mesh features (shape, size, anisotropy...) of the linear mesh.

We curve the boundary faces by relocating the nodes on the CAD surface, see Chapter

5. This process leads to 12 non-valid elements. Figure 6.4(b) presents a detail of the

initial curved mesh near the nose and Figure 6.4(c) shows a detail of the optimized

mesh near the nose including the two inverted elements highlighted in Figure 6.4(b).

Additional details of the different meshes are shown in Figure 6.5. Finally, Table

6.2 summarizes the mesh quality statistics highlighting the superior qualities of the
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Tetrahedral meshes of polynomial degree 4 around a Falcon aircraft.
Detail of the mesh where inverted elements can be observed: (a,d) straight-sided
mesh, (b,e) initial curved mesh, and (c,f) smoothed mesh. Some inverted high-order
elements that appear when the mesh is curved (b,d) are shown with white edges.

Table 6.3: Quality statistics of the mesh of polynomial degree 4 for a Falcon aircraft
used in the numerical simulation. The mesh is composed by 64992 elements and
96258 nodes.

Mesh Figure Min Max Mean Std. Dev. #inv
Initial - 0.00 1.00 0.99 0.009 11

Smoothed 6.6 0.85 1.00 0.99 0.003 0

smoothed high-order mesh.
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(a) (b)

(c) (d)

Figure 6.6: Curved mesh and inviscid flow around a Falcon aircraft for polynomial
degree four, α = 0◦, and M∞ = 0.6. Distribution of the magnitude of the velocity on
different cut planes: (a,b,c) general view, and (d) detailed view.

6.3.2.2 Inviscid flow solution on a curved and high-order tetrahedral

mesh

We perform a flow simulation using a high-order mesh for the Falcon geometry of

the previous example. We consider an inviscid flow with a free stream Mach number

of 0.6 (M∞) and an angle of attack of 0◦ (α). The mesh quality statistics of the

initial and optimized meshes are shown in Table 6.3. Then, we use this mesh to

obtain an approximation of the steady state solution of the Euler equations. This

approximation is obtained with a 3D and parallel solver (Roca et al., 2013) using the

hybridized discontinuous Galerkin (HDG) method (Cockburn et al., 2009; Nguyen

et al., 2009a,b; Peraire et al., 2010). Both the steady state solution and the mesh are

represented by element-wise polynomials of degree 4. The mesh is composed by 64992

elements and 129984 faces. Each element (face) of polynomial degree four contains
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35 (21) points. Furthermore, the solution of the compressible Euler equations has

5 components per point that correspond to the conserved quantities, namely: the

density, the momentum, and the energy. This results in an HDG solution having

a total of 14103264 degrees of freedom (DOFs) where: 11373600 DOFs are on the

elements, and 2729664 DOFs are on the faces. To reduce the computation time, the

mesh is partitioned in 128 sub-domains and accordingly, the HDG solver is run on

128 cores. In Figure 6.6, we present the magnitude of the velocity of the steady state

of the inviscid flow, and a detail of the curved and high-order mesh on the aircraft

surface. We point out that the curved elements are required to obtain a steady state

solution of the Euler equations. Note that if the initial linear mesh is converted to a

high-order mesh of degree four, but composed by straight-sided tetrahedra, the HDG

solver does not converge to a steady state solution. This is in full agreement with the

results reported in Bassi and Rebay (1997), where they show that piece-wise linear

approximations of the curved surfaces lead to artificially polluted solutions of the

Euler equations. On the contrary, the meshes generated with the proposed method

allow the convergence of the HDG solver.

6.3.3 Inserting curved boundary layers for viscous flow

simulation with high-order tetrahedra

We propose an a posteriori approach for generating curved meshes for viscous flow

simulations composed by high-order tetrahedra. The proposed approach is performed

in the following three steps: (1) generate a linear tetrahedral mesh for inviscid flow; (2)

insert a boundary layer mesh, composed by linear tetrahedra, on the viscous part; and

(3) convert the linear tetrahedral mesh to a curved and high-order mesh for viscous

flow. This approach provides high-order tetrahedral meshes with boundary layer

parts that are composed by elements that are: curved, valid, and of any polynomial

degree.

The main application of the obtained meshes is the simulation of viscous flow with

high-order unstructured solvers. Since the obtained meshes are conformal and fully

composed by tetrahedra, they can be used with any continuous and discontinuous

Galerkin solver that features linear and high-order tetrahedra. That is, it does not

require a solver for non-conformal and hybrid meshes. To show the applicability of the

method, we present the flow around a curved geometry obtained with the hybridized

discontinuous Galerkin method.
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6.3.3.1 Methodology and application: flow around a sphere

In this section, we outline the proposed method and we apply it to generate a mesh

for the simulation of the viscous flow around a sphere. Note that a high-fidelity

approximation of the flow requires a curved and high-order mesh with an anisotropic

boundary layer in the regions adjacent to the sphere. The geometry of the sphere

is described exactly (up to machine accuracy) by a 3D CAD model composed by 8

NURBS surfaces of degree 3 that correspond to the sphere octants. The rest of the

mesh can be isotropic and corresponds to the inviscid part of the flow.

To illustrate the method, below we describe the meshes obtained in the different

steps. Specifically, all the elements are colored according to a measure of the qual-

ity respect the ideal straight-sided element, Chapter 3, see Figure 6.9. This quality

measure is also used to obtain the mesh statistics, see Table 6.4. Furthermore, the re-

ciprocal of the quality (distortion) is minimized to smooth and untangle the inserted

elements on the viscous part, see Chapter 4 for details. Note that this node reloca-

tion approach approach is an alternative to existent curved boundary layer meshing

methods based on topological modifications (Sahni et al., 2010). Finally, we present

a high-order approximation of the flow around the curved mesh of a sphere. The flow

is obtained with a parallel implementation of the hybridized discontinuous Galerkin

method (Roca et al., 2013).

1. Generate a linear tetrahedral mesh for inviscid flow. The first step in

our methodology is to generate an isotropic linear mesh for inviscid flow simulations.

The mesh has to be finer in the regions of higher curvature, and has to provide

the required resolution on the inviscid part. Specifically, the inviscid mesh for the

sphere is composed by 18936 linear tetrahedra and 3753 points, Figure 6.9(a). All

the elements have quality one, since this initial mesh is considered the ideal mesh for

the inviscid part.

2. Insertion of the boundary layer in the viscous part. The goal of this step

is to obtain a valid linear mesh for viscous flow simulations. This step is performed in

two stages: i) insert a linear boundary layer; and ii) smooth and untangle the initial

viscous linear mesh.

First, we insert the topology of the boundary layer. To this end, we generate

a layer of prisms by extruding in the normal direction the triangles on the wall

boundary. The extrusion distance is the ten percent of the final desired boundary

layer height since the goal is just to obtain the mesh topology. Then, the inserted
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Template for a prism defined by an extruded triangle on the wall bound-
ary.

(a) (b) (c)

Figure 6.8: Template for a prism connecting the viscous and inviscid parts of the
mesh.

layer is converted to a boundary layer mesh by splitting each prism in several levels

of tetrahedra. The number of levels is characterized by: an initial size on the normal

direction, the growing factor of the size along the normal direction, and a final size.

To split the inserted layer, we consider two templates to split a prism in tetrahedral

elements. The first template (Figure 6.7) is composed by 12 tetrahedra, and it is
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stacked along the normal direction, starting from the wall boundary, to form the

boundary layer. The second template (Figure 6.8) is composed by 7 tetrahedra, and

is used to connect the last layer of the viscous part of the mesh with the first layer of

the inviscid part. Both templates ensure that the obtained mesh is conformal. Note

that the triangles of the wall boundary have to be split into four triangles to insert

the boundary layer. The boundary layer topology is composed by 24986 elements.

This results in a viscous mesh composed by a total of 43922 elements and 8595 points.

Note that the inserted tetrahedra have lower quality than the ones on the inviscid

part, see Figure 6.9(b).

Second, we smooth and untangle the mesh with the inserted boundary layer. The

goal of this step is to obtain a valid and high-quality viscous mesh. The elements

on the viscous part have to present the desired stretching, and the elements on the

inviscid part have to resemble the mesh size features of the initial linear mesh. To

this end, we assign a different ideal element to each element of the mesh. One the one

hand, each element on the viscous part is idealized by a tetrahedron that presents

the proper stretching along the normal direction to the wall boundary. On the other

hand, the elements on the inviscid part are idealized by the corresponding initial

linear element. Then, we minimize the distortion respect the assigned ideal mesh

using the smoothing and untangling procedure proposed in Chapter 4. This results

in a valid tetrahedral mesh with an inserted boundary layer of the proper size and

stretching, see Figure 6.9(c).

3. Conversion to a curved and high-order tetrahedral mesh. In this step,

the valid viscous mesh is converted to a curved and high-order tetrahedral mesh. This

process is also composed by two stages: i) convert the whole mesh to a high-order

mesh; and ii) smooth and untangle the viscous high-order mesh.

First, the linear tetrahedral mesh with the inserted boundary layer is curved and

converted to a high-order mesh. To this end, all the straight-sided elements of the

mesh are expressed in terms of element-wise polynomials of degree four. Then, the

nodes that correspond to faces on the wall boundary are forced to be on the sphere.

This results in a curved and high-order mesh with 311 non-valid elements close to

the wall boundary, see Table 6.4.

Second, we repair these invalid elements and increase the mesh quality by using

again the smoothing and untangling procedure. It is important to highlight that now

the ideal mesh is represented by the viscous linear mesh. The result is a valid curved
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(a) (b) (c)

(d) (e) (f)

Figure 6.9: Shape quality along the process. (a) Inviscid linear mesh. Viscous linear
mesh: (b) inserted boundary layer topology, and (c) smoothed and untangled mesh.
Viscous mesh of polynomial degree 4: (d) curved wall boundary, (e) smoothed and
untangled mesh, and (f) detail of the curved and high-order boundary layer.

Table 6.4: Shape quality statistics of the meshes presented in Figure 6.9.

p #elems #nodes Figure Min.Q. Max.Q. Mean Q. Std.Dev. #Inv.
1 18936 3753 6.9(a) 1.00 1.00 1.00 0.00 0
1 43922 8595 6.9(b) 0.32 1.00 0.61 0.34 0
1 43922 8595 6.9(c) 0.97 1.00 1.00 0.00 0
4 43922 487082 6.9(d) 0.00 1.00 0.98 0.09 311
4 43922 487082 6.9(e) 0.44 1.00 0.99 0.02 0

mesh composed by 43922 valid tetrahedra of polynomial degree 4 and 487082 points,

see Table 6.4. Note that the elements that compound the boundary layer are curved

and present the desired anisotropy, see Figures 6.9(d) and 6.9(e).

4. Simulation of the viscous flow around a sphere. Finally, the obtained
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(a)

(b)

Figure 6.10: Section of the curved mesh of polynomial degree 4 showing the flow
velocity and the element quality: (a) general view; and (b) detailed view.

curved and high-order tetrahedral mesh has been used to obtain a high-order ap-

proximation of the flow around a sphere of diameter one. Specifically, we consider

the compressible Navier-Stokes solution for the steady-state flow around a sphere at a

Reynolds number of Re = 200, and a free-stream Mach number of M∞ = 0.3. Figures

6.10(a) and 6.10(b), present an approximation of the velocity magnitude around the

sphere with element-wise polynomials of degree four together with the quality of the

curved mesh.
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(a) (b)

(c) (d)

(e)

Figure 6.11: Steps of the generation of a tetrahedral mesh of polynomial degree 4
with boundary layer around a SD7003 airfoil. (a) Inviscid linear mesh. Viscous linear
meshes: (b) inserted boundary layer topology, and (c) smoothed and untangled mesh.
Viscous mesh of polynomial degree 4: (d) curved wall boundary, and (e) smoothed
and untangled mesh. In Figures (d) and (e) we highlight with white edges the inverted
high-order elements that appear in the initial high-order mesh.
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Table 6.5: Shape quality statistics of the meshes presented in Figure 6.11.

p #elems #nodes Figure Min.Q. Max.Q. Mean Q. Std.Dev. #Inv.
1 7506 12430 6.11(a) 1.00 1.00 1.00 0.00 0
1 121898 22205 6.11(b) 0.00 1.00 0.24 0.18 396
1 121898 22205 6.11(c) 0.70 1.00 0.96 0.04 0
4 121898 1327354 6.11(d) 0.00 1.00 0.93 0.17 3590
4 121898 1327354 6.11(e) 0.21 1.00 0.96 0.04 0

6.3.3.2 Boundary layer around an SD7003 airfoil

In this section, we illustrate the procedure presented in Section 6.3.3.1 to generate

a boundary layer on an SD7003 airfoil. In Figure 6.11 we present the main steps of

the mesh generation procedure. In Figure 6.11(a) we illustrate the isotropic linear

mesh, composed by 7506 elements and 12430 nodes. We modify the topology of

this mesh by adding 7 anisotropic layers. The height in the orthogonal direction

between each layer is twice the height of the previous layer. To reduce the possible

inversions in the mesh, the extrusion distance is reduced to the 10 percent of the

desired boundary layer height, see Figure 6.11(b). Next, the linear mesh with the

inserted layers is smoothed, see Figure 6.11(c), obtaining a valid linear boundary

layer mesh. Note that in this smoothed mesh, the boundary layer elements have the

desired orthogonal height. Following, the polynomial degree of this mesh is increased

to 4, and this mesh is selected as ideal. The resulting high-order mesh is composed

by 121898 elements and 169566 nodes. Following, the boundary faces are curved to

match the airfoil geometry. Note that since the height of the layers is small close

to the size of the airfoil, auto-intersections of the boundary elements appear close to

the curved features of the geometry, obtaining an invalid mesh composed by 3590

inverted elements. Finally, the high-order mesh is smoothed and we obtain a final

valid boundary layer mesh with a minimum quality of 0.21 and a mean of 0.96.

We highlight that the final obtained mesh is composed of curved valid elements of

polynomial degree four, and has the desired boundary layer around the target airfoil.

6.4 Concluding remarks

We have presented an a posteriori method for generating curved and high-order con-

formal tetrahedral meshes from CAD models. The main application of the proposed

method is to obtain valid meshes ready to be used by any continuous or discontinu-
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ous unstructured high-order solver that features tetrahedral elements. The proposed

a posteriori method is divided in several steps. First, we generate a linear mesh

with the desired size and shape of the elements. Note that this initial mesh can be

generated with any unstructured tetrahedral mesher. Second, we increase the poly-

nomial degree of the mesh, and we set this straight-sided mesh as ideal (since it has

the desired polynomial degree, shape and size). Third, we curve and optimize the

boundary faces to ensure a valid boundary configuration. This step is of the major

importance, since to obtain a valid volume mesh, it is mandatory to obtain a valid

surface mesh, see Chapter 5 for details. Finally, we relocate the inner nodes of the

using the non-linear least-squares optimization of the regularized distortion measure

presented in Chapter 4.

We want to highlight that to apply the smoothing and untangling method it is

required that the following meshes are valid: the initial tetrahedral mesh (determines

the ideal mesh), and the curved and high-order surface mesh (determines the bound-

ary conditions). Note that these requirements arise from the first and second step of

any a posteriori method.

In addition, we have shown trough the examples that the obtained meshes fulfill

the requirements to perform a simulation with an unstructured and high-order solver.

That is, the meshes are composed by valid elements that are curved to approximate

the boundaries of the domain. First, we have generated a triangular mesh of poly-

nomial degree seven and we have illustrated a wave propagation computed using the

generated mesh. Second, we have generated a curved tetrahedral mesh to obtain

an HDG solution of the steady state of the inviscid flow around a Falcon aircraft.

Both the curved mesh and the approximation of the solution have been approximated

with element-wise polynomials of degree four. Note that for the same geometry, a

straight-sided mesh does not allow the convergence of the HDG solver to a solution

of polynomial degree four. According to Bassi and Rebay (1997), we have checked

that is mandatory to use curved meshes to obtain physically meaningful solutions of

the Euler equations.

Finally, we have presented an a posteriori approach for generating curved high-

order tetrahedral meshes for viscous flow simulations. The approach provides high-

order meshes that include a boundary layer mesh composed by tetrahedra that are:

curved, valid, and of any polynomial degree. Moreover, the approach enables the

construction of a Navier-Stokes boundary layer mesh (viscous) from an isotropic Euler
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mesh (inviscid). The main application of this method is to compute with high-fidelity

the flow around curved objects. That is, the curved and high-order boundary layer

mesh allows the proper representation of the viscous features of the flow close to the

wall conditions.
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Chapter 7

Summary and future work

7.1 Summary

In this thesis, we have considered four partial goals addressed to validate and generate

planar, surface, and volumetric curved high-order meshes from CAD models. We have

presented in detail the methods developed to accomplish these goals in the central

chapters of this dissertation. Therefore, below we summarize the main contributions

of this thesis:

1. We have proposed a new definition of distortion and quality measures

to validate planar and volumetric high-order meshes. In Chapter 3, we

present a procedure to quantify the distortion (quality) of a high-order mesh

composed by curved elements. First, we define a point-wise measure of the dis-

tortion of a mesh, in terms of the standard Jacobian-based distortion measures

for linear elements. Next, we define an element and a mesh quality measure.

The defined measures are valid for meshes of any polynomial degree. Specif-

ically, they allow detecting the validity of a high-order element. The quality

measure assigns a value of zero to an invalid high-order element, and a value

of one if the element is ideal (has the desired shape and node distribution). In

particular, we show that if an element has quality greater than zero, the re-

gion where the determinant of the representation mapping is lower or equal to

zero has measure zero. Moreover, we also show that the measure inherits from

the Jacobian-based measure its invariance under affine mappings. Finally, we
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present several results to illustrate the application of the proposed measures.

First, we analyze the behavior of the developed measures. Second, we show

that the quality measure can be used to validate isotropic and boundary layer

meshes.

Chapter 3 corresponds to an extension of the peer reviewed conference pa-

per Gargallo-Peiró, Roca, Peraire, and Sarrate (2014a). This work has been

invited for publication in the 22nd International Meshing Roundtable special

issue of Engineering with Computers (Gargallo-Peiró, Roca, Peraire, and Sar-

rate, 2014b).

2. We have proposed a novel robust untangling and smoothing proce-

dure to curve planar and volumetric curved high-order meshes. In

Chapter 4, we propose a smoothing and untangling algorithm to curve high-

order meshes. Specifically, we derive a non-linear optimization of a regularized

measure of the mesh distortion where the unknowns are the coordinates of the

interior mesh nodes.

The proposed algorithm repairs invalid curved meshes (untangling), ensures

that initially valid configurations remain valid after transformation (consis-

tency), deals with arbitrary polynomial degrees (high-order), and preserves

some geometrical features of the initial linear mesh (shape, stretching, size,

straight-sided interior elements). These properties of the method are demon-

strated through examples. Specifically, the examples show that the implementa-

tion of the proposed method is capable of handling situations in which the initial

mesh contains a large number of invalid elements (robustness) for: polynomial

approximations up to degree ten, large deformations of the curved boundaries,

concave boundaries, and highly stretched boundary layer elements.

Chapter 4 corresponds to an extension of the peer reviewed conference paper

Roca, Gargallo-Peiró, and Sarrate (2012). This extended work has already been

submitted for publication (Gargallo-Peiró, Roca, Peraire, and Sarrate, 2014c).

3. We have proposed a new framework to validate and generate curved

high-order meshes with the nodes on CAD surfaces. In Chapter 5, we

present a new definition of distortion (quality) measure for high-order elements

of any polynomial degree with the nodes on CAD parameterized surfaces. The

proposed measure is expressed in terms of the parametric coordinates of the
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nodes. We use the measures to validate high-order surface meshes and to derive

a simultaneous smoothing and untangling procedure. The distortion measure

is regularized to allow untangling invalid elements. In particular, the minimiza-

tion is performed in terms of the parametric coordinates of the nodes, ensuring

that the nodes always lie on the surface. Moreover, the developed technique is

independent of the selected parameterization. Hence, our method is specially

suited for CAD surface representations, even when low-quality parameteriza-

tions determine the different patches. Finally, we use the derived optimization

framework to generate valid and high-quality surface meshes by an a posteriori

procedure.

Chapter 3 corresponds to the generalization to high-order meshes of the work

presented in Gargallo-Peiró, Roca, and Sarrate (2014). Moreover, it corresponds

to the peer reviewed conference paper Gargallo-Peiró, Roca, Peraire, and Sar-

rate (2013a). We highlight that the proposed technique was acknowledged with

the Meshing Maestro Award at the 2012 International Meshing Roundtable.

4. We have detailed a new a posteriori method to generate valid curved

high-order meshes from CAD models for simulation with high-order

methods.

In Chapter 6, an a posteriori method for generating curved high-order confor-

mal meshes from CAD models is presented. The main purpose of the gener-

ated meshes is to perform finite element analysis with unstructured high-order

solvers. Hence, the generated high-order mesh must be composed of valid ele-

ments that are curved to approximate the boundaries of the domain. To this

end, we use the smoothing and untangling procedures for volumetric and surface

meshes presented in Chapters 4 and 5, respectively, to convert an initial linear

mesh (ideal) to a valid curved high-order mesh that matches the boundary CAD

geometry.

Moreover, we have showed that the proposed method can be used to generate

valid curved high-order meshes from CAD models suitable for finite element

analysis with high-order unstructured methods. Specifically, we have obtained

three different curved high-order meshes that have been used to obtain an ap-

proximated solution for three different partial differential equations. First, we

have generated a triangular mesh of polynomial degree seven of the Barcelona

125



7. Summary and future work

harbor for a 2D wave propagation problem. Second, we have generated a tetra-

hedral mesh of polynomial degree four on the exterior domain of a Falcon air-

craft for an inviscid flow simulation. Finally, we have generated a high-order

mesh with a curved boundary layer for 3D viscous flow simulation. Specifi-

cally, we have developed a procedure to insert a curved boundary layer to an

initial linear isotropic mesh. In particular, we have tested the proposed ap-

proach to generate meshes with stretching ratios up to 1 : 104. To validate

the obtained meshes the steady-state flow of the compressible Navier-Stokes

equations around a sphere is computed.

The technique presented in Chapter 6 to transform an inviscid linear mesh to a

viscous curved high-order mesh was presented in Gargallo-Peiró, Roca, Peraire,

and Sarrate (2013b).

7.2 Future work

Several extensions of the methods presented in this thesis, together with new ideas,

are left to be further investigated in the near future:

1. Improvement of the performance of the smoothing and untangling

procedure. The main goal of the thesis has been to develop a robust method

that can be used to generate valid curved meshes of any polynomial degree. The

analysis of the computational time and efficiency of the developed procedures

has been out of the scope and of the schedule. However, the proposed a poste-

riori procedure and, more specifically, the stated optimization process involve

many components that can be improved in order to reduce the computational

cost of the global method. Among the main components, we should improve

the implementation of the global and local solvers. In particular, to accelerate

the global solver we could consider a parallel Newton-Krylov solver (e.g. GM-

RES) preconditioned with a proper algebraic domain decomposition method.

Moreover, the nature of the local implementation of the proposed global op-

timization method allows coloring the mesh nodes in order to parallelize the

code, which could bring a significant speed-up.

2. Extension of the mesh generation technique to other high-order meth-

ods. The presented quality measures, optimization procedure, and the a poste-
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riori mesh generation approach can be extended to other types of representa-

tions for curved elements. Although in this thesis we have focused on examples

of meshes featuring triangles and tetrahedra, we have already demonstrated that

changing the element representation we can extend all the presented techniques

to quadrilaterals and hexahedra, see Figures D.4 and D.5.

We highlight that in the near future, we would like to extend this formulation

to generate meshes for other representations of curved elements. Particularly

for hexahedra, changing the function spaces from a polynomial representation

to NURBS or B-splines, the proposed definitions could be extended to curved

elements for the isogeometrical analysis method (Hughes et al., 2005; Höllig

et al., 2012). Differently, changing also the representation of the physical ele-

ment in terms of the ideal element, the quality measures can be applied for the

homotopy-based representation for tetrahedral elements bounded by NURBS

used in NEFEM (Sevilla et al., 2011).

3. Improvements on the technique to transform an isotropic mesh into

a boundary layer mesh. In Section 6.3.3, we have developed a technique to

transform an inviscid mesh to a viscous mesh by means of extruding the bound-

ary faces according to a given stretching ratio. However, we have considered

a unique extrusion template for all surface faces. In order to widen the set of

considered geometry configurations, we should develop new templates for face

extrusion according to the type of edges and vertices surrounding a face. For

a given face, the edges are classified according to the angle defined by their

adjacent faces into end, side, corner, or reversal, see Roca (2009) and Ruiz-

Gironés (2011). In an analogous manner, we can classify the vertices of each

face. Hence, considering specific templates for each geometrical face configura-

tion, we would enhance the quality of the obtained curved high-order boundary

layer meshes.

4. Adaptivity for high-order meshes. Generating highly anisotropic meshes

using the proposed a posteriori approach has been out of the scope of this thesis.

Nevertheless, we have shown that boundary layer meshes with stretching ratios

up to 1 : 104 can be obtained by the current implementation of the method. On

the contrary, we have observed that when the initial linear mesh has stretching

ratios of 1 : 109, the implemented version of the proposed mesh optimization
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does not converge to a valid curved high-order mesh. This issue was identified

and reported to us by Phil Caplan and David Darmofal (Department of Aero-

nautics and Astronautics, Massachusetts Institute of Technology). It seems that

this drawback is governed by some numerical issues that prevent the method

to converge. Specifically, we have planned to determine the specific origin of

this numerical instabilities. In this manner, we could consider the proper mod-

ification of the implementation of the smoothing and untangling algorithm to

ensure that anisotropic meshes with high stretching ratios can be curved. Fur-

ther research should be developed for the regularized optimization method in

order to: increase the robustness, improve the numerical stability, and reduce

the perturbation induced by the regularization of the objective function.

5. Continuity of the derivatives in the surface mesh. In the existing ap-

proaches to generate high-order 3D meshes and, in particular, in the approach

presented in this work, the face elements in the boundary of the mesh are C0

continuous. Ensuring also the continuity of the normal vector between adjacent

face elements could enhance the quality of the obtained meshes. That is, the

resulting meshes would reduce, in the simulation, the generation of the artificial

entropy originated from the approximation of the curved boundaries (Bassi and

Rebay, 1997). To this end, we have considered to develop a least-squares opti-

mization algorithm that minimizes the distortion but that, at the same time,

enforces that the surface mesh is C1.
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Appendix A

Nodal high-order elements

The main goal of this work is the validation and generation of nodal high-order

meshes. Therefore, in this section we detail the representation of nodal high-order

elements. Let EP in MP be a nodal high-order element of interpolation degree p

determined by np nodes with coordinates xi in Rdx , for i = 1, . . . , np (dx denotes the

dimension of the physical space). Note that the number of element nodes np depends

on the selected element type and the desired interpolation degree p:

• Triangle: np = 1
2
(p+ 1)(p+ 2)

• Quadrilateral: np = (p+ 1)2

• Tetrahedron: np = 1
6
(p+ 1)(p+ 2)(p+ 3)

• Hexahedron: np = (p+ 1)3

In addition, we use a node distribution that provides a quasi-optimal Lebesgue con-

stant (Warburton, 2006; Hesthaven and Warburton, 2007). Given a master element

EM with nodes ξj in Rdξ , being j = 1, . . . , np (dξ denotes the master space dimension),

we consider the basis {Ni}i=1,...,np of nodal shape functions (Lagrange interpolation)

of degree p. Then, the high-order representation mapping from EM to EP , see Figure

A.1, can be expressed as:

φP : EM ⊂ R3 −→ EP ⊂ R3

ξ 7−→ x = φP (ξ) =

np∑
i=1

xiNi(ξ).
(A.1)
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3

33

Figure A.1: Mappings between the master, ideal and physical nodal high-order ele-
ments.

The Jacobian of the iso-parametric mapping, Equation (A.1), is the matrix

DφP (ξ) =

np∑
i=1

xi∇Ni(ξ) ∈ R3 × R3.

Similar to the linear case, we define the high-order mapping φI from the master

element, EM , to the ideal element, EI . Then, the mapping φE = φP ◦φ−1I from each

ideal element, EI , to the corresponding physical element, EP , in the high-order mesh

can be expressed as

φE : EI ⊂ R3 −→ EP ⊂ R3

y 7−→ x = φE(y) =

np∑
i=1

xiNi(φ
−1
I (y)).

(A.2)

As described in Section 4.1, for a given element in the physical mesh we always choose

its corresponding element in the initial straight-sided mesh as the ideal element.

Therefore, φI is an affine mapping. However, for high-order elements, the mapping

φP presented in Equation (A.1), is not affine in general. Hence, φE = φP ◦ φ−1I is

also not affine, and the Jacobian matrix is not constant. Specifically, for a point y in

the initial element, the expression of the Jacobian is:

DφE(y) = DφP (φ−1I (y)) ·Dφ−1I (y).
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Appendix B

Numerical optimization

To solve the optimization problems presented in Equations (4.11) and (5.22), we can

choose a global or a local approach. For small problems solving the global system

resulting from assembling the contributions of all the elements works well. If the

problem is too large and we want to reduce the memory requirements, we choose a

non-linear iterative method that: exploits the locality of the problem, avoids solving

large linear systems, and is well suited for parallelization (by coloring the mesh nodes).

Specifically, we use a non-linear iterative Gauss-Seidel method determined by the

iteration

xk+1
i = xki − αki [∇2

iif(wk
i )]
−1 ∇if(wk

i ) i = 1, . . . , nF , (B.1)

where αki is the step length, and

wk
i = (xk+1

1 , . . . ,xk+1
i−1 ,x

k
i ,x

k
i+1, . . . ,x

k
nF

; x0
nF+1, . . . ,x

0
nN

)

is the vector of updated node locations for the i − 1 first nodes. Note that ∇i and

∇2
ii denote the gradient and the Hessian with respect to the coordinates xi of node i.

To implement this iterative non-linear solver, we have to compute the gradient

∇if , the Hessian ∇2
iif , and the step length, αki . According to Equation (4.10) and

taking into account Equation (4.5), the computation of the gradient

∇if(x1, . . . ,xnF ; xnF+1, . . . ,xnN ) =
∂

∂xi

nE∑
e=1

‖MφEe − 1‖2EIe

=

nE∑
e=1

∂

∂xi

∫
EIe

(MφEe(y)− 1)2dy,
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B. Numerical optimization

Algorithm B.1 Backtracking Line Search

1: function BackLineSearch(Vector wk
i , Vector pki )

2: Set α > 0, ρ ∈ (0, 1), c ∈ (0, 1);
3: w

α
i ← wk

i + (0, . . . ,0, αpki ,0, . . . ,0);
4: while f(w

α
i ) > f(wk

i ) + cα[∇if(wk
i )]

Tpki do
5: α← ρα;
6: w

α
i ← wk

i + (0, . . . ,0, αpki ,0, . . . ,0);
7: end while
8: return α;
9: end function

can be simplified. That is,
∫
EIe

(η(DφEe(y)− 1)2dy only depends on the coordinates

of the nodes of the element EP
e . Therefore, we have that

∂

∂xi

∫
EIe

(MφEe(y)− 1)2dy =
∂

∂xi

∫
EIe

(η (DφEe(y))− 1)2 dy = 0

for all the elements that do not contain the node i. Thus, the gradient can be

evaluated as

∇if(x1, . . . ,xnF ; xnF+1, . . . ,xnN ) =
∑
e∼i

∂

∂xi

∫
EIe

(MφEe(y)− 1)2dy,

where e ∼ i denotes that the summation is performed only for the elements that

contain the node i. Therefore, if we define

f̂(xi) :=
∑
e∼i

∫
EIe

(MφEe(y)− 1)2dy =
∑
e∼i

‖MφEe − 1‖2EIe , (B.2)

we have that

∇if(x1, . . . ,xnF ; xnF+1, . . . ,xnN ) = ∇if̂(xi) . (B.3)

Moreover, the Hessian can be computed as

∇2
iif(x1, . . . ,xnF ; xnF+1, . . . ,xnN ) = ∇2

iif̂(xi) . (B.4)

Finally, we have to compute the step length αki . To this end, we use the Back-

tracking Line Search algorithm (Nocedal and Wright, 1999) detailed in Algorithm

B.1, where we set: α = 1, ρ = 0.5 and c = 10−4. Note that in this algorithm, we have

to evaluate the global objective function f and its gradient to check the sufficient

decrease condition in Line 4. From Equation (B.3), the sufficient decrease condition

is equivalent to

f(w
α
i ) > f(wk

i ) + cα[∇if̂(xki )]
Tpki ,
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where wα
i is defined in Line 3 of Algorithm B.1. Moreover, we have that

f(w
α
i )− f(wk

i ) = f̂(x
α
i )− f̂(xki ),

since the contributions of the elements that do not depend on the free node are

mutually cancelled, being xαi = xki +αpki . Therefore, the sufficient decrease condition

is equivalent to

f̂(x
α
i ) > f̂(xki ) + cα[∇if̂(xki )]

Tpki . (B.5)

Taking into account Equation (B.3), (B.4), and (B.5), we observe that we only need to

compute the gradients, the Hessian, and the value of the local function f̂ introduced

in Equation (B.2).

In our implementation, we exploit the computational reduction associated with

the evaluation of the function f̂ . To this end, we denote by Mx the elements that

contain a free node x. The set of elementsMx is referred as the submesh associated

with node x.

Remark B.1. Let xki be the coordinates of node i at step k, and let Mxki
be the

corresponding associated submesh composed by mi elements. We say that

f̂(xi) =
∑
e∼i

‖MφEe − 1‖2EIe =
∑
e∼i

∫
EIe

(MφEe(y)− 1)2dy =

mi∑
e=1

∫
EIe

(MφEe(y)− 1)2dy

is a local merit function that measures the deviation respect an ideal configuration of

the submesh distortion associated with xi. According to this merit function, and to

Equations (B.3), (B.4), and (B.5), we can implement the iteration k + 1 for node i

of the proposed non-linear method, Equation (B.1), as

xk+1
i = xki − αki [∇2

iif̂(xki )]
−1 ∇if̂(xki ) i = 1, . . . , nF .
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Appendix C

Initial configuration:

p-continuation

In this section, we detail a p-continuation procedure to improve the initial configura-

tion of a high-order invalid mesh for the optimization procedure presented in Section

4.1.3. The proposed approach is composed by three steps.

First, we generate a linear mesh by decomposing each high-order element into

several structured linear elements determined by the high-order nodes. Specifically,

each triangle of polynomial degree p is decomposed into O(p2) linear triangles, and

each high-order tetrahedron into O(p3) linear tetrahedra. The obtained linear mesh

has the same nodes of the high-order mesh. Moreover, we assign to each linear

sub-element a different ideal linear element. The ideal element associated to each

sub-element is the corresponding sub-element of the ideal high-order element. In

Figure C.1 we show the linear decomposition of a triangle and a tetrahedron, both of

polynomial degree four.

The second step is the optimization of the linear sub-mesh using an objective func-

tion based on the distortion measure for linear elements presented in Equation (3.6).

Since the linear sub-mesh can also contain inverted elements, it is mandatory that

the optimization method for linear elements also allows untangling invalid meshes.

To meet this requirement, in this work, we use the optimization technique presented

in Escobar et al. (2003) and Gargallo-Peiró et al. (2014). Finally, in the third step

we recover the high-order mesh by updating the location of the nodes.
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C. Initial configuration: p-continuation

(a) (b)

Figure C.1: Decomposition of a triangle and a tetrahedral elements of polynomial
degree four into the corresponding linear sub-elements.

Note that an untangled linear sub-mesh is a necessary condition to have a valid

high-order mesh. Therefore, we only apply our procedure when this necessary con-

dition is not hold, i.e. if the linear sub-mesh has invalid elements. In this context,

our procedure guarantees that the quality of the initial high-order configuration is

improved, since it obtains an untangled linear sub-mesh. We highlight that having a

valid linear sub-mesh is a necessary, but not sufficient, condition. Hence, the updated

high-order mesh can still be invalid after this procedure. Note that this is not the

case of the example presented in Figure C.2, where the final high-order mesh is also

untangled. However, since the validity of the high-order mesh can not be guaran-

teed with this procedure, it is required to use the high-order optimization process

presented in Section 4.1.3 to obtain a valid and high-quality high-order mesh.

To illustrate the p-continuation process, in Figure C.2 we show a triangular mesh

of polynomial degree four on a circular ring. Figure C.2(a) presents the initial high-

order mesh obtained after curving the boundary edges of the high-order ideal mesh.

Next, in Figure C.2(c) we show the initial linear sub-mesh generated by decomposing

the high-order elements. Note that the high-order mesh has four invalid elements,

and the corresponding linear sub-mesh has twelve tangled triangles. Figure C.2(d)

displays the optimized linear sub-mesh. Notice that it does not contain inverted
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(a) (b)

(c) (d)

Figure C.2: Procedure to find an initial mesh configuration. High-order meshes:
(a) initial invalid configuration, (b) mesh configuration obtained with the smooth-
ing of the linear sub-mesh. Linear sub-meshes: (c) initial invalid configuration, (d)
optimized configuration.

elements. Finally, in Figure C.2(b) the high-order mesh is recovered. Note that the

quality of this mesh configuration has been improved with respect to the initial one,

and that it does not contain any invalid elements. This high-order mesh is the input

of the optimization procedure presented in Section 4.1.3.

For this example, using the p-continuation procedure saves more than half of the

total computational cost of using just the high-order method. For the presented 2D

mesh of polynomial degree four, we have checked that each global iteration of the

linear mesh represents a half of the cost of the high-order one. On the one hand, if we
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C. Initial configuration: p-continuation

directly run the high-order method, we require 82 iterations. On the other hand, the

p-continuation process requires 55 iterations, and the high-order optimization just 6

more. Hence, the p-continuation brings an speed-up of about 2.21 of the procedure

using just the high-order optimization.
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Appendix D

Validation and generation of

high-order triangular, quadrilateral

and hexahedral meshes

In this appendix, we illustrate that, according to Remark 3.4, we can change the

element representation to extend the distortion measure, the derived optimization

procedure and the a posteriori approach to high-order triangle, quadrilateral and

hexahedral meshes.

D.1 Curved high-order triangular meshes

Circular ring. In the first example, we generate four meshes of orders 3, 4, 5 and

10 for a circular ring, see Figure D.1. The meshes are composed by 24 elements. The

number of nodes depends on the selected order: 126 nodes for order 3, 216 nodes for

order 4, 330 nodes for order 5, and 1260 nodes for order 10. All the initial meshes

have the same straight inner edges and only differ on the degree of the polynomial

approximation of the boundary. Figure D.1(a) shows the initial mesh for order 3

displaying also the quality of its elements. Note that the inner edges of this mesh are

straight. Therefore, several tangled elements appear at the inner boundary. Figure

D.1(b) shows a detail of the upper-right inner boundary of this initial mesh, where a

tangled element with null quality appears.
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D. Validation and generation of high-order triangular,
quadrilateral and hexahedral meshes

(a) (b)

(c) (d)

(e) (f)

Figure D.1: High-order meshes for the ring: (a) and (b) the initial mesh (p = 10);
and smoothed and untangled meshes for (c) p = 3, (d) p = 4, (e) p = 5, and (f)
p = 10.

Figure D.1 shows the initial non-valid meshes and the final optimized meshes.

Table D.1 shows the quality statistics for each one of the presented rings. Recall that

the quality values of each ring are not comparable, since the definition of the quality
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D.1. Curved high-order triangular meshes

Figure p Min. Max. Mean Std.Dev. #inv
D.1(a) 3 0.00 0.96 0.70 0.31 4
D.1(c) 3 0.94 0.97 0.96 0.01 0
D.1(d) 4 0.94 0.97 0.96 0.01 0
D.1(e) 5 0.95 0.97 0.96 0.01 0
D.1(f) 10 0.95 0.97 0.96 0.01 0

Table D.1: Quality statistics for the circular ring presented in Figure D.1.

(a) (b)

Figure D.2: Mesh of polynomial degree 2 composed by triangles for a component of
a motorcycle brake: (a) initial mesh, and (b) smoothed meshes.

Meshes Figure Min. Q. Max. Q. Mean Q. Std. Dev. #inv. el.
Initial D.2(a) 0.00 1.00 0.72 0.19 8

Smoothed D.2(b) 0.45 0.98 0.83 0.09 0

Table D.2: High order triangular mesh of polynomial order two on a motorcycle
brake, composed by 655 elements and 1645 nodes.

for each order changes. It is worth to notice, that for any order, the optimization

procedure is able to untangle a degenerated mesh and obtain a high-quality final

mesh.
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D. Validation and generation of high-order triangular,
quadrilateral and hexahedral meshes

Brake components of a motorcycle. In the second example, we present a pla-

nar geometry extracted from a CAD model of a break of a motorbike. We generate

an initial linear triangular mesh composed by 655 elements. Next, we increase the

polynomial order of the mesh and we curve the boundary to match the geometry,

obtaining the initial curved mesh configuration, Figure D.2(a). We can observe that

8 tangled elements appear in the mesh after curving the boundary edges. We high-

light that the defined measure detects the invalid elements on the boundary of the

geometry. Finally, the regularized distortion measure is used to smooth and untangle

the mesh, achieving a final configuration composed by valid elements of a quality over

0.5, Figure D.2(b).

D.2 Curved high-order quadrilateral meshes

In this section, we present the extension to quadrilaterals of the distortion and quality

measures, and the corresponding optimization (smoothing and untangling) procedure.

First, we analyze the behavior of the defined quality measure for the quadrilateral

case. Next, using the proposed optimization procedure, we generate valid curved

high-order quadrilateral meshes from planar CAD geometries.

Behavior of the high-order quality measure. In this section, we include for

completeness of Section 3.3.1 an analysis of the behavior of the quality measure for

a quadrilateral of polynomial degree two with vertices on (−1,−1), (1,−1), (1, 1)

and (−1, 1). In Figure D.3 we plot for the two measures, the contour plots of the

high-order quality in terms of a vertex, an edge, and a face node. Note that the be-

havior of each measure does hold the commentaries underlined for triangles in Section

3.3.1. Recall that differently than for linear elements, the same definition of distor-

tion measure for a high-order element applies to either triangles or quadrilaterals.

Moreover, from Figure D.3 we realize that the two displayed high-order measures for

quadrilaterals also have the same feasible regions. The defined measure properly de-

tects the validity of the elements, assigning zero quality for folded ones. Specifically,

the boundary of the feasible region is the same for all the measures. In addition,

the high-order measure also detects the same ideal configuration for the two selected

linear distortion measures.
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D.2. Curved high-order quadrilateral meshes
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Figure D.3: Level sets for the two high-order quality measures (in rows: shape and
Oddy) when the free node is: (a,d) the vertex node; (b,e) the edge node; and (c,f)
the face node.

Mesh Figure Min. Q. Max. Q. Mean Q. Std. Dev. #inv. el.
Initial D.4(a) 0.00 1.00 0.92 0.12 3

Smoothed D.4(b) 0.67 1.00 0.94 0.05 0
Initial Mesh D.4(c) 0.00 0.99 0.78 0.22 8

Smoothed Mesh D.4(d) 0.62 0.99 0.83 0.09 0

Table D.3: Quadrilateral meshes of polynomial order 3 presented in Figure D.4.

Brake components of a motorcycle We present two geometries extracted from

a CAD model of a break of a motorbike and we mesh them using quadrilaterals of two

different polynomial orders. In the first case, the mesh presented is of polynomial

order 3 and is composed by 534 elements and 5210 nodes, see Figures D.4(a) and

D.4(b). In the second case, the mesh is of polynomial order 4 and composed by

200 elements and 3614 nodes, see Figures D.4(c) and D.4(d). For both geometries
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D. Validation and generation of high-order triangular,
quadrilateral and hexahedral meshes

(a) (b)

(c) (d)

Figure D.4: Details of two quadrilateral meshes of polynomial order 3 and 4, re-
spectively, for a two components of a motorcycle brake: (a,c) initial meshes, (b,d)
smoothed meshes.

we have generated coarse linear meshes. Therefore, once the boundary is curved 3

tangled elements appear in first mesh and 8 more in the second one. We observe that

the defined measure detects the invalid elements on the boundary of the geometry.

In both cases the initial invalid curved mesh is untangled and smoothed, achieving

a final configuration composed by all valid elements and quality over 0.5. In Tables
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D.3. Curved high-order hexahedral meshes

Mesh Figure Min. Q. Max. Q. Mean Q. Std. Dev. #inv. el.
Ideal D.5(b) 1.00 1.00 1.00 0.00 0
Initial D.5(c) 0.00 0.00 0.00 0.00 68

Smoothed D.5(d) 0.96 1.00 0.99 0.005 0

Table D.4: Hexahedral meshes of polynomial order four presented in Figure D.5.

D.3 we present the quality statistics of the presented examples. It is important to

point out that with the second geometry, it is necessary to use elements of polynomial

order four in order to obtain a valid final configuration. Since the initial linear mesh

is coarse, elements of 4th order are required to achieve a curved boundary and a valid

mesh with high-quality and no foldings or auto-intersections.

D.3 Curved high-order hexahedral meshes

In this section, we illustrate the a posteriori mesh generation approach on hexahedral

meshes. Given the CAD geometry presented in Figure D.5(a), we generate an initial

linear mesh using the submapping method presented in Ruiz-Gironés and Sarrate

(2010). Next, we increase the polynomial order to four and we set this straight-

sided high-order mesh as ideal, see Figure D.5(b). Following, we curve the mesh to

match the boundary geometry. In order to test the capability of the smoothing and

untangling procedure to deal with meshes composed by a large number of inverted

elements, we randomly perturb the location of the inner nodes. All the elements

of the resulting high-order curved mesh are inverted, see Figure D.5(c). Next, we

use the optimization procedure presented in Section 4 to obtain a final high-quality

curved mesh, see Figure D.5(d). In Table D.4 we present the quality statistics of

the tangled and the smoothed high-order hexahedral. We observe that the quality

measure for hexahedral elements is also able to detect the invalid hexahedra, and to

assign quality one to the ideal configuration.
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D. Validation and generation of high-order triangular,
quadrilateral and hexahedral meshes

(a) (b)

(c) (d)

Figure D.5: (a) Target CAD geometry to discretize with hexahedra. Tetrahedral
meshes of polynomial degree four: (b) ideal straight-sided (c) tangled, and (d)
smoothed.
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Appendix E

Nodal high-order elements on

parameterized surfaces

In this section, we detail the selected element representation in W , see Eq. (5.10).

Let EP in MP be a nodal high-order element of polynomial degree p determined by

np nodes with coordinates xi in ΣP ⊂ R3, for i = 1, . . . , np. Note that for triangular

elements the number of nodes np is 1
2
(p+1)(p+2). In addition, to improve the interpo-

lation properties of the obtained high-order elements, we use a node distribution that

provides a quasi-optimal Lebesgue constant (Warburton, 2006; Hesthaven and War-

burton, 2007). Given a master element EM with nodes ξj in R2, being j = 1, . . . , np,

we consider the basis {N̄i}i=1,...,np of nodal interpolative shape functions (Lagrange

interpolation) of degree p. Then, the high-order representation mapping from EM to

EP , see Figure E.1, can be expressed as:

φP : EM ⊂ R2 −→ EP ⊂ R3

ξ 7−→ x = φP (ξ) =

np∑
i=1

xiN̄i(ξ).
(E.1)

Note that φP (ξ) can be written as φP (ξ; x1, . . . ,xnp), since it also depends on the

node coordinates x1, . . . ,xnp . Moreover, recall that the shape functions {N̄i}i=1,...,np

depend on the selection of ξj, for j = 1, . . . , np. In addition, they form a partition of

the unity on EM , and hold that N̄i(ξj) = δij, for i, j = 1, . . . , np.

Analogously, the mapping φI between the master and the ideal elements is also

determined using nodal high-order shape functions. Recall that, in this work, we set
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E. Nodal high-order elements on parameterized surfaces

(a)

Figure E.1: Mappings between the master, the ideal and the physical high-order
elements. Application to nodal high-order triangles.

the elements of the ideal mesh to be high-order, and straight-sided. Hence, we can

write φI as:

φI : EM ⊂ R2 −→ EI ⊂ R3

ξ 7−→ y = φI(ξ) =

np∑
i=1

yiN̄i(ξ).
(E.2)

Note that, since EI is straight-sided, φI is an affine mapping with a constant Jacobian

matrix.

Finally, the mapping between the ideal and physical elements can be written as:

φE : EI ⊂ R3 −→EP ⊂ R3

y 7−→x = φE(y) = φP ◦ φ−1I (y)

=

np∑
i=1

xiN̄i(φ
−1
I (y)) =

np∑
i=1

xiNi(y).

(E.3)

where Ni(y) := N̄i(φ
−1
I (y)), is an interpolative shape function of polynomial degree

p on EI , since φI is an affine mapping.

Note that φE(y) can be written as φE(y; x1, . . . ,xnp), since it also depends on the

node coordinates x1, . . . ,xnp . Moreover, the nodes on the surface can be expressed in

terms of the parametric coordinates by means of the surface parameterization ϕ, see

Equation (5.1). Hence, for a surface element, the mapping φE can also be expressed

in terms of the parametric coordinates of the element nodes as

φE(y; x1, . . . ,xnp) = φE(y;ϕ(u1), . . . ,ϕ(unp)).
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In this manner, for optimization purposes, the nodes can be moved on the parametric

space keeping the physical location always on the surface. Specifically, the mapping

between the ideal and physical elements can be rewritten as:

φE : EI ⊂ R3 −→EP ⊂ R3

y 7−→x =

np∑
i=1

ϕ(ui)Ni(y),
(E.4)

It is important to point out that φE is in WEI , see Equation (5.9). Specifically, we

express φh element-wise as φh|EP = φE. Hence, the polynomial mesh representation

φh is in W .
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Appendix F

Behavior of the distortion and

quality measures for high-order

elements on parameterized surfaces

In this section, we illustrate the behavior of the proposed quality measure for high-

order surface elements, presented in Equation (5.26). We compute the high-order

quality measure for elements on parameterized surfaces using two different Jacobian-

based distortion measures: the shape and the Oddy algebraic distortion measures

presented in Equations (3.2) and (3.3), respectively. Specifically, we apply two tests

to a triangle of polynomial degree three, Figures F.1 and F.3, and two tests to a

quadrilateral of polynomial degree three, Figures F.2 and F.4. In each test, we

consider three different free nodes: a vertex node, an edge node, and a face node.

We keep all the nodes fixed in an ideal configuration, and we move the free node

on the parametric space of the surface. In each figure, we compute the quality of

the high-order element for each location of the free node, and we color each point

of the surface with respect to the quality of the element when the free node is on

that location. Moreover, for each figure, we display with a black line the boundary

of the feasible region of the selected node, and we color in white the ideal element

configuration.
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F. Behavior of the distortion and quality measures for high-order
elements on parameterized surfaces

(a) (b) (c)

(d) (e) (f)

Figure F.1: Behavior of the quality measure for a high-order triangle of polynomial
degree three on a cylinder. In columns, we select a different free node: (a,d) vertex,
(b,e) edge, and (c,f) face. In rows, we change the Jacobian-based measure: (a-c)
shape, and (d-f) Oddy.

First, we consider a triangle of interpolation degree three on a cylindrical surface.

We select as ideal element the equilateral triangle, and we set a node distribution

that provides a quasi-optimal Lebesgue constant (Warburton, 2006; Hesthaven and

Warburton, 2007). Next, given each free node, we compute the quality of the surface

element in terms of all the possible locations of the free node on the surface. In

Figure F.1 we present the behavior of the quality measure. In columns, we present

the behavior in terms of three different free nodes: a vertex node (first column), an

edge node (second column) and a face node (third column). In rows, we present on

the first row the shape distortion measure, whereas on the second row we present the

Oddy distortion measure. We observe that both measures determine the same feasible

region. Moreover, both quality measures detect the same ideal location, although the
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(a) (b) (c)

(d) (e) (f)

Figure F.2: Behavior of the quality measure for a high-order quadrilateral of poly-
nomial degree three on a cylinder. In columns, we select a different free node: (a,d)
vertex, (b,e) edge, and (c,f) face. In rows, we change the Jacobian-based measure:
(a-c) shape, and (d-f) Oddy.

Oddy quality measure tends faster to zero.

Next, we change the function spaces in Equation (5.9) from triangles to quadri-

laterals, and we extend the proposed measure to quadrilateral elements on surfaces.

In addition, we consider a unit square as the ideal element with a node distribu-

tion obtained as the tensor product of a one-dimensional Legendre-Gauss-Lobatto

node distribution. In Figure F.2 we present the behavior of the quality measure for a

quadrilateral of polynomial degree three. Analogously to the triangle case, we observe

that both measures detect the same feasible region and the same ideal configurations.

Moreover, we observe that both quality measures are smooth functions that decrease

as the node moves further from the ideal location.

Finally, in Figures F.3 and F.4 we present a high-order triangle and a high-order
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F. Behavior of the distortion and quality measures for high-order
elements on parameterized surfaces

(a) (b) (c)

(d) (e) (f)

Figure F.3: Behavior of the quality measure for a high-order triangle of polynomial
degree three on an hyperbolic paraboloid. In columns, we select a different free
node: (a,d) vertex, (b,e) edge, and (c,f) face. In rows, we change the Jacobian-based
measure: (a-c) shape, and (d-f) Oddy.

quadrilateral both of polynomial degree three on a hyperbolic paraboloid. Analo-

gously to the cylinder case, we select an equilateral triangle as ideal for the triangle

case, and a unit square for the quadrilateral case, and we set the corresponding node

distribution. We observe that the behavior of the quality measure is similar to the

cylinder case. In particular, we highlight that both the shape and Oddy quality

measures detect the same feasible region and the same ideal configuration for both

triangular and quadrilateral elements.
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(a) (b) (c)

(d) (e) (f)

Figure F.4: Behavior of the quality measure for a high-order quadrilateral of polyno-
mial degree three on an hyperbolic paraboloid. In columns, we select a different free
node: (a,d) vertex, (b,e) edge, and (c,f) face. In rows, we change the Jacobian-based
measure: (a-c) shape, and (d-f) Oddy.
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