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Abstract 

Polymer clay nanocomposites of polyamides and biodegradable polymers with three kinds of 

organomodified clays were prepared by different techniques (in situ polymerization, solution 

casting, and melt mixing).  The polymers used in this research were nylons 56, 65 and 47 and 

the biodegradable polymers: poly (glycolic acid-alt-6-hydrohexanoic acid) and poly(glycolic 

acid-alt-6-aminohexanoic acid).  The development of biodegradable nanocomposites with 

improved or modified material properties is an interesting topic since these new materials are 

expected to replace already existing biodegradable and non-biodegradable commodity plastics 

in some specific applications. This project aims to study the influence of clay particles 

incorporated in a polymer matrix on the crystallization processes, the study of the in situ 

polymerization kinetics of mixtures of clays and monomers of biodegradable polymers, as well 

as the influence of nanoparticles on the thermal behavior and morphologic parameters.  

 

Even-odd, and odd-even polyamides were chosen to study the Brill transition and to prepare 

nanocomposites with organomodified clays. These polyamides have a peculiar structure where 

hydrogen bonds are established along two different directions. X-ray diffraction as well as 

SAXS-WAXD synchrotron experiments were employed to study the structural changes induced 

by temperature, during heating and cooling. Different organomodified clays were used to 

prepare nanocomposites, which final structure was found to be dependent on the preparation 

method. 

 

Nanocomposites derived from biodegradable polymers were characterized by means of X-ray 

diffraction and transmission electron microscopy. Morphological studies showed that the extent 

of clay dispersion depended on the clay type and on the preparation technique. Hence, 

exfoliated and intercalated nanocomposites could be obtained. The final nanocomposite 

structure was found to have a great influence on both cold and hot crystallization processes. 

Hence, the crystallization rate increased and decreased with respect to the neat polymer when 

intercalated and exfoliated structures were respectively obtained. The kinetics of the 

polymerization process was also studied by means of FTIR and SAXS-WAXD. The results 

indicate that the presence of the organomodified clay had a remarkable effect on the kinetic 

parameters.  
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1.1                                                 

Biodegradable Polymers 

Nowadays, biodegradable polymers are becoming an important research focus due to the 

increasing demand of biodegradable materials for novel biomedical technologies including 

tissue engineering, regenerative medicine, gene therapy, controlled drug delivery, biothecnology 

[1] and also for applications in which plastics are used for short time periods and then disposed 

[2]. These so called biodegradable polymers can be degraded by bioactive environments (such 

as those containing bacteria, fungi, or algae), or by hydrolysis in water or even in buffered 

solutions [3]. For this reason, biodegradable polymers can be used as attractive substitutes for 

many synthetic materials, thereby alleviating problems associated with solid waste disposal.  

Biodegradable polymers can be classified into tree major categories: (1) polyesters produced by 

microorganisms, (2) natural polysaccharides or other biopolymers, (3) synthetic polymers, 

particularly aliphatic polyesters. In this last category, industrially produced polymers can be 

found, such as poly(ε-caprolactone), poly(L-lactide), poly(butylene succinate), besides these 

aliphatic polyesters, various types of synthetic biodegradable polymers have been designated 

and tested for practical applications. For example, polyesters containing aromatic rings or cyclic 

ether moieties, poly(ester amide)s, poly(ester carbonate)s, poly(ester urethanes)s etc. Some 

attempts have been made to introduce ester groups into vinyl polymer chains, to make vinyl 

polymers biodegradable, but not effective and practical method have been developed yet [4]. 

Scheme 1.1.1 shows the classification of more important biodegradable polymers.  
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Biodegradable polymers can be defined as the polymers that can undergo microbial induced 

chain scission leading to mineralization. Some of them have comparable properties as the 

petroleum based polymers, and the clear advantage of being biodegradable. However, in 

general, it seems necessary to improve properties in order to increase both the number of 

disposable polymers and the range of applications. In this sense, efforts are nowadays focused 

to prepare nanocomposites by addition of different types of organomodified clays and other 

nanoparticles; moreover  development of new biodegradable and bioabsorbable polymers with 

temporary function is also of great interest in the field of biomedical materials [5]. For these 

applications some specific properties are required. The polymer has not just only be 

biocompatible-nontoxic and not rejected by the intended organism but also it must have the 

ability to maintain mechanical properties for certain period of time, flexibility and an adequate 

Biodegradable
Polymers

Biomass products from
agro resources

Polysacarides

Starches: 
Wheat,  

Potatoes, 
maize

Ligno-
cellulosic 
products: 

Wood, Straw

Others: 
Pectine, 
Chitosan

Proteins, 
Lipids                                                                                                                       

Animals: 
Casein, Whey, 

Gelatine

Plant: Soya, 
Zeln

From microorganisms 
(obtained by 
extraction)

PHA

PHB, PHBV

From 
biotechnology

Polylactides

PLA

Conventional 
Synthesis (from 

synthetic monomers)

PCL

PEA

PGA

Aliphatic co-
polyesters

Aromatic co-
polyesters

PHA  poly(hydroxyalkanoate)s
PHB  poly(hydroxybutyrate)
PHBV poly(hydroxybutyrate co poly(hydroxyvalerate)
PLA polylactic acid
PCL  polycaprolactone
PEA  poly(estar amide)s
PGA poly(glycolic acid)

Scheme 1.1.1 Biodegradable Polymers Classification [5].  
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absorption rate. In this sense, the study of how the performance of these materials can be 

modified by incorporation of nanoparticles becomes again an interesting topic. 

Polyesters constitute the main family of biodegradable polymers due to their high degradation 

rate. In general, the derivatives of Poly(glycolic-acid) are the most commonly used for 

biomedical applications including drug delivery systems, wound treatment applications and 

implants [6]. Poly(ester amide)s constitute a new promising family of materials which has some 

advantages associated to the hydrophilic character of their amide groups and the capability to 

establish strong hydrogen bond interactions that influence on both thermal and mechanical 

properties. Furthermore, the presence of ester groups should ensure degradability, although in 

this case the hydrolysis proceeds at a lower rate than in parent polyesters which have a higher 

rate of hydrolyzable ester bonds. 

Our group has recently developed a synthesis procedure that allows to get polyesters and 

poly(ester amide)s constituted by glycolic acid units and -amino acid or -hydroxy acid units 

with a regular sequence distribution. This kind of polymers can be obtained by a classical 

methodology based on a selective protection of reactive groups. However in this case, the 

process is highly more complicated and have lower yields respect to the proposed one. The new 

synthesis is based on a thermal polycondensation reaction where the formation of a metal halide 

salt becomes the driving force of the process. The high simplicity of this method opens again 

the interest towards these families of polymers characterized by a semicrystalline character that 

contrasts with the irregular sequence distribution of commercial copolymers prepared by ring 

opening polymerization.  

In the present work, we have selected a representative polyester derived from glycolic acid and 

6-hydroxyhexanoic acid, and a representative poly(ester amide) derived from glycolic acid and 

6-aminohexanoic acid, which will be thereafter named as poly(glc-alt-6HH) and poly(glc-alt-

amh), respectively. Their chemical repeat units are consequently similar since only differ in the 

substitution of an ester group by an amide group (Scheme 1.1.2).  

 

-[OCH2CO-O(CH2)5CO]-    Poly(glc-alt-6HH) 

-[OCH2CO-NH(CH2)5CO]-    Poly(glc-alt-amh) 

   

 

 

  

Scheme 1.1.2 polyester derived from glycolic acid and 6-hydroxyhexanoic acid, 
and a representative poly(ester amide) derived from glycolic acid and 6-
aminohexanoic acid.  
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1.2                                           

Nanocomposites 

Nanocomposites have emerged in the last two decades as an efficient strategy to upgrade the 

structural and functional properties of synthetic polymers. Aliphatic polyesters such as 

polylactide (PLA), polyglycolide (PGL) and poly (ε-caprolactone) (PCL) have attracted wide 

attention for their biodegradability and biocompatibility in the human body. The incorporation 

of nanofillers (organic and inorganic) into biodegradable polymers has been a consequence of 

the willing to prepare new biomaterials with enhanced properties [7].  

Nanocomposites are hybrid materials consisting of a polymer matrix in which nano-sized 

particles are homogeneously dispersed. In fact, to be called nanocomposite at least one 

dimension of the added particle must be in the nanometer scale [8]. Due to their small size, 

dispersed structures in the polymer matrix, have relatively huge surface areas per unit weight, 

and often these surface areas dominate the behavior of these materials. Some important 

nanostructures include, carbon nanotubes, biomolecules such as proteins, silica nanoparticles 

and montmorillonite type clays [9].   

Considering the nano-sized particles that can be added to the polymer matrix, phyllosilicates are 

of particular interest, especially montmorillonite due to their abundance, low cost and 

geometrical features [10]. The indicated clay is present typically at concentrations less than 5% 

[11-22]. The resulting interactions with the polymer matrix can improve substantially many 

physical properties such as mechanical performance [23], barrier resistance [24] and 

flammability [25]. In the case of biodegradable polymers, biodegradability could indeed be 

improved [26] .  

The natural montmorillonite clays consist of several hundred individual plate-like particles of 

dimensions 1m 1m 1nm, held together by electrostatic forces with a gap of approximately 
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0.3 nm between two adjacent particles. Figure 1.2.1 shows the structure of this clay at atomic 

level. 

In a such layered material, the bonds between the atoms in the layer are very strong, but the 

bonds between the layers become weaker. This feature allows an easy separation of the 

constitutive layers.  This clay consists of three subunits: an octahedral center layer consisting of 

aluminum cations (Al+3); two tetrahedral layers consisting mainly of silica (Si) and oxygen (O) 

atoms. In the octahedral layer some of the Al3+ cations are substituted by Mg2+ cations which 

gives rise to a net negative charge on the layer. Similarly, some of the Si4+ cations may be 

substituted by Al3+ cations resulting again in a net negative charge in the tetrahedral layer. In 

natural clays the charge balancing cations  in the gap between the silicate layers are mainly Na+, 

K+ and Ca+2 [27].  The gap between the silicate leyers is widely known as a gallery or an 

interlayer.  

 

Figure 1.2.1. Typical clay layer structure: octahedral center layer consisting of aluminium (Al+3) cations; 
two tetrahedral layers consisting mainly of silica (Si) and oxygen (O) atoms [28]. 
 

Natural clays mixed with polymers lead to the formation of nanocomposites very rarely. 

Homogeneous dispersion in the organic polymer phase is hindered by the hydrophilic nature of 

the clay. Figure 1.2.2 shows a general procedure to increase compatibility: the cations present 



9 

 

in nature like Na+, Ca++, or K+ are exchanged with cationic surfactants such as alkylammonium 

or alkylphosphonium.   

 

 

 

 

 

 

Figure 1.2.2. Ionic exchange between Na+ and alkylammonium cations   to increase matrix – 
clay compatibility and to achieve a homogeneous dispersion. 

 

1.2.1 Preparation Techniques  

Nanocomposites can be prepared by many different methods, such as, in situ polymerization, 

solution casting and melt mixing [28]. 

In situ polymerization is a very versatile technique, as it makes possible to adjust the chemistry 

to optimize the affinity between the clay and the polymer. Many different types of 

polymerization techniques can be used to prepare nanocomposites, such as bulk, solution, 

suspension or emulsion free radical polymerization, among others. This flexibility in the 

preparation of nanocomposites by in situ polymerization leads to materials with a very good 

clay dispersion. However, this technique has some disadvantages. It is not always simple to 

synthesize the materials, so that the processes may be quite expensive, what makes them not 

very suitable for large scale production and industrial applications. This technique has been 

important for this research work and it is explained further in Appendix A. 

When preparing nanocomposites by melt mixing, less reactive clay surfactants must be used, 

because the most reactive ones are more thermally unstable and decompose during the 

preparation of the material.  With this technique it is possible to use common polymer 

processing equipment to produce the material, such as extrusion and internal mixers what makes 

this technique easier to use. The shear provided by processing may also help to increase the clay 

dispersion, although may be not enough to break big clay aggregates. The resulting dispersion is 

usually poorer than in a material prepared by in situ polymerization. 

The third alternative method is to prepare the nanocomposite using a solvent that dissolves the 

polymer and disperses the clay at the same time. After the evaporation of the solvent the 

structure of the material is usually rearranged, so that the clay usually forms an intercalated 
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morphology, rather than a exfoliated one [29]. However, the clay dispersion is usually better 

than in materials prepared by melt mixing. A disadvantage of this technique is the need to use 

an organic solvent, what is not very desirable, especially to environmental issues [30]. 

 Nanocomposites of Biodegradable Polymers. 

Biodegradable polymers are considered as an alternative to the existing petroleum-based 

plastics. To improve their properties, the incorporation of layered silicates (organically modified 

or not) into the polymer matrices has recently been widely studied [31]. The resulting 

biodegradable nanocomposites possess several advantages generally attained at low silicate 

content (5 wt%)[11-22]. Although, biodegradable nanocomposites have very strong future 

prospects, the present low level of production and high costs restrict them for a wide range of 

applications. 

 Structure of Nanocomposites. 

From a structural point of view there are two main possible arrangements of the clay into the 

polymer matrix: the intercalated and exfoliated structures. In most cases, it is usual to find a 

mixture of both structures [12] if enough care is not taken. In the intercalated system the silicate 

layer stacking is preserved, but the polymer is inserted between the layers. In the exfoliated 

system the silicate layers are fully separated and randomly dispersed. The nanostructure effect is 

more pronounced in the exfoliated nanocomposite than in the intercalated one due to the 

improved dispersion and consequently properties are enhanced in the former structure.  

 

 

 

 

 

 

Figure 1.2.3 Schematic illustration of different types of thermodynamically achievable 
polymer/layered silicate nanocomposites [33] 
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1.3                                                      

Polymer Structure  

The size and shape of polymer are intimately connected to their properties.  

 

 

Natural and synthetic polymers are usually described for their levels of structures. The primary 

structure describes the precise sequence of the individual atoms that compose the polymer 

chain. The secondary structure describes the molecular shape or the conformation of the 

polymer chain (the most linear polymers shape approaches a helical or plated skirt (or sheet) 

arrangements). The tertiary structure describes the shaping or folding of the polymer. 

Quaternary structure represents the overall shape of groups of the tertiary structures where the 

tertiary structures may be similar or different.  

It is well known that a linear polymer possess a combination of amorphous and crystalline 

structures, that varies with the structure of the polymer and the precise conditions that have been 

imposed on the material. The reason why linear ordered polymers fail to be almost totally 

crystalline is largely kinetic, resulting from an inability of the long chains to totally disentangle 

and perfectly align themselves during the time that the polymer chain is cooling and mobile.  

Mixtures of amorphous and mini – crystalline structures or regions may consist of somewhat 

random chains containing some chains that are parallel to one another forming short-range mini 

crystalline regions. Crystalline regions may be formed from large range ordered platelet-like 

structures, including polymer single crystals, or they may form even larger organizations such 

as spherulites.  Short and longer range ordered structures can   act as physical cross-links. 
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The kind, amount, and distribution of polymer chain order/disorder (crystalline/amorphous) is 

driven by the processing (including pre- and post-) conditions and thus it is possible to vary the 

polymer properties through a knowledge of and ability to control the molecular-level structures. 

Some polymer properties can be manipulated by altering the crystallinity [32]. When  polymer 

crystallinity is increased the following properties increase as well: abrasion resistance, chemical 

resistances, hardness, Tg tensile strength and yield while other properties decrease such as 

brittleness solubility  and toughness [33];   furthermore, crystallinity can be favored by some 

factors like interchain forces, regular structure, high symmetry, decrease in volume, increased 

stress, slow cooling from melt, and homogenous chain length. Consequently many polymeric 

materials contain both crystalline an amorphous regions giving them a balance between strength 

and flexibility. Hence the final properties of a polymer are then dependent on the molecular 

structure of that material [33].  

1.3.1 Polymer Crystallization 

While it is impossible to cover polymer crystallization in a dissertation of this size, it is 

important to review some fundamental features that are essential to the study this topic, since 

this is a central matter for a part of this research work.  Polymer crystallization can be broadly 

classified in three categories a) crystallization during polymerization b) crystallization induced 

by orientation and c) crystallization under quiescent condition. This last one is important for this 

research and it is further explained.  

It can be said that crystallization under quiescent condition  is divided in two types i) 

crystallization from diluted solutions and  ii) crystallization from the melt. While the first one 

can lead to form lamellar –shaped single crystals, which exhibit a folded-chain habit that are of 

the order of 100 to 200 Å [9].  Crystallization from the melt of many polymers result in the 

formation of so the called spherulites that are large enough to be seen in the optical microscope 

[34] (¡Error! No se encuentra el origen de la referencia. a).  

Polarized optical microscopy allows detecting spherulites as (ideally) circular birefingent areas 

presenting a dark Maltese cross pattern.  Birefringence effects are associated with molecular 

orientation resulting from the characteristic lamellar morphology recognized in spherulites. The 

spherulite textures show positive and negative spherulites with the direction of the ellipsoid 

shown in Figure 1.3.1. From the optical sign of the spherulite, information of the orientation for 

the molecular chain in the spherulite can be obtained [35]. In some spherulites, another type of 

extinction patterns, which consists in radial banding, are observed under the same conditions. 

These are called “ringed” spherulites. ¡Error! No se encuentra el origen de la referencia. b 

shows a ringed spherulite of nylon 47 under polarized microscope with a sensitive tint plate. It 

is commonly believed that the periodic extinction of ringed spherulites is led by lamellar 
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twisting along the radial direction during crystal growth. Figure 1.3.1 c shows a schematic 

representation of the lamella twisting and the periodic extinction in polymer ringed spherulite. 

 

 

 

Figure 1.3.1 Optical sign of the spherulite using a sensitive tint plate, (a) 
negative sherulite, (b) positive spherulite. (c) schematic representation of the 
lamella twisting and the periodic extinction in polymer ringed spherulite [35] . 

 

The existence of spherulites is an evidence of structural organization at the level of several 

micrometers [36]. Interestingly, the amorphous   regions within the spherulites confer onto the 

material some flexibility while crystalline platelets give the material strength, just as in the case 

with largely amorphous materials. Thus relation between amorphous flexibility and crystalline 

strength (and brittleness) is a central idea in polymer structure-property relationships.  
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 Lamellar Model  

It is a proved fact that lamellar crystal is the fundamental form from which many 

semicrystalline polymers crystallize.  Many studies have been conducted [37] which showed 

that single crystals grown from dilute solution had a similar appearance that consist of thin 

lamella [38]. This structural mode is dominant of crystallization for a large number of polymers, 

and different models were proposed   to explain their nature: 

 Random re-entry or switchboard folded model  

It was proposed by Flory [39], [40] and consists of chains randomly folding back into the same 

lamella or even participating in adjoining lamellae. The upper and lower surfaces consist of 

loops of varying sizes. The upper and lower surfaces may consist of transitional regions that 

constitute a diffuse phase boundary – their density being intermediate between the crystal and 

purely amorphous regions [34]. 

 

 

 
 

 

Figure 1.3.2 (a) Schematic diagram of polymer spherulite with chain-folded lamellae. The 
spherulite consists of chain-folded lamellae radiating from a central point. The polymer chain 
axes in lamellae are more or less perpendicular to the radius of the spherulite. Branching 
causes the spherulite to become spherical in shape after sufficient growth. Noncrystallizable 
material (not shown) when present accumulates between lamellae and at the outer boundary 
[38] . (b) Optical micrograph of Nylon 4 7 using a sensitive tint plate. The spherulite shows the 
Maltese Cross, that according to the extinction patterns, it is a negative ringed spherulite. 

a) b) 

Figure 1.3.3 Random re-entry or “switchboard” lamellar polymer crystals 
model [41]. 
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 Adjacent re-entry chain-folded models (regular folding) 

Two possibilities have been considered: 

The smooth surface model which is a very idealized visualization of the chain folding process 

and tries to be consistent with the highly ordered molecular arrangement expected for a crystal.  

The rough surface model the reentry of the chain is still in the nearest growth plane, though 

large variations in the fold length may exist on a local scale. Multiple nucleation and chain-end 

defects will further contribute to a rough surface [42] [43]. 

 

Figure 1.3.4 (a) Adjacent reentry model with smooth, regular chain folds b) 
Adjacent reentry model with rough fold surface [40] . 

 Solidification model  

This model explain the constancy of the radios of gyration in crystalline state, as detected by 

small angle neutron scattering [37].  The model is visualized in terms of an alignment of chains 

without a long-range diffusion process to give rise to a lamellar morphology.  The chain 

sequences in proper conformations are incorporated into the crystal without significant 

reorganization of the chain conformation. 

 

Figure 1.3.5    Solidification model of crystallization process, showing how a chain can 
be incorporated into a lamellar structure without significant change of overall shape 
[43]      

     

(b) (a) 
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 Isothermal Crystallization 

Crystallization in polymers can be described by the process of nucleation and crystal growth.   

Primary nucleation can be heterogeneous, when the nucleation sites are foreign substances 

(dust, impurities, nucleating agents, residual catalyst and any existing surfaces). Homogeneous 

nucleation involves the aggregation of polymer chains, chain segments of parent material to 

certain size and order. Nucleation is a time-dependent process and takes place as a rate even 

under isothermal conditions [38]. 

Thermodynamically, crystallization will be favored if the entropy penalty is outweighed by the 

enthalpy change. Crystallization is an exothermic process whereas melting is endothermic as 

energy is required to overcome the intermolecular interactions established in the crystal. Tm is 

usually higher than Tc due to the high viscosity of molten polymers. Crystallization is therefore 

determined by kinetics as well as thermodynamics. The crystal growth process is explained by 

two theories: surface nucleation theory by Hoffman and Lauritzen [44-46]  and the surface 

roughing theory by Sandler and Gimler [47-49] 

 Surface Nucleation 

This theory and its modifications is the most widely used methodology to interpret and model 

the crystallization behavior of a large number of polymers. It describes the process of crystal 

growth by surface nucleation events: primary, secondary and tertiary nucleation. Primary 

nucleation can be seen as a process of crystal formation of six new surfaces, secondary  and 

tertiary nucleation events, involve the formation of four and two new surfaces, respectively, see 

Scheme 1.3.1. The model describes the crystal growth process as a combination of secondary 

nucleation rate “i” and the substrate completion rate “g” . In the classical secondary nucleation 

theory, the nucleation rate is taken as a rate determining step for crystal growth where “g” is 

very fast compared to “i”[50].  

 
 

 

 

 

 

Scheme 1.3.1 Primary , secondary and tertiary nuecleation events [51].  
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In the Hoffman and Lauritzen theory for polymers the crystal growth process is described via 

three regimes so far depending on the relative values of the nucleation (i) and the substrate 

completion (g) rates [42]. Figure 1.3.6 shows schematically three regimes of crystal growth. 

Regime I is from classical secondary nucleation theory where the rate of spreading (g) is much 

faster than rate of secondary nucleation (i). In regime II, both the rates are comparable and in 

regime III, the rate of secondary nucleation (i) is very high compared to rate of spreading (g). 

This model also assumes the single stem nucleation, i.e. deposition of a single stem on a surface 

(a primary nucleus) starts the crystal growth process. 

 

 

Figure 1.3.6  a) Schematic for crystal growth regimes for polymers according to Lauritzen and 
Hofmman, i is the rate of secondary nucleation and g is the substrate completion rate. b) Schematic 
showing the dependence of crystal growth rate with temperature for three regimes [42] 

 

 Surface Roughening Theory 

Sandler and Gilmer developed a theory that is based in roughening at atomic length scales [47-

49], due to the observation of curved surfaces for the solution grown single crystals, this is 

different from the Hoffman and Lauritzen assumption of the presence of a flat grown facet. The 

theory is able to predict regime transition as well as the curved grown surfaces of crystals. A 

secondary nucleation step is not required according to this theory, nevertheless surface 

roughening can lead to secondary nucleation. 
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1.4                                                      

Polyamides 

Aliphatic polyamides also called nylons are important industrial materials, valued for their good 

physical properties and processability. They belong to the wide family of synthetic polymer 

materials containing amide linkages in their backbones [52]. Nylons are used both, as plastics 

and as fibres. These polymers generally exhibit high impact strength, toughness, good 

flexibility, and abrasion resistance [53]. Phenols, cresols and formic acid dissolve the 

polyamides at room temperature.  

 Nomenclature 

Nylons can be synthesized by ring opening polymerization of lactams, by condensation of -

amino acids, and also by condensation of diamines and dicarboxylic acids. The polymers 

formed by the two former methods, are called nylon n, where n is the number of carbon atoms 

in the repeating unit, (e.g polycaprolactam is nylon 6). Nylons from diamines and dibasic acids 

are designated as nylons m n where m represents the number of carbon atoms in the diamine and 

n is the number of carbon atoms in the dicarboxylic acid [53], (e.g. poly(hexamethylene 

adipamide) is named nylon 6 6)  

 Structure 

Crystallinity and orientation are the most important features of polyamides affecting the final 

properties. One determining factor for the their structure is the ability of the NH group to form 

strong hydrogen bonds (H-bonds) with the CO group [54]. Thus, molecular chains must be 

oriented in such a way that hydrogen bonding becomes maximized. Intermolecular H-bonds 

connect neighboring chains or chain segments and form extended planar sheets that contain 

these H-bonds. Formation of extended sheets usually characterizes the structure of aliphatic 
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polyamides,  and depends on the directionality of the molecular chain and the parity (odd/even) 

of the involved monomers [54]. 

In nylons n, all the amide groups lie in the same direction whereas in nylons m n two 

consecutive amide groups are in opposite directions.  Thus, in the former case, packing is 

established between directional molecular chains whereas in the second case implies non-

directional chains. Carbonyl as well as amine groups can point out to the same side of the 

molecular chain or in opposite sides depending on the number of carbon atoms (even or odd) of 

the repeat unit, which clearly influences the hydrogen bonding geometry.  The more 

energetically favorable structure should be obtained when NH and C=O groups of neighboring 

chains face each other, allowing to attain an ideal H-bond geometry.  

Nylons are divided in two main types of stable crystal structures, the α and γ structures [54]. 

The most important features related to the α structure are the formation of planar sheets of 

hydrogen bonded molecules with a fully extended (planar zig-zag) conformation. These sheets 

are stacked upon one another giving rise to the three-dimensional unit cell arrangement.  Thus, 

nylon 66 was characterized by triclinic unit cell and a P ̅space group defined by center of 

symmetry in both the diamine and diacid moieties (Figure 1.4.1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4.1 a) Packing of nylon 66 molecules in the triclinic unit cell [55], b) Various stacking 
schemes of H-bonded sheets [56]. 

 

The γ – form corresponds to a pseudohexagonal arrangement, which is favoured when the 

amide groups are tilted ca. 60º off the sheet plane. As a consequence, a characteristic shortening 

in the chain axis repeat is noticed when compared with the values of the extended conformation. 

a) b) 
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However, hydrogen bonds remain in a single direction. The γ -structure is considered to be a 

less ordered phase than the α -form. It is characteristic of nylons with a high methylene content 

in their chemical repeat units (nylons 11 or 12) or nylons for which linear hydrogen bonds 

between adjacent chains cannot be established when an extended conformation is considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.4.2 Structures of the α and γ forms of nylon 6 and nylon 6 6. The left side 
shows the view of the hydrogen-bonding planes, and the right side shows the view 
down the chain axis. For the α form of nylon 6, the adjacent chains are antiparallel and 
the hydrogen bonding is between adjacent chains within the same sheet (bisecting the 
CH2 angles). For the γ form of nylon 6, the chains are parallel and the hydrogen-bonding 
is between chains in adjacent sheets. In nylon 6 6, the chains have no directionality [57] 
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 Brill Transition 

The Brill Transition was reported in 1942 by R. Brill, who first observed  from X-ray diffraction 

patterns, that as nylon 6 6 crystals were heated, the two characteristic reflections move together 

and meet [58][59] (see figure Figure 1.4.3 b and c). This behavior is due  to the structural 

changes in the lattice parameters during heating, in which basically the two basic equatorial 

spacings characteristic of the α-form (i.e. those corresponding to intrasheet and intersheet 

spacings at 0.440 and 0.380 nm, respectively), merge into a single one indicative of a 

pseudohexagonal modification, which is presumably related to a γ-form [60]. This feature is 

usually observed in even-even nylons with the logical variations caused by the differences on 

melting points and density of amide groups along the polymer chain. The structural change is 

often called “transition”, but it is not certain that it has is a themodynamic explanation. Brill 

transition occurs in a wide temperature range and is not detected in the calorimetric scans. 

Usually, is assigned as the lowest temperature for which the spacings of the two characteristic 

equatorial reflections are identical, above the Brill temperature the single spacing increases 

slightly as a consequence of thermal expansion. Therefore, the crystal structure at equilibrium 

below this temperature is triclinic and pseudohexagonal above it. Although different theories 

have been postulated to explain the Brill transition, nowadays it is assumed that it is only the 

consequence of the conformational motion of methylene groups (i.e. amide interactions remain 

unaltered) due to the temperature increase that gives rise to  a packing change within the crystal 

[61], The pseudohexagonal structure is actually a special class of triclinic structures in which 

the projection on a plane normal to the chain axis is metrically hexagonal (see Figure 1.4.3 a) 

The Brill transition is most clearly displayed in X-ray diffration studies, as the two strongest 

reflections of for example nylon 6 6, the 100 and 010/110 reflections, merge into a single 

reflection at the transition, as it si shown in Figure 1.4.3 b and c. Other techniques such as DSC 

are less sensitive, and in general do not show the Brill transition by way of a distinct 

endothermic peak [61]. Some explanations for this phenomenon have been given [60]: a) 

anisotropy of the thermal expansion, b) the development of a tree dimensional network of 

hydrogen bonds between the chains induced by rotational molecular jumps of 60º at elevated 

temperatures, c) a transition involving a greater mobility of the methylene groups, while 

hydrogen bonds remain arranged in a single direction.   

A complete understanding of the Brill transition does not yet exist, some features need to be 

further explained like, the transition temperature to pseudohexagonal phase is not constant for a 

specific polyamide since it clearly depends on the thermal history of the sample. A 

pseudohexagonal phase can also be observed for some even nylons in quenched samples, and it  

has been interpreted as a frozen state arising from the high temperature modification, however , 

such state is not stable since it reverts quickly to the α-modification when crystals are heated 
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above their Tg [60], in the present research work some studies were performed in order to 

understand better this phenomenon.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4.3 a) Example of pseudohexagonal structure [62] b) Variation of d100 and d010/110  
spacings with temperature on heating nylon 66 from room temperature to melting [61] c) 
Thee-dimensional view of the X-ray diffraction patterns of nylon  66 on heating from room 
temperature to melting [61]. 
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The present study is part of a larger project with the main objective of developing new 

polyesters and poly(ester amide)s with improved properties for biomedical and even commodity 

applications. The incorporation of organically modified silicate clays plays a significant role in 

improving gas barrier properties, mechanical, thermal, rheological and processability of 

polymers. The development of biodegradable nanocomposites with improved or modified 

material properties is an interesting topic since these new materials are expected to replace 

already existing biodegradable and non-biodegradable commodity plastics in some specific 

applications. 

This project aims to study the influence of clay particles incorporated in a polymer matrix on 

the crystallization processes, the study of the in situ polymerization kinetics of mixtures of clays 

and monomers of biodegradable polymers, as well as the influence of nanoparticles on the 

thermal behavior and morphologic parameters.  

The work developed for this doctoral Thesis can be structured in two main sections involving: 

a) polyamides and b) biodegradable polyesters and poly(ester amide)s. The general objectives 

have been applied as described below.  

2.1.1 Polyamides 
We are interested in even-odd and odd-even nylons, which are characterized by a recently 

postulated structure where hydrogen bonds were established along two different directions. The 

proposed work implies the following points:  

 

 Choice of representative odd-even and even-odd polyamides with the indicated peculiar 

hydrogen-bonding scheme. 

 Structural characterization of the chosen polyamides (i.e. nylons 56, 65 and 47) 

 Gain insight into the structural transition induced by temperature for representative 

even-odd polyamides as well as for odd-even polyamides having the new structure with 

two hydrogen-bonding directions.  

 To obtain new data on the crystallization behaviour of composites based on polyamides 

having different intermolecular interactions from those of conventional nylons.  

 Preparation of nanocomposites based on nylons with the different structures from at 

least one representative polyamide.  



30 

 

 Evaluation of the influence of the incorporation of clay particles on the crystallization 

behaviour of nylons having the peculiar structure with two hydrogen bonding 

directions.  

2.1.2 Biodegradable polyesters and poly(ester amide)s 

 Polyesters 

 Preparation of exfoliated nanocomposites from a new biodegradable polyester consti-

tuted by an alternating distribution of glycolic acid and 6-hydroxyhexanoic acid units.  

 Study of the influence of clay particles on the isothermal crystallization process 

 Evaluation for the pristine and the nanocomposite of the overall crystallization rate, 

crystal growth rate, and change of morphological parameters during crystallization by 

means of FTIR spectroscopy, optical microscopy and combined SAXS/WAXD 

diffraction data. 

 Poly(ester amide)s 

 Choice of a representative polymer of a new family of biodegradable polymers which 

composition is based on the most usual units existing in polyesters employed for 

biomedical applications and the commercial polyamides. 

 Preparation of nanocomposites of the chosen polymer: an alternating poly(ester amide) 

constituted by glycolic and 6-aminohexanoic acid units via in situ intercalation 

polymerization. 

 Determination of the effect of different types of montmorillonites, based on three 

different surfactants (Cloisites 25A, 30B and 20A) on the polymerization kinetics of the 

monomer salt. In this sense, calorimetric, spectroscopic and diffraction techniques will 

be combined to gain further insight. 

 Study of the crystallization processes (cold and hot crystallizations) of nanocomposites 

having different structures to get insight into the influence of the clay arrangement on 

nucleation and crystal growth rate.  

 Study of the influence of the incorporation of clay particles on the thermal stability and 

degradation kinetics of the selected poly(ester amide). 
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3.1                                               

Characterization Techniques 

3.1.1 Transmission Electron Microscopy (TEM) 

 Method 

In this technique an electron beam is passed through a very thin section of the sample and an 

image is obtained due to the differences in electron density of the materials. Since there is 

sufficient difference in electron density between the polymer and the clay to provide a contrast 

between the two materials it is possible to see the clay dispersion. TEM was carried out with a 

Philips TECNAI 10 at an accelerating voltage of 100 kV. The specimens were prepared by 

embedding in a low viscosity modified Spurr epoxy resin and curing them at 40 ºC for a few 

days and then at 60 ºC for some hours. Ultrathin sections (less than 100nm) were cut at room 

temperature using Sorvall Porter-Blum microtome equipped with a diamond knife. Finally, the 

sections were collected in a though filled with water and lifted onto carbon coated copper grids. 

To prevent diffusion of the epoxy resin into the polymer film, a thin layer of carbon was 

evaporated over the film surface.  

3.1.2 X-ray Scattering  

 Experimental Technique 

X-rays are electromagnetic waves of very short wavelength; The X-rays used in polymer 

characterization have wavelengths of about 0.1-0.2 nm. Two types of X-ray scattering are used 

in the study of polymers, wide-angle X-ray diffraction (WAXD) and small-angle X-ray 

scattering (SAXS) depending on scale of the features studied. SAXS studies are performed on 

polymers for the investigation on structures on a much larger scale than the separations of 

crystal planes, which implies scattering angles much smaller than those used in WAXD. 
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Scattering from structures of any size takes place at well-defined angles. The scattering is 

usually called diffraction only when the structures are periodic. The most important periodic 

structures suitable for WAXD investigations are crystals, which are periodic in three 

dimensions [43] . 

X-rays are produced by bombarding a metal target with a beam or high voltage electrons. This 

is done inside a vacuum tube. The target metal as well as the applied voltage determines the 

wavelength of X-rays produced.  The diffracted X-rays may be detected by their action on 

photographic films or plates,  or by means of radiation counter and electronic equipment feeding 

data to a computer [63]. It is possible to obtain X-ray reflections from a series of planes inside 

the crystal. The orientation and interplanar spacings of these planes are defined by the three 

integers h, k, l called Miller indices of a plane or a face [64]. A given set of planes with indices 

h, k, l cut the a-axis of the unit cell in h sections, the b axis in k sections and the c axis in l 

sections. A zero indicates that the planes are parallel to the corresponding axis e. g. Figure 3.1.1 

shows the 2 0 0 planes which cut the a axis in half but are parallel to b and c axes. 

 

 

Figure 3.1.1 Example of three dimensional diffraction, where three indices hkl become the 
order of diffraction along the unit cell axes a, b and c respectively. 

 

Diffraction can easily be understood in terms of the reflection of the incident beam by the 

different crystallographic planes. Thus, the intensity of rays reflected by a pair of planes with an 

interplanar spacing d (Figure 3.1.2) is maximum when the waves are in phase. Equation 3.1 

corresponds to the Bragg’s law, which relates the angle of the incident beam, the interplanar 

spacing and the wavelength of the radiation. The geometric derivation is shown in Figure 3.1.2.  

(3.1) 

 sin2dn   
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Figure 3.1.2 Geometric derivation of Bragg's law: Constructive interference occurs when the delay 
between waves scattered from adjacent lattice planes given by 1 + 1' and 2 + 2’ is an integer multiple of 
the wavelenght  [64]. 

 

The process of reflection is described here in terms of incident and diffracted rays, each making 

an angle  with a fixed crystal plane. Reflections occur from planes set at angle  with respect 

to the incident beam and generates a reflected beam at an angle 2  from incident beam. The 

possible d spacing defined by the indices hkl (dhkl) are determined by the shape of the unit cell. 

Rewriting Bragg’s law: 

 (3.2) 

 sin2 hkld  

The spacing dhkl is easily calculated for a given measured value of    and with a set of 

experimental spacings is possible to determine the dimensions of the unit cell (a, b, c, α, β and 

γ) through the indexing process. For example, the following equation relates indices, cell 

parameters and spacings for an orthorhombic unit cell (α, β and γ are 90º):  

    
 √

  

  
 
  

  
 
  

  
 

Figure 3.1.3 shows some important planes for the special case of a lattice with a rectangular 

projection on a plane perpendicular to the c-axis. Integers hkl label the points of intersection of  

three sets of equally spaced parallel planes. These planes can be chosen so that this new lattice 

(called reciprocal lattice) has the next property: for all values of h, k and l the line joining the 

origin of the reciprocal lattice to the point hkl is of length 1/ dhkl and is normal to the hkl planes 

of the real lattice. The reciprocal-lattice plane for a given value of l and all values of h and k is 

perpendicular to the c-axis and is distant l/c from the origin of the reciprocal lattice. 
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Figure 3.1.3 Planes for a lattice with a rectangular projection on a plane perpendicular to the c-axis [43]. 

 

However, the intensities of the reflections are determined by the distribution of the electrons in 

the cell. The highest electron density are found around atoms. Therefore, the intensities depend 

on what kind of atoms are present and where in the unit cell they are located. Planes going 

through areas with high electron density will reflect strongly, planes with low electron density 

will give weak intensities.  

 Method 

In X-ray polymer diffraction it is normally distinguish among single crystal, polycrystalline or 

powder applications and fiber pattern diffraction.  The single crystal sample is a perfect (all unit 

cells aligned in a perfect extended pattern) crystal with a cross section of about 0.3 mm. The 

single crystal diffractometer and associated computer package is used mainly to elucidate the 

molecular structure of novel compounds, either natural products or synthetic molecules [65]. 

However this kind of samples are very difficult to obtain for polymers. 

Powder diffraction is mainly used for “finger print identification” of various solid materials, e.g. 

asbestos, quartz. In powder or polycrystalline diffraction it is important to have a sample with a 

smooth plane surface. The ideal sample has a random distribution of all possible hkl planes. 

Only crystallites having reflecting planes (hkl) parallel to the specimen surface will contribute to 

the reflected intensities. If a sample is truly random, each possible reflection from a given set of 

h, k, l planes will have an equal number of crystallites contributing to it. The specimen must be 

rocked through the glancing angle  in order to produce all possible reflections.  

Fiber diffraction patterns are good option to analyze structure of polymer crystallites since a 

fiber pattern contains information about the crystal structure of the polymer. It also contains 

information about the size of the crystallites and about their degree of alignment [66]. 

Crystalline polymers fibers must be stretched to be oriented in order to obtain a fiber diffraction 
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pattern. Thus highly oriented fiber consists of a very large number of crystallites, which all have 

one particular crystallographic direction oriented almost parallel to the fiber axis (usually the 

chain axis, the c-axis) and the remaining directions are oriented randomly around this direction. 

Assuming that the axis of the fiber is normal to the incident X-ray beam, the scattering expected 

is therefore almost exactly the same as that which would be observed from a single crystal with 

its c-axis parallel to the fiber axis if this crystal were rotated continuously around the c-axis 

during the exposure of the X-rays. 

Highly oriented polymer fiber diffraction pattern shows the same features that a rotating crystal, 

when planes are parallel to fiber axis:  only four diffraction spots lying at particular points on 

the imaginary circle of the corresponding powder-pattern would be observed. These points are 

symmetrically placed with respect to the plane that contains the incident X-ray beam and 

normal to the rotation axis at it is shown in Figure 3.1.4.  The radius of the (imaginary) powder 

circle and the positions of the four spots on it for a particular type of crystal plane depend on the 

indices of the planes.  

 

Figure 3.1.4 (a) and (b) show the production of four diffraction spots corresponding to a 
given set of planes for a rotation pattern: (a) the starting position, where 0 is greater than 
the Bragg angle; and (b) the location of the four diffraction spots corresponding to a given 
set of planes. c)  is a schematic diagram showing the relationship among layer lines, 
powder rings and diffraction spots in a fiber diagram. For simplicity the layer lines are 
shown straight and the powder rings as circles [43]. 

 

Powder ring corresponds to a particular set of values h, k and l and it follows that diffraction 

spots can be seen only at those places where the lth layer line crosses the position where a 

powder circle corresponding to the same value of l would have been seen, as shown 
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schematically in Figure 3.1.4 c. Each circle and pair of layer lines (i.e. for ±l) gives rise to the 

four spots previously shown to arise from any particular set of planes. Because there can be 

various sets of planes with different values of h and k but the same value of l there will be 

several pairs of spots on each layer line. The layer line for l = 0 is called the equator and the 

normal to this through the point where the incident X-ray beam would strike the film is called 

the meridian. Figure 3.1.5 shows, as an example, the X-ray scattering pattern obtained for an 

oriented fiber of syndiotactic propylene.  

 

Figure 3.1.5  Fibre pattern from oriented syndiotactic polypropylene, drawn to a draw ratio 
of about 5 at 109ºC [43].   

 

X-ray diffraction (XRD) is useful to characterize the morphology of the polymer 

nanocomposites as it enables the average basal spacing (distance between two clay platelets) to 

be calculated. This spacing is often referred  as the d001 spacing where d refers to the spacing 

between the planes in a lattice and 001 refers to the indics of the involved reflection. An 

increase in the spacing indicates an increase in the extent of intercalation and the point where 

the XRD peak can no longer be observed. The clay is through to become fully exfoliated within 

the polymer matrix, since in an exfoliated nanocomposite the clay platelets will be at larger 

distances from each other with random orientation. This means that there will be no average 

distance between the platelets and therefore no XRD peak will be observed.  

Figure 3.1.6 shows an example of intercalated nanocomposite, and an exfoliated one. The XRD 

patterns that have to be corroborated with TEM analysis (Figure 3.1.6 b) to draw a conclusion 

about nanocomposite structure.   



39 

 

 

 

 

 

 

 

Figure 3.1.6  (a) WAXD patterns and (b) TEM images of three different types of nanocomposites . 
 

3.1.3 Synchrotron Radiation  

 Experimental Technique 

Synchrotron radiation is the electromagnetic radiation emitted by high-speed electrons spiraling 

along the lines of force of a magnetic field. Depending on the electron’s energy and the strength 

of the magnetic field, the maximum intensity will occur as radio waves, visible light or X-rays, 

the radiation is highly polarized and the intensity greatly exceed other sources (Figure 3.1.7 

shows the large spectral region covered by the synchrotron radiation).  These properties make 

synchrotron radiation a recognized and powerful research tool for all scientific areas. 

In this research work simultaneous small and wide angle X-ray diffraction (SAXS-WAXD) 

techniques were used. These techniques allow to investigate at different length scales the 

structure and dynamics of the material of interest. Simultaneous SAXS/WAXD permits 

studding structural and morphological changes in real time.  During the experiment, two 

position-sensitive detectors are placed in different locations covering a wide angular range, of 

about four orders of magnitude of scattering angle. The scheme of the experimental setup for 
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simultaneous SAXS-WAXD it is shown in Figure 3.1.8. The WAXD provides information 

about the molecular and atomic ordering of materials, while SAXS is sensitive to 

heterogeneities in the electron density on a larger scale (1-102 nm).  

 

 

Figure 3.1.7 Energy and wavelength scales for a very large range of the electromagnetic 
wave field. Showing the  large spectral region covered by the synchrotron radiation [67] . 

 

 

 

Figure 3.1.8 Scheme of the experimental setup for simultaneous SAXS-WAXS experiments at 
the BM16 beam line. The main parts of the goniometer are rotation unit (1), arm (2), 
counterweight (3), and hot stage (4). The vacuum chamber is made of cylindrical parts of 
different lengths and a square based truncated pyramid at the front [68]. 

 

 Method 

The collected data was then treated with different scientific software. For WAXD experiments, 

deconvolution was performed and the overall crystallinity of the samples as well as morphology 

were evaluated. On the other hand for SAXS experiments the correlation function analysis was 
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made using CORFUNC software, that obtains the Fourier transform of the scattering curve to 

get structural parameters describing the sample[69]. 

3.1.4 Differential Scanning Calorimetry 

 Experimental Technique 

Differential scanning calorimetry (DSC) can detect changes in the heat capacity caused by 

chemical or physical transitions. In the case of polymer materials, transitions such as glass 

transition (Tg), melting points (Tm), crystallization  and rate of cure can be detected. These 

transitions generally depend on the polymer architecture, molecular weight, chemical 

composition and thermal history.  DSC works by measuring the heat  flow (the supplier per unit 

time) required to either heat the sample at a constant rate ( non – isothermal studies) or to 

maintain a sample at a constant temperature ( isothermal,  this is useful for example in some 

crystallization or polymerization experiments). The signal in a DSC experiment is related to the 

difference between the  thermal response of the sample and reference cells as the two are heated 

or cooled at the same rate or maintained at a constant temperature[70]. Figure 3.1.9 shows the 

main features that can be observed in DSC polymer thermograms. 

 

 

Figure 3.1.9. Typical polymer DSC thermograms [71]. 

 

3.1.5 Thermogravimetric Analysis (TGA) 

 Experimental Technique 

Thermogravimetric analysis measures the amount and rate of change in the weight of a material 

as a function of temperature or time in a controlled atmosphere.  TGA is particularly useful for 
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the following measurements: thermal stability, degradation kinetics, composition etc. It makes 

continuous weighing of a small sample as the temperature is increased at a programmed linear 

rate. The thermograms obtained illustrate weight losses due to desorption of gasses or 

decomposition. Figure 3.1.10 shows a typical thermogram of an elastomer compound. The 

kinetics of degradation process may be characterized to model and predict cure, thermal 

stability an aging due to thermal and thermo-oxidative processes [72]. In this way kinetic 

information is crucial for evaluating the times and temperatures associated with the processing, 

service lifetimes, and storage of materials. It is also of value for understanding the mechanisms 

of thermal processes. In a pragmatic sense the objective of kinetics is often to provide a 

mathematical relationship between time, temperature and conversion. In this research work 

TGA experiences were conducted to perform kinetic studies. 

 

Figure 3.1.10 Thermogram showing the mass los curves of an elastomer compound  [72] 

 

 Method 

Kinetics studies in TGA polymer analysis are based in solid-state kinetics theory. Some 

mathematical methods have been developed to evaluate  solid-state kinetics. They generally fall 

into two categories: model-fitting and model-free (isoconversional) methods. Model-fitting 

methods determine the kinetic triplet: model (f(α)), frequency factor (A) and activation energy 

(E) whereas isoconversional methods generate the activation energy as a function of reaction 

progress without modelistic assumptions.  The assumptions of solid-state kinetics as the 

methods used in this research work are explained here.  
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To perform solid-state kinetics analysis with thermal analytical methods. Weight loss data are 

converted to a normalized form called conversion fraction (α). This conversion fraction ranges 

from 0 and 1 and is a measure of reaction progress as a function of time or temperature.  

There are many types of solid-state reactions but in TGA the focus is on reactions that involve 

single solid reactant. A simple reaction is one which follows the reaction scheme below. 

 ( )   ( )   ( ) 

Where A decomposes thermally to produce a solid B and a gas C. The conversion rate law for an 

elementary solid – state reaction depend on factors such as rate of nuclei formation, interface 

advance, diffusion and/or geometrical shape of solid particles. These factors lead to several 

decomposition models that are summarized in Table 3.1.1.  

 Isothermal analyses 

 In an isothermal degradation test, the experimental data must fit the standard kinetic equation: 

(3.3) 

  

  
  ( ) ( ) 

where k(T) is the kinetic rate constant, t is time, a is the normalized degree of degradation or 

conversion, and f() is the differential conversion function. 

The conversion is calculated in terms of mass loss as: 

(3.4) 

  
    

     
 

where W0, W, and W∞ are, respectively, the initial polymer weight, the actual weight at each 

point of the degradation curve, and the final weight at the end of the degradation process. 

The temperature dependence of the kinetic rate constant is assumed to follow an Arrhenius 

form: 

(3.5) 

     
  
   

where T is the absolute temperature, R is the gas constant, and A and E are the preexponential 

and the activation energy for the decomposition reaction, respectively. 

The major disadvantage of this approach is that complete degradation may require significant 

amounts of time. However, the simplicity of analysis and the fact that no approximations are 

needed must be pointed out. For predictive purposes, it is possible to create an isothermal 
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master curve by simply scaling the raw data with time. This is accomplished by dividing the 

time on the abscissa axis by the time required for a conversion of 0.5 (t1/2). In this way, 

degradation curves obtained at different temperatures collapse onto a single one. 

 Dynamic Methods 

According to the nonisothermal solid-state kinetic theory, thermal degradation of a polymer can 

be expressed by the following function: 

 (3.6) 

ߙ݀
݀ܶ

ൌ
ܣ
ߚ
݁ି

ாೌ
ோ்݂ሺߙሻ 

where β is the heating rate and the other terms have the above indicated meaning. 

The integration of f(α) leads to: 

(3.7) 
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The differential (f(α)) and the integral (g(α)) conversión functions may take different forms 

according to the solid state reaction mechanism. These are summarized in Table 3.1.1.  

The most probable mechanism can be determined by using the Coats–Redfern approximation 

[73] to solve eq. (3.7) and considering that 2RT/E ≪	1, this equation may be rewritten as: 

(3.8) 
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For a given kinetic model, the linear representation of ln[g(α)/T2] versus 1/T makes it possible 

to determine E and A from the slope and the ordinate at the origin, respectively. The model can 

be selected taking into account the linear regression coefficient (r) and the agreement of the 

activation energy with that estimated by isoconversional methods such as the Kissinger– 

Akahira–Sunose (KAS) [74], Friedman [75], Kissinger [74] and Flynn–Wall–Ozawa (FWO) 

methods [76], [77].  The KAS method is based on eq.(3.9) which is obtained by reordering the 

above-indicated equation of the integral conversion function: 

(3.9) 
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For each degree of conversion the activation energy can be obtained from the slope of linear 

representation of  ln(β/T2) versus 1/T. 
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The Friedman method is based on eq. (3.10), which in this case derives from the logarithmic 

form of the rate eq. (3.6): 

(3.10) 
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 For each degree of conversion, the plot of ln ߚ	ߙ݀/݀ܶ versus 1/T, obtained from thermograms 

recorded at several heating rates, should be a straight line whose slope allows the evaluation of 

the activation energy. 

The Kissinger equation can be considered a particular case of eq. (3.9) applied for α = αmax (the 

conversión at the maximum weight loss rate) and assuming f(α) = (1 – α)n: 

(3.11) 
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where Tmax is the temperature at the inflection point of the thermodegradation curves, which 

corresponds to the maximum reaction rate. In this case, the activation energy can be determined  

from the slope of the linear plot of ln ሺߚ/ ௠ܶ௔௫
ଶ ሻ versus ln 1/ ௠ܶ௔௫. It is now well-known that 

this method may also be applied when f(α) correspond to other kinetic models [78]. 

The Flynn–Wall–Ozawa eq. (3.12) is one of the integral methods by which the activation 

energy can be determined without knowing the reaction order: [76], [77] 

(3.12) 

ln ߚ ൌ ln
ܧܣ0.0048
݃ሺߙሻܴ

െ 1.0516
ܧ
ܴܶ

			 

The activation energy can be calculated for different conversions from the slopes of the linear 

plots of ln β versus 1/T. 

Another method used to evaluate the kinetic parameters is the IKP (invariant kinetic parameters) 

Method [79], [80] . According to this procedure, the values of the activation parameters, 

obtained from various forms of f(α), are correlated through an apparent compensation effect: 

(3.13) 
ln ݃ሺߙሻ ൌ  ܧ∗ߚ∗ߙ

Where α* and  ߚ∗ are constants ( the compensation effect parameters). 

To apply this method, the values of ln Ai versus Ei at each heating rate (ߚi) were plotted. These 

parameters were obtained using the Coats–Redfern methodology for the different kinetic models 

studied (Table 3.1.1) The plot allowed the ߙ௜
∗  and ߚ௜

∗   constants to be determined from the 

intersection at the origin and the slope, respectively. Furthermore, the straight lines ln Ai versus 
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Ei for each heating rate should intersect at a point, which corresponds to the true values of A and 

E. These are called the invariant activation parameters (Ainv, Einv). Certain variations of the 

experimental conditions actually determine a region of intersection in the ln A, E space. For this 

reason, the evaluation of the invariant activation parameters is performed using the following 

relation: 

(3.14) 

ln ௜௡௩ܣ ൌ ௜ߙ
∗ ൅ ௜ߚ

 ௜௡௩ܧ∗

Thus, a plot of    ߙ௜
∗ versus ߚ௜

∗is actually a straight line whose parameters allow evaluation of the 

invariant activation parameters. 

 

Table 3.1.1 solid-state rate expressions for different reaction models [72]. 
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3.1.6 Fourier Transform Infrared Spectroscopy  (FTIR) 

 Experimental Technique 

Infrared spectroscopy is a technique based on the vibration of the atoms of a molecule. An 

infrared spectrum is obtained by passing infrared radiation though a sample and determining 

what fraction of the incident radiation is absorbed at a particular energy. This energy of 

absorption corresponds to the frequency of a vibration of a part of a sample molecule [81].  

For a molecule to show infrared absorption it must possess a specific feature, an electric dipole 

moment of the molecule must change during the vibration. A molecule containing N atoms has  

3N normal vibration modes, including rotational and transitional motions of the entire molecule. 

In polymers the infrared absorption spectrum are of the very simple due to the occurrence of 

normal vibrations  at almost same frequency.  

The main type of molecular vibrations are stretching (symmetrical and asymmetrical) and 

bending (scissoring, wagging, twisting and rocking). As different kinds of bonds, and thus 

different functional groups absorbed infrared radiation of different wave length, analysis of 

absorption reveals details about the molecular structure of the sample. 

 Method 

This technique was used to perform crystallization and polymerization dynamic studies, 

identifying functional groups that appear while temperature was varied, the methodology 

developed to treat the data obtained during this experiments allowed to evaluate polymerization 

and crystallization kinetics. 

3.1.7 Nuclear Magnetic Resonance Spectroscopy (NMR) 

 Experimental Technique 

Nuclear Magnetic Resonance (NMR) spectroscopy can be used to study chain configuration, 

sequence distribution, and microstructure in polymers. It utilizes the property of spin (angular 

momentum and its associated magnetic moment) possessed by nuclei whose atomic number and 

mass number are not both even, such as isotopes of hydrogen and 13C, 15N,  17O and 19F. When a 

strong magnetic field is applied to the material containing such nuclei, the energy level splits 

into two, representing states with spin parallel and antiparallel to the field. Transitions between 

the states lead to absorption or emission of an energy [63] 

The most common nuclei examined by NMR 1H and 13C, since these are the most abundant 

NMR sensitive nuclei [71]. The resonant frequencies can be used to determine molecular 

structures. 1H resonances are fairly specific for the types of carbon they are attached to, these 
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resonances may be split into multiples. The magnitude of splittings, and the multiplicity, can be 

used to better determine the chemical structure in the vicinity of hydrogen. Since only hydrogen 

is observed, any feature in the molecule without attached hydrogen can only be inferred, and 

this turns out impossible to resolve complex structures or molecules. 13C resonance can be used 

to determine skeleton of an organic molecule. 

NMR is a very powerful tool, to characterize compound structure, and may provide a general 

characterization by functional groups. In this research work NMR was often used to verify 

purity and non – degradation of sample material. 
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4.1                                                             

Brill transition and melt  crystallization of 
nylon 56: an odd-even polyamide with two 
hydrogen bonding directions 

Brill transition and crystallization behaviour of nylon 56, a representative polymer of odd-even 

polyamides, was investigated by simultaneous WAXD and SAXS synchrotron radiation. Nylon 

56 crystallized from solution into a peculiar structure where hydrogen bonds were established 

along two direction. Nylon 56 experimented on heating a Brill transition that lead to a 

pseudohexagonal packing and lately to a monoclinic unit cell where neighbouring molecular 

segments were shifted along the chain axis direction. In disagreement with conventional 

polyamides, the Brill transition of nylon 56 was not reversible since on cooling the 

pseudohexagonal arrangement was mainly attained. 

Optical microscopy studies performed under both isothermal and non-isothermal conditions 

demonstrated that nylon 56 spherulites had different optical properties than even-even nylons 

having conventional sheet structures. The birefringence sign changed in the sequence positive-

negative-positive when crystallization temperature was decreased. 
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4.1.1  Introduction 
 

Aliphatic polyamides derived from odd diamines and even dicarboxylic acids (i.e. odd-even 

nylons) cannot establish all possible intermolecular hydrogen-bonding interactions when 

molecular chains have an all trans conformation (Figure 4.1.1a). In this way, the conventional 

/ forms usually found in commercial even-even nylons [1,2] (e.g. nylon 66) cannot be 

expected considering the minimization of the packing energy. These conventional structures are 

based on a stacking of sheets composed of hydrogen-bonded molecular chains with a planar zig-

zag conformation. The corresponding fiber diffraction patterns are mainly characterized by two 

strong equatorial reflections at approximately 0.44 and 0.38 nm which are related to interchain 

distances within and between sheets, respectively.   

A pseudohexagonal structure, which fiber diffraction pattern is characterized by a single strong 

equatorial reflection at approximately 0.415 nm, has been postulated for polyamides derived 

from an odd diamine and/or an odd dicarboxylic acid [1,3] (e.g. nylon 77). In this case, the 

torsional angles of the bonds adjacent to the amide groups tend to ± 120 ºC, causing a tilt of the 

amide plane by approximately 60º, a shortening of the chain length and the establishment of 

good hydrogen-bonding interactions along a single direction.  

However, it has recently been demonstrated that typical spacings of the / forms can 

surprisingly be found in nylons derived from odd diamines (e.g. nylons 56 [4], 92 [5] and 5-10 

[6]) or odd dicarboxylic acids (e.g. nylons 65 [7] and 69 [8]). These structures were observed in 

both stretched fibers and single crystals obtained from diluted solutions. Structural studies on 

this kind of polyamides revealed a peculiar arrangement characterized by the establishment of 

intermolecular hydrogen bonds along two different directions. Basically, the molecular 

conformation was close to the all trans since only a slight deviation towards 150º (or -150º) for 

the two torsional angles vicinal to the odd diamide unit was necessary to face all NH and CO 

groups of neighbouring chains.  The two amide groups of the odd unit rotated in opposite senses 

from the plane defined by the methylene carbon atoms allowing the establishment of good 

hydrogen bonding interactions when neighbouring chains became conveniently shifted along 

the chain axis direction (Figure 4.1.1b). In this way, a monoclinic unit cell containing two 

molecular segments was derived and the chain axis projection corresponded to a rectangular 

unit cell.  
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a) 

Figure 4.1.1 a) Scheme of the unfavorable hydrogen-bond geometry between 
odd diamide units of nylon 56 molecular chains with an all trans conformation. b) 
Scheme of the establishment of hydrogen bonds along two directions when 
consecutive amide planes of a molecular 
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Conventional polyamides usually have a temperature induced transition towards a 

pseudohexagonal unit cell (’ form). This transition can be easily detected in the X-ray 

diffraction patterns since the two strong equatorial reflections characteristic of the sheet 

structure gradually merge by increasing temperature into a single reflection. The Brill transition 

temperature just defines the moment in which this pseudohexagonal packing is reached. Brill 

temperature depends on the sample history and is also observed with a hysteresis effect when 

samples are cooled from the melt state. Although, a large number of studies on the Brill 

transition have been reported for several nylons [9-20], the phenomenon is not yet fully 

understood and different explanations have been postulated. Most of them suggest that 

hydrogen bonds are not disrupted during the Brill transition and explain the pseudohexagonal 

packing as a consequence of the increasing mobility of the polymethylene segments [21,22]. At 

this stage, it seems highly interesting to bring new data about the Brill transition and the 

crystallization process of the above indicated polyamides. Nylon 56 has been chosen as a 

representative odd-even polyamide with a peculiar hydrogen bonding scheme. Nowadays, 

works concerning to odd-even polyamides are limited to nylons 11-10 and 11-12 which are 

derived from units with a large number of methylene units [23].  

4.1.2 Experimental section  

 Materials 

Nylon 56 was synthesized by interfacial polycondensation of 1,5-diaminopentane and adipoyl 

dichloride using toluene as organic solvent and sodium hydroxide as proton acceptor following 

the procedure previously described [4]. An intrinsic viscosity of 0.7 dL/g was determined in 

dichloroacetic acid at 25 ºC. 

 Measurements 

Calorimetric data were obtained by differential scanning calorimetry using a TA Instruments 

Q100 series with Tzero technology and equipped with a refrigerated cooling system (RCS) 

operating at temperatures from -90 ºC to 550 ºC. Experiments were conducted under a flow of 

dry nitrogen with a sample weight of approximately 5 mg, while calibration was performed with 

indium. The Tzero calibration involved two experiments: the first was done without samples and 

the second was performed with sapphire disks. 

The spherulite growth rate was determined by optical microscopy using a Zeiss Axioskop 40 

Pol light polarizing microscope equipped with a Linkam temperature control system configured 

by a THMS 600 heating and freezing stage connected to a LNP 94 liquid nitrogen cooling 

system. Spherulites were grown from homogeneous melt-crystallized thin films produced by 

melting 1 mg of the polymer mixture on microscope slides. Next, small sections of these films 

were pressed or smeared between two cover slides and inserted in the hot stage. The thicknesses 
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of the squeezed samples were close to 10 m in all cases. Samples were kept at 265 ºC (more 

than 10 ºC above the polymer melting point of 251-252 ºC) for 5 minutes to wipe out sample 

history effects, and then quickly cooled to the selected crystallization temperature. Alternatively 

samples were no isothermally crystallized at different cooling rates (8, 1 and 0.5 ºC/min) to 

increase the crystallization temperature range. The radius of the growing spherulites was 

monitored in both isothermal and non-isothermal crystallizations by taking micrographs with a 

Zeiss AxiosCam MRC5 digital camera at appropriate time intervals. A first-order red tint plate 

was employed to determine the sign of spherulite birefringence under crossed polarizers.  

X-ray fiber diffraction data were obtained with Ni-filtered CuK radiation of 

wavelength 0.1542 nm from an Enraf Nonius rotating anode X-ray generator and using 

a modified Statton camera (W. H. Warhus, Wilmington, DE). Patterns were recorded at 

different temperatures using a temperature-controlled chamber provided by the 

manufacturer. Oriented fiber samples were obtained by drawing the polymer melt and 

performing a subsequent annealing under stress at 90 ºC. 

Simultaneous time-resolved SAXS/WAXD experiments were carried out at the CRG 

beamline (BM16) of the European Synchrotron Radiation Facility of Grenoble. The 

beam was monochromatized to a wavelength of 0.098 nm. The capillary with the 

sample was held in a Linkam hot stage with temperature control within 0.1 ºC. 

WAXD/SAXS profiles were acquired during heating and non-isothermal crystallization 

experiments in time frames of 12 s. The heating and cooling rates varied between 20-8 

ºC/min, respectively. Two linear position-sensitive detectors were used [24]: The SAXS 

detector was calibrated with different orders of diffraction from silver behenate whereas the 

WAXD detector was calibrated with diffractions of a standard of an alumina (Al2O3) sample. 

The diffraction profiles were normalized to the beam intensity and corrected considering the 

empty sample background. Deconvolution of WAXD peaks was performed with the PeakFit v4 

program by Jandel Scientific Software using a mathematical function known as “Gaussian 

area”.  
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4.1.3 Results and discussion 

 Thermal properties of Nylon 56 

Fusion of a nylon 56 sample directly obtained from synthesis was characterized by two melting 

peaks that appeared in the 228-251 ºC temperature range (Figure 4.1.2a). It should be pointed 

out that the high temperature melting peak was very broad and asymmetric, suggesting that it 

was really derived from the overlapping of two signals (peaks 2 and 3). Thus, fusion of nylon 

56 seemed to be characterized by a complex behaviour. The DSC heating trace showed also a 

very broad endothermic peak (80-140 ºC) which could be assigned to adsorbed water since it 

was not detected in later heating runs, and furthermore a polymorphic transition could be 

discarded in this temperature range as then will be explained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.1.2 Sequence of DSC curves corresponding to a heating run of a solution 
crystallized sample (a), cooling run from the melt state (b), heating run of a melt-
crystallized sample (c) and heating run of a quenched sample (d). Heating runs 
were performed at 20 ºC/min whereas the cooling run was performed at 10 
ºC/min. Inset shows a magnification of the glass transition.  
 



63 

 

Nylon 56 crystallized easily during cooling runs from the melt state (e.g. an exothermic peak at 

224 ºC was detected at a cooling rate of 10 ºC/min) giving rise to samples with a different 

melting behaviour. Thus, a posterior heating trace showed clearly as the broad high temperature 

peak was split in two peaks (peak 2 at 238 ºC and peak 3 at 251 ºC) and that an exothermic peak 

indicative of a recrystallization process appeared (241 ºC). The low temperature melting peak 

(peak 1 at ca. 232 ºC) could still be observed although with a very low intensity. Heating traces 

of melt quenched samples clearly indicate that a completely amorphous sample could not be 

obtained at the maximum cooling rate allowed by the equipment. However, the glass transition 

temperature was detected at a temperature close to 55 ºC. It is relevant that the melting 

behaviour was slightly different than observed for melt and solution crystallized samples since 

peak 2 was not detected. This feature suggests that peak 3 could be associated to thickest 

lamellae mainly produced during the heating process as a consequence of a 

melt/recrystallization of the thinner lamellae. This peak should be enhanced when more 

imperfect lamellae susceptible of reorganization were obtained as presumable in the melt 

quenched samples. The nature of peak 1 is more intriguing since at this stage two alternatives 

may be considered: a) the existence of very defective crystals and b) a polymorphic transition 

around 225-230 ºC.  
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Figure 4.1.3 Melting peaks for isothermally melt crystallized samples. Deconvoluted 
profile is only shown for the sample crystallized at 236 ºC (dashed box). The inset shows 
the Hoffman-Weeks plot drawn for the crystallization temperature dependent melting peak 
(peak 2). 
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Figure 4.1.3 shows the heating traces of samples previously isothermally crystallized from the 

melt state at different temperatures. Peaks 2 and 3 appear generally overlapped and 

consequently is difficult to differentiate the two melting processes. However, it can be stated 

that peak 2 increased on intensity and shifted to higher temperatures when crystallization 

temperature did, whereas peak 3 remained at a practically constant temperature. This feature is 

consistent with the indicated melt/reorganization process where thinner lamellae convert into 

thicker ones. Furthermore, it is possible to infer the equilibrium melting temperature of nylon 56 

by considering the temperature evolution of peak 2 with crystallization temperature. In this way, 

the Hoffman-Weeks plot [25] displayed in the inset of Figure 4.1.3 indicates an extrapolated 

equilibrium temperature of 268 ºC, which is close to the value of 266 ºC previously postulated 

[26] from theoretical considerations based on the spherulite grown model forwarded by 

Hoffmann-Weeks [25]. Heating runs showed also the presence of the low temperature peak 1, 

but only when samples were isothermally crystallized at temperatures equal or lower than 235 

ºC. Thus, this value is a limit for a possible crystalline transition or for the development of the 

indicated defective crystals. 

Isothermal experiments allowed the determination of the overall crystallization kinetics, which 

depends on primary nucleation and crystal growth, for a very restrictive temperature range due 

to the experimental limitations caused by the high speed of the crystallization process.  

The time evolution of the relative degree of crystallinity, (t), was determined from hot 

crystallization exotherms (Figure 4.1.4 a) through the ratio area of the exotherm up to time t 

divided by the total exotherm area, i.e.: 

    (t) = 
t

t
dtdtdH

0
)/(  / 



0
)/(

t
dtdtdH    (4.1.1) 

where dH/dt is the heat flow rate and t0 the induction time. The development of crystallinity 

always showed a characteristic sigmoidal dependence on time, as plotted in the inset of Figure 

4.1.4a for six hot crystallization experiments.  

Kinetic crystallization data were analyzed assuming the well known Avrami equation [27,28] 

for primary crystallization:  

1 - (t) = exp[-Z (t-t0)n]    (4.1.2) 

where Z is the temperature-dependent rate constant and n the Avrami exponent whose value 

varies according to the crystallization mechanism. A normalized rate constant, k = Z1/n, is 

usually evaluated for comparison purposes since its dimension (time-1) is independent of the 

value of the Avrami exponent.  

Table 4.1.1 Isothermal crystallization kinetic parameters deduced from DSC experiments for 

nylon 56.summarizes the main kinetic parameters of the primary crystallization process, which 

were deduced from the plots of log{-ln[1- (t)]} against log (t - t0). The values of the Avrami 
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exponent for the hot isothermal crystallizations lie in a narrow range, from 2.15 to 2.80, 2.50 

being the average value. This suggests a predetermined (heterogeneous) nucleation with 

spherical growth that occurred under slight geometric constraints since the theoretical value 

should be equal to 3. Both sporadic (heterogeneous) and homogeneous nucleation can be clearly 

discarded as a higher exponent, close to 4, should be derived and furthermore these nucleation 

mechanisms should mainly be favoured at high undercoolings. 

The values of the reciprocal of the crystallization half-time, 1/1/2,  are also summarized in Table 

1. This parameter is a direct measure of the crystallization process, and could therefore be used 

to check the accuracy of the Avrami analyses. In this way, a similar dependence with the 

crystallization temperature was found for this parameter and the kinetic rate constant, 

demonstrating the suitability of the deduced Avrami values.  

Figure 4.1.4 b shows the crystallization exotherms obtained during cooling runs performed at 

the different rates used in the synchrotron radiation experiments.  A well defined peak is always 

observed within a narrow temperature range, which obviously shifts to lower temperatures by 

increasing the cooling rate. However, it is interesting to note that peaks had a long tail which 

could be associated to a secondary crystallization process and which was more clearly observed 

at high cooling rates.  

 
Table 4.1.1 Isothermal crystallization kinetic parameters deduced from DSC experiments for nylon 56. 
 
 

 

 

 

 

 

 

 

  

Tc (ºC) 
 

n 
 

Z·108 (s-n) 
 

k·103 (s-1) 
 

1/ τ1/2
 . 103 (s-1) 

233 2.34 217.1 3.80 4.17 
235 2.57 17.8 2.36 2.33 
236 2.80 0.396 0.998 1.17 
237 2.64 0.511 0.723 0.83 
238 2.52 0.601 0.547 0.55 
240 2.15 3.79 0.353 0.42 
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Figure 4.1.4 a) Exothermic DSC 
peaks corresponding to the hot 
isothermal crystallizations performed 
between 233 and 240 ºC. Inset shows 
the development of relative 
crystallinity over time for isothermal 
crystallizations performed between 
233 and 240 ºC. b) Dynamic DSC 
curves obtained at the indicated rates 
for the hot crystallization of nylon 
56. 
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 Brill transition of nylon 56 on heating/cooling process 

Fiber diffraction patterns of nylon 56 were mainly characterized by strong equatorial reflections 

at 0.432 and 0.375 nm and an off meridional reflection at 1.272 nm (inset of Figure 4.1.5), 

which were indexed as the (020) and (110) reflexions on the basis of a monoclinic unit cell with 

a = 0.512 nm, b = 0.864 nm, c (chain axis) = 3.133 nm and  = 125.7º (form I) [4]. Structural 

modelling based on the diffraction data and energy calculations pointed towards the indicated 

model based on the establishment of two hydrogen bonding directions [4].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.5 shows the X-ray fiber diffraction patterns of a nylon 56 sample taken under stress 

at 200 ºC and 220 ºC. At 200 ºC the pattern shows only one strong and diffuse equatorial 

reflection at 0.423 nm, which is an indication that the Brill transition took place. It is interesting 

to note that 00l reflections still appeared with an off meridional orientation which is an 

indication that the structure obtained at 200 ºC differed from a pseudohexagonal structure 

usually postulated for conventional polyamides.  These 00l reflections seemed to have a close to 

meridional orientation in the patterns obtained at 220 ºC, although it is difficult to determine the 

cc* angle due to their arched appearance and the overlapping between 00l and 00 l  reflections. 

200 ºC 220 ºC 

 25 ºC 

  25 ºC 

c*  
(220 ºC)      c*  

(200 ºC) 

Figure 4.1.5 X-ray fiber diffraction patterns of nylon 56 at 200 ºC (left) and 
220 ºC (right). Insets show the equatorial reflections observed at 25, 200 
and 220 ºC and the 002 reflections (second layer line) observed at 25 ºC. 
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In this case, the new additional equatorial reflections observed at 0.454 nm and 0.436 nm are 

highly significant since allow to discard again a pseudohexagonal structure. Previous works 

suggested that at high temperature a monoclinic structure (form II) with a = 0.551 nm, b = 0.846 

nm, c (chain axis) = 3.133 nm and  = 112.6º was achieved [4]. Note that the cc* angle was 

35.7º at room temperature whereas it decreased to 22.6º at 220 ºC justifying the close 

meridional orientation detected for the 00l reflections. 
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Figure 4.1.6 Three-dimensional representations of WAXD profiles of nylon 
56 during cooling (12 ºC/min) from the melt to room temperature. All the 
temperature range is showed in a), whereas a different view covering only the 
last frames (up to 200 ºC) is shown in b). 
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Figure 4.1.6 shows three-dimensional representations of WAXD profiles obtained by 

synchrotron radiation during a heating process performed at 12 ºC/min from room temperature 

to fusion (q is the scattering vector given by [4/] sin ()  or 2  / dB where  and dB are the 

scattering angle and the Bragg spacing, respectively). Similar temperature dependent profiles 

were observed at heating rates of 8, 12, 15 and 20 ºC/min. Profiles showed that the spacings of 

the two equatorial reflections at 0.433 and 0.374 nm gradually merged into a single peak at 

0.423 nm that was reached at a temperature close to 200 ºC. This process seems a typical Brill 

transition where a pseudohexagonal packing (*-form) is favoured at a temperature slightly 

lower than the melting point. It is worth mentioning that the Brill transition temperature of 

nylon 56 was practically independent of the heating rate as shown in Figure 4.1.7. After the 

Brill transition, new peaks (e.g. those above indicated at 0.454 nm and 0.436 nm) started to 

appear as shown in Figure 4.1.6 b and a transition towards the indicated form II took place. All 

equatorial reflections became narrower (Figure 4.1.5) and increased on intensity (Figure 

4.1.6mb) during heating above the Brill transition temperature and before to start the melting 

process. Transition to form II occurred in a temperature range that was slightly lower (5 ºC) 

than the endothermic peak 1 observed in the calorimetric analyses. In this way, this small 

melting peak seems to be related to highly defective crystals formed between bundles of 

lamellae, a conclusion that has been reported for different polyamides [29-31].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.8 compares the deconvoluted WAXD profiles representative of the structures 

attained at room temperature, at the Brill transition temperature and at a temperature close to 
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Figure 4.1.7 Plot showing the temperature evolution of the spacings corresponding 
to the two strongest equatorial reflections at different heating rates. 
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fusion. In all cases, two amorphous halos (average values of 0.420 nm and 0.375 nm) were 

detected. However, the position of the maxima changed with temperature (i.e. the maximum of 

the first halo appeared at 0.409 and 0.430 nm in the patterns taken at 25 and  230 ºC, 

respectively). This feature suggests that the amorphous phase has a more compact molecular 

arrangement when temperature decreases, as it will be discussed in the next section. In fact, a 

similar increase in the average interchain distance in the amorphous phase above the Brill 

transition temperature was reported and analyzed in detail for nylon 66 [17].  

It is worth to pointing out that Bragg reflections were very broad while temperature was lower 

or equal than the Brill transition temperature. Assuming that the low temperature structure 

(form I) is defined by a molecular arrangement where hydrogen bonds are established along two 

directions, it seems reasonable to expect clear differences on heating between conventional 

polyamides and nylon 56. Thus, the pseudohexagonal structure [32-34] (’ form) attained with 

nylons characterized by a single hydrogen bond direction could not be observed in the 

diffraction patterns of nylon 56.   Transitions induced by temperature on this polyamide may 

involve only slight changes in the torsional angles vicinal to amide groups or even an increase 

in the mobility of polymethylene segments without disrupting the initial hydrogen-bonding 

scheme. Note that the chain axis projection may correspond to a pseudohexagonal packing, as 

deduced from the single equatorial reflection at the Brill transition temperature, but a chain axis 

shift still remained between neighbouring chains. In this sense, fiber patterns with non-

meridional 00l reflections are essential to support the finding that the Brill structure is different 

from the conventional ’ form. 

Figure 4.1.9 a shows the WAXD profiles acquired during a cooling run (10 ºC/min) from the 

melt state. It is clear that nylon 56 crystallized into the form II characterized as above indicated 

by multiple narrow reflections with an equatorial or close equatorial orientation. Note that the 

profile showed in Figure 4.1.9 is practically identical to that attained during the heating process 

(Figure 4.1.8 c) just at some degrees before fusion. Figure 4.1.9 a shows also that the reflection 

at ca. 0.423 nm does not split when temperature is lowered up to room temperature and 

consequently it could be deduced that the Brill transition is not reversible on cooling. WAXD 

profiles showed also that characteristic reflections of form II moves to lower spacings by 

decreasing the temperature and overlapped the main equatorial reflection at ca. 120 ºC. Thus, 

the intensity of the reflection at 0.423 nm increased during cooling as well as the peak became 

broader.  

 

  



71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0

100

200

300

400

500

10 12 14 16 18 20

I(
a.

u.
)

q(nm-1)

0

100

200

300

400

500

600

10 12 14 16 18 20

I (
a.

u.
)

q (nm-1)

0

100

200

300

400

500

600

10 12 14 16 18 20

I (
a.

u)

q (nm-1)

b) 

c) 

a) 

q (nm-1) 

0.433 0.374 

0.419 

0.423 

0.436 

0.454 

Figure 4.1.8 One-dimensional WAXD profiles for nylon 56 taken at 
room temperature (a), 200 ºC (b) and 230 ºC (c) during a heating scan 
(12 ºC/min). Spacings of main reflections are indicated together with 
the deconvoluted peaks. 
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Figure 4.1.9 . a) Three-dimensional representation of WAXD profiles of 
nylon 56 during cooling (12 ºC/min) from the melt to room temperature. b) 
and c) One-dimensional WAXD profiles for nylon 56 taken at 220 ºC (b) 
and at room temperature (c) during a cooling run (12 ºC/min) from the melt 
state. Spacings of main reflections are indicated together with the 
deconvoluted peaks. 
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It should be pointed out that the characteristic reflections of form I appeared in the first stage of 

crystallization and increased on intensity during the cooling process. Logically these peaks 

slightly moved to lower spacings due the contraction of the unit cell when temperature 

decreased. At room temperature the deconvoluted profile (Figure 4.1.9 c) was characterized by 

reflections associated to form I (0.440 and 0.383 nm) and reflections indicative of the 

pseudohexagonal packing (e.g. 0.419 nm) attained after the Brill transition temperature, which 

appeared predominant according to their relative intensity. It should also be indicated that form 

I could be completely recovered when fibers were annealed under stress at 90 ºC or the samples 

were recrystallized from diluted formic acid/ethanol (1:4 v/v) solutions [4].  

 Non-isothermal crystallization studies by simultaneous SAXS/WAXD synchrotron 

radiation experiments 

The crystallization process was simultaneously monitored by time-resolved WAXD and SAXS 

non-isothermal experiments. In this way, the evolution of the mass fraction of the crystalline 

phase in the sample, Xc
WAXD, was determined from the different WAXD deconvoluted profiles as 

the ratio between the total intensities of the crystalline reflections Ic and the overall intensity IT.  

Values at the end of crystallization ranged between 0.26 and 0.40 and increased with decreasing 

the cooling rate (Figure 4.1.10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primary crystallization was very fast at all the assayed cooling runs and was completed within a 

range lower than 2 minutes after primary nuclei were formed (i.e. after achieving the induction 

time). Secondary crystallization was clearly dependent on the cooling rate and varied from 12 to 

2 min for rates of 8 and 20 ºC/min, respectively. 
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Figure 4.1.10 Time evolution of WAXD crystallinity during non-
isothermal hot crystallizations performed at the indicated cooling rates. 
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SAXS patterns showed a long period peak at a value of the scattering vector, q, close to 0.5-0.8 

nm-1 after subtraction of the empty sample background observed near the beam stop (Figure 

4.1.11 a). This peak, which can be attributed to the lamellar structure of the spherulites, started 

to appear at the same temperature than crystalline reflections in the WAXD patterns, as 

presumable for a crystallization process controlled by nucleation and crystal growth. This 

temperature obviously decreased with increasing the cooling rate.   
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Figure 4.1.11 a) Three-dimensional representation of SAXS profiles of nylon 
56 during cooling (12 ºC/min) from 270 ºC (melt state) to room temperature. b) 
Correlation functions corresponding to the end of secondary crystallization 
obtained during cooling runs performed at the indicated rates. 
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SAXS data were analyzed by the normalized one-dimensional correlation function [35], (r), 

which corresponds to the Fourier transform of the Lorentz-corrected SAXS profile: 

 (r) = 


0

2 )cos()( dqqrqIq  / 


0

2 )( dqqIq    (4.1.3) 

The scattering intensity was extrapolated to both low and high q values using Vonk’s model 

[36] and Porod’s law, respectively.  

Correlation functions (Figure 4.1.11 b) were used to determine the scattering invariant, Q, 

which allows evaluating the peak intensity evolution during crystallization, and morphological 
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Figure 4.1.12 a) Temperature evolution of the scattering invariant, Q, at the indicated 
cooling rates. Inset shows its evolution during primary crystallization. b) Temperature 
evolution of the long period, Lγ, crystal thickness, lc, amorphous thickness, la, scattering 
invariant, Q, and degree of crystallinity, WAXD, during a non-isothermal melt 
crystallization performed at a cooling rate of 8 ºC/min. 
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parameters like the long period, L, crystalline lamellar thickness, lc, and amorphous layer 

thickness, la. 

The intensity of the SAXS peak increased during primary crystallization and then decreased. 

This observation is important because it suggests a change in the amorphous phase since the 

intensity of SAXS peaks depends on the degree of crystallinity but also on the difference 

between the electronic densities of amorphous and crystalline phases. It is clear that on cooling 

the amorphous interlamellar component should adopt a more compact molecular arrangement, 

probably as a result of the improved hydrogen-bonding interactions. Thus, the SAXS peak 

reached a maximum value before to start secondary crystallization, as it will then be explained, 

and practically disappeared when crystallization was complete.  

Figure 4.1.12 a shows the time evolution of the invariant, Q, for the different 

crystallization rates. The time corresponding to the maximum value for the invariant 

clearly diminished by increasing the cooling rate as well as the range where the 

secondary crystallization process took place. 

The evolution of morphological parameters during crystallization (Figure 4.1.12 b) shows a 

slight change in the long period (e.g. from 11.7 to 8.2 nm in the cooling performed at 8 ºC/min), 

which is mainly due to the decrease in crystalline lamellar thickness (e.g. from 8.0 to 5.8 nm). 

The latter was also significant during the secondary crystallization step and indicates that new 

secondary lamellae inserted into the loosely stacked bundles of primary lamellae. New lamellae 

suffer spatial restrictions, leading to thinner defective crystals. Changes on the amorphous layer 

thickness mainly occurred during primary crystallization and were consistent with a reordering 

effect than conduced to a slight decrease (i.e. from 3.7 to 2.4 nm). It is worth to pointing out that 

this thickness remained practically constant during the entire long time interval where 

secondary crystallization took place. Figure 4.1.12 b compares also the evolution of the 

invariant, Q, and the WAXD crystallinity allowing correlating the maximum value of the 

invariant with the end of the primary crystallization process.  

Figure 4.1.11b shows the correlation functions calculated for the SAXS profiles obtained at the 

minimum (8 ºC/min) and the maximum (20 ºC/min) assayed cooling rates and at the 

temperature (time) corresponding to the end of crystallization (i.e. the last frame which peak 

still allowed the calculation of the correlation function). Differences in lamellar spacings are a 

consequence of the balance between two counter factors: enhanced insertion mechanism 

producing thinner secondary lamellae, and increased crystallization temperature resulting in 

thicker primary lamellae with decreasing the cooling rate.  

Figure 4.1.13 a compares the evolution of morphological parameters during crystallization for 

the different studied cooling rates, whereas cooling rate dependence of initial and final values of 
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these parameters are shown in Figure 4.1.13 b.  The increase observed for the lamellar spacing 

with the cooling rate indicates the prevalence of the lamellar insertion effect.  

Figure 4.1.11 also shows that the Lvalue associated with the most probable distance between 

the centers of gravity of two adjacent crystals (abscise of the first maximum of the correlation 

function) is greater than the long period determined from twice the abscise value of the first 

minimum of the correlation function, which is interpreted as the most probable distance 

between the centers of gravity of a crystal and its adjacent amorphous layer. This indicates a 

broader distribution of the layer widths of the major component [37], which corresponds to the 

crystal phase. 
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Figure 4.1.13 a) Evolution of L, lc and la values during non-isothermal 
crystallization at different cooling rates. b)  L, lc and la values obtained at the end 
(subscript f) and the beginning (subscript 0) of non-isothermal hot crystallization 
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SAXS crystallinities, SAXS, in the 66% - 70% range were calculated at the end of secondary 

crystallization from the values of the morphological parameters (lc/(lc + la)). It is well known 

that the correlation function method cannot distinguish between lc and la thicknesses, which 

certainly constitutes an uncertainty of this analysis. However, it is also clear that the linear 

degree of crystallinity (SAXS) must be always greater than the crystallinity determined from 

WAXD experiments (26%-40%) since amorphous-rich interstack regions must exist [38,39]. 

Note, for example, that the crystallization performed at 8 ºC/min had aSAXS
 / Xc

WAXD ratio lower 

than unity with the other assignment, which is not physically meaningful. High discrepancies 

between SAXS and WAXD crystallinities are usual in the literature [37] and have been 

explained assuming the existence of amorphous phase domains. Note also that the given 

assignment lead to a crystalline lamellar thickness, lc, close to 6 nm which is higher than the 

chain axis repeat 3.133 nm and close to predicted values for similar polyamides [40]. Moreover, 

a lamellar thickness of only 2 nm is difficult to combine with the hkl reflections detected in the 

X-ray diffraction patterns. 

 Isothermal and non-isothermal crystallization studies by optical microscopy 

Isothermal crystallization of nylon 56 from the melt rendered spherulites of appreciable size 

over the narrow temperature range of 238-220 ºC (Figure 4.1.14). This crystallization 

proceeded according to a heterogeneous nucleation as demonstrate by DSC analysis. The 

nucleation density increased exponentially with decreasing temperature in such a way that 

morphologies were difficult to examine at temperatures lower than 220 ºC. Specifically, 

densities of 15, 40, 90, 160 and 210 nuclei/mm2 were measured at crystallization temperatures 

of 239, 237, 234, 230 and 227 ºC, respectively. 

Spherulites exhibited variable optical properties and a fibrilar texture over the studied 

temperature range (Figure 4.1.14 a). At temperatures higher than 237 ºC spherulites showed a 

high positive birefringence, although aggregates with a non defined optical sign were also 

observed when temperature was higher than 237 ºC. Negative spherulites with a low 

birefringence were developed in the narrow interval between 233 ºC and 237 ºC, whereas high 

positively birefringent spherulites were formed at temperatures lower than 233 ºC. Spherulites 

isothermally growth in three steps at the corresponding representative temperatures (Figure 

4.1.14 b) allowed to compare better the indicated optical properties and showed clearly that the 

birefringence sign changed in the sequence of  positive-negative-positive when crystallization 

temperature was decreased. Furthermore, it can be observed (inset of Figure 4.1.14 b) that the 

low birefringence zone can also be detected as a black ring justifying previous observations 

were only positive spherulites were reported together with a zero birefringent zone at 

temperatures close to 233 ºC [26]. Non-isothermal experiments (Figure 4.1.14 c) showed also 
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the development of the three different birefringent zones with changes that took place at well 

defined temperatures (237 and 233 ºC). 

It is interesting to note that the indicated birefringence changes are different to those observed in 

conventional polyamides like nylon 66 where birefringence changed from negative to positive 

by decreasing the crystallization temperature. In this case, the change in the optical properties 

was explained considering the structure based on the stacking of hydrogen-bonded sheets and 

different growth geometries [41,42]. Thus, positive and negative spherulites were interpreted as 

a consequence of the establishment of hydrogen bonds along a radial or a tangential spherulitic 

direction, respectively. The birefringence sign was directly associated with how lamellae with a 

single structure grow in the spherulite. However, the reason for such a drastic change in the 

growth mechanism at a well defined temperature remains unclear. The peculiar structure found 

for the high temperature form of the studied odd-even nylon where two hydrogen-bonding 

directions seem to exist may be one of the reasons for the unusual formation of positive 

spherulites at higher crystallization temperature. In any way, the synchrotron data acquired 

during cooling runs allowed discarding a direct relation between the change on the birefringence 

sign and possible polymorphic transitions. Furthermore, no changes on both texture and 

birefringence could be detected when the different spherulites were heated until fusion. Thus, 

the morphologies developed during crystallization of nylon 56 were not reversible. 

Spherulitic growth rates were determined from isothermal experiments by following the change 

of the spherulite radius with time up to impingement (Figure 4.1.15 a) within the studied 

temperature intervals. The measured radial growth rates, G, varied from a minimum value of 

0.08 m/s at 239 ºC to a maximum value close to 1.3 m/s at 225 ºC. Non-isothermal 

procedures were also applied to study the temperature dependence of the spherulitic growth rate 

during hot crystallization. Thus, the spherulitic growth rate (G) can be estimated [43-45] by 

measuring the change of the spherulite radius (R) with temperature (T) when experiments are 

performed at a constant cooling rate (dT / dt): 

G = dR / dt = (dR / dT) (dT / dt)     (4.1.4) 
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Figure 4.1.14 a) Optical 
micrographs of nylon 56 
spherulites isothermally 
crystallized at 237 ºC (left), 235 ºC 
(middle) and 230 ºC (right). b) 
Optical micrograph of a nylon 56 
spherulite that was isothermally 
crystallized at three different 
temperatures: Firstly at 237 ºC, 
secondly at 235 ºC and finally at 
225 ºC. Inset shows a black and 
white micrograph where the low 
birefringence zone corresponding 
to the polymer crystallized at the 
intermediate temperature appeared 
as a black ring. c) Optical 
micrograph of a nylon 56 spherulite 
nonisother-mally crystallized at a 
cooling rate of 1 ºC/min. 
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Experimental problems lie in the choice of the cooling rate required to maximize the 

crystallization temperature range where radii can be well measured. For this reason, the use of 

various rates is highly effective in expanding this range.   

The plot of the radius versus temperature (Figure 4.1.15 b) can be fitted to polynomial 

equations with a good regression coefficient (r) that allows the calculation of the value of its 

first derivative (dR / dT) for each cooling rate as a function of the crystallization temperature. 

Third-order equations were always chosen since the regression coefficients (≥ 0.998) were 

slightly better than those calculated for lower-order equations and remained practically constant 

when higher orders were assayed.  
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Figure 4.1.15 a) Plots of the radius of nylon 56 spherulites versus 
crystallization time for isothermal hot crystallizations performed at 
temperatures ranging between 225 and 237 ºC. b) Variation in spherulite 
radius with temperature during cooling at the indicated rates. 
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Figure 4.1.16 b plots the deduced G values from non-isothermal data and those measured from 

isothermal experiments. It should be pointed out that a good agreement was found and that non-

isothermal experiments had several advantages: a continuous evolution could be determined and 

measures were less time consuming.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental data defined the right side of the typical bell shaped curve that describes the 

temperature dependence of the growth rate, i.e. the zone controlled by secondary nucleation. 

Both isothermal and non-isothermal measures suggests the existence of a shoulder at high 

temperatures (> 233 ºC) which may be a consequence of a different secondary nucleation 

constant. Thus, at least experiments pointed out to the existence of two crystallization regimes 

which could be associated to different spherulites, e.g. positive at temperatures lower than 233 

ºC and negative at higher temperatures. 

4.1.4 Conclusions 
Nylon 56 crystallized from solution according to a peculiar monoclinic structure (form I) where 

hydrogen bonds were established along two directions and where neighbouring chains were 

shifted along their chain axis direction. On heating, this structure showed a Brill transition 

resulting in a pseudohexagonal chain axis projected unit cell and a structure where the chain 
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spherulites 

Negative 

spherulites 

Figure 4.1.16 Spherulitic growth rates determined by the equations 
deduced for cooling runs of 8 (▲), 1 (▲) and 0.5 ºC/min (∆). For the 
sake of completeness, experimental data deduced from isothermal 
experiments are also plotted (◊).  
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axis shift was kept in order to optimize the hydrogen bonding interactions. At some degrees 

before fusion, the diffraction patterns showed new narrow reflections which could be indexed 

according to a new monoclinic unit cell (form II).  

Brill transition was not reversible since nylon 56 mainly crystallized from the melt into form II, 

which on cooling gave rise to a pseudohexagonal packing. A minor crystallization into form I 

could also be detected and accounted into a significant ratio of this form when room 

temperature was achieved. 

Nylon 56 crystallized on cooling into fibrillar spherulites with optical properties that were 

depended on the crystallization temperature and differed  from those found in nylons having 

conventional sheet structures. During crystallization thinner lamellae inserted into the loosely 

stacked bundles of primary lamellae and the interlamellar amorphous regions became more 

compact. 
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4.2                                                             

Study on the Brill transition and melt 
crystallization of Nylon 65: A polymer able to 
adopt a structure with two hydrogen-bonding 
directions. 

Real time temperature dependence of X ray diffraction patterns and infrared spectra for nylon 

65, a representative polymer of the even-odd nylon series, was studied. A particular structure 

based on the establishment of two hydrogen-bonding directions had previously been postulated 

for this polymer. Therefore, the determination of its temperature-induced transitions is a 

relevant topic. Results indicate that nylon 65 undergoes a reversible Brill transition at high 

temperature, leading to a pseudohexagonal chain axis projected unit cell. Furthermore, this 

polyamide shows a polymorphic transition around 100 ºC which is not completely reversible on 

cooling.  

Crystallization of nylon 65 was also analyzed by simultaneous WAXD and SAXS synchrotron 

radiation experiments to determine the evolution of the degree of crystallinity and 

morphological parameters on cooling. Optical microscopy studies were also performed under 

isothermal and non-isothermal conditions to distinguish the different spherulitic morphologies. 

Results reveal that the optical properties of nylon 65 spherulites are different from those of 

conventional even-even nylon spherulites. Multiple melting peaks associated with lamellae of 

different thicknesses were observed in the calorimetric heating scan of melt-crystallized 

samples. 
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4.2.1 Introduction 

It is well known that the structures of aliphatic polyamides are usually based on the stacking of 

sheets composed of hydrogen-bonded molecular chains with a planar zig-zag conformation ( 

and forms).1 Nylons derived from -aminoacids with an even number of carbon atoms (e.g. 

nylon 62) or even diamines and even dicarboxylic acids (e.g. nylon 663) are the most 

representative examples. X-ray fiber diffraction patterns of polymers with the above structures 

are characterized by two strong equatorial reflections that appear at spacings close to 0.44 and 

0.37 nm. These reflections are associated with interchain distances within and between layers, 

respectively.  

Energy considerations indicate that sheet structures are favored when NH and CO groups of 

neighboring chains face each other and form all possible hydrogen bonds with an appropriate 

geometry (e.g. angles close to 180º for N-H…O and H…OC interactions). However, depending 

on the number of methylene groups of the constitutive units, this cannot be achieved with an all 

trans molecular conformation. Thus, new structures should be favored as the  form firstly 

postulated for nylon 774. Furthermore, the  form seems to be stabilized when the number of 

methylene groups is high, even if the hydrogen-bond geometry can be well established with an 

all trans conformation.1,5 

The  form is characterized by a pseudohexagonal molecular packing that gives rise to a 

characteristic diffraction pattern with a strong equatorial reflection at 0.415 nm. In this case, the 

torsional angles of the bonds adjacent to the amide groups tend to ± 120º, causing the amide 

plane to tilt by approximately 60º. The chain is shortened and the establishment of good 

hydrogen-bonding interactions along a single direction becomes possible.  

Some polyamides, like nylon 6, show polymorphism between the  and forms. The first is 

commonly caused by slow cooling from the melt while the second occurs in melt-spun fibers or 

by rapid crystallization from the melt.6,7 Stretching or annealing may favor the  to  

conversion7,8 whereas the opposite is observed by treatment with iodine/potassium iodide 

aqueous solutions.9 

Nylon 65 is also a polyamide that cannot form all favorable hydrogen-bonding interactions 

when molecular chains have an all trans conformation (Figure 4.2.1 a). Recent diffraction data 

surprisingly revealed that solution-crystallized single crystals had characteristic reflections at 

0.432 and 0.375 nm instead of those expected at ~0.415 nm (-form). In fact, a new structural 

model characterized by the establishment of hydrogen bonds along two different directions was 

inferred10 (Figure 4.2.1 b). The molecular conformation is close to the all trans one since only a 

slight deviation towards 150º (or -150º) for the two CH2CH2-CONH torsional angles of the 

dicarboxylic moiety was postulated. This conformation causes amide groups of the odd glutaric 
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unit to rotate in opposite senses from the plane defined by the methylene carbon atoms. 

Hydrogen bonds along two directions can be well established when neighboring chains are 

conveniently shifted, giving rise to a monoclinic unit cell.  

Aliphatic polyamides usually show a not completely well understood phase transition that 

occurs on heating/cooling. It is named Brill transition and was discovered in nylon 66, with the 

detection of a reversible change from a triclinic to a pseudohexagonal structure.11 Basically, on 

heating the two characteristic packing reflections of the triclinic sheet structure (0.44 and 0.37 

nm) gradually merge into a single reflection (0.42 nm) indicative of a pseudohexagonal packing.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 

a) 

// 
// 

Figure 4.2.1 a) Scheme of the unfavorable hydrogen-bond geometry between nylon 
65 molecular chains with an all trans conformation. b) Scheme of the establishment 
of hydrogen bonds along two directions when consecutive amide planes of a 
molecular chain slightly rotate in opposite directions from the plane defined by the 
methylene carbon atoms. External chains (ball and stick representation) should be 
shifted along the chain axis direction (see arrows) with respect to the central chain 
(stick representation), thus giving rise to a monoclinic unit cell. Color code: 
nitrogen, blue; oxygen, red; carbon, gray; hydrogen, brown. 
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Although a large number of studies have been reported for several nylons,12-26 the phenomenon 

is not yet fully understood and some points still deserve special attention: 

a) The temperature (TB) at which the Brill transition is considered complete is variable 

since it depends on many factors (e.g. crystallization conditions, thermal history and 

heating rate). 

b) The Brill transition is reversible (i.e. on cooling the single peak splits again into the two 

indicated packing spacings). A hysteresis effect is usually detected since TB is higher on 

heating than on cooling.  

c) Gradual crystallographic changes occur over a wide temperature range before and after 

the transition for heating and cooling processes, respectively. These changes reflect a 

variation in the dimensions of the unit cell associated with the layered structure. 

The occurrence of a phase transition at TB cannot be corroborated by DSC experiments or 

optical microscopy observations since no additional endothermic/exothermic peaks or changes 

in birefringence were respectively detected. 

The aim of the present work is to gain insight into the structural transitions induced by 

temperature observed in even-odd polyamides having the new structure with two hydrogen-

bonding directions. Nylon 65 was specifically chosen as a representative polymer. It should also 

be pointed out that the Brill transition has not yet been studied for any even-odd polyamide. 

 

4.2.2 Experimental section 

 Materials 

Nylon 65 was synthesized, as previously described,10 by interfacial polycondensation of 1,5-

diaminopentane and adipoyl dichloride using toluene as organic solvent and sodium hydroxide 

as proton acceptor. An intrinsic viscosity of 0.85 dL/g was determined in dichloroacetic acid at 

25 ºC. 

 Measurements 

Calorimetric data were obtained by differential scanning calorimetry using a TA Instruments 

Q100 series with Tzero technology and equipped with a refrigerated cooling system (RCS) 

operating at temperatures from -90 ºC to 550 ºC. Experiments were conducted under a flow of 

dry nitrogen with a sample weight of approximately 5 mg, while calibration was performed with 

indium. The Tzero calibration involved two experiments: the first was done without samples and 

the second was performed with sapphire disks. 

The spherulite growth rate was determined by optical microscopy using a Zeiss Axioskop 40 

Pol light polarizing microscope equipped with a Linkam temperature control system configured 

by a THMS 600 heating and freezing stage connected to a LNP 94 liquid nitrogen cooling 
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system. Spherulites were grown from homogeneous melt-crystallized thin films obtained by 

melting 1 mg of the polymer mixture on microscope slides. Next, small sections of these films 

were pressed or smeared between two cover slides and inserted into the hot stage. The 

thicknesses of the squeezed samples were close to 10 m in all cases. Samples were kept at 265 

ºC (more than 20 ºC above the polymer melting point of 243 ºC) for 5 minutes to wipe out 

sample history effects, and then quickly cooled to the selected crystallization temperature. 

Alternatively, samples were non-isothermally crystallized at a cooling rate of 2 ºC/min. Texture 

and birefringence was monitored in both isothermal and non-isothermal crystallizations by 

taking micrographs with a Zeiss AxiosCam MRC5 digital camera at appropriate time intervals. 

A first-order red tint plate was employed to determine the sign of spherulite birefringence under 

crossed polarizers.  

Fiber X-ray diffraction data were obtained by Ni-filtered CuK radiation of wavelength 0.1542 

nm and using a modified Statton camera (W. H. Warhus, Wilmington, DE). Patterns were 

recorded at different temperatures using a temperature-controlled chamber provided by the 

manufacturer. 

Electron diffraction patterns from single crystals were obtained using a Phillips EM 301 

electron microscope operating at 100 kV. Isothermal crystallizations were conducted in diluted 

glycerine solutions at 140 ºC. Patterns were recorded on Maco EM films by the selected-area 

method.   

Simultaneous time-resolved SAXS/WAXD experiments were carried out at the CRG beamline 

(BM16) of the European Synchrotron Radiation Facility of Grenoble. The beam was 

monochromatized to a wavelength of 0.098 nm. The capillary with the sample was held in a 

Linkam hot stage with temperature control within 0.1 ºC. WAXD/SAXS profiles were 

simultaneously acquired during heating/cooling experiments in time frames of 12 s. The heating 

and cooling rates varied between 20-10 ºC/min and 20-4 ºC/min, respectively. Two linear 

position-sensitive detectors were used:27  the WAXD detector was calibrated with diffractions of 

a standard of an alumina (Al2O3) sample, whereas SAXS detector was calibrated with different 

orders of diffraction from silver behenate. The diffraction profiles were normalized to the beam 

intensity and corrected considering the empty sample background. Deconvolution of WAXD 

peaks was performed with the PeakFit v4 program by Jandel Scientific Software using a 

mathematical function known as “Gaussian area”.  

Infrared absorption spectra were recorded with a Fourier Transform FTIR 4100 Jasco 

spectrometer in a 4000-600 cm-1 range. A Specac Golden Gate Heated Diamond ATR Top Plate 

which can be used at up to 200 ºC and a Series 4000 High Stability Temperature Controler were 

also employed. 
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4.2.3 Results and discussion 

 Thermal properties of Nylon 65 

Figure 4.2.2 displays a sequence of heating/cooling runs performed to study the thermal 

behavior of nylon 65. A heating scan of a solution-crystallized sample showed a broad 

endothermic peak around 110 ºC (38 J/g) and a double melting peak (233 ºC and 243 ºC) 

associated with a typical recrystallization process occurring on heating. The cooling run after 

keeping this sample in the melt state for three minutes revealed a narrow exothermic 

crystallization peak around 203 ºC. A subsequent heating run showed a very small endotherm 

around 81 ºC and a fusion characterized by a main peak and a shoulder at 229 ºC and 233 ºC, 

respectively. Finally, a melt quenched sample allowed the determination of a glass transition 

temperature at 49 ºC and a single and broad melting peak at 233 ºC. It should be pointed out that 

the melting peaks of samples crystallized from the melt appeared at lower temperatures than 

from solution. The large gap suggests that they have a different origin.  

Figure 4.2.3 a illustrates the melting behavior of samples isothermally crystallized at different 

temperatures. The thermograms are generally characterized by the presence of three melting 

peaks that gradually shifted to higher temperatures with increasing the crystallization 

temperature. The peak at the lowest temperature always has a very low intensity and seems to 

be associated with highly defective crystals, as previously described for different polymeric 

systems. The two peaks that appeared at higher temperatures seem to be associated with two 

populations of lamellar crystals of different thicknesses. It is remarkable that the peak at the 

highest temperature should not correspond to crystals formed during the heating run since it 

appeared at a variable temperature and its relative intensity increased with the crystallization 

temperature. Note that a melt-recrystallization process where thin lamellae convert into thicker 

lamellae should be more important when samples were less perfect, and consequently 

crystallized at lower temperatures. Thus, in this case the peak intensity associated with less 

perfect crystals should decrease while that associated with reorganized crystals should increase 

with decreasing the crystallization temperatures. Furthermore, the thickness of the lamellae 

formed during the heating scan should be independent of the temperature at which the initial 

lamellae crystallized. As a result, a constant peak temperature should be expected. The possible 

existence of different crystalline structures with different thermodynamic stability was 

discarded as the origin of the multiple melting points since, as discussed in the next section, 

nylon 65 has a transition to a single structure before melting (Figure 4.2.4). Some polyamides 

do not show a complete Brill transition before melting (e.g. nylon 628). In this case the peaks 

observed at low and high melting temperatures are associated with the less thermodynamically 

stable -form and the more stable -form, respectively.4 
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Samples coming directly from synthesis are constituted by defective crystals that easily undergo 

a melt-reorganization process on heating since crystallization took place at room temperature. 

Thus, the high melting peak temperature (243.5 ºC) observed in the first heating run (Figure 

4.2.2) corresponds to the fusion of reorganized crystals. In fact, the origin of the high 

temperature melting peak was postulated in previous studies10 as a consequence of lamellar 

thickening since it was enhanced when the heating rate was lowered. It is interesting to note that 

the melting temperature of 243.5 ºC was clearly higher than the peak temperatures observed in 

the melt-crystallized samples whose reorganization process was not significant.  

A theoretical equilibrium melting temperature of 264 ºC was graphically determined (Figure 

4.2.3 b) according to the method of Hoffman and Weeks29 (i.e. extrapolation of a plot of Tm 

versus Tc to Tm = Tc) and considering the data obtained from the endothermic peak observed at 

the highest temperature. 
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Tm = 81 ºC 
Hm = 4.8 J/g 

         Tm = 110.4 ºC 
Hm = 38 J/g 

Tc = 82.9 ºC 
Hc = 6.4 J/g 

Figure 4.2.2 Sequence of DSC curves corresponding to a heating run of a 
solution crystallized sample (a), cooling run from the melt state (b), heating 
run of a melt-crystallized sample (c) and heating run of a quenched sample (d). 
Heating runs were performed at 20 ºC/min whereas the cooling run was 
performed at 10 ºC/min. 
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Figure 4.2.3 DSC curves corresponding to the heating run of samples 
isothermally crystallized from the melt at the indicated temperatures. b) 
Hoffman-Weeks plot drawn with the high temperature peak detected in the 
heating run of  melt-crystallized samples. 
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 Room temperature diffraction data of  nylon 65 

 
X-ray diffraction patterns of nylon 65 fibers annealed at 80 ºC were mainly characterized by 

two strong equatorial reflections at 0.432 and 0.375 nm and different 0k0 reflections that 

defined a bb* angle of 24º (Figure 4.2.5 a). Electron diffraction patterns of single crystals 

obtained from diluted solutions (glycerine and even other polyfunctional alcohols) had 2mm 

symmetry and a large number of h0l reflections (Figure 4.2.5 b), allowing the inference of the 

same structure found in the annealed fibers.  Thus, the stronger reflections of the electron 

diffraction patterns correspond to the 0.432 and 0.375 nm spacings. It is worth pointing out that 

the presence of some weak hkl reflections confirmed  as the monoclinicity angle. All 

diffraction data were in agreement with the previously postulated monoclinic unit cell (a = 

0.460 nm, b (chain axis) = 3.095 nm, c = 0.862 nm and  = 114º), which was interpreted as a 

new structure with two hydrogen-bonding directions.10  

A different pattern was observed only when samples were cooled from the melt state or even 

oriented without subsequent annealing. In these cases, a broad ring or a broad equatorial 

reflection was observed around 0.425 nm.  

  

Equilibrium  
Crystal ● 

● 
● 

● 

Tm
0 Tm TB I → II 

G Melt State 

Form I 
Form II 
Form * 

Figure 4.2.4 Gibbs free energy diagram for nylon 65 where form II 
transforms into a pseudohexagonal packing (*) at the Brill transition 
temperature (TB). In addition, a transition between forms I and II exists at 
low temperature. The equilibrium crystal melts at the equilibrium melting 
temperature (Tm

0) whereas the * form melts at Tm.  
 



94 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

190 ºC 

100 ºC 

25 ºC 

25 ºC 

b* a) 

Figure 4.2.5 a) X-ray fiber diffraction pattern of nylon 65 at 190 ºC. Insets 
show the equatorial reflections observed at 100 and 25 ºC, and a quadrant 
of the fiber diffraction pattern obtained at 25 ºC. b* axes for fiber patterns 
at 190 (dotted and dashed line) and 25 ºC (dotted line) are also indicated. 
The arrow points to a non-equatorial reflection (0.379 nm) that is 
intensified in the high temperature pattern. b) Characteristic electron 
diffraction pattern of nylon 65 single crystals obtained in glycerine at 140 
ºC. 
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 Brill transition studies on nylon 65 

Figure 4.2.5 a shows the X-ray fiber diffraction pattern of a nylon 65 sample taken under stress 

at 190 ºC. It is clear that only one strong equatorial reflection (ca. 0.425 nm) was detected and 

that 0k0 reflections had an off-meridional orientation. Thus, the high temperature structure does 

not correspond to a typical hexagonal unit cell, although  the existence of pseudohexagonal 

packing was suspected by considering only the h0l reflections. In fact, a monoclinic unit cell 

with a = 0.523 nm, b (chain axis) = 3.055 nm, c = 0.85 nm,  =  = 90º and  = 110º was 

previously reported.10 The inset of Figure 4.2.5 a contains the initial fiber pattern taken at room 

temperature, that is, before the start of the heating process. In this case, two equatorial 

reflections can be clearly distinguished as well as the 0k0 reflections defining a bb* angle 

slightly higher than that measured in the pattern taken at 190 ºC (24º versus 20º). At 

intermediate temperatures (e.g. 100 ºC) equatorial spots appeared at intermediate positions, as 

shown in the insets of Figure 4.2.5 a as well. It is also remarkable that the high temperature 

pattern suggests a highly crystalline sample since some new non-equatorial reflections appeared 

(see arrow in Figure 4.2.1 a). 

Figure 4.2.6 a shows a three-dimensional representation of WAXD profiles obtained by 

synchrotron radiation during a heating process performed at 10 ºC/min from room temperature 

to fusion. The same temperature dependent profiles were observed at heating rates of 13, 15 and 

20 ºC/min. Representative profiles taken at selected temperatures are included in Figure 4.2.6 b 

for comparison of the spacings of the main equatorial reflections. Diffraction profiles and fiber 

patterns obtained during the heating runs allow the inference of three highly significant features: 

a) The spacings of the two equatorial reflections at 0.432 and 0.375 nm remained 

practically constant up to a temperature of approximately 70 ºC. Then, the intensity of 

these reflections diminished whereas new ones near 0.426 and 0.400 nm appeared with 

increasing intensity. A polymorphic transition seemed to occur which practically ended 

when a temperature of 120 ºC was reached. No significant changes were observed for 

the 0k0 reflections (as deduced from the fiber patterns), and consequently the transition 

seemed to involve only a modification of the dimensions of the chain axis projected unit 

cell. Thus, this rectangular cell is defined at room temperature by parameters of 0.412 

and 0.862 nm which changed to 0.453 and 0.844 nm when the temperature reached 

120º. This change implies a less compact structure since the packing surface increases 

from 0.355 nm2 to 0.383 nm2. The two structures found at low and high temperature 

will hereafter be called forms I and II, respectively. 

b) After 120 ºC the two reflections at 0.426 and 0.400 nm gradually merged into a single 

peak at 0.425 nm that was obtained at a temperature of 190 ºC. This process seems a 

typical Brill transition where a pseudohexagonal packing (*-form) is favored at a 
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temperature slightly lower than the melting point (Figure 4.2.4). It is worthing to point 

out that the Brill transition of nylon 65 was always observed at the same temperature 

(TB) despite variations in the heating rate. 

c) New peaks (e.g. 0.379 nm), which suggest an increase of the crystalline order, were 

detected when the temperature was higher than 190 ºC.  
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Figure 4.2.6 a) Three-dimensional representation of WAXD profiles of 
nylon 65 during heating (10 ºC/min) from room temperature to fusion. b) 
One-dimensional WAXD profiles of nylon 65 samples taken at selected 
temperatures during a heating scan (10 ºC/min). Spacings of main 
reflections are indicated. 
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Figure 4.2.7 a) Three-dimensional representation of WAXD profiles of nylon 65 
during cooling (10 ºC/min) from the melt to room temperature. Inset shows a 
different view of the temperature evolution of characteristic reflections. b) One-
dimensional WAXD profile for nylon 65 taken at room temperature after a cooling 
run (10 ºC/min) from the melt state. Spacings of main reflections are indicated 
together with the deconvoluted peaks. 
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The form I to form II transition takes place in the temperature range where a broad endothermic 

peak (110 ºC) was observed in the DSC heating run of the sample coming directly from 

synthesis (Figure 4.2.2), whereas no calorimetric peak was detected around the Brill transition 

temperature, which is common in polyamides. Thus, for example DSC heating traces of nylon 

66 do not show any endothermic peak at TB with the exception of samples crystallized from 

solution.14,20,30   

Assuming that form I corresponds to a structure with two hydrogen-bonding directions, it seems 

reasonable that thermal treatments result in structures different from the conventional  form, 

which is characterized by a single hydrogen-bonding direction. Thus, transitions may involve 

only slight changes in the torsional angles vicinal to amide groups or even an increase in the 

mobility of polymethylene segments, which could lead to a pseudohexagonal packing without 

disrupting the initial hydrogen- bonding scheme. In this sense, fiber patterns with non-

meridional 0k0 reflections are essential to support the finding that the Brill structure is different 

from the conventional  form. 

Figure 4.2.7 a shows the WAXD profiles acquired during a cooling run (10 ºC/min) from the 

melt state. It is clear that a narrow intense peak appeared around 0.420 nm during crystallization 

and that it progressively broadened and split into different peaks when the temperature 

decreased. Figure 4.2.7 b shows the deconvolution of the diffraction profile obtained at room 

temperature where two amorphous halos and four crystalline peaks appearing at 0.430 and 

0.379 nm (form I) and 0.422 and 0.403 nm (form II) could be observed. Thus, a Brill transition 

seemed to occur at a high temperature during the cooling process and was followed by a phase 

transition from form II to form I. Conversion between these two structures is only partial since 

the intensities of reflections associated with form I are similar to those related to form II (e.g. a 

form I to form II ratio of 0.45:0.55 was determined from the deconvoluted profile). The ratio 

between both forms was kept practically constant even if the cooling rate was decreased. 

Therefore, a value of 0.47:0.53 was determined for a rate of 4 ºC/min. It is also remarkable that 

the profile obtained at the end of crystallization (~ 165 ºC) is identical to that recorded at the 

end of the heating process, which was associated with a highly ordered structure. 

The variation in intensity of the strongest peak (0.422-0.420 nm) could be useful in monitoring 

the different processes that occur on cooling, as is shown in Figure 4.2.8. Thus, this peak 

appeared and increased in intensity within the temperature range of 210-170 ºC, where 

crystallization took place. Two zones could be distinguished, i.e. 210-195 ºC and 195-170 ºC, 

with a quick and a slow increase in intensity, respectively. The maximum change was observed 

at approximately 203 ºC, in full agreement with DSC calorimetric data. Note also that the 

exothermic crystallization peak (Figure 4.2.2) is highly asymmetric and that the line base was 

only recovered when the temperature decreased to approximately 170 ºC. Thus, DSC and 
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WAXD data show a slow secondary crystallization process extending over the 195-170 ºC 

interval.  

The peak intensity remained practically constant in the temperature range between 170 and 130 

ºC. Then, it slightly decreased again with decreasing temperature due to the split of the peak 

caused by the Brill transition. Thus, this transition occurred at a lower temperature on cooling 

than on heating (190 ºC), indicating a clear hysteresis effect, as usually found in polyamides.20 

The transition was undetectable in the corresponding DSC cooling trace, in agreement with the 

lack of signal in the previous heating scan. At 100 ºC the decrease in the peak intensity was 

more pronounced as a consequence, in this case, of the new splitting caused by the form II to 

form I transition. This could not be detected by DSC because it was a partial conversion 

occurring in a broad temperature interval. However, it must be pointed out that, in a subsequent 

heating run (Figure 4.2.2) some endothermic signal was envisaged just after the glass transition. 

In any case, interpretation of endothermic peaks in this temperature region seems conflictive 

due to the overlapping with the broad endotherm corresponding to the evaporation of adsorbed 

water, which is clearly detected in the initial scanning run despite the sample was previously 

dried under vacuum. 
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Figure 4.2.8 Temperature evolution of the peak intensity at 0.422-0.420 nm 
during a cooling run (10 ºC/min) from the melt state.  
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 Crystallization of Nylon 65 

The crystallization process was simultaneously monitored by time-resolved WAXD and SAXS 

non-isothermal experiments. In this way, the evolution of the mass fraction of the crystalline 

phase in the sample, Xc
WAXD, was determined from the different WAXD deconvoluted profiles as 

the ratio between the total intensities of the crystalline reflections Ic and the overall intensity IT.  

Values at the end of crystallization ranged between 0.21 and 0.27 and increased with decreasing 

the cooling rate. SAXS patterns showed a long period peak at a value of the scattering vector, q 

= [4/] sin(), close to 0.4 nm-1 after subtraction of the empty sample background observed 

near the beam stop (Figure 4.2.9). This peak, which can be attributed to the lamellar structure 

of the spherulites, started to appear at the same temperature than crystalline reflections in the 

WAXD patterns (Figure 4.2.10), as presumable for a crystallization process controlled by 

nucleation and crystal growth. This temperature obviously decreased with increasing the 

cooling rate. The intensity of the SAXS peak increased during primary crystallization, then 

remained practically constant over a short temperature range and finally decreased. Thus, the 

SAXS peak practically disappeared before secondary crystallization was complete (Figure 

4.2.10). This observation is important because it suggests a change in the amorphous phase 

since the intensity of SAXS peaks depends on the degree of crystallinity but also on the 

difference between the electronic densities of amorphous and crystalline phases. It is clear that 

on cooling the amorphous interlamellar component should adopt a more compact molecular 

arrangement, probably as a result of the improved hydrogen-bonding interactions.  
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Figure 4.2.9 Three-dimensional representation of SAXS profiles of nylon 65 during cooling (10 
ºC/min) from 250 ºC (melt state) to room temperature. 
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SAXS data were analyzed by the normalized one-dimensional correlation function,31 (r), 

which corresponds to the Fourier transform of the Lorentz-corrected SAXS profile: 

 (r) = 


0

2 )cos()( dqqrqIq  / 


0

2 )( dqqIq   (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The scattering intensity was extrapolated to both low and high q values using Vonk’s model32 

and Porod’s law, respectively. evaluate the peak intensity evolution during crystallization 

(Figure 4.2.10), and morphological parameters like the long period, L, crystalline lamellar 

thickness, lc, and amorphous layer thickness, la. 

The evolution of these parameters during crystallization (Figure 4.2.10) shows a slight change 

in the long period (e.g. from 11.0 to 9.0 nm in the cooling performed at 12 ºC/min), which is 

mainly due to the decrease in crystalline lamellar thickness (e.g. from 8.7 to 7.4 nm). The latter 

was more significant during the secondary crystallization step (Figure 4.2.10) and indicates that 

new secondary lamellae inserted into the loosely stacked bundles of primary lamellae. New 

lamellae suffer spatial restrictions, leading to thinner defective crystals.  
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Figure 4.2.10 Temperature evolution of the long period, Lγ, crystal thickness, lc, 
amorphous thickness, la, scattering invariant, Q, and degree of crystallinity, 
ΧWAXD, during a non-isothermal melt crystallization performed at a cooling rate 
of 12 ºC/min. 



102 

 

Correlation functions were used to determine the scattering invariant, Q, which allows to 

evaluate the peak intensity evolution during crystallization (Figure 4.2.10), and morphological 

parameters like the long period, L, crystalline lamellar thickness, lc, and amorphous layer 

thickness, la. 

The evolution of these parameters during crystallization (Figure 4.2.10) shows a slight change 

in the long period (e.g. from 11.0 to 9.0 nm in the cooling performed at 12 ºC/min), which is 

mainly due to the decrease in crystalline lamellar thickness (e.g. from 8.7 to 7.4 nm). The latter 

was more significant during the secondary crystallization step (Figure 4.2.10) and indicates that 

new secondary lamellae inserted into the loosely stacked bundles of primary lamellae. New 

lamellae suffer spatial restrictions, leading to thinner defective crystals.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2.11 compares the correlation functions calculated for the SAXS profiles obtained at 

different cooling rates and at the temperature (time) corresponding to the maximum peak 

intensity. Differences in lamellar spacings are minimal due to the balance between two counter 

factors: enhanced insertion mechanism producing thinner secondary lamellae, and increased 

crystallization temperature resulting in thicker primary lamellae with decreasing the cooling 

rate. However, the slight increase observed for the lamellar spacing with the cooling run 
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Figure 4.2.11 Correlation functions corresponding to the maximum 
intensity SAXS profile obtained during cooling runs of nylon 65 at the 
indicated rates. 
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indicates the prevalence of the lamellar insertion effect. Figure 4.2.11 also shows that the 

Lvalue associated with the most probable distance between the centers of gravity of two 

adjacent crystals (abscise of the first maximum of the correlation function) is greater than the 

long period determined from twice the abscise value of the first minimum of the correlation 

function, which is interpreted as the most probable distance between the centers of gravity of a 

crystal and its adjacent amorphous layer. This indicates a broader distribution of the layer 

widths of the major component,33 which corresponds to the crystal phase. 

SAXS crystallinities, SAXS, in the 0.80-0.83 range were calculated at the end of  primary 

crystallization from the values of the morphological parameters (lc/(lc + la)). These crystallinities 

were considerably higher than those estimated from WAXD experiments, suggesting that 

amorphous phase domains exist between the lamellar stacks. 

 Spherulitic morphology of nylon 65 

Spherulites of even-even nylons (e.g. nylon 66) have been widely studied and their optical 

properties have been interpreted.1,34,35 These polymers render negative spherulites at 

crystallization temperatures slightly lower than their melting point and positive spherulites at 

lower temperatures. The change in the optical properties is explained by a well established 

structure based on the stacking of hydrogen-bonded sheets. In fact, X-ray microbeam diffraction 

patterns suggested that positive and negative spherulites differ in the radial or tangential 

spherulitic direction where hydrogen bonds respectively form. Thus, the birefringence sign is 

directly associated with how lamellae with a single structure grow in the spherulite. However, 

the reason for such a drastic change in the growth mechanism at a well defined temperature 

remains unclear.  

Surprisingly, the spherulitic morphology of even-odd nylons has been little studied. A detailed 

phenomenological description has only been reported for nylons 49, 67 and 69 by Magill.36 In 

this case, rather puzzling observations suggesting a complex crystallization behavior were 

made. The main points of this work can be summarized as follows: 

The three polymers exhibited a wide variety of spherulitic structures. Thus, a sample could 

render spherulites with a different birefringence sign and even a different texture (e.g. fibrilar or 

ringed) under certain crystallization conditions. 

The birefringence sign often changed in the negative-positive-negative sequence with 

decreasing the crystallization temperature. The difference in behavior compared with the above 

even-even nylons, and in particular the different sign obtained at the lowest crystallization 

temperature, is worth noting. 

Microbeam diffraction patterns indicated that spherulites always had a pseudohexagonal 

structure. Thus, no further investigation was undertaken to relate the variability observed in the 

spherulitic morphologies to different crystalline structures. 
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The birefringence sign of some spherulites (e.g. nylon 49 crystallized at low undercooling) 

could change in a reversible way by heating and cooling processes.  

Isothermal crystallization of nylon 65 from the melt rendered spherulites of appreciable size 

over the narrow temperature range of 241-227 ºC. This crystallization proceeded according to a 

heterogeneous and thermal nucleation since spherulites of non-homogeneous size formed at a 

given crystallization temperature. The nucleation density increased exponentially with 

decreasing temperature in such a way that morphologies were difficult to examine at 

temperatures lower than 227 ºC. The induction time required for the first nuclei to be active at 

each temperature behaved oppositely to the nucleation density, as shown in Figure 4.2.12. 

Spherulites exhibited a negative birefringence sign over the studied temperature range and a 

ringed texture (Figure 4.2.13 a). The spacing between rings increased from ~ 0.15 nm at 238 ºC 

to ~ 0.30 nm at 232 ºC, where the ringed texture was better displayed. At 227 ºC the ringed 

texture was very difficult to be detected, although very close rings could be envisaged in the 

blue sectors, suggesting a trend towards a fibrillar texture.  
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Non-isothermal crystallization from the melt allowed the study of spherulitic growth at 

temperatures lower than isothermal crystallization due to the decrease in nucleation density. 

Furthermore, morphologic trends were more clearly stated in spherulites grown under the 

former conditions (Figure 4.2.13 b). Thus, different textures were observed in a given 

spherulite according to the temperature at which the growth was conducted. The center of the 

spherulite always had a ringed texture that extended while the temperature was higher than 226 

ºC. The outer parts of the spherulite, which were grown at temperatures lower than 224 ºC, had 

a fibrilar texture. It is remarkable that the birefringence sign became positive just at the 

temperature at which the change from a ringed to a fibrilar texture occurred. This zone with a 

positive birefringence developed at this intermediate position grown at temperatures between 

226 and 224 ºC. Figure 4.2.11c shows a spherulite firstly isothermally crystallized at 235 ºC 

and then non-isothermally  crystallized (0.5 ºC/min) until 180 ºC, which shows new insights. 

Thus, the center has the presumable ringed texture and negative birefringence which changed to 

positive in the zones grown at two precise temperatures: 226-224ºC (as above explained) and 

200 ºC. Black and white micrographs (see inset) shows that the later change may be also 

associated to a variation on the spherulitic texture since at lower temperatures than 200 ºC 

(where the birefringence became again negative) a ringed texture can be envisaged again, 

whereas a fibrillar texture is clear at temperatures close to 224 ºC.  No changes on both texture 

and birefringence could be detected when the different spherulites were heated until fusion. 

Thus, the complex morphologies developed during crystallization of nylon 65 were not 

reversible, in contrast with previous observations performed with nylon 49.10 

X-ray diffraction data indicate that spherulitic growth of nylon 65 took place at temperatures at 

which only the structure characterized by pseudohexagonal packing develops. Thus, different 

textures and birefringence properties must only be related to changes in the growth mechanism. 

Properties of nylon 65 spherulites are in agreement with some observations on related nylons, 

specifically the negative-positive-negative change in the birefringence sign with decreasing 

temperatures, in contrast with the behavior of conventional polyamides. The peculiar structure 

found for the high temperature form of the studied even-odd nylon where two hydrogen-

bonding directions seem to exist may be the reason for the unusual formation of negative 

spherulites at lower crystallization temperatures. 
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Figure 4.2.13 a) Optical micrograph of nylon 65 spherulites obtained at 232 ºC. Insets 
show spherulites obtained at 238 and 227 ºC. b) Optical micrograph of nylon 65 spherulites 
non-isothermally crystallized at a cooling rate of 2 ºC/min. c) Optical micrograph of a 
nylon 65 spherulite that was firstly isothermally crystallized at 235 ºC and then non-
isothermally crystallized at a cooling rate of 0.5 ºC/min. Inset shows a black and white 
micrograph of a specific zone where different spherulitic textures can be better observed 
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 Real Time Temperature Dependence of Infrared Spectra 
 

Infrared spectroscopy has proved to be a useful tool in distinguishing the crystalline structures 

of aliphatic polyamides since some peak positions become dependent on vibrational coupling. 

In addition, this technique is especially appropriate for detecting thermally-induced structural 

transitions.  

Independently of the nylon type, absorption bands appear at well defined wavenumbers, and 

have consequently been assigned to conventional polyamides.37 Amide V and the CH2 bending 

region (1500-1400 cm-1) are usually considered to distinguish between the / sheet structure 

and the pseudohexagonal -phase. Thus, the first structure shows the amide V band at around 

690 cm-1 and four scissoring mode peaks at around 1475, 1465, 1440 and 1420 cm-1, whereas 

the -phase shows the amide V band at 715 cm-1, which may be overlapped with the CH2 

rocking band, and only two scissoring peaks at 1460 and 1440 cm-1. It should also be mentioned 

that bands associated with the amorphous phase (i.e. those observed in the molten state) appear 

at similar wavenumbers to those assigned to the -phase. 

Table 4.2.1 summarizes the wavenumber data and the normal mode assignments of the main 

bands observed in the nylon 65 infrared spectrum taken at room temperature. Infrared spectra 

recorded in a heating run (2 ºC/min) are shown in Figure 4.2.14 for three representative 

temperatures. It is worth noting that the main changes took place as the temperature was 

increased to 100 ºC, and then the spectra remained practically unaltered. This observation 

agrees with a structural transition around 100 ºC and suggests that minimum conformational 

changes occurred during the Brill transition.  

 
Table 4.2.1 Assignment of Infrared Absorption Bands of Nylon 65 at Room temperature. 

 



 (cm-1) 
 

 
Normal-mode 

3294 Amide A (N-H stretching) 
3079 Amide B 
2928 CH2 asym. stretching 
2855 CH2 sym. stretching 
1632 Amide I 
1540 Amide II 

1472, 1459, 1434, 1420 CH2 scissoring progression 
1370  Amide III 

1300-1220 CH2 twisting progression 
1204 (), 1178 () CH2 wagging progression 

1120 C-NH stretching 
1070-1024 C-C stretching progression 

936 C-CO stretching 
724 CH2 rocking 
683 Amide V (NH out of plane bend) 
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An Amide V band around 688-683 nm-1 was detected at all studied temperatures, revealing the 

existence of a crystalline structure different from the conventional -phase and close to the 

/forms. In this spectral zone the main change corresponds to the CH2 rocking band, which 

appeared well defined at room temperature, whereas it progressively became a shoulder of the 

amide V band during heating. The four bending modes usually assigned to the /form could 

be distinguished at all temperatures although the intensity of the first band at 1472 cm-1 

becomes weaker at high temperature, as usually observed for the hexagonal packing. In 

summary, these observations suggest that nylon 65 has a crystalline structure closer to the 

/form than to the -form at low temperature, although this similarity diminishes by 

increasing temperature.   

Analysis of infrared spectra also reveals some additional points that deserve attention: 

a) On heating, the amide A band (3302-3294 cm-1) gradually shifts to higher frequencies, 

as shown in Figure 4.2.15 a. The plot relating the wavenumber of the amide A band to 

the temperature (Figure 4.2.15 b) indicates that around 100 ºC the slope of linear 

dependence clearly varies, suggesting the structural transition that was deduced from 

the change in WAXD spacings. It is well known that the wavenumber of the amide A 

absorption peak can be associated with the strength of the hydrogen bond in such a way 
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Figure 4.2.14  Infrared spectra recorded at the indicated temperatures during the heating 
run (2 ºC/min) of a nylon 65 sample coming directly from synthesis.   
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that an up-shift corresponds to a weakening of such interaction.38 Spectroscopic data 

indicate that a greater change occurs during heating from room temperature to 100 ºC 

than from 100 to 190 ºC. This is in agreement with the deduced unit cell dimensions, 

which point to a larger increase in the average interchain distance during the first 

heating step. The amide A wavenumber shifts largely to higher values when the melting 

process starts (i.e. T > 190 ºC) and the hydrogen bonds become much weaker. 

b) The wavenumber of the amide I band remains practically constant (1632-1635 cm-1) 

during heating from 25 to190 ºC. The observed value is usually attributed to a 

semicrystalline sample with a predominant /form.38 Furthermore, a small shoulder is 

detected at 1650 cm-1 for all indicated nylon 65 spectra. This absorption confirms the 

coexistence of an amorphous phase, whose ratio increases slightly on heating to 190 ºC. 

The amide II band is observed at 1540 cm-1 which is also a characteristic value for an 

/ form since a shift towards 1560 cm-1 is usually reported for the pseudohexagonal -

phase.37 

c) On heating from 25 to 100 ºC the main changes correspond to the absorption band at 

1370, which splits into two bands (1372 and 1361 cm-1) with lower intensity (  a), and 

the band at 1178 cm-1, which becomes significantly more intense (  b). The last band is 

usually attributed to the conventional form. That is why the low temperature transition 

seems to imply a conformational change where /form characteristics are reduced, in 

agreement with the change in the X-ray equatorial reflections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



110 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 4.2.15  a) Change in the Amide A absorption band during a 
heating run of a nylon 65 sample coming directly from synthesis. b) 
Representation of the wavenumber corresponding to the amide A 
absorption band during a heating run of a nylon 65 sample coming 
directly from synthesis. 
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Figure 4.2.16  Change of the infrared absorption bands in the 1380-1350 cm-1 
(a) and 1220-1120 cm-1 ranges during a heating run of a nylon 65 sample coming 
directly from synthesis. 
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4.2.4 Conclusions 

Several conclusions can be drawn: 

1. Nylon 65 samples coming directly from synthesis crystallize according to a peculiar 

structure (form I) that can be interpreted in terms of a packing where hydrogen bonds 

are established along two directions. On heating, this structure converts into a less 

compact structure (form II) whose X-ray diffraction pattern differs from the initial one 

in the closeness of the two strong equatorial reflections. A Brill transition occurs at 

some degrees before fusion, resulting in a pseudohexagonal chain axis projected unit 

cell. This high temperature structure is peculiar and is clearly different from the 

hexagonal arrangement found in conventional nylons since reflections related to the 

chain repeat have an unusual non-meridional orientation. 

2. Nylon 65 crystallizes from the melt according to the high temperature structure 

obtained after the Brill transition. On cooling this structure transforms into form II, 

showing a hysteresis effect. The transition from form II to form I occurs at a lower 

temperature although it cannot be completed during the cooling run. 

3. Crystallization from the melt gives rise to spherulites constituted by lamellae of 

different thicknesses, which accounts for the multiple melting peaks observed in the 

calorimetric heating runs. During crystallization thinner lamellae insert into the loosely 

stacked bundles of primary lamellae and the interlamellar amorphous regions become 

more compact. 

4. Spherulites with different textures (ringed or fibrilar) and birefringences can be 

obtained by varying the crystallization conditions. Negative spherulites form in the low 

temperature region, indicating a molecular arrangement different from that found in 

conventional even-even nylons, whose low temperature spherulites show a positive 

birefringence. 

5. Absorption bands observed in the room temperature infrared spectra suggest that nylon 

65 has a structure related to conventional / forms despite its different hydrogen-

bonding scheme. Spectra are sensitive to the structural changes; specifically the 

temperature evolution of the amide A band allows the form I to form II transition to be 

detected.  
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4.3                                            

Crystallization studies on clay nanocompo-
sites of nylon 47 having exfoliated or 
intercalated structures 

Basic structural data on nylon 47 were obtained from X-ray diffraction of powder, and fiber 

samples and electron diffraction of thin spherulitic samples. The studied even-odd polyamide 

was characterized by a peculiar structure where hydrogen bonds were established along two 

directions. Nylon 47 showed reversible polymorphic transitions on heating/cooling processes 

that were analyzed by real time synchrotron WAXD experiments. Results indicate that nylon 47 

had a first structural transition at low temperature and then underwent a gradual Brill 

transition towards a pseudohexagonal packing.  

Optical and electron microscopy studies were also performed under isothermal conditions to 

distinguish the different spherulitic morphologies and changes on optical properties. Results 

revealed a different behaviour from that of spherulites of conventional even-even nylons. 

Interestingly, spherulites crystallized under a low supercooling had a reversible change of 

birefringence with temperature. This was due to the peculiar morphology attained at high 

temperature and the reversible structural changes that take place with temperature.   

Intercalated and exfoliated nanocomposites based of nylon 47 were prepared by using Cloisites 

25A and 30B, and different preparation methods (i.e. solution intercalation and melt mixing). 

The influence of the final silicate layer morphology on the hot crystallization behaviour was 

investigated by optical microscopy and differential scanning calorimetry. Crystallization rates 

of the neat polymer and its two nanocomposites were significantly different, mainly as a 

consequence of variations on primary nucleation.  
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4.3.1 Introduction  
 

Aliphatic polyamides (nylons) constitute a family of polymers with exceptional properties 

because of their capability to establish strong intermolecular hydrogen bonding interactions.1 

Molecular conformation and packing preferences are basically conditioned to favour a close 

arrangement between amide groups. In this way, the crystalline structure of conventional even-

even nylons (e.g. nylons 66 and 6-10) are based on a stacking of sheets composed of hydrogen-

bonded molecular chains with a planar zig-zag conformation ( and  forms).1,2 Similar 

arrangements with hydrogen bonds established along a single direction are also commonly 

found in some even nylons (i.e. nylon 6).1,3 The corresponding X-ray fiber diffraction patterns 

of such structures are characterized by the presence of two strong equatorial reflections at 

spacings close to 0.440 and 0.380 nm which are associated to intrasheet and intersheet spacings, 

respectively.   

Nylons can however crystallize according to other arrangements and molecular conformations 

depending on the parity of the constituent monomers (e.g. the pseudohexagonal  phase 

postulated for some odd-odd nylons1,4) and indeed the presence of special units like glycine5,6 

(e.g. nylons 2/3, 2/6) and malonic acid7 (e.g. nylons n,3). Furthermore, nylons can experiment 

phase transitions during heating and cooling processes, as for example the not completely well 

understood reversible structural change detected with nylons having conventional / forms at 

room temperature.8-18 In this case, the evolution of the diffraction patterns on heating  shows 

that the two characteristic equatorial reflections gradually merge on a single one (ca. 0.421 nm) 

indicative of a pseudohexagonal arrangement at the so called Brill transition temperature. On 

cooling from the melt state, the polymer firstly crystallized in the indicated pseudohexagonal 

packing and then the characteristic single reflection splits into the two above indicated 

reflections at a temperature lower than observed in the heating process.  

A peculiar structure based on the establishment of hydrogen bonds along two different 

directions has lately been postulated for some even-odd and odd-even  nylons (e.g. nylons 69,19 

65,20,21 12-5,22 56,23,24 5-1025 and 9226) which fibers rendered two strong equatorial reflections at 

similar spacings than reported for the / conventional structures. The new structure was 

postulated since good intermolecular hydrogen bonding interactions could not be established 

when nylons had a planar zig-zag molecular conformation and were derived from diamine and 

dicarboxylic acid units with different parity (i.e. even-odd and odd-even nylons). This feature is 

illustrated in Figure 1a for nylon 47 which is the polymer object of the present work.  
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X 

b) 

a) 

Figure 4.3.1 a) Scheme showing the unfavourable hydrogen-bonding geometry 
between pimelamide units having an all trans conformation. b) Scheme showing as 
hydrogen bonds could be well established along two directions when the two amide 
planes of the pimelamide unit rotate in opposite directions from the plane defined by 
its methylene carbons. External chains (stick representation) should be shifted along 
the chain axis direction (see arrows) with respect to the central chain (ball and stick 
representation), thus giving rise to a monoclinic unit cell. Color code: nitrogen, blue; 
oxygen, red; carbon, gray; hydrogen, brown. 
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Basically, the distinctive feature of the new molecular arrangement is the capability of 

establishing good hydrogen bonding interactions along two different directions with molecules 

having a practically all trans conformation. Thus, a slight deviation towards 150º (or -150º) for 

the two torsional angles vicinal to the odd diamide units seems necessary to face all NH and CO 

groups of neighbouring chains.  The two amide groups of the odd unit rotated in opposite senses 

from the plane defined by the methylene carbon atoms allowing a good hydrogen bonding 

geometry when neighbouring chains became conveniently shifted along the chain axis direction 

(Figure 4.3.1). In this way, a monoclinic unit cell containing two molecular segments was 

derived and the chain axis projection corresponded to a rectangular unit cell.19-26   

Polymers filled with a layered clay (or phyllosilicate) give rise to microstructural dispersions 

different from conventional ones obtained from inorganic fillers. Incorporation of nanoelements 

may provide commodity materials with a suite of characteristics that organic chemistry and 

traditional polymer-blending approaches cannot supply from an economical point of view.27-29  

Pioneering works concerning clay nanocomposites were precisely carried out with polyamides 

having the conventional sheet structure (e.g. nylon 6).30,31 Crystallization processes are also 

influenced by the incorporation of phyllosilicate particles since they may have an impact on the 

overall crystallization rate, crystal growth, nucleation type and morphological features. In fact, 

crystallization is determined by different factors which may be favoured or disfavoured when 

the clay particles are incorporated. In this way, published results suggested that the 

crystallization process highly depends of the type of clay dispersion (e.g. exfoliated or 

intercalated) and even on the interactions between clay and polymer matrix.32-35  

It seems therefore interesting to bring new data on the crystallization behaviour of composites 

based on polyamides having different intermolecular interactions than conventional nylons. In 

this way, the present work is focused in the structural characterization of a new even-odd 

polyamide (i.e. nylon 47), the preparation of nanocomposites with different structures and 

finally the evaluation of the crystallization behaviour of the neat polymer and its 

nanocomposites. 
 

4.3.2 Experimental section  

 Materials 

Nylon 47 was synthesized by interfacial polycondensation of 1,4-diaminobutane and pimeloyl 

chloride using toluene as organic solvent and sodium hydroxide as proton acceptor following 

the procedure previously described for similar nylons.20 The polymer was purified by 

precipitation with water of a formic acid solution. Nylon 47 was obtained with a yield of 55% 

and an intrinsic viscosity of 0.85 dL/g (determined in dichloroacetic acid at 25 ºC). 
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Dimethyl hydrogenated-tallow 2-ethylhexyl ammonium montmorillonite (Cloisite 25A, 

Southern Clay Products, 2MHTEX) and methyl tallow bis(2-hydroxyethyl) ammonium 

montmorillonite (Cloisite 30B, Southern Clay Products, MT2EH) (tallow (65% C18, 30% 

C16, 5% C14)) were used as received. The chemical structure of the specific surfactant of the 

organo-modified layered phyllosilicates are shown in Table 4.3.1.  
 

 

Table 4.3.1 Characteristics of Organoclaysa. 
 

Clay Type 
Chemical Structure of Organic 

Modifier 

Cloisite 30B 

 

Cloisite 25A 

 
 

a HT is the hydrogenated-tallow. T 65% C18, 30% C16, 5% C14. 
 

 Preparation of nanocomposites 

Nanocomposites containing 3% of C25A or C30B clay particles were prepared by melt mixing 

in two steps using a co-rotating tightly intermeshed twin-screw extruder (DSM Xplore 5ml 

microcompounder). All materials were dried under vacuum prior to mixing. The processing 

temperature, screw rotation and cycle time were 260 ºC, 100 rpm and 3 minutes, respectively.  

Alternatively, nanocomposites were also prepared by the solution-intercalation film-casting 

technique. For each final nanocomposite composition 100 mg of nylon 47 was dissolved in 10 

mL of 1,1,1,3,3,3-hexafluoroisopropanol. Clay dispersions (<0.1 wt %) were obtained by 

suspension of clay in a separate beaker of 1,1,1,3,3,3-hexafluroisopropanol. Both the Nylon 47 

solution and clay suspension were agitated separately for 30 min. The final mixture was further 

sonicated for 120 min with a Sonorex Super 10P sonicator. The amount of OMMT loading was 

fixed at 3 wt%. The mixture was then cast on a glass surface and the solvent was removed in a 

vacuum oven at 40 ºC. Eventually, optically clear nanocomposite films with thicknesses ranging 

from 20 to 35 m were obtained.  
  

N+

T

CH2CH2OH

CH2CH2OH

H3C

N+

CH3

CH2CHCH2CH2CH2CH3

HT
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 Measurements 

X-ray fiber and power diffraction patterns of nylon 47 were obtained with Ni-filtered CuK 

radiation of wavelength 0.1542 nm from an Enraf Nonius rotating anode X-ray generator and 

using a modified Statton camera (W. H. Warhus, Wilmington, DE). Oriented fiber samples were 

obtained by melt drawing.  

Time resolved WAXD experiments were carried out at the CRG beamline (BM16) of the 

European Synchrotron Radiation Facility of Grenoble. The beam was monochromatized to a 

wavelength of 0.098 nm. Polymer samples were confined between Kapton films and then held 

on a Linkam hot stage with temperature control within  0.1 ºC. WAXD profiles were acquired 

during heating and cooling runs in time frames of 12 s and rates of 3 ºC/min. The WAXD 

detector was calibrated with diffractions of a standard of an alumina (Al2O3) sample. The 

diffraction profiles were normalized to the beam intensity and corrected considering the empty 

sample background. Deconvolution of WAXD peaks was performed with the PeakFit v4 

program by Jandel Scientific Software using a mathematical function known as “Gaussian 

area”.  

Spherulites of nylon 47 were grown from homogeneous melt-crystallized thin films placed 

between two cover glasses. These films were produced by evaporation of a dilute solution of the 

polymer in 1,1,1,6,6,6-hexafluoroisopropanol. Samples were crystallized isothermally at 

different temperatures below the melting point using a Linkam temperature control system 

configured by a THMS 600 heating and freezing stage connected to an LNP 94 liquid nitrogen 

cooling system. Additionally, non-isothermal experiments were carried out at cooling/heating 

rates of 1 ºC/min. The experimental procedure allowed films with thickness lower than 10 m 

to be obtained. Optical photographs were taken using a Zeiss AxioCam MRC5 digital camera 

mounted on a Zeiss Axioskop 40 Pol light polarizing microscope. A first-order red tint plate 

was employed to determine the sign of spherulite birefringence under crossed polarizers.  

Thin spherulites were also observed with a Philips TECNAI 10 electron microscope operating 

at 80 and 100 kV for bright field and electron diffraction modes, respectively. 

After manual separation of the two glasses, the spherulites attached to the cover-slip were 

covered with a thin carbon film, floated off on water, picked up on copper grips and shadowed 

with Pt-Carbon at an angle of 15º. Bright field micrographs were taken with a SIS MegaView II 

digital camera. Selected area electron diffraction patterns were recorded on Maco EM films 

from not shadowed samples. The patterns were internally calibrated with gold (d111 = 0.235 

nm).  

Interlayer spacing of clay nanocomposites was studied by wide angle X-ray scattering (WAXD) 

using a PANalytical X´Pert diffractometer with Cu Kα radiation (λ = 0.1542 nm) using a 

silicium monocrystal sample holder. The structure and distribution of Cloisite in the 
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nanocomposites were also evaluated by morphologic observations using the Philips TECNAI 10 

electron microscope at an accelerating voltage of 100 kV. Specimens were prepared by 

embedding the nanocomposite films in a low viscosity modified Spurr epoxy resin. The 

preparations were cured at 40°C for a few days and then at 60 °C for 6 h. Ultrathin sections (less 

than 100 nm) were cut at room temperature using a Sorvall Porter-Blum microtome equipped 

with a diamond knife. Finally, the sections were collected in a trough filled with water and lifted 

onto carbon coated copper grids.  

Calorimetric data were obtained by differential scanning calorimetry with a TA Instruments 

Q100 series equipped with a refrigeration cooling system (RCS) which operates from -90 ºC to 

550 ºC. Experiments were conducted under a flow of dry nitrogen with a sample weight of 

approximately 5 mg and the calibration was performed with indium.  

Basic thermal characterization involved on cooling runs (10 ºC/min) of melted samples and 

heating runs (20 ºC/min) of as-synthesized, hot crystallized and quenched samples. 

Crystallization studies were performed with samples firstly heated at 20 ºC/min to 270 ºC and 

kept at this temperature for five minutes to erase the thermal history. Non-isothermal 

experiments were performed at a cooling rate of 10 ºC/min. 

Spherulite growth rates of nanocomposites were determined by optical microscopy. Samples 

were prepared from homogeneous melt-crystallized thin films obtained by melting 1 mg of the 

polymer mixture on microscope slides. Next, small sections of these films were pressed or 

smeared between two cover slides and inserted in the hot stage. The thickness of the squeezed 

samples was in all cases close to 10 m. Samples were kept at 270 ºC (approximately 10 ºC 

above the end of the polymer fusion at 260 ºC) for 5 minutes to eliminate sample thermal 

history effects and subsequently quickly cooled to the selected isothermal crystallization 

temperature. The radius of the growing spherulites was monitored by taking micrographs at 

appropriate time intervals. Nucleation densities were determined by counting the number of 

spherulites observed in representative areas of optical micrographs. 
 

4.3.3 Results and discussion  

 Basic structural data of nylon 47 

Unit cell parameters of nylon 47 were determined from electron and X-ray diffraction patterns. 

The former were recorded from thin spherulites crystallized from the melt state as it will below 

be explained. These patterns (Figure 4.3.2 a and  b) are characterized by six strong reflections 

at 0.430 nm and 0.389 nm together with several weaker reflections, as summarized in Table 

4.3.2. Patterns showed a 2mm symmetry and could be well indexed according to a rectangular 

unit cell with a = 0.437 nm and b = 0.860 nm. It should be pointed out that the spacings of the 

main reflections are clearly different from the value expected (0.415 nm) for the 
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pseudohexagonal arrangement postulated for the -form of nylons.1,4 On the contrary, either the 

reported spacings and the observed symmetry suggest the establishment of a structure where 

amide groups form hydrogen bonds along two directions. The molecular packing becomes 

defined by a rectangular chain axis projected unit cell that contains two molecular segments. 

The calculated distance between the molecule placed at the middle and the molecule placed at 

the corner of the unit cell was 0.482 nm and consequently in close agreement with the expected 

distance between hydrogen bonded chains.  

 

a) a* 

b* 

110 

020 

b) a* 

b* 

110 

020 

130 

040 

d) 

0.724 nm 

0.430 nm 

0.407 nm 

c) 
25º 

110 
020 

0.798 nm 

004 

111 
_ 

Figure 4.3.2 Electron diffraction patterns from spherulites crystallized at 218 ºC (a) and 232 ºC 
(b). X-ray diffraction patterns of a melt spun fiber (c) and a powder sample directly obtained 
from synthesis (d). 



123 

 

X-ray fiber patterns showed a scarce number of reflections (Figure 4.3.2 c,   Table 4.3.2) that 

were however sufficient to determine the parameters of the three dimensional unit cell. Thus, 

the non meridional 00l reflection allowed to estimate a cc* angle close to 25º and consequently 

a  monoclinic angle of 115º. This reflection was indexed as 004 according to the previous 

reported data on the similar nylon 65.20 A chain axis repeat close to 3.192 nm was directly 

determined from the 0.798 nm spacing defined by the fourth layer line (Figure 4.3.2 c). This 

repeat suggested a practically all trans molecular conformation since the expected value 

assuming standard bond lengths and angles was 3.250 nm. Fiber patterns showed also a 

strong/medium equatorial reflection at 0.407 nm which can be indexed as the 111 reflection, 

although it may be also indicative of a second polymorphic form as it will be then explained. In 

general, a mixture of two crystalline forms was observed when samples were obtained from the 

melt state. The achievement of a single structure strongly depended on the success of the 

annealing process at which the melt drawn fibers were subsequently submitted. The relatively 

low molecular weight of nylon 47 samples made difficult to favour a structural transition 

towards an extended conformation by the annealing process. In general, diffraction patterns 

showed also a near-meridional reflection in the second layer line which can be associated to the 

second polymorph. 

X-ray powder patterns corresponding to samples crystallized from solution (Figure 4.3.2 d) 

were also in agreement with the deduced unit cell ( Table 4.3.2 ). The powder pattern was 

highly useful since the spacing of the 004 reflection could be more accurately measured than 

from fiber patterns where the 004 spot had a rather diffuse appearance. 
 

Table 4.3.2 Diffraction data of nylon 47 from powder, fiber and spherulitic samples. 
 

hkla dcalcd (nm) dmeasd
b (nm) 

X-ray Electron diffraction 
Powder Fiber Spherulite 

004 0.723 0.724 w 0.724 w off M  
006 0.482 0.482 vw   
040 0.430 0.430 vs 0.430 vs E 0.430 vs 
11-1 0.407 0.407 m 0.407 s E  

110 0.389 0.389 m 0.389 vs E 0.389 s 
130 0.240   0.240 w 
040 0.215   0.215 w 

102, 024 0.376, 0.370 0.377 m   
 
aOn the basis of a monoclinic unit cell with a = 0.482 nm, b = 0.860 nm, c (fiber axis) = 3.192 nm and  = 
115º. 
bAbbreviations denote relative intensity and orientations: vs, very strong; s, strong; m, medium; w, weak; 
E, equatorial; off M, off meridional. 
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It should be pointed out the close agreement between the main packing parameters deduced for 

nylon 47 with those previously determined for nylon 65, an even-odd polyamide characterized 

by the structure with two hydrogen-bonding directions.20,37 Thus, values of 0.420 nm and 0.862 

nm defined the chain axis projected rectangular unit cell of nylon 65 and the corresponding X-

ray fiber pattern allowed to determine a cc* angle of 24º.  
 

 Thermal behaviour of nylon 47 

Figure 4.3.3 displays a sequence of heating/cooling runs performed to study the thermal 

behavior of nylon 47. A heating scan of a solution-crystallized sample showed a complex 

melting peak (shoulder at 214 ºC and defined peaks at 227 ºC and 244 ºC) associated with a 

typical recrystallization process occurring on heating. The cooling run after keeping this sample 

in the melt state for three minutes revealed a narrow exothermic crystallization peak around 214 

ºC and a broad exotherm that should correspond to the secondary crystallization. A subsequent 

heating run showed again a complex fusion where the shoulder and peaks previously indicated 

can be observed. However, the intensity of the peak appearing at the highest temperature (244 

ºC) clearly increased. Finally, a melt quenched sample allowed the determination of a glass 

transition temperature at 56 ºC and a single and broad melting peak at 243 ºC with a small 

shoulder at 228 ºC.  

The possible existence of different crystalline structures with different thermodynamic stability 

was discarded as the origin of the multiple melting peaks since, as will be discussed in the next 

section, nylon 47 may experiment a first transition at a clearly lower temperature and a second 

one at high temperature but involving a great temperature range.  Thus, the two endothermic 

peaks seem to be associated with two populations of lamellar crystals of different thicknesses 

whereas the shoulder may be related to highly defective crystals. Note that a melt-

recrystallization process where thin lamellae convert into thicker lamellae should be more 

important when samples were less perfect, and consequently crystallized at lower temperatures 

as it is the case of the melt quenched sample (Figure 4.3.3 d).  

Nylon 47 was highly crystalline as deduced from the relative melting enthalpy of both solution 

and melt crystallized samples. Calorimetric scans indicated that the crystallization degree was 

logically higher when samples crystallized from solution, being crystallinity recovered by only 

80% after melt crystallization. In any case, it is clear that samples easily crystallize since 

quenching was not successful at the maximum cooling rate allowed by the equipment (Figure 

4.3.3 d). 
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 Structural transitions f nylon 47 on heating/cooling processes 

Figure 4.3.4 a shows a three-dimensional representation of nylon 47 WAXD profiles obtained 

by synchrotron radiation during a heating process performed at 3 ºC/min from room temperature 

to fusion, whereas one-dimensional profiles taken at some representative temperatures are given 

in Figure 4.3.4 b. It is clear that structural changes occurred on heating and that two main 

features could be identified in a similar way as previously reported for the related nylon 6537: a) 

A polymorphic transition (from form I to form II) took place between 60 and 120 ºC since the 

intensity of the two equatorial reflections at 0.430 and 0.389 nm gradually diminished during 

heating and new reflections near 0.421 and 0.404 nm appeared with increasing intensity; and b) 

After 120 ºC the two indicated new reflections gradually merged into a single peak at 0.422 nm 

that was achieved at a temperature close to 190 ºC. This process suggests a typical Brill 

transition where a pseudohexagonal packing (*-form) is favoured at a temperature slightly 

lower than the melting point. It should be pointed out that the indicated peak had always a small

Figure 4.3.3 DSC scans corresponding to the heating run of the as-synthesized sample 
(a), the cooling run from the melt state (b), the heating run of a hot crystallized sample (c) 
and the heating run of a sample quenched from the melt state (d). The crystallization 
process (b) shows a main exothermic peak and an additional broad exotherm (see arrow). 
The inset of d) shows a magnification of the region corresponding to the glass transition. 
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 shoulder at a lower spacing (0.414 nm) as can be well observed after deconvolution of the 

corresponding diffraction profile (Figure 4.3.5a). Hence, nylon 47 could not adopt a perfect 

pseudohexagonal packing before fusion as characteristic of different polyamides (e.g. nylon 66 

and even nylon 65). The two observed structural transitions could not be related with a defined 

peak in the corresponding DSC heating traces and furthermore took place in a wide temperature 

range according to the synchrotron diffraction data. It seems that gradual changes occurred 

probably as a consequence of slight variations of the two torsional angles vicinal to the odd 

diamide units that conduce to different angles between the hydrogen-bonding directions. 

Dimensions of the chain axis projected unit cell changed during heating and approached to a 

hexagonal cell at high temperature. 
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Figure 4.3.4 a) Three-
dimensional representation of 
WAXD profiles of nylon 47 
during heating (3 ºC/min) from 
room temperature to fusion. The 
inset corresponds to a 
magnification where the 
appearance and disappearance of 
characteristics peaks of forms I 
and II could respectively be 
observed. b) One-dimensional 
WAXD profiles of nylon 47 
taken at selected temperatures 
during a heating scan (3 ºC/min). 
Dashed lines remarks the 
evolution of main reflections. 
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Figure 4.3.5 a) One-
dimensional WAXD profiles of 
nylon 47 taken at room 
temperature (down) and just 
before starting the melting 
process (middle) and at the end 
of the cooling process (up). 
Deconvoluted Bragg and 
amorphous peaks are showed for 
both profiles. b) One-
dimensional WAXD profiles of 
nylon 47 taken at selected 
temperatures during heating and 
cooling scans (3 ºC/min). 
Spacings of main reflections 
associated to forms II and I are 
indicated. 
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Figure 4.3.6 a shows the WAXD profiles acquired during a cooling run (3 ºC/min) from the 

melt state. It is clear that a narrow intense peak appeared around 0.420 nm during crystallization 

and that it progressively broadened and split into different peaks when the temperature 

decreased.  

The variation in intensity of the strongest peak (0.422-0.420 nm) was useful in monitoring the 

different processes that occur on cooling, as is shown in Figure 4.3.6 b. Thus, this peak 

appeared and increased in intensity within the temperature range of 240-197 ºC, where 

crystallization took place. The peak intensity remained practically constant in the temperature 

range between 197 and 168 ºC and then, it slightly decreased again with decreasing temperature 

due to the split of the peak caused by the Brill transition. Thus, this transition occurred at a 

lower temperature on cooling than on heating (190 ºC), indicating a clear hysteresis effect, as 

usually found in polyamides.16 At 130 ºC the decrease in the peak intensity was more 

pronounced as a consequence, in this case, of the new splitting caused by the form II to form I 

transition. This could not be detected by DSC because it was a partial conversion occurring in a 

broad temperature interval. Structural changes could not take place when temperature became 

close to the glass transition temperature and consequently the peak intensity was constant at 

temperatures lower than 65 ºC. It is important to note that form I could not be completely 

recovered during the cooling process and that the X-ray profile attained at room temperature 

corresponded to a mixture of structures. Thus, the final diffraction profile became clearly 

different to that obtained from the as-synthesized sample.  

Figure 4.3.5 a compares also the deconvoluted profiles taken at room temperature with the 

initial and the hot crystallized samples. Specifically, the major difference correspond to the peak 

close to 0.415-0.408 nm that appeared with a different intensity. It may correspond to the weak 

111   reflection of form I and also to the characteristic strong reflection of form II. Logically 

the intensity of the peak at 0.415-0.407 nm will depend on the ratio between form I and form II 

that is achieved after the cooling process. Figure 4.3.5 a shows also as the amorphous halos 

slightly changed with temperature as a consequence of thermal dilatation and specifically peaks 

shifted to higher a spacing with increasing temperature. 

Figure 4.3.5 b shows for the sake of completeness some representative X-ray profiles taken 

during heating and cooling runs. Specifically, those corresponding to the achievement of form II 

(110 ºC on heating and 98 ºC on cooling), those corresponding to the similar structures attained 

on heating just before melting (231 º) and on cooling at the end of crystallization (206 ºC), and 

finally the dissimilar profiles taken at room temperature with the as-synthesized sample before 

starting and at the end of the process, respectively.   
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 Spherulitic morphologies of nylon 47 

Scarce works concern the study of optical properties and morphologic characteristics of 

spherulites obtained from even-odd nylons.  A detailed phenomenological description has been 

reported for nylons 49, 67 and 69 by Magill38 and some additional data has also recently been 

given for nylon 65.37 Rather puzzling observations were reported but in general a wide variety 

of spherulitic structures with different optical birefringence were found. The birefringence sign 

often changed in the negative-positive-negative sequence with decreasing the crystallization 

temperature. This behavior was clearly different to that reported for even-even nylons which are 

characterized by a stacking of hydrogen-bonded sheets. In this case, polymers rendered negative 
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Figure 4.3.6 a) Three-dimensional representation of WAXD profiles of nylon 47 
during cooling (3 ºC/min) from the melt to room temperature. b) Temperature 
evolution of the peak intensity at ca. 0.422 nm during a cooling run (3 ºC/min) from 
the melt state. 
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spherulites at crystallization temperatures slightly lower than their melting point and positive 

spherulites at lower temperatures. The change in the optical properties was explained assuming 

that positive and negative spherulites differ in the radial or tangential spherulitic direction where 

hydrogen bonds respectively form. Thus, the birefringence sign is directly associated with how 

lamellae with a single structure grow in the spherulite.38,39 However, the reason for such a 

drastic change in the growth mechanism at a well defined temperature remains unclear. 

Isothermal crystallizations of nylon 47 from the melt state rendered different kinds of 

spherulites depending specifically on the selected crystallization temperature. Thus, peculiar 

spherulites with well defined crystalline domains and a negative birefringence were observed 

(Figure 4.3.7 a) when crystallization temperature was higher than 228 ºC. Electron micrographs 

(Figure 4.3.8) revealed a complex morphology where an arborescent growth with curved arms 

develop from the primary nucleus (Figure 4.3.8 a and b). Micrographs taken at higher 

magnifications showed the flat appearance of constitutive crystals (Figure 4.3.8 c) and indeed 

the presence of single crystals which in some cases had a lozenge shape (e.g. see the dashed 

area of Figure 4.3.8 d). This crystals gave rise to hk0 electron diffraction patterns with intense 

reflections (Figure 4.3.2 b) that corresponded to form I as expected since patterns were 

recorded at at room temperature .  

Heating 

Isothermal 

232 ºC 
Non-isothermal 

 232 ºC  25 ºC 

Isothermal 

232 ºC 

Isothermal 

220 ºC 

Isothermal 

228 ºC a) b) c) 

d) 

25 m 

Figure 4.3.7 Optical micrographs taken at the respective crystallization temperature of nylon 47 
spherulites obtained at 232 ºC (a), 228 (b) and 220 ºC (c). d) Optical micrographs taken at room 
temperature and after heating up to 232 ºC  of a nylon 47 spherulite that was firstly isothermally 
crystallized at 232 ºC and then non-isothermally crystallized until room temperature at a 
cooling rate of 1 ºC/min. 
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 At lower temperatures than 228 ºC spherulites tended to have a fibrilar texture and kept a 

negative birefringence. In fact, ringed spherulites with a small inter-ring spacing could be 

envisaged in the optical micrographs when temperature was close to 228 ºC (Figure 4.3.7 c). 

Electron micrographs clearly revealed (Figure 4.3.9 a) that samples crystallized at 218 ºC had a 

regular banding produced by a lamellar twisting with  a spacing close in this case to 0.5 m.  

Bright zones consisted of lamellae lying practically flat whereas dark zones were associated to 

lamellae standing on edge. Spherulites were sufficiently thin to get hk0 electron diffraction 

patterns (e.g. Figure 4.3.2 a) from zones corresponding to the flat lamellae (Figure 4.3.9 b). 

Again these patterns corresponded to form I (i.e. the most stable structure at room temperature). 

It is also highly interesting that spherulites grown at the specific temperature of 228 ºC were 

clearly not birefringent (Figure 4.3.7 b).  

 

2.5 m 

1 m 
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2 m 

a) b) 

c) d) 

Figure 4.3.8 Transmission electron micrographs of nylon 47 spherulites obtained by isothermal crystallization 
at 232 ºC. Different magnifications are given to show specific morphologic details. Dashed area in d) shows the 
presence of lozenge crystals (see arrows). 
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Figure 4.3.7 d shows polarized optical micrographs taken at room temperature and at 232 ºC 

(i.e. after a subsequent heating) of a spherulite that was firstly isothermally crystallized at 232 

ºC and then non-isothermall crystallized by cooling up to room temperature at a rate of 0.5 

ºC/min. It is clear that the central zone isothermally crystallized and constituted by flat crystal 

domains have a reversible change of the birefringence  sign with temperature. Note that it was 

negative at the crystallization temperature (Figure 4.3.7 a), became positive at room 

temperature and finally negative after the heating process. By contrast the outer non-

isothermally crystallized zone was characterized by a fibrilar texture and had always a negative 

birefringence sign. This feature was clearly distinctive to typical even-even nylons which show 

a positive birefringence when they were crystallized at low temperatures. The reversible 

birefringence change observed for nylon 47 seems a consequence of a structural transition (from 

the Brill or form II structure to the form I expected at high and low temperatures, respectively). 

Probably, the structural transition involved small changes on the molecular conformation and a 

variation on the angle defined by the two hydrogen bonding directions. This change on the 

packing mode should greatly influence on optical properties when crystals had a flat disposition 

that emphasized the molecular and hydrogen bonding arrangements. In this way, reversible 

changes could only be envisaged in the spherulitic textures developed at higher temperatures 

(i.e. > 228 ºC). 
 

 Dispersion structure of C25A and C30B organomodified clays in their nanocomposites 

with nylon 47 
 

The nanocomposite structures were first analyzed by reflection X-ray diffraction of film 

samples. The diffraction patterns show evidence of intercalation of polymer chains into the 

silicate galleries in the range of 2 = 1-10º ( is the scattering angle) when the characteristic 001 

silicate diffraction peak appears at a lower diffraction angle (larger spacing) than in the pattern 

of the neat clay. Similarly, the absence of this peak may suggest an exfoliated structure. 

Cloisite C30B has hydroxyl polar groups (Table 1) that can interact with the amide groups of 

nylon 47 and consequently can favour the achievement of an exfoliated structure. This structure 

was found to be enhanced when nanocomposites were prepared by the melt mixing technique 

instead of solution-intercalation, probably as a consequence of the high melting temperature of 

nylon 47 that could favour the exfoliation of silicate layers. Hence, nylon 47/C25A and nylon 

47/C30B nanocomposites obtained by solution-intercalation and melt mixing methods, 

respectively, were selected as the best preparations corresponding to intercalated and exfoliated 

structures.   

Figure 4.3.10 a shows the shift of the characteristic 001 reflection of the C25A clay from 1.94 

nm (2 = 4.55º) to 2.25 nm (2 = 3.93º) when the nanocomposite sample was prepared. This 
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observation indicates the achievement of a regular intercalated structure with an increase of the 

interlayer spacing caused by the insertion of polymer molecular chains. Direct observation of 

the morphology and phase distribution of ultrathin sections of nylon 47  / C25A specimens by 

transmission electron microscopy (Figure 4.3.10 a) revealed the presence of well-ordered 

layered structures as presumable when an intercalated structure was predominant. 

Figure 4.3.10 b clearly demonstrates that an exfoliated structure was characteristic of the nylon 

47/C30B nanocomposite. Thus, the 001 reflection of the C30B clay (1.80 nm, 2 = 4.91º) 

disappeared in the X-ray profile of the nanocomposite, whereas TEM micrographs revealed the 

presence of practically dispersed silicate layers. 

The structure of nylon 47 changed also according to the nanocomposite preparation method as 

shown in the X-ray diffractograms of Figure 4.3.11. Hence, samples obtained from solution 

showed the characteristic reflections of form I (e.g. those appearing at 0.430 and 0.388 nm), 

whereas samples coming from the melt had reflections of both structures: form I (e.g. 0.388 nm) 

and form II (e.g. 0.419 nm). Note also that in this case, the  002 reflection shifted to a lower 

spacing (i.e. 0.696 nm) which may indicate a shortening of the chain axis repeat or alternatively 

an increase of the shift between neighbouring chains along the c crystallographic axis. 
 

  
1 

a) 

b) 

0.5 m 

Figure 4.3.9 a) Transmission electron micrograph of nylon 47 spherulites 
obtained by isothermal crystallization at 218 ºC. b) Specific zone of a non 
shadowed sample where a hk0  electron diffraction pattern of form I was 
obtained. 
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Figure 4.3.10 Transmission electron micrographs and X-ray diffraction 
patterns showing the morphology and the zone corresponding to the 001 
clay reflection of the Nylon 47/C25A (a) and Nylon 47/C30B (b) 
nanocomposites with a Cloisite concentration of 3%. X-ray diffraction 
patterns of the neat clays are also shown. 

0

1000

2000

3000

4000

5000

9 13 17 21 25 29

2   (degrees)

In
te

ns
ity

 (a
.u

.)

0.430 nm 

0.388 nm 

0.419 nm 
0.406 nm 

0.735 nm 

0.696 nm 

C25A 

C30B 

Figure 4.3.11 X-ray diffraction profiles showing the main reflections of nylon 
47 in nanocomposites with Cloisite 25A and 30B prepared by solvent casting 
and melt mixing methods, respectively. 
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 Influence of C25A and C30B clay particles in the thermal behaviour of nylon 47 

Calorimetric analyses showed differences between the non-isothermal crystallization of the neat 

polymer and its nanocomposites with the C25A and C30B clays. Thus, the peak crystallization 

temperature increased and the exothermic peak became broader respect to the neat polymer 

when the nanocomposite had an intercalated structure as shown in Figure 4.3.10 for a 

representative cooling rate (i.e. 10 ºC/min). Crystallization was consequently favoured by the 

presence on the layered structure (nucleation effect) although the corresponding crystallization 

rate decreased.  The exfoliated structure led to a disfavoured crystallization process due to both 

the decrease of the peak crystallization temperature and the slight peak broadening.  

Differences on the crystallization process were clearer when isothermal experiments (Figure 

4.3.13) were carried out. Note that in this case, the crystallization peak of nanocomposites with 

an exfoliated structure appeared at later times than required  for the neat polymer, and also that 

this peak became clearly broader. Differences were enhanced when experiments were 

conducted at the higher temperatures (i.e. when the overall crystallization rate was slower).  

 

 

 

 

 

 

  

Figure 4.3.12 DSC cooling runs (10 ºC/min) from the melt state of a nylon 
47/C25A (●), nylon 47 (▲) and nylon 47/C30B (■) samples. 
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Crystallization exotherms started earlier when nanocomposites had the intercalated structure as 

expected for a favoured nucleation. However, the overall crystallization rate decreased again 

respect to the neat polyamide since the corresponding exothermic peak became slightly broader.  

In summary, both isothermal and non-isothermal crystallizations suggest that primary 

nucleation was enhanced or disfavoured when intercalated or exfoliated silicate layers were 

respectively present. The crystallization rate decreased in both cases suggesting that the crystal 

growth was hindered as will be described in the next section. Note that the neat polymer and its 

nanocomposite with the C25A clay had similar DSC crystallization curves (Figure 4.3.10 and 

Figure 4.3.11) due to the two opposing effects observed for the intercalated nanocomposites. 
 

 Optical microscopy studies on nylon 47/C25A and nylon47/C30B nanocomposites 

Accurate measurements of the evolution of the spherulitic radius with crystallization time were 

only feasible in the restricted temperature range between 218 and 243 ºC. Thus, the kinetic 

analysis was limited to a region close to the polymer melting point and consequently 

crystallization was mainly governed by the secondary nucleation process. 

Figure 4.3.13 DSC curves of isothermal crystallization at selected 
temperatures of the nylon 47/C30B (dashed lines) and nylon 47/C25A (solid 
lines) nanocomposites. The inset compares the isothermal curves at 230 ºC of 
the neat polymer (▲) and its nanocomposites with C30B (■) and C25A (●). 
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In all cases, spherulites had similar textures and birefringence to those above described for the 

neat polymer. Note that the crystallization range was large enough to cover the two regions 

where different kinds of spherulites were favoured.  
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Figure 4.3.14 a) Plot of the spherulitic growth rate of the neat nylon 47 (▲) and 
its nanocomposites with 3% of C30B (■) and C25A (♦) versus crystallization 
temperature. b) Plot of the nucleation density of the neat nylon 47 (▲) and its 
nanocomposites with 3% of C30B (■) and C25A (♦) versus crystallization 
temperature. Data are plotted using different ordinate scales depending on the 
crystallization temperature (i.e. higher or lower than 230 ºC. 
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Radial growth rates at different isothermal crystallization temperatures (Figure 4.3.14 a) were 

determined from the slopes of the linear dependence between spherulitic radius and 

crystallization time. Significant differences were found between the crystal growth rate curves 

of the neat polymer and its nanocomposites with C25A and C30B clays. Nanocomposites had 

always a lower growth rate, being the decrease more pronounced when the crystallization 

temperature decreased and when exfoliated structures were attained. The presence of 

organoclay particles hampered the lamellar growth but  experimental data points also out that no 

deviation from a linear spherulitic growth (not shown) was produced. Thus, clay particles did 

not seem to be excluded towards the growth front during crystallization in a manner that 

hindered the transport of crystallizable molecules from the melt to the growing edge.  

Optical micrographs taken at the end of the crystallization process revealed noticeable 

differences on the primary nucleation between the neat polymer and its nanocomposites and 

consequently in the number and size of spherulites observed in a given surface. Figure 4.3.14 b 

shows as the nucleation density of the neat polymer and the nanocomposite samples logically 

increased with lowering the crystallization temperature and also that exfoliated and intercalated 

structures led to a decrease and an increase of the nucleation density, respectively. Like reported 

data on other systems, these observations reveal that when good compatibility between silicate 

layers and the polymer matrix is achieved (i.e. an exfoliated structure), spherulite nucleation is 

low as a result of the fine dispersion of silicate layers in the matrix. On the other hand, poor 

compatibility renders an intercalated structure where silicate particles may act as effective 

nucleating agents.36 

In summary, the decrease of the radial growth rate detected for the nanocomposite with the 

C25A clay and prepared by solution intercalation is well compensated by the increase on the 

primary nucleation. Hence, the overall crystallization rate becomes comparable to that 

determined for the neat polymer. In the case of the exfoliated nanocomposite with the C30B 

clay and prepared by melt mixing, crystallization rate decreases as a consequence of  both 

nucleation and crystal growth factors.  

 

4.3.4 Conclusions 
 

Nylon 47 crystallizes at room temperature according to a peculiar structure (form I) that can be 

interpreted in terms of a packing where hydrogen bonds are established along two directions. 

On heating, a structural transition took firstly place at low temperature and then a gradual Brill 

transition towards a pseudohexagonal packing was produced. Structural changes were almost 

reversible on cooling since a Brill transition with a hysteresis effect was firstly detected and 
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then the form II to form I transition partially developed, although it could not be completed 

during the cooling run. 

Spherulites with different textures and birefringences were obtained by varying the 

crystallization temperature. Negative spherulites formed in the low temperature region, 

indicating a molecular arrangement different from that found in conventional even-even nylons 

that gave rise to spherulites with a positive birefringence. Spherulites obtained at low 

supercoolings were mainly constituted by flat micro-crystals that showed reversible optical 

properties with temperature. This peculiar behaviour may be a consequence of the postulated 

structure where small changes on the torsional angles of the odd diamide units could induce a 

variation on the angle between the two hydrogen boding directions and on the birefringence 

sign of the crystalline micro-domains. 

Nanocomposites with intercalated and exfoliated structures could be obtained from nylon 47 

and the C25A and C30B organomodified clays. The final structure mainly depended on the 

preparation method. Specifically, melt mixing favoured the exfoliated distribution whereas 

intercalated structures were obtained by solution intercalation. Incorporation of clay particles 

influenced the overall crystallization rate under both isothermal and non-isothermal conditions. 

In all cases, clay particles decelerated the crystal growth process and had a strong influence on 

the primary nucleation which could be enhanced or disfavoured when intercalated or exfoliated 

structures were respectively achieved.  
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5.1                                                

Poly(Ester Amide) / Clay nanocomposites 

prepared by in situ polymerization of the 

sodium salt of N-chloroacetyl-6-amino-

hexanoic acid.  

 

Preparation of nanocomposites of organo-modified montmorillonites and the biodegradable 

poly(ester amide) derived from glycolic acid and 6-aminohexanoic acid has been evaluated by 

the in situ polymerization technique. The reaction was based on the thermal polycondensation 

of sodium chloroacetylaminohexanoate, which has the formation of the sodium chloride salt as 

the driving force of the process. Polymerized samples were studied by means of X-ray 

diffraction and transmission electron microscopy. The most dispersed structure was obtained by 

addition of C25A organoclay. Evaluation of thermal stability and crystallization behavior of 

these samples showed significant differences between the neat polymer and its nanocomposite 

with C25A. 

Isothermal and nonisothermal calorimetric analyses of the polymerization reaction revealed 

that the kinetics was highly influenced by the presence of the silicate particles. Crystallization of 

the polymer was observed to occur when the process was isothermally conducted at 

temperatures lower than 145 ºC. In this case, dynamic FTIR spectra and WAXD profiles 

obtained with synchrotron radiation were essential to study the polymerization kinetics. Clay 

particles seemed to reduce chain mobility and the Arrhenius pre-exponential factor. 
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5.1.1 Introduction 
 

Preparation of polymer nanocomposites is nowadays an important research subject since 

polymer properties can be enhanced and their range of applications extended by using molecular 

or nanoscale reinforcements rather than conventional fillers.1 Nanocomposites consist in a 

combination of two or more phases where at least one of them is in the nanoscale regime, giving 

rise to a high surface-to-volume ratio.2 The origin of polymer-clay nanocomposites started in 

1986 under Toyota Central Research and Development laboratories as has been widely 

explained by Kawasumi.3 This pioneering work was centered on the preparation of nylon 6 

nanocomposites,4 and used different methodologies as melt mixing5 and thermal 

polymerization.6 First results clearly indicated that characteristics of the neat polymer like 

water-absorption rate, thermal-expansion coefficients and gas barrier properties were modified 

by the incorporation of small amount of clay.7  

Layered silicate particles have some characteristics that make them especially interesting for 

nanocomposite preparation, e.g. their possibility to be dispersed into individual layers with a 

thickness close to 1 nm, and to tune surface interactions through exchange reactions with 

organic and inorganic cations.2,8 The final structure of the composite depends on the extend to 

which the organic matrix and the inorganic clay components are made compatible9 and varies 

from an intercalated to a fully exfoliated nanostructure.  

The in situ intercalation method proceeds via the monomer-induced swelling of the organoclay, 

followed by the in situ polymerization step, initiated either thermally or by the addition of a 

suitable compound. Chain growth within the clay galleries is known to accelerate clay 

exfoliation and nanocomposite formation. In situ interlayer polymerization is a highly attractive 

technique due to its versatility and compatibility with various reactive monomers, making it a 

valuable process for commercial applications.10,11 Several examples concern the preparation of 

polystyrene,12 polycaprolactone13 and nylon 614 nanocomposites. 

Poly(ester amide)s constitute a promising family of materials with some advantages associated 

with the hydrophilic character of their amide groups and the ability to establish strong hydrogen 

bond interactions that may influence both thermal and mechanical properties.15-17 Furthermore, 

the presence of ester groups should ensure degradability, although at a lower rate than in parent 

polyesters.  

We have recently developed a synthesis procedure (Scheme 5.1.1) that allows poly(ester 

amide)s constituted by glycolic acid units and -amino acid units with a regular sequence 

distribution to be obtained.18 The new synthesis is based on a thermal polycondensation reaction 

where the formation of a metal halide salt becomes the driving force of the process.19,20 The 

great simplicity of this method raises interest in this family of polymers characterized by a 
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semicrystalline character that contrasts with the more amorphous nature of copolymers prepared 

by ring opening polymerization.21 Different works have been performed to gain insight into the 

polymerization kinetics, crystalline structure, crystallization kinetics, thermal stability and 

hydrolytic and enzymatic degradability of these new polymers.22-25  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main purpose of this work is the preparation of nanocomposites of the alternating poly(ester 

amide) constituted by glycolic and 6-aminohexanoic acid units (which will be hereafter named 

poly(glc-alt-amh)) via in situ intercalation polymerization. The polymer has been chosen as a 

representative of the new family which in addition is characterized by its good performance 

properties. Furthermore, its composition is based on the most usual units existing in polyesters 

employed for biomedical applications (e.g. polyglycolide) and the commercial polyamides (e.g. 

nylon 6). The second goal is the study of how the presence of a compatible organomodified clay 

may influence the thermal polymerization kinetics of the monomer salt. In this sense, 

calorimetric, spectroscopic and diffraction techniques are combined to gain further insight.  

5.1.2 Experimental Section 

 Materials 

Five different layered phyllosilicates were investigated: pristine sodium montmorillonite 

(NANOFIL 757), organoclay octadecyl ammonium montmorillonite (NANOFIL 848, Süd 

Chemie, ODA), methyl tallow bis(2-hydroxyethyl) ammonium montmorillonite (CLOISITE 

30B, Southern Clay Products, MT2EH), dimethyl dihydrogenated-tallow ammonium 

1. NaOH 

2. HCl

Scheme 5.1.1 Synthesis of poly(glc-alt-amh) by a thermal
polyconensation reaction. 
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montmorillonite (CLOISITE 20A, Southern Clay Products, 2MH2HT) and dimethyl 

hydrogenated-tallow 2-ethylhexyl ammonium montmorillonite (CLOISITE 25A, Southern Clay 

Products, 2MHTEX). All the clays were used as received. The chemical structure of the specific 

surfactant of each OMMT (organo-modified montmorillonite) is presented in Table 1. 

The monomer, sodium chloroacetylaminohexanoate, was synthesized following the previously 

reported method18,22 (Scheme 5.1.1).  
 

 Preparation of nanocomposites 

For each nanocomposite preparation, 10 mg of monomer was dissolved in 10 mL of water, and, 

separately, the appropriate clay was dispersed in water (< 0.1 wt %). Both the monomer solution 

and clay dispersion were stirred for two hours, and then mixed and liophilizated. The ratio of 

the solution and dispersion was conveniently adjusted to obtain a clay content of 3% in the final 

solid. Polymerization was carried out by heating the monomer/clay mixture to 160ºC. A white 

solid was recovered and extensively washed with water, methanol and acetone. 

No significant differences were found between the molecular weights of the neat poly(ester 

amide) and  the different nanocomposites. Thus, average Mw and Mn molecular weights were 

always in the 15,000-17,000 and 37,000-43,000 ranges, respectively, according to GPC 

measurements using 1,1,1,3,3,3-hexafluoroisopropanol as solvent and poly(methyl 

methacrylate) standards. 

 Measurements 
 

Interlayer spacing of the clay was studied by means of wide angle X-ray scattering (WAXD) 

using a Siemens D-500 diffractometer (Karlsruher, Germany) with Cu Kα radiation (λ = 0.1542 

nm).  

Thermogravimetric analyses (TGA) were performed at a heating rate of 20 ºC/min with 

approximately 10 mg samples using a Perkin-Elmer TGA-6 thermobalance and under a flow of 

dry nitrogen.  

The structure and distribution of Cloisite were observed with a Philips TECNAI 10 transmission 

electron microscope (TEM) at an accelerating voltage of 100 kV. TEM specimens were 

prepared by embedding in a low viscosity modified Spurr epoxy resin and curing them at 40°C 

for a few days and then at 60 °C for 6 h. Ultrathin sections (less than 100 nm) were cut at room 

temperature using a Sorvall Porter-Blum microtome equipped with a diamond knife. Finally, the 

sections were collected in a trough filled with water and lifted onto carbon coated copper grids. 

In order to prevent diffusion of the epoxy resin into the polymer film, a thin layer of carbon was 

evaporated over the film surface. 
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Calorimetric data were obtained by differential scanning calorimetry using a TA Instruments 

Q100 series with Tzero technology and equipped with a refrigerated cooling system (RCS) 

operating at temperatures from -90 ºC to 550 ºC. Experiments were conducted under a flow of 

dry nitrogen with a sample weight of approximately 5 mg, while calibration was performed with 

indium. The Tzero calibration involved two experiments: the first was done without samples and 

the second was performed with sapphire disks. 

The spherulite growth rate was determined by optical microscopy using a Zeiss Axioskop 40 

Pol light polarizing microscope equipped with a Linkam temperature control system configured 

by a THMS 600 heating and freezing stage connected to a LNP 94 liquid nitrogen cooling 

system. Spherulites were grown from homogeneous melt-crystallized thin films produced by 

melting 1 mg of the polymer mixture on microscope slides. Next, small sections of these films 

were pressed or smeared between two cover slides and inserted in the hot stage. The thicknesses 

of the squeezed samples were close to 10 m in all cases. Samples were kept at 170 ºC (more 

than 10 ºC above the polymer melting point of 157 ºC) for 5 minutes to wipe out sample history 

effects, and then quickly cooled to the selected crystallization temperature. The radius of the 

growing spherulites was monitored during crystallization by taking micrographs with a Zeiss 

AxiosCam MRC5 digital camera at appropriate time intervals. A first-order red tint plate was 

employed to determine the sign of spherulite birefringence under crossed polarizers.  

Simultaneous time-resolved SAXS/WAXD experiments were carried out at the CRG beamline 

(BM16) of the European Synchrotron Radiation Facility of Grenoble. The beam was 

monochromatized to a wavelength of 0.098 nm. The capillary with the sample was held in a 

Linkam hot stage with temperature control within 0.1 ºC. WAXD profiles were acquired during 

polymerization and crystallization experiments in time frames of 12 s. The WAXD detector was 

calibrated with diffractions of a standard of an alumina (Al2O3) sample. The diffraction profiles 

were normalized to the beam intensity and corrected considering the empty sample background. 

Deconvolution of WAXD peaks was performed with the PeakFit v4 program by Jandel 

Scientific Software using a mathematical function known as “Gaussian area”.  

Infrared absorption spectra were recorded with a Fourier Transform FTIR 4100 Jasco 

spectrometer in the 4000-600 cm-1 range. A Specac model MKII Golden Gate attenuated total 

reflection (ATR) with a heated Diamond ATR Top-Plate which can be used up to 200 ºC, and a 

Series 4000 High Stability Temperature Controller were also utilized. 
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Table 5.1.1 Characteristics of organoclays.a 
 

Clay Type Chemical Structure of Organic 

Modifier 

Nanofil 757 Natural Montmorillonite (Na+) 

 

 

Nanofil 848 

 

 

 

Cloisite 30B 

 

 

 

Cloisite 20A 

 

 

 

Cloisite 25A 

 

a T: tallow (65% C18, 30% C16, 5% C14); HT: hydrogenated-tallow.  
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5.1.3 Results and Discussion 

 Dispersion structure of clay in the composites 

The nanocomposite structure is usually analyzed by X-ray diffraction and transmission electron 

microscopy. Evidence of intercalation of polymer chains into the silicate galleries can be obtained 

from diffraction patterns in the range of 2  = 1-10º when the characteristic silicate diffraction 

peaks appear at  larger spacings than neat clay ones. Similarly, the absence of these peaks may 

suggest an exfoliated structure. 

The position of the silicate (001) diffraction peak, shown by X-ray diffraction profiles, was almost 

the same for the neat clay and the mixture with natural montmorillonite. This result implies that the 

monomer could not establish good interactions with neat Nanofil 757 clay. It is worth noting that 

we might be led to think otherwise by the ionic character of the monomer. However, the best 

experimental results were attained when an organo-modified clay was employed. Indeed, the more 

hydrophobic character of the polymer formed during reaction may have also played a significant 

role.    

In the case of composites with Nanofil 848 and C20A composites, a shift of the silicate diffraction 

peak to larger spacing was observed, suggesting that polymer chains were intercalated in the 

silicate galleries. These shifts changed from 0.89 to 1.46 nm and from 1.26 to 1.50 nm, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.1 X-ray diffraction patterns of neat Cloisite 25A (dotted line) and the
nanocomposite obtained by in situ polymerization of N-chloroacetyl-6-
aminohexanoic acid with 3% clay content (solid line). 
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The poly(glc-alt-amh)/C30B nanocomposite showed that the 001 peak was significantly reduced 

and also shifted to a larger spacing (from 0.91 nm to 1.52 nm). It appears that, in this mixture, 

strong interactions between the carbonyl groups of the monomer and the two hydroxyl groups of 

the modified montmorillonite can be established, giving rise to a certain ratio of an exfoliated 

structure after polymerization. Disordered and exfoliated silicate layers have no periodic stacking, 

and therefore the X-ray diffraction pattern remains silent. This kind of mixed intercalated and/or 

exfoliated structures may be caused by chemical and size inhomogeneities in silica layers. Thus, 

intercalated structures can be due to larger (in lateral size) silicate layers, whereas delamination is 

more favoured by smaller layers.26 

The most interesting result was obtained with the poly(glc-alt-amh)/C25A nanocomposite since the 

characteristic peak of C25A (0.98 nm) disappeared (Figure 5.1.1), suggesting either an exfoliated 

structure or an intercalated one with a wide interlayer spacing distribution.  Direct observation of 

the morphology and phase distribution of the ultrathin sections of C25A specimens by transmission 

electron microscopy (Figure 5.1.2) clearly showed that an intercalated structure was predominant, 

varying the interlayer spacings from 1.4 to 3.2 nm. This appears as a first step towards a fully 

exfoliated structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The C25A organo-modified clay can be easily added in the last step of the monomer synthesis 

(after neutalzation with NaOH, Scheme 5.1.1) and consequently the preparation of the 

nanocomposite seems economically suitable taking also into account the great simplicity of the 

polymerization process. The new nanocomposites may be of great interest since their 

biodegradability confers potential applications as commodity materials.   

100 nm 

Figure 5.1.2 Transmission electron micrograph showing the morphology of the
nanocomposite obtained by in situ polymerization of N-chloroacetyl-6-
aminohexanoic acid in the presence of 3% clay content. Sample was previously
washed with water to eliminate all NaCl crystals. 
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 Thermal Stability 
 

Thermogravimetric scans (Figure 5.1.3) performed with poly(glc-alt-amh) point to a degradation 

process that involved two well differentiated steps. Previous studies suggested that the first step 

was mainly associated with the decomposition of glycolide units.23 The degradation process started 

at over 300 ºC, had a weight loss close to 45% after the first degradation stage (420 ºC) and left a 

significant remaining residue at 550 ºC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Incorporation of C25A slightly decreased the thermal stability of poly(glc-alt-amh)), as shown in 

Figure 5.1.3. Thermogravimetric traces indicated a lower onset degradation temperature and that 

the first decomposition step was attained at a lower temperature (400 ºC). The second 

decomposition step was slower for the nanocomposite since both samples reached a constant 

weight percentage at practically the same temperature. This remaining residue was logically greater 

for the nanocomposite (13% versus to 9%) due to the clay content.  The lower onset degradation 

temperature was probably a consequence of the lower stability of the organo-modifier that was 

added to match the polarity of the clay surface with that of the monomer and to expand the clay 

galleries in order to facilitate monomer/polymer penetration. Differences in thermal stability may 

be also a consequence of the nanoconfinement, which may alter the chemical behaviour of 
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Figure 5.1.3 Thermogravimetric analysis of neat poly(glc-alt-amh) (solid line) and
its nanocomposite with C25A after (dotted line) and before (dashed line) washing
NaCl particles. 
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confined polymer chains, as has recently been proposed.27 The thermogravimetric trace of the 

nanocomposite before water washing mainly differed in the increase of the residue percentage, 

which reached a value close to 40 % due to the inorganic salt content. The temperature at which the 

first decomposition step finished was found again to be close to 400 ºC, although in this case, it is 

remarkable the significant decrease in the onset degradation temperature which became close to 

150 ºC. Thus, the presence of chlorine anions seems to increase the thermal instability of the 

system, and consequently special care must be taken with the control of the polymerization reaction 

temperature in the presence of the organo-modified clay.  
 

 Melt crystallization of the neat poly(ester amide) and its nanocomposite with C25A 

The spherulite radial growth rates (G) of the neat poly(glc-alt-amh) sample and its nanocomposite 

with C25A were determined by means of the evolution of the spherulite radius versus time. Data 

for a representative crystallization temperature of 130 ºC are plotted in Figure 5.1.4 a. It is worth 

pointing out that the linear increase in the spherulite radius indicated that the growth rate was 

independent of spherulites size and suggested that clay particles may not be excluded during 

spherulite growth. Exclusion would imply that non crystallizable particles built up on the 

crystallization growth front and hindered the transport of crystallizable species from the melt to the 

growing edge. Thus, in this case a deviation from the linear spherulite growth should be observed.28 

Nucleation density was higher for the neat poly(ester amide), as deduced from the number of 

spherulites measured in the field of view of the optical microscope (400 versus 240 nucleii/mm2). 

Figure 5.1.4 b and c show optical micrographs obtained at the end of the crystallization process. It 

can be observed that spherulites of the nanocomposite sample became bigger when the 

impingement was attained due to the decrease in its nucleation density. For the same reason, the 

induction time of the crystallization process increased in the case of nanocomposite (data not 

shown).  

Dispersed clays clearly influenced the overall crystallization kinetics since both primary nucleation 

and crystal growth rate led to a deceleration of the crystallization process. Similar observations 

were reported for nanocomposites of poly(butylene succinate-co-adipate) with organically 

modified synthetic fluorine mica where a practically exfoliated structure was observed.29 This 

result contrasts with the increase usually observed in the primary nucleation, especially when the 

clay shows an intercalated structure.30   
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Figure 5.1.4 a) Plot of the
radius of spherulites of the neat
polymer and its nanocomposite
with C25A versus
crystallization time for an
isothermal crystallization
temperature of 130 ºC.  b) and
c) Polarized optical
micrographs showing
spherulites of the neat poly(glc-
alt-amh) sample and its
nanocomposite with C25A,
respectively. Samples were
isothermally crystallized at 130
ºC and then quenched. The
nanocomposite sample was
previously washed to remove
all NaCl crystals formed during
polymeri-zation. 
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Spherulitic textures were also clearly differentiated depending on the presence of clay particles. 

Thus, ringed spherulites with negative birefringence (Figure 5.1.4 b) formed in the neat poly(ester 

amide) at the studied temperature, in agreement with previous works which also reported the 

development of fibrilar textures at crystallization temperatures close to 140 ºC.24 Nanocomposite 

spherulites obtained at 130 ºC also showed negative birefringence and a fibrilar texture (Figure 

5.1.4 c) that was close to that observed in the neat polymer at higher temperatures. Furthermore, the 

lamellar structure appeared slightly irregular or fragmented due to the random incorporation of clay 

particles (deep black regions in the micrograph) into the spherulite. 
 

 Nonisothermal polymerization of the sodium salt of N-chloroacetyl-6-aminohexanoic acid 

and its nanocomposites 

Thermal analysis of polymerization of the neat monomer and its mixture with the different clays 

was performed by differential scanning calorimetry (DSC). Heating scans (Figure 5.1.5) showed 

exothermic peaks indicative of the condensation reaction and the formation of the corresponding 

sodium chloride. 

At the 20 ºC min-1 heating rate, the condensation reaction of the neat monomer took place at a 

temperature (159 ºC) that was slightly higher than the melting temperature of the polymer (157 ºC). 

Hence, the polymer formed during the reaction could not crystallize and a simple exothermic peak 

was found, as previously reported.22  

The scans in Figure 5.1.5 indicate a different thermal behavior when polymerization was 

performed in the presence of clay particles. In this case, a double exothermic peak could be clearly 

detected for all mixtures except for that prepared with Closite 20A, where a single broad peak 

appeared at an intermediate position. It must be pointed out that the relative peak areas changed 

with the type of clay employed. The new exothermic peak appeared at a higher temperature than 

that observed for the neat monomer, which seems an indication of a disfavoured polymerization 

reaction. Clay may influence the polycondensation process since chain mobility should be reduced, 

and consequently the probability that reactive groups reached a close position would decrease. For 

all assayed clays, polymerization always seemed to finish at a similar temperature (185 ºC).  It is 

also interesting to note that the intensity of the new exothermic peak was more significant when 

C25A was used. Note that in this case the nanocomposite is characterized by an intercalated 

structure with a large stacking distance. Thus, the decrease on the chain mobility may be a 

consequence of confinement but also by a high degree of interaction with the organoclay. DSC 

heating scans also showed a small endothermic peak around 100-130 ºC, which may be associated 

with a polymorphic transition and/or the elimination of adsorbed water molecules.  
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Synchrotron experiments were also performed to gain insight the nonisothermal polymerization 

process (Figure 5.1.6 a ). These experiments were conducted from room temperature to 200 ºC by 

heating the monomer/C25A mixture at 20 ºC/min. X-ray profiles clearly showed that all diffraction 

peaks were shifted to lower angles when temperature was increased, as expected from the thermal 

expansion of the unit cell.  The profiles showed two peaks at 2  ~ 19 and 22º corresponding to the 

(100) and (110) reflections of the NaCl structure (~ 0.326 and 0.282 nm, respectively) and different 

peaks in the 14-17º 2range between 14 and 17º corresponding to the monomer structure. The 

intensity of the NaCl peaks clearly increased with temperature, reaching a saturation level at the 

end of the heating scan. In fact, polymerization kinetics could be evaluated by the intensity 

Figure 5.1.5 DSC heating runs performed with the sodium salt of N-chloroacetyl-6-
aminohexanoic acid (a) and its mixture with Cloisite 20A (b), Nanofil 848 (c),
Cloisite 25A (d), Cloisite 30B  (e) and Nanofil 757 (f). The clay content is 3% in all
mixtures. 
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evolution of the representative NaCl peaks. It is worth pointing out that a very small NaCl peak 

could be detected even in the initial sample, suggesting the occurrence of some degree of 

polymerization during storage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.1.6 a shows also that a remarkable variation in the intensity profile of the peaks attributed 

to the monomer took place during the heating step at a temperature between 100-130 ºC, 

suggesting a change on the crystalline structure that could explain the weak endothermic peak 
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Figure 5.1.6 WAXD profiles taken during the nonisothermal
polymerization performed at a heating rate of 20 ºC/min with the
monomer / C25A mixture. The area where the characteristic monomer
and polymer reflections can be observed is shown in (a), whereas the
evolution of the main NaCl reflection is plotted in (b). 
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Figure 5.1.7 WAXD profiles taken during the nonisothermal crystallization that
occurred during a cooling run performed at 20 ºC/min of a nonisothermally 
polymerized monomer / C25A mixture at a heating run of 20 ºC/min. 
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observed in the DSC heating scans. It should be pointed out that polymerization was not highly 

significant during this first step since the intensity of NaCl peaks remained practically constant. 

After this polymorphic transition, the intensity of NaCl peaks started to increase and at the same 

time the monomer peaks gradually became weaker. Finally, an amorphous halo and small peaks 

attributed to (hk0) reflections of the clay were observed when temperature reached a value close to 

190 ºC. It is interesting to note that polymerization finished in an amorphous or liquefied state since 

at this temperature the intensity of NaCl peaks did not reach the saturation level. No polymer 

crystallization was observed in the heating scan, in agreement with DSC observations.  

X-ray diffraction patterns taken during a subsequent cooling run (Figure 5.1.7) revealed that 

polymerization was successful since the characteristic diffraction peaks of poly(glc-alt-amh)25 

appeared progressively. A peak shift towards higher 2 values was logically detected in this scan 

due to the thermal contraction of both polymer and NaCl unit cells. Note also that the intensity of 

NaCl peaks remained constant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



160 

 

 Isothermal polymerization study of the neat monomer and its nanocomposite with C25A.  

DSC traces for the isothermal polymerization of the monomer / C25A mixture at different 

temperatures are shown in Figure 5.1.8 together with the trace corresponding to neat monomer at a 

representative temperature, which is included for comparative purposes. In fact, studies on the 

polymerization of the neat monomer have already been performed and published.25 The DSC traces 

indicated a complex polymerization behavior where an exothermic peak was observed at very short 

reaction times together with a broader one that appeared at higher times. This second peak was 

clearly temperature dependent since it became broader and shifted to higher times when the 

polymerization temperature was decreased, whereas the first peak appeared practically at the same 

reaction time for all the assayed temperatures. This first peak suggests a solid state 

polycondensation process where the terminal groups in the crystal are close enough to react in a 

process that is not strongly temperature dependent. On the contrary, the second peak suggests a 

reaction in an amorphous state where molecular chains must move in order to approach and face up 

the corresponding reactive groups. Thus, temperature became consequently an essential factor that 

allows increasing chain mobility. For all assayed temperatures the polymerization process of the 

neat monomer was faster than for its nanocomposite with C25A, these differences corresponding to 

the time interval at which the second exotherm appeared.  
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Figure 5.1.8  Isothermal DSC polymerization curves obtained with the
monomer / C25A mixture (clay content of 3%) at the indicated
temperatures. For comparative purposes, the polymerization DSC curve
of the neat monomer at a temperature of 135 ºC is also plotted (▲ red
line) 
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Figure 5.1.9 WAXD profiles
taken during the isothermal
polymerization of the monomer
/ C25A mixture performed at
125 (a, b) and 145 ºC (c). The
area where the characteristic
monomer and polymer
reflections can be envisaged is
shown in (a) and (c), whereas
the evolution of the weak NaCl
reflection at 2θ ≈ 19º is shown
in (b). 
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WAXD profiles were also taken during isothermal polymerizations performed at 125 and 145 ºC 

with the monomer/C25A mixture. Figure 5.1.9 clearly shows that monomer peaks progressively 

disappeared whereas, after a certain induction time, the crystallization of the polymer took place. 

Several features can be indicated:  

a) The change in the monomer structure was not noted since it occurred before the high isothermal 

polymerization temperature (125 or 145 ºC) was reached.  

b) Polymerization was not finished when crystallization began, as deduced by comparing the 

evolution of NaCl peaks and those attributed to the polymer.  

c) The time necessary for “melting” as well as the crystallization rate decreased with increasing 

temperature. On the contrary, the polymerization rate increased. Thus, at 125 ºC the last 

polymerization stages should occur in a polymer matrix with a significant degree of 

crystallinity, whereas at 145 ºC the polymer matrix remained mostly in the amorphous state 

(note the low intensity of polymer reflections due to the slower crystallization rate).  

d) The peaks of the monomer, polymer and NaCl were not shifted since the temperature remained 

constant. 

Synchrotron experiments clearly showed that the polymerization and crystallization exothermic 

processes occurred more o less simultaneously when the reaction was isothermally conducted at the 

indicated temperatures. This overlapping made it practically unfeasible to undertake a kinetic 

polymerization analysis considering calorimetric measures. Thus, an approach using infrared 

spectroscopic data was alternatively chosen. 

Figure 5.1.10 a illustrates the change of the infrared spectra at both the beginning and the end of 

polymerization for a selected reaction temperature. Note that amide bands are present in both 

monomer and polymer samples but the corresponding wavenumber is logically shifted because of 

the different crystalline structure and the different molecular interactions. The continuous evolution 

of the amide I band is shown in Figure 5.1.10 c as an example. The polymerization process could 

be followed more easily considering bands coming from specific groups originated by the 

condensation reaction, such as the C=O absorption band at 1742 cm-1, as can be observed in Figure 

5.1.10 b. Finally, the intensity of specific bands of the monomer decreased significantly during 

reaction, as in the case of the carboxylate group at 1553 cm-1.  However, its overlapping with the 

amide II band made its use unfeasible for kinetic evaluation purposes.  

Absorbance measurements of representative peaks were used to evaluate the relative conversion 

degree, ( t ), for a given reaction time, t. Thus, for a peak that appears during reaction the 

following equation can be applied: 

( t ) = [At - A0] / [A∞ - A0]   (5.1.1) 

where At is the absorbance measurement at time t, and A∞ and A0 are, respectively, the final and 

initial peak intensities during the isothermal polymerization.  
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Figure 5.1.10 a) Absorbance
FTIR spectra (1800-1000 cm-1)
at the beginning and at the end
of the polymerization reaction
performed at 100 ºC with the
monomer / C25A mixture.  b)
Evolution  of  the  bands
associated  with  the  carboxylic
ester group (1742 cm-1). c)
Evolution of the bands
associated with the amide I
(1680-1620 cm-1) 
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Figure 5.1.11 illustrates a similar evolution for the bands at 1741 and 1153 cm-1, which are 

associated with the C=O and C-O bonds of the ester groups formed during  polycondensation. In 

fact, the relative conversion degree reached the maximum value at 140 ºC after 18 minutes of 

reaction in both cases. It is also clear that the amide I band of the polymer sample (1654 cm-1) 

evolved with an initial delay, which may indicate that an induction period was required for the 

initial monomer structure to become the final polymer structure. However, it should also be 

considered that this absorbance band is difficult to be measured with accuracy due to the two strong 

close bands and consequently the observed discrepancy bay not be of a fundamental nature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data plotted at a temperature at which the polymer crystallized completely at the end of reaction 

(e.g. 130 ºC) show that the maximum degree of conversion was reached after approximately 28 

minutes, regardless of using this band or that associated with the appearing C=O ester group. 

The 1742 cm-1 band was selected to perform a kinetic polymerization analysis since it seemed 

capable of rendering the most accurate data. For all studied polymerization temperatures, the 

reaction took place more rapidly for the neat monomer than for the monomer/clay mixture, as 

shown in Figure 5.1.12 a, for a representative temperature of 130 ºC, a feature that was in 

agreement with the DSC calorimetric data. Figure 5.1.13 plots the relative conversion curves at the 

studied temperatures of 100, 120, 130 and 140 ºC for the polymerization of the monomer/C25A 

mixture. The values of the half conversion time (1/2) are summarized in Table 5.1.2 for all 

experiments. Note that they could be easily estimated from the conversion curves (e.g. those given 

Figure 5.1.11 Plots of conversion versus reaction time for the
isothermal polymerization performed with the monomer / C25A
mixture at temperatures of 140 and 130 ºC. Conversions were
determined by absorbance measures of different IR peaks during 
the reaction process. 
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in Figure 5.1.13), and consequently the assumption of a determined kinetic model was 

unnecessary.  

 

 

 

 

Evolution of the relative conversion degree with reaction time could also be estimated by the 

measurement of the area of a NaCl reflection observed in the WAXD profiles acquired with 

synchrotron radiation (i.e. that appearing near 22.5º). Equation 5.1.1 was applied by changing the 

absorbance values by the corresponding areas. Figure 5.1.13 also plots the conversion curves 

deduced from diffraction data for the polymerization of the monomer/clay mixture at 125 and 145 

ºC. It is clear that good agreement exists between analyses performed by FTIR and WAXD 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

R
el

at
iv

e 
C

on
ve

rs
io

n
 

t-t0 (min)

neat monomer at  130 ºC

monomer/C25A mixture at
130 ºC

-0.8

-0.5

-0.2

0.1

0.4

0.7

0.5 0.7 0.9 1.1 1.3 1.5 1.7

lo
g[

-l
n

(1
-α

(t
))

]

log (t-t0) 

neat monomer at
130 ºC

monomer/C25A
mixture at 130 ºC

a)

b)

Figure 5.1.12 a) Comparison of the conversion evolution between the neat
monomer and the monomer / C25A mixture at the isothermal polymerization
temperature of 130 ºC. Only the absorbance of the 1742 cm-1 band was considered.
b) Avrami plots for the polymerizations carried out with the neat monomer and the
monomer / C25A mixture at a representative temperature of 130 ºC 
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methodologies. However, in this case, FTIR has an economic advantage if only a kinetic study 

must be performed.  

 

Table 5.1.2 Polymerization kinetic parameters deduced from the 1740 cm-1 band. 
 

  
T (ºC) 1/2 

(min) 
log Z Z (min-n) n k (min-1) 

Neat monomer  100 89.0 -3.30 5.0·10-4 1.59 0.0084 

Neat monomer 120 23.5 -2.13 7.4·10-3 1.50 0.0380 

Neat monomer  130 7.8 -1.12 7.5·10-2 1.22 0.1196 

Neat monomer  140 5.0 -0.64 2.3·10-1 0.87 0.1847 

Monomer/C25A mixture 100 102.9 -3.95 1.1·10-4 1.80 0.0063 

Monomer/C25A mixture 120 27.9 -1.99 1.0·10-2 1.31 0.0297 

Monomer/C25A mixture 130 16.5 -1.82 1.5·10-2 1.42 0.0519 

Monomer/C25A mixture 140 7.0 -0.74 1.8·10-2 0.93 0.1583 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evolution of the relative conversion degree with reaction time could also be estimated by the 

measurement of the area of a NaCl reflection observed in the WAXD profiles acquired with 

synchrotron radiation (i.e. that appearing near 22.5º). Equation 5.1.1 was applied by changing the 

absorbance values by the corresponding areas. Figure 5.1.13 also plots the conversion curves 

deduced from diffraction data for the polymerization of the monomer/clay mixture at 125 and 145 

Figure 5.1.13 Relative conversion curves for the monomer / C25A mixture at
different temperatures. Data were obtained from FTIR spectra considering the
absorbance of the 1742 cm-1 band (full symbols) and WAXD profiles
considering the intensity associated with the most intense NaCl peak (empty
symbols). 
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ºC. It is clear that good agreement exists between analyses performed by FTIR and WAXD 

methodologies. However, in this case, FTIR has an economic advantage if only a kinetic study 

must be performed.  

In a first approximation, the Avrami model was considered adequate to analyze the polymerization 

kinetics since it was previously applied for similar systems.22,31 Obviously, an accurate analysis 

requires the determination of the best kinetic model. In this way, conversion was considered to be 

defined by Equation 5.1.2, where Z and n are the corresponding Avrami parameters:  

(t) = 1 - exp(-Z t n)                   (5.1.2) 

Plots of log [-ln(1- α(t)) ] versus log (t) at different reaction temperatures always gave straight lines 

(i.e. those in Figure 5.1.12 b, where the polymerizations of the neat monomer and its mixture with 

C25A are compared) which confirm the suitability of the Avrami reaction model. The slopes of 

these lines correspond to the Avrami exponent, n, and their intercepts at the origin to log Z. 

Moreover a kinetic constant (k) with units independent of the Avrami exponent was calculated 

from Z1/n. These parameters are summarized in Table 5.1.2 for the two studied systems and the four 

assayed temperatures. As expected, the kinetic constant increased with the polymerization 

temperature. The given data clearly indicate that the kinetic constant for the polymerization of the 

neat monomer was higher than the corresponding one for the reaction in the presence of the clay. 

The activation energy for the polymerization of the neat monomer and its mixture with C25A was 

derived by assuming an Arrhenius-type dependence on temperature for the kinetic constant 

(Equation 5.1.3), where E, A and R are the activation energy, the pre-exponential frequency factor 

and the universal gas constant, respectively: 

   (5.1.3) 

 

Plots of ln k versus 1/T (Figure 5.1.14) allowed activation energies of 101.0 and 99.3 kJ/mol to be 

deduced for the polymerization of the sodium salt of N-chloroacetyl-6-aminohexanoic acid and its 

mixture with C25A, respectively. The values of the activation energies were practically identical, 

and therefore the differences in the kinetic constant value were only a consequence of the 

frequency factor, which was clearly lower for the nanocomposite, suggesting again more restricted 

chain mobility when the clay was present.  
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5.1.4 Conclusions  
 

C25A organo-modified montmorillonite has proved to be effective for the preparation of 

nanocomposites of the degradable alternating poly(ester amide) constituted by glycolic acid and 6-

aminohexanoic acid units by the in situ polymerization technique. X-ray diffraction patterns 

indicate that the characteristic interlayer peak of the silicate structure was absent in the 

nanocomposite, whereas transmission electron micrographs reveal that an intercalated structure 

with a wide interlayer spacing distribution was obtained. The presence of clay slightly diminished 

the thermal stability of the polymer, probably due to the presence of the organo-modifier 

compound. Nevertheless, the melting temperature was clearly lower than the temperature at which 

decomposition started. Optical microscopy studies revealed that the crystallization rate diminished 

in the nanocomposite since both nucleation density and crystal growth rate were lower for the 

nanocomposite sample. This feature has been reported for nanocomposites of materials 

characterized by an exfoliated structure. 

Polymerization kinetics was strongly influenced by the presence of organo-modified 

montmorillonites under both nonisothermal and isothermal conditions. Furthermore, the reaction 

process was rather complicated when polymerization temperatures lower than 145 ºC were 

selected. In this case polymer crystallization occurred before the polymerization reaction was 

finished. WAXD profiles revealed changes in the monomer structure and the range where the 

reaction proceeded in a liquefied state. Polymerization kinetics was evaluated by both FTIR and 

WAXD experiments following the time evolution of the 1742 cm-1 absorption band of the ester 

Figure 5.1.14 Plot of ln k versus the reciprocal of the polymerization 
temperature for the neat monomer and the monomer/C25A mixture 
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groups or the diffraction intensity of the (110) NaCl reflection, respectively. The temperature 

dependence of the polymerization kinetic constant allowed inferring that kinetic differences 

between the polymerization of the neat monomer and its mixture with C25A could be attributed to 

the pre-exponential frequency factor. In this way, clay particles seemed to reduce chain mobility 

and the frequency at which reactive groups were close enough to facilitate the condensation 

reaction.  
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5.2                                                            

Poly (ester amide) nanocomposites by in situ 

polymerization: kinetic studies on 

polycondensation and crystallization 

 

Preparation of nanocomposites by in situ polymerization of sodium chloroacetylaminohexanoate in 

the presence of cloisite 20A (C20A) or cloisite 30B (C30B) organo-modified montmorillonites was 

studied. Both clays rendered an intercalated structure that contrasts with the exfoliated structure 

previously found with the use of the C25A montmorillonite. Polymerization under non-isothermal 

and isothermal conditions was evaluated by Wide Angle X-ray Diffraction (WAXD) synchrotron 

radiation and Fourier Transform Infrared Spectroscopy (FTIR) experiments. Results indicate that 

C20A and C30B had a similar influence on the polymerization kinetics. Thus, the activation energy 

and the Arrhenius preexponential factor decreased compared to those calculated for the neat 

monomer. Clear differences were also found when using the C25A clay since, in this case, 

polymerization had similar activation energy to that determined for the neat monomer.  

The crystallization kinetics of the intercalated C20A and C30B nanocomposites was studied by 

FTIR and optical microscopy. The incorporation of clay particles increased the overall rate kinetic 

constant due to the enhancement of the primary nucleation. On the contrary, the spherulitic growth 

rate was slightly disfavored by the clay. 
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5.2.1  Introduction  
 

The preparation of new polymer nanocomposites is a promising topic since material properties can 

be enhanced and their range of applications extended by using molecular or nanoscale 

reinforcements rather than conventional fillers [1-5]. Since the first works performed with nylon 6 

[6,7], several polymer based systems and preparation methodologies such as melt-mixing, solution 

intercalation and in situ polymerization have been developed. Results clearly demonstrate that 

properties of the neat polymer like water-absorption rate, thermal-expansion coefficients, Young 

modulus, thermal stability and gas barrier effect can be improved by the incorporation of a small 

amount of clay, and also that the crystallization kinetics can be affected.  

Layered silicate particles are especially interesting for nanocomposite preparation as they may be 

dispersed into individual layers with a thickness close to 1 nm to tune surface interactions with the 

polymer/monomer through exchange reactions with organic and inorganic cations [8]. The final 

structure of the composite depends on the extent to which the organic matrix and inorganic clay 

components are made compatible [9], and varies from an intercalated to a fully exfoliated 

nanostructure, which has an obvious impact on the final properties. Despite extensive research, 

the influence of nanocomposite structure on nucleation and crystal growth rate is not 

entirely clear in view of the conflicting results reported in some cases [10-14].  

Aliphatic poly(ester amide)s constitute a promising family of materials since the presence of 

hydrolyzable ester groups may enhance degradability, and the establishment of intermolecular 

hydrogen bonding interactions between amide groups may provide suitable thermal and mechanical 

properties for most applications [15-19]. Furthermore, several monomers and synthetic routes have 

been developed to obtain materials with variable composition and chemical microstructure, which 

can consequently meet numerous requirements. The alternating poly(ester amide) derived from 

glycolic acid and 6-aminohexanoic acid  (poly(glc-alt-amh)) has recently received attention for two 

main reasons: a) The simple synthesis procedure based on only two reaction steps (Figure 5.2.1 a) 

and b) A composition based on the main units of biodegradable polyesters (glycolic acid) and 

aliphatic polyamides (6-aminohexanoic acid). 

Poly(glc-alt-amh)) is obtained by a thermal polycondensation reaction based on the formation of a 

metal halide salt as the driving force of the condensation reaction [20,21], which seems an 

appropriate procedure to prepare nanocomposites by in situ polymerization. This is a highly 

attractive technique due to its versatility and compatibility with various reactive monomers, making 

it a valuable process for commercial applications [22,23]. Several examples in the literature 

concern the preparation of polystyrene [24], polycaprolactone [25] and nylon 6 [26] 

nanocomposites. 
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The in situ polymerization technique was effective and rendered practically exfoliated 

nanocomposites of poly(glc-alt-amh) and the Cloisite 25A (C25A) organo-modified 

montmorillonite [27]. Typical calorimetric techniques were not suitable for proper evaluation of the 

polymerization kinetics at temperatures lower than 145 ºC due to the overlapping of the exothermic 

polymerization peak with an endothermic peak associated with polymer crystallization. Thus, 

Fourier Transform Infrared Spectroscopy (FTIR) was a basic tool to compare and study the 

influence of clay particles on the polymerization kinetics. Nanocomposites prepared by the above 

in situ polymerization and the melt mixing technique gave rise to two different structures (i.e. 

exfoliated and intercalated) that clearly influenced the crystallization kinetics [27,28]. The main 

purpose of the present work is to determine the effect of montmorillonites based on two different 

surfactants (Cloisite C30B and Cloisite C20A) on in situ polymerization and to study the 

crystallization kinetics of the derived nanocomposites. The polymerization kinetics is evaluated 

through real-time synchrotron and FTIR experiments whereas the crystallization kinetics is studied 

through FTIR to obtain the overall crystallization rate and optical microscopy measurements to 

determine the nucleation and crystal growth rates.  

HT: hydrogenated tallow; T: tallow 
(65% C18, 30% C16, 5% C14). 

CLOISITE 20A

N+

HT

CH3

HT

H3C

CLOISITE 30B

N+

T

CH2CH2OH

CH2CH2OH

H3C

ClCH2CONH(CH2)5COO-
 Na+ 


Vacuum 

-[OCH2CONH(CH2)5CO]x- + NaCl 

Poly(glc-alt-amh)

a) 

b) 

NaOH

ClCH2COCl + NH2(CH2)5COOH  

Figure 5.2.1 a) Synthesis scheme for the poly(ester amide) studied in this
work. b) Chemical structure of Cloisites 20A and 30B. 
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5.2.2 Experimental section  

  Materials 

The monomer, sodium chloroacetylaminohexanoate, was synthesized following a previously 

reported method [20,21]. All reagents and solvents were purchased from Aldrich Chemical 

Company, (Milwaukee, WI, USA) and used as received. Polymerization was based on a thermal 

polycondensation which rendered sodium chloride as a byproduct (Figure 5.2.1a) [20,21].   

The nanocomposites were based on two organomodified layered phyllosilicates: methyl tallow 

bis(2-hydroxyethyl) ammonium montmorillonite (Cloisite 30B, Southern Clay Products, MT2EH 

Gonzales, Texas, USA) and dimethyl dihydrogenated-tallow ammonium montmorillonite (Cloisite 

20A, Southern Clay Products, 2MH2HT. Gonzales, Texas, USA). The chemical structure of the 

employed montmorillonite surfactants is shown in Figure 5.2.1 b. 

 Preparation of nanocomposites 

For both nanocomposite preparations, 10 mg of monomer was dissolved in 10 mL of water, and 

separately, the appropriate clay was dispersed in water (< 0.1 wt %). The monomer solution and 

clay dispersion were stirred for two hours, and then mixed and liophilizated. The ratio of the 

solution and dispersion was conveniently adjusted to obtain a clay content of 3 wt% in the final 

solid. Polymerization was carried out by heating the monomer/clay mixture to 160 ºC. A white 

solid was recovered and extensively washed with water, methanol and acetone. For comparison 

purposes, polymerization without organoclay was also performed and the final sample purified as 

above. 

No significant differences were found between the molecular weights of the neat poly(ester amide) 

and the two prepared nanocomposites. Thus, average Molecular weight (Mw) and Number Average 

Molecular Weight  (Mn) molecular weights were always in the 14,000-17,000 and 37,000-43,000 

ranges, respectively, according to Gel Permeation Chromatography (GPC) measurements using 

1,1,1,3,3,3-hexafluoroisopropanol as the solvent and poly(methyl methacrylate) standards. 

 Measurements 

Interlayer spacing of the clay was studied by wide angle X-ray diffraction (WAXD) using a 

Siemens D-500 diffractometer (Karlsruher, Germany) with Cu Kα radiation (λ = 0.1542 nm).  

The structure and distribution of Cloisite were observed with a Philips TECNAI 10 (FEI/Philips 

Electron Optics, Eindhoven, Netherlands) transmission electron microscope (TEM)  at an 

accelerating voltage of 100 kV. TEM specimens were prepared by embedding in a low viscosity 

modified Spurr epoxy resin and curing at 40°C for a few days and then at 60 °C for 6 h. Ultrathin 

sections (less than 100 nm) were cut at room temperature using a Sorvall Porter-Blum microtome 

equipped with a diamond knife. Finally, the sections were collected in a trough filled with water 
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and lifted onto carbon coated copper grids. In order to prevent diffusion of the epoxy resin into the 

polymer film, a thin layer of carbon was evaporated over the film surface. 

The spherulitic growth rate was determined by optical microscopy using a Zeiss Axioskop 40 Pol 

light polarizing microscope equipped with a Linkam temperature control system configured by a 

THMS 600 heating and freezing stage connected to a Liquid Nitrogen Pump (LNP) 94 cooling 

system. Spherulites were grown from homogeneous melt-crystallized thin films produced by 

melting 1 mg of the polymer mixture on microscope slides. Next, small sections of these films were 

pressed or smeared between two cover slides and inserted in the hot stage. The thicknesses of the 

squeezed samples were close to 10 m in all cases. Samples were kept at 170 ºC (more than 10 ºC 

above the polymer melting point of 157 ºC) for 5 minutes to wipe out sample history effects, and 

then quickly cooled to the selected crystallization temperature. The radius of the growing 

spherulites was monitored during crystallization by taking micrographs with a Zeiss AxiosCam 

MRC5 digital camera at appropriate time intervals. A first-order red tint plate was employed to 

determine the sign of spherulite birefringence under crossed polarizers.  

Time-resolved WAXD experiments were carried out at the Collaborating Research Group (CRG) 

beamline (BM16) of the European Synchrotron Radiation Facility of Grenoble. The beam was 

monochromatized to a wavelength of 0.098 nm. Monomer/clay samples were confined between 

Kapton films and then held in a Linkam hot stage with temperature control within 0.1 ºC. WAXD 

profiles were acquired during polymerization and crystallization experiments in time frames of 12 

s. The WAXD detector was calibrated with diffractions of a standard of an alumina (Al2O3) sample. 

The diffraction profiles were normalized to the beam intensity and corrected considering the empty 

sample background. Deconvolution of WAXD peaks was performed with the PeakFit v4 program 

by Jandel Scientific Software using a mathematical function known as “Gaussian area”.  

Infrared absorption spectra were recorded with a Fourier Transform FTIR 4100 Jasco spectrometer 

Jasco International Co. Ltd. (Tokyo, Japan) in the 4000-600 cm-1 range. A Specac model MKII 

Golden Gate attenuated total reflection (ATR) with a heated Diamond ATR Top-Plate which can 

be used up to 200 ºC, and a Series 4000 High Stability Temperature Controller were also utilized. 

5.2.3 Results and discussion  

 Dispersion structure of C20A and C30B clays in the poly(glc-alt-amh) composites 

 C20A and C30B organomodified clays were easily mixed with the sodium salt of N-chloroacetyl-

6-aminohexanoic acid before performing thermal polycondensation at a temperature close to 160 

ºC. The final nanostructures were analyzed by X-ray diffraction and transmission electron 

microscopy. Evidence of intercalation of polymer chains into the silicate galleries can be obtained 

from diffraction patterns in the range of 2  = 1-10º, when the characteristic silicate diffraction 

peaks appear at larger spacings than neat clay ones. Similarly, the absence of these peaks may 
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suggest an exfoliated structure. Direct TEM morphological observation is always advisable to 

corroborate diffraction data although TEM images show a local distribution that also depends on 

how the sample was previously cut. 

Direct observation of the morphology and phase distribution of ultrathin sections of poly(glc-alt-

amh)/C20A specimens by transmission electron microscopy clearly showed that an intercalated 

structure was predominant (Figure 5.2.2 a). X-ray diffraction profiles of the nanocomposite sample 

also revealed the existence of a low angle reflection associated with the stacking of silicate layers. 

The measured spacing was close to 3.58 nm, a higher value than that observed in the profile of 

C20A clay (2.52 nm). Thus, polymer chains in the nanocomposite sample were intercalated in the 

galleries of the dispersed clay and increased the interlayer spacing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The poly(glc-alt-amh)/C30B nanocomposite showed that the 001 peak was significantly reduced 

and also shifted to a larger spacing (from 1.80 nm to 2.89 nm). Interactions between the carbonyl 

groups of the monomer and the two hydroxyl groups of the modified montmorillonite may be 

established, thus favouring a certain ratio of an exfoliated structure after polymerization. This 

feature is however only supported by the great decrease of the silicate reflection and a certain loose 

of the layer stacking order as shown in the electron micrograph of Figure 5.2.2 b. Despite the final 

structure could be considered intercalated,  a less regular layer disposition than poly(glc-alt-

amh)/C20A samples was found.  

a) b) 

 4 m  8 m 

4.91º

 

3 06º

2 

I 
(a

.u
.)

 

3.51º      

2.47º 

2 

I 
(a

.u
.)

 

2.52 nm 

3.58 nm 

1.80 nm 

2.89 nm 

Figure 5.2.2  Transmission electron micrographs showing the morphology of the
poly(glc-alt-amh)/C20A (a) and  poly(glc-alt-amh)/C30B nanocomposites with a 
Cloisite concentration of 3%. Inset shows the diffraction peak associated with the 
interlayer spacing observed in the pure organomodified clay (solid line) and the 
corresponding nanocomposite sample (dashed line). 
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  Non-isothermal polymerization of the sodium salt of N-chloroacetyl-6-aminohexanoic acid 

with C20A and C30B organomodified clays 

Synchrotron experiments were performed to compare the non-isothermal polymerizations of the 

monomer mixtures with each of the considered clays. The diffraction profiles initially showed the 

characteristic Bragg reflections of the monomer, which were most intense at values of the 

scattering vector, q = [4/] sin (), in the 14-17 nm-1 range (Figure 5.2.3). At a temperature close 

to 130 ºC the monomer underwent a structural change, as evidenced by the variation in intensities 

and spacings of the main reflections (Figure 5.2.4). Note that the intensities of reflections close to 

15.4 nm-1 and 15.7 nm-1 increased and slightly decreased, respectively. The intensity increase is 

relevant since the occurrence of polycondensation reactions should lead to the destruction of the 

monomer crystal structure, and consequently to a gradual disappearance of all corresponding 

reflections.  

At temperatures higher than 150 ºC, the X-ray diffraction profiles showed the appearance of two 

peaks at q ~ 19 and 22 nm-1 of gradually increasing intensity (Figure 5.2.3). These, which could be 

indexed as the (100) and (110) reflections of the NaCl structure (~ 0.326 and 0.282 nm, 

respectively), demonstrated the occurrence of the polycondensation reaction. Note that a delay 

between polymerization and formation of the inorganic salt crystal may occur since ions must 

move towards the growing crystal. 

The evolution of NaCl peak intensities is useful to follow the polymerization process and even to 

demonstrate that polycondensation started in the solid state. It is worth pointing out that reflections 

related to the monomer structure were still visible when NaCl peaks developed. Logically these 

reflections became weaker when NaCl peaks started to increase and disappeared completely before 

these peaks reached maximum intensity. Diffraction profiles clearly revealed that the polymer was 

not able to crystallize under the assayed non-isothermal conditions since some of its characteristic 

reflections [29] were not detected. The polymer structure is defined by an orthorhombic unit cell 

having a = 0.477 nm, b = 0.873 nm and c = 1.057 nm and the corresponding diffraction pattern is 

characterized by strong Bragg reflections in the 14.4-16.2 nm-1 range. Specifically, the (020), (101), 

(110) and (111) reflections that appeared at 0.437, 0.435, 0.418 and 0.389 nm. At high temperature 

(190-200 ºC) only an amorphous halo, the NaCl reflections and even small peaks attributed to (hk0) 

reflections of the clay were observed. 

Figure 5.2.5 plots the area of the (100) NaCl peak versus temperature for the two studied 

polymerizations. A similar evolution was observed but, remarkably, some differences were 

detected, indicating that clay type has some influence on the polymerization kinetics. Specifically, 

the polymerization induction time was shorter when C20A clay was employed (i.e. the peak started 

to develop at temperatures of 110 and 140 ºC for C20A and C30B, respectively) whereas the 
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reaction proceeded more rapidly when C30B was used (i.e. the peak developed in the 140-193 ºC 

and 110-196 ºC ranges for C20A and C30B, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.2.3 WAXD profiles taken during the non-isothermal polymerization
performed at a heating rate of 20 ºC/min with the monomer / C20A mixture (b) and
the monomer / C30B mixture (b). Insets show the evolution of the weak (100) NaCl
reflection.  
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Figure 5.2.5 Intensity evolution of the (100) Bragg reflections of the NaCl structure (~
0.326 nm) during non-isothermal polymerization (20 ºC/min) of the monomer / C20A (□)
and monomer / C30B (■) mixtures.  
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X-ray diffraction patterns taken during a subsequent cooling run (e.g. Figure 5.2.6) revealed 

that polymerizations were successful since the mentioned characteristic diffraction peaks 

of poly(glc-alt-amh) [29] appeared and progressively increased in intensity. Logically, the 

intensity of NaCl peaks remained constant during the cooling run. 

 Isothermal kinetic analysis of in situ polymerization of C20A and C30B clay mixtures with 

N-chloroacetyl-6-aminohexanoic acid  

The occurrence of the above monomer polymorphic transition and polymer crystallization should 

have endothermic/exothermic effects that make it impossible to evaluate the isothermal 

polymerization kinetics by DSC experiments. Note that these should only measure the exothermic 

enthalpy associated with the polycondensation reaction, which, in the studied case, is not possible 

due to the overlapping with the above processes. Thus, FTIR spectroscopy seems an ideal 

alternative technique given that the polymerization rate can be determined from the absorbance 

evolution of the new bonds that are formed. 

The main changes in the FTIR spectra occurring during polymerization correspond to the 

appearance of a C=O absorption band at 1742 cm-1, which is associated with the ester bond formed 

during polycondensation and a change in the wavenumber of the amide I absorption band (Figure 

5.2.7). The latter should be found in both monomer and polymer samples but the different 

intermolecular hydrogen bond interactions should lead to a variation in the peak position and 

corresponding intensity.  

111  

0.389 nm

   110  

0.418 nm
     020  

0.437 nm 

    101  

0.435 nm

I(
a.

u
.)

 

q (nm-1) 

Figure 5.2.6 WAXD profiles taken during the non-isothermal crystallization performed at 
a cooling rate of 20 ºC/min and after non-isothermal polymerization of the 
momomer/C20A mixture at a heating rate of 20 ºC/min. Insets show a magnification of the 
Bragg reflections corresponding to the poly(glc-alt-amh) structure. 
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Absorbance measurements of the above peaks during isothermal polymerizations were used 

(Equation 5.2.1)  to evaluate the relative conversion degree, ( t ), for a given reaction time, t: 

( t ) = [At - A0] / [A∞ - A0]    (5.2.1) 

where At is the absorbance at time t, and A∞ and A0 are, respectively, the final and initial 

absorbances.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.8 a compares the time evolution of the bands at 1742 and 1654 cm-1 for polymerizations 

carried out at different temperatures and in the presence of the C20A clay. For a given clay the 

evolution of the two bands is quite similar although slight differences were found when 

polymerization was performed at higher temperatures (i.e. at higher polymerization rates). As will 

be explained, the addition of clay particles and even their nature had an influence on the 

polymerization kinetics.  

The 1742 cm-1 band was selected to perform a polymerization kinetic analysis since it seemed 

capable of rendering the most accurate data since it is not overlapped with other bands. The Avrami 

model was considered to examine the polymerization kinetics as it was previously applied for in 

situ polymerization using C25A clay and other similar systems [21,27,30]. This is a rough 

approximation that makes unnecessary a detailed study of the kinetic model but can provide useful 

values for comparison purposes. Conversion was then calculated by equation 5.2.2: 

(t) = 1 - exp(-Z (t-t0) 
n)                                (5.2.2) 

where Z and n are the corresponding Avrami parameters and t0 the time at which polymerization 

starts. 
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Figure 5.2.7 Absorbance FTIR spectra showing the evolution of the bands associated with
the carboxylic ester group (1742 cm-1) and amide I (1680-1620 cm-1) during isothermal
polymerizations of the  momomer/C30B mixture at 110 ºC. 
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Figure 5.2.8 a) Plots of conversion versus reaction time for the isothermal
polymerization of the momomer/C20A mixture at 140, 130, 120 and 110 ºC.
Conversions were determined by absorbance measurements of 1742 and 1654 cm-1

FTIR peaks during the reaction process. b) Avrami plots for the polymerizations of
the momomer/C20A mixture at the indicated temperatures. 
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Table 5.2.1 Polymerization kinetic parameters deduced from FTIR absorbance measurements of the 1742 
cm-1 band. 
 

 
T (ºC) 1/1/2 (min-1) Z (min-n) n k(min-1) 

Monomer/C20A mixture 110 0.033 4.00 10-5 2.79 0.027 

Monomer/C20A mixture 120 0.049 1.43 10-3 2.01 0.038 

Monomer/C20A mixture 130 0.087 3.20 10-2 1.22 0.060 

Monomer/C20A mixture 140 0.120 1.11 10-1 0.86 0.081 

Monomer/C30B mixture 110 0.033 3.89 10-3 1.51 0.025 

Monomer/C30B mixture 120 0.050 3.18 10-3 1.76 0.038 

Monomer/C30B mixture 130 0.083 3.89 10-3 1.98 0.060 

Monomer/C30B mixture 140 0.134 7.19 10-2 1.14 0.098 

Monomer/C25A mixturea 100 0.010 1.12 10-4 1.80 0.006 

Monomer/C25A mixturea 120 0.036 1.02 10-2 1.31 0.030 

Monomer/C25A mixturea 130 0.060 1.51 10-2 1.42 0.052 

Monomer/C25A mixturea 140 0.142 1.82 10-1 0.93 0.158 

Neat monomera 100 0.011 5.01 10-4 1.59 0.008 

Neat monomera 120 0.042 7.41 10-3 1.50 0.038 

Neat monomera 130 0.128 7.58 10-2 1.22 0.120 

Neat monomera 140 0.200 2.2910-1 0.87 0.185 

ª Data from reference [27] 

 

Plots of log [-ln(1- α(t)) ] versus log (t) at different reaction temperatures gave straight lines with 

slopes corresponding to the Avrami exponent, n, and their intercepts at the origin to log Z (e.g. 

Figure 5.2.8 b for polymerizations carried out  with C20A). Moreover, a kinetic constant (k) with 

units independent of the Avrami exponent was calculated from Z1/n. These parameters are 

summarized in Table 5.2.1 for the two studied systems and the four assayed temperatures, together 

with the reciprocal of half conversion times (1/2). Note that these times could be easily estimated 

from the conversion curves, and consequently without assuming a specific kinetic model. As 

expected, the kinetic constant increased with the polymerization temperature and evolved similarly 

to the reciprocal of the half polymerization time, 1/1/2, as shown in Figure 5.2.9 a for the 

polymerization with C20A. This good agreement is relevant since the Avrami analysis results are 

corroborated by direct experimental measurements such as half polymerization times. 

For comparative purposes, Table 5.2.1 also includes previous data on the polymerization of the 

neat monomer and its mixture with C25A (3 wt%) [27]. It is clear that the overall rate kinetic 
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constant of these two samples increased drastically with increasing temperature whereas a 

moderate change was observed for polymerizations carried out with C20A and C30B. In this way, 

the neat monomer had a lower and higher polymerization rate than the C20A and C30B mixtures at 

110 and 140 ºC, respectively. The influence of temperature on the conversion degree is shown in 

Figure 5.2.9 b, where simulated curves from Avrami parameters are plotted for all samples at the 

intermediate temperatures of 130 and 120 ºC. It is worth pointing out that the neat monomer has the 

fastest conversion at 130 ºC but its polymerization rate becomes comparable with that found for the 

C20A and C30B mixtures when the temperature decreased to 120 ºC. Comparison data clearly 

demonstrated that clay particles influenced the polymerization rate and that the effect of clays that 

rendered a predominant intercalated structure (C20A and C30B) and C25A clay, which gave rise to 

an exfoliated structure, was different. 

The polymerization activation energies of the mixtures between the neat monomer and C20A and 

C30B clays were derived by assuming an Arrhenius-type temperature dependence of the kinetic 

constant (Equation 5.2.3), where E, A and R are the activation energy, the preexponential frequency 

factor and the universal gas constant, respectively: 









RT

E
Ak exp                                (5.2.3) 

Plots of ln k versus 1/T (Figure 5.2.10) allowed activation energies of 49.4 and 59.8 kJ/mol to be 

deduced for in situ polymerization of C20A and C30B mixtures, respectively. These energies were 

practically identical, but differed significantly from the value previously deduced for the neat 

monomer (101.0 kJ/mol) and even for its C25A mixture (99.3 kJ/mol), which gave rise to an 

exfoliated structure [27]. In this way, the activation energy clearly decreased when in situ 

polymerization rendered an intercalated structure. The preexponential frequency factor was also 

lower for the nanocomposites than for the neat monomer (3.28 1012 min-1), indicating that chain 

mobility was restricted by the incorporation of clay particles. Both C20A and C30B clays led to 

frequency factors of a similar magnitude order (1.4 105 min-1 and 3.4 106 min-1, respectively), but 

significantly lower than that found for the C25A mixture (4.77 1011 min-1). 
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The polymerization kinetics of monomer/C20A and monomer/C30B mixtures was enhanced at low 

temperatures due to their low activation energy, which compensated for the decrease caused by 

their low frequency factor. On the contrary, this factor was determinant at high temperatures, where 

the corresponding overall rate kinetic constants became minima. The changes observed in the 
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activation energy and frequency factor may suggest that nanoconfinement in the intercalated 

structure favored the polycondensation reaction and reduced molecular mobility.  

 

 

Figure 5.2.10 . Plots of ln k versus the reciprocal of the polymerization temperature for the neat monomer (∙, 
dashed line)27 and monomer/C25A (○, dashed line),27  momomer/C20A (□, solid line) and monomer/C30B 
(∆, solid line) mixtures. 
 

 Isothermal crystallization kinetics of poly(glc-alt-amh) and its C20A and C30B 

nanocomposites from FTIR analyses 

FTIR is highly sensitive to molecular conformation and packing density, hence its usefulness in 

polymer crystallization studies. Characteristic bands can be correlated to the crystalline and 

amorphous phases of the bulk and typically remain distinguishable over the course of 

crystallization. Isothermal studies are preferred to avoid shape and intensity susceptibility of FTIR 

bands with temperature.  

FTIR spectra of poly(glc-alt-amh) showed that 3298, 1653, 1419 and 1166 cm-1 bands  were 

characteristic of the crystalline phase. Thus, these bands appeared and their absorbance gradually 

increased during the isothermal crystallization of samples rapidly cooled to the selected 

temperature from the melt (amorphous) state. 

The continuous evolution of these absorption bands is shown in Figure 5.2.11 a for the C20A 

nanocomposite at a representative crystallization temperature of 135 ºC. The time evolution of the 

relative degree of crystallization,  (t), was evaluated similarly to that of the degree of conversion 

(i.e. changing ( t ) by  (t) in equations 5.2.1 and 5.2.2). Figure 5.2.11 b shows that the four 
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selected bands exhibit a similar behavior for a given crystallization temperature. Thus, in all cases 

the maximum crystallinity change was detected at a similar time. However, absorbance 

measurements seemed more accurate when the signal corresponding to the Amide A (3298 cm-1) 

was considered. The establishment of stronger hydrogen bond interactions in the crystalline 

structure gave rise to a well defined band which, in addition, was not overlapped by other peaks.  

Figure 5.2.12 compares the evolution of the degree of crystallinity at different temperatures for the 

C30B nanocomposite, as well as the evolution of the neat polymer and its C30B and C20A 

nanocomposites at a representative temperature (135 ºC). Note that the crystallization rate is clearly 

slower for the neat polymer  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.11 . a) Changes in the infrared absorption bands at 3298, 1653, 1419 and 1166 cm-1 of the
poly(glc-alt-amh)/C20A nanocomposite during isothermal crystallization at 135ºC. b) Time
evolution of the relative crystallinity determined from absorbance measurements of the 3298 (■),
1653 (▲), 1419 (□) and 1166 (○) cm-1 FTIR bands of the poly(glc-alt-amh)/C30B nanocomposite
during isothermal crystallization at 135 ºC. 
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Avrami plots (as shown in Figure 5.2.13 for the C30B nanocomposite) allowed determining an 

exponent close to 3, which is the theoretical value for heterogeneous nucleation and three-

dimensional spherulitic growth. In the same way, the kinetic constant, k, was calculated from the 

deduced Z and n values. Table 5.2.2 compares the kinetic parameters of the three studied samples 

at a common temperature (135 ºC). The Avrami exponents of the three samples were close enough 

to deduce that nucleation type and crystal dimensionality remained unaffected by the addition of 

clay particles. On the contrary, the incorporation of silicate layers with an intercalated structure 

clearly increased the overall rate kinetic constant. This effect was more pronounced with C20A 

clay, as shown in Table 5.2.2. Note that the same trend was observed when the reciprocal of the 

half crystallization time, 1/1/2, was considered.  This good correlation with a direct experimental 

measurement may validate the Avrami analysis of the crystallization process. 

 Optical microscopy studies on the isothermal crystallization of poly(glc-alt-amh) and its 

C20A and C30B nanocomposites 

The spherulites of the neat poly(ester amide) and its C20A and C30B nanocomposites had negative 

birefringence, as demonstrated by the position of the blue and yellow arms in the optical 

micrographs in the inset of Figure 5.2.14. Different spherulitic morphologies were observed 

depending on the crystallization temperature and the addition of clay particles. Thus, the neat 
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Figure 5.2.12 Time evolution of the relative crystallinity determined from absorbance
measurements of the 3298 cm-1 FTIR band of the poly(glc-alt-amh)/C30B nanocomposite (■) 
during isothermal crystallization at 140, 135 and 130 ºC. For comparative purposes, the
evolution for the poly(glc-alt-amh)/C20A nanocomposite (□, dashed line) and the neat polymer 
at 135 ºC is also shown (▲, dashed line). 
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polymer gave rise to speckled, ringed and fibrilar spherulites at temperatures close to 140, 130 and 

125 ºC, respectively. The addition of a clay that rendered an exfoliated structure (i.e. C25A) 

favored the development of fibrilar textures [27] and hindered lamellar twisting, whereas the 

incorporation of clays associated with a final intercalated structure (i.e. C20A and C30B) led to the 

formation of speckled textures, as shown in Figure 5.2.13.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nucleation density was higher for the nanocomposites derived from C20A and C30B (i.e. those 

with an intercalated structure), as deduced from the number of spherulites measured in the field of 

view of the optical microscope. At all temperatures, the nucleation density decreased in the order 

C20A > C30B > neat polymer, as shown in Figure 5.2.15 a.  

The change in the primary nucleation was responsible for the difference in overall crystallization 

rates between the neat polymer and C20A and C30B nanocomposites found by FTIR. The 

incorporation of a clay that favors an intercalated structure increased the nucleation density. In fact, 

the experimental data indicate that the effect was more pronounced with the addition of C20A clay. 

It should be pointed out that the crystallization of the C25A nanocomposite was previously studied 

and that a lower nucleation density was derived for this sample with an exfoliated silicate structure 

[27].  Furthermore, the overall crystallization rate decreased when this clay was incorporated. 

The change in the primary nucleation was responsible for the difference in overall crystallization 

rates between the neat polymer and C20A and C30B nanocomposites found by FTIR. The 

incorporation of a clay that favors an intercalated structure increased the nucleation density. In fact, 
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Figure 5.2.13 Avrami plot considering FTIR data (3298 cm-1 band) for isothermal
crystallization of the neat poly(ester amide) (▲) and its C20A (□) and C30B (■)
nanocomposites at 135 ºC.  
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the experimental data indicate that the effect was more pronounced with the addition of C20A clay. 

It should be pointed out that the crystallization of the C25A nanocomposite was previously studied 

and that a lower nucleation density was derived for this sample with an exfoliated silicate structure 

[27].  Furthermore, the overall crystallization rate decreased when this clay was incorporated. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

The spherulic radial growth rates (G) of the neat sample and its C20A and C30B nanocomposites 

were determined with the evolution of the spherulite radius versus time. It is worth pointing out 

that a linear increase in the spherulite radius was always found, suggesting that clay particles were 

not segregated during spherulite growth. Data for crystallization temperatures of 125, 130 and 140 

ºC (Figure 5.2.15 b) showed that the growth rate of the two nanocomposites was similar although a 

slightly lower value was found for C30B. Differences were more significant at a high 

crystallization temperature (e.g. 140 ºC), with measurements clearly indicating that the 

incorporation of clay particles reduced the spherulitic growth rate (i.e. 0.015 µm/s versus 0.014-

0.013 µm/s). Note that the overall crystallization process did not decelerate with the addition of 

clay particles since the accelerative effect caused by the increase in the primary nucleation density 

was more significant than the decrease in the crystal growth rate. 
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Figure 5.2.14. Polarized optical micrographs showing the isothermal hot
crystallizations of the neat poly(ester amide) (a) and its C25A (b), C20A (c) and
C30B nanocomposites (d) at 130 ºC. Inset shows a color micrograph of a speckled 
spherulite attained at 140 ºC with the neat polymer sample.  
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Table 5.2.2  Crystallization kinetic parameters at 135 ºC deduced from FTIR absorbance measures of the 
3298 cm-1 band. 
 

Sample 1/1/2 (min-1) Z (min-n) n k (min-1) 

Neat polymer 0.048 2.40 10-5 3.38 0.043 

Nanocomposite with C20A 0.174 3.40 10-3 3.01 0.153 

Nanocomposite with C30B 0.149 3.28 10-3 2.81 0.131 
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Figure 5.2.15 . a) Variation in nucleation density with isothermal crystallization
temperature for the neat polymer (▲) and its C20A (□) and C30B (■)
nanocomposites. b) Plot of the radius of spherulites of the neat polymer (▲) and its
C20A (□) and C30B nanocomposites (■) versus crystallization time for isothermal
crystallizations at 125 ºC, 130 and 140 ºC.  
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5.2.4  Conclusions 
 

Nanocomposites constituted by a poly(ester amide) matrix and C20A or C30B organomodified 

clays were obtained by in situ polymerization of sodium chloroacetylaminohexanoate. They 

showed an intercalated silicate structure, as determined by X-ray diffraction and transmission 

electron microscopy.  

The polymerization kinetics under both non-isothermal and isothermal conditions was quite similar 

after the incorporation of the two clays. However, great differences were found with the 

polymerization of the neat monomer. The temperature dependence of the polymerization kinetic 

constant allowed inferring the activation energies and preexponential frequency factors, which 

were lower when polymerization was performed in the presence of clay particles. 

Nanoconfinement in the intercalated silicate galleries may favor the occurrence of 

polycondensation reactions and reduce the corresponding activation energy. This confinement 

should logically result in decreased chain mobility and consequently lower frequency factor. 

Optical microscopy and FTIR studies revealed that the crystallization rate of the nanocomposites 

increased due to the nucleation effect of clay particles. On the contrary, spherulitic crystal growth 

was slightly hindered when particles were added. Spherulites always showed negative 

birefringence but their texture was influenced by the incorporation of clay and obviously by the 

crystallization temperature.   
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5.3                                             

Crystallization studies on a clay nanocompo-

site prepared form a degradable poly(ester 

amide) constituted by glycolic acid and 6-

aminohexanoic acid 

An intercalated nanocomposite was prepared from dimethyl hydrogenated-tallow 2-ethylhexyl 

ammonium modified Cloisite 25A (C25A) and a new biodegradable poly(ester amide) 

characterized by an alternating arrangement of glycolic acid and 6-aminohexanonoic acid units by 

the melt mixing technique. This nanocomposite was previously obtained with a practically 

exfoliated structure by in situ polymerization. The influence of the final silicate layer morphology 

on hot and cold crystallization behaviour was investigated by optical microscopy, differential 

scanning calorimetry and simultaneous Small Angle X-ray Scattering (SAXS) and Wide Angle X-

Ray Diffraction (WAXD) measurements by synchrotron radiation. Primary nucleation increased 

significantly with the incorporation of nanoparticles, in contrast with the decrease previously 

observed when exfoliated structures were obtained. The secondary nucleation constant was higher 

for the nanocomposite sample, indicating that the growth mechanism was hampered by the 

presence of clay particles. However, the increase in primary nucleation had a greater effect, 

resulting in a faster overall crystallization rate for the nanocomposite. The addition of clay 

particles slightly reduced the degree of crystallinity attained after the hot and cold crystallization 

processes and favored a lamellar insertion mechanism.  
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5.3.1  Introduction 
 

The development of biodegradable polymers is one of the most interesting topics since these 

materials have potential applications as commodities and specialities, mainly in the biomedical 

field.  In this sense, biodegradable polymers are regarded as a potential alternative to existing 

petroleum-based polymers because trends focus on promoting the use of environmentally friendly 

materials despite their higher production costs [1, 2]. Aliphatic polyesters are the most commonly 

employed family of polymers due to the presence of hydrolyzable ester groups. However, 

mechanical and thermal properties are often not sufficient to meet the requirements of commodity 

applications. Several alternatives have therefore been considered to improve performance 

properties, like the incorporation of amide groups in the main chain, which allows establishing 

strong hydrogen bonding intermolecular interactions. Thus, interest is increasing in poly(ester 

amide)s [3-11] to the point that this new family of biodegradable polymers is even being 

considered for commercialization  (e.g. BAKTM, a poly(ester amide) derived from 1,4-butanediol, 

adipic acid and 6-aminohexanoic acid [12]).  

The properties of polymers can also be significantly modified by adding layered silicates, as 

demonstrated by pioneering works performed with nylon 6-clay nanocomposites [13, 14]. Since 

then, the preparation of nanocomposites based on biodegradable polymer matrices has been 

extensively studied [15-17] despite potential  problems associated with low production level and 

high costs.  

 

 

 

 

 

 

 

 

 

 

We developed a promising synthesis procedure based on a thermal polycondensation that allows 

obtaining new poly(ester amide)s constituted by an alternating arrangement of glycolic acid and -

amino acid units (Scheme 5.3.1) [18, 19]. The derivative of 6-aminohexanoic acid (hereafter 

named poly(glc-alt-amh)) was mainly studied since its related homopolymers (i.e. polyglycolide 

and nylon 6) are samples with well known applications as biodegradable and commodity materials, 

respectively. This polymer was found to be biocompatible [20] and to crystallize according to a 

NaOH 

ClCH2CONH(CH2)5COO- Na+ 


Vacuum

-[OCH2CONH(CH2)5CO]x- + NaCl 

Poly(glc-alt-amh)

ClCH2COCl + NH2(CH2)5COOH 

Scheme 5.3.1 
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peculiar structure which exhibits characteristics of both polyesters and polyamides [21]. Its 

crystallization behavior was also investigated [22] and its thermal degradation mechanism was 

determined [23].  

It was also demonstrated that nanocomposites with a practically exfoliated structure and based on a 

poly(glc-alt-amh) matrix can be prepared by in situ polymerization of the sodium salt of N-

chloroacetyl-6-aminohexanoic acid in the presence of the dimethyl hydrogenated-tallow 2-

ethylhexyl ammonium modified Cloisite 25A (C25A) [25]. Furthermore, significant differences in 

thermal stability and crystallization behavior were found between this kind of nanocomposites and 

the neat polymer [24]. 

In the present work we study the poly(glc-alt-amh)/C25A nanocomposite prepared by the melt 

intercalation technique, which has the advantage of using a polymer sample with a defined 

molecular weight (i.e. the variation intrinsically caused by the in situ polymerization method is 

avoided). Moreover, the arrangement of the clay in the polymer matrix is expected to be different 

from that found in the nanocomposite prepared by in situ polymerization since an intercalated 

system with preservation of the stacking of silicate layers may be favored. In this case, the study of 

crystallization becomes interesting as it provides insight into the influence of clay arrangement on 

nucleation and crystal growth rate. In addition to hot crystallization, crystallization from the glass 

state is also performed since studies concerning cold crystallization of nanocomposites are scarce. 

 

5.3.2 Experimental section 

 Materials 

Poly(glc-alt-amh) was synthesized by thermal polyesterification of the sodium salt of N-

chloroacetyl-6-aminohexanoic acid with an 80% yield [19, 20]  (Figure 5.3.1).  

The Cloisite 25A (Southern Clay Products) was used as received. The chemical structure of the 

specific surfactant of the organomodified layered phyllosilicate is shown in Scheme 5.3.2.  

 Preparation of nanocomposites 

Nanocomposites with 3% C25A clay content were prepared by melt mixing in two steps using a 

corotating tightly intermeshed twin-screw extruder (DSM Xplore 5 ml microcompounder). All 

materials were dried under vacuum prior to mixing. The processing temperature, screw rotation and 

cycle time were 170 ºC, 100 rpm and 3 minutes, respectively. 
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 Measurements 

Intrinsic viscosity was determined using a Cannon-Ubbelhode microviscometer and a 

dichloroacetic acid solution at 25  0.1 ºC. The molecular weight was estimated by size exclusion 

chromatography (SEC) using a liquid chromatograph (Shimadzu, model LC-8A) equipped with an 

Empower computer program (Waters). A PL HFIP gel column (Polymer Lab) and a refractive 

index detector (Shimadzu RID-10A) were employed. The polymer was dissolved and eluted in 

hexafluoroisopropanol at a flow rate of 0.5 mL/min (injected volume 100 L, sample concentration 

1.5 mg/mL). The number and weight average molecular weights were calculated using polymethyl 

methacrylate standards. 

Interlayer spacing of the clay was studied by Wide Angle X-ray Scattering (WAXD) using a 

PANalytical X´Pert diffractometer with CuKα radiation (λ = 0.1542 nm).  

Calorimetric data were obtained by differential scanning calorimetry with a TA Instruments Q100 

series equipped with a refrigeration cooling system (RCS) operating from -90 ºC to 550 ºC. 

Experiments were conducted under a flow of dry nitrogen with a sample weight of approximately 5 

mg and calibration was performed with indium. For the hot crystallization studies, samples were 

first heated at 20 ºC/min to 170 ºC and kept at this temperature for five minutes to erase the thermal 

history. Next, cooling runs were performed at 3 and 10 ºC/min. For the cold crystallization studies, 

samples were previously quenched from the melt state at the maximum rate allowed by the 

refrigeration system and then heated at 3 and 20 ºC/min.  

The structure and distribution of Cloisite were observed with a Philips TECNAI 10 transmission 

electron microscope (TEM) at an accelerating voltage of 100 kV. TEM specimens were prepared 

by embedding the film in a low viscosity modified Spurr epoxy resin and curing it at 40°C for a 

few days and then at 60 °C for 6 h. Ultrathin sections (less than 100 nm) were cut at room 

temperature using a Sorvall Porter-Blum microtome equipped with a diamond knife. Finally, the 

sections were collected in a trough filled with water and lifted onto carbon coated copper grids.  

The spherulitic growth rate was determined by optical microscopy using a Zeiss Axioskop 40 Pol 

light polarizing microscope equipped with a Linkam temperature control system configured by a 

THMS 600 heating and freezing stage connected to an LNP 94 liquid nitrogen cooling system. 

CLOISITE 25A

HT: hydrogenated tallow; T: tallow 
(65% C18, 30% C16, 5% C14). 

N+

CH3

CH2CHCH2CH2CH2CH3

HT

H3C

CH2CH3

Scheme 5.3.2
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Spherulites were studied using homogeneous melt-crystallized thin films obtained by melting 1 mg 

of the polymer mixture on microscope slides. Next, small sections of these films were pressed or 

smeared between two cover slides and inserted into the hot stage. All squeezed samples, which had 

a thickness close to 10 m, were kept at 170 ºC (approximately 10 ºC above the temperature at the 

end of the fusion of the polymer) for 5 minutes to eliminate thermal history effects. Hot 

crystallization samples were rapidly cooled to the selected crystallization temperature whereas cold 

crystallization samples were rapidly cooled to -5 ºC and then rapidly heated to the selected 

crystallization temperature. During hot crystallization, the radius of growing spherulites was 

monitored with micrographs taken with a Zeiss AxiosCam MRC5 digital camera at appropriate 

time intervals. A first-order red tint plate was employed to determine the sign of spherulite 

birefringence under crossed polarizers.  

Simultaneous time-resolved Small Angle X-ray Scattering (SAXS) and Wide Angle X-Ray 

Diffraction (WAXD) experiments were carried out at the CRG beamline (BM16) of the European 

Synchrotron Radiation Facility of Grenoble. The beam was monochromatized to a wavelength () 

of 0.098 nm. Polymer and nanocomposite samples were confined between Kapton films and then 

held in a Linkam hot stage with temperature control within 0.1 ºC. Samples were heated/cooled to 

the desired crystallization temperature similarly to optical microscopy samples. SAXS and WAXD 

profiles were acquired simultaneously during crystallization experiments in time frames of 12 s. 

Two linear position-sensitive detectors were used [25]: the SAXS detector was calibrated with 

different orders of diffraction from silver behenate whereas the WAXD detector was calibrated 

with diffractions of a standard of an alumina (Al2O3) sample. The diffraction profiles were 

normalized to the beam intensity and corrected considering the empty sample background. WAXD 

peaks were deconvoluted with the PeakFit v4 program by Jandel Scientific Software assuming 

Gaussian peak profiles. The correlation function and the corresponding parameters were calculated 

with the CORFUNC program provided by the Collaborative Computational Project 13 for Fiber 

Diffraction / Non-Crystalline Diffraction, CCP13. 
 

5.3.3 Results and discussion 

 

 Molecular weight of poly(glc-alt-amh) 

The intrinsic viscosity measured in dichloroacetic acid at 25ºC was 0.92 dL/g. The weight average 

molecular weight and polydispersity index, estimated by SEC, were 50,100 g/mol and 2.10, 

respectively.  
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 Dispersion structure of the C25A clay in the composite with poly(glc-alt-amh)  

The nanocomposite structure was first analyzed by reflection X-ray diffraction of a film sample 

using a silicium monocrystal sample holder. The diffraction patterns show evidence of intercalation 

of polymer chains into the silicate galleries in the range of 2 = 1º-10º (  is the scattering angle) 

when the characteristic silicate diffraction peak appears at a lower diffraction angle (larger spacing) 

than in the pattern of the neat clay. Similarly, the absence of this peak may suggest an exfoliated 

structure. 

Figure 5.3.1 a) X-ray diffraction patterns of the poly(glc-alt-amh)/C25A
nanocomposite and the neat clay. b) Transmission electron micrograph showing
the morphology of the poly(glc-alt-amh)/C25A nanocomposite with a Cloisite
concentration of 3%. 
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The shift of the characteristic 001 reflection of the C25A clay (1.97 nm, 2 = 4.49º) to 2.68 nm (2 

= 3.30º) in the nanocomposite sample, suggesting that a regular intercalated structure was attained 

by the melt mixing method, can be seen in a. This result contrasts with the absence of the 001 

silicate peak when the sample was prepared by in situ polymerization [25].  

Direct observation of the morphology and phase distribution of ultrathin sections of poly(glc-alt-

amh) / C25A specimens by transmission electron microscopy (Figure 5.3.1 b) clearly showed that 

an intercalated structure was predominant. 
 

 Optical microscopy studies on the poly(glc-alt-amh)/C25A nanocomposite 

Figure 5.3.2 contains polarized optical micrographs of nanocomposite and neat polymer samples 

isothermally hot crystallized at temperatures of 140 and 130 ºC. The nanocomposite spherulites 

always had the smallest size at the end of crystallization as a consequence of their higher nucleation 

density (e.g. 2900 nuclei/mm2 versus 1300 nuclei/mm2 at 130 ºC). This result contrasts with the 

lower density of the nanocomposite prepared by in situ polymerization, which rendered a 

practically exfoliated structure. Like reported data on other systems, these observations reveal an 

increase and a decrease in the primary nucleation density with obtaining an intercalated or 

exfoliated structure after incorporation of the clay, respectively [26]. In this way, when good 

compatibility between silicate layers and the polymer matrix is achieved (i.e. an exfoliated 

structure), spherulite nucleation is low as a result of the fine dispersion of silicate layers in the 

matrix. On the other hand, poor compatibility renders an intercalated structure where silicate 

particles may act as effective nucleating agents [26]. 

The nucleation density of neat polymer and nanocomposite samples  logically increased with 

lowering the crystallization temperature (Figure 5.3.3 a). Thus, at 130 ºC (Figure 5.3.2) spherulites 

had diameters of only 45 m (neat polymer) and 35 m (nanocomposite), making it difficult to 

measure the spherulitic growth rate at lower temperatures. 

All spherulites had negative birefringence and a ring texture at all studied temperatures. The rings, 

which are associated with a characteristic lamellar twisting, could not however be clearly 

distinguished because of the speckle pattern obtained at temperatures higher than 140 ºC. Ring 

spacing remained close to 2-3 m in the pristine and nanocomposite samples crystallized at 130 ºC. 

It is worth pointing out that the ring texture observed in the nanocomposite sample crystallized at 

130 ºC differs from the fibrilar texture observed at the same temperature when the sample was 

prepared by in situ polymerization. It seems that exfoliated silicate layers somehow hinder lamellar 

twisting in polymer spherulites. In any case, the incorporation of organomodified clays may change 

the spherulitic texture, hampering lamellar growth, favoring a more disordered arrangement and 

weakening the birefringence [27].    
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The influence of clay particles on the secondary nucleation rate was analyzed by the classical 

Lauritzen-Hoffman theory [28]:   

G = G0 exp[-U*/(R(Tc- T))] exp[-Kg/( Tc T f)] ,  (1) 

where G is the experimental radial growth rate, G0 is a constant preexponential factor, U
* represents 

the activation energy characteristic of the transport of crystallizing segments across the liquid-

crystal interface, T  is a hypothetical temperature below which such motion ceases, Tc is the 

50 m 

210 m 

e) 

50 m 

170 m 

f)

20 m 

45 m 

c) 

20 m 

d)

35 m 

10 m 

a) 

10.3 m 

5 m 

b) 

5..5 m 

Figure 5.3.2 Polarized optical micrographs corresponding to the isothermal cold (a,b) and hot (c-f) 
crystallizations performed at 62 ºC (a, b), 130 ºC (c, d) and 140 ºC (e, f) with the neat poly(ester amide) (a, c, e)
and its nanocomposite with C25A (b, d, f). Inset of d) shows a spherulite grown at 130 ºC of the nanocomposite 
prepared by in situ polymerization.  
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crystallization temperature, R is the gas constant, Kg is the secondary nucleation constant, T is the 

degree of supercooling measured as Tm
0-Tc, and f is a correction factor accounting for the variation 

in the bulk melting enthalpy per unit volume with temperature (f = 2 Tc / (Tm
0 + Tc)). 

Accurate measurements of the evolution of the spherulitic radius with crystallization time were 

only feasible in the restricted temperature range between 130 and 140 ºC, and consequently the 

kinetic analysis was limited to a region mainly governed by the nucleation process. The plots in 

Figure 5.3.3 b clearly show that the radial growth rate was lower for the nanocomposite (e.g. 0.84 

m/min versus 1.30 m/min at 130 ºC), which seems insufficient to balance the opposite effect on 

the overall crystallization rate caused by the increase in nucleation density. Lamellar growth seems 

clearly hampered by the presence of organoclay particles. It is also interesting to point out that no 

deviation from a linear spherulitic growth was observed in the nanocomposite sample. Thus, clay 

particles did not seem to be excluded towards the growth front during crystallization in a manner 

that hindered the transport of crystallizable molecules from the melt to the growing edge. The 

radial growth rate of the nanocomposite sample varied significantly with the crystallization 

temperature, suggesting a higher secondary nucleation constant.  

Following the Lauritzen-Hoffman analysis (LH), the experimental spherulitic growth rates were 

plotted as ln G + U*/R(Tc-T) versus 1/( Tc T f) (Figure 5.3.3 c).  The data fit well with linear 

plots representative of one crystallization regime if the U* and T  parameters take the conventional 

values reported by Suzuki and Kovacs [29] (U* = 1500 cal/mol and T  = Tg - 30 K). Nucleation 

parameters of 0.32 105 K2 and 0.40 105 K2 were respectively derived for the neat polymer and the 

nanocomposite from the slopes of these linear plots, indicating a slight increase in the secondary 

nucleation constant when clay particles were added. The analysis was performed using the same 

values for the glass transition (15 ºC) and equilibrium melting (168 ºC) temperatures for both 

samples since these temperatures were not significantly affected by the incorporation of clay 

particles into the polymer matrix. It is interesting to note that systems with good compatibility 

between the clay and the polymer matrix may show a decrease in the secondary nucleation 

constant, which was interpreted as a demonstration that exfoliated silicate layers acted as effective 

secondary nucleation sites [30].  

Figure 5.3.2 shows that negative and ringed spherulites also formed when both the pristine and the 

nanocomposite samples crystallized from the glass state. Again smaller sizes and higher nucleation 

densities were determined for the nanocomposite. These nucleation data suggest single exponential 

dependences on the crystallization temperature (Figure 5.3.3 a), which resulted in more active 

nuclei (i.e. more favorable thermodynamic conditions for nuclei generation) with progressively 

decreasing temperature.  
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Figure 5.3.3 a) Variation in
nucleation density with isothermal
crystallization temperature for the
nanocomposite sample (□) and the
neat polymer (∆). b) Plot of the radius
of spherulites of the neat polymer
(▲,○) and its nanocomposite with
C25A (■,♦) versus crystallization
time for isothermal crystallizations
performed at 130 ºC (▲,■) and 140
ºC (○,♦). c) Lauritzen-Hoffman plot
of the neat poly(ester amide) (▲) and
its nanocomposite with C25A (◊). 



205 

 

 Influence of C25A clay particles on the thermal behaviour of poly(glc-alt-amh) 

Calorimetric analyses showed differences between the nonisothermal crystallization of the neat 

polymer and its intercalated nanocomposite with the C25A clay. The clay mainly influenced the 

hot crystallization of melted samples, as shown in Figure 5.3.4 for two representative cooling rates.  
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Figure 5.3.4 DSC curves of the non-isothermal hot crystallization performed at 3 and 10 
ºC/min with the poly(glc-alt-amh)/C25A nanocomposite (solid lines) and the neat 
poly(ester amide) (dashed lines). The ordinate scale was magnified for DSC traces 
performed at 3 ºC/min for comparison. 
 

 

As expected, the peak crystallization temperature decreased and the exothermic peak became 

sharper when the cooling rate increased. Comparison between hot crystallization curves of the neat 

polymer and its nanocomposite allowed inference of the following points:  

a) The crystallization peak temperature was always higher for the nanocomposite, the difference 

increasing with the cooling rate (i.e. 4 and 8 ºC for cooling rates of 3 and 10 ºC/min, 

respectively). 
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b) The exothermic peaks of both samples showed a tail associated with the secondary 

crystallization in the low temperature region.  

c) The exothermic peak of the nanocomposite sample was always narrower than that of the neat 

polymer, indicating a greater overall crystallization rate. In addition, as discussed above, the 

increase in primary nucleation density is more influential than the decrease in radial growth 

rate.  

d) The peak of the nanocomposite sample was more asymmetric if the small tail at the end of 

crystallization was not considered. Note that the peak temperature of the nanocomposite was 

only a few degrees lower than the onset crystallization temperature (3 ºC at the rate of 3 

ºC/min), a behavior significantly different from that of the pristine sample (temperature 

difference of 5 ºC at the same rate). Thus, primary crystallization of the nanocomposite 

occurred almost immediately after the end of the induction period.  

e) The crystallization enthalpies were quite similar, although slightly lower values were 

determined for the nanocomposite once the weight of the sample was referred to the polymer 

content (e.g. 64 versus 56 J/g for the neat polymer and the nanocomposite, respectively, at a 

cooling rate of 3 ºC/min). Thus, clay particles slightly hindered the hot crystallization 

process, slowing down crystal growth, as above indicated. However, differences were 

smaller when the cooling rate increased since the crystallization enthalpy of the neat polymer 

was significantly reduced (e.g. 64 versus 59 J/g for cooling rates of 3 and 10 ºC/min, 

respectively).  

f) Differences in the onset crystallization temperature were practically insignificant, although 

the nanocomposite always started to crystallize 1-2 ºC before the pristine sample.  

 

 Figure 5.3.5 shows the heating traces of quenched samples that allow comparing the cold 

crystallization behavior of the nanocomposite and the pristine sample. The exothermic peak shifted 

to higher temperatures with increasing the heating rate. The difference in the magnitude of the 

shifts was such that at 3ºC/min the pristine sample had the lower peak temperature whereas at 

20ºC/min the lower peak temperature was observed for the nanocomposite sample. The influence 

on the crystallization rate was minimal since the exothermic peaks of both samples always had 

similar widths. In this case, the increase in primary nucleation density seems insufficient to 

compensate for the decrease in the spherulitic growth rate caused by a disturbance of the silica 

layers. 

Unfortunately, both nanocomposite and neat polymer samples partially crystallized during the 

quenching process performed at the maximum cooling rate allowed by the refrigeration system. 

This made it difficult to determine the influence of clay particles on the degree of crystallinity 

attained after the cold crystallization process from DSC experiments. However, the data in Figure 
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5.3.5 indicate a lower enthalpy for the cold crystallization peak of the nanocomposite sample, 

which supports the assumption of a disturbance of crystal growth.  

The heating runs also revealed that the clay particles had practically no effect on the glass transition 

and the melting temperature. Furthermore, both samples showed a similar hot crystallization 

exothermic peak just some degrees before fusion.  It is interesting to note that the melting behavior 

of both samples depended on the heating rate. Thus, a typical melt/recrystallization process of the 

initial lamellae occurred at a low rate (e.g. 3 ºC/min) and a double melting peak (152-153 and 161-

162 ºC) was detected. On the contrary, recrystallization to thicker lamellae was not possible at a 

high heating rate (e.g. 20 ºC/min), and consequently only the low temperature melting peak (i.e. 

153 ºC) was detected. The melting enthalpies were similar although lower values were always 

found for the nanocomposite sample. This difference was enhanced when the heating rate was 

lowered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.3.5 DSC curves of the non-isothermal cold crystallization performed at 3 and 
20 ºC/min with the poly(glc-alt-amh)/C25A nanocomposite (solid lines) and the neat 
poly(ester amide) (dashed lines). The ordinate scale was magnified for DSC traces
performed at 3 ºC/min for comparison. 
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 Non-isothermal crystallization data of poly(glc-alt-amh)/C25A nanocomposite and the 

neat polymer from WAXD data 

Figure 5.3.6 a plots the time evolution of the nanocomposite WAXD profiles during a non-

isothermal hot crystallization performed at a cooling rate of 3 ºC/min. The initial profiles show 

only small reflections corresponding to the clay particles and one amorphous halo whose intensity 

decreases when crystallization occurs, and on which Bragg reflections form. 020, 101, 110, 111 

and 102 correspond to the most intense and significant reflections of a structure defined by an 

orthorhombic unit cell having a = 0.477 nm, b = 0.873 nm and c = 1.057 nm. The time evolution of 

the profiles corresponding to the two studied samples was significantly different. This difference in 

the crystallization behavior could be easily demonstrated by considering only the variation in 

intensity of the strongest 110 reflection at 0.418 nm, as shown in Figure 5.3.6 b. Both samples 

started to crystallize practically at the same temperature. However, the peak intensity suddenly 

increased for the nanocomposite whereas a progressive and slower evolution was detected for the 

neat polymer. The degree of crystallization was also evaluated from the deconvoluted profiles at 

selected temperatures. Values of 21% and 13% were determined at 115 ºC for the nanocomposite 

and the neat polymer, respectively. These observations clearly indicate a faster primary 

crystallization for the nanocomposite, which results from the increased primary nucleation density. 

Note that higher undercooling was required for the neat polymer to reach the above value of 21%  

(i.e. 97 ºC versus 115 ºC).  

The WAXD profiles also showed that the 110 reflection of both samples became increasingly more 

intense over a wide temperature range (e.g. up to approximately 40 ºC). This occurred at a lower 

rate when temperatures were less than 115 ºC (nanocomposite) and 97 ºC (neat polymer), as 

expected for a secondary crystallization process. The nanocomposite was slightly less crystalline at 

the end of the process (28% versus 32%). 

Figure 5.3.9 a and b show the time evolution of the nanocomposite WAXD profiles during a non-

isothermal cold crystallization performed at a cooling rate of 3 ºC/min and the evolution of the 110 

reflection intensity during crystallization for both samples, respectively. These profiles and those 

obtained in the hot crystallization experiments mainly differ in the lower resolution between the 

020 and 101 peaks. Diffraction data clearly indicate that the cold crystallization behaviors of the 

neat polymer and the nanocomposite are practically identical. Thus, cold crystallizations practically 

ended at the same temperature (60 ºC) and a subsequent hot crystallization process occurred which 

ended at approximately 130 ºC. The nanocomposite became slightly less crystalline (21 versus 

23%) after the end of the first cold crystallization step. This difference was similar (20 versus 22 

%) when experiments were performed at 20 ºC/min (data not shown).  

 

 



209 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

25 ºC 

c
Polym = 32% 

c
Nano = 28% 

 

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

050100150200

I
(a

.u
.)

Temperature ºC200 150  100            50 
Temperature (ºC) 

97 ºC, c = 21% 

115 ºC, c = 21% 

115 ºC, c = 13% 

1 
 

0.8 
 

0.6 
 

0.4 
 

0.2 
 
0 
 

-0.2 

I 
(a

.u
.)

 

(b) 

(a) (a) 

q (nm-1)

10    11   12   13    14   15   16   17   18   19  20    21

                 
                   48 
                70 
            92 
       115 
    138 
160 
 

I 
(a

.u
.)

 020 
0.437 nm 

101 
0.435 nm

110 
0.418 nm

Clay 

125 

95

102 
0.354 nm 

111 
0.389 nm 

T (ºC) 

Figure 5.3.6 a) Time-resolved WAXD 3-dimensional profiles of the poly(glc-alt-amh)/C25A 
nanocomposite during the hot non-isothermal crystallization performed at a cooling rate of 3
ºC/min. Inset shows the first frames corresponding to the hot crystallization. b) Plot of the 
intensity of the main Bragg reflection (110) during the hot crystallization of the neat polymer
(■) and the nanocomposite (▲) performed at 3 ºC/min. 
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Figure 5.3.7 a) Time-resolved WAXD 3-dimensional profiles of the poly(glc-alt-amh)/C25A
nanocomposite during the cold non-isothermal crystallization performed at 3 ºC/min. Inset shows
the first frames corresponding to the cold crystallization. b) Plot of the intensity of the main Bragg
reflection (110) during the cold crystallization of the neat polymer (■) and the nanocomposite (▲)
performed at 3 ºC/min. 
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 Changes in the crystalline morphology of poly(glc-alt-amh)/C25A nanocomposite and the 

neat polymer during crystallization from time-resolved  SAXS experiments 

 

A weak low angle reflection peak associated with lamellar stacking appeared in both the pristine 

polymer and nanocomposite samples during the cold and hot crystallization experiments (Figure 

5.3.8). This peak was detected at the same time (or temperature) as the Bragg reflections in the 

WAXD patterns, as expected for a characteristic nucleation and crystal growth mechanism. The 

low intensity of the long spacing peak suggests that electronic differences between amorphous and 

crystalline phases were small. It should be pointed out that the SAXS peak only had a remarkable 

intensity at the last stage of the heating runs performed with quenched samples (i.e. after the hot 

recrystallization process). 

SAXS data were analyzed by the normalized one-dimensional correlation function [31], (r), 

which corresponds to the Fourier transform of the Lorentz-corrected SAXS profile: 

 (r) = 


0

2 )cos()( dqqrqIq  / 


0

2 )( dqqIq   (2) 

SAXS data were collected within a limited angular range only. That is why extrapolations to low 

and high q values were performed using Vonk’s model [32] and Porod’s law, respectively.  

Figure 5.3.9 illustrates the SAXS profiles obtained for the neat polymer and the nanocomposite at 

the end of non-isothermal cold and hot crystallization experiments conducted at a cooling/heating 

rate of 3 ºC/min. The calculated correlation functions for these profiles are shown in Figure 5.3.10. 

These functions are generally analyzed to determine: (1) the long period, L (i.e. the r value of the 

first maximum of the correlation function); (2) the amorphous layer thickness, la, (i.e. the r value of 

the intersection of the linear regression in the autocorrelation triangle with the ordinate equal to the 

first minimum of the correlation function); (3) the crystalline lamellar thickness, lc, (calculated as 

Lla); (4) the crystallinity within the lamellar stacks, c
SAXS (calculated as lc / L ); and (5) the 

scattering invariant, Q. Although the thicknesses associated with each phase could not be 

distinguished [33-35], they were assigned considering that crystallinity within lamellar stacks must 

always be greater than in the bulk sample deduced from WAXD data (c
WAXD). Table 5.3.1 

summarizes the values deduced for the morphological parameters and the degrees of crystallinity 

attained at representative temperatures for both hot and cold crystallization experiments. 

During the cold crystallization processes (Figure 5.3.11 a and b) the long period decreased mainly 

because of the decrease on the crystalline lamellar thickness. On the contrary, the amorphous 

thickness remained practically constant (i.e. 1.7-1.4 nm). The decrease in lc could be explained 

assuming a lamellar insertion mechanism which seems more significant for the nanocomposite 

sample. Note that although the crystalline lamellar thicknesses of both samples at the end of the 

cold crystallization process were similar (i.e. 6.0 and 5.2 nm at 60 ºC for the nanocomposite and the 
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neat polymer, respectively), the nanocomposite lamellae were clearly thicker at the initial stages of 

crystallization (e.g.  lc values of  9.1 nm versus 7.2 nm). Figure 5.3.11 also shows that the lamellar 

peak appears at a slightly higher temperature for the nanocomposite, in agreement with the 

calorimetric scans performed at 3 ºC/min. 

 

  

Figure 5.3.8 Time-resolved SAXS three-dimensional profiles of the poly(glc-alt-amh)/C25A
nanocomposite during the cold (a) and hot (b) non-isothermal crystallizations performed at a
heating/cooling rate of 3 ºC/min. SAXS curves after subtraction of the empty sample background and
Lorentz correction.  
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Figure 5.3.9 a) Final SAXS profiles obtained at 60 ºC for cold (■) and 40 ºC for hot (♦) crystallized samples
of the neat poly(ester amide) during heating or cooling runs performed at 3 ºC/min. The profile obtained at
130 ºC after a heating run performed at 3 ºC/min (i.e. after completion of the reorganization process) is also
shown (●). b) Comparison between correlation functions of the above SAXS profiles. 
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The long period peak shifted to higher spacings and increased in intensity when temperature was 

higher than 115 ºC. The maximum values for these spacings were reached at 130 ºC. According to 

the data in Table 5.3.1, the long period increased from 6.6 to 8.7 nm and from 7.5 to 8.8 nm for the 

neat polymer and the nanocomposite, respectively, during heating runs from 60 to 130 ºC. This 

suggests a lamellar reorganization that led to thicker lamellae, higher degrees of crystallinity and 

probably larger electronic density differences between crystalline and amorphous phases. It seems 

reasonable to think that at temperatures close to fusion the density of the amorphous phase 

decreased significantly whereas it remained practically constant for the crystalline phase. 

Crystalline lamellar thicknesses were also greater during the reorganization process, with slightly 

higher final values for the nanocomposite (i.e. 6.6 nm versus 6.2 nm).  

 

 

 

 

 

 

 

 

Figure 5.3.10  Correlation functions of final SAXS profiles obtained at 60 ºC for cold (■) and 40 ºC for hot 
(♦) crystallized samples of the neat poly(ester amide) (a) and the poly(glc-alt-amh)/C25A nanocomposite (b) 
during heating or cooling runs performed at 3 ºC/min. The correlation functions of profiles obtained at 130 ºC 
after a heating run performed at 3 ºC/min (i.e. after completion of the reorganization process) are also shown 
(●). 
 

The hot crystallization experiments (Figure 5.3.11 c and d) showed that the crystalline lamellar 

thickness at the beginning of crystallization (125 ºC) was greater for the neat polymer (9.1 versus 

7.9 nm), suggesting that the presence of clay particles hindered the formation of perfect crystals 

from the melt state. These values were clearly higher than those found for the reorganized crystals 

formed at similar temperatures (130 ºC) during the cold crystallization experiments. The lamellar 

insertion mechanism was again favored in the nanocomposite since the decrease in crystalline 

lamellar thickness clearly occurred at higher temperatures than in the neat polymer (i.e. thickness 

started to decrease at 120 and 90 ºC, respectively). However, both samples reached a similar value 

at 40 ºC (i.e. 6.1 nm). These observations are in agreement with the faster primary crystallization 

b) 
a) 
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found for the nanocomposite from WAXD data and indeed from its narrower DSC exothermic 

peak. Differences in the crystalline lamellar thickness are probably the result of their different 

crystallization rates, which determine the instant at which the insertion mechanism takes place. In 

this way, the structure of the nanocomposite sample (exfoliated or intercalated) determines whether 

the final crystalline lamellar thickness is higher or lower than that observed for the neat polymer 

[36-38] since the crystallization rate is mainly influenced by the primary nucleation density.  

It should be pointed out that the cooling rate at which non-isothermal crystallization was performed 

also affected the lamellar insertion mechanism. Thus, crystallization occurred in a narrower 

temperature range when experiments were performed at 20 ºC/min (data not shown), and the 

decrease in crystalline lamellar thickness was smaller than that observed for the lower rate of 3 

ºC/min (Table 5.3.1).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.11 a) Temperature evolution of L (♦) lc (▲) la (■) main morphological parameters and the
invariant Q (x) during non-isothermal cold (a, b) and hot (c, d) crystallizations of the neat polymer (a,
c) and poly(glc-alt-6HH)/C25A (b, d) at 3 ºC/min. 
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Table 5.3.1 Morphological parameters and degree of crystallinity for the neat poly(ester amide) and its nanocomposite with Cloisite C25A 
during hot and cold crystallization processes. 

  

aProcesses performed at a rate of 3 ºC/min. 
bProcesses performed at a rate of 20 ºC/min. 

 
 

Neat Polymer 
 

Nanocomposite 

 

l(nm)
 

lc (nm) 
 

la (nm) 


c
SAXS (%) 



c
WAXD (%) 

 

l(nm)
 

lc (nm) 
 

la (nm) 


c
SAXS (%) 



c
WAXD (%) 

Hot Crystallization (125 ºC)a 10.8 9.1 1.7 83  9.7 7.9 1.8 81  

Hot Crystallization (40 ºC)a 7.7 6.1 1.6 79 32 7.6 6.1 1.5 80 28 

Hot Crystallization (40 ºC)b 10.5 8.3 2.1 79 30 9.7 8.0 1.6 82 27 

Cold Crystallization (45 ºC)a 8.8 7.2 1.6 82  10.8 9.1 1.7 84  

Cold Crystallization (60 ºC)a 6.6 5.2 1.4 80 23 7.5 6.0 1.5 80 21 

Cold Crystallization (90 ºC)b 7.6 6.1 1.5 80 22 7.6 6.1 1.5 80 20 

Cold crystallization (130 ºC)a 8.7 7.5 1.2 86 38 8.8 7.5 1.3 85 37 
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The interlamellar amorphous thicknesses of the samples remained practically constant although, 

as also detected in the cold crystallization experiments, a slight decrease (i.e. from 1.8-1.7 nm to 

1.6-1.5 nm) was observed. It is interesting to note that the invariant (Q) decreased at low 

temperatures. This can only be explained by an increase in the electronic density of the 

amorphous phase when temperature is lowered, which probably results from the improvement 

of the strong intermolecular hydrogen bonding interactions. Note also the obvious differences 

between the neat polymer and the nanocomposite.  

Comparison between cold and hot crystallization experiments showed that lamellae were thicker 

when spherulites were obtained from the glass state due to the reorganization process occurring 

at high temperatures (for cold crystallized samples) and the insertion mechanism, which was 

decisive at low temperatures (for hot crystallized samples), that is, when no subsequent 

thickening process was possible.  

Lvalues of the melt reorganized samples (i.e. at the end of the cold crystallization 

experiments) were clearly higher than the long period determined from twice the value of the 

first minimum of the correlation function. In this case, the most probable distance between the 

centers of gravity of two adjacent crystals appeared to be similar to twice the most probable 

distance between the centers of gravity of a crystal and its adjacent amorphous layer. This 

suggests a broader distribution of the layer widths of the crystal phase, which was not so clearly 

detected at the end of the hot crystallization experiments, or even at the end of the cold 

crystallizations prior to the reorganization process. 

5.3.4 Conclusion 
 

Nanocomposites of poly(glc-alt-amh) and a 3% content of C25A organomodified clay with an 

intercalated structure were obtained by the melt mixing technique. Optical microscope studies 

led to the conclusion that the nucleation rate of the polymer was enhanced by the clay in both 

hot and cold crystallization experiments. Thus, silicate particles act as effective nucleating 

agents at low degrees of compatibility, a result that contrasts with previous observations on 

practically exfoliated structures prepared by in situ polymerization.  

The addition of clay particles slightly reduced the radial growth rate, as showed in the hot 

crystallization experiments where the dimensions of spherulites allowed obtaining accurate 

measurements. Results also point to a slight increase in the secondary nucleation constant for 

the nanocomposite sample.  

The effect of nanoparticles on the overall crystallization rate is a consequence of the balance of 

two opposite trends: increase in primary nucleation density and decrease in crystal growth rate, 

which specifically led to faster crystallization in the hot crystallization experiments. 
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The degree of crystallinity was always slightly lower for the nanocomposite sample, indicating 

a disturbing effect of the clay particles on the crystallization processes. It evolved rather 

differently during the hot crystallization processes, with a sudden increase at the beginning of 

the process in the case of the nanocomposite that reflects a faster primary crystallization mainly 

caused by the increase in nucleation density. The poorer nucleation of the neat polymer resulted 

in a time smearing of the primary and secondary crystallization. 

The addition of clay particles was highly influential as it favored a lamellar insertion mechanism 

and caused a decrease in the average lamellar thickness. Lamellar reorganization occurred at 

high temperatures, resulting in similar lamellae when the nanocomposite and neat polymer 

samples crystallized from the glass state. 
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5.4                                          

Crystallization behavior of clay 

nanocomposites prepared form a degradable 

alternating copolyester constituted by 

glycolic acid and 6-hydroxyhexanoic acid.  

An exfoliated nanocomposite was prepared by the film-casting technique from C25A organo-modified 

clay and a new biodegradable polyester derived from glycolic acid and 6-hydroxyhexanonoic acid. This 

polyester has a sequential monomer distribution and high crystallinity, allowing a detailed study of its 

isothermal crystallization. The influence of the clay on the crystallization behavior was investigated by 

optical microscopy, simultaneous SAXS/WAXD synchrotron radiation and FTIR spectroscopy. Primary 

nucleation and crystal growth rate decreased significantly with the incorporation of nanoparticles. In 

addition, the overall crystallization rate of the nanocomposite was logically lower than that of the neat 

polyester. Bulk crystallizations were modeled from FTIR data with the Avrami equation. The results 

showed spherulite growth geometry and predetermined (heterogeneous) nucleation for both samples. 

Morphological studies revealed that both the crystal and the amorphous layer thicknesses were 

influenced by the presence of silicate layers.  The overall percentage of crystallinity and the size of 

crystalline domains decreased with the addition of the highly miscible organoclay. 
  



222 

 

5.4.1 Introduction 
 

Biodegradable polymers are regarded as a potential alternative to existing petroleum-based 

plastics mainly used as commodities since new political regulations tend to promote the use of 

environmentally friendly materials despite their higher production costs.1,2 Aliphatic polyesters 

are currently the main family of degradable polymers due to the presence of a hydrolyzable 

ester group. However, mechanical and thermal properties are generally not useful for 

applications such as packaging. Several solutions have been proposed to improve performance 

properties. Thus, chemical modifications made by adding amide groups or aromatic 

dicarboxylate units have been considered and, in fact, the resulting polymers have been 

commercialized (e.g. BAKTM, a poly(ester amide) derived from 1,4-butanediol, adipic acid and 

6-aminohexanoic acid3,4, and EcoflexTM, a polyester derived from 1,4-butanediol, adipic acid 

and terephthalic acid5,6).  

The properties of materials can also be considerably modified by adding layered silicates into 

polymer matrices.7-11 The resulting biodegradable nanocomposites have several advantages 

generally obtained at low silicate content (5 wt%). Although biodegradable nanocomposites 

have very good future prospects, the present low level of production and high costs still restrict 

them for a wide range of applications. 

From a structural point of view, there are two main possible arrangements of the clay in the 

polymer matrix when good interactions can be established. These arrangements are the so called 

intercalated and exfoliated structures, although it is also usual to find a mixture of both.12 In the 

intercalated system the silicate layer stacking is preserved, but the polymer is inserted between 

the layers. The silicate layers are fully separated and randomly dispersed in the ideal exfoliated 

system. In this case, the nanostructure effect is more pronounced, and properties can therefore 

be better enhanced.  

Nanoparticles can either increase or decrease the overall crystallization rate of a semicrystalline 

polymer.13 This rate depends on two processes: primary nucleation and crystal growth rate. It 

has been found that nanoparticles can act as a nucleating agent, increasing the bulk 

crystallization rate, when intercalated structures are formed.14,15 On the contrary, nucleation 

density could decrease when the organo-modified clay is highly miscible with the polymer 

matrix (i.e. exfoliated nanocomposites).15,16 The effects of nanoparticles on crystal growth are 

very contradictory.17-21 For this reason, crystallization behavior is not fully understood. 

However, interactions between the matrix and nanoreinforcement seem to play a crucial role as 

a decrease in the growth rate is observed when they become weaker.15,22  Crystal growth rate is 

related to two temperature-dependent factors: secondary nucleation and molecular transport, 

which should be influenced by the presence of nanoparticles.  
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The aims of this work are to prepare an exfoliated nanocomposite from a new biodegradable 

copolyester constituted by an alternating distribution of glycolic acid and 6-hydroxyhexanoic 

acid units, and to study the influence of clay particles on the isothermal crystallization process. 

Thus, overall crystallization rate, crystal growth rate and change of morphological parameters 

during crystallization are analyzed for both the pristine and the nanocomposite samples by FTIR 

spectroscopy, optical microscopy and combined SAXS/WAXD diffraction data.  

It should be pointed out that related homopolymers, i.e. polyglycolide and polycaprolactone, 

and indeed copolymers derived from at least one of the above units are nowadays the samples 

with the largest number of applications as biodegradable and biocompatible materials.23 The 

new semicrystalline copolyester (hereafter named poly(glc-alt-6HH)) can be easily synthesized 

by a method involving a polycondensation reaction with formation of metal halide salts as the 

driving force (Scheme 5.4.1).24 Several studies involving its chemical and physical 

characterization have been conducted25, its biocompatibility26 has been evaluated and its 

application as a drug delivery system in the form of microspheres has been investigated.27  

 

 

ClCH2COCl + HO(CH2)5COOH 
 
  CHCl3 
  KHCO3/H2O 
 
    ClCH2COO(CH2)5COO-K+ 

 
  Vacuum 
       
 
-[OCH2COO(CH2)5CO]x- + KCl 
 

    
                                                   Poly(glc-alt-6HH) 
 

 

5.4.2 Experimental section 

 Materials 

Poly(glc-alt-6HH) was synthesized with an 80% yield by thermal polyesterification of the 

potassium salt of the 6-(2-chloroacetate)hexanoic acid24  (Scheme 5.4.1). The intrinsic viscosity 

measured in dichloroacetic acid at 25ºC was 0.80 dL/g. The weight average molecular weight 

and polidispersity index, estimated by GPC, were 28,600 g/mol and 2.07, respectively. 

Scheme 5.4.1 
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Dimethyl hydrogenated-tallow 2-ethylhexyl ammonium montmorillonite (Cloisite 25A, 

Southern Clay Products, 2MHTEX) was used as received. The chemical structure of the specific 

surfactant of the organo-modified layered phyllosilicate is shown in Scheme 5.4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 Preparation of nanocomposite 

The nanocomposite was prepared by the solution-intercalation film-casting technique. 100 mg 

of the polymer was dissolved in 10 mL of chloroform and stirred for 30 min. A clay dispersion 

(< 0.1 wt %) was prepared in a separate beaker of chloroform and sonicated for 120 min with a 

Bransonic 220 sonicator. Next, the solution and the dispersion were mixed and stirred together. 

The amount of organo-modified montmorillonite loading was fixed at 3%. The mixture was 

then cast on a glass surface and the solvent was evaporated in a vacuum oven at 40 ºC. Optically 

clear nanocomposite films with thicknesses ranging from 20 to 35 m were obtained.  

 Measurements 

Intrinsic viscosity was determined using a Cannon-Ubbelhode microviscometer and a 

dichloroacetic acid solution at 25  0.1 ºC. The molecular weight was estimated by size 

exclusion chromatography (SEC) using a liquid chromatograph (Shimadzu, model LC-8A) 

equipped with an Empower computer program (Waters). A PL HFIP gel column (Polymer Lab) 

and a refractive index detector (Shimadzu RID-10A) were employed. The polymer was 

dissolved and eluted in hexafluoroisopropanol at a flow rate of 0.5 mL/min (injected volume 

100 L, sample concentration 1.5 mg/mL). The number and weight average molecular weights 

were calculated using polymethyl methacrylate standards. 

Interlayer spacing of the clay was studied by wide angle X-ray scattering (WAXD) using a 

Siemens D-500 diffractometer (Karlsruhe, Germany) with Cu Kα radiation (λ = 0.1542 nm).  

CLOISITE 

HT: hydrogenated tallow; T: tallow 

(65% C18 30% C16 5% C14)

N+

CH3

CH2CHCH2CH2CH2CH3

HT

H3C

CH2CH3

Scheme 5.4.2 chemical structure of the organo-
modified layered phyllosilicate  Cloisite 25A 
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Thermal degradation was determined at a heating rate of 20 ºC/min with around 5 mg samples 

in a Q50 thermogravimetric analyzer of TA Instruments and under a flow of dry nitrogen.  

The structure and distribution of Cloisite were observed with a Philips TECNAI 10 transmission 

electron microscope (TEM) at an accelerating voltage of 100 kV. TEM specimens were 

prepared by embedding in a low viscosity modified Spurr epoxy resin and curing at 40°C for a 

few days and then at 60 °C for 6 h. Ultrathin sections (less than 100 nm) were cut at room 

temperature using a Sorvall Porter-Blum microtome equipped with a diamond knife. Finally, the 

sections were collected in a trough filled with water and lifted onto carbon coated copper grids.  

The spherulite growth rate was determined by optical microscopy using a Zeiss Axioskop 40 

Pol light polarizing microscope equipped with a Linkam temperature control system configured 

by a THMS 600 heating and freezing stage connected to an LNP 94 liquid nitrogen cooling 

system. Spherulites formed from homogeneous melt-crystallized thin films obtained by melting 

1 mg of the polymer mixture on microscope slides. Next, small sections of these films were 

pressed or smeared between two cover slides and inserted in the hot stage. The thickness of the 

squeezed samples was in all cases close to 10 m. Samples were kept at 100 ºC (more than 30 

ºC above the polymer melting point of 69 ºC) for 5 minutes to eliminate sample history effects, 

and then quickly cooled to the selected crystallization temperature. The radius of the growing 

spherulites was monitored during crystallization by taking micrographs with a Zeiss AxiosCam 

MRC5 digital camera at appropriate time intervals. A first-order red tint plate was employed to 

determine the sign of spherulite birefringence under crossed polarizers.  

Simultaneous time-resolved SAXS/WAXD experiments were carried out at the CRG beamline 

(BM16) of the European Synchrotron Radiation Facility of Grenoble. The beam was 

monochromatized to a wavelength of 0.098 nm. The capillary with the sample was held on a 

Linkam hot stage with temperature control within  0.1 ºC. SAXS and WAXD profiles were 

acquired simultaneously during crystallization experiments in time frames of 12 s. Two linear 

position-sensitive detectors were used 28: the SAXS detector was calibrated with different orders 

of diffraction from silver behenate whereas the WAXD detector was calibrated with diffractions 

of a standard of an alumina (Al2O3) sample. The diffraction profiles were normalized to the 

beam intensity and corrected considering the empty sample background. Deconvolution of 

WAXD peaks was performed with the PeakFit v4 program by Jandel Scientific Software 

assuming Gaussian peak profiles. The correlation function and the corresponding parameters 

were calculated with the CORFUNC program29 provided by the Collaborative Computational 

Project 13 for Fibre Diffraction / Non-Crystalline Diffraction, CCP13. 

Infrared absorption spectra were recorded with a Fourier Transform FTIR 4100 Jasco 

spectrometer in a 4000-550 cm-1 range. A Specac Golden Gate Heated Diamond ATR Top Plate 
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which can be used at up to 200 ºC and a Series 4000 High Stability Temperature Controler were 

also employed. 

5.4.3 Results and discussion 

 Dispersion structure of the C25A clay in the composite with Poly(glc-alt-6HH) 

The nanocomposite structure was analyzed by X-ray diffraction and transmission electron 

microscopy. Figure 5.4.1 shows that the characteristic (001) phyllosilicate diffraction peak 

(1.93 nm) practically disappeared for poly(glc-alt-6HH)/C25A at a 3% clay concentration. The 

absence of the characteristic interlayer silicate diffraction peak may be indicative of an 

exfoliated structure. However, this result is also compatible with a preferred orientation of clay 

particles parallel to the film surface, and indeed with an intercalated structure with a broad 

interlayer distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 5.4.1 a) X-ray diffraction patterns of the poly(glc-alt-6HH)/C25A
nanocomposite and the neat clay. b) Transmission electron micrograph
showing the morphology of the poly(glc-alt-6HH)/C25A nanocomposite
with a Cloisite concentration of 3%. 
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Direct observation of morphology and phase distribution by transmission electron microscopy 

of ultrathin sections of the C25A specimen revealed that an exfoliated structure was obtained 

(Figure 5.4.1 b). This delamination of the layered silicate points to a high degree of miscibility 

between the polymer and the organo-modified clay.  

 Thermal stability 

Figure 5.4.2 shows the thermogravimetric traces of the neat polyester and its nanocomposite 

with 3% of C25A. It is clear that C25A slightly improves thermal stability at the beginning of 

the degradation process which practically occurs in a single step. Thus, the nanocomposite 

reached a 10% weight loss at a temperature 10 ºC higher than the corresponding temperature of 

the neat polyester. In contrast, degradation of the nanocomposite was accelerated in the final 

stages of the process since a constant residual weight (3%) was attained when temperature 

reached 470 ºC, whereas at this temperature the neat polyester had a greater residual weight 

(7%) which progressively diminished. Note that at 560 ºC the residual weight was again greater 

for the nanocomposite due to its silicate content. It is assumed that, in the early stages of 

decomposition, clay particles may act as a heat barrier which enhances the thermal stability of 

the system and shifts the decomposition to higher temperatures. However, new explanations 

have been given in terms of a nanoconfinement that enhances intermolecular interactions, 

increases the energy barrier to molecular motion and decreases chemical reactivity. It has been 

suggested that exfoliated structures may be more efficient in confining and stabilizing polymer 

matrices.30  

 

 

 

  

Figure 5.4.2 TGA and DTG curves  of neat poly(glc-alt-6HH) and its nanocomposite
with 3% of C25A under a nitrogen atmosphere. 
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 Calorimetric data of the poly(glc-alt-6HH)/C25A nanocomposite 

Figure 5.4.3 a plots the DSC isothermal crystallization curves of the poly(glc-alt-6HH)/C25A 

nanocomposite at some representative temperatures. A clear exothermic peak, which becomes 

broader when temperature is increased, always appears. For comparative purposes, a DSC trace 

corresponding to the neat polyester25 shows that, in this case, the overall crystallization rate was 

faster.  

DSC heating traces of the isothermally crystallized nanocomposite samples are shown in  b. As 

explained in the previous calorimetric study on the neat polyester,25 a double melting peak could 

be clearly detected in the samples crystallized at the lower temperatures (42-48 ºC). The first 

peak was interpreted as the melting of the as-crystallized lamellae, whereas the second peak, 

which appeared at a constant temperature, was attributed to the melting of reorganized crystals, 

presumably crystallized during scanning. The increased crystallization temperature (Tc) led to 

thicker lamellae, and therefore to a higher melting temperature for the as–crystallized lamellae 

and a lower ratio of the reorganized crystals.  

The method developed by Hoffman and Weeks31 (i.e., extrapolation of the plot of Tm versus Tc 

to Tm = Tc ) was used to determine the theoretical equilibrium melting temperature (Figure 5.4.3 

c). A value close to 77 ºC was estimated using the first melting peak temperature. This value 

was identical to that determined for the neat polyester, as can be seen in the plot which also 

includes the experimental data obtained with poly(glc-alt-6HH). 

DSC heating scans of isothermally crystallized samples (not shown) revealed that the neat 

polyester and the poly(glc-alt-6HH)/C25A nanocomposite had a similar glass transition 

temperature well below room temperature (-36 ºC). Literature data suggest that all possibilities 

(increase, decrease and no variation of Tg) can occur between a pristine polymer and its 

nanocomposites.32,33 Furthermore, changes in the glass transition temperature cannot be well 

correlated with the (intercalated or exfoliated) clay structure. 30   
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 Optical microscopy studies 

The spherulites of the neat polyester and its C25A nanocomposite have a negative birefringence, 

as demonstrated by the position of  the blue and yellow arms in the optical micrographs shown 

in Figure 5.4.4.  A fibrilar texture was characteristic for the polyester in the studied temperature 

range. However, in the case of the nanocomposite, zones of zero birefringence were also 

detected (inset of Figure 5.4.4 b), suggesting a twisting of lamellae. 

The spherulite radial growth rates (G) of the neat poly(glc-alt-6HH) sample and its C25A 

nanocomposite were determined by observing the evolution of the spherulite radius versus time. 

Data for crystallization temperatures of 50, 52, 54 and 56 ºC (Figure 5.4.5 a) showed that, at a 

given temperature, the nanocomposite sample always had a lower crystal growth rate, as 

summarized in Table 5.4.1. Differences were significantly reduced when the crystallization 

temperature was lowered.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

 b) 

Figure 5.4.4 Optical micrographs taken at the end of isothermal crystallization
at 54 ºC of the neat polyester (a) and its nanocomposite with 3% of C25A (b).
Spherulites have the same negative birefringence in both samples, as
demonstrated by the position of the blue and yellow arms. Zero birefringence
zones can be clearly observed in the black and white micrograph shown in the
inset of b). 
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Table 5.4.1 Growth rates of the neat poly(glc-alt-6HH) and poly(glc-alt 
6HH)/C25A samples at different crystallization temperatures. 

 

 

Tc (ºC) 

G (μm/min) 

Neat Polyester Nanocomposite 

50 0.83 0.82 
52 0.61 0.59 
54 0.44 0.39 
56 0.26 0.22 

 

 

It is worth pointing out that the linear increase in the spherulite radius implies that the growth 

rate is independent of spherulite size and suggests that clay particles must not be excluded 

during spherulite growth as non crystallizable particles would build up on the crystallization 

growth front and hinder the transport of crystallizable species from the melt to the growing 

edge. In this case, a deviation from the linear tendency of spherulite growth should be 

observed.15,34 

Nucleation density was also higher for the neat polyester, as deduced from the number of 

spherulites measured in the field of view of the optical microscope (e.g. 900 versus 525 

nucleii/mm2 at 50 ºC). This difference decreased with increasing the crystallization temperature 

(Figure 5.4.5 b). Figure 5.4.4 a and b show optical micrographs obtained at the end of the 

crystallization process. Spherulites of the nanocomposite sample are observed to become bigger 

when impingement occurs as a result of decreased nucleation density. For the same reason, 

crystallization induction time increased in the case of the nanocomposite (data not shown). The 

number of spherulites remained practically constant during crystallization of both samples, 

pointing to an athermal nucleation process.  

Dispersed clays clearly influenced the overall crystallization kinetics since both primary 

nucleation and crystal growth rate led to a deceleration of the crystallization process. Similar 

observations of their effect on primary nucleation were reported for nanocomposites of 

poly(butylene succinate-co-adipate) with organically modified synthetic fluorine mica with a 

practically exfoliated structure.16 Results contrast with the increase in primary nucleation 

usually observed when the clay shows an intercalated structure.13 It has been suggested that a 

homogeneous dispersion of silicate platelets may hinder local lamellar crystallization since they 

act as obstacles for the mobility and flexibility of polymer chains to fold and join the 

crystallization growth front. 
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Spherulite growth rate could be studied with the Lauritzen and Hoffman analysis35, which 

considers the influence of two independent processes, i.e. secondary nucleation and molecular 

transport: 

  G = G0 exp[-U*/ (R(Tc-T∞))]  exp [-Kg / (Tc (T) f )]       (5.4.1) 

where G0 is a constant pre-exponential factor, U* represents the activation energy characteristic 

of the transport of crystallizing segments across the liquid-crystal interface, R is the gas 

constant, Kg is the secondary nucleation constant, T∞ is a hypothetical temperature below which 

motion ceases, Tc is the crystallization temperature, T is the degree of supercooling measured 

Figure 5.4.5. a) Plot of the spherulite radii of the neat polyester (empty symbols) and its
nanocomposite with 3% of C25A (full symbols) versus crystallization time for
isothermal hot crystallization temperatures of 50 ºC (○), 52 ºC (∆), 54 ºC (□) and 56 ºC
(◊). b) Comparison of the density of nuclei between the neat polyester and its C25A
nanocomposite at three crystallization temperatures. 
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Figure 5.4.6 Lauritzen and Hoffman plots obtained from the spherulite growth rates determined
for the neat polyester (▲, solid line) and its C25A nanocomposite (◊, solid line) at different
isothermal crystallization temperatures and considering a transport energy parameter of 1500
cal/mol. An LH plot is also shown for the nanocomposite considering a transport energy value of
2000 cal/mol (◊, dotted line). 
 

as Tm
0 – Tc and f  is a correction factor accounting for the variation in the bulk melting enthalpy 

per unit volume with temperature ( f = 2 Tc / (Tm
0 + Tc)).  

When isothermal crystallization is investigated far above the glass transition temperature, the 

exact values of U* and T∞ hardly affect the temperature dependence of the radial growth rate i.e. 

the first exponential term of equation 5.4.1), and standard values, such as those reported by 

Suzuki and Kovacs36 (U* = 1500 cal/mol and T∞ = Tc – 30 K), can be employed.  

Thus, Figure 5.4.6 shows the typical Lauritzen-Hoffman (LH) plot for the neat polyester and its 

C25A nanocomposite. Experimental data for both samples fit well with single linear plots, the 

correlation coefficient (r2) being greater than 0.99. Crystallizations were performed within a 

very narrow temperature range (6 ºC), and consequently a single crystallization regime should 

be expected. Secondary nucleation constants of 0.50 105 K2 and 0.55 105 K2 were determined 

from the slopes of these linear plots, where the higher value corresponds to the nanocomposite. 

Thus, the presence of clay particles seems to have an influence on secondary nucleation, making 

the activation of effective nuclei on the surface of growing crystals more difficult. The effect of 

clay particles on the secondary nucleation process is not well understood, although works based 

on LH analyses have stated that differences in Kg values can be found between a neat polymer 

and its nanocomposites.  

Clay particles may be expected to hinder molecular motion and increase the activation energy of 

the transport term. However, as explained above, crystallization experiments were conducted at 

temperatures at which the influence of this term should be minimal. In any case, in Figure 5.4.6 

it can be seen that further increase of the nucleation parameter (from 0.55 105 K2 to 0.59 105 K2) 

was found when a higher U* parameter was considered for the nanocomposite sample (e.g. 

2000 instead of 1500 cal/mol).  
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 Crystalline morphology and isothermal crystallization data of poly(glc-alt-6HH)/C25A 

from SAXS/WAXD data 

Figure 5.4.7 shows representative time-resolved SAXS and WAXD profiles of poly(glc-alt-

6HH)/C25A obtained during isothermal crystallization at 54 ºC. A SAXS long period peak is 

clearly seen at a value of the scattering vector, q = [4/] sin (), close to 0.047 Å-1 after 

subtraction of the empty sample background observed near the beam stop. This long period 

peak can be attributed to the lamellar structure of spherulites and begins to appear at a time 

value which decreases with decreasing crystallization temperature. Subsequently, the peak 

intensity increases significantly over time until reaching a plateau value. The initial WAXD 

profiles show an amorphous halo whose intensity decreases with crystallization, as well as small 

peaks with constant intensity corresponding to the (hk0) clay reflections. During crystallization 

new Bragg reflections appear. The most intense and significant peaks correspond to the (11 1), 

(110), (020), (021) and ((022) + (111)) reflections of the polymer structure defined by an 

orthorhombic unit cell having a = 0.665 nm, b = 0.804 nm and c = 2.15 nm.25 The intensities of 

these reflections increase significantly at the beginning of crystallization until reaching their 

maximum values after a short time interval. For each studied crystallization temperature, the 

SAXS long period peak and the crystal diffraction peaks appear simultaneously.  

SAXS data were analyzed considering the normalized one-dimensional correlation function,37 

(r), which corresponds to the Fourier transform of the Lorentz-corrected SAXS profile: 

 (r) = 


0

2 )cos()( dqqrqIq  / 


0

2 )( dqqIq   (5.4.2) 

Data were collected only within a limited angular range. Therefore, extrapolations to low and 

high q values were performed using Vonk’s model38 and Porod’s law, respectively.  

Figure 5.4.8 a shows the final SAXS profiles of poly(glc-alt-6HH)/C25A isothermally 

crystallized within the 48-54 ºC temperature range, whereas the corresponding calculated 

correlation functions are plotted in Figure 5.4.8 b. Analysis of the correlation functions allows 

the determination of the main geometrical parameters of the lamellar structure, assuming a 

simplified two-phase model: a) long period, L which corresponds to the r value of the first 

maximum of the correlation function; b) amorphous layer thickness, la, which is assigned to the 

r value for the intersection of the LRAT (linear regression in the autocorrelation triangle) with 

the ordinate equal to the first minimum of the correlation function, and c) crystalline lamellar 

thickness, lc, calculated as Lla. Crystallinity within the lamellar stacks, Xc
SAXS, can be easily 

calculated as lc / L .  
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Figure 5.4.7 Time-resolved SAXS (a) and WAXD (b) 3-dimensional profiles of the 
poly(glc-alt-6HH)/C25A nanocomposite during isothermal crystallization at 54 ºC. SAXS
curves are shown after subtraction of the empty sample background and Lorentz correction. 
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Figure 5.4.8 Final SAXS profiles (a) and corresponding correlation functions
(b) at different crystallization temperatures for the poly(glc-alt-6HH)/C25A 
nanocomposite. c) Correlation functions at the end of crystallization at 50 ºC
of the neat polyester (■) and its nanocomposite (◊). 
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The evolution of the morphological parameters of the nanocomposite during crystallization at a 

representative temperature of 54 ºC is displayed in Figure 5.4.9 a.  During primary 

crystallization, both the average long period, L, and average lamellar thickness, lc, decreased 

significantly, whereas they remained practically constant during secondary crystallization. The 

initial decrease in L and lc during primary crystallization is consistent with the formation of 

new crystals at a rate for which the thickening of existing lamellae is comparatively negligible. 

The new secondary lamellae are inserted within the loosely stacked bundles of the primary 

lamellae and lead to denser stacking and a decrease in L. The interlamellar amorphous layer 

thickness, la, was practically constant during crystallization although a slight increase was 

observed at the beginning of primary crystallization. The new inserted lamellae seem to be 

subjected to spatial restrictions, resulting in the formation of thinner defective crystals which 

account for a slight increase in la values.  

Similar trends have been described previously for neat polyester crystallization.25 However, it is 

worth pointing out that the pristine sample has a significantly thicker amorphous layer whereas 

its lamellar thickness is slightly lower as shown in Figure 5.4.9 b.  

Figure 5.4.8 c compares also the correlation function at the end of the isothermal crystallization 

at 50 ºC for the two samples. 

It must be noted that the difference in the lamellar morphology of the neat polyester and that of 

its nanocomposite lies in the amorphous layer (Figure 5.4.9 b), which is clearly larger in the 

former. Higher primary nucleation and crystal growth rate may lead to more imperfect lamellar 

folding surfaces.   

A similar slight increase in lamellar crystal thickness caused by the addition of clay particles has 

been described previously in the morphological study of polypropylene/clay nanocomposites 

and interpreted as a consequence of the insertion of some silicate layers into the inter-lamellar 

region.39 Nevertheless, an opposite behavior was detected in polyoctamethylene suberate, where 

clay particles had an intercalated structure with  variable interlayer spacing.40 At present, 

literature data indicate that this question is not clear. It is therefore crucial to obtain information 

to reach a better understanding over the influence of clay particles on lamellar morphology.  

For the nanocomposite sample Lwas slightly higher than the long period determined from 

twice the value of the first minimum of the correlation function (e.g. values of 113 and 90 Å 

were respectively determined for the crystallization at 50 ºC). Thus, the most probable distance 

between the centers of gravity of two adjacent crystals is larger than twice the most probable 

distance between the centers of gravity of a crystal and its adjacent amorphous layer. This 

suggests a broader distribution of layer widths of the major component, which in this case 
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corresponds to the crystal phase. On the contrary, good agreement was found for the pristine 

polyester (e.g. both measures correspond to 120 Å for the crystallization at 50 ºC).  

The geometrical parameters determined for both samples are summarized in Table 5.4.2, 

together with the crystallinity calculated within the lamellar stacks, Xc
SAXS. Crystallinity 

remained practically constant for a given sample in the studied crystallization interval, but it is 

interesting to note that this value was significantly higher for the nanocomposite (70 versus 

80%). 

Figure 5.4.9 a also shows the time evolution of the scattering invariant of the C25A 

nanocomposite during isothermal crystallization at 50 ºC. The evolution reveals a typical 

behavior where invariant Q exhibits a sigmoidal increase with time. After the induction time, t1, 

the SAXS profile starts to show a peak whose intensity increases continuously at a rapid rate. 

Primary crystallization occurs between t1 and the time at which secondary crystallization starts, 

t2. In the case of the neat polymer, this time is slightly shorter for a given crystallization 

temperature (e.g. 1100 and 600 s were determined for crystallization at 50 ºC of the 

nanocomposite and the neat polyester), as expected for a higher crystallization rate.  

 

Table 5.4.2. Morphological parameters and degree of crystallinity determined from SAXS 
measurements during isothermal crystallization of the neat polyester and its nanocomposite with the 
C25A clay. 
 

 
Temperature 

(ºC) 

Neat Polyestera Nanocomposite 

LÅ lc Å la Å Xc
SAXS LÅ lc Å la Å Xc

SAXS 

35 110 78 32 0.71     
40 115 79 36 0.68     
45 117 80 37 0.68     
48     111 89 22 0.80 
50 120 83 37 0.69 113 91 22 0.80 
52     115 93 22 0.81 
54     117 94 23 0.80 
55 125 85 40 0.68     

ª Data from reference 28 

 

The evolution of crystallinity of samples was estimated by WAXD. Thus, the integrated 

intensity for each crystal reflection and the amorphous background were measured for the time-

resolved spectra obtained during isothermal crystallization. A Gaussian-Lorentzian peak riding 

on a baseline was used to fit the amorphous background. All the other crystal reflection peaks 

were also fitted with Gaussian-Lorentzian functions (Figure 5.4.10 a). The division of the total 

intensities of the crystalline reflections Ic by the overall intensity IT gave a measure of the mass 

fraction of the crystalline phase in the sample. This value, Xc
WAXD, was termed as apparent mass 
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crystallinity since, owing to possible distortions in the crystal lattice and thermal disorder, the 

measured value of Ic might underestimate the true value of crystallinity. 

The time evolution of WAXD crystallinity at the isothermal crystallization temperature of 50 ºC 

is displayed in Figure 5.4.10 b for the neat polyester and its nanocomposite.  It is clear that the 

overall crystallization proceeded faster in the neat polyester and also that a higher degree of 

crystallinity was attained in this sample (45% versus 33%). These absolute crystallinities did not 

change significantly (from 45 to 47% and from 33 to 35%) with crystallization temperature in 

the studied range of 45-55 ºC for the neat polyester and 48-54 ºC for the nanocomposite sample. 

There was also good agreement between the evolution of the SAXS invariant, Q, and the degree 

of crystallinity evaluated by WAXD for both samples. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.9 a) Time evolution of main morphological parameters and the invariant during
isothermal crystallization at 54 ºC of poly(glc-alt-6HH)/C25A. b) Final lamellar spacings
at various crystallization temperatures for the neat polyester (empty symbols) and its
nanocomposite (full symbols). 
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Combinated SAXS and WAXD data can be used to verify the assignment of la and lc 

thicknesses, which cannot be distinguished from the analysis of the correlation function.41-43 

Thus, the ratio between Xc
WAXD and Xc

SAXS is an estimate of the volume-filling fraction of the 

lamellar stacks, XS.  Ratios of 0.58 and 0.39 were determined for the neat polyester and the 

nanocomposite at the end of crystallization, respectively. Note that the opposite assignment of 

the amorphous and crystalline layer thicknesses should render an unrealistic ratio greater than 

one. The determined ratios point to the existence of amorphous domains between lamellar 

stacks of the studied samples, which appear less significant for the neat polyester.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.10 a) Deconvolution of the WAXD profile corresponding to the end of isothermal
crystallization at 50ºC of the nanocomposite. Inset shows the profiles obtained after elimination
of the amorphous halo in the early (850 s) and final (2900 s) stages of this crystallization. b)
Evolution of crystallinity determined from WAXD data during isothermal crystallization at
50ºC of the neat polyester (▲) and its nanocomposite (□). 
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 Isothermal crystallization kinetics of poly(glc-alt-6HH) and its C25A nanocomposite 

from FTIR analyses 

FTIR is highly sensitive to molecular conformation and packing density, hence its usefulness in 

polymer crystallization studies. Characteristic bands can be correlated to the crystalline and 

amorphous phases of the bulk and typically remain distinguishable over the course of 

crystallization. Isothermal studies are preferred to avoid shape susceptibility and intensity of 

FTIR bands with temperature.  

Figure 5.4.11 compares the absorption infrared spectra (1050-1000 cm-1) of the neat polyester 

in the molten state and at the end of an isothermal crystallization performed at 50 ºC. It is clear 

that different bands in this region can be assigned to the crystalline (1420, 1234 and 1222 cm-1) 

or the amorphous phase (1282 and 1196 cm-1) since their absorptions increase or decrease, 

respectively, during the crystallization process. The continuous evolution of the absorption 

bands is shown in Figure 5.4.12 for a representative example corresponding to the isothermal 

crystallization at 50 ºC of the neat polyester. The opposite behavior (not shown) is logically 

observed during a heating run of a semicrystalline sample. Figure 5.4.13a shows that the five 

selected bands exhibit a similar behavior for a given sample and crystallization temperature. 

Note that in all cases absorption values started and stopped changing at the same crystallization 

time and that the maximum absorption change was also detected at a similar time. Thus, it 

seems feasible to perform a crystallization kinetic analysis by considering the evolution of these 

absorption bands.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.11 Absorption FTIR spectra (1500-1000 cm-1) of the neat 
polyester at the beginning and the end of isothermal crystallization at
50ºC. 
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Figure 5.4.12 Changes in the infrared absorption bands at 1420 cm-1 (a), 1282
cm-1 (b) and 1234, 1222 and 1196 cm-1 (c) of the neat polyester during
isothermal crystallization at 50ºC. 
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Figure 5.4.13 a) Time evolution of the absorption of selected infrared bands for isothermal
crystallization at 50ºC of the neat polyester. Characteristic bands of the amorphous (1282 and 1196 
cm-1) and crystalline phases (1420, 1234 and 1222 cm-1) were chosen. b) Time evolution of relative 
crystallinity deduced from FTIR data (1420 cm-1 band) for isothermal crystallization at 50ºC of the 
neat polyester (▲) and its nanocomposite (♦). c) Avrami plot considering FTIR data (1420 cm-1

band) for isothermal crystallization at 50ºC of the neat polyester (▲) and its nanocomposite (♦). 
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A relative degree of crystallinity,  (t), can be defined and measured for any characteristic 

absorption band associated with the crystalline (equation 5.4.2) or the amorphous phase 

(equation 5.4.3): 

 (t) = (At - A0) / (A - A0)              (5.4.2) 

 (t) = (At - A) / (A0 - A)                (5.4.3) 

where At is the absorption measured at a crystallization time t, and A0 and A are the initial and 

final absorptions of the considered band. Figure 5.4.13 b compares the evolution of 

crystallinity, evaluated through absorption measurements of the band at 1420 cm-1 for the neat 

polyester and the nanocomposite at a crystallization temperature of 50 ºC. It is again clear that 

crystallization of the neat polyester proceeds faster.  

Kinetic crystallization data were analyzed by the Avrami equation44-46 for primary 

crystallization, i.e.:  

1 - (t) = exp[-Z(t-t0)
n]                          (5.4.4) 

where Z is the temperature-dependent rate constant and n the Avrami exponent, whose value 

varies according to the crystallization mechanism. This mechanism is composed of two steps: 

nucleation, which can be either homogeneous or heterogeneous depending on how nuclei are 

formed, and crystal growth geometry.  

A normalized rate constant, k = Z1/n, is usually evaluated for comparison purposes since its 

dimension (time-1) is independent of the Avrami exponent value.  

Plots of log {-ln[1- (t)]} against log (t - t0) for a given sample and crystallization temperature 

give straight lines (Figure 5.4.13 c) with slopes corresponding to the Avrami exponents and 

intercepts at log (t - t0) = 0 equal to log Z. The results were practically independent of the 

absorption band considered, as can be seen in Table 5.4.3.  

Avrami exponents of both samples were practically constant in the studied range of 

crystallization temperatures. Furthermore, the exponents did not change significantly with the 

addition of nanoparticles, suggesting that crystal growth nucleation and dimensionality 

remained unaffected. The average value of 2.16-2.12 suggests a predetermined (heterogeneous) 

nucleation with spherical growth geometry, the ideal of n for such a situation being 3. The 

alternative interpretation of n = 3, i.e. sporadic (homogeneous) nucleation and disk-like growth 

geometry, was discarded since this is expected to occur at large supercoolings and for thin films. 

Optical microscopy observations indicated a spherulite growth and an athermal nucleation, in 

full agreement with the given interpretation of the Avrami exponent. It should also be noted that 

the Avrami exponent reflects the geometry of spherulites during growth and can be affected by 

numerous factors. Several explanations have been provided to justify such a fractional Avrami 

exponent (e.g. truncation effects between spherulites).  
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Figure 5.4.14 shows that a good correlation between the overall crystallization rate and the 

reciprocal of the crystallization half time, 1/2, is found for the neat polyester and its 

nanocomposite. These time values, summarized in Table 5.4.2 for all experiments, can be easily 

estimated from the conversion curves. Note that they were measured without using kinetic 

equations; hence, the indicated fit demonstrates the goodness of the Avrami analysis.     
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Figure 5.4.14 Comparison between the overall crystallization rate (□) and the reciprocal
of the crystallization half time (○) determined at different isothermal crystallization
temperatures for the neat polyester (full symbols) and its nanocomposite (empty symbols). 
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Table 5.4.3 . Kinetic parameters derived from the FTIR analysis of the isothermal hot crystallization of the neat poly(glc-alt-6HH) sample and its nanocomposite with 
the C25A clay.  
 
 

 

 

 

Temperature (ºC)
 

Parameter 

Neat Polyester Nanocomposite 

Wavenumber (cm-1) Wavenumber (cm-1) 

1420 1234 1222 1196 Average 1420 1234 1222 1196 Average 

  

50 

  

n 2.38 2.33 2.79 1.71 2.30 2.53 2.54 2.52 1.75 2.34 

1/2  (min) 5.54 5.60 6.14 5.54 5.70 12.02 11.86 11.32 12.02 11.81 

k  (min-1) 0.15 0.14 0.15 0.13 0.14 0.074 0.074 0.076 0.078 0.076 

  

52 

  

n 2.38 2.36 2.39 2.27 2.35 2.37 2.38 2.66 1.83 2.31 

1/2  (min) 10.74 11.02 10.821 11.56 11.04 15.57 16.53 16.51 16.13 16.18 

k  (min-1) 0.075 0.074 0.074 0.071 0.073 0.053 0.058 0.056 0.049 0.054 

  

54 

  

n 2.09 2.07 2.13 2.06 2.09 1.66 1.65 1.66 1.54 1.62 

1/2  (min) 16.53 16.67 15.94 16.98 16.53 21.77 21.39 21.18 23.83 22.04 

k  (min-1) 0.049 0.048 0.050 0.047 0.0485 0.033 0.034 0.034 0.030 0.033 

  

56 

  

n 1.74 2.05 1.80 2.41 2.00 2.10 2.56 2.17 1.97 2.20 

1/2  (min) 30.58 31.58 30.20 37.51 32.47 36.85 36.52 36.25 37.80 36.86 

k  (min-1) 0.033 0.034 0.040 0.028 0.034 0.027 0.026 0.029 0.024 0.027 
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5.4.4 Conclusions 
 

Nanocomposites of C25A organo-modified clay and a new biodegradable polyester 

characterized by an alternating distribution of glycolic acid and 6-hydroxyhexanoic acid units 

were prepared by the solvent-casting technique. X-ray and TEM observations revealed full 

dispersion of silicate layers and suggested high miscibility between the polymer matrix and the 

clay. Thermogravimetric analyses showed that the addition of clay particles had a small 

stabilization effect at the beginning of the degradation process, which is currently interpreted as 

a consequence of polymer chain nanoconfinement.  

The semicrystalline character of the new polyester allowed the study of the influence of clay 

particles on crystallization kinetics and crystal morphology. Thus, incorporation of C25A 

decelerated the mechanism of primary nucleation and crystal growth of poly(glc-alt-6HH), a 

trend commonly observed when high homogeneous dispersion of silicate layers occurs. A slight 

increase in the secondary nucleation constant was also inferred for the nanocomposite by 

considering the Lauritzen and Hoffman treatment.  

FTIR and WAXD data obtained during isothermal crystallization were consistent and 

indicated a decrease in the overall crystallization rate when silicate layers were added. 

Optical microscopy revealed differences in spherulite morphology between the neat 

polyester and its nanocomposite. Furthermore, SAXS data showed significant changes 

in the morphology of constitutive lamellae since a dramatic decrease in amorphous layer 

thickness was observed for the nanocomposite. Despite this feature, the degree of 

crystallinity was higher for the neat polyester, suggesting an increase of the amorphous 

domains between lamellar stacks when the miscible silicate layers were added to the 

polymer matrix.    
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5.5                                                      

Thermal stability on clay nanocomposites 

prepared from a degradable poly(ester amide) 

constituted by glycolic acid and 6-

aminohexanoic acid.   

 

 
 

An intercalated nanocomposite of the organically modified montmorillonite Cloisite C25A and 

a degradable poly(ester amide) based on glycolic acid and 6-aminohexanoic acid units was 

prepared using a twin-screw co-rotating extruder. The non-isothermal degradation kinetics was 

investigated by thermogravimetric analysis (TG and DTG) in the temperature range 50-600 ºC 

at five heating rates (2, 5, 10, 20 and 40 ºC/min) and compared with the neat polymer. 

Significant differences were found since the nanocomposite showed three degradation steps 

instead of the two decomposition processes detected in the pristine sample. The onset mass loss 

temperature decreased in the nanocomposite due to the presence of the organo-modifier 

compound, but the presence of the silicate layers significantly decreased the degradation rate at 

the last stages of decomposition. Kinetic analysis was performed using the Kissinger method 

and the isoconversional (Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa and Friedman) 

methods. The true kinetic triplets (E, A, f(α)) were determined for the two first two steps of 

degradation  through the Coats-Redfern and the Invariant Kinetic Parameters methods. The 

results clearly indicated that the presence of the organo-modified clay modified the mechanisms 

of degradation. 



252 

 

5.5.1  Introduction  
 

Development of new biodegradable polymers is a subject of great interest due to their 

applications as both commodity and speciality materials1.2. The increasing demand of such 

materials and even the strict requirements needed to fulfil determined user specifications have 

conducted to the study of new families and also to the modification of properties by preparation 

of nanocomposites. 

Poly(ester amide)s are considered a promising family of biodegradable polymers since can 

combine a degradable character caused by the existence of hydrolizable ester groups (-COO-) 

with relatively good thermal and mechanical properties afforded by the strong intermolecular 

hydrogen bond interactions established between their amide groups (-NHCO-)3,6. A synthetic 

route based on the formation of metal halide salts as the driving force of a thermal 

polycondensation reaction was recently proposed and successfully applied to prepare alternating 

copolymers of glycolic acid and -amino acids7,8 such as the 6-aminohexanoic acid derivative 

(hereafter named poly(glc-alt-amh)). Different studies have been performed to understand its 

crystalline structure9, crystallization behavior10  and thermal degradation mechanism11  as well 

as to demonstrate its biocompatibility12.  

It has also been demonstrated that exfoliated and intercalated nanocomposites based on a 

poly(glc-alt-amh) matrix and the C25A organo-modified clay can be well prepared by the in 

situ polymerization13 and the melt intercalation techniques14 , respectively. Incorporation of the 

layered silicate had a clear influence on properties (e.g. crystallization behaviour) depending on 

the final structure of the nanocomposite13,14. Thus, nucleation was hindered and enhanced in 

exfoliated and intercalated structures, respectively. 

In the present work, we specifically studied the influence of the C25A organo-modified clay on 

the thermal degradation mechanism of poly(glc-alt-amh). We have selected the intercalated 

nanocomposite prepared by the melt mixing technique, which has the advantage of using a 

polymer sample with a predefined molecular weight. Thermal degradation has been evaluated 

under non-isothermal conditions applying different kinetic methods (differential and integral) 

and the obtained kinetic parameters compared with those previously deduced for the pristine 

polymer sample11. 

In general, it is assumed that layered silicates may act as a barrier towards degradation products 

ablation15,16. Thus, the addition of clay may enhance the performance of the char formed by 

acting as a mass transport barrier to the volatile products generated during decomposition. 

However, it is not clear if the clay may produce a reverse effect during the last stages of 
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degradation since it has been claimed that silica layers may also act as a thermal insulator and 

be a heat source that accelerates the decomposition process17. Alternatively, it has also been 

postulated that thermal stabilization is caused by a nanoconfinement effect of the clay that 

enhances intermolecular interactions, increases the energy barrier to molecular motion and 

decreases chemical reactivity18. Thermal behaviour of nanocomposites may be also affected by 

the stability of the organo-modifier compound used to favour the interaction between clay 

particles and polymer chains. In this way, the initial degradation temperatures of 

nanocomposites may linearly decrease with the amount of the organo-modifier compound19.  

5.5.2  Experimental section 

 Materials 

Poly(glc-alt-amh) was synthesized with an 80% yield by thermal polyesterification of the 

sodium salt of the N-chloroacetyl-6-aminohexanoic acid7,8. The polymer used in this work 

had an intrinsic viscosity of 0.92 dL/g (dichloroacetic acid at 25 ºC), a polydispersity 

index of 2.10 and a Mn molecular weight of 50,100 g/mol (from GPC analysis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Scheme 5.5.1 

 

 

Dimethyl hydrogenated-tallow 2-ethylhexyl ammonium montmorillonite (Cloisite 25A, 

Southern Clay Products, 2MHTEX) was used as received. The chemical structures of the 

specific surfactant of the organo-modified layered phyllosilicate and the polymer are shown in 

Scheme 5.5.1. 

CLOISITE 25A

HT: hydrogenated tallow; T: tallow 
(65% C18, 30% C16, 5% C14) 

N+

CH3

CH2CHCH2CH2CH2CH3

HT

H3C

CH2CH3

-[OCH2CONH(CH2)5CO]x- 

Poly(glc-alt-amh)
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 Scheme 5.5.1Preparation of nanocomposite 

Nanocomposites containing 3% of C25A clay particles were prepared by melt mixing in two 

steps using a co-rotating tightly intermeshed twin-screw extruder (DSM Xplore 5ml 

microcompounder). All materials were dried under vacuum prior to mixing. The processing 

temperature, screw rotation and cycle time were 190 ºC, 100 rpm and 3 minutes, respectively.  

 Measurements 

The structure and distribution of Cloisite were observed with a Philips TECNAI 10 transmission 

electron microscope (TEM) at an accelerating voltage of 100 kV. TEM specimens were 

prepared by embedding the film in a low viscosity modified Spurr epoxy resin and curing at 

40°C for a few days and then at 60 °C for 6 h. Ultrathin sections (less than 100 nm) were cut at 

room temperature using a Sorvall Porter-Blum microtome equipped with a diamond knife. 

Finally, the sections were collected in a trough filled with water and lifted onto carbon coated 

copper grids. Interlayer spacing of the clay was studied by wide angle X-ray scattering 

(WAXD) using a Siemens D-500 diffractometer (Karlsruhe, Germany) with Cu Kα radiation (λ 

= 0.1542 nm).  

Thermal degradation was determined at heating rates of 2, 5, 10 20 and 40 ºC/min with around 5 

mg samples in a Q50 thermogravimetric analyzer of TA Instruments and under a flow of dry 

nitrogen. The analysis was performed in the temperature range from 50 to 600 ºC. 

Deconvolution of the derivative thermogravimetric analysis (DTG) curve was performed with 

the PeakFit v4 program by Jandel Scientific Software, using an asymmetric function known as 

“asymmetric double sigmoidal” 

5.5.3  Results and discussion 

 Dispersion structure of the C25A clay in the composite with poly(glc-alt-amh)  

Direct observation of the morphology and phase distribution of ultrathin sections of poly(glc-

alt-amh) / C25A specimens by transmission electron microscopy clearly showed that an 

intercalated structure was predominant (Figure 5.5.1). In this way, X-ray diffraction profiles of 

the nanocomposite sample revealed also the existence of a low angle reflection associated to the 

stacking of silicate layers. The measured spacing was close to 2.68 nm, a higher value than that 

observed in the profile of the C25A clay (1.97 nm). Thus, polymer chains in the nanocomposite 

sample were intercalated in the galleries of the dispersed clay and increased the interlayer 

spacing.   
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 Thermal stability of the poly(glc-alt-amh)/C25A nanocomposite 

Thermogravimetric scans showed clear differences between the neat polymer and its 

nanocomposite with the C25A organo-modified clay (Figure 5.5.2 a). In this way, the 

nanocomposite showed a lower onset degradation temperature for all the assayed heating rates 

(Table 5.5.1), probably due to the lower stability of the organo-modifier compound, and in 

general a shift of its degradation curve to lower temperatures. However, curves approached to 

each other at the last stages of degradation suggesting that the neat polymer decomposition at 

high temperature proceeded faster than in the nanocomposite. Both samples reached a constant 

weight percentage, the remaining residue was logically greater for the nanocomposite (13% 

versus to 9%) due its clay content. 

The degree of degradation or conversion,  at a given temperature (Figure 5.5.2 b) was 

calculated as:  





WW

WW

0

0     (5.5.1) 

where W0, W and W were the initial weight, the weight at the considered temperature and the 

final weight at the end of the degradation process, respectively. 

 

100 nm 

2.68 nm 

1.97 nm 

C25A 

Nanocomposite 

Figure 5.5.1 Transmission electron micrograph showing the morphology of the
poly(glc-alt-amh)/C25A nanocomposite with a Cloisite concentration of 3%. Inset
shows the diffraction peak associated to the interlayer spacing observed in the C25A
organo-modified clay (dashed line) and the nanocomposite sample (solid line). 
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Figure 5.5.2 b plots the degree of conversion versus temperature (TG curve) of the 

nanocomposite sample at all the assayed heating rates together with the corresponding 

derivative curves (DTG). For the sake of completeness, curves of the neat polymer are also 

shown for a representative heating rate (40 ºC/min). The characteristic TG and DTG 

temperatures for the nanocomposite and the neat polymer sample are summarized in Table 

5.5.1.  

 

Table 5.5.1 Thermogravimetric data of the nanocomposite and pristine samples. 

Sample (ºC/min) 
 

Tonset (ºC) T20%  (ºC) T50% (ºC) T70%  (ºC) Tmax(ºC) 

 2 207 319 359 411 326/412 
 5 220 339 370 423 345/434 

Poly(glc-alt-amh)a 10 232 �56 388 433 357/442 
 20 240 375 408 451 382/460 
 40 260 397 429 471 404/485 
 2 194 314 378 414 315/387/415 
 5 215 332 386 426 333/400/363 

Poly(glc-alt-amh)/C25A 10 223 348 404 440 349/420/447 
 20 227 362 414 456 ��������
 40 249 378 424 470 379/455/480 

 

a
 From reference 11. 

 

Both samples showed a clear first degradation step which approximately corresponded to a 

conversion of 0.45-0.50. This step can be mainly associated to the decomposition of the glycolic 

acid residues as it was previously determined from the study of a series of copolymers derived 

from different -amino acids and consequently with different weight percentages of glycolic 

acid units [11]. Thermogravimetric traces clearly indicated that this process always ended at 

lower temperatures for the nanocomposite than for the pristine sample.  

DTG curves showed a second degradation step for the neat polymer which was associated to the 

decomposition of the rich -amino acid fraction [11]. This process appeared rather more 

complicated in the nanocomposite sample since at least two DTG additional peaks were 

detected at a temperature that increased with the heating rate. Thus, incorporation of clay 

particles had a remarkable influence on the degradation process which took consequently place 

according to three differentiated steps. These clear differences between the decomposition of the 

pristine and the nanocomposite samples demonstrate that the degradation mechanism changed 

when the organo-modified clay was added and justify undertaking a more detailed kinetic 

analysis.  

Each degradation step of the nanocomposite was then analyzed by mathematical deconvolution 

of the DTG curves as previously performed with the neat polymer [11]. Figure 5.5.3 shows the 
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separation in three and two peaks of the DTG curves obtained at a representative heating rate of 

5 ºC/min for the nanocomposite and the pristine polymer, respectively. In all cases, the sum of 

the separated curves reproduced quite well the experimental signal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Evaluation of the activation energy for the thermal degradation of the poly(glc-alt-

amh)/C25A nanocomposite 

According to non-isothermal kinetic theory, thermal degradation of a sample can be expressed 

by the following function: 

1
exp ( )

d E
A f

dT RT

 


   
 

   (5.5.2) 

Figure 5.5.3 Deconvolution of DTG curves corresponding to the thermal
decomposition of the pristine (a) and the nanocomposite (b) samples at 5 ºC/min. 

d


d


a) 

b) 
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where  is the heating rate, T is the absolute temperature, R the gas constant, f () the 

differential conversion function, and A and E the preexponential and the activation energy for 

the studied decomposition reaction step.  

Activation energies for the three degradation steps were determined by using the Kissinger 

method20, and advanced isoconversional methods such as Kissinger-Akahira-Sunose (KAS)20,21 , 

Friedman22,23 and Flynn-Wall-Ozawa (FWO)24,25 which have the advantage that don’t need the 

knowledge of the exact thermodegradation mechanism. Integral (KAS and FWO) and 

differential (Friedman) isoconversional methods make use of the isoconversional principle 

which states that at a constant extent of conversion the reaction rate is a function only of the 

temperature. 

The Kissinger method [20] gives the associated activation energy, E, only at the maximum of 

the DTG curve for each degradation step and is based on the equation: 

   

1
max2

max max

ln ln ln (1 )nAR E
n

T E RT

                        (5.5.3) 

where  is the heating rate, Tmax is the temperature at the maximum reaction rates, max is the 

conversion at this Tmax temperature, n is the reaction order and A the frequency factor. From a 

plot of ln(/Tmax
2) versus 1/Tmax and fitting the data to a straight line (Figure 5.5.4 a and Figure 

5.5.5 a), the activation energy was calculated from the slopes for each degradation step as 

summarized in ¡Error! No se encuentra el origen de la referencia. A good linearity was 

always observed with correlation coefficients of 0.9999, 0.9968 and 0.9832 for the first, second 

and third degradation step, respectively.  

It should be pointed out that Kissinger is not an isoconversional method since the peak 

temperature is obtained at different heating rates, and the extent of conversion related to the 

peak is known to change with the heating rate26,27. Moreover, the determined activation energy 

may loss sense if it varies throughout the degradation process. 

In order to calculate the activation energy during the whole process, the KAS method20,21 was 

applied. This is based on the integration of equation 5.5.2, which after a subsequent reordering 

leads to the expression. 

 

 

RT

E

Eg

AR

T











)(
lnln

2 


    (5.5.4) 

where g() is the integral conversion function (i.e. 
0

( )
( )

d
g

f

 


  ). 
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Table 5.5.2 Activation energies of the nanocomposite and pristine samples determined by 
isoconversional  methods. 

 
Sample 

 
Stepa 

 
E (kJ/mol) 
Kissingerb 

 
E( kJ/mol) 

KASc 

 
E( kJ/mol) 
Friedmanc 

 
E (kJ/mol) 

FWOc 

 

Poly(glc-alt-amh)d 

1 118 116 120 120 

2 176 179 185 181 

Poly(glc-alt-amh)/C25A 

1 127 111 133 124 

2 146 139 159 157 

3 168 150 168 161 

a The different steps of degradation are referred to 1, 2 and 3 in increasing order of temperature. 
b Calculated at the temperature corresponding to the maximum of each step in the DTG curve. 
c Summarized energies correspond to mean values obtained from different degrees of conversion 
(from 0.1 to 0.95).  
d  From reference 11. 

 
 

For each degree of conversion and degradation process the activation energy was obtained from 

the slope of the linear representation of ln (/ T2) versus 1000/T. A good linearity was obtained 

with correlation coefficients not less than 0.97, 0.98 and 0.95 for the first, second and third 

degradation step, respectively. In each case the worst coefficient were found for the lowest 

conversion degree (0.1), whereas at a conversion of 0.95 the coefficient was in the three cases 

higher than 0.99.  As shown in Figure 5.5.4 b (step 1) and Figure 5.5.5 b (steps 2 and 3). 

Activation energies slightly increased with the conversion degree (Figure 5.5.6) and also when 

degradation progressed from step 1 to step 3. Average values are summarized in Table 5.5.2. 

 

  



261 

 

-11

-10.5

-10

-9.5

-9

-8.5

-8

1.5 1.55 1.6 1.65 1.7

ln
 β

/T
X

2 )
 

1000/Tmax (K-1) 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1.4 1.5 1.6 1.7 1.8 1.9

ln
β

1000/T (K-1)

-6

-5

-4

-3

-2

-1

0

1.4 1.5 1.6 1.7 1.8 1.9

ln
 β

* 
(d
α/

dT
)

1000/T (K-1)

-12.5

-12

-11.5

-11

-10.5

-10

-9.5

-9

1.4 1.5 1.6 1.7 1.8 1.9

ln
 (
β/

T
2 )

1000/T (K-1)

Figure 5.5.4 Kissinger (a), Kas (b), Friedman (c) and FWO (d) plots for the first thermal
decomposition step of the poly(glc-alt-amh)/C25A nanocomposite sample. From left to right lines
correspond to conversion ranging from 0.1 to 0.9 in steps of 0.1 and the conversion of 0.95. 
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Figure 5.5.5 Kissinger (a), Kas (b), Friedman (c) and FWO (d) plots for the second (♦)and the
third (◊) thermal decomposition steps of the poly(glc-alt-amh)/C25A nanocomposite sample.
From left to right lines correspond to conversion ranging from 0.1 to 0.9 in steps of 0.1 and the
conversion of 0.95. 
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The Friedman method [22,23] (equation 5.5.5) derives from the logarithmic form of the rate 

equation 5.5.2 and enables also to get the values of activation energies over a wide range of 

conversions by plotting ln(d/dT) versus 1000/T from thermograms recorded at several 

heating rates.  

ln ln ln(1 )
d E

A n
dT RT

        
   (5.5.5) 

Figure 5.5.4 c (first degradation step) and Figure 5.5.5 c (second and third degradation steps) 

show straight lines whose slopes allowed the evaluation of activation energies (Table 5.5.2 for 

average values).  

A good linearity was obtained for each conversion with correlation coefficients not less than 

0.98, 0.95 and 0.98 for the first, second and third degradation step, respectively. 

Finally, the integral Flynn-Wall-Ozawa method24,25, based on equation 5.5.6, allows also 

determining the activation energies for each degradation step and conversion degree.  

0.0048
ln ln 1.0516

( )

AE E

g R RT



     (5.5.6) 

Activation energies (Table 5.5.2 for average values) were in this case calculated from the linear 

plots of ln  versus 1000/T (Figure 5.5.4 d and Figure 5.5.5 d).  

Table 5.5.2summarizes the values of the activation energies calculated for the poly(glc-alt-

amh)/C25A nanocomposite by using the four indicated methods. For the sake of completeness 

previous results determined for the neat polymer are also included11. Figure 5.5.6 plots also the 

variation of the activation energy deduced from the Friedman method with the conversion for 

the three degradation steps.  Activation energy was practically constant for the first degradation 

step and shows a slightly greater fluctuation for the second one, which had an overlapping with 

the other two steps and particularly with the third one (at higher conversions). Activation energy 

progressively increased with the conversion degree for the last degradation step as also found in 

the KAS analysis. Average values of the activation energy for the three considered steps are 

summarized in Table 5.5.2. It can be observed that these average values were close to the single 

activation energy determined by the Kissinger plot, and higher than the average activation 

energies determined by the KAS method. Differential isoconversional methods, like Friedman, 

are recommended over integral when discrepancies exists21, 22, 23. Thus, we obtained energies of 

130, 153 and 168 kJ/mol by averaging Kissinger and Friedman data for the first, second and 

third degradation steps, respectively.  
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The first degradation step had the lowest activation energy for both the neat polymer and the 

nanocomposite sample. The incorporation of clay particles slightly increased this activation 

energy. It can also be emphasized that the second stage of degradation of the neat polymer had 

an activation energy considerably higher than those determined in either the second or the third 

degradation steps of the nanocomposite sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Thermal degradation mechanisms of the poly(glc-alt-amh)/C25A nanocomposite 

The Coats-Redfern method28 was chosen in order to determine the thermal degradation 

mechanism involved in the three different degradation steps of the nanocomposite. 

Conventional g () functions29,30  were considered and for each one, the activation energy was 

calculated according to equation 5.5.7, which was derived considering an asymptotic 

approximation (2RT/E <<1).   

2

( )
ln ln

g AR E

T E RT




 
  

 
    (5.5.7) 

Figure 5.5.6 Dependence of the kinetic rate constant, k, on temperature for the different
degradation steps (1, 2 and 3) of the pristine (dashed lines) and the poly(glc-alt-amh)/C25A
nanocomposite (solid lines) sample. 
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The Coats-Redfern equation was derived assuming that the activation energy was independent 

of the conversion degree, a feature that seems true for the first step of degradation and even can 

be considered for the second degradation step at intermediate conversion degrees. 

The slope of the linear plot of ln g()/T2 versus 1/T allowed the activation energy to be 

determined for each possible model and the model to be selected by considering the agreement 

with the previously calculated activation energy (Table 5.5.2) and the achievement of a good 

regression coefficient. This methodology enables to determine also the frequency factor from 

the intercept at the origin. The complete kinetic triplet (E, A and f()) defines the variation of 

the degree of conversion with the temperature (equation 5.5.2). 

In general, calculations performed at the different heating rates showed a rather similar 

activation energy values for each degradation step ( Table 5.5.3 ), although a great fluctuation 

was found for some specific model.  

Different degradation mechanisms have been deduced for the nanocomposite and the neat 

polymer samples, even for the common first decomposition step. Thus, the pristine polymer 

followed a sigmoidal A2 mechanism11, whereas the sigmoidal A3/2 model,  the decelerative R2 

mechanism or the autocatalytic (n = 1.5; m = 0.5) mechanism should be considered for the 

nanocomposite since their E values were  close to those determined by the Kissinger and the 

isoconversional methods. Note that these methods gave an average activation energy of 124 

kJ/mol which was within the energy range calculated for the autocatalytic model (from 100 to 

130 kJ/mol), or slightly above or below the corresponding ranges determined for the A3/2 (from 

101 to 116 kJ/mol) or the R2 (from 136 to 142 kJ/mol) models, respectively. Discrimination 

between these three mechanisms should be discussed later. 

The last stage of degradation of the poly(glc-alt-amh) sample followed an autocatalytic (n = 1.9; 

m = 0.1) mechanism. This decomposition process was split in other two when cay particles were 

added, being only possible as above indicated to analyse the mechanism for one of these two 

processes. Thus, a first order (F1) mechanism could be associated to the second degradation step 

of the nanocomposite. It should be pointed out that, in this case, the experimental activation 

energy 153 kJ/mol was in agreement with only one model and consequently discrimination with 

other mechanisms was clear.  

Table 5.5.4 summarizes the final kinetic parameters deduced for the nanocomposite at the 

heating rates of 2 ºC/min and 40 ºC/min. For the sake of completeness previous reported data on 

the neat polymer are also given.   
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In summary, degradation of glycolic acid units (first step) took place according to an 

autocatalytic model, whereas a first order model described the beginning of the degradation 

process that involved the -amino acid units.  

Note that clay particles should have a great influence at the beginning of degradation due to 

decomposition of the organo-modifier and also at the end of the process (third step) due to the 

increasing ratio of silicate layers as the polymer decomposes. 

In fact, the variation of the activation energy in the third step suggests a complex mechanism, 

which also agrees with the presence of shoulders in the corresponding DTG curve (see arrow in 

Figure 5.5.2). It is well reported that clay particles had a remarkable influence on the last stages 

of degradation although different explanations have been postulated. In general, it is assumed 

that layered silicates may act as a barrier towards degradation products ablation27,28. Thus, the 

addition of clay may enhance the performance of the char formed acting as a mass transport 

barrier to the volatile products generated during decomposition. Alternatively, it has also been 

postulated that thermal stabilization is caused by a nanoconfinement effect of the clay that 

enhances intermolecular interactions, increases the energy barrier to molecular motion and 

decreases chemical reactivity29. 

The thermogravimetric trace of the C25A organo-modified clay (Figure 5.5.2) showed that a 

degradation with a 30% weight loss occurred between 290 and 340 ºC (DTG peak at 306 ºC), an 

observation that demonstrates the low thermal stability of the clay. Furthermore, it is known that 

the thermal behaviour of nanocomposites may be affected by the stability of the organo-

modifier compound used to favour the interaction between clay particles and polymer chains 30. 

Decomposition products may influence the degradation mechanism of poly(glc-alt-amh), which 

on the other hand was demonstrated to be highly dependent on the copolymer composition since 

significant differences were previously found between the 6-aminohexanoic and the 11-

aminoundecanoic derivatives11. 
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Table 5.5.3 Activation energies of poly(glc-alt-amh)/C25A obtained by the Coats-Redfern method at 2 ºC/min and 40 ºC/min 

 

 First Step  Second Step  Third Step 

 2 ºC/min 40 ºC/min  2 ºC/min 40 ºC/min  2 ºC/min 40 ºC/min 

 E (kJ/mol) r E (kJ/mol) r  E (kJ/mol) r E (kJ/mol) r  E (kJ/mol) r E (kJ/mol) r 

A3/2 101.31 0.9993 115.58 0.9988  95.43 0.9996 98.70 0.9908  135.29 0.9999 177.49 0.9994 

A2 73.58 0.9992 83.95 0.9987  68.82 0.9995 71.04 0.99  98.60 0.9999 129.92 0.9994 

A3 45.73 0.9991 52.31 0.9985  20.69 0.9878 20.69 0.9757  20.69 0.9878 20.69 0.9757 

A4 32.42 0.9989 36.50 0.9983  28.91 0.9994 29.55 0.9851  43.56 0.9999 58.58 0.9993 

D1 243.23 0.9882 232.84 0.9905  169.71 0.9949 217.63 0.9993  268.97 0.9964 502.09 0.9923 

D2 276.44 0.9936 281.01 0.9946  217.49 0.9982 257.14 1  324.24 0.9983 546.33 0.9966 

D3 294.18 0.9972 317.94 0.9973  257.21 0.9998 279.07 0.9995  368.83 0.9995 572.73 0.9992 

D4 275.97 0.9947 286.18 0.9954  223.36 0.9989 256.71 1  331.65 0.9988 547.14 0.9976 

R2 135.59 0.9952 141.85 0.9957  110.74 0.9992 125.35 0.999  165.03 0.9990 270.77 0.9981 

R3 142.27 0.9970 153.49 0.9971  123.08 0.9998 133.58 0.9995  178.67 0.9995 280.20 0.9920 

F1 156.79 0.9993 178.84 0.9989  150.73 0.9996 151.17 0.998  208.31 0.9999 300.30 0.9997 

power  54.06 0.9846 49.99 0.9871  41.77 0.9992 45.68 0.9991  55.37 0.9922 116.28 0.9908 

n=2 209.60 0.9959 270.45 0.9996  197.97 0.9965 210.24 0.9908  325.31 0.9980 370.49 0.9887 

n=1.5 m=0.5 99.98 0.9956 129.76 0.9995  93.55 0.9962 99.17 0.9897  156.90 0.9979 179.08 0.9880 

n=1.5 181.51 0.9994 222.20 0.1000  167.36 0.9982 178.75 0.9949  261.92 0.9995 333.57 0.9964 

n=1.9 m=0.1 187.68 0.9959 242.31 0.9996  177.09 0.9965 188.02 0.9906  291.63 0.9980 332.20 0.9918 

n=3 274.29 0.9834 382.59 0.9969  267.91 0.9928 281.99 0.9817  473.82 0.9940 453.99 0.9709 
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 Invariant activation parameters for the thermal decomposition of the poly(glc-alt-

amh)/C25A nanocomposite 

Kinetic parameters can also be evaluated using  the IKP (invariant kinetic parameters) 

method31,32. According to this procedure, the values of the activation parameters, obtained from 

various forms of f(), are correlated through an apparent compensation effect: 

   ln A = * + * E     (5.5.8) 

 

where * and * are constants (the compensation effect parameters). 

In order to apply this method, the values of ln Ai versus Ei at each heating rate (i) were plotted. 

These parameters were obtained using the Coats-Redfern methodology for the different kinetic 

models studied. The plot allowed the *
i and *

i constants to be determined from the 

intersection at the origin and the slope, respectively. Furthermore, the straight lines ln Ai versus 

Ei for each heating rate should intersect at a point which corresponds to the true values of A and 

E. These are called the invariant activation parameters (Ainv, Einv). Certain variations of the 

experimental conditions actually determine a region of intersection in the ln A, E space. For this 

reason, the evaluation of the invariant activation parameters is performed using the following 

relation: 

   ln Ainv = *
i + *

i Einv    (5.5.9) 
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Figure 5.5.7 Plots of the activation energy, calculated with the KAS 15, 16 and Friedman 17,18

methods for the first (squares), second (circles) and third (triangles) degradation steps of the
poly(glc-alt-amh)/25A nanocomposite sample. 
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Thus, a plot *
i versus *

i is actually a straight line whose parameters allow evaluation of the 

invariant activation parameters. 

The IKP method can be well applied if the activation energy does not depend on the degree of 

conversion, which must be checked by isoconversional methods. The first degradation step of 

poly(glc-alt-amh)/C25A nanocomposite is clearly characterized by a practically constant 

activation energy as shown in Figure 5.5.7 from data derived from the KAS method, small 

variations being only detected at low  conversion degrees. Figure 5.5.8 a  shows the 

compensation relationship for this degradation step where correlation coefficients r2 > 0.99 were 

derived for all studied heating rates. Plot of Figure 5.5.8 b shows also a straight line that 

demonstrates a supercorrelation relation for this degradation step (correlation foefficient of 

0.9975). Furthermore, its slope indicates a Einv value ( Table 5.5.4 ) that is in good agreement 

with the derived one from the isoconversional methods (i.e. 133 kJ/mol respect to 111-133 

kJ/mol).  

Despite a higher variation of the activation energy with temperature was observed for the 

second and third degradation steps, the IKP method was also attempted. Final values for the Ainv 

and Einv invariant parameters are summarized in Table 5.5.4  It can be pointed out that a relative 

good agreement was again found between the invariant activation energies and the values 

deduced from isoconversional methods (i.e. 154 kJ/mol respect to 139-159 kJ/mol and 166 

kJ/mol respect to 150-168 kJ/mol for the second and third degradation steps, respectively). In 

this way, the IKP methodology conducted to the same degradation mechanisms deduced in the 

previous section. 

 

Table 5.5.4 Kinetic parameters associated with the different degradation steps of poly(glc-alt-amh)/C25 
nanocomposite and the neat polymer 

 

a From reference 11. E and ln A were determined for a heating rate of 2 ºC/min. 
bValues calculated for a heating rate of 2 ºC/min. 
cValues calculated for a heating rate of 40 ºC/min. 
 

 

 Neat polymera Nanocomposite 

Step 1 Step 2 Step 1 Step 2 

E (kJ/mol) 111 167 100b-130c 151b-151c

ln A (min-1) 19.64 27.31 18.53b-24.41c 24.83b-25.28c

Model A2
 n = 1.9; m = 0.1 n = 1.5;  m = 0.5 F1 

f() 2 (1-) [-ln(1-)]1/2 (2)-1 0.5(1-)1.5 (1-) 

g() [-ln(1-)]1/2 2  [(1-)/]-0.9 (0.5)-1 -ln(1-) 
Einv (kJ/mol) 118 169 133 154 
ln Ainv (min-1) 21.03 26.52 24.13 25.11 
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 Modeling of degradation kinetics 

d/dT data were calculated for each heating rate and degradation step using the equation 5.5.2 

and the kinetic parameters (E, A and f()) deduced from the Coats and Redfern method. The 

simulated DTG curve for a given heating rate was thus determined by addition of the three 

calculated profiles which were properly scaled to fit the experimental curve. Final dependences 

of the degree of conversion with temperature were obtained by integration of the simulated 

DTG curves. Calculations were performed using the autocatalytic (n = 1.5; m = 0.5), R2 and A3/2 

models previously postulated for the first degradation step and models F1 and autocatalytic (n = 

1.5; m = 0.5) for the second and third step, respectively. Figure 5.5.9 compares the 

Figure 5.5.8 The compensation (a) and the correlation (b) relationships for the first
degradation step of the poly(glc-alt-amh)/C25A nanocomposite sample. 
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experimental and the simulated TG curves for a representative heating rate. Results indicated 

that the best agreement was obtained when the autocatalytic (n = 1.5; m = 0.5) model was 

considered for the first step and consequently the other two proposed mechanisms could be 

clearly discarded. As shown in Figure 5.5.8, the fitting to experimental data is good for almost 

all whole area, with slight divergences in the regions corresponding to the lowest and the 

highest weight loss. A similar procedure was performed to choose the autocatalytic model over 

the R2 model for the third degradation step. 

Finally, the invariant values of the activation energies and the pre-exponential factors allowed 

us to calculate the rate constant, k, of the different non-isothermal degradation steps for the 

nanocomposite and the neat polymer samples. Figure 5.5.6 compares the temperature 

dependence of the rate constant for the two studied samples and the different degradation steps.  

Although for the first degradation step the nanocomposite showed higher activation energy than 

the neat polymer, it is clear that its pre-exponential factor was also higher  (Table 5.5.4). In this 

way, degradation can proceed faster in the nanocomposite during the first stage of thermal 

decomposition. It has been claimed that an increase on the activation energy cannot be 

rationalized in terms of the formation of a surface silicate barrier 

On the other hand, the high pre-exponential factor calculated for the second degradation step of 

the neat polymer justified its higher degradation rate during the last stages of decomposition 

despite the activation energies of the two samples were quite similar (i.e. 167 kJ/mol for the 

neat polymer and 151 kJ/mol and 165 kJ/mol for the nanocomposite).  

 

 

 

 
Figure 5.5.9 Comparison between experimental (- - -) and simulated TG curves for the poly(glc-alt-
amh)/C25A nanocomposite sample at representative heating rate of 5  ºC/min. Curves were calculated
considering the autocatalytic, A3/2  and R2  models for the first degradation step. 



272 

 

5.5.4 Conclusion 

Thermal decomposition in a nitrogen atmosphere of the alternating biodegradable poly(ester 

amide) constituted by glycolic acid and 6-aminohexanoic acid units was significantly changed 

by the incorporation of a small percentage (3 wt %) of the C25A organo-modified clay, which 

rendered an intercalated structure when the sample was prepared by the melt-mixing technique.  

The polymer showed a first degradation step, which mainly involved the decomposition of 

glycolic acid units, and which proceeded faster when the clay was added. The low stability of 

the organo-modifier compound had a determinant role and contributed to modify the 

degradation mechanism associated to this step. Results derived from isoconversional analyses, 

and the Coats-Redfern and IKP methods were highly consistent and allowed postulating an 

autocatalytic mechanism when simulated degradation data were compared with the 

experimental curves.  

Last stages of degradation proceeded slowly for the nanocomposite, which furthermore showed 

a complex degradation process due to existence of two additional decomposition mechanisms. 

Thus, the second degradation step observed in the pristine sample was split due to the influence 

of clay particles which probably enhanced the performance of the char formed. The pre-

exponential factor of the last degradation step of the pristine sample was higher than the 

calculated value for the nanocomposite suggesting that motion of reactive groups was hindered 

by the presence of silicate layers.  
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Polyamides 

  Structural transitions 

 Nylons 56, 65 and 47 have similar structures when crystallized directly from synthesis. 

The molecular arrangement is characterized by a monoclinic unit cell (form I) that can 

be interpreted in terms of a peculiar packing where hydrogen bonds are established 

along two directions and where neighboring chains are shifted along their chain axis 

direction. 

 Although a similar structure was postulated at room temperature for the studied even-

odd and odd-even nylons.    

 On heating, nylons 65 and 47 first showed a transition towards a less compact structure 

(form II) characterized by the presence of two close equatorial reflections (0.422 and 

0.401 nm) and subsequently underwent a second transition where the two indicated 

reflections progressively merged into a single one. 

 On heating, nylon 56 showed only a transition towards a pseudohexagonal packing, 

although an additional rearrangement of amide groups was detected at some degrees 

before fusion. 

 Nylons 65, 47 and 56 crystallized from the melt according to the Brill high temperature 

structure. 

› In the case of nylons 65 and 47, the structure first reverted to form II on cooling, 

showing a hysteresis effect and then this form II underwent a partial transition to 

the low temperature structure 

› Nylon 56 did not show a Brill transition during the cooling process alghough a 

progressive, minor crystallization into the low temperature structure also took 

place. 

 Spherulitic morphology 

 Nylon 56 crystallized on cooling into fibrillar spherulites with optical properties that 

were depended on the crystallization temperature and differed from those found in 

nylons having conventional sheet structures. During crystallization thinner lamellae 

inserted into the loosely stacked bundles of primary lamellae and the interlamellar 

amorphous regions became more compact 

 Nylon 65 crystallization from the melt gives rise to spherulites constituted by lamellae 

of different thicknesses, which accounts for the multiple melting peaks observed in the 

calorimetric heating runs. During crystallization thinner lamellae insert into the loosely 

stacked bundles of primary lamellae and the interlamellar amorphous regions become 

more compact. Spherulites with different textures (ringed or fibrilar) and birefringences 
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can be obtained by varying the crystallization conditions. Negative spherulites form in 

the low temperature region, indicating a molecular arrangement different from that 

found in conventional even-even nylons, whose low temperature spherulites show a 

positive birefringence. 

 Nylon 47 showed spherulites with different textures and birefringences depending on 

the crystallization temperature. Negative spherulites formed in the low temperature 

region, indicating a molecular arrangement different from that found in conventional 

even-even nylons that gave rise to spherulites with a positive birefringence. Spherulites 

obtained at low supercoolings were mainly constituted by flat micro-crystals that 

showed reversible optical properties with temperature. This peculiar behaviour may be a 

consequence of the postulated structure with two hydrogen bonding directions since 

small changes on the torsional angles of the odd diamide units could induce a variation 

on the angle between the two hydrogen boding directions and on the birefringence sign 

of the crystalline micro-domains. 

 FTIR 

 Nylon 65 absorption bands observed in the room temperature infrared spectra suggests 

that this polyamide has a structure related to conventional / forms despite its different 

hydrogen-bonding scheme. Spectra are sensitive to the structural changes; specifically 

the temperature evolution of the amide A band allows the form I to form II transition to 

be detected.  

 Nanocomposites 

 Nanocomposites with intercalated and exfoliated structures could be obtained from 

nylon 47 and the C25A and C30B organomodified clays. The final structure mainly 

depended on the preparation method. Specifically, melt mixing favoured the exfoliated 

distribution whereas intercalated structures were obtained by solution intercalation. 

Incorporation of clay particles influenced the overall crystallization rate under both 

isothermal and non-isothermal conditions. In all cases, clay particles decelerated the 

crystal growth process and had a strong influence on the primary nucleation which 

could be enhanced or disfavoured when intercalated or exfoliated structures were 

respectively achieved.  
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Poly (glycolic acid-6-hydrohexanoic acid) 
 

The solvent casting technique was appropriate to prepare nanocomposites with an exfoliated 

structure from the C25A organo-modified clay and a new biodegradable polyester characterized 

by an alternating distribution of glycolic acid and 6-hydroxyhexanoic acid units. The 

nanocomposite had interesting characteristic to remark:  

 Thermal analysis  

Thermogravimetric analyses showed that the addition of clay particles had a small 

stabilization effect at the beginning of the degradation process, which is currently 

interpreted as a consequence of polymer chain nanoconfinement.  

 Crystallization 

The semicrystalline character of the new polyester allowed the study of the influence of clay 

particles on crystallization kinetics and crystal morphology. Thus, incorporation of C25A 

decelerated the mechanism of primary nucleation and crystal growth of the neat polyester, a 

trend commonly observed when high homogeneous dispersion of silicate layers occurs. A 

slight increase in the secondary nucleation constant was also inferred for the nanocomposite 

by considering the Lauritzen and Hoffman treatment.  

FTIR and WAXD data obtained during isothermal crystallization were consistent 

and indicated a decrease in the overall crystallization rate when silicate layers were 

added.  

 Morphology 

Optical microscopy revealed differences in spherulite morphology between the neat 

polyester and its nanocomposite. Furthermore, SAXS data showed significant 

changes in the morphology of constitutive lamellae since a dramatic decrease in 

amorphous layer thickness was observed for the nanocomposite. Despite this 

feature, the degree of crystallinity was higher for the neat polyester, suggesting an 

increase of the amorphous domains between lamellar stacks when the miscible 

silicate layers were added to the polymer matrix.   
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Poly(glycolic acid-alt-6-aminohexanoic acid)  

 Nanocomposite preparation and structure. 

 

 The C25A organo-modified montmorillonite has proved to be effective for the 

preparation of nanocomposites of the degradable alternating poly(ester amide) 

constituted by glycolic acid and 6-aminohexanoic acid units by the in situ 

polymerization technique.  

 The in situ polymerization of sodium chloroacetylaminohexanoate in presence of C20A 

or C30B organo-modified clays rendered intercalated silicate structures, as determined 

by X-ray diffraction and transmission electron microscopy.  

 Nanocomposites prepared by the melt mixing technique using a 3% content of C25A 

organo-modified clay and the selected poly(ester amide) rendered an intercalated 

structure.  

 Polymerization kinetics 

 Polymerization kinetics of sodium chloroacetylaminohexanoate was strongly influenced 

by the presence of organo-modified montmorillonites under both nonisothermal and 

isothermal conditions. The reaction process was rather complicated when 

polymerization temperatures lower than 145 ºC were selected since polymer 

crystallization occurred before the polymerization reaction was finished. WAXD 

profiles revealed changes in the monomer structure and the range where the reaction 

proceeded in a liquefied state. 

› FTIR and WAXD experiments were appropriate techniques to evaluate the in situ 

polymerization kinetics and in particular the estimation of the activation energy 

and the pre-exponential factor. This factor was found to decrease when 

nanocomposites had an exfoliated structure probably as a consequence of a 

decrease of the chain mobility and the frequency at which reactive groups were 

close enough to facilitate the condensation reaction. Nanocomposites with 

intercalated structures showed also a decrease of the pre-exponential factor but also 

in the activation energy, which in this case suggest a favoured condensation 

process caused by the nanoconfinement of monomers in the silicate galleries. 

 Crystallization 

 The nanocomposite with an exfoliated structure prepared by in-situ polymerization 

thechnique, crystallized at lower rate that the neat polymer since both nucleation density 

and crystal growth rate were lower. On the contrary the nanocomposite having an 
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intercalated structure (i.e. prepared by the melt mixing technique) had an enhanced 

nucleation rate hot and cold crystallization experiments. Thus, silicate particles act as 

effective nucleating agents at low degrees of compatibility, a result that contrasts with 

the that obtained with the  practically exfoliated structure prepared by in situ 

polymerization.  

› The addition of clay particles slightly reduced the radial growth rate, as showed in 

the hot crystallization experiments where the dimensions of spherulites allowed 

obtaining accurate measurements. Results also point to a slight increase in the 

secondary nucleation constant for the nanocomposite sample.  

› The effect of nanoparticles on the overall crystallization rate of intercalated 

structures is a consequence of the balance of two opposite trends: increase in 

primary nucleation density and decrease in crystal growth rate, which specifically 

led to faster crystallization in the hot crystallization experiments. 

› The degree of crystallinity was always slightly lower for nanocomposite samples 

respect to the neat polymer, indicating a disturbing effect of the clay particles on 

the crystallization processes. It evolved rather differently during the hot 

crystallization processes, with a sudden increase at the beginning of the process in 

the case of the nanocomposite that reflects a faster primary crystallization mainly 

caused by the increase in nucleation density. The poorer nucleation of the neat 

polymer resulted in a time smearing of the primary and secondary crystallization. 

› The addition of clay particles was highly influential in the crystal morphology 

since it favoured a lamellar insertion mechanism and caused a decrease in the 

average lamellar thickness. Lamellar reorganization occurred at high temperatures, 

resulting in similar lamellae when the nanocomposite and the neat polymer 

samples crystallized from the glass state. 

 Thermal Analysis  

 Incorporation of C25 clay particles decreased the thermal stability of the poly(ester 

amide), probably due to the presence of the organo-modifier compound. Nevertheless, 

the melting temperature was clearly lower than the temperature at which decomposition 

started and consequently samples are able to be melt processed.  

 The incorporation of a small percentage (3 wt %) of the C25A organo-modified clay to 

the poly(ester amide) had a significant influence on the thermal decomposition process:  

› The first degradation step, which mainly involved the decomposition of glycolic 

acid units, proceeded faster when the clay was added. The low stability of the 

organo-modifier compound had a determinant role and contributed to modify the 

degradation mechanism associated to this step. Thus, results derived from 
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isoconversional analyses, and the Coats-Redfern and IKP methods were highly 

consistent and allowed postulating an autocatalytic mechanism instead of  the 

sigmoidal type A2 mechanism determined for the neat polymer.  

› Last stages of degradation proceeded slowly for the nanocomposite, which 

furthermore showed a complex degradation process due to existence of two 

additional decomposition mechanisms. Thus, the second degradation step observed 

in the pristine sample was split due to the influence of clay particles which 

probably enhanced the performance of the char formed.  

The pre-exponential factor of the last degradation step of the pristine sample was higher than the 

calculated value for the nanocomposite suggesting that motion of reactive groups was 

hindered by the presence of silicate layers.  
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Appendix A 
ALIPHATIC POLYESTER AND POLY(ESTER 

AMIDE) CLAY NANOCOMPOSITES BY IN-SITU 

POLYMERIZATION 

A.1. Introduction. Biodegradable polymers and their nanocomposites  

1In recent years interest in biodegradable polymers has grown because of their sustainability and 

specialized applications mainly in the biomedical field. These polymers are becoming crucial 

for different industrial sectors like agriculture, automotive industry, medicine and packaging, 

which require the use of environmentally friendly materials and, in some specific cases, 

biocompatible polymers. Specifically, polymers susceptible to being employed in packaging 

seem to be receiving more attention since it is estimated that more than 40% of plastics are used 

in this area.  

Biodegradable polymers can be classified into three categories according to their origin: a) 

Synthetic polymers, particularly aliphatic polyesters, such as poly(L-lactide) (PLA) [1-3], 

poly(ε-caprolactone) (PCL) [4-6], poly(p-dioxanone) (PPDO) [7-9] and poly(butylene 

succinate) (PBS) [10-12], b) polyesters produced by microorganisms, which mainly correspond 

to different poly(hydroxyalkanoate)s (e.g. poly(β-hydroxybutyrate) and poly(3-

hydroxybutyrate-co-3-hydroxyvalerate)) and c) polymers derived from natural resources (e.g. 

starch, cellulose, chitin, chitosan, lignin and proteins).  

                                                      
 The work described in this section appeared in : Morales-Gámez, L. Rodríguez-Galán, Alfonso 
Franco, L.; Puiggalí, J. In In-situ Synthesis of Polymer Nanocomposites Polymer Nano-, Micro 
and Macrocomposites (Volume 2); Mittel, V., Ed. Wiley-VCH, Weinheim, 2011; pp. 367-384. 
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Despite the large investment in biodegradable polymers, it is clear that they are still far for 

becoming ideal substitutes of conventional synthetic polymers applied as commodities. In 

general, the main limitations are their high manufacturing costs and disadvantageous physical 

properties (e.g. poor mechanical and thermal properties, high hydrophilicity and poor 

processability). Therefore, it seems very necessary to modify their chemical nature and/or 

enhance their performance by nanotechnology. In the first case, the incorporation of amide 

groups into a polyester chain is an interesting option as poly(ester amide)s (PEAs) should 

establish strong intermolecular interactions that may improve properties and maintain 

degradability [13,14]. In the second case, the incorporation of nanoscale particles into a polymer 

matrix should provide polymer/nanoparticle composites with enhanced properties. Although 

several preparation methodologies have been developed, in-situ polymerization in the presence 

of layered silicates appears more appropriate to render exfoliated structures, which should have 

a greater impact on properties than intercalated structures [15]. 

This chapter reviews the state of art in the preparation of nanocomposites based on 

biodegradable aliphatic polyesters and poly(ester amide)s by in-situ polymerization. 

A.2. Aliphatic polyester clay nanocomposites by in-situ polymerization 

 2.1. Poly(ε-caprolactone) based nanocomposites 

The in-situ polymerization technique has received much attention since the successful 

preparation of exfoliated nanocomposite structures from polyamides [16-18] by promoting 

polymerization from initiators located on the clay surfaces.  

Early works on in-situ polymerization of -caprolactone were carried out by Giannelis et al. 

[19]. A composite consisting of poly(-capro1actone) intercalated silicate particles embedded in 

the same polymer matrix was synthesized by heating Cr3+-fluorohectorite (a synthetic mica type 

of silicate) to 100 ºC in the presence of an excess of -caprolactone.  

Intercalation of the monomer was revealed by powder XRD, which showed an increase in the 

silicate d spacing from 1.28 to 1.46 nm, in consistency with a perpendicular orientation of the -

caprolactone ring to the silicate layers. XRD patterns after polymerization indicated a reduction 

in the silicate spacing from 1.46 to 1.37 nm, which suggested a dimensional change 

accompanying polymerization. Thus, the opening of the lactone ring in the monomer gave rise 

to a monolayer of fully collapsed poly(-capro1actone) chains (Figure A.1).  

The polymer matrix was isolated and found to be indistinguishable (except for chain end 

groups) from the bulk polymer obtained by metal-alkoxide initiated polymerization. The 

polymerization reaction was postulated to proceed through cleavage of the acyl-oxygen bond 

catalyzed by the interlayer Cr3+ ions. The intercalated polymer was strongly adsorbed onto the 

silicate layers and showed no melting transition. 

montse hidalgo
Nota adhesiva
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Figure A.1 Changes in the silicate spacing as a consequence of monomer intercalation and subsequent 
polymerization. 
 

Giannelis et al. [20] also reported the preparation of nanocomposites by reacting protonated 12-

aminolauric acid-exchanged montmorillonite with -caprolactone monomer. The monomer ring 

was initially intercalated in the gaps between the aminolauric acid chains so that no gallery 

expansion was detected in the X-ray diffraction patterns. During heating of this mixture at 170 

ºC, the organic acid groups initiated ring-opening polymerization of the heterocyclic monomer 

by nucleophilic attack on the -caprolactone carbonyl. Diffraction patterns of powdered 

composite samples showed no discernable (001) reflections due to the organo-modified clay, 

suggesting that individual silicate layers were dispersed in the polymer matrix. It was also 

determined that water permeability through composite films containing modest amounts of 

silicate was dramatically reduced (e.g. by nearly an order of magnitude at only 4.8 v %) due to 

dispersion of impermeable high aspect ratio silicate layers in the polymer matrix. 

The high average grafting density (with the areal grafting density x unperturbed radius of 

gyration >> 1) of the obtained nanocomposites made these systems excellent models to 

understand the static conformations and dynamics of polymer brushes, which is a focus of 

intense theoretical, experimental and simulation interest. Similarities in the rheological response 

of end-tethered nanocomposites and block copolymers and smectic liquid crystals were 

demonstrated. The rheology of these end-tethered silicate nanocomposites was investigated 

using linear viscoelastic measurements in oscillatory shear with small strain amplitudes [21]. It 

was found that the storage and loss moduli increased at all frequencies with increasing silicate 

loading. However, their power law dependence on the terminal zone was different from that 

observed in homopolymers and decreased with increasing silicate loading. At low frequencies 

the rheological response became almost invariant with frequency, which suggested a solid-like 

response. Interestingly, the system exhibited a nonterminal rheological behavior and had 

molecular weights which suggested a marginal entanglement. This was in close agreement with 

claims concerning lamellar block copolymers and smectic liquid crystals according to which the 

presence of entanglements was not required to observe nonterminal behavior. 

The in-situ polymerization technique has recently been applied for the preparation of 

PCL/layered aluminosilicate nanocomposites. Tin(II) octoate and dibutyltin(IV) dimethoxide 
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were reported as appropriated transesterification catalysts to promote the polymerization of -

caprolactone in the presence of organo-modified clays [22-25]. Montmorillonites with surfaces 

modified by ammonium cations bearing hydroxyl groups (e.g. bis(2-hydroxyethyl)methyl 

(hydrogenated tallow alkyl) ammonium) were found to be highly efficient in initiating the 

polymerization and ‘‘grafting’’ the PCL chains onto the layered silicate surface. Lactone 

polymerization was postulated to be initiated by all the hydroxyl functions available at the clay 

surface after activation into either tin(II) or Al(III) alkoxide active species. Hybrid 

nanocomposites were accordingly generated through covalent grafting of every polyester chain 

onto the filler surface. Surface-grafted polycaprolactone (PCL) chains were untied and isolated 

by ionic exchange reaction with LiCl in THF solution and molar masses were measured by size 

exclusion chromatography. The PCL molecular weight and the extent of clay exfoliation could 

be controlled and readily tuned by the content of hydroxyl groups available at the clay surface 

[25]. Another interesting conclusion was that the initiation reaction by aluminum trialkoxide 

active species yielded grafted PCL chains characterized by a very narrow molecular weight 

distribution (Mw/Mn∼1.2).  

Transport properties of water and dichloromethane vapors and mechanical properties were 

investigated for PCL chains grafted by in-situ polymerization onto clay modified by ammonium 

salts bearing hydroxyl groups. The clay content was fixed at 3 wt % in inorganics whereas the 

hydroxyl functionality ranged between 25 and 100%, always leading to clay delamination [26]. 

The increase in polymer chain grafting density resulted in a better exfoliation of the clays, 

limiting for example the diffusion of permeant water molecules. In the same way, the diffusion 

parameters of dichloromethane exhibited a decreasing value on increasing the hydroxyl content 

in the nanocomposites. Mechanical and dynamic mechanical analyses showed improvement in 

the nanocomposite elastic modulus in a wide temperature range. Interestingly, for the higher 

hydroxyl contents (50, 75, and 100%), the modulus could be measured up to 120 °C (i.e. a much 

higher temperature than the melting temperature of pure PCL).  

A surfactant mixture that contained varying proportions of hydroxyl-substituted 

alkylammonium and unsubstituted alkylammonium cations to exchange the initial Na+ 

counterions of the natural montmorillonite was employed to have a tunable amount of hydroxyl 

functions at the surface of the clays. As previously indicated, those functions were then 

derivatized into aluminium alkoxides in order to initiate the ring-opening polymerization of -

caprolactone directly from the clay surface, which was swollen in an organic solvent. Atomic 

force microscopy measurements on the resulting polymer-grafted nanoplatelets demonstrated 

the strong dependence of the coating of individual clay particles on the composition of the 

surfactant mixture used for the cationic exchange [27]. This allowed the generation of a range of 

morphologies varying from polymer islands distributed over the clay surface to homogeneous 
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polymer layers thoroughly coating the platelets (Figure A.2). Direct visualization of the 

polymer grafted onto the clay platelets gave relevant information on the structure of the 

obtained nanohybrid materials. First, the grafting density increased drastically as the proportion 

of OH-substituted alkylammonium cations used to organo-modify the clay was raised. Second, 

the polymer deposit was not simply a continuous film growing in thickness with increased OH 

content. Instead, separate polymer islands formed in the low-OH-content systems, probably as a 

result of a phase separation process between the ammonium ions induced by the polymerization 

reaction. Homogeneous coverage and subsequent thickening only took place from 50% OH 

content. When this situation was achieved, adjacent platelets became fully independent of each 

other since they were fully covered by the polymer and exfoliation was greatly favored.  

Bulk polymerizations of -caprolactone were also conducted at 170 ºC in the presence of 

catalytic traces of water and 10, 30 and 50 wt% of hydrated synthetic montmorillonite 

SOMASIF ME100 without additional catalysts [28]. 1H NMR and GPC analyses suggested that 

the montmorillonite present in the system induced both significantly higher lactone hydrolysis 

and polymer chain growth rates. All systems gave rise to low molecular weights (Mw = 5360–

22,432), which seemed to indicate a hindrance effect in diffusion caused by increasing amounts 

of silicate in the system. Wide-angle X-ray diffraction data revealed that within the interlamellar 

regions of silicate, -caprolactone was arranged in weakly ordered bimolecular pseudo-layers. It 

is worth noting that the interlayer spacings of montmorillonite in the nanocomposites were 

slightly smaller than for silicate dispersed in -caprolactone. Such results were attibuted to an 

unfavorable polymerization of -caprolactone in the interlayer region of the silicate (i.e. chains 

remained small and unable to open the clay layers to give rise a delaminated structure). The 

comparison between measured values of gallery height and calculated dimensions of the poly(-

caprolactone) chain indicated that polymer chains were flatly arranged on each side of the 

silicate platelet, creating pseudo-bilayers inside the montmorillonite gallery.  
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Figure A.2 Scheme of the polymer surface grafting onto individual clay platelets and concomitant phase 
separation, as explained in detail in reference [26]. 
 
 

Comprehension of the nanocomposite structure and interactions at the polymer/nanofiller 

interface is crucial in controlling nanocomposite properties. In all cases, nanocomposites are 

characterized by the presence of a polymer layer at the interface with the inorganic surface 

whose properties clearly differ from those of the bulk polymer. Pucciariello et al. [29] 

conducted a detailed surface analysis of poly(-caprolactone)-montmorillonite clay 

nanocomposites obtained by in-situ polymerization. The organophilic clay was prepared by 

treating the natural montmorillonite with a solution of protonated 12-aminolauric acid. In-situ 

polymerization of -caprolactone was performed under a nitrogen atmosphere at room 
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temperature for 2 h and then at 170 °C for 48 h. The organo-modified montmorillonite 

concentration was close to 18% as this was previously determined as the maximum content at 

which the silicate was exfoliated [30,31]. The X-ray photoelectron spectroscopy (XPS) 

technique gave information on atom concentrations in the surface layer,  the valence state of 

these atoms and the bonding of their nearest neighbors. Spectroscopic data indicated a great 

polarization of Si-O and Al-O bonds in the organo-modified montmorillonite, which was 

attributed to the electron-attracting and electron-donor effects of the NH3
+ and COOH groups of 

the aminolauric ion, which efficiently coordinated the partially negatively charged oxygens and 

the partially positively charged silicons (aluminums) of the clay (Figure A.3 a). XPS data of the 

nanocomposite revealed lower binding energies of Si-O and Al-O bonds, and consequently a 

reduced ionicity of such bonds with respect to the organophilic clay. Thus, the presence of the 

polymer limited the polarizing effect of the aminolauric cation because of the electron-

donor/electron-attracting effects of the ester group oxygens (Figure A.3 b). 
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Figure A.3 Schemes explained in detail in Ref. [30] showing: a) Coordination of the aminolauric cation 
HOCO-(CH2)11-NH3

+ to the clay. b) Model of the interactions occurring in the polymer-alkylammonium 
cation-clay system. 
 
Poly(-caprolactone) was studied as a polymer biodegradable matrix which adds potential to the 

use of derived nanocomposites as biodegradable packaging materials. The synthesis of a series 

of montmorillonite-PCL nanocomposites in which the content of the inorganic material was 

varied regularly from 0 to 44 wt.-% was performed to find some basic structure/property 

correlations of the multiphase nanocomposites and investigate the permeability to organic (e.g. 

dichloromethane) and inorganic (e.g. water) solvents of the multiphase polymers [32]. In-situ 

polymerization was carried out at 85 ºC using a montmorillonite modified with protonated 12-

aminolauric acid. Permeability to water and dichloromethane was found to decrease 

significantly with increasing clay content. In particular, the water permeability behavior was 

largely dominated by the diffusion parameter. The diffusion path of the polar molecules of 
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water was assumed to be slowed down with respect to dichloromethane vapor because of not 

only the physical barrier of the clay layers but also the hydrophilic character of the platelets. 

Barrier properties associated with the biodegradability of poly(-caprolactone) play an 

important role in enhancing interest in these nanocomposites as biodegradable packaging 

materials. 

PCL is thermodynamically miscible with many other polymers (e.g. PVC or SAN copolymer) 

and can be used as an environmentally decomposable additive that facilitates plastic degradation 

[33]. A study was recently undertaken to dissolve PCL-clay systems prepared by in-situ 

polymerization in a SAN matrix and evaluate the structure and mechanical properties of these 

ternary nanocomposites [34]. The in-situ polymerization was performed at 170 ºC using a 

commercial montmorillonite modified with hexadecyltrimethylammonium bromide. Clay 

content was of 10, 30 or 50 wt.% since nanocomposites were then used as masterbatches to 

obtain SAN/(PCL/clay) ternary blends containing 0.66–5.65 wt.% of the organo-modified clay. 

Blends of PCL nanocomposites with SAN copolymer gave rise to intercalated and semi-

exfoliated structures, as deduced from XRD and TEM techniques. The increase of clay in the 

system led to higher values of Young’s modulus. Thus, compared to unmodified SAN the 

addition of only 0.66 wt.% resulted in approximately a 10% increase in stiffness modulus while 

at 5.65 wt.% a 40% increase was obtained.  

Supercritical CO2 has been studied as an alternative polymerization medium (e.g. for ring-

opening polymerization of lactones [35,36]) for more conventional organic solvents due to its 

well known advantages [37]. Thus, it is environmentally friendly, non toxic, non flammable and 

economical since its critical parameters are relatively easily obtained. Furthermore, its 

fluid/solvent properties can be tuned by small changes in temperature.  

Preparation of nanocomposites by redispersion of masterbatches of exfoliated PCL-

nanocomposites into polymers miscible with PCL, such as the styrene/acrylonitrile copolymer 

[34], showed encouraging results but also drawbacks, e.g. difficulty in recovering the 

aggregated bulk masterbatch and need to purify it before use. Detrembleur et al. [38] proposed 

an alternative method based on the preparation of PCL/clay masterbatches by in-situ 

intercalative polymerization in supercritical carbon dioxide. The specific properties of this 

solvent allowed in-situ polymerization at high clay content without viscosity problems. This is 

never the case for bulk polymerization processes, where clay loading is usually limited to 30 wt 

%. Furthermore, the product obtained after depressurization was an easily recoverable fine 

powder and supercritical CO2 was able to extract the residual monomer during depressurization, 

directly providing a ready-to-use dry powder. The ring-opening polymerization of -

caprolactone in supercritical carbon dioxide occurred as a dispersion polymerization since only 

the monomer was soluble in this medium under typical supercritical conditions [39]. Catalysts 
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like Sn(Oct)2 were preferably used as they should have low sensitivity to the carbonation 

reaction and protic impurities. Polymerizations of -caprolactone were carried out in 

supercritical CO2 (85 ºC, 28 MPa) using the natural montmorillonite and the clay organo-

modified with a non-functional (Cloisite 20A) or a functional (Cloisite 30B) quaternary 

ammonium salt. In all cases, nanocomposites were qualified as ‘‘pre-exfoliated’’ masterbatches 

since true exfoliation could not be reached at high clay contents. Redispersion of organo-

modified clay/polymer masterbatches into chlorinated polyethylene was proved to be more 

efficient in terms of quality of clay delamination than direct blending of commercial clay.  

Starch, a natural polymer constituted by linear -glucan amylose and highly branched 

amylopectin, is considered one of the most promising candidates to be used as environmentally 

friendly materials. It has an attractive combination of availability, price and performance, but its 

mechanical properties are poorer than those of synthetic polymers mainly due to its hydrophilic 

nature, which makes it sensitive to moisture content. For this reason, starch has been modified 

by blending with synthetic polymers such as poly(-caprolactone) and even with layered 

silicates [40,41]. Nazami et al. [42] have recently prepared starch-g-polycaprolactone by in-situ 

ring-opening polymerization of -caprolactone in the presence of starch, Sn(Oct)2 and an 

organo-modified montmorillonite (i.e. Cloisite 15A) at reaction temperatures between 100-150 

ºC. Results suggested a slight improvement in thermal stability but intercalation of the 

copolymer into clay galleries was less effective than the solution intercalation method. 

 2.2. Polylactide based nanocomposites 

Polylactide (PLA) is a well-known green polymer which receives great attention from the 

polymer industry since it can be produced from renewable resources (e.g. corn starch and other 

carbohydrate-rich substances like maize, sugar or wheat) and is biodegradable and compostable. 

These advantages make PLA an attractive alternative to classical commodity polymers (e.g. in 

the production of loose-fill packaging, compost bags, food packaging and disposable 

tableware). However, several properties need to be improved to widen its range of applications. 

For example, PLA is too brittle and permeable to gases to render optimal application 

performances, especially for packaging purposes. Despite this, PLA is currently one of the most 

widely used speciality polymers in the biomedical field (e.g. for sutures, stents, dialysis media, 

drug delivery devices and even for tissue engineering). 

The introduction of a few percent of nanofillers, such as layered aluminosilicate clays, has been 

extensively considered to enhance PLA properties. However, the greatest improvement is 

usually achieved when nanoparticles are fully and uniformly delaminated (exfoliated) in the 

polymer matrix, a challenge that cannot be fully met by direct melt blending of the clay as this 

usually leads to intercalated nanocomposites [43,44]. The use of in-situ polymerization 
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techniques appears fully justified since the monomer can penetrate and then polymerize inside 

the clay sheets, enhancing the delamination efficiency. 
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Figure A.4 a) Scheme of the L,L-lactide in-situ polymerization performed from Cloisite 30B using 
triethylaluminium (AlEt3) as the initiator (R stands for tallow alkyl chain). b) Scheme of a mixture of 
aluminium mono-, di-, and tri-alkoxides produced by addition of AlEt3 onto Cloisite 30B in a nOH/nAl = 3 
molar ratio. 
 
In-situ ring-opening polymerization of the lactide monomer in the presence of clay has been 

extensively studied [45,46]. For instance, PLA/MMT nanocomposites were prepared in bulk 

with catalysts such as tin(II) octoate (Sn(Oct)2) or triethylaluminum in the presence of 

montmorillonite clays (e.g. Cloisites 25A and 30B) organo-modified with an ammonium salt 

functionalized or not with hydroxyl groups. When Cloisite 30B was used, polymerization was 

co-initiated by a molar equivalent of AlEt3 or Sn(Oct)2 with respect to the hydroxyl groups 

borne by the ammonium cations of the filler, which was added before the L,L-lactide monomer. 

The presence of hydroxyl groups was found to be critical because these led to aluminium 

alkoxide or tin alkoxide active species (Figure A.4and Equation A.1), which acted as initiators 

and led to polylactide chains grafted onto the clay surface. 

 

Sn (Oct)2 + n OH              Sn(Oct)2-n(OR)n + n OctH     (A.1) 
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The molar ratio between hydroxyl groups and aluminium cations was crucial in promoting a 

controlled polymerization. Thus, a defect of aluminium cations should lead to more efficient 

aluminium trialkoxides but this was not the case when polymerizations were performed from 

lactide rings [46]. It was claimed that the probability to form a large amount of trialkoxide 

species from the anchored hydroxyl groups was rather low, and most probably a mixture of 

aluminium mono-, di-, and tri-alkoxides was formed (Figure 6.4 b). This distribution was 

responsible for the observed low monomer conversion, loss of polymerization control and 

bimodality of the molecular weight distribution.  

The grafted chains pushed the lamellar sheets apart from each other and led to the achievement 

of an excellent degree of clay exfoliation, which for example leads to improved thermal stability 

compared to unfilled PLA and even intercalated counterparts. Moreover, while the Tg and Tm of 

the PLA matrix were not influenced by the nanofiller, the degree of crystallinity of the polyester 

in the exfoliated structure was significantly higher than in the intercalated nanocomposite [45].  

The grafting reaction was confirmed by the impossibility of dissolving the so-produced PLA 

chains in good solvents like toluene, THF or CHCl3. In fact, a specific cationic exchange 

reaction with LiCl was required to recover the PLA chains, suggesting that polyester chains 

were attached to the ammonium cations localized in close vicinity and in electrostatic 

interaction with the montmorillonite surface. Interestingly, polymerization conditions (e.g. bulk 

with 3 wt% of Cloisite) allowed the synthesis of PLA grafts with a number average molecular 

weight close to 14,000 g/mol and a relatively narrow distribution for such a heterogeneous 

initiation process (i.e. polydispersity index was close to 1.5). 

Dubois et al. [46] also used in-situ polymerization to prepare a PLA-MMT masterbatch and 

confirmed that its dilution with the neat PLA during melt processing was an effective technique 

for improving clay dispersion.  

It is well known that brittleness is a strong limitation for the application of PLA. The use of 

plasticizing agents is a usual procedure that may allow PLA to fulfil mechanical requirements. 

Considerable efforts have been made to improve PLA brittleness to make it competitive with 

low-cost flexible commodity polymers (e.g. polyethylene and polypropylene). Several types of 

compounds such as citrate ester, poly(ethylene glycol) (PEG), glucose monoesters, partial fatty 

acid esters, oligomeric lactic acid and glycerol have been studied as plasticizers for PLA [47-

49]. However, the addition of a plasticizer generally reduces strength and modulus. Moreover, 

despite the increase of deformation, PLA-based materials having a good balance of stiffness and 

high deformation are still required for wide applications. For this reason, the possibility of 

preparing nanocomposites based on the PLA matrix and adding a plasticizer compound has 

been considered, specifically, the preparation of nanocomposites by melt blending a PLLA 

matrix, a plasticizer like poly(ethylene glycol) and a nanofiller. 
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 Nevertheless, PEG tends to diffuse out of the material and accumulates at the nanocomposite 

surface, leading to structural matrix changes upon ageing [50]. Thus, in-situ polymerization of 

L,L-lactide in the presence of both dihydroxylated PEG (Mw =1 000) and Cloisite 30B has been 

studied as an interesting alternative since it leads to nanocomposites based on a triblock 

copolymer matrix where the central polyethylene block affords flexibility and is not susceptible 

to diffusing out of the material [45]. Results showed that intensive clay platelet destructuration 

was achieved independent of the PEG weight ratio. The plasticizing effect of the PEG sequence 

(entrapped in the triblock copolymer) was highlighted by the significant Tg decrease of the 

nanocomposite (e.g. from 60 to 12 ºC at 16.2 wt.-% content in PEG). Moreover, the thermal 

degradation of the resulting nanocomposites was dependent on the relative content in PEG 

blocks and decreased as the polyether level increased within the triblock copolymer.  

Polylactide/vermiculite nanocomposites were also prepared by in-situ intercalative 

polymerization of L,L-lactide in the presence of vermiculite clay particles (VMT) that were 

treated with an alkylammonium surfactant in order to decrease their highly hydrophilic 

character and favor diffusion of the cyclic monomer into the clay interlayer spaces [51]. XRD 

suggested that exfoliated structures were attained and TEM observations revealed that VMT 

layers were exfoliated and dispersed uniformly in the polylactide matrix. TGA indicated a slight 

improvement in thermal stability (i.e. the onset temperature increased from 279 to 314 ºC when 

5% of organo-modified clay was added). Dynamo-mechanical analyses showed an increase in 

storage and loss moduli caused by the reinforcing effect of the nanoscale VMT layers, as well as 

a slight increase of Tg with increasing the clay content.  

Nanocomposites based on anionic clays or layered double hydroxides (LDHs) have also been 

widely studied. These clays are comprised of positively charged layers with anions and water 

molecules in the interlayer region. Compounds were defined with the general formula (Mg1-

xAlx(OH)2)
x+(A-)x nH2O, in which A- represents an interlamellar anion (e.g. carbonate) [52]. 

Although LDHs occur naturally, they are usually synthesized under controlled conditions in 

order to obtain materials with a known, homogeneous composition [53]. LDH platelets have a 

high aspect ratio, tuneable layer charge density and can be prepared by low-cost processes. The 

potential suitability of organo-LDHs for intercalation of hydrophobic polymers, the potentially 

greater susceptibility to complete exfoliation than that of cationic clays and the catalytic activity 

for polymerization of lactides in the interlayer are also worth mentioning [54,55].  

Taviot-Gueho and Leroux [56] suggested in-situ polymerization as an appropriate method for 

preparing polymer-LDH compounds because of the more confined interlayer spacing compared 

to a typical unmodified montmorillonite clay (0.78 nm versus 1.26 nm). The high charge density 

in LDHs and their dense packing favor the insertion of small molecules such as the lactide 
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dimer over the insertion of long PLA chains. This should lead to an effective dispersion of LDH 

platelets in the growing polymer matrix. Efforts have also focused on the insertion of new 

organic anionic species in LDH interlayers to enhance/modify hydrophobicity of LDHs [56,57]. 

Plackett et al. [58] studied in-situ polymerization of the lactide dimmer in the presence of LDHs 

modified with carbonate (LDH-CO3) or laurate units LDH (LDH-C12). LDH-CO3 was 

synthesized by a conventional co-precipitation method [59] whereas LDH-C12 was prepared 

using the reconstruction method. In this procedure the previously synthesized LDH-CO3 was 

calcined to form a mixed metal oxide (MMO) and then dispersed into an ethanol/water solution 

containing sodium laureate. This process involved fast rehydration of the layered structure, 

followed by a slower anion exchange reaction, giving rise to the so-called “memory effect” 

mechanism [60]. X-ray diffraction, scanning electron microscopy and transmission electron 

microscopy revealed that exfoliated nanocomposites were obtained when using LDH-C12 but 

that LDH-CO3 gave a partly phase-separated morphology (Figure A.5). 
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Figure A.5 Ring opening polymerization of lactide rings in the presence of layered double hydroxides 
modified with carbonate or laurate units. 
 

Thermogravimetric analysis showed that PLA-LDH combinations exhibited higher degradation 

onset temperatures than unfilled PLA. Differential scanning calorimetry indicated that both 

crystallinity and temperature of crystallization increased on adding LDH-C12 or LDH-CO3, 

suggesting that these additives have a nucleating effect. Although in-situ polymerization of 

lactide in the presence of 1-5% LDH-C12 could be a promising method for producing 

nanocomposites with an exfoliated structure, the molecular weight was significantly reduced 

when compared with the polymer synthesized in the absence of LDHs. Since this phenomenon 
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also occurred when Mg(OH)2 was used instead of LDH, a chain-termination mechanism via 

LDH surface hydroxyl groups and/or metal-catalyzed degradation was proposed.  

From an industrial point of view, the melt-intercalation technique is usually preferred to in-situ 

polymerization because it is simpler and uses already existing technologies. In this sense, 

methods that combine the efficiency of the in-situ polymerization approach and the 

practicability of the melt-intercalation technique are currently being applied. Thus, a highly 

filled polymer/clay masterbatch was first synthesized using an appropriate solvent and then 

dispersed into the commercial polymer by melt blending.  

Detrembleur et al. [61] used supercritical carbon dioxide as a polymerization medium for in-situ 

polymerization of D,L-lactide in the presence of different organo-modified clays (e.g. C20A and 

C30B). Polymerizations were performed at 85 ºC and 240 bar where the lactide monomer was 

partially soluble whereas the formed polymer precipitated. The polymerization kinetic rate was 

observed to decrease with increasing the clay amount due to significant hindrance of the clay. A 

slightly higher conversion was observed in the C30B-based systems since its hydroxyl groups 

acted efficiently as polymerization initiators. Studies carried out at low clay levels (3 wt%) 

demonstrated that final structures were also strongly influenced by the nature of the organo-

modifier compound since intercalated or exfoliated nanocomposites were obtained using C20A 

and C30B, respectively. Nanocomposites were also successfully obtained with clay levels as 

high as 35-50% and were then useful as masterbatches to be mixed with the commercial PLA 

matrix. In this way, well-delaminated nanocomposites with 3 wt% of Cloisite 30B were 

attained, as deduced from TEM and XRD analysis. The nanocomposites showed significant 

improvement in both stiffness (up to 20%) and toughness (e.g. from 5.1 to 6.0 kJ/m2) compared 

with the unfilled matrix.  

 2.3. Poly(butylen succinate) based nanocomposites 

Poly(butylene succinate) (PBS) is currently one of the most commonly applied biodegradable 

polyesters of the poly(alkylene dicarboxylate) family. It is commercialized by Showa 

Highpolymer as BIONOLLE and is usually copolymerized and blended to improve mechanical 

properties and biodegradability [62-65]. However, these methods (i.e. copolymerization and 

blending) often cause problems that affect crystallinity and melting point since the incorporation 

of a second component results in imperfect packing and/or isomorphism, and adversely affects 

the temperature range over which the resulting materials can be used [66,67]. Preparation of 

nanocomposites appears as a promising alternative method to the production of commercial 

PBS-based polymers. In this case, the aggregation trend of inorganic materials caused by strong 

hydrophilic interactions should be avoided. 
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Kim et al. [68] prepared nanocomposites by in-situ polymerization of 1,4-butane diol and 

succinic acid in the presence of Closite 25A or a twice functionalized organoclay (TFC) using 

titanium(IV) butoxide as a catalyst. TFC was prepared by reaction of C25A with a silane 

coupling agent that gave rise to epoxy functional groups. These were expected to enhance the 

chemical bonding of TFC layers with PBS end groups, and consequently lead to better 

dispersion and exfoliation of the clay layers in the PBS matrix. Furthermore, the thermal 

stability of PBS/TFC was clearly improved, which was attributed to the increased interaction 

between the inorganic components and the polymer. Lower thermal stability and an intercalated 

structure were characteristic of PBS/C25A nanocomposites.  

Nanocomposites based on the PBS matrix were prepared by two-step polymerization consisting 

of direct esterification and polycondensation from succinic acid, 1,4-butanediol, titanium 

tetrabutoxide and fumed silica [69]. The first step was carried out at 190 ºC over 2 h and the 

second under vacuum at 240 ºC for 3-5 h. Solid-state 29Si NMR and FTIR analysis indicated 

that silanol-bonded carbonyl groups were established within PBS/silica nanocomposite 

materials. Rheological effects inherent to the silica filler were evaluated and showed that despite 

high shear force, PBS/silica nanocomposites maintained a relatively high melt viscosity 

attributable to a network structure resulting from covalent bonding between silica and the 

polymer chain. Greatly improved mechanical properties were attained with only addition of 3.5 

wt % of silica. Thus, an increase in both tensile strength (from 26.3 to 38.6 MPa) and elongation 

(from 56% to 515%) at break compared with parent PBS was reported. PBS/silica 

nanocomposites showed composition dependency on biodegradation ascribable to reduced 

crystallinity and preferential microbial attack.  

Im et al. [70] treated Closite 30B with the coupling agent 1,6-diisocyanatohexane (HDI) to form 

covalent bonds between silanol groups on the clay side and between a silanol group and the 

hydroxyl group of the organo-modifier in the silicate layer (Figure 6.6). In this way, it was 

possible to increase both basal spacing and the favorable interaction between clay and PBS. 

Nanocomposites were prepared by two-step in-situ polymerization, as previously indicated. It 

was found that, at the same level of clay content, these nanocomposites showed a higher degree 

of exfoliation, as well as improvement in all mechanical properties, including tensile strength, 

storage modulus, and elongation at breaks compared with PBS and C30B nanocomposites.  

Dubois et al. [71] demonstrated that the enhancement of in-situ transesterification reactions was 

a highly effective method to improve organo-clay dispersion and exfoliation in a polyester 

matrix. Thus, Bionolle/Cloisite 30B nanocomposites were prepared by melt intercalation with 

addition of dibutyltin dilaurate ((Bu)2Sn(Lau)2) as a catalyst. Polyester chains were covalently 

linked to the organo-modifier as a result of effective transesterification reactions occurring 

between the polymer chains and the hydroxyl groups of the organoclay. As a consequence of 
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this process, clay exfoliation was enhanced and stiffness of the final compound clearly increased 

(i.e. Young’s modulus showed an increase of 60% compared with the neat polyester). 
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Figure A.6 Formation of covalent bonds between HDI and the silanol and hydroxyl groups in an organo-
modified montmorillonite as explained in Ref. [70]. 
 

 2.4. Poly(p-dioxanone) based nanocomposites 

Poly(p-dioxanone) (PPDO) is a biodegradable polymer of great interest for applications in the 

biomedical field (e.g. bioabsorbable surgical sutures, bone fixation devices and drug delivery 

systems) due its outstanding mechanical properties, for instance high tensile strength and 

excellent flexibility [72]. This polymer has also been applied as a drug delivery system and has 

great potential for general use in systems such as films, molded products, laminates, foams, 

non-woven materials, adhesives and coatings [73]. However, PPDO has some unfavorable 

characteristics (e.g. high hydrophobicity, low crystallization rate and low melt strength), which 

may limit its application and processing. Modifications based on the preparation of 

nanocomposites now appear as an ideal method to improve physical properties and avoid some 

of the above limitations. In this line, Wang et al. [74] studied the in-situ ring-opening 

polymerization of PPDO with organo-modified montmorillonites (natural sodium 

montmorillonite, montmorillonite modified by octadecyltrimethyl ammonium chloride, and 

montmorillonite modified by hydroxyethylhexadecyldimethyl ammonium bromine) in the 

presence of triethylaluminum. Reactions were performed for approximately 20 h at 50 ºC. 

Interestingly, montmorillonites accelerated the polymerization reaction and led to a viscosity-

average molecular weight of PPDO of 44,900 g/mol in only 0.5 h. Furthermore, a nucleating 

effect of montmorillonites was clearly observed and the crystallization temperature of PPDO 

increased by approximately 18 ºC. All three montmorillonites improved the thermal stability of 
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PPDO and increased its glass-transition and melting temperature. In addition, the melt strength 

of the PPDO/MMT nanocomposites increased dramatically when compared with that of the neat 

PPDO [73]. These results suggested that biodegradable PPDO/MMT thin films could be 

prepared by blowing process since low crystallization rate and low melt strength limitations can 

be overcame. 

A.3. Poly(ester amide)s clay nanocomposites by in-situ polymerization 

Poly(ester amide)s (PEAs) are a new class of polymers that combine the good degradability of 

polyesters with the high thermal stability, high modulus and high tensile strength of polyamides, 

which makes it possible to obtain good material and processing properties while maintaining 

degradability. PEAs are also highly attractive since their properties can be tuned due to the large 

variety of monomers that can be used (e.g. -amino acids, ,-aminoalcohols, 

carbohydrates…). Thus, polymers can be synthesized with variable ester/amide ratio, variable 

aliphatic/aromatic ratio, variable hydrophilicity (e.g. incorporating poly(ethylene oxide) blocks 

or changing the length of polymethylene sequences), variable stereochemistry and variable 

monomer distribution. Thermoplastic elastomers, and amorphous and semicrystalline materials 

can be obtained from segmented, random and ordered microstructures, respectively. PEAs are 

now being considered for use as biodegradable matrices in nanocomposite preparation, although 

few works focus on the in-situ polymerization method. 

Nanocomposites of organo-modified montmorillonites (C20A, C25A and C30B) and a 

biodegradable PEA were obtained by in-situ polycondensation of sodium 

chloroacetylaminohexanoate [75]. This synthesis was based on a thermal polycondensation 

reaction where the formation of a metal halide salt became the driving force of the process 

[76,77].  

    ClCH2CONH(CH2) n-1COO- Na+            [OCH2CONH(CH2) n-1CO]x- + x Na+Cl           (A.2) 

The great simplicity of this method raises interest in this family of polymers characterized by a 

semicrystalline character due to the regular distribution of the two units involved, which 

contrasts with the more amorphous nature of copolymers prepared by ring-opening 

polymerization. Exfoliated or intercalated structures were attained depending on the organo-

modifier (i.e. the most dispersed structure was obtained by addition of Cloisite A). 

Polymerization kinetics was strongly influenced by the presence of organo-modified 

montmorillonites under both non isothermal and isothermal conditions. Both FTIR and WAXD 

experiments were used to study the polymerization process following the time evolution of the 
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1742 cm-1 absorption band of the ester group or the diffraction intensity of characteristic NaCl 

reflections (Figure A.7 a), respectively. The temperature dependence of the polymerization 

kinetic constant allowed inferring that kinetic differences between the polymerization of the 

neat monomer and its mixture with C25A could be attributed to the preexponential frequency 

factor (Figure A.7 b). In this way, clay particles seemed to reduce chain mobility and the 

frequency at which reactive groups were close enough to facilitate the condensation reaction. 

The thermal stability and crystallization behavior of the neat polymer and its nanocomposites 

were significantly different. In general, exfoliated structures decreased both primary nucleation 

and crystal growth rate whereas intercalated structures increased the density of primary nuclei. 

These nanocomposites were also prepared by the melt mixing technique, which rendered 

intercalated structures with a higher overall crystallization rate [78]. 
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A.4. Conclusions  
The increasing demand for biodegradable materials in the world market is leading to the 

development of products with better properties than those of existing materials. Efforts mainly 

focus on the synthesis of new biodegradable polymers with potential applications as both 

commodity and specialty materials. In this sense, poly(ester amide)s can be considered a 

modification of conventional biodegradable polyesters that may provide enhanced properties. 

Incorporation of nanoparticles into biodegradable polymer matrices is another effective 

approach to improve the properties of pristine polymers remarkably. There is now a 

considerably body of literature concerning the preparation of nanocomposites from the more 

usual biodegradable polyesters (e.g. poly(-caprolactone), polylactide, poly(butylen succinate) 

and poly(p-dioxanone) and silicate clays by in-situ polymerization. In general, this results in 

polymers grafted onto the silicate layers, favoring a subsequent exfoliation. Thus, in-situ 

polymerization seems to be more appropriate than other methodologies (i.e. melt or solution 

intercalation) that usually render intercalated structures. Despite the increasing interest in 

developing new biodegradable polymers, few works deal with the preparation of 

nanocomposites based on poly(ester amide)s matrices. Thus, this may be a very promising topic 

for future research. 
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