UNIVERSITAT POLITECNICA
DE CATALUNYA

Pa.D. DISSERTATION

Bayesian Signal Processing Techniques
for GNSS Receivers:

FROM MULTIPATH MITIGATION TO POSITIONING

AUTHOR: Pau CLosAS GOMEZ

THESIS ADVISORS: PROF. JUAN A. FERNANDEZ RUBIO
DR. CARLES FERNANDEZ PRADES

SIGNAL PROCESSING AND COMMUNICATIONS GROUP

DEPARTMENT OF SIGNAL THEORY AND COMMUNICATIONS
UNIVERSITAT POLITECNICA DE CATALUNYA

BARCELONA, JUNE 2009






Annuntio vobis gaudium magnum;
Habemus Thesis.

A la Miriam,



v



Abstract

This dissertation deals with the design of satellite-based navigation receivers. The term
Global Navigation Satellite Systems (GNSS) refers to those navigation systems based on a
constellation of satellites, which emit ranging signals useful for positioning. Although the
american GPS is probably the most popular, the european contribution (Galileo) will be
operative soon. Other global and regional systems exist, all with the same objective: aid
user’s positioning. Initially, the thesis provides the state-of-the-art in GNSS: navigation
signals structure and receiver architecture. The design of a GNSS receiver consists of a
number of functional blocks. From the antenna to the final position calculation, the de-
sign poses challenges in many research areas. Although the Radio Frequency chain of the
receiver is commented in the thesis, the main objective of the dissertation is on the signal
processing algorithms applied after signal digitation. These algorithms can be divided
into two: synchronization and positioning. This classification corresponds to the two main
processes typically performed by a GNSS receiver. First, the relative distance between the
receiver and the set of visible satellites is estimated. These distances are calculated after
estimating the delay suffered by the signal traveling from its emission at the correspond-
ing satellite to its reception at the receiver’s antenna. Estimation and tracking of these
parameters is performed by the synchronization algorithm. After the relative distances
to the satellites are estimated, the positioning algorithm starts its operation. Positioning
is typically performed by a process referred to as trilateration: intersection of a set of
spheres centered at the visible satellites and with radii the corresponding relative dis-
tances. Therefore, synchronization and positioning are processes performed sequentially
and in parallel. The thesis contributes to both topics, as expressed by the subtitle of the
dissertation.

On the one hand, the thesis delves into the use of Bayesian filtering for the track-
ing of synchronization parameters (time-delays, Doppler-shifts and carrier-phases) of the
received signal. One of the main sources of error in high precision GNSS receivers is
the presence of multipath replicas apart from the line-of-sight signal (LOSS). Wherefore
the algorithms proposed in this part of the thesis aim at mitigating the multipath ef-
fect on synchronization estimates. The dissertation provides an introduction to the basics
of Bayesian filtering, including a compendium of the most popular algorithms. Particu-
larly, Particle Filters (PF) are studied as one of the promising alternatives to deal with
nonlinear /nonGaussian systems. PF are a set of simulation-based algorithms, based on
Monte-Carlo methods. PF provide a discrete characterization of the posterior distribution
of the system. Conversely to other simulation-based methods, PF are supported by con-
vergence results which make them attractive in cases where the optimal solution cannot
be analytically found. In that vein, a PF that incorporates a set of features to enhance
its performance and robustness with a reduced number of particles is proposed. First,
the linear part of the system is optimally handled by a Kalman Filter (KF), procedure



referred to as Rao-Blackwellization. The latter causes a reduction on the variance of the
particles and, thus, a reduction on the number of required particles to attain a given ac-
curacy when characterizing the posterior distribution. A second feature is the design of an
importance density function (from which particles are generated) close to the optimal, not
available in general. The selection of this function is typically a key issue in PF designs.
The dissertation proposes an approximation of the optimal importance function using
Laplace’s method. In parallel, Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF) algorithms are considered, comparing these algorithms with the proposed
PF by computer simulations.

On the other hand, a novel point of view in the positioning problem constitutes one
of the original contributions of the thesis. Whereas conventional receivers operate in a
two-steps procedure (synchronization and positioning), the proposal of the thesis is a
Direct Position Estimation (DPE) from the digitized signal. Considering the novelty of
the approach, the dissertation provides both qualitative and quantitative motivations for
the use of DPE instead of the conventional two-steps approach. DPE is studied follow-
ing the Maximum Likelihood (ML) principle and an algorithm based on the Accelerated
Random Search (ARS) is considered for a practical implementation of the derived es-
timator. Computer simulation results carried show the robustness of DPE in scenarios
where the conventional approach fails, for instance in multipath-rich scenarios. One of
the conclusions of the thesis is that joint processing of satellite’s signals provides enhance
positioning performances, due to the independent propagation channels between satellite
links. The dissertation also presents the extension of DPE to the Bayesian framework:
Bayesian DPE (BDPE). BDPE maintains DPE’s philosophy, including the possibility of
accounting for sources of side/prior information. Some examples are given, such as the
use of Inertial Measurement Systems and atmospheric models. Nevertheless, we have to
keep in mind that the list is only limited by imagination and the particular applications
were BDPE is implemented.

Finally, the dissertation studied the theoretical lower bounds of accuracy of GNSS
receivers. Some of those limits were already known, others see the light as a result of the
research reported in the dissertation. The Cramér-Rao Bound (CRB) is the theoretical
lower bound of accuracy of any unbiased estimator of a parameter. The dissertation recalls
the CRB of synchronization parameters, result already known. A novel contribution of
the thesis is the derivation of the CRB of the position estimator for either conventional
and DPE approaches. These results provide an asymptotical comparison of both GNSS
positioning approaches. Similarly, the CRB of synchronization parameters for the Bayesian
case (Posterior Cramér-Rao Bound, PCRB) is given, used as a fundamental limit of the
Bayesian filters proposed in the thesis.
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Resum

Aquesta tesi gira al voltant del disseny de receptors per a sistemes globals de navegacié per
satellit (Global Navigation Satellite Systems, GNSS). El terme GNSS fa referéncia a tots
aquells sistemes de navegacio basats en una constel-lacié de satel-lits que emeten senyals
de navegacio ttils per a posicionament. El més popular és 'america GPS. Els esforcos
d’Europa per a tenir un sistema similar veuran el seu fruit en un futur proper, el sistema
s’anomena Galileo. Altres sistemes globals i regionals existeixen dissenyats per al mateix
objectiu: calcular la posicié dels receptors. Inicialment la tesi presenta l'estat de I'art en
GNSS: estructura dels actuals senyals de navegacié i arquitectura dels receptors. El disseny
d’un receptor per a GNSS consta d’un seguit de blocs funcionals. Comengant per ’antena
receptora fins al calcul final de la posicié del receptor, el disseny proporciona una gran
motivacié per a la recerca en diversos ambits. Tot i que la cadena de Radiofreqiiencia del
receptor també és comentada a la tesis, I’'objectiu principal de la recerca realitzada recau
en els algorismes de processament de senyal emprats un cop realitzada la digitalitzacio del
senyal rebut. En un receptor per a GNSS, aquests algorismes es poden dividir en 2 classes:
els de sincronisme i els de posicionament. Aquesta classificacié correspon als dos grans
processos que tipicament realitza el receptor. Primer, s’estima la distancia relativa entre el
receptor i el conjunt de satel-lits visibles. Aquestes distancies es calculen estimant el retard
patit pel senyal des que es emes pel corresponent satel-lit fins que es rebut pel receptor.
De l'estimacié i seguiment del retard se n’encarrega l’algorisme de sincronisme. Un cop
calculades la distancies relatives als satel-lits, multiplicant per la velocitat de la llum el
retards estimats, 1’algorisme de posicionament pot operar. El posicionament es realitza
tipicament pel procés de trilateralitzacié: interseccié del conjunt d’esferes centrades als
satel-lits visibles i de radi les distancies estimades, relatives al receptor GNSS. Aixi doncs,
sincronitzacio i posicionament es realitzen de forma seqencial i ininterrompudament. La
tesi fa contribucions a ambdos parts, com explicita el subtitol del document.

Per una banda, la tesi investiga 1'us del filtrat Bayesia en el seguiment dels parametres
de sincronisme (retards, desviaments Doppler i fases de portadora) del senyal rebut. Una
de les fonts de degradacié de la precisié en receptors GNSS és la presencia de repliques del
senyal directe, degudes a rebots en obstacles propers. Es per aixo que els algorismes pro-
posats en aquesta part de la tesi tenen com a objectiu la mitigacié de ’efecte multicami. La
dissertacio realitza una introduccié dels fonaments teorics del filtrat Bayesia, incloent un
recull dels algorismes més populars. En particular, el Filtrat de Particules (Particle Filter,
PF) s’estudia com a una de les alternatives més interessants actualment per a enfrontar-se
a sistemes no-lineals y/o no-Gaussians. Els PF s6n metodes basats en el metode de Monte
Carlo que realitzen una caracteritzacioé discreta de la funcié de probabilitat a posteriori
del sistema. Al contrari d’altres metodes basats en simulacions, els PF tenen resultats de
convergencia que els fan especialment atractius en casos on la solucié optima no es pot
trobar. En aquest sentit es proposa un PF que incorpora un seguit de caracteristiques
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que el fan assolir millors prestacions i robustesa que altres algorismes, amb un nombre
de particules reduit. Per una banda, es fa un seguiment dels estats lineals del sistema
mitjanant un Filtre de Kalman (KF), procediment conegut com a Rao-Blackwellization.
Aquest fet provoca que la variancia de les particules decreixi i que un menor nombre
d’elles siguin necessaries per a assolir una certa precisié en 'estimacié de la distribucio
a posteriori. D’altre banda, un dels punts critics en el disseny de PF és la seleccié d’una
funcié d’importancia (emprada per a generar les particules) similar a ’optima. Aquesta
funcié optima no esta disponible en general. En aquesta tesi, es proposa una aproximacié
de la funcié d’importancia optima basada en el metode de Laplace. Paral-lelament es
proposen algorismes com 1'Extended Kalman Filter (EKF) i I'Unscented Kalman Filter
(UKF), comparant-los amb el PF proposat mitjancant simulacions numeriques.

Per altra banda, la presentacié d’un nou enfocament al problema del posicionament
és una de les aportacions originals de la tesi. Si habitualment els receptors operen en dos
passos (sincronitzacié i posicionament), la proposta de la tesi rau en I'Estimacié Directa
de la Posicié (Direct Position Estimation, DPE) a partir del senyal digital. Tenint en
compte la novetat del metode, es proporcionen motivacions qualitatives i quantitatives
per a I'is de DPE enfront al metode convencional de posicionament. Se n’ha estudiat
I'estimador de maxima versemblana (Maximum Likelihood, ML) i un algorisme per a la
seva implementacié practica basat en el I'algorisme Accelerated Random Search (ARS).
Els resultats de les simulacions numeriques mostren la robustesa de DPE a escenaris on el
metode convencional es veu degradat, com per exemple el cas d’escenaris rics en multicami.
Una de les reflexions fruit dels resultats és que I'tis conjunt dels senyals provinents dels
satel-lits visibles proporciona millores en 1’estimaci6 de la posicid, doncs cada senyal esta
afectada per un canal de propagacié independent. La tesi també presenta 1’extensié de
DPE dins el marc Bayesia: Bayesian DPE (BDPE). BDPE manté la filosofia de DPE,
tot incloent-hi possibles fonts d’informacié a priori referents al moviment del receptor. Es
comenten algunes de les opcions com 1'is de sistemes de navegacio inercials o la inclusio
d’informaci6 atmosferica. Tot i aixi, cal tenir en compte que la llista només esta limitada
per la imaginacié i ’aplicacié concreta on el marc BDPE s’ implementi.

Finalment, la tesi estudia els limits teorics en la precisié dels receptors GNSS. Alguns
d’aquests limits teorics eren ja coneguts, d’altres veuen ara la llum. El limit de Cramér-
Rao (Cramér-Rao Bound, CRB) ens prediu la minima variancia que es pot obtenir en
estimar un parametre mitjangant un estimador no esbiaixat. La tesi recorda el CRB dels
parametres de sincronisme, resultat ja conegut. Una de les aportacions és la derivacid
del CRB de I'estimador de la posicié pel cas convencional i seguint la metodologia DPE.
Aquests resultats proporcionen una comparativa asimptotica dels dos procediments pel
posicionament de receptors GNSS. Similarment, el CRB de sincronisme pel cas Bayesia
(Posterior Cramér-Rao Bound, PCRB) es presenta, com a limit teoric dels filtres Bayesians
proposats en la tesi.
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Notation

Boldface upper-case letters denote matrices and boldface lower-case letters denote column

vectors.
R, C
RNXM CNXM

A

f(#)]a=a
]

Il
dim{x}
[x].
[X]r.c
X]r.
[X]:c
Tr{X}
det(X)
diag(x)
IX| 7

I

The set of real and complex numbers, respectively.

The set of N x M matrices with real- and complex-valued entries,
respectively.

Estimation and true value of parameter x.
Function f(x) evaluated at = a.

Absolute value (modulus) of scalar x.

(SIS

(?-norm of vector x, defined as [|x| = (x"x)2.
Dimension of vector x.

The r-th vector element.

The matrix element located in row r and column c.
The r-th row of matrix X.

The c-th column of matrix X.

N

Trace of matrix X. Tr{X} = Z[X}m
n=1
Determinant of matrix X.

A diagonal matrix whose diagonal entries are given by x.
Frobenius norm of matrix X. If X is N x N,

X = <§:§: xw2>% = (Tr {XHx})%

u=1 v=1
Identity matrix. A subscript can be used to indicate the dimension.
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X*
XT
XH
Xt

In(+)
d(n —m)

Complex conjugate of matrix X (also applied to scalars).
Transpose of matrix X.
Complex conjugate and transpose (Hermitian) of matrix X.

Moore-Penrose pseudoinverse of matrix X. If X is M x N,
Xt =X (XX")™if M < N,

Xt =X"tif M = N, and

Xt = (XUX)"' X" if M > N.

Schur-Hadamard (elementwise) product of matrices.

If A and B are two N x M matrices:

ai1biy aigbiy -+ ainbiv
AOB= a21.b21 G22.b22 e GQM.bQM
anibyt an2bye -+ anmbym
The Kronecker or tensor product. If A is m x n, then
[AluB - [A];,B
A®B= : :
[A]nlB T [A]nt

Orthogonal projector onto the subspace spanned by the columns of X.
Px = X (X#X)™' X/,

I — Px, orthogonal projector onto the orthogonal complement

to the columns of X.

Multivariate Gaussian distribution with mean g and covariance matrix 3.
Uniform distribution in the interval [a, b].

Statistical expectation. When used with a subindex, it specifies
the distribution over which the expectation is taken, e.g.,

E, {-} over the distribution of a random variable z;

E,, {-} over the joint distribution of x and y, p(z, y);

E,y {-} over the distribution of x conditioned to y, p(x|y).

Natural logarithm (base e).

Kronecker’s delta function, defined as:
1, ifn=m

— A
5(n—m)—5n,m—{ 0, ifn#m

R{-}, S{} Real and imaginary parts, respectively.

xXviil



op(fN)

f(t) = g(t)

arg max f(x)

argmin f(x)
0f(x)

ox;
0f(x)

ox
% f(x)

ox2

fo(X)
Hy f(x)
832 1(x)

ONIO

i.4.d.
q.e.d.
..

w.p.1.

A sequence of random variables Xy is Xy = 0,(fn), for fy >0 VN,
when );—JIVV converges to zero in probability, i.e.,
XN

limP{ >6}:0V6>0
Convolution between f(t) and g(t).

Value of x that maximizes f(x).

Value of = that minimizes f(x).

Partial derivative of function f(x) with respect to the variable x;.
Gradient of function f(x) with respect to vector x.

Hessian matrix of function f(x) with respect to vector x.
Gradient of function f(x) with respect to vector x.

Hessian matrix of function f(x) with respect to vector x.

second-order partial derivatives operator of function f(x) with
respect to vectors x; and x,. Notice that H, f(x) £ AXf(x)
and A2 =V, [Vg}.

derivatives of time of function f(t), equivalent to 8’(;—(:)
9 f(t) ;
and =35~ respectively.

almost surely convergence.
independent identically distributed.
quod erat demonstrandum.
random variable.

convergence with probability one.

XixX



XX



ADC
AGC
AGN
AIC
ARS
AS
ASIC
AWGN
BDPE
BF
BIM
BLUE
BPSK
BOC
CDMA
CNO
COTS
CPLD
CRB
CRC
CRPF

Analog-to-Digital Converter.
Automatic Gain Control.
Additive Gaussian Noise.
Akaike’s Information Criteria.
Accelerated Random Search.

Anti Spoofing.

Application-Specific Integrated Circuit.

Additive White Gaussian Noise.
Bayesian Direct Position Estimation.
Bootstrap Filter.

Bayesian Information Matrix.

Best Linear Unbiased Estimator.
Binary Phase Shift Keying.

Binary Offset Carrier.

Code Division Multiple Access.
Carrier to Noise density Ratio, C'/Nj.
Commercial Off-The-Shelf.

Complex Programmable Logic Device.
Cramér Rao Bound.

Cyclic Redundancy Check.

Cost Reference Particle Filter.

xxi

Acronyms



DBF
DGNSS
DLL
DOA
DPE
DS-SS
DSP
DSS
ECEF
EGNOS
EIRP
EKF
ELS
EM
EML
ENU
FDOA
FFT
FIM
FLL
FPGA
GBAS
GDOP
GLONASS
GLRT
GNSS
GPS
HMM

Digital Beamforming.

Differential GNSS.

Delay Lock Loop.

Direction Of Arrival.

Direct Position Estimation.

Direct-Sequence Spread-Spectrum.

Digital Signal Processor.

Discrete State-Space model.

Earth-Centered Earth-Fixed coordinate system.
European Geostationary Navigation Overlay System.
Effective Isotropic Radiated Power.

Extended Kalman Filter.

Early/Late Slope algorithm.

Expectation Maximization algorithm.

Early Minus Late algorithm.

East-North-Up coordinate system.

Frequency Difference Of Arrival.

Fast Fourier Transform.

Fisher Information Matrix.

Frequency Lock Loop.

Field Programmable Gate Array.
Ground-Based Augmentation Systems.
Geometric Dilution Of Precision.

GLObalnaya Navigasionnay Sputnikovaya Sistema.
Generalized Likelihood Ratio Tests.

Global Navigation Satellite System.

Global Positioning System.

Hidden Markov Model.

xxi1



HRC
IF
IMU
INS
IRNSS
IS

ITU
KF
LAAS
LFSR
LHCP
LLPF
LNA
LO

LS
LOSS
MAI
MAP
MDL
MEDLL
MEMS
MEO
MET
MIMO
ML
MLE
MMSE
MSE

High Resolution Correlator.
Intermediate Frequency.

Inertial Measurement Unit.

Inertial Navigation System.

Indian Regional Navigation Satellite System.
Importance Sampling.

International Telecommunication Union.
Kalman Filter.

Local-Area Augmentation System.
Linear Feedback Shift Register.

Left Hand Circularly Polarized.

Local Linearization Particle Filter.

Low Noise Amplifier.

Local Oscillator.

Least Squares.

Line Of Sight Signal.

Multiple Access Interference.

Maximum a posteriori.

Minimum Description Length.
Multipath Estimating Delay Lock Loop.
Micro Electro Mechanical System.
Medium Earth Orbit.

Multipath Elimination Technology.
Multiple Input Multiple Output.
Maximum Likelihood.

Maximum Likelihood Estimator.
Minimum Mean Square Error.

Mean Square Error.

xxiil



NCO
MVB
PAC
PCRB
PDF
PF
PLL
PMC
PPP
PRN
PVT
QPSK
QZSS
RF
RHCP
RMSE
RPF
SAGE
SAR
SBAS
SDCM
SDR
SIR
SIS
SISA
SINR
SMC
SMI

Numerical Controlled Oscillator.
Minimum Variance Beamforming.
Pulse Amplitude Correlator.
Posterior Cramér Rao Bound.
Probability Density Function.
Particle Filter.

Phase Lock Loop.

Population Monte Carlo.

Precise Point Positioning.
Pseudorandom Noise.

Position, Velocity and Time.
Quadrature Phase Shift Keying.
Quasi-Zenith Satellite System.
Radio Frequency.

Right Hand Circularly Polarized.
Root Mean Squared Error.
Regularized Particle Filter.

Space-Alternating Generalized Expectation-Maximization algorithm.

Search And Rescue.

Space-Based Augmentation Systems.

System for Differential Correction and Monitoring.

Software Defined Radio.
Sampling Importance Resampling.
Sequential Importance Sampling.

Signal In Space Accuracy.

Signal to Interference plus Noise Ratio.

Sequential Monte Carlo.

Sample Matrix Inversion.

XX1v



SMR Signal to Multipath Ratio.

SNAS Satellite Navigation Augmentation System.

SNR Signal to Noise Ratio.

SS State Space.

SV Space Vehicle.

TDOA  Time Difference Of Arrival.

TOA Time Of Arrival.

TTFF Time To First Fix.

TTL Transistor-Transistor Logic.

UKF Unscented Kalman Filter.

uTC Universal Time Coordinated.

VDLL Vector Delay Locked Loop.

VHDL  Very high speed integrated circuit Hardware Description Language.
WAAS  Wide-Area Augmentation System.

WGS84 World Geodetic System 1984.

WLS Weighted Least Squares.

WSSUS Wide Sense Stationary with Uncorrelated Scattering.

XXV



XXV1




Introduction

HIS thesis deals with the design of advanced receivers for its use in navigation sys-

tems. The focus is on the algorithms required to synchronize the receiver with the
emitters of navigation signals and the procedures performed to compute its position. We
restrict ourselves to the case of satellite-based navigation systems, that is to say, those
systems which are based on a constellation of satellites to aid positioning of a receiver by
emitting ranging signals. Particularly, we take a Bayesian approach to affront some of the
problems that a receiver has to deal with. Therefore, the inclusion of prior information
is one of the main concerns of this dissertation, along with the proposal of algorithms to
effectively account for it.

1.1 Motivation and Objectives of the Thesis

Satellite navigation systems have undergone a remarkable development since their ap-
parition. These systems are generally referred to as GNSS, a short for Global Navigation
Satellite Systems. First, the american Global Positioning System (GPS) opened the ap-
plication to the mass-market and, nowadays, the forthcoming european Galileo renewed
the research interest on this topic. Although many contributions can be found in the
literature related to any of the aspects concerning GNSS, most of the problems remain
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unsolved, at least with the degree of coverage, reliability and accuracy that applications
(and imagination) demand. Therefore, and fortunately, there are stimulating open fields
for further research in many directions.

A GNSS receiver, after signal sampling and downconversion, executes two sequen-
tial signal processing operations: synchronization and positioning. The former tries to
keep track of the synchronization parameters (i.e., time-delay, carrier-phase and Doppler
deviation) of the visible satellites. Synchronization is typically performed independently
for each satellite by a bank of identical channels (possibly using DLL-based algorithms).
These parameters provide information of the relative distance between the receiver and
the corresponding satellite, ranging information which is used by the positioning algo-
rithm. Thus, GNSS receivers consist of a two-steps procedure, where the performance of
the synchronization procedure plays an essential role. One of the most critical issues in the
design of GNSS receivers is the robustness of the synchronization algorithm against mul-
tipath propagation. This effect induces a bias in time-delay estimates that is propagated
to the computation of receiver’s position. The presence of direct signal’s replicas might
be caused by reflections on surrounding buildings or trees, for instance. Therefore, it is
reasonable to assume that real-world scenarios are multipath-rich environments. Many
algorithms have been proposed in the literature to overcome this effect, consult Chapter
2 for a survey.

One of the objectives of the thesis is to propose an algorithm to track the synchro-
nization parameters of a satellite, which additionally mitigates the multipath effect. The
proposed algorithm is based on the Bayesian nonlinear filtering theory and, particularly, on
Sequential Monte Carlo (SMC) methods. These simulation-based methods have recently
attracted the interest of many researchers of distinct topics, all of them being haunted by
their ability to deal with nonlinear /nonGaussian systems. We can encounter these meth-
ods under several names, with Particle Filters (PFs) being the one we adopt hereinafter.
The proposed PF has a number of enhanced features, such as employing a variance reduc-
tion technique known as Rao-Blackwellization. Rao-Blackwellization helps circumventing
the curse of dimensionality in SMC methods by tackling the linear part of the system
by the optimal algorithm in those cases: the Kalman Filter (KF). Another attribute de-
signed to improve the performance of the PF is the use of a nearly optimal importance
density function, from which particles are generated. Furthermore, a procedure to extract
Doppler-shifts from complex amplitudes estimates is proposed. The performance of the
PF is compared to other Bayesian filtering alternatives — namely, the Extended Kalman
Filter (EKF) and the Unscented Kalman Filter (UKF) —, as well as to its lowest accuracy
bound, given by the Posterior Cramér-Rao Bound (PCRB). The research related to the
use of Bayesian filters for multipath mitigation purposes is divulged in Chapter 3.

Is there an alternative to the conventional two-steps positioning approach? this is the
question we tried to answer during the research reported in Chapter 4. The response is
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the Direct Position Estimation (DPE) approach, a novel framework for positioning GNSS
receivers. Basically, the idea is to merge synchronization and position computation oper-
ations into a single estimation step. Then, the input to an algorithm implementing DPE’s
approach is the stream of sampled signal and its output should be the estimated receiver’s
position itself. This philosophy has important consequences in the receiver. Firstly, we
notice that signals from different satellites are no longer processed independently, thus
improving the rejection to multiple access interference. Besides, joint processing of signals
propagating through independent links enhances the robustness of the receiver in certain
scenarios, such as multipath environments. The interest in DPE’s approach came after
evaluating the drawbacks of the conventional approach, listed in Chapter 4. Now it suffices
to understand the versatility of DPE to incorporate prior information in the computa-
tion of user’s position, as compared to the conventional approach to positioning. In the
two-steps approach, side information can be considered whether in the synchronization
algorithm or in the positioning procedure. We will realize in Chapter 3 that the former
is possible, despite few intuitive models exist to that aim. The most conventional way
to include prior information in GNSS receivers is, thus, in the computation of position.
Unfortunately, if synchronization parameters appear to be corrupted, the positioning so-
lution will be likely to be also unreliable, in spite of the fact of using a priori information
for its calculation. Conversely, DPE provides a natural framework for the inclusion of
prior information, while ensuring its efficient usage, because the parameters of interest in
the estimation problem are the user coordinates. It will be seen that the use of prior data
for those unknowns is, by far, easier than considering prior information in the estimation
of synchronization parameters.

So far the thesis proposes algorithms, approaches or alternatives to solve common
problems faced by GNSS receivers. Notwithstanding, we are also interested in realizing
how close the proposed algorithms are from their theoretical accuracy bounds. Work can
be found in the literature studying the lower bounds of synchronization algorithms. For
instance, it can be proved that any unbiased time-delay estimator based on a single an-
tenna has a variance that approaches to infinity when the relative delay between the direct
signal and a multipath replica approaches to zero. However, the impact of this effect — or
more generally, the performance of a time-delay estimator — in the final position estimate
has not yet been evaluated. In previous works, the computed variance bounds for the es-
timation of synchronization parameters have been typically transformed to compute the
bounds of ranging parameters. The latter bounds constitute a rule of thumb to approxi-
mate the degradation of the final position estimate. It is apparent that this approach does
not yield to accurate positioning bounds, useful for benchmarking, as it does not account
for the joint processing of synchronization estimates in the positioning procedure. There-
fore, this approach cannot be used to effectively assess the influence of synchronization
algorithms in position estimates. Chapter 5 addresses this issue, studying the theoretical
variance bounds of position estimates, analyzing both conventional and DPE positioning
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approaches. In addition, the error bounds for the tracking problem studied in Chapter 3
are also accounted.

To sum up, this thesis proposes:

e A review of Bayesian filtering, that is to say, fundamentals and discussion of
optimal /sub-optimal algorithms, with a special emphasis on particle filtering.

e A framework for tracking the synchronization parameters of a satellite relying on
Bayesian filtering algorithms. Thus, allowing the use of a priori information of these
parameters.

e An efficient PF algorithm for tracking time-delays and complex amplitudes of the
direct signal and its replicas. In addition, a methodology to extract Doppler-shifts
is also suggested.

e A framework for Direct Position Estimation (DPE) in software-defined radio re-
ceivers, with a comparison to the conventional positioning approach.

e A framework for the inclusion of prior information in GNSS receivers following
DPE’s philosophy, termed as Bayesian Direct Position Estimation (BDPE) ap-
proach.

e An analysis of the Maximum Likelihood Estimator of position under DPE’s ap-
proach and proposal of a practical algorithm to implement it.

e A establishment of fundamental bounds in GNSS positioning algorithms, as given
by the Cramér-Rao Bound. Namely, variance bounds for position estimation under
conventional and DPE’s approaches are derived. Furthermore, the Posterior Cramér-
Rao Bound is used for the problem of on-line tracking of synchronization parameters.

e An extensive simulation study of the algorithms proposed.

1.2 Thesis Outline and Reading Directions

The dissertation consists of six chapters, where review material and novel contributions
are presented. The thesis might be of interest to two groups of people: those working in
the satellite-navigation field and to signal-processing oriented researchers. The document
is organized according to this premise, providing the basics of each topic. In this section,
we glance at the structure of the document, serving as a guide to the reader. For the sake
of clarity, the mathematical notation and the acronyms used along the dissertation can
be consulted at the beginning of the document.
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The dissertation has begun with Chapter 1, presenting the motivations and scope of
the thesis. The objectives were highlighted and the structure of the thesis is being pre-
sented, guiding the reader before starting the journey across the research reported in the
forthcoming pages. Chapter 2 provides the reader with the basics of satellite navigation
systems, concepts which are a requisite to correctly follow subsequent chapters. Indeed,
this chapter could be skipped if deemed necessary. Namely, the chapter presents the gen-
eral signal structure and propagation channel of most satellite-based navigation systems.
Specifically, GPS and Galileo systems are discussed in more detail due to their paramount
significance in nowadays’ research in the topic. Nevertheless, the aim of the chapter is not
to perform an exhaustive exposition of those systems, since it would have required many
space in the thesis without adding new material not already published in the literature.
Thus, the reader is referred to the references therein for further details. Chapter 2 also
sketches the architecture of a navigation receiver, providing a better understanding of
the problems treated along the dissertation and their impact in the receiver’s chain. The
considered receiver is flavored by the Software Defined Radio paradigm, which consists in
digitizing as close to the antenna as possible. Thus, signal processing typically performed
by dedicated analog devices can be handled by versatile software platforms.

The use of Bayesian filters to track the synchronization parameters of visible satellites
is investigated in Chapter 3. The chapter can be divided into two differentiated parts. On
the one hand, an overview of Bayesian nonlinear filtering is presented. Therein a reader
can find an explanation of the conceptual solution, followed by a discussion on a number of
optimal and sub-optimal algorithms to implement the Bayesian recursion. Although PFs
fall under the latter category of algorithms, an extended overview is provided in Chapter
3 due to its significance and usage along the dissertation. On the other hand, the chapter
presents the original contribution by the author to the multipath mitigation problem using
Bayesian filters. Assuming a system model which considers a fixed number of multipath
replicas per satellite and independent processing of satellites’ signals, a number of filters
are considered. The most remarkable work is on the use of PFs, though EKF and UKF
are also explored. These algorithms are simulated, compared and plotted against the
theoretical lower bound provided by the PCRB.

Chapter 4 proposes a novel framework for positioning a receiver in satellite-based
navigation systems, termed as Direct Position Estimation or DPE for short. DPE merges
the two-steps that a conventional state-of-the-art receiver performs to compute its posi-
tion into a single optimization problem. The chapter starts highlighting the drawbacks
of two-steps based positioning and proving that, indeed, DPE cannot be outperformed
by the conventional approach. The estimators of both synchronization parameters and
position coordinates are derived using the ML principle. This allows a fair comparison
of both positioning alternatives. The estimator derived under DPE’s philosophy turns to
be a multivariate non-convex optimization problem. A practical algorithm is proposed
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based on the Accelerated Random Search (ARS) algorithm, whose performance is shown
in a number of realistic scenarios. Furthermore, the inclusion of side information in GNSS
receivers is discussed and Bayesian DPE framework introduced. For the sake of com-
pleteness, examples of practical interest where prior information can be easily used are
commented.

Chapter 5 delves into the derivation of performance bounds for the estimation prob-
lems encountered in GNSS receivers. Actually, it is an important point of this dissertation,
as these results are used in preceding chapters. Namely, the two main problems of navi-
gation systems are treated: synchronization and positioning. On the one hand, variance
bounds for the estimation of synchronization parameters are obtained in the case of ML-
like estimation and in on-line tracking, given by the CRB and PCRB respectively. On
the other hand, the error bounds of either positioning approaches (two-steps and DPE)
are likewise documented in Chapter 5 along with a comparison under realistic scenarios.
Finally, a summary of the contributions, conclusions and guides for future research arising
from this work can be consulted in Chapter 6. At the end of the document, the reader
can find the list of publications by the author during the pursue of the PhD degree. Addi-
tionally, at the end of each chapter one can find the publications related to the particular
topics discussed there.



Fundamentals of Global Navigation
Satellite Systems

LOBAL Navigation Satellite System (GNSS) is the general concept used to identify

those systems that allow user positioning based on a constellation of satellites. Spe-
cific GNSS are the well-known american GPS or the forthcoming european Galileo. Both
systems rely on the same principle: the user computes its position by means of measured
distances between the receiver and the set of visible satellites. These distances are calcu-
lated estimating the propagation time that transmitted signals take from each satellite
to the receiver. Therefore, the conventional approach to GNSS positioning is based on a
two-steps procedure. First, the receiver estimates the distance between the receiver and
the satellites. Then, these distances are used to obtain user position by means of a pro-
cedure referred to as trilateration. Useful GNSS textbook references can be found in the
literature, for instance [Par96, Kap96, Str97, Gre01, Bor07].

This chapter provides an overview to GNSS basics. The emphasis is on the concepts
which are required to follow the rest of the dissertation. Section 2.1 presents the struc-
ture and particularities of GNSS signals. The generic architecture of a GNSS receiver is
sketched in Section 2.2. Then the two-steps positioning approach, i.e., synchronization
and trilateration, is discussed in Sections 2.2.2 and 2.2.3, respectively.



8 Chapter 2. Fundamentals of GNSS

2.1 GNSS Signal Structure

A general signal model for most navigation systems consists of a direct-sequence spread-
spectrum (DS-SS) signal [HWO08], synchronously transmitted by all the satellites in the
constellation. This type of signals enable Code Division Multiple Access (CDMA) trans-
missions, i.e., satellite signals are distinguished by orthogonal (or quasi-orthogonal) codes.
At a glance, these signals consists of two main components: a ranging code (the PRN
spreading sequence) and a low rate data-link (broadcasting necessary information for po-
sitioning such as satellites orbital parameters and corrections). The complex baseband
model of the signal transmitted by the i-th satellite reads as

STJ'(t) = S[ﬂ'(t) + jSQﬂ'(t) 5 (21)

where its phase and quadrature components are defined as

sri(t) = \/Q_qu“(t) (2.2)

Nep L
= Z bri(mr) Z Z cri (kr) gr (t — miTy, — uiTprn, — kily,)

mr=—oQ :
sQi(t) = 2P qq.4(t) (2.3)
NCQ LCQ
= \/QP Z le mQ Z Z CQ,i kQ gQ t— mQTbQ — UQTPRNQ k‘QTCQ) s
mgQ=—00 ug=1kg=1

with the following definitions for the in-phase component — analogous for the quadrature
signal — holding;:

e P, is the transmitted power, considered equal for all satellites and elevation-
dependant [T'su00].

o b;i(t) € {—1,1} is the sequence of low-rate data bits, with 73, being the bit period.

e ¢;;(t) € {—1,1} is the PRN spreading sequence. The chip length of the codeword
and the chip period are denoted by L., and T¢,, respectively. Therefore, Tprn, =
LT, is the codeword period. N., are the number of code epochs per data bit.
Figure 2.1 aims at clarifying the relation between these bits/chips parameters.

e The energy-normalized chip shaping pulse is denoted by g;(t).

Notice that several carrier frequencies can be used at a time, with the presented base-
band structure being thus replicated. When transmitted, satellite’s signals travel through a
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Figure 2.1: Relation among the parameters defining bits and spreading sequences in a
generic navigation signal (in-phase component).

propagation channel which modifies its amplitude, phase and delay. Indeed, many replicas
of the same transmitted signal can reach the receiver’s antenna due to multipath propaga-
tion. In general, these replicas are caused by reflections of the direct signal (or line-of-sight
signal, LOSS) in surrounding obstacles (e.g. buildings, trees, ground, etc). Such propa-
gation channel is generically modeled by a linear time-varying impulse response with M
propagation paths [Rap96, Fon0laj:

M-1

hi(t) = @i (t)?mO5(t = 73, (1)) | (2.4)

m=0

where a;,,(t), ¢im(t) and 7,,,(t) stand for the amplitude, phase and delay of the m-
th propagation path for the i-th satellite. Notice that subindex m = 0 denotes LOSS
parameters. These time-varying parameters have been statistically modeled, thus each
being assumed as realizations of a r.v. with known distribution. Typically, the assumptions
are that amplitudes are Rice or Rayleigh (when shadowed) distributed [Pro95, Irs05],
phases are uniformly generated [Jak74] and time-delays are assumed piecewise constant
in the observation interval [Van94]. In general, we consider that paths are independent,
which is referred to as the Wide Sense Stationary with Uncorrelated Scattering (WSSUS)
channel model. Thus, M can be different between satellite channels. A huge effort is being
carried at the German Aerospace Center (DLR) to characterize the GNSS propagation
channel model, see for instance the results reported in [Ste03, Ste04].

Therefore, considering M, visible satellites, the received signal is the superposition of
the transmitted signals, as propagated through the corresponding channel, and corrupted
by additive noise, n(t). This reads as

x(t) = i_: sri(t) +n(t) = ZS_: s7i(t) * hi(t) + n(t)

= Z Z Oéi7m(t>€j¢i’m(t)ST7i(t — Ti,m(t)) + n(t) . (25)

=0 m=0
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Yet another effect modifies the transmitted signal when captured at the receiver’s
antenna manifold: the Doppler spread. 1t is well known that a relative motion between
transmitter and receiver causes a frequency shift in the received signal, with respect to
the one emitted. This frequency broadening was discovered in mid 19** century by C.
Doppler, as reported in his original manuscript [Dop42]. The equations governing such
frequency deviation can be readily found in the literature. Hence, we provide here another
interpretation/derivation of the effect. We will see that the Doppler deviation is included
in the general model (2.4) as the linear component of the phase. For the sake of simplicity
let us consider the propagation channel of a single satellite, dropping subindex i from (2.4).
This assumption is valid due to the independent nature of satellite links. In addition, we
contemplate the case of M = 1, i.e., only LOSS results from channel propagation, and
neglect the noise term. With this setup, the analytic representation of the RF signal
emitted by the satellite under study is sp(t)e/?"/<!, where f. is the carrier frequency of
the navigation signal. Then, the received analytical signal is of the form

(sr(O54) 5 h(t) = aot)sr(t — mlt))e2e -l
= sn(t)e’”" (2.6)

with |
sp(t) = ag(t)sp(t — o(t))e 72 feo® (2.7)

being the received complex baseband signal. Notice that we omit the term e7?0®) because
it will be seen here how to obtain its explicit expression. Let us focus on the last term
in (2.7), where the carrier frequency is modified by the time-varying channel delay. If
we approximate this delay by its first-order Taylor expansion in the neighborhood of an
arbitrary instant ¢,

OTo(t
wit) = wi) + 00| ()
t=to
. . 87’0(25) 87’0(75)
= T7o(to) o 0 0 t:tot, (2.8)

then we can write

. AT (t) . _ A1 (t)
e*j27rfc7'0 (t) j2mfe Dt t:tgt j2m fe <7'0(t0) Dt t:tot())

~ e
e2rfat+do (2.9)
where
O7o(t)
fd = _fc
ot i—to
) O7o(t
b = —j2nf. | 10(to) — no(t) to (2.10)
ot i—to
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are the Doppler-deviation and constant phase variation of the received signal due to the
travel time. Hence, we can write

sp(t) = ag(t)e??™aOteos (t — 7(t)) (2.11)
as the received LOSS for a given satellite.

Therefore, for the i-th satellite, the m-th phase of the channel model in (2.4) can be
explicitly expressed as

Gim(t) =27 fa, . () + Pimo (2.12)
which is linear in time and with fq, () and ¢; 0 being obtained using the corresponding
time-delay 7;,,,(f) in definitions (2.10).

When dealing with the Doppler deviation of the LOSS coming from the ¢-th satellite,
it is common to use a vector formulation. This is derived from (2.10):

fdi,O = c ot
— _& 1 8 (pz(ttx) — p<trx))T (pz(ttx) - p(trx))
c2 || pi(ttx) - p(trx) || at
fe 1

2 pilte) — Pt | (<Pi<ftx> —p(te))” (Vilti) = v(te))

£ (Bilti) = Ptee))” (Vilter) = V(t)))

~ fe (Piltid) = P(t))" vl
= T TPt = pl) ) Vi) T V)

fc T (pz(ttx) - p(trx))
L (it = v(t))" R R
¢ | Pi(tex) — Pirc) ||
where ti, and t,, refer to transmission and reception times, respectively. Notice that the

travel time of the signal emitted by the satellite to reach the receiver can be written as
the distance between them, divided by the speed of light c:

(2.13)

reolti) = © || piltee) ~ Bt | (2.14)

Also we define p and v as the position and velocity vectors of the receiver, respectively.
Similarly, p; and v; are defined for the i-th satellite. In navigation applications, the
Doppler-shift ranges in 12 kHz. When acquiring this frequency deviation, the receiver
is accounting for satellite/user relative motions and local oscillator drift.

The signal transmitted by a specific navigation system can be obtained particulariz-
ing (2.2) and (2.3) according to the designed parameters of the system. Hereinafter this
section, we discuss the main characteristics of current GNSS standards.
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2.1.1 GPS signals

Global Positioning System (commonly known by its acronym, GPS) is the american satel-
lite navigation system, which provides timing and ranging since 1993. The constellation
consists of 24 operational Medium Earth Orbit (MEO) satellites deployed in 6 evenly
spaced planes with an inclination of 55°. It was designed to provide global coverage with,
as a rule of thumb, 4 to 8 (elevation mask of 15°), 10 (elevation mask of 10°) or 12 (ele-
vation mask of 5°) visible satellites at any time of day. These satellites have a period of
approximately 12 sidereal days with an altitude of about 20200 km above the Earth.

GPS navigation signals are emitted using 3 frequency bands, in the L-band of the elec-
tromagnetic spectrum. The links are commonly referred to as L1, L2 and L5. These bands
are obtained from the fundamental frequency f, = 10.23 MHz, being their corresponding
carrier frequencies multiples of it:

fe(L1) = 154 - f, = 1575.42 MHz
f.(L2) = 120- f, = 1227.60 MHz
f.(L5) = 115- f, = 1176.45 MHz , (2.15)

having all an allocated ITU bandwidth of 24 MHz. Notice that L3 (1381.05 MHz) and
L4 (1379.913 MHz) bands have been used only for military services and are not dis-
cussed hereinafter. Each satellite link transmits its own set of ranging signals, which are
distinguished by their corresponding spreading codes. At a glance:

L1 link. In the current configuration, it consists of two components: P code (in-phase)
and C/A code (quadrature). The C/A code (short for coarse/acquisition code) is
a nonclassified PRN sequence for civilian use, having 3 dB more power than the P
code. C/A code is the ranging signal typically used by mass market devices. The
P code refers to the precision code, being much longer than the C/A code. It is
an encrypted nonclassified code used for enhanced performance in GPS receivers
due to its higher code rate. For details of P and C/A codes refer to the interface
specification document [Ser06al. In addition, the L1 link provides the military M
code, with codewords orthogonal to those used in P and C/A codes. M code is not
allowed for civilian use, being therefore encrypted and unknown.

The modernization of GPS includes a new set of signals in the L1 link, aimed at
civilian ranging. Although its design is still an issue, preliminary reports [SerO6b]
showed that it will likely be composed of a data channel (L1CD) and a pilot channel
(L1CP). This modernized civilian signal is to be added to the existing C/A and not
to replace it, for backward compatibility reasons.

L2 link. Initially, this link only transmitted precision and military codes. Another civil
signal was designed in a first modernization of the system, referred to as L2C code
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Link || PRN code L. Code rate (1/7,) | Modulation | Bandwidth
L1 C/A 1023 £,/10 BPSK(1) fo/5
P ~ 7 days fo BPSK(10) 2f,
M - fo/2 BOCs(10,5) 3f,

L1CD 10230 £5/10 BOCs(1,1) 2f,/5

L1CP 10230 - 1800 fo/10 BOCs(1,1) 2f,/5

L2 P ~ 7 days f BPSK(10) 2f,
M - fo/2 BOCs(10,5) 37,

L2CM 10230 £,/10 BPSK(1) fo/5

L2CL 10230 - 75 fo/10 BPSK(1) fo/5

L5 L51 10230 - 10 o BPSK(10) 2f,
L5Q 10230 - 20 o BPSK(10) 2f,

Table 2.1: Summary of GPS codes.

and aimed for particular commercial needs [Fon01b]. This code is composed of two
components: the L2CM code is modulated by a navigation message and the L2CL
code is used as a pilot channel, with the latter being 75 times longer than the former.
Specifications to generate L2C codes can be found in [Ser06a]. Since 2005, satellites
are being replaced to L2C capable satellites and the full operative constellation is
expected by 2012.

L5 link. The latest modernization of GPS signals includes the emission of ranging signals

using a third carrier frequency, the L5 link. These civil signals are generally referred
to as the L5C signal and were designed to meet the requirements of safety-of-life
applications. Basically, this code has two components: L5I and L5Q, in-phase and
quadrature respectively. Whereas L5I is modulated with a navigation message, the
L5Q code is modulated onto the carrier frequency. Details can be found in the
specifications [Ser05]. Nonetheless, the transmission of L5C signals will presumable
not be a reality before 2015 [Sha05].

Table 2.1 summarizes the main characteristics of the codes transmitted by the GPS

constellation of satellites. Notice that the parameters defining modernized GPS signals
are in accordance to the latest reports, see [HWO08] and the references therein.

As commented earlier, the current navigation message is a low-rate bit stream broad-

casting essential information for positioning, e.g., satellite orbit, satellite health status,
correction data, and other data. This digital signal has a bit duration of 7, = 20 ms,
thus it is transmitted with a data rate of 50 bps. This low rate is required in order to
guarantee a low Bit Error Rate (BER) due to the low SNR values typically dealt by
GPS receivers. Refer to [Ser06a] or [Par96] for a detailed description of the structure of
such navigation message. GPS modernization will incorporate new navigation message
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structures and formats. For instance, a bit error correction strategy will be considered to
decrease the BER.

2.1.2 Galileo signals

The european contribution to satellite navigation was termed Galileo. The system is
named after the scientist and astronomer Galileo Galilei (1564-1642) who, among other
achievements, discovered the first four satellites of the planet Jupiter and proposed a
procedure to calculate the longitude of a point on Earth by observing the orbits of those
satellites.

The Galileo constellation foresees 27 + 3 satellites in three MEOs, inclined 56° with
respect to the equatorial plane [Fal06]. The constellation is designed to provide a minimum
of 6 visible satellites worldwide with an elevation mask of 10°. Nowadays, two experimental
satellites were launched, named as GIOVE-A and GIOVE-B. These satellites emit Galileo-
like signals aiming at testing several aspects of the project such as environmental effects

or expected orbit perturbations. Currently, the deployment of fully operational satellites
is scheduled by 2013.

Signals to be emitted by Galileo satellites will be allocated in the L-band, as in the
GPS case. Five carrier frequencies define the five foreseen frequency bands: E1, E6, E5,

Eb5a and E5b. Again, the carrier frequencies are obtained from the fundamental frequency
fo =10.23 MHz:

f.(E1) =154-f, =1575.420 MHz
f.(B6) =125-f, =1278.750 MHz
f.(E5) =116.5-f, =1191.795 MHz
f.(Bba) =115-f, =1176.450 MHz
f.(B5b) =118 f, =1207.140 MHz , (2.16)

with allocated ITU bandwidths of 32, 40.9, 51.2, 24 and 24 MHz respectively. Notice that
E1 corresponds to L1 in the GPS nomenclature and that Eba is equivalent to the L5 band.
The E5 band is typically denoted as Eba+E5b band, as it can be seen as the union of those
two bands. In addition, Galileo satellites incorporate Search and Rescue (SAR) payload to
detect emergency signals, forward them to the SAR ground segment and provide a return

link to acknowledge the emergency beacon. Frequency bands allocated for SAR purposes
are 1544.05 — 1545.15 MHz (downlink) and 406.0 — 406.1 MHz (uplink) [Cos04].

Galileo also considers spread-spectrum signals to multiplex signals from satellites and
from different services. Basically, ranging codes can be grouped in three categories: open-
access, commercial and governmental. The first group of codes are not encrypted and
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Link || PRN code | Channel L. Code rate (1/7.) | Modulation
E1 E1A data ~ 7 days fo BOCc¢(15,2.5)
E1B data - £,/2 MBOC(6,1,1/11)
E1C pilot 10230 fo/10 MBOC(6,1,1/11)

E6 E6A data ~ 7 days fo BOCc(10,5)
E6B data - fo/2 BPSK(5)
E6C pilot 10230 £,/10 BPSK(5)

E5 Ebal data | 10230 - 10 f, BPSK(10)
E52Q pilot | 10230 - 20 £, BPSK(10)
E5bI data | 10230 - 20 £, BPSK(10)
E5bQ pilot | 10230 - 20 f, BPSK(10)

Table 2.2: Summary of Galileo codes.

publicly known; the rest are encrypted. See Table 2.2 for an overview of those signals.

One of the features of Galileo signals is that some of them are modulated by navigation

messages (referred to as data channels), while others are left unmodulated (pilot channels).

Data and pilot channels are placed in pairs in each band, except for E1A and E6A. These
signal pairs are transmitted with equal power. The aim of pilot channels is to improve

tracking performance, coping with hazardous scenarios and weak signal conditions. Briefly,
we present the main characteristics of the signals in each of the three main frequency links:

E1 link. The transmitted stream in the E1 band includes three navigation signals: E1A,
E1B and E1C. The E1A component is an encrypted and classified signal. Conversely,
the ranging sequences E1B and E1C are unencrypted and accessible to all users.
Whereas the former is a data channel, the latter is designed to modulate a pilot

signal. The PRN sequences for the primary codes of E1B and E1C were published
in [ESA06]. The modulation of each signal was designed to reduce narrowband
interferences with other existing navigation systems, e.g., GPS. The three signals
are modulated onto the carrier frequency using the hexaphase modulation defined

in [Kre06].

EG6 link. This link is analogous to the E1 link in the sense that it carries three signals:
E6A, E6B and E6C. The first component is a public regulated service data and the
other two signals are commercial ranging codes, providing a data rate of 500 bps.

Signals use the same hexaphase modulation as in the E1 link.

E5 link. Two pairs of data/pilot open-access signals are transmitted in this link. Eba
band carries an unencrypted ranging code and a nonclassified navigation message

with a bit rate of 25 bps. This low data rate is useful when dealing with weak

signals. Data channel E5bI carries both open-access and commercial signals. An



16 Chapter 2. Fundamentals of GNSS

AItBOC(15,10) modulation is used to multiplex E5a and E5b signals. The frequency
spectrum of an AItBOC modulation is similar to that of a BOC modulation, with
the particularity that each of the two sidelobes are due to different signals. In this

case, one sidelobe corresponds to the Eba set of signals and the other to the E5b
band.

2.1.3 Other Navigation Systems

The Russian satellite navigation system is referred to as GLONASS, a short for GLObal-
naya Navigasionnay Sputnikovaya Sistema. The system consists of 21+ 3 satellites with an
altitude on the order of 19100 Km and distributed in 3 orbital planes, inclined 64.8° with
respect to the equator. GLONASS transmits two types of signals: high-accuracy (military
use) and standard-accuracy (civilian use) ranging code. These signals are transmitted us-
ing 3 frequency bands (G1, G2 and G3), centered at carrier frequencies 1602.000 MHz,
1246.000 MHz and 1204.704 MHz respectively. The main difference between GLONASS
and other navigation systems is that it considers Frequency Division Multiple Access
(FDMA) to transmit signals from satellites. Notice, however, that ranging codes are still
based on PRN sequences. Thus, this system provides a low crosscorrelation between dif-
ferent signals [GLO02]. Many work has been devoted in the literature to the study and
design of GLONASS receivers, combining its capabilities to other navigation systems such
as GPS or Galileo [Fea06].

China’s first attempt to own a navigation system was termed Beidou, named after Ursa
Major constellation. Beidou is a regional system based on a constellation of geostationary
satellites. Currently, the system will be extended to provide global coverage. The modern-
ized navigation system is named Beidou-2 or Compass, indistinctly. So far, the system will
consist of 24+3 MEO, 5 geostationary and 3 geosynchronous satellites [Bei06, Fea06]. The
MEO satellites are distributed in 3 orbits, inclined 55°. Again, three frequencies are used
to transmit navigation signals. Other regional systems are the Japanese QZSS (Quasi-
Zenith Satellite System), covering East Asia and Oceania; and IRNSS (Indian Regional
Navigation Satellite System), with coverage of the Indian subcontinent.

Improving the performance of GNSS receivers is usually done considering Differen-
tial GNSS (DGNSS) techniques, which are based on differential corrections broadcasted
by reference stations. Additionally one can consider Augmentation systems to enhance
both position accuracy and integrity. Augmentation systems provide local information
(as DGNSS) with the advantage of delivering integrity information. Augmentation sys-
tems can be divided into Space-Based Augmentation Systems (SBAS) and Ground-Based
Augmentation Systems (GBAS), depending on the broadcasting network. Whereas the
former transmit the information using a constellation of satellites, the latter consider
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ground-based communications. Systems falling in the SBAS category are US Wide-Area
Augmentation System (WAAS), the European Geostationary Navigation Overlay System
(EGNOS), Japan’s contribution MSAS, the Indian GAGAN, the Satellite Navigation Aug-
mentation System (SNAS) to be deployed by China and Russian’s System for Differential
Correction and Monitoring (SDCM). GBAS examples are pseudolites or the Local-Area
Augmentation System (LAAS). These techniques are not discussed here, being out of the
scope of the dissertation.

2.2 Architecture of a GNSS Receiver

New trends following the Software Defined Radio (SDR) philosophy emerged [Mit00,
Ree02, Tut02], mainly thanks to recent advances in high-speed analog-to-digital convert-
ers (ADC), that aim at simplifying the RF-chain of the receivers by digitizing as close to
the antenna as possible. Thus, downconversion and other processes typically performed in
the analog domain can be implemented in a digital platform. Namely, Field Programmable
Gate Array (FPGA), Digital Signal Processors (DSP) or System-On-Chip (SOC) plat-
forms. The use of SDR receivers has attracted the interest of the GNSS community in
recent times, see for instance [Tsu00, Kru0l, Ako03, Kan04, FP06] and the references
therein.

In a nutshell, this section presents the basic blocks composing a SDR GNSS receiver.
As illustrated in Figure 2.2, the architecture can be divided in two main parts: the RF
front-end chain and the consecutive signal processing. The former is composed of analog
hardware (HW) devices and the latter is fully implemented in software (SW) in some
digital platform. Therefore, a SDR receiver combines specialized HW/SW architectures
to maintain cost-efficiency and high flexibilities in the designs. Section 2.2.1 provides
some insight to the HW part of the receiver, while Sections 2.2.2 and 2.2.3 discuss the
operation of the SW blocks in Figure 2.2: Digital Signal Processing and computation of
the navigation solution to obtain the PVT (i.e., position, velocity and time) solution,
respectively. For the sake of clarity, this section focuses on the single antenna receiver.
See Appendix 2.A for a brief discussion on antenna array approaches.

2.2.1 RF front-end

The RF front-end is composed of a Right Hand Circularly Polarized (RHCP) antenna,
with RHCP being the signal polarization emitted by navigation satellites. The gain for
Left Hand Circularly Polarized (LHCP) signals is typically low in antennas for GNSS
applications, since it was seen that the polarization of reflected signals changes from
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Figure 2.2: SDR GNSS receiver functional blocks.

RCHP to LHCP [Par96]. Immediately after the antenna, the signal is processed by a Low
Noise Amplifier (LNA). The LNA is a fundamental block in any front-end architecture
(not only in GNSS), since it constitutes the primary contribution to the overall noise figure
of the receiver. The objectives of this block are twofold. On the one hand, it amplifies
the received signal and, on the other hand, the LNA acts as a band-pass filter aiming
at rejecting out-of-band interferences. Typically, a first downconversion to intermediate
frequency (IF) is performed by a local oscillator (LO). LOs at the receivers are based on
quartz crystal oscillators, whose stability cannot be compared to that of atomic clocks in
the satellites. Thus, the time offset produced by internal LO perturbations is considered
as an unknown parameter to be estimated by GNSS receivers, as will be seen later in this
chapter. Lastly, the IF signal is digitized by an analog-to-digital converter (ADC) which
discretizes the signal stream into a set of samples. Afterwards, samples are quantized by
a determined number of bit levels. For GNSS purposes, one-bit quantization was seen to
be enough for synchronization and positioning purposes, but higher quantization levels
will provide improved SNR at the expenses of increasing the computational complexity
of the receiver’s implementation [Bor07].

Notice that, with the described architecture, signals entering the SW part of the
receiver are still modulated at an IF. Thus, the receiver still has to demodulate the
in-phase and quadrature components of the signal. A conventional 1&(Q demodulator will
include a second LO (before ADC) to downconvert the signal to baseband [Pro94]. This
process consists in splitting the received signal and multiplying each arm by a LO and
its 90° shifted version. This procedure provides 1&(Q components after lowpass filtering
and quantization. A number of errors may appear when considering the conventional
analog approach, mainly caused because the two arms must be closely matched for correct
demodulation, e.g., gain balance, quadrature-phase balance or DC offsets. Following the
SDR philosophy, IF sampling strategies can be considered. Thus, the 1&Q demodulator
can be fully implemented in the digital domain, overcoming some of the aforementioned
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errors [T'su01]. Notice that, a direct downconversion after the LNA might be unaffordable
in high-speed applications [Wal99]. Nevertheless, the analog components of the RF/IF
chain have to be still carefully designed.

The basics of IF sampling are here given, showing the versatility of SDR receivers. A
more general study can be consulted in [Ber08a], where FPGA implementation guidelines
were also given. Consider that a complex baseband signal s(t), having a bandwidth of B
Hz, is transmitted at RF. This signal can be regarded as the one in (2.1). We define s;(t)
and sq(t) as the in-phase and quadrature components of s(¢). After downconversion to an
IF, expressed as frp, the signal is bandpass filtered at the receiver to avoid aliasing and
to remove high-frequency components. Thus, at the output of the RF chain, the received
real signal consists of the desired IF signal corrupted by noise:

zrp(t) = a V(t)cos (2m frrt + O(t)) + n(t) , (2.17)

where a is the amplitude of the signal and n(t) represents additive noise. V'(t) and ©(t)
are the envelope and the phase of s(t) = s;(t) +jso(t), respectively. The IF signal feds an
ADC which samples the signal at a sampling rate of f; = 1/7 with n, bits of quantization.
Hence, the sampled version of the IF signal can be expressed as:

zrrn] = a Vin|cos (27 fipnTs + O[n]) + v[n] . (2.18)

The idea behind digital IF sampling is to undersample IF signal in order to obtain a
replica of the signal at baseband, without requiring an additional downconversion. This
can be accomplished by properly choosing f;r and f. In general, the following relations

Js

fir = kfsiz NkeZ|k>1

fs = 4B (2.19)

ensure that a non-overlapped alias will appear centered at f;/4. Then, one of the replicas
at +fs/4 can be downconverted to baseband using the frequency-shifting property of the
Fourier transform of a signal, i.e.,

Z(f £ f,) <& z[n]eF2rlonTs (2.20)

With f, = f,/4, it results that we have to multiply the IF signal by e™72" to shift the
spectrum to the left. Actually, this is a straightforward operation since the sequence of
cyclic values of e 2™ are {1, —j, —1,j}, where j2 = —1. This process provides the I and
Q components of the desired signal.

Figure 2.3 shows the spectra of the signals involved in the process. Sip(f) is the
spectral density of the received IF signal in equation (2.17), plotted in the Figure 2.3(a).
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Figure 2.3: Representation of the spectral densities of when f;r = 3fs/4: (a) xp(t), (b)
rrr[n] and (c) z[n] = z7pn] - e7727.

Setting frr = 3fs/4, i.e. k = 1, and sampling z;r(t) according to (2.19), we can observe
in Figure 2.3(b) that aliasing appears without overlapping in its spectrum, denoted as
Sade(f). Recall that we assumed a band-limited signal s(t). After frequency-shift, we
obtain a baseband replica of the desired signal: S(f) = S2i(f — f,/4).

Notice that the spectral density S2i¢(f) shown in Figure 2.3(b) is obtained for any
chosen k in (2.19). Thus, the selection of k is related to implementation issues, i.e., to
select a suitable frr for the application under design according to the RF front-end devices
available (costs reduction criteria). The restriction on fs to be a minimum of twice the
Nyquist frequency arises in order to avoid overlapping in S¥i(f). After lowpass filtering
S(f) one can decimate the signal up to a factor that depends on the chosen sampling
frequency.



2.2. Architecture of a GNSS Receiver 21

2.2.2 Satellite Synchronization

The Digital Signal Processor in Figure 2.2 is in charge of a number of operations!. Firstly,
if an IF sampling scheme is chosen, as described in Section 2.2.1, the frequency shift by
e~72" is performed for each channel independently to obtain the I&Q components of the
baseband signals. Nevertheless, the main purpose of the functional block is to recover
the synchronism of the received signals. In other words, time-delays, carrier-phases and
Doppler-shifts are to be estimated by the receiver. As commented earlier in this chapter,
these parameters provide information regarding the relative distance between the receiver
and the corresponding satellite, which is used in the computation of the PVT solution
(cf. Section 2.2.3).

Acquisition

Initially, the receiver has to detect which are the visible satellites and obtain a rough
estimation of the synchronization parameters of those satellites. This process is referred
to as acquisition, being typically performed by correlating the received signal and a lo-
cally generated code (corresponding to the PRN sequence of the satellite under study)
[Van91, War96]. The local replica is moved in time and frequency, covering the range of all
possible time-delay and Doppler-shifts, thus yielding to a two-dimensional search where
the maximum provides the synchronism of the given satellite. Several alternatives exist
to perform the two-dimensional search, being the most common to use an FFT-based
procedure [Tsu00] due to its simplicity. Figure 2.4 illustrates the correlation output in
the two possible cases: when there is a signal coming from the tested satellite and when
the signal does not have enough SNR to be properly detected/acquired (or not in line-of-
sight). In order to detect the satellite in Figure 2.4(a), the correlation peak has to exceed
a established threshold above the noise floor. This threshold is defined according to a de-
sired probability of false alarm [Bro00]. To further improve the quality of the acquisition
process, a number of correlation outputs can be coherently averaged to increase the SNR
of the peak by reducing the noise floor level (assuming zero-mean noise). The number of
averages is referred to as dwells in the literature, with typical dwell values on the order
of 10 for the GPS C/A acquisition (i.e., averaging 10 ms).

Depending on the amount of information the receiver has, the initialization of the
acquisition process can be classified into: cold start (the receiver does not have any prior
information), warm start (rough position estimates are available and almanac information

'Keep in mind that the operations performed by the Digital Signal Processor are implemented in
parallel (or concurrently) in order to process the signals of all visible satellites at the same time. The
number of channels is fixed in hardware receivers, but can be variable in SDR receivers.
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Figure 2.4: Normalized correlation output versus the time-delay and Doppler shift relative
error between the local code replica and the actual received signal, for a given satellite.
In (a) the correlation output when there is signal from the tested satellite and in (b) the
case of absence of signal (or weak signal conditions) are illustrated.

allows the estimation of visible satellites) or hot start (is the case of low-term signal
blockages, where there is no need to restart ephemeris acquisition again) [FP06, p. 183].

Tracking

After acquisition is performed - that is to say, detection of visible satellites and ini-
tial coarse estimation of synchronization parameters of these satellites is available -, the
receiver begins the tracking mode of operation. The objective is to keep track of synchro-
nization parameters (i.e., time-delays, Doppler-shifts and carrier-phases) of the detected
satellites and to provide accurate estimates for the computation of user’s position. Fur-
thermore, the output of this block are a set of despread bit streams, corresponding to the
navigation message of each tracked satellite.

Tracking loops can be seen as a refinement of acquisition structures. Whereas the
latter perform a search in a wide range of the parameters of interest, the former confines
its operation to the neighborhood of a previous estimate. Thus, if correctly acquired,
tracking loops are able to lock on the corresponding parameter by continuously adjusting
the local code to match the received signal. Dedicated hardware structures have been
used for tracking purposes before the advent of SDR receivers. Then, time-delay has
been typically tracked by means of a Delay Lock Loop (DLL), which performs the same
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correlation operation as done in acquisition but with lower computational complexity due
to the reduced parameter space. Similarly, Phase Lock Loops (PLL) and Frequency Lock
Loops (FLL) have been used for phase and Doppler tracking purposes, respectively. Even
in recent implementations of SDR GNSS receivers, these structures have been mimicked
and used in software-based receivers [Tsu00, Bor07] because of historical reasons.

A DLL is a practical implementation of the Maximum Likelihood Estimator (MLE)
of the time-delay of a given satellite, assuming no multipath propagation [FP06]. The
objective is then to locate the maximum of the correlation function between the received
signal and the local code. This is done by finding the zero-crossing of the correlation’s
derivative. The correlation’s output corresponding to the actual time-delay estimate is
termed the prompt (P) sample. DLL-based techniques use samples adjacent to the prompt
to find the zero-crossing point, i.e., to adjust the output to the next time-delay estimate.
These samples are referred to as early (E) and late (L), which correspond to advanced
and delayed samples with respect to the position of the prompt respectively. See Figure
2.5(a) for an illustrative representation of a correlation function and the outputs of the
correlators, i.e., E/L and P samples. A number of DLL alternatives can be found in
the literature [Irs03, Pro94|, depending on: how EPL samples are combined to form the
discriminator function, the spacing between E/L and P samples (d-spacing), number of
E/L samples considered, etc. For example, the simplest DLL that can be implemented
consists of three samples from the correlator, i.e., EPL. The d-spacing is typically set to 1
chip, for implementation simplicity. Then, the standard 1-chip wide DLL admits several
alternatives depending on the construction of the discriminator function. For instance, we
can consider the early-minus-late-power [Die92, Nee95], the early-minus-late-envelope or
the dot product power [Fel97, Bra99] options.

Basically, DLL-based techniques proposed in the literature have been designed to mit-
igate the effect of multipath propagation. Recall that GNSS receivers are only interested
in estimating delays of signals received directly from the satellites (the LOSSs), since they
are the ones that carry information of direct propagation time. Hence, reflections distort
the received signal in a way that may cause a bias in delay and carrier-phase estimations
[Van93]. Actually, an important result given in [Wei95] says that any unbiased time-delay
estimator based on a single antenna has a variance that approaches to infinity when the
relative delay between the LOSS and its multipath replica approaches to zero. Thus, mak-
ing it impossible to discriminate between LOSS and coherent multipath signals, which is
seen as an unknown bias in the estimates. Multipath with relative delays lower than the
chip period are referred to as coherent multipath. Therefore, multipath is probably the
dominant source of error in high-precision applications since it can introduce a bias up to
a hundred of meters when employing a 1-chip wide d-spacing (standard) DLLs to track
the delay, see Figure 2.5(b).
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Figure 2.5: Ideal correlation function of a GPS C/A-like signal versus the relative delay
offset with the local replica of the code. (a) Early/Late and Prompt samples are shown for
a multipath-free scenario. In (b), the biasing effect of a multipath replica on the overall
correlation function is illustrated.

Nevertheless, the versatility of the SDR paradigm allows the design and implemen-
tation of more complex and innovative approaches than those merely based on DLL
structures. Many contributions to multipath mitigation can be found in the literature.
Several DLL-based methods have been proposed such as the Narrow Correlator [Die92],
where the d-spacing is reduced thanks to technological advances to 0.1 or even 0.05 chips;
the Pulse Aperture Correlator (PAC) [Jon04]; the Strobe Correlator [Gar96] (which is
a specific implementation of the Double Delta Correlator described in [McG99], where
more E/L samples are used to refine the performance); the Earlyl /Early2 (E1/E2) track-
ing technique [Die97]; or the Multipath Elimination Technology (MET) [Tow94], also
referred to as Early /Late Slope technique. A robust statistical approach to the multipath
problem is the Multipath Estimating Delay Lock Loop (MEDLL) developed by Van Nee
[Van94, Nee95], where the Maximum Likelihood (ML) principle is applied considering the
number of reflections known. Recently, [Sah06] proposed an algorithm to implement the
MEDLL estimator with reduced computational complexity. Another recent approach is
the Vision Correlator introduced by NovAtel [Fen05], which is an implementation of a
multipath mitigation method known as the Multipath Mitigation Technique (MMT al-
gorithm), developed by Weill [Wei02]. The use of Particle Filtering (PF) for multipath
mitigation in GNSS receivers has been addressed in the literature. For example, in [Gir01]
a Rao-Blackwellized PF was proposed to integrate GPS measurements and Inertial Nav-
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igation Systems [Far99]. In [Gir07] a PF algorithm that operate at the observable level
(i.e., pseudoranges) was presented to mitigate multipath effect in the position solution,
which also considered Rao-Blackwellization of a multipath indicator process. A PF algo-
rithm in the vein of the present paper was reported in [Clo06a], where the PF operate at
the signal level in order to jointly track the LOSS and its replicas. Other PF usages can
be found in the literature in the field of multisensor data fusion and switching observation
models [Yan04, Car(07]. Aside from these approaches, joint processing of satellite signals
was seen to provide multipath mitigation capabilities in the Vector DLL (VDLL) archi-
tecture [Par96] and the Direct Position Estimation (DPE) approach, which was presented
in [Clo07b] and further investigated in Chapter 4. Pioneering the use of antenna arrays in
GNSS receivers we found the work by [SG00, SGO05], where the MLE of synchronization
parameters was explored. In addition, an hybrid beamforming technique was proposed,
accounting for both temporal and spatial references. The work was followed by [FP06]
with further improvements and discussions on practical aspects of antenna array systems.
Efficient implementations of the MLE found in [SGO05] have been recently identified, see
for instance [Ant05].

2.2.3 GNSS Positioning: observables and navigation solution

The block in Figure 2.2 denoted as navigation solution is in charge of calculating the ob-
servables, demodulate the navigation message and compute user’s position. Observables
are a set of ranges computed from time-delay or phase-difference estimates, being the
output of tracking algorithms (cf. Section 2.2.2). Since those signals are affected (biased)
by satellite and receiver clock errors, the range is typically referred to as pseudorange. The
demodulation of the navigation message provides the receiver with the orbital variables
required to determine satellites” orbits, satellite’s clock bias and other important param-
eters. This information and the computed pseudoranges are then processed to obtain an
estimation of user’s location. The time required by a receiver to provide a first position
estimate, after power up, is referred to as Time To First Fix (TTFF). This parameter
depends not only on the navigation solution operation, but on several issues of the receiver
such as the acquisition strategy. For the sake of completeness, these processes are exposed
hereinbelow.

The propagation time that a signal takes between its transmission from the i-th satel-
lite to the user is continuously estimated by tracking algorithms. This time-delay estimate
(denoted by 7;) provides an estimation of the distance between the i-th satellite and the
user, i.e., the pseudorange p; = c7;. Thus, pseudoranges provide a nonlinear relation
between user’s position (p = [z,y, z]T) and the estimated time-delay of each satellite
according to the model:

pi = 0i(p) + (06t — 0t;) + € (2.21)
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where ¢ is the speed of light, satellites are indexed by i € {1,..., M} and with the
following definitions:

e 7;is the time-delay estimate at the receiver for the LOSS emitted by the ¢-th satellite;

e 0,(p) =|| pi — p || is the geometric distance between the receiver and the i-th
satellite. p; = [:L'Z-,yi,zi]T are the coordinates of the i-th satellite in the Earth-
Centered Earth-Fixed (ECEF) coordinate system, which can be computed from the
ephemeris, transmitted in the low-rate navigation message [Par96];

e Ot is the bias of the receiver clock with respect to GPS time, which is unknown;

e Ot; is the clock bias of the i-th satellite with respect to GPS time, known from the
navigation message; and

e the term ¢; includes errors from various sources such as atmospheric delays, multi-
path biases, ephemeris mismodeling and relativistic effects among others.

The observed carrier frequency at the receiver differs from its nominal frequency due to
the Doppler effect. These frequency shifts are caused by user-satellite relative motion and
by frequency errors and drifts in user and satellite clocks. Accurate Doppler-shift estimates
yield to precise velocity calculations, useful in positioning and navigation applications with
high user dynamics. The Doppler-shift due to the relative motion of the user and the i-th
satellite is [Par96]

fo, = — (vi — V)T u; % ; (2.22)
where v = [v,, v,,v.]" and v; = [v,,, vy,,v.,]" are the velocity vectors of the user and the
i-th satellite, respectively. u; represents the unitary direction vector of the i-th satellite
relative to the user, defined as
__Pi—Ph

I pi—p

and f. represents the corresponding carrier frequency used in navigation systems. Recall
that the derivation of (2.22) was given in (2.13), where we saw that it naturally arises due
to the propagation travel time affecting the carrier frequency. Notice that we dropped the
transmission and reception times for the sake of clarity. Differentiating (2.21) with respect
to time, the pseudorange rate (p) regarding the i-th satellite is related to the Doppler shift
as

u; (2.23)

pi = (vi — V)T u; +c¢ <5t — 5t1> +€f, (2.24)

with 6t the receiver clock drift and e s noise on the phase rate measurement due to non-
modeled terms.
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To sum up, observables are computed for each tracked satellite from the outputs of the
tracking loops. In addition, code and phase measurements can be obtained at the different
frequency bands where navigation signals are emitted. This allows the receiver to combat
atmospheric biases by properly combining satellite observables, since the propagation of
signals through different atmosphere layers is also distinct. See for instance [Par96] for
details.

Once the two observables are obtained — previous estimation of each 7; and f;, —, the
receiver computes its position. Conventional receivers are equipped with a carrier-phase
loop that tracks the evolution of the carrier phase and wipes it off from the received signal
before code-phase synchronization. Carrier-phase measurements can also be taken into
account in the navigation solution, but it requires the estimation of the integer number
of carrier cycles between the satellite and the receiver. This can be done by means of the
Least-Squares AMBiguity Decorrelation Adjustment method (LAMBDA, [Teu93, Jon96]),
or more sophisticated approaches based on the observation of multiple bands, such as the
Three Carrier Ambiguity Resolution (TCAR, [For97]) or its generalization, the Multiple
Carrier Ambiguity Resolution (MCAR, [Wer03]). In the following, we will assume that a
phase locked loop is used for carrier tracking and stripping, thus mitigating the Doppler
effect, but this information will not be used in the navigation solution.

Alternatives exist to compute the position of the receiver. We focus on the single
point solution with code pseudoranges, that is to say, user’s positioning by considering
the pseudorange observable. As commented earlier, Doppler-shift estimates are used in
this approach for carrier wipe off. Other alternatives include single point positioning with
carrier phases or Doppler-shifts estimates and Precise Point Positioning (PPP). The latter
considers accurate satellital data and dual-frequency observables [Wit00], thus achieving
enhanced performances.

The single point solution with code pseudoranges used in conventional GNSS receivers
is based on the linearization of a geometrical problem [Par96, Kap96, Str97, Gre01, Bor(07].
The problem is to compute user’s position and clock offset from a set of M, estimated
pseudoranges. Thus, from equation (2.21), we form the following system of equations,

pi +cot; —e; =|| pi — p || +cit
i={1,...,M,| My > 4} , (2.25)

which results in a nonlinear and possibly overdetermined system. The condition M, > 4
is due to the dimensionality of the problem. The system is usually solved by linearizing
each g;(p) with respect to an initial position estimate (p° = [z°,y°, zO]T)

Ilfi—.’L'O o

Qz(p>zgf+ ° 5m+yl _Oy 5y+
9; 9 9;

Zi — %

0z (2.26)
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where §, = 2° —x, 0, = ¥° — v, 6. = 2° — z and ¢ = 0;(p°) =|| pi — p° ||. The Bancroft
algorithm [Ban85] provides an initial guess on the position and the clock offset of the user
receiver without any prior knowledge.

Considering (2.26), the system in (2.25) can be formulated as the following Least
Squares (LS) problem,

5 = i —Té ||? 2.2
6 = argmin {|| y ~ T5 |} . (2.27)
where
p1+ C(Stl — €1 — Q?
y = :
| Py, F eOtar, — €n, — Oy,
[ z—x° y1—y° 21—2° 1
o7 o7 o7
T = : : :
Tame—2%  Ymg—Y° Zmg—2° 1
L 9% 0% 0%
§ = [6,,8,,8.,0t]" (2.28)

and the solution R ,
6 =Ty £ (T"T) T"y (2.29)

is straightforwardly given by the Moore-Penrose pseudoinverse (TT). Therefore, we have
that p = p° + d is the classical position estimation provided by GNSS receivers.

The solution presented in (2.29) can be improved by using side information. As a
variation, if each observation (i.e., pseudoranges) is weighted proportional to the quality
of the information provided (for instance, regarding the received signal strength or the
geometry of the constellation), a weighting matrix €2,, can be constructed and we can
formulate the positioning problem in (2.25) as a Weighted LS problem:

~

0 = arg main {(y ~T8" Q, (y - T(S)} ) (2.30)
whose solution is given by:

6= (T7Q,T) T7Q,y . (2.31)

Notice that since errors among satellite pseudoranges are considered uncorrelated, the
weighting matrix turns to be diagonal. In general, the optimal €2, is not known and it has
to be constructed following a given criterion. The Gauss-Markov theorem [Pla50] shows
that, when errors are uncorrelated with each other and with the independent variables and
have equal variance, LS is the Best Linear Unbiased Estimator (BLUE). If measurements
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are uncorrelated but have different variances, WLS is BLUE if each weight is equal to the
reciprocal of the variance of the measurement. Observe that the LS solution expressed in
(2.29) can be straightforwardly obtained as a particularization of the WLS for €2, = I.

Finally, the computed PVT solution is forwarded to a User’s interface. This interface
is in charge of presenting the results in a user-friendly manner, depending on the type of
GNSS receiver and the scope of the application.
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Appendix 2.A Antenna array based receivers

Consider an N-element antenna array receiver with an arbitrary geometry, with the
case of a single antenna receiver being a particularization of it. Antenna arrays pro-
vide interesting capabilities of automatic tracking and adaptive nulling. An array of sen-
sors has the potential to improve the overall reception performance of the relied sig-
nals in an environment having several sources of interference, multipath propagation or
weak signal reception, providing spatial diversity to enhance the desired signal reception
[Wid67, Mon80, Vee88, Joh93, Tre02]. The output of an antenna array can be processed
in two different ways:

Digital Beamforming. Beamforming is the combination of radio signals from a set of
small non-directional antennas to simulate a large directional antenna. There are
two technical approaches to steerable antennas: mechanically moved dishes and
electronically steerable antenna array. In the case of dishes, the satellite tracking is
performed by means of a mechanical engine, i.e., the antenna is physically moved
to point the desired satellite. This solution implies high mechanical complexity. In
addition, this kind of antenna does not provide any capability in spatial processing,
for instance nulling the reception of other unwanted signals or adaptive processing,
and they have limited jamming interference rejection.

Digital Beamforming (DBF) with antenna arrays consists of several antennas which
outputs are controlled in phase and gain, i.e., multiplied by complex weights, in
order to achieve a gain pattern that can be manipulated electronically. Then, all the
weighted signals are combined to obtain a single output. These mentioned weights
can be stacked in a complex-valued vector w = [wy, ... ,wN_l]T, and the output
signal of the beamformer can be computed as y(t) = wx(t). Weight vector w can
be designed following several techniques. Namely, we can consider Spatial Reference
Beamforming (SRB), Temporal Reference Beamforming (TRB) and Hybrid Space-

Time Beamforming (HB).

The SRB technique is based on the assumption that the receiver has the knowledge
of the satellite ephemerides and a rough estimation of the receivers position. At this
point, the receiver calculates the Direction of Arrival (DOA) of each visible satellite
in order to feed the beamforming module with a spatial reference. With this set of
information a SRB can be implemented using the well-known Minimum Variance
Beamforming (MVB) algorithm also named Capon Beamformer [Wax96]. MVB con-
sists on minimizing the total output power while forcing the beamformer to always
point to the desired signal’s DOA. This approach implies the prior knowledge of
the steering vector. Thus, in addition to the beamformer, algorithms to estimate
the DOA of the desired signals must be considered, as well as knowledge of the an-
tenna element gain and the mutual coupling. This beamformer is array-calibration



2.A. Appendix: Antenna array based receivers 31

sensitive and array-attitude dependent, which complicates its implementation, es-
pecially in a mobile receiver because the need of inertial sensors. On the other hand,
the TRB approach selects all the correlated signals and attenuates the uncorrelated
noise and interferences, minimizing the MSE between a reference signal and the
array output. Consequently, the TRB technique does require neither a calibrated
array nor attitude determination of the receiver, but a locally generated reference
signal. The correlation between this reference signal and the received signal pro-
vides an estimation of the steering vector, thus, under ideal conditions both SRB
and TRB behave similarly. However, when there are some errors in the knowledge
of the steering vector, the MVB might attempt to cancel the desired signal because
it is seen as a source of power not coming from the expected DOA. On the contrary,
the TRB is not sensitive to these errors if the reference signal is properly generated.
It does not need the knowledge of the steering vector (which gathers the contribu-
tion of DOAs and mutual coupling). Last but not least, HB is a hybridization of
the SRB and TRB strategies, which was proposed in [SG05|. HB takes advantage
of both approaches to mitigate multipath and interference contributions.

These DBF techniques can be implemented using a number of algorithms. The
fastest approach is to directly compute the matrices involved in the computation of
weights with a signal record of K snapshots. In the literature, this is referred to as
the Sample Matrix Inversion (SMI) technique — also Direct Matrix Inversion (DMI)
— and is an open-loop architecture which does not take into account the actual
output of the array to compute future weights. SMI provides the optimal weights
(according to one of the above criteria) and has a high adaptation rate to changing
scenarios. However, its computational requirements could make its implementation
too expensive for a timevarying scenario. Hence, simpler and cheaper solutions are
necessary, at the expenses of lower adaptation rates. Adaptive Beamforming algo-
rithms provide iterative solutions to compute array weights, e.g., Least Mean Square
(LMS) and Recursive Least Square (RLS), which improves the convergence rate of
the former.

It is out of the scope of this dissertation the study of DBF techniques and algo-
rithms, being the interested reader referred to the provided references on the topic.
To conclude, Figure 2.6 represents a block diagram of an antenna array based re-
ceiver that considers DBF'. This representation is the natural extension to the single
antenna architecture shown in Figure 2.2. After DBF, the resulting stream of data is
equivalent to the output of an steerable antenna and, thus, it can be processed using
single antenna techniques by a conventional GNSS receiver. We make the definition

U = [Tiv fdz‘]T'

Statistical Array Processing. When this approach is adopted, signal fed by each ele-
ment is jointly processed. Therefore, the array is not equivalent anymore to a steer-
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Figure 2.6: Two-steps positioning approach in a SDR GNSS receiver with DBF.
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Figure 2.7: Two-steps positioning approach in a SDR GNSS receiver with an statistical
array processing approach.

able antenna, with all channels being handled by a signal processing algorithm to
extract the desired signal parameters. In particular, the ML estimation of GNSS syn-
chronization parameters was studied in [SG00] and, lately, in [Sel03, FP06, Ant08].
With this setup, a GNSS receiver processes digitized signals from each channel to
compute the synchronization parameters of visible satellites to, afterwards, compute

user’s position. This receiver’s configuration is depicted in Figure 2.7.



Bayesian Filters for Multipath
Mitigation

ANY problems involve the use of a priori! information, i.e., side information known

beforehand that can be taken into account to improve the performance of a given
estimation process. This is roughly the idea behind Bayesian statistics, introduced by T.
Bayes in his seminal work in the 18" century [Bay63], which has been reproduced in a
modernized notation in [Ber58]. Anyone who ever gambled for a soccer match can readily
understand the Bayesian approach. When someone makes a score prediction, it takes
into account many prior information: table position of the two teams, statistics of past
seasons, players injured, motivation, etc. The list is almost infinite in this particular case?.
In contrast, the classical approach does not consider all that amount of prior data. Thus,
in our example, all three possible results are treated as being equally probable (p = 1/3).

!'From Latin, literally “from the former”, meaning something presupposed. The reverse is a posteriori,
from Latin literally “from the latter”, meaning based on empirical knowledge.

2Prior information is usually the result of a subjective interpretation of reality. The soccer example is
also useful to point out that a bad elicited prior information can lead to a losing bet, e.g. if the gambler
is the supporter of one of the two teams it is evident that the subjective conditioning can play a harmful
role. In general one has to be careful with the prior data considered, being one of the main criticisms to
the Bayesian approach. Refer to [Rai72] for a discussion on priors.

33
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Apart from the use of prior information, there is yet another core difference between
non-Bayesian and Bayesian approaches to statistical estimation. Whereas the classical
approach considers that the parameter of interest is a deterministic but unknown constant,
the Bayesian approach assumes that it is a random variable (r.v. for short) whose a priori
distribution is somehow known [Kay93|. The aim of a Bayesian estimator is to estimate
the particular realization of the r.v. given prior data and measurements. The extension of
Bayesian statistics to the case of a vector of r.v. is straightforward, with the underlying
concept being the same.

The Bayesian approach has been widely used in many signal processing applications
such as target tracking, DOA estimation, time-varying channel estimation, resource alloca-
tion, image processing, speech recognition or pattern classification. Actually, the number
of applications is only limited by the imagination and the possibility /impossibility of elic-
iting useful prior distributions for a given problem. This chapter considers the Bayesian
approach to track the synchronization parameters of a GNSS satellite under multipath
environments.

The chapter is organized as follows. Section 3.1 presents the Bayesian approach in a
rigorous mathematical way and a number of optimal /suboptimal algorithms are discussed.
Section 3.2 is dedicated to a class of suboptimal algorithms (Particle Filters) that deserve
some attention due to its paramount importance along the dissertation. The rest of the
chapter is devoted to the application of those algorithms to the GNSS synchronization
problem studied in this dissertation. Section 3.3 presents the modeling of the problem and
Section 3.4 the algorithm proposed to mitigate the impact of multipath in the estimation of
synchronization parameters. Simulation results are commented in Section 3.5 and Section
3.6 concludes the chapter.

3.1 The Bayesian approach to nonlinear filtering

In general, the natural way to account for prior information is to consider a state-space
(SS) model. The SS representation provides a twofold modeling. On the one hand, state
equation illustrates the evolution of states with time. In other words, state equation math-
ematically expresses the prior information that the algorithm has regarding the state®. On
the other hand, measurement equation models the dependency of measurements with un-
known states. In this section, we introduce the general discrete state-space (DSS) model
and the Bayesian conceptual solution, which is only analytically tractable when some
assumptions hold. The section discusses both optimal and state-of-the-art suboptimal al-
gorithms to obtain the Bayesian solution. We restrict ourselves to the discrete version of

3We understand by state the evolving (vector) r.v. that drives measurements and which is the esti-
mation objective.
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the SS model since it is the one required along this dissertation. Although similar, the
continuous SS model has its own particularities that an interested reader can explore in
detail in [And79].

3.1.1 Considering Prior information: the Bayesian recursion

The DSS approach deals with the nonlinear filtering problem: recursively compute esti-
mates of states zp € R™ given measurements x;, € C™ at time index k based on all

available measurements, x1.; = {x1,...,Xy}. State equation models the evolution in time
of target states as a discrete-time stochastic model, in general
zp = fk—1<zk—17 Vk) ) (3-1>

where f;,_1(+) is a known, possibly nonlinear, function of the state z; and vy is referred
to as process noise which gathers any mismodeling effect or disturbances in the state
characterization. The relation between measurements and states is modeled by

x; = hy(zp,ny) , (3.2)

where hy(-) is a known possibly nonlinear function and ny, is referred to as measurement
noise. Both process and measurement noise are assumed with known statistics and mu-
tually independent. The initial a prior: distribution of the state vector is assumed to be
known, p(zo).

From equations (3.1) and (3.2) it is seen that the assumed DSS model describes a
Markov process of order one, as state at time instant k depends only on the previous
state. The Hidden Markov Model (HMM) is a statistical model where one Markov process,
representing the underlying system, is observed through a stochastic process. Meaning
that states are not directly observable, but measurements. The idea behind the HMM
model is graphically shown in Figure 3.1, where it appears as evident that states are
hidden and that the algorithm has access to measurements. In addition, the algorithm
must have perfect knowledge of state and measurement equations, represented in Figure
3.1 by vertical and horizontal arrows respectively.

Alternatively, the DSS can be expressed in terms of states and measurement distribu-
tions, i.e., prior and likelihood distributions respectively. This interpretation is equivalent
to that in (3.1) and (3.2), but is useful in some problems. In this case, state equation is

written as
zi ~ p(zg|zK—1) for k>1, (3.3)

where p(zg|zi—1) is referred to as the transitional prior. The relationship between mea-
surements and states is generically modeled by the probability distribution

X ~ p(Xg|zg) for k>1, (3.4)
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Figure 3.1: Graphical interpretation of the DSS model as a Markov process of order one

referred to as the likelihood function. Similarly as in the functional interpretation of the
DSS, p(zo) is assumed known.

From a Bayesian standpoint, the posterior distribution p(zg.x|x1.x) provides all neces-
sary information about the state of the system zg.;, given all measurements x;.; and the
prior p(zo.). The Bayes’ theorem allows to express the posterior in terms of the likelihood
and prior distributions:
p(X1:%|20.1)p(Zo0:1)

p(X1:x)

p(Zok|x1k) = : (3.5)

which can be written as

P(20) Hle P(x¢|2:)p(2¢|Z¢-1)
p(Xlzk)

p(zox|X1:1) = (3.6)

where we take into account that measurements are independent given zg., and consider
the Markov state evolution depicted in Figure 3.1.

We are interested in the marginal distribution p(zg|x;.;) since, as will be seen later
in this section, it allows the estimation of the realization of the target state vector zy.
p(zk|x1.1) can be obtained by marginalization of (3.6), being the dimension of the integral
growing with k. Alternatively the desired density? can be computed sequentially in two
stages: prediction and update. The basic idea is to, assuming the filtering distribution
known at k — 1, first predict the new state and then incorporate the new measurement to
obtain the distribution at k:

M p(Zk—1|X1:k—1) — ?(Zk|X1:k—1Z — ?(Zkfxl:kl —

prediction update

4In the sequel, p(zx|x1.x) is referred to as the filtering distribution. In contrast to p(zo.x|X1.x), which
is the posterior distribution.
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First we notice from (3.6) that the posterior distribution can be recursively expressed
as:
P(xXx|Zx)p(2Zk|Z1-1)

p(Xk|X1:k—1) p(ZO:k—1|X1:k—1) s (3-7)

p(ZO:k|X1:k) =

where the marginal p(z|x1.;) also satisfies the recursion [Sor88]. Given that p(zy) =
p(zo|Xo) is known, where xq is the set of no measurements, we can assume that the
required density at time k& — 1 is available, p(zg_1|x1.x—1). In the prediction stage the
predicted distribution is obtained by considering that p(zg|zx—1,X1.6-1) = p(Zk|Zk—_1),
due to the first-order Markovian SS model considered. Using the Chapman-Kolmogorov
equation (see Appendix 3.A) to remove z;_; we obtain,

P(Zk|X1:6-1) = /p(zkfzk—1)p(zk—1|X1:k—1)dzk—1 - (3.8)

Whenever a new measurement becomes available at instant k, the predicted distribu-
tion in (3.8) is updated via the Bayes’ rule (see Appendix 3.A)

p(Zk|X1;k) = p(Zk|Xk7X1:k—1)
_ p(xk|zk>Xl:k—l)p(zk|xlzk—1)
p(Xk|X1:k—1)
p(Xk’Zk)P(ZHXqu) ’ (3.9)
P(Xk\xlqu)
being the normalizing factor
p(Xk|X1k-1) = /p(Xk|Zk)p(Zk’X1;k1)de . (3.10)

Now the recursion is enclosed by equations (3.8) and (3.9), assuming some knowledge
about the state evolution and the relation between measurements and states, described by
p(zr|zr—1) and p(x|zy) respectively. This recursion form the basis of the optimal Bayesian
solution.

To sum up, the interest on characterizing the filtering distribution is that it enables one
to compute optimal state estimates with respect to any criterion [Kay93], conditional upon
measurements up to time k’. For example, the Minimum Mean Square Error (MMSE)
estimator is extensively used in engineering applications, which is the conditional mean
of the state with respect to available measurements,

Z%MSE = ]E{Zk|X1:k/} = /ka(Zk|X1:k/)de . (311)
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Another approach is to compute the Maximum a posteriori (MAP) estimate, which re-
duces to find the state value which maximizes the filtering distribution,

2" = arg max {p(z|x1x)} (3.12)
Z

among many other criterions which can be used®. In general, we would like to compute
any function g(-) of the state:

———MMSE

da) = E{g(m) ) = / () p(2 X1 ) (3.13)

conditional upon measurements up to time &’.

Depending on the value of k' we identify three different problems:

Smoothing. It is the case of &' > k, were the state zg., is estimated using future mea-
surements.

Filtering. Corresponds to the case k' = k. It is the problem considered in the sequel and
the approach that is followed along the dissertation.

Prediction. In this case, one predicts values of states with measurements of previous
instants: k' < k.

What the reader has read so far, corresponds to the conceptual solution of Bayesian
filtering (smoothing and prediction) that is endowed with the sequential equations (3.8)
and (3.9). Unfortunately, in general this recursion cannot be solved analytically. There
are few cases where the posterior distribution can be characterized by a sufficient statis-
tic. This is the case of linear/Gaussian models where the Kalman Filter (KF) yields to
the optimal solution [Kal60, And79]. Another interesting case is when the SS is discrete
and finite, where the optimal solution exists and can be found via optimal grid based
methods [Ris04]. However, there are more general SS models that can only be solved
via suboptimal algorithms. For nonlinear systems, the KF can be modified in order to
cope with this situation. A classical solution to deal with nonlinearities is to resort to
the Extended Kalman Filter (EKF) [And79] by linearizing the model at some point of
interest. Another alternative, based on the KF, is the Unscented Kalman Filter (UKF)
[Jul97, Wan00, Mer00] were the model is not linearized and, instead, a Gaussian posterior
is considered which is characterized by a set of deterministically chosen sample points.
Basically we can conclude that there are several alternatives in the literature, being some

SIntuitively, the non-Bayesian counterparts to the MMSE and MAP estimators are the Least Squares
(LS) and Maximum Likelihood (ML) estimators, respectively. In the latter, prior information is omitted
or, equivalently, a noninformative prior is used.



3.1. The Bayesian approach to nonlinear filtering 39

of them discussed in the rest of this section. First, Section 3.1.2 discusses the special cases
were optimal algorithms can be used. Then, Section 3.1.3 reviews a number of subopti-
mal algorithms. Notice that particle filtering [Ris04] falls in the category of suboptimal
algorithms. Nevertheless, it deserves a separate section in this dissertation. In order to
provide the reader with the basic concepts of particle filtering, Section 3.4 provides a brief
tutorial to this powerful tool.

3.1.2 Optimal Algorithms

There are few cases where the Bayesian filtering problem can be analytically solved. This
section presents two cases and their associated optimal algorithms: the Kalman Filter and
Grid-based methods.

Kalman Filter

Nobody can question that the Kalman Filter (KF) has been one of the most used algo-
rithms since its conception [Kal60]. Simple in its formulation, the KF provides an optimal
Bayesian solution when the SS model is linear/Gaussian in both state and measurement
equations. Thus, the model considered is

zr = Frazp 1+
X, = Hpz, +n, (314)

where F;_; and H, are known matrices that represent linear functions, referred to as
transitional and measurement matrices respectively. v, and ny are mutually independent
random variables drawn from a zero-mean white Gaussian probability density function
with known covariance matrices, X, ; and X, ; respectively.

The KF considers the posterior pdf as a Gaussian distribution, being completely char-
acterized by its mean and covariance. Then, the prediction and update steps in equations
(3.8) and (3.9) result in

P(Ze—1[X1-1) = N(Zkfﬂ 2k—1|k—17Pk—1\k—1)
p(zi|xin-1) = N (2k; Zip—1, Prjp—1)
p(zi|xik) = N (zk; Zype, Prpse) - (3.15)
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The KF provides the mean and covariance of each step in an iterative way [And79]:

Fr 1z 1k

Pipor = S+ FoaProypiFr

Zpk—1 + Kg (Xk - Hkik\k—l)

Pir = Pipo1 — KiSiKj | (3.16)

where it is defined the Kalman gain matrix as
K = Py 1 H. S, * (3.17)
and the variance of the innovation term as

Sk = E {|Xk — Hkik|k—1|2} = HkPk“g_ng =+ En,k . (318)

Intuitively, a state prediction zyx_1 is done considering state equation in (3.14), i.e., a
priori information. The state estimation at % is given by updating z;—; with a term that
depends on the innovation error x; — HyZy,—1, which corrects the state prediction. The
innovation error refers to the misadjusting between actual and predicted measurements,
being controlled by the Kalman gain matrix. Initially, this matrix takes large values, since
the main source of information are the measurements. Conversely, for increasing k, the
updated values of K decrease since the algorithm gives more importance to prior data.

As said, the KF computes the mean and covariance matrices of the densities involved
in (3.15) in a sequential way. In the case of linear/Gaussian models, the KF is the optimal
solution. However, the assumptions might be too tight. They may not hold in some appli-
cations where the dependence of measurements on states is nonlinear or noises cannot be
considered normally distributed or zero-biased. This is one of the main criticisms made
against the use of such algorithm, which is nowadays still (widely) used.

Grid-based methods

Another case where the Bayesian recursion in equations (3.1) and (3.2) can be analyt-
ically solved is when the SS is discrete and the number of states is finite. Under these
assumptions, Grid-based methods can be optimally applied [Buc71].

Consider that at time index k — 1 the finite discrete states are zi | s.t. i =1,...,n,
and that we define the conditional probability of each state given measurements up to
time k — 1 as

P {Zk—l = Zz_llxlzk—l} = wlic—l\k—l , (319)
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then the posterior pdf at £k — 1 is

P(Zp—1[X1-1) = sz—uk—ﬁs(zk—l —7h ) (3.20)
i=1

We obtain the prediction and update equations from substitution of equation (3.20)
in (3.8) and (3.9). Resulting in:

p(ze|X10-1) = Zw]im_lé(zk—z@
i=1

Uz
Whi—1 2 Z w£—1\k—1p<zvic|zgf—1)

Jj=1

plzlxin) = D wiyd(z — 7))
i=1

Wig—1P(Xk 24,

>

Wik (3.21)

nz . .
>l plxilz)
]:

Notice that grid-based methods consider that the distributions p(zx|zx—1) and p(xy|zx)
are known. However, there is not any assumption made regarding the distribution itself,
i.e., the distributions can differ from the Gaussian case in contrast to the Kalman Filter.

3.1.3 Sub-optimal Algorithms

In many cases, the assumptions considered by optimal algorithms are too restrictive and
cannot be held. For instance, the dependence of measurements on states might be non-
linear (e.g. a time-delay that parameterizes a signal) or the noise could not be considered
white and Gaussian distributed anymore. In the cases where one cannot take advantage
of optimal algorithms, there exist several suboptimal algorithms that can be considered
to deal with the goal of obtaining the filtering distribution of interest. In this section, we
review some of the most common suboptimal algorithms found in the literature.

Extended Kalman Filter

The KF can be extended to the case of nonlinear models of the form of:

z, = f1(zp—) + 1y
hy(zx) + ny (3.22)

Xk
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where f,_1(-) and hg(+) are known nonlinear functions. vy and nj, are mutually independent
random variables drawn from a zero-mean white Gaussian probability density function
with known covariance matrices X, ;, and 35, j, respectively.

The approach taken by the Extended Kalman Filter (EKF) is based on a local lin-
earization of the model, while maintaining the Gaussian constraint on the involved density
functions [Jaz70]. The EKF approximates the posterior pdf as a Gaussian in the vein of
(3.15). Thus, the posterior characterization is provided by its estimated mean and covari-
ances. Similarly as done in the KF algorithm, the mean and covariance of both predictive
and updated distributions are obtained in a sequential way [And79]:

Zik—1 = Fpo1(Ze-1jp-1)

Pur1 = Sop+Fo P FrL

Zpk—1 + Ky (Xk - hk(ik|k—1))

Pyr = Prpo1r — KiSiKj (3.23)

N
=
>
|

where

K, = P, HS;!

S, = E {‘Xk - I:Ikikvc—l

2 ~ A~
} =H, Py HY + 3, . (3.24)

The computation of this first and second order statistics is done after linearizing mea-
surement and/or state evolution functions in (3.22). Local linearizations of f_1(2x_1x—1)
and hy,(Zgx—1) are obtained by the Gradient evaluated at the point of interest as

Fk_l - [vzk,1fg—1(zk_1)}T

Zg—1=Zk—1|k—1

, (3.25)

ZK=Zk|k—1

Hk - [VzkhZ(Zk” T

respectively.

As said the EKF deals with nonlinearities in the model. However, the posterior density
is still modeled as being Gaussian. Thus, it might fail in applications where the Gaussian
assumption is not valid or the nonlinearity is severe, which causes the true posterior to
differ from Gaussianity. In addition, the EKF requires an accurate initialization of states
and covariances in order to converge to the optimal solution, since the approximations in
(3.25) are local.
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Unscented Kalman Filter

Yet another KF-based algorithm, which aims at approximating p(zx|x;.x) under general
DSS models [Jul00]. The Unscented Kalman Filter (UKF for short) is named after the Un-
scented Transform (UT), which is used in the process. The UKF characterizes the filtering
distribution as a Gaussian pdf, thus its mean and covariance suffice to describe it (as any
KF-based approach). This density parameters are obtained from a set of deterministically
chosen sample points, obtained by the UT (refer to Appendix 3.B for details).

The initial assumption made by the UKF algorithm is that the filtering distribution
at instant k — 1 is Gaussian, i.e., p(zgp_1|X1.6-1) = N(ik—1|k—17Pk—1\k—1)- Then, this
distribution is represented by a set of Nyxr sample points and their associated weights:

{2 Wi}k (3.26)

=1

obtained by the UT. These deterministically chosen points are propagated through the,
possibly nonlinear, process function

Zli\kfl =t (Zliq) (3.27)

which, along with their corresponding weights, are used to characterize the predicted
filtering distribution:

p(Ze|X1k-1) = N(kac—lapk\k—l)
NukFr

- _ i i
Zik—1 — E Wk—lzmkfl
i=1

Nukr

Piiot = Sant Y Wisy (Blpoy — 1) (Bl — 2apt)” - (3.28)
=1

Finally, the update step provides the desired filtering distribution at k:

p(zi|x1k) ~ N (Zijg, Prg)
Zpe = Zikp— + Ky, (ch — f(k|k—1)
Pir = Prior — KiSiK] (3.29)
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where
NukFr ' '
Xkl—1 = Z Wi._1hy, (ZIZUH)

i=1

K, = P.S.'

Sk = me+2n,k
NukFr A ‘ . T

P.. = Z Wi (Zlizlk—l - iklk—l) (hk (Z'ilk‘—l) o )A(’“““_l)
i=1
Nukr ' ' . T

P,., = Z Wi (hk (Zl:’|k’—l) — )A(k|k71) (hk (Z;i|k_1) - ﬁklkfl) . (3.30)
i=1

Intuitively, the sample points in (3.26) are selected by the UT to characterize the mean
and covariance of N (ik—llk—la Pk_1|k_1). The goodness of the UT is that these points are
well-behaved under nonlinear functions, meaning that the resulting sample points in (3.27)
accurately characterize N/ (ik‘ k1, Pk|k,1) avoiding an awkward linearization.

Two main differences exist between EKF and UKF: UKF does not linearize the func-
tions in the DSS model, since the approximation is on the filtering distribution itself; and,
as a consequence, the calculation of the Gradients is avoided in the UKF algorithm. In
general, the UKF was seen to improve the results of the EKF keeping a low computational
cost [Jul97, Wan00, Mer00].

Approximate Grid-based methods

Grid-based methods can also be used when the SS is whether continuous or discrete with
infinite dimensionality. The idea is to select a finite set of discrete states and evaluate
the filtering density at those points. That is to run the grid-based characterization as
presented in Section 3.1.2 with the set of finite-discrete states or use these points as the
basis of an interpolation of the distribution as proposed in [Buc74, Kit87].

Although simple to implement, this type of filters can be computationally consuming
since the number of points required increases exponentially with the dimension of the SS,
thus preventing its use in high-dimensional problems. In addition, the selection of the set
of discrete states to run the algorithm is not clear, which is probably the major criticism
one can argue to avoid this filters.
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Sequential Monte-Carlo methods

Sequential Monte-Carlo (SMC) methods are a set of simulation-based methods which
provide an appealing way to compute posterior distributions in problems that can be
modeled as a dynamical SS [Dou0la, Aru02, Che03, Ris04]. These methods are applicable
in very general settings (nonlinear /nonGaussian) and are computationally efficient due to
its high degree of parallelization. These methods appear under several names: bootstrap
filters, condensation, particle filters, Monte-Carlo filters, interacting particle approxima-
tions, survival of the fittest,... In Section 3.2 an introduction to Particle Filters (PFs) is
provided in order to fix the ideas that will be used along the dissertation.

3.2 A Brief Introduction to Particle Filters

Although we can find Sequential Monte-Carlo basic ideas back in 1950s [Hamb4], it will
not be until the end of the 90’s when they emerge as an appealing tool to deal with filtering
problems. The main reason for this abandon was the low computational burden achievable
at that time, so that when technology was mature enough to implement SMC based
methods, the scientific community returned to investigate the topic. In the recent years
SMC has played an important role in many research areas such as signal detection and
demodulation, target tracking, Bayesian inference, audio processing, financial modeling,
computer vision, robotics, control or biology [Spe02, Dju03, Pun03, Kar05, Hen08].

3.2.1 Monte-Carlo integration

The aim of PFs is to recursively estimate the posterior distribution p(zg.x|x1.x), the
marginal filtering distribution p(zx|x;.) and its associated expectations

I(gr) = E{gx(zox)|x1:6} = /gk(ZO:k)p(ZO:k|X1:k’)dZ0:k’ ; (3.31)

with gx(+) a function of the state vector and the DSS model being as defined by equations
(3.1) and (3.2) — or alternatively by (3.3) and (3.4).

PFs rely on the Monte-Carlo integration concept. Assume that we can simulate N
independent identically distributed (i.i.d.) random samples from p(zg.x|X1.%), this set is
denoted as {z{,,7 = 1, ..., Ns}. Then, the estimates of the distribution and its expectation



46 Chapter 3. Bayesian Filters for Multipath Mitigation

are
1 &
pS(ZO:k|X1:k> = E — 5<Z01k - Zgzk)
1
Is(gr) = /gk(ZO:k)Ps(Zo:k|X1:k)dZ0:k = Eggk<zgzk) : (3.32)
respectively. The estimate I,(gx) is unbiased and
P {th I(gr) = I(gk)} =1, (3.33)

according to the law of large numbers [Cri02]. Moreover, if the variance of gy, is finite, i.e.,

Usk = /(gk(zozk) - I(gk))2p(Z0:k|X1:k)dZ0:k

= /gi(z(]:k>p(z():k|X1:k)dzo:k — 12(91«) < 00, (3.34)
then by the central limit theorem the estimation error converges in distribution, that is

lim /Ny(L(gr) = I(g8)) ~ N (0,03,) - (3.35)

Ng—00

Notice also that the rate of convergence is independent of the dimension of the integrant, at
least in theory. However, it is well known that PF's suffer from the curse of dimensionality
[Dau03]. The latter convergence results are the basis of the success of PFs, compared to
other suboptimal algorithms that lack of theoretical foundations to ensure convergence to
the true posterior.

At this point one can wonder why such a method is named Monte-Carlo integration.
Actually, it is a historically nomenclature since this method was first used to numerically
solve integrals [Pap01]. For example, if we want to integrate a function f(z), we can split
it into two components: one plays the role of the probability density function ¥(z) while
the other is the function g(z). Thus, the integral is obtained as

(3.36)

2
|

Q

N

I= / f(2)dz = / 9(2)0(2)dz

where N points are generated from (z).
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3.2.2 Importance Sampling and Sequential Importance Sam-
pling

Unfortunately, usually it is not possible to sample effectively from the posterior distribu-
tion as required in (3.32), since it can be a complicated /unknown distribution. A classical
alternative is the Importance Sampling (IS) method [Gew89]. Imagine we can only gener-
ate samples from a density m(zo.x|x1.x) which is similar to p(zo.x|X1.x), which means that
both functions have the same support (in equation (3.48) and the corresponding text,
further details will be given on this issue). We refer to m(zo.x|x1.x) as the importance or
proposal density function. We can write equation (3.31) as

I(gr) = /gk<ZO:k)p(ZO:k|X1:k)dZ0:k

Zo-1|X
= /gk(ZO:k)p( Ok‘ lk) (ZO:k|X1:k)dZ0:k

T\ Zo: k|X1 k)

(
~ [ stz dtznmamixia)da (3.37)

P(Z0:k|X1:k)

provided that w(zgx) = T is upper bounded. Applying the Monte-Carlo integra-
tion method, we draw N, independent samples from the importance density function,
(i, }",, then an estimate of I(gy) is

N
1 O i i
=+ 2 or(zop)w(zny,) (3.38)
5 =1
where Bh)
, w(z4,
w(zgy) = 5 (3.39)
> W(Zy,,)
7=1

are known as the normalized importance weights, and

~/ q o p(ZO:k’X1:k>
) = W(Zézk‘xl:k)

(3.40)

are the unnormalized importance weights, which are normalized in (3.39) to obtain a
proper probability density function.

The IS method has one main drawback which makes it inadequate for recursive fil-
tering purposes: to estimate p(zo.x|X1.x) one needs to have all data x;.; available. Then,
when new data is available, one has to compute the importance weights over the entire
state trajectory. Thus, the computational complexity increases with time. Instead, we
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are interested in an algorithm that is able to include new data in the estimation process
without recomputing weights from the scratch.

In an attempt to obtain a sequential algorithm relying on IS method, the Sequential
Importance Sampling (SIS) algorithm is obtained. It is a Monte-Carlo method that forms
the basis of most SMC-based filters, being the natural recursive version of IS to approach
the optimal Bayesian solution. Recalling from the IS method, we have that the posterior
distribution is characterized by the N, generated points and its associated normalized
weights, {z},,, w, } ), as

Ns
p(ZUZk|X11k) ~ Z wlk(s(zo:k - ZlO:k)
=1

wi o DZ0kIXLk) (Zg’:’f‘x““). (3.41)
7T(Z():1g|X1:lc)

Under the assumption that we have a discrete approximation of p(zg.x_1|X1.5-1), the
aim of SIS is to obtain a set of particles that characterize the distribution at & when new
measurements are received, x. If we choose the importance function to factorize as

T(zok|X1k) = 7(2Zk|Zok—1, X1k) T (Zok—1|X1:0-1)
k
= 7(20) HW(Zt|X0:t71,X1:t) ; (3.42)
t=1
then the generation of samples can be done by augmenting the existing samples
i N
{Zo;kq ~ W(ZO:k—1|X1:k—1>}i:1 (3.43)
with the new state ’ N
{2}, ~ 7(2k|Z0:k—1,X1) } ) - (3.44)

The associated weights are computed from the following posterior recursion:

p(Xk |Z0:k7 X1:6—1)P(Zo:k |X1:k;—1)
P(Xk|X1:k—1)
P(Xk|Zo:k X1:0—1) P (21| Zosk—1, X1:0—1)P(Zo:k—1X1:6—1)
p(xk|X1:5-1)
= p(Xk’Zk)p(Zk‘Zkil)p(Zo:k—l|X1:k—1)
P(Xp|X1:-1)
o p(xk|2k) (2K Zk—1)P(Z0:sk—1 [X1:06-1) (3.45)

p(ZO:k\XLk) =

which only depends on the posterior at time £ — 1 and the likelihood and the prior at
time k. Given that p(zo) £ p(zo|xo), where xg is the set of no measurements, we can
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assume that the required density at time & — 1 is available in the sequential approach.
Substitution of (3.42) and (3.45) in (3.41) yields to the weight update equation,

i . p(xklz))p(z 2], ,)
e 5 B (2t |z X1.k)
k140:k—1> 1k

(3.46)

Now the recursion is closed and we are able to find an approximation of the filtering
distribution given by

(2 |x1.1) Zwké z, — 7)) (3.47)

being (+) the Kronecker’s delta function. ThlS approximation converges a.s. to the true
posterior® as N, — oo under weak assumptions, according to the strong law of large
numbers [Dou98, Cri02]. These assumptions hold if the support of the chosen importance
density (7) include the support of the filtering distribution (p), i.e.,

{z1, € R™*| 7(zg|x1.1) > 0}

{z), € R™| p(zg|x1.4) > 0}
and pCr (3.48)

c

¢
|

Thus, for the convergence results to hold we have to ensure that the importance
function has the same support as the true posterior, meaning that the set closure of the
set of arguments of these functions for which the value is not zero is the same.

From the new set of sample points, one can compute a number of statistics. As con-
ceptually presented in (4.78) and (3.12), the MMSE and MAP estimators can be obtained
as

N

ZyMSE - — Z:w,izﬁC (3.49)
i=1

zy"" = argmax{w} , (3.50)

Zy,

respectively. The covariance (or uncertainty region) of an estimate z; can be calculated
as

f:w 2 — ) (2 — 7). (3.51)

SNotice that a.s. convergence is equivalent to convergence w.p.l. Then, the convergence of the SIS
estimate of the filtering distribution is expressed as

P{p(zr|x1.k) — p(zr|x1.)} =1 as N; — 0.
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A pseudocode description of the SIS algorithm is shown in Algorithm 3.1. Notice
that SIS is an algorithm that approximates the posterior by sequentially updating the
measurement vector and propagating the importance weights. Basically, to sum up, it
involves the approximation of the posterior by a set of Ny random samples taken from an
importance density function, zj, ~ 7(zx|zb 1, X1:k), With associated importance weights
wt. The choice of 7(+) is a critical issue in the design of any PF, which still remains as an
open topic for statisticians [Dou00] and is usually an application-dependent issue. For a
set of generated particles, {zt, wZ}ZNL, the approximation of the filtering distribution as
given by PFs is obtained via equation (3.47).

Algorithm 3.1 Sequential Importance Sampling (SIS) algorithm

. . N

: . 7 7 s
Require: {zk_l, wk_l}i:1 and xj,

. ) g s
Ensure: {z}, w;},",
: fort=1to Ny do

Generate zj, ~ m(zg|z}_;, X1k)
p(xk|z))p(z} |2} _,)
(2|20, 1 X1:k)

S i
Calculate w;, = wj,_,

: for i =1to N, do

Normalize weights: wj, = S
j=1 Wy

1
2
3
4: end for
5
6
7

. end for

3.2.3 Resampling

Everything has its payback, and PFs are not the exception. The main drawback of the
SIS algorithm is that it suffers from the so-called degeneracy phenomenon, which states
that the variance of importance weights can only increase over time [Dou00]. In other
words, after a certain number of sequential steps, one finds that the value of one of the
normalized weights tends to 1 while the rest tend to 0. The problem then is to keep
particle trajectories with significant weights and remove those which hardly contribute to
the estimation of the filtering distribution. The solution was proposed in [Rub88] and is
known as resampling: discarding samples with low importance weights and keep/multiply
those with high importance weights. Resampling was proposed for SIS in a number of
works [Gor93, Liu95, Ber97].

A measure of the degeneracy is the effective sample size N.sf, introduced in [Kon94],
which is estimated as )

Nejf = ———= (3.52)
Zf\;sl (wlzc)2
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where 1 < N.;; < N, and values close to the lower bound indicate high degeneracy. The
common approach is to specify a threshold such that, when the effective sample size is
below, indicates the algorithm to apply resampling (see Algorithm 3.5). Although highly
dependent on the chosen threshold, this approach is the most used in the literature. In
[Ber99] a suggested threshold is Ny, = %Ns.

Algorithm 3.2 Generic Particle Filtering with Resampling

; Y
. . i 7 s
Require: {z ,, wk_l}izl and x,

Ensure: {z}, wi}"

{7k wih = SISz w1 x)

2: CalAculate Neff

3: if Negp < Ny, then

4:  Resample Particles: [{zz, wfﬁ}fvzl] — Resample({z, wi}",)
5: end if

The process of resampling particles can be implemented in several ways. Common
schemes include multinomial resampling [Gor93], residual resampling [Liu98] and strat-
ified /systematic resampling [Kit96, Cri01]. It is out of the scope of the dissertation the
study of novel resampling strategies, in the sequel a multinomial resampling is considered
which is one of the easiest to implement.

Although it solves the degeneracy phenomenon, resampling can result in a sample
impoverishment, that is particles with high weights are selected many times. Notice that
this loss of diversity is severe when process noise is small [Gor93, Hig95]. Thus, convergence
results of the algorithm should be re-established [Ber97]. Another undesired aspect of
resampling is that it constitutes the bottle neck in any parallel implementation of PFs
[Bol05], since all particles must be combined in this process.

Nevertheless, resampling is a key step in the design of a PF since degeneracy jeopar-
dizes posterior estimates in a way that cannot be tolerated. Many work has been directed
in the design of efficient resampling strategies and architectures [M07a, Bol04].

3.2.4 Selection of the importance density

One of the key points of a PF algorithm is the choice of a good importance density function,
7(Zk|Zh. 1, X1.£). Actually, a bad choice can lead the algorithm to a poor characterization
in (3.47) and, thus, to a bad performance. Since good or bad can be rather fuzzy concepts
[Nie87, First Treatise], we proceed to discuss some alternatives that one has in the design
of such importance distribution.
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The optimal choice

Since the aim of a PF is to characterize the filtering distribution, it is quite intuitive to
say that this distribution is the best choice for particle generation. Indeed, the optimal
distribution is the target distribution that we wish to estimate:

T (2k |2 1> X1:0) = P(Zk] 21, X1k) (3.53)

which is optimal in the sense that it minimizes the variance of importance weights con-
ditional upon the trajectory and the observations [Dou00]. The use of such an optimal
importance density reduces the degeneracy effect discussed previously. In this case, the
calculation of weights reduces to:

wy, o wi_yp(Xelzk ) (3.54)

which does not depend on the current particle value z}, facilitating parallelization of the
PF [Bol04].

Thus, in order to use the optimal importance density, one has to (a) be able to draw
samples from p(zy|z{, 1, %1.4) and to (b) evaluate

poclcs) = [ plxelae otz da (3.55)

Few special cases can be found that allow the generation/evaluation from these distribu-
tions. One case is when the states z; are finite, as in [Dou01b]. Another case is when the
DSS model is Gaussian with linear measurements [Dou00, Ris04]. Unfortunately, these
two requirements may not hold in general and one has to resort to suboptimal choices.

Suboptimal choices

Since the only condition imposed on 7(z|z{, |, X1.%) is to fulfill (3.42), the amount of
possible suboptimal importance densities seems huge”. Indeed, a general methodology for
selecting an importance density is still missing, being several alternatives proposed in the
literature. Actually, in most of the cases this choice highly depends on the application
itself and has to be carefully designed.

The simplest approach, and the most popular, is to consider the transitional prior as
the importance function. In this case, weights are proportional to the likelihood function:

T(zk|2h_ 1, x1) = p(zk|Z) ;)

wi, oo wh_p(xk|z) . (3.56)

"Keeping in mind that the importance density has to share the same support as the target distribution,
in order to claim convergence [Cri02].
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The popularity of the transitional prior choice is due to its simple implementation
and the lack of computationally intensive calculations. Note that in the Gaussian case,
generation in (3.56) reduces to sample from a Gaussian distribution. Nevertheless, this
choice was shown to be inefficient as it requires a large number of samples to effectively
characterize the posterior distribution [Ris04]. The main reason is that, since measure-
ments are not taken into consideration when generating particles, the algorithm is likely
to exhibit a high degeneracy.

More sophisticated, though also suboptimal, alternatives aim at approximating the
optimal importance density in (3.53). Although they require a higher computational bur-
den, their performance is typically better than the one provided by the transitional prior.
Some of the strategies reported in the literature include local model linearization [Dou00],
Gaussian approximations [Kot03a] or the use of the unscented transform [Mer00]. In Sec-
tion 3.4 of this dissertation, we consider another importance density function. The method
was originally proposed in [Cev07] for an acoustic multitarget tracking problem. Basically
it is based on a Gaussian approximation of the optimal distribution.

3.2.5 A plethora of possibilities

There are many PF algorithms in the literature, mostly based in the presented SIS concept.
This section presents some of the most common PFs, which basically differ in the choice
of the importance density and the resampling step. However, notice that many other
alternatives exist and, eventually, new proposals may appear in the literature.

SIR or Bootstrap Filter

The Bootstrap Filter (BF) was proposed in [Gor93], though it can also be found in the
literature under the name of Sampling Importance Resampling algorithm (SIR). The main
characteristic of this approach is that it assumes that the importance density is the tran-
sitional prior and that resampling is performed at every recursive step. Under these as-
sumptions, the i-th particle is generated and weighted as

ZZ ~ W(Zklzé;kflv Xl:k) = p(Zk’Z271>

wi o p(xk|z2), (3.57)

where w! does not depend on the previous weight, since {wifl =1 /Ns}jvzsl.

Similarly as argued in Section 3.2.4 when discussing the use of the transitional prior
in the SIS algorithm, the BF is sensitive to outliers since the SS is explored without
any knowledge of the observations by the importance density. Also, it results in a rapid
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loss of diversity as resampling is performed at every instant. Nonetheless, a considerable
advantage is that the importance density is easily sampled from the prior and importance
weights can be computed straightforwardly from the likelihood function.

Algorithm 3.3 Sampling Importance Resampling (SIR) algorithm

Require: {zzfl}jv; and x;,
Ensure: {z.})"

1: for i =1 to N, do

2. Generate zi ~ p(z|zi_,)
3. Calculate @} = p(xx|z%)
4: end for

5: for i =1 to N, do '
6:  Normalize: wi = %

>l Wy,

7: end for

8: Resample Particles: [{z}c}f\fl , —} = Resample({z,, wz}fil)

Auxiliary SIR Filter

The Auxiliary SIR (ASIR) filter is an alternative to the SIR filter which aims at improving
its efficiency by reducing the variance of the importance weights. It was proposed in
[Pit99] under the name Auxiliary Particle Filter (APF). The basic idea is to, at the k —1
iteration of the algorithm, use next measurements x;. Hence, the algorithm can increase
the influence of particles with higher predictive likelihood by resampling them before
propagating the particle cloud. An interested reader can refer to [Pit01, God01, Ris04].

Regularized Particle Filter

As discussed in Section 3.2.3, the resampling step reduces degeneracy but may lead to
a loss of diversity among particles. This effect can cause the particles to collapse to a
single point. The Regularized Particle Filter (RPF) proposed in [Mus00] is an algorithm
designed to overcome this effect. The difference with the SIR algorithm is that resampling
is performed by sampling from a Kernel-based continuous distribution, in contrast to SIR
where the sampling is from the discrete approximation in (3.47).
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Local Linearization Particle Filter

One can rely on other suboptimal algorithms to generate an importance density close to
the optimal. In that vein, the work in [Dou00] proposed to implement an EKF for each
particle such that the resulting Gaussian posterior characterization is used as the particle
generating function. Similarly, a UKF algorithm can keep track of each importance density
function as reported in [Mer(00], which was seen to provide better results than the EKF
solution. Not surprisingly, the performance of a Local Linearization Particle Filter (LLPF)
is better than the one provided by solely using a SIR filter, since the particle generation
method of the latter is very poor. In addition, the increase in the computational burden
of LLPF is typically justified due to the reduction in the required number of samples.

Gaussian Particle Filter

In contrast to the SIR filter (and its modifications), the Gaussian Particle Filter (GPF)
[Kot01] approximates the filtering and predictive densities as Gaussians. Hence it suffices
to propagate recursively in time the mean and covariance of the densities to update the
new filtering distribution estimate. GPF's are a class of Gaussian filters where Monte-Carlo
methods are used to compute the mean and the covariance. The propagation of this two
parameters simplify the parallelization of such methods when implemented (recall that
SIR-like filters require the propagation of the Ny particles) [Kot03a, Kot03b]. Although
the Gaussian assumption may seem to tight, the appealing implementation properties of
GPF made this algorithm an interesting alternative.

Multiple Model Particle Filter

The use of Multiple Model Particle Filter (MMPF) [McG00, Mus00] arises in order to
deal with dynamic systems having more than one mode of operation. Also, MMPFs are of
interest when the DSS model consists of both continuous and discrete parts as discussed in
[Ris04]. The us of this filters can be found in many applications including target tracking,
multisensor data fusion [Yan04] and switching observation models [Car07].

Cost Reference Particle Filter

One of the main criticisms to PF's is the requirement of a somewhat accurate knowledge of
the dynamics of the system and the underlying distributions of the DSS model. Indeed, an
analytical result of the robustness [Hub81, Mar(06] of such methods to model inaccuracies
is still missing, though some studies were carried in [Clo09a].
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To circumvent these limitations, a new class of PF was proposed in [M(M] which does
not require the distributions of the DSS model to be a priori known. This class of PF's are
referred to as Cost Reference Particle Filters (CRPFs). In contrast to standard PF ap-
proaches, the CRPF evaluates the quality of each particle trajectory using a cost function
that does not necessarily use statistical information. The claim is that CRPFs are more
robust and flexible than standard PFs. Actually, CRPFs were seen to be a generalization
of standard PFs. Thus, providing an even more powerful approach to Bayesian filtering.
The capabilities of CRPFs were tested in target tracking problems [M(j7b, Li08] showing
important improvements with respect to classical particle filtering algorithms. Marginal-
ization of linear states was proposed in [Lu08] using a Recursive Least Squares (RLS)
algorithm, in the vein of Rao-Blackwellized Particle Filters [Sch05] which are discussed in
Section 3.2.6.

3.2.6 Variance Reduction by Rao-Blackwellization

The Rao-Blackwellization procedure is used in filtering as a methodology to reduce the
variance of estimates. When applied to particle filtering, the resulting filter is referred to as
Rao-Blackwellized Particle Filter (RBPF) [Che00, Dou0la] or Marginalized Particle Filter
(MPF) [Kar05, Sch05], equivalently. In short, Rao-Blackwellization consists in taking
advantage of linear/Gaussian substructures of the DSS model, which are optimally dealt
by a KF. Then, a RBPF is a combination of a PF - that tackles nonlinear states, z}' - and
a KF - to deal with the linear states, z),. The goodness of RBPF is that it alleviates the
computational demand of PFs for high dimensional state-spaces, where a large number
of particles are required.

In general, the RBPF is used when the general DSS model in (3.1) and (3.2) can be
reorganized as

z, = f_(zp )+ Fi(zh )z, +2,_, 1y
zi = f,(zp )+ Fp(zh 1)z + V)
e = W)+ HL)s +n (359)

where the state-space is clearly partitioned into two sub-spaces, corresponding to its linear
and non-linear parts,

25, = [ Zl’ﬁ ] , (3.59)

k

being linear states Gaussian distributed, whereas nonlinear states can be drawn from any
distribution a priori known.
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The model in (3.58) assumes that state and measurement noises are white and Gaus-
sian distributed, i.e.,

|
. 142 . Ez',k Ezl,nl’k
Vi — |: I/;;l :| N(O,Ezyk) s Ez,k: = ( Egﬂﬂjk Eznl’k ) (360)
and

Under model (3.58), the recursive estimation of the filtering distribution p(zg|x1.x)
can be done by a PF. Nevertheless, one can take advantage of the conditional linear
substructure that is not present in general DSS models as in (3.1) and (3.2). By the chain
rule of probability, linear states can be analytically marginalized out from p(z|x1.x):

P2, 70l X1) = DUz 70, X0 (Z0) x10) (3.62)
and, taking into consideration that z, generates a linear Gaussian state-space,
p(z, |z, x1.1) can be updated analytically via a KF conditional on z}' and only the non-
linear part of z; needs to be estimated via a PF. Thus, a PF is run to characterize
p(z),.|x1.) and, for the i-th particle, a KF is executed to obtain p(z}|z0:, x1.x). Never-
theless, as described in (3.58), both linear and nonlinear states are interdependent. The
latter causes that the RBPF follows a certain sequence of operations®, which for the i-th

particle are:

KF prediction. The distribution of interest in this step is:
Iy, nli I, gl i
Pz 201 X1-1) = N <Zk7 Zilk—1 klk—1> (3.63)
where the mean and covariance are obtained similarly as in (3.15).

Run PF. For the i-th particle, the PF is in charge of generating this particle

zp" ~ (2] 200 1) X) (3.64)

and computing its importance weight:

p(xr|z00 X10-1)p (2]

m(zy " |z 1. X1k)

Zzljl)

(3.65)

wy, X Wy

8The reader is referred to [Sch05] for a complete study of the possible configurations of the RBPF and
the involved expressions.
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Notice that, due to the dependency between linear and nonlinear states, the likeli-
hood distribution [Che00)]

POl X 1) = N (B (2R) + HL (232, .
I/ nli I nli T
S+ Hy (2 Py, (H () ) (3.66)

and the prior distribution
P17 = N (6L ) + Fil ()2 o,
T
Ez”'k+Fk 1(Z1:| 11) k\k <Fk 1(22;' 11)) ) , (3.67)

in (3.65) are analytically obtained, as derived in [Sch03]. Thus, it is remarkable to
point out that the RBPF is an interleaved process in which information from linear
and nonlinear states is jointly used [Ghi05].

KF update. The updated filtering distribution of linear states is

Pz xi) = N (2 2], Py (3.68)

and the parameters are obtained again as in (3.15), conditioned upon nonlinear
states.

After the three recursive steps of the RBPF are done for each particle, i = {1, . N st
a characterization of the filtering distribution is available, the MMSE estimator of z} is
as stated in (3.49) and the MMSE estimator of the linear states can be expressed as

7}, = Z Wiz (3.69)

Intuitively, there are two reason to explain the improved performance of a RBPF with
respect to a standard PF for the same number of particles:

e The dimension of p(z}'|x;.) is smaller than the dimension of p(z|xi.), meaning
that the same number of particles are swarmed in a lower dimensional state-space
in the RBPF case.

e An optimal algorithm is used to deal with linear/Gaussian states, the KF. As dis-
cussed in section 3.1.2, the KF cannot be outperformed in such scenarios.



3.3. System Model 59

The concept used in the RBPF is a special case of a more general result. In [Rao45]
and [Bla47] it was shown that the performance of an estimator can be improved by using
information about conditional probabilities. The Rao-Blackwell theorem [Leh83] states
the general idea,

Theorem 3.1 (Rao-Blackwell theorem). Let § = g(x) represent any unbiased estimator
for 0, and T(x) be a sufficient statistic for 0 under p(x,0). Then the conditional ex-
pectation E{g(x)|T(x)} is independent of 0, and it is the uniformly minimum variance
unbiased estimator.

Proof. See [Pap01]. O

An important corollary of the Rao-Blackwell theorem is the basis for the widespread
use of RBPFs:

Corollary 3.1. Let 0 be an unbiased estimator and let 0FB be the Rao-Blackwell estima-

B L R e [ R

The result claimed in Corollary 3.1 is important since it proves that the use of a
Rao-Blackwellized estimator effectively reduces the variance of the estimation error.

3.3 System Model

This section presents the DSS model considered for the multipath mitigation problem
that is discussed in this chapter. First the model for the set of measurements is exposed
and a SS representation is then proposed. Many alternatives can be envisaged for the
latter, being an open issue. These modifications can be aimed at better describing the
reality of the evolution of delays [Len08] and, thus, improving the overall performance of
the algorithm. However, the scope of the dissertation is to present a multipath mitigation
algorithm and the presented SS model suffices to prove the concept.

3.3.1 Measurements

Let us consider a detailed signal model that accounts for both the LOSS and the multipath
signals. The received complex baseband DS—SS signal of a given satellite affected by M —1
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multipath signals is modeled as
= Z U (1)q (t — T (1)) €79 ® 4 n(t) (3.71)

where «,,(t), 7,(t) and ¢,,(t) stand for the amplitude, delay and phase of the m—th
received signal, respectively. These parameters are time—varying processes and indeed
they are explicitly expressed with their time dependence. The term n(t) is a zero-mean
Additive Gaussian Noise (AGN) process with variance o2. Notice that the subscript m = 0
stands for the LOSS parameters in the model.

The DS-SS signal of the tracked satellite is denoted by ¢(t) = qr(t) + jgq(t), being
composed of the sequence of data symbols and the PRN sequence (cf. Section 2.1). Since
both the PRN sequence and the chip-shaping pulse are known at the receiver, it is reason-
able to consider ¢(t) known up to 180° phase variations due to data—bit changes. However,
d(l) is not likely to vary within the observation time, which is typically much shorter than
the bit period [FP06].

The model in (3.71) is obtained from equation (2.5), considering the contribution of
only one satellite. The contribution of the rest of satellites can be neglected considering
that GNSS systems use pseudorandom noise (PRN) codes with a high processing gain
(~ 43 dB in case of GPS L1 C/A signal). Thus, the influence of other satellites can be
considered as Gaussian noise and included in the thermal noise term since those signals
are below the noise floor [Vit95]. We consider the tracking of each satellite separately by
an independent channel at the receiver, in a parallel implementation approach.

Notice that Doppler-shifts are also taken into consideration in the model, being in-
cluded in the phase parameter:

¢m(t) = 27de7n (t)t + ¢m,0 5 (372>

where fy,, (t) and ¢,, ¢ are the time—varying Doppler-shift and carrier phase of the m-th sig-
nal, respectively. Refer to Section 2.1 for further details on (3.72). The approach followed
here reduces the number of unknown parameters, since phases and Doppler deviations are
jointly estimated, as will be seen later this chapter.

Defining
alt) = [ao(t),...,ay(t)]" € RM!
o(t) = [po(t), ... (1) € RM!
T(t) = [r(t),..., mua ()] € RMX!
qt;T(t) = [q(t—To(t)),-~~,q(t—TMf1(t))]T
[

qo(t; 70(t)), - - - aQM—l(tQTM—l(t))]T e cM!
®(t) = diag{e’®M} e CM*M, (3.73)
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k—1 k kE+1

r

Figure 3.2: Data is processed in blocks of non-overlapped K samples, recorded at a suitable
sampling rate f; = 1/T. Index k corresponds to the processing of the corresponding set
of K samples.

we can obtain the compact form of (3.71) as

z(t) = q’ (t;7(1))()a(t) + n(t). (3.74)

Considering the Software Defined Radio (SDR) philosophy [Mit00, Tsu00, Ree02,
Ako03, FP06, Bor(07], a GNSS receiver records K snapshots with a sampling period of Ty
(see Figure 3.2). Thus, if we use k € N to denote the k-th record of K samples, the model
in (3.74) is extended to

X = Qf(Tk)ak + ng (375)

where x;, = 2(kKT,), 7. = T(kKT,), ®, = ®(kKT,) , oy, = a(kKT,), a; = @, and
Qu(te) = [a((k — O)KTs + Ty; 1), ..., (kK Ts; 1) (3.76)

is known as the basis-function matrix and contains K samples from the delayed nar-
rowband envelopes of each M signals, i.e., Qu(7) € CM*X. The vectors containing the
composite signal and the zero-mean AGN are expressed as x;,n, € CX*! respectively.
The covariance matrix of the noise is left arbitrary, 3, .

Notice that the unknown parameters (o, T and ¢ = ¢(kKT,)) are time-varying
processes, as explicitly expressed by subscript k. However, we assume that they are piece-
wise constant during the observation interval of K samples. In addition, we take into
account that amplitudes and phases can be obtained as the modulus and phase of com-
plex amplitudes a;, respectively. Then, the considered real state vector is

R{ax}
zi, 2 | J{a,} | e R3Mx1, (3.77)
Tk

Accordingly, measurement equation in (3.75) is parameterized by the elements of zy

X = Qg<Tk)T Agp + Ng (378)
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where

a,y = {?{{;‘:}} } € R2Mx1 (3.79)

is the vector that stacks real and imaginary parts of complex amplitudes and we define
T = (I | jIy) € CM, (3.80)

being I, the M-dimensional identity matrix.

3.3.2 State-Space evolution

Following [I1t90], states time evolution within intervals is modeled by a Markovian prior
which is a first-order autoregressive model:

Zi ~ D (zk|zk,1) = N (szkflu Ez,k:) (381)
where we have defined
Fk = diag{Fas,ka FT,/C}
Fas,k é diag{Fa%, FaiJg}
Ez,k: = diag{zas,k’a 27‘,]{3}
Yor = diag{Eer s, Zein} (3.82)

being Fyr 1, Fyi , and F., the respective transitional matrices of each state, defined as

[I,QS ce 0
Fa’“,k — 6]RMXM
0 ce ua;ﬂw_l
[Laé N 0
Fai7k — . ) e RMXM
0 Ma’}‘\/lfl
Moy - 0
Forn = Do e RM*M | (3.83)
0 ... Horpg_q

where each 1) controls the dynamics of the corresponding parameter. 3,- ., 3 1, and 3.
denote the covariance matrices of the evolving states. The above state evolution model
has been used in related publications due to its simplicity, see [I1t90, Ghi05, Spa07, Kra08]
for example. The values of the transitional matrices depend on the considered scenario
and the dynamics of the receiver, and must be tuned accordingly.
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3.4 A Particle Filtering algorithm for Multipath Mit-
igation

One of the core contributions of this dissertation is the proposal of a multipath mitiga-
tion tracking algorithm based on the particle filtering methodology. The algorithm tracks
both LOSS and multipath time-evolving parameters, providing a Bayesian solution to the
problem. Two PFs are tested: the SIR filter and the Laplace’s PF. Being the latter more
appealing for real-time tracking applications than the former, which actually is more likely
to be thought as a recursive point-wise approximation of the ML estimator [Gil01, Cho04].

3.4.1 Rao-Blackwellization procedure

Observing the DSS model in (3.78) and (3.81), we see that the SS can be partitioned into
two sub-spaces corresponding to its linear and non-linear parts. Thus, we can consider
the Rao-Blackwellization procedure discussed in Section 3.2.6 to reduce the variance of
importance weights. Complex amplitudes, i.e., a, j, can be considered nuisance parameters
optimally handled by a KF and time-delays are dealt by the PF. Our focus is then on the
characterization of the posterior pdf of non-linear states p(7o.x|X1.x)-

According to the SIS concept, the i-th particle in a PF is generated and weighted
respectively as
T~ (Tl Tt X0 (3.84)

a ol PO X ()
Rl )

, (3.85)

where w0}, is the i-th unnormalized importance weight. The selection of a proper importance
density function is an important issue, which has to consider both particle efficiency and
a feasible implementation. This is discussed in Section 3.4.2.

The algorithm requires the evaluation of the likelihood function p(xi|7i,,X1.x_1) in
order to compute the i-th weight in (3.85). That distribution can be expressed as

p(Xk|TS;k,X1:k—1)=/ P(xk| T s )P (s k| Toe_ 15 X1k—1)dag (3.86)
As k

where, from equation (3.78), we now that
p(xilTe, ask) = N (QE ()T agy, Tuk) (3.87)

and . ' '
Pkl o1, X1k-1) = N (a;,k|k—17 P2|k—1) (3.88)
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can be sequentially computed using a KF for each generated particle. Notice that, due
to the Rao-Blackwellization procedure, the likelihood distribution is a function of the
predictive posterior distribution of linear states. Therefore, the integral in (3.86) can be
solved as

(k| o X-1) = N QL (T0)T a4 gty Be + Qi (T0) Pl Qi) (3.89)
being the equations of the prediction step of the KF:
éi,k\kfl = Fas,kfléi,kfukq
2\k—1 = Eas,lc + Fas,k—1P2—1|k—1FZs,k—1' (3-90)

After generating each particle, the corresponding KF is conditionally updated follow-
ing:

é;,kuf = éi,lﬂk—l + K, (xk — Gi;éi,mk—ﬁ
i i i i pi iT iT
we = Preor — Ky (Gk We—1Gr + En,k> K
i i iT ( ~ipi il !
K, = PGy (Gk He-1GL + En,k) ; (3.91)

where for the sake of clarity we have defined Gi £ QI (7})T.

3.4.2 Selection of the importance density

One of the key points of a PF algorithm is the choice of a good importance density func-
tion, 7(-). This is to propose an importance density function close to the optimal, which
is the posterior distribution, in the sense that it minimizes the variance of importance
weights. However, it is only possible to draw samples from this distribution in limited
cases and other alternatives must be explored [Ris04, Dou00]. The simplest approach is
to consider the transitional prior as the importance function, in which case the weights
are proportional to the likelihood distribution. Nevertheless this option was shown to be
inefficient as it requires a large number of samples to effectively characterize the poste-
rior [Clo06a, Clo06e, Kra08]. Many importance function alternatives can be found in the
literature, as discussed in Section 3.2.4.

In this section we consider two alternatives for the selection of the importance density,
applied to the multipath mitigation problem. First, we study the use of the transitional
prior, yielding to the so-called Bootstrap Filter. Secondly, an approximation of the optimal
importance density is presented, which is based on a Laplacian approximation of the
likelihood distribution.
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Transitional prior distribution

Adopting the transitional prior as the importance density is an extensively used solution,
due to its simple implementation. As pointed out in Section 3.2.4, the design of a suit-
able importance density is usually application dependent. In our case, the design of such
distribution considers an importance function for the LOSS delay generation and another
function for the parameters of multipath replicas.

On the one hand, according to the SS model in (3.81), the generation of LOSS delay
particles can be expressed as

il ~ AT (sl [ ) 3.2
where
Ny
3 7 i A i ~ \H
Yok = Z wy, (1 — 7) (71 — 7% (3.93)
i=1

provides an estimation of the covariance of the estimated time-delay, 7.

On the other hand, we can use side information in the generation of multipath delays.
Due to physical reasons we can consider that

T (t) > To(t) Vme{l,...,M—1}, (3.94)

in outdoor propagation channels [Jah96, Ste05, Irs05]. Taking (3.94) into account, in
[Clo0O6e] the proposed importance density for the generation of multipath delays particles
was a truncated Gaussian — which was also adopted in [Spa07]. The truncated Gaussian is
a multivariate Gaussian distribution with mean the previous state estimation propagated
through the state evolving equation and covariance calculated as in (3.93) at k — 1. In
addition, the i-th multipath delay particle is forced to be larger than the i-th LOSS delay
particle. Hence, multipath’s importance density can be expressed as

i ~ s + | (il = o) 0 (0. [20] )]0 99

where m € {1,..., M — 1}. Figure 3.3 shows a representation of (3.95).

This choice of importance density yields to the use of the BF — a.k.a. SIR filter —,
when resampling is performed each recursive step (cf. Section 3.2.5). In that case, weight
update equation is given by w! o< p(xi|7%).

The BF provides an easy implementation of a PF algorithm. However, it is not efficient
in terms of particle usage, i.e., a large number of samples are required in order to obtain
a certain acceptable precision in a number of applications. This was shown in [Clo06e,
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Figure 3.3: Importance density for the m-th replica. Being o2 = [277;@,1} and m €
{1,..., M — 1}. This importance density ensures (3.94).

)

Clo06a] and the preceding work [Kra08]. The lack of efficiency is mainly caused by the
fact that in the particle generation process, no use is done of the information provided
by current measurements. Thus, other approaches shall be explored to make PF a more
implementable tool in real-time signal processing platforms. An efficient alternative is
presented hereinafter under the name of Laplace’s Particle Filter.

Optimal distribution approximation by Laplace’s method

In order to improve particle efficiency, we aim at using an importance density function
which is close to the optimal p(7%|To.x—1,X1.%), Or at least closer than the transitional prior
is. Since it is not possible to sample from such distribution, we consider the following
approximation®

7T<Tk‘7'0:k717 Xl:k) ~ p(Tk’kab Xk)

o< p(xXp| i) p(Th|TE-1) (3.96)

9Note that equation (3.89) provides an expression for p(7y|7o.x_1,X1.%) which is conditional on non-
linear states that cannot be used in the generation of particles since 73 is not already known.
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which splits the posterior as being proportional to the likelihood and the prior distri-
butions. The idea behind is that if both p(xx|7;) and p(7i|T,—1) are unimodal normally
distributed, then (7% |7x_1, X)) is also normal and closed form expressions for its mean
and covariance matrix can be readily obtained. Whereas the prior attains these condi-
tions, the likelihood has to be approximated. Then, a unimodal Gaussian approximation
of p(xx|T;) is obtained via a Laplacian approximation [Aze94| (refer to Appendix 3.C for
details). Laplace’s method yields analytical Gaussian approximations of densities from a
Taylor series expansion at the mode of the density. In our case, the inverse Hessian of the
log-likelihood is used as a covariance approximation [Gel04].

Thus, we aim at obtaining the parameters that characterize the likelihood as a Gaus-
sian distribution: p(xy|7m) ~ N(7x, Xk). These two parameters are the mode 7 of the
likelihood and the inverse Hessian evaluated at the mode ﬁk, that acts as a covariance
matrix estimator. Then, the Gaussian approximation reduces to find the mode of the
log-likelihood by maximizing it with respect to 7.

Manipulating equation (3.75), under the Gaussian assumption, it can be shown (cf.
[Gol73]) that the maximization of the log-likelihood is equivalent to minimizing the fol-
lowing non-linear Least Squares cost function with respect to y:

Ak (Tk, ak) :H Xk — Q;;F(Tk)ak H2 . (397)

Deriving (3.97) with respect to a; and equating to zero, one is able to find an analytical
expression for a; which is a nuisance parameter in this optimization problem!’. Then,
substituting the solution for aj in (3.97) and expanding the expression, the mode 7 is
found by minimizing
Ar(m) = xx —xH, (HI'H,) ™ H/'x — x'TH, (H{'H;) ™ H}'x

+ xH, (H/'H,) 'H/H, (HIH,) HIx

= x (I-1I;)xy

= | Mix |* (3.98)
being

I, (1) £ H,(H/H,)"'HY (3.99)

the projection matrix onto the subspace spanned by the columns of H;, £ Q/ (1) and

IT; (73) its orthogonal complement!t.

A regularization term is introduced in order to constrain the search space to be in the
3,—neighborhood of the propagated prior estimate pu, = F,;7;_; to avoid divergence,

10Not, surprisingly, the solution is given by the well-known Wiener estimator. Thus, the expression to

. -1
use is a; = (QZ(Tk)Qf(Tk)) Qi (Tr) Xk
"Recall that if I, is a projection matrix, its orthogonal complement is defined as H,JC- AT1-1I,.
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mimicking [Cev07]. Thus, the optimization problem is
T = argmin { Ay (7%) + 7 (1, 2y)} = argmin{A}} , (3.100)
Tk Tk
where the regularization term is constructed as:

(e, 3,) = (T — NT)TZ;l(Tk - 1) (3.101)

and
A=Ay (1) + 7 (pr, X5) (3.102)

The optimization in (3.100) can be solved using the Newton-Raphson recursive algo-
rithm. The solution is then given by the iterative expression:

F = 7 N H(A)| L, V(A (3.103)

—¢ |‘f 3
Tk Tk

where index ¢ denotes iteration and A’ is the step-size. In particular we implement the al-
gorithm with backtracking, meaning that after the /-th solution is obtained it is compared
to the previous one; if the value of the cost function is greater for the new solution, then
M is reduced. See Algorithm 3.4 for a detailed pseudocode description of the algorithm.
The required expressions for the Gradient and the Hessian of A}, (7) in (4.56) can be con-
sulted in Appendix 3.D. The solution of the optimization problem by the Newton-Raphson
algorithm provides the likelihood approximation

P(Xk|Tk) %N(fk,ik) , (3.104)

where 7, and ik are the outputs of Algorithm 3.4.

Once the likelihood approximation is obtained, we now incorporate the information of
each propagated particle to form the Gaussian importance density as follows:

(Tl iy, xk) = N (ph, 2r) (3.105)
where
pl o= =, (i‘,;li-k + Zg,ﬁFT,erl)
== (St 3d) o (3.106)
as shown in Appendix 3.C.

After approximating the optimal importance function, particles can be generated and
weighted according to (3.84) and (3.85), respectively. Recall that conditional linear states
are taken into account when computing the likelihood in (3.89).
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Algorithm 3.4 Newton-Raphson algorithm with backtracking

Require: 73._1, A%, Ny
Ensure: 7, %
To = The1
for / =0 to N, do
T =7 = NHTU A VA(ADL
while A, (7)) > Ay () do
o= )\/2
T =7 = M HT (A | V(A
end while
/\€+1 — )\0
end for
T =T,
: Ek - HT_l(AZ)L‘-k

)
Tk

=
= O

3.4.3 Estimation Objectives

The estimation objectives of the algorithm are the MMSE estimates of time-delays and
complex amplitudes. From (3.49), these can be obtained as

Ns
T, = g W, Ty,
=1
N
A _ Al
Ao = > Wil (3.107)
=1

where a’ ke 18 obtained as the output of the KF associated to the i-th particle, as given

in (3.91).

3.4.4 Resampling Strategy

Many resampling strategies exist, as those presented in Section 3.2.3. In the sequel, we con-
sider the multinomial resampling approach. In addition, for the Laplace’s PF we consider
that resampling is applied whenever the effective number of samples falls below threshold
Ny, = %Ns, as suggested in [Ber99]. In contrast for the BF, resampling is performed each
time the algorithm is updated.
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3.4.5 Tracking Doppler-shifts

According to equation (3.72), the linear part of the phase is due to the Doppler deviation,
while the other term corresponds to the carrier phase. Hence, the Doppler—shift of the m—
th signal can be tracked from the estimated complex amplitude, where m € {0,..., M —1}.
Since the variation of this parameter is typically slow, compared to the sampling frequency
and the estimation rate (1 estimate per K samples), a simple linear regression can be used
to extract fy,, from a set of phase estimates. Thus, one has to consider an observation
window for a; such that the Doppler deviation has not changed significantly. We denote
the length of this window by L estimates or, equivalently, L KT, seconds. Hence, Doppler
estimates at instant £ are obtained as the solution to a linear Least Squares problem

/ék = (FZ—L:ka—L:k)_1F£—L:k$mk—L;k ) (3108)

where

Br = [ﬁmkvém,O}T
ok — L)KT, 1

2rk KTy 1

~

S [qémk_u...,qukr, (3.109)

being the latter the set of phase estimates obtained as the angle of the complex amplitude
estimate given by (3.107), i.e.,

Py, = LAy, - (3.110)

The tracking of the Doppler-shift for the LOSS can be done whether considering over-
lapped windows or not. The choice might depend on the variability of that parameter, and
thus on the receiver dynamics. If tracking is performed at each k, the computational cost
increases so that one has to design the algorithm depending on the scenario requirements.
In that sense, the design of L depends on a number of factors and must ensure that the
Doppler deviation remains piecewise constant during the window. On the one hand it
depends on the variation rate of the Doppler for a given scenario. On the other hand, the
designed value of L depends on parameters of the receiver such as the sampling period
T, and the number of samples used to estimate delays and complex amplitudes (K). A
longer window length will provide smoother Doppler estimates, but the designed L has to
ensure that the parameter remains piecewise constant in the interval, otherwise yielding
to unreliable results.
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Algorithm 3.5 Rao-Blackwellized Laplace’s Particle Filter algorithm

Require: xi, ?OaP(ZO)
Ensure: a0k, ¢O:k; Yok, To:k

Initialization:

1: Zo ~ p(zo)
2 02 =80 . st.me{0,...,M—1}
3: for i =1 to N, do
4: Generate 74(0) ~ N (7o,02)
5. Generate {77 (0) ~ 72(0) +U (0,0, )} 0}
6: wé = 1/N;
7. Ppy = diag{Xa0, Xp0}
8: end for
Tracking:

9: for k =1 to oo do R
10:  Run Newton-Raphson algorithm in (4.56) = 7, 3y
11:  Calculate X, according to (3.106).

12:  fori=1to N, do

13: i-th Kalman prediction according to (3.90).
14: Calculate p’ according to (3.106).
15: Generate 77 ~ N (ut, X,)

p(xp |7 X1k—1)P(TEITE )
N(Ti;uﬁr,ilﬂ)

17: i-th Kalman update according to (3.91).

18:  end for

19:  Normalize weights, w}..

20:  Compute MMSE estimates.

21:  Track Doppler-shift when required, according to (3.108).

22:  if N,yy < ZN, then

23: Resample Particles, {7f, wi};",.

24:  end if

25: end for

16: Calculate W} = wi_,
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3.4.6 Estimation of the number of signals

The problem of estimating M, the number of signal replicas, is an open topic in signal
processing. In order to obtain estimates of this parameter, M, one can use rank tests
on the data vector, such as Generalized Likelihood Ratio Tests (GLRT) [Fri02, Sto04].
Other methods exist, based on a receiver equipped with an antenna array front-end such
as the Akaike’s Information Criteria (AIC) [Aka73] or the Minimum Description Length
(MDL) [Ris85]. However, the setup considered in this chapter considers a single antenna
based receiver. An implementable solution is to assume a fixed number of replicas, maybe
dependent on the environment, and perform synchronization assuming M replicas of the
signal. The latter method, which has been proposed in [Nee95] and successfully imple-
mented in NovAtel receivers, is penalized with a remaining error if M is chosen too small
and may increase unnecessarily the computational burden if M is chosen too large. In
the sequel, the latter approach is taken. That is, the number of signals M is assumed
known or estimated by other means. However, aiming at studying how the estimation of
M affects the overall performance of the proposed algorithm, simulations are provided in
Section 3.5 taking this into consideration.

3.5 Simulation results

In order to assess the performance of the proposed tracking algorithm, and without loss
of generality, we simulate a GPS L1 C/A signal (though the algorithm can be readily
used with other GNSS signal structures) assuming an scenario composed of a LOSS and
a multipath replica (M = 2). In GNSS, the otherwise rather simple model of one sin-
gle reflection is quite representative of the multipath effect in many situations from a
statistical point of view, even in the urban canyon environment (see [Ste04, Ste05] for
an experimental investigation, including a high resolution measurement campaign, of the
land mobile satellite navigation multipath channel).

In the following experiments, a carrier-to-noise density ratio of 45 dB-Hz for the LOSS,
a signal-to-multipath ratio of 6 dB and the LOSS and multipath to be in—phase, the
worst possible case [Van93|, are considered. The received signal is filtered with a 2 MHz
bandwidth filter, down-converted to baseband and then digitized at a sampling frequency
of f¢ = 5.714 MHz. Thus, 1 ms of recorded data corresponds to K = 5714 samples. The
chip period is 7, = 1/ (1.023 MHz) in GPS C/A code. The covariance matrices involved

in the simulations are 27%,0 = ¥? = diag{T,,2T.}, the receiver dynamics correspond to
a vehicle with a constant velocity of 22 m/s. The multipath relative delay is 7, = 0.357,
with respect to the time-varying delay of the LOSS, 74(¢). The scenario is simulated with a
realistic GNSS signal generator programmed in MATLAB, thus all states evolve according
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to vehicle and satellite dynamics. The evolution model considers that F; = I3y, i.e., the
algorithm considers few variation between consecutive instants.

Figure 3.4 shows the RMSE performance [Kay93|] (averaged over 100 Monte-Carlo
simulations) of the proposed Laplace’s PF algorithm when considering different numbers
of particles. The results are compared to the PCRB, which is obtained using the recursion
presented in Section 5.2.1. The discussion on the theoretical bounds of navigation systems
is left to Chapter 5. The left-hand axis shows the RMSE of time-delay estimates normal-
ized to T, and the right axis corresponds to the resulting pseudorange estimation error in
meters, which is propagated in the computation of user’s position [Par96]. It arises from
simulation results that Laplace’s PF approaches the PCRB as Ny increase. In addition,
Figure 3.5 presents the results obtained with the EKF and the UKF for the same scenario.
It is seen from both figures that all algorithms yield similar performances for that given
scenario. However, it is well known that KF-based approaches are highly dependent on
a proper choice of covariance matrices, whereas particle filters are more robust to such
modeling errors.

Let us assume now a different scenario in which the multipath replica is present for
a given period of time, then suddenly switches off (modeling occultation) and finally it
appears again. The total observation interval is 1 second and the interval in which no mul-
tipath is present in the signal is ¢ € (300, 500] milliseconds. Figures 3.6 and 3.7 present
the results obtained after 100 Monte-Carlo runs in that scenario for Laplace’s PF and
KF-based solutions, respectively. The most evident conclusion from these results is that
Laplace’s PF is by far more robust than EKF or UKF to mismodeling effects, i.e., to as-
sume that there is a multipath replica when actually there is not. In fact, the performance
of the particle filtering algorithm is hardly altered, whereas KF-based approaches suffer a
severe degradation due to the bias produced by the mismodeling error, which could even
cause the algorithm to diverge. This is related to the initialization of the covariance matri-
ces in the KF': large entries in the covariance matrices aid the algorithm to converge when
states evolution suffer abrupt changes, though the error due to the absence of multipath
is high. On the contrary, small covariance matrices, reduce the bias effect in mismodeling
situations, but the algorithm is very likely to diverge. This is shown in Figure 3.7.

In real world scenarios, multipath signals will appear/disappear arbitrarily depending
on a number of phenomena such as occultation or vehicle motion and inclination. Sim-
ulations shown in 3.6 and 3.7 are meaningful since they highlight the robustness of the
presented PF to this effect. Whereas EKF and UKF would require a multipath detection
and /or number of replicas estimation for proper operation, the presented algorithm could
use a fixed number of replicas to operate (as said M = 2 is quite representative in many
scenarios). However, we agree in that having knowledge of the exact number of replicas
would improve the efficiency of the algorithm at the expenses of increasing the compu-
tational cost. Since the model assumes that the LOSS is always present, the algorithm
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Figure 3.4: RMSE of LOSS time-delay estimation in chips and the corresponding pseudo-
range estimate when Laplace’s PF is considered.

fails when attempting to track it when the signal is actually blocked or not present. This
drawback is shared by the other tested algorithms and could be overcome taking into ac-
count the effect in the signal model, also with a switching Markov model, and modifying
the algorithm accordingly.

Figure 3.8 compares the RMSE performance of the Sampling Importance Resampling
(SIR) algorithm proposed by the author in [Clo06a] and the Laplace’s PF proposed in this
work in terms of RMSE versus the number of particles. Actually, the former has been used
as a batch processing algorithm more likely to fall in the Population Monte-Carlo (PMC)
category [Cap04]. That resulted in an inefficient usage of particles, since a large number
of samples are required to increase the performance significantly (which has been already
confirmed in [Kra08]). Figure 3.8 highlights the efficiency of Laplace’s PF in terms of N,
when compared to SIR PF. The efficiency increase comes from the choice of an importance
density function which is closer to the optimal. In contrast, using the transitional prior
yields to a solution that does not take into account observations to generate particles.
Thus, the posterior characterization is poorer and requires a larger number of particles
for attaining similar performances as Laplaces PF does.
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Figure 3.5: RMSE of LOSS delay estimation in chips and the corresponding pseudorange
estimate when KF-based algorithms are used. RMSE averaged over 100 Monte-Carlo runs.
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is.
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3.6 Summary

This chapter dealt with the problem of multipath mitigation using a Bayesian filter.
Many algorithms can be found in the literature and some of them were revisited in the
first part of the chapter. Nevertheless the focus was on Sequential Monte-Carlo methods,
and in particular on Particle Filters, due to its ability to deal with nonlinear /nonGaussian
systems.

A simple, though useful, DSS model was proposed in Section 3.3. This system model
can be further improved to accommodate more accurate prior information. However the
aim of the chapter was on the algorithm rather than on the DSS model, which was used
to prove the concept.

This chapter proposed a particle filtering algorithm that mitigates the multipath effect
on the estimation of GNSS signal parameters, one of the dominant sources of error in
high-precision applications. The SIR filter (or Bootstrap Filter) was presented, being the
particle filtering architecture easiest to tune and implement. However, it was shown that
it required a large number of particles in order to obtain performances close to the PCRB.
The chapter presented an efficient PF which improved the performance of the SIR filter
based on two features:

e The algorithm considers a variance reduction technique, referred to as Rao-
Blackwellization, that estimates the linear/Gaussian part of the SS using a Kalman
Filter. In our case, these states are the complex amplitudes of the received signals.
The intuitive idea is clear: on the one hand, the SS dimension that the PF has to
deal with is reduced and, on the other hand, linear/Gaussian setups are optimally
handled by a KF.

e A method for selecting a nearly optimal importance density was presented. The
main idea is to approximate both prior and likelihood distributions by Gaussian
distributions. Then the posterior is also Gaussian whose parameters can be found
analytically. The approximation can be accomplished by the Laplacian method. In
the application under study, only the likelihood distribution had to be approximated.

The joint application of these two features provided a PF algorithm that can effectively
track time-varying parameters which was not feasible at all with the SIR filter. Computer
simulation results showed that, in the presence of coherent multipath, the performance
of the proposed PF (referred to as Laplace’s PF) improved the results of a SIR filter and
that it got closer to the PCRB as the number of samples increased. A methodology for
extracting Doppler-shifts from complex amplitudes was proposed in Section 3.4.5, being
the slope of a linear regression constructed from the estimated phases.
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Furthermore, other Bayesian filters were tested, namely the EKF and UKF algorithms.
It was observed that a solution based on the KF was very sensible to abrupt changes in
the scenario, i.e., appearance/disappearance of multipath replicas. In contrast, Laplace’s
PF was robust to this situation being its performance not altered. A further improvement
of the presented algorithm can be envisaged by including a switching Markov model, as
proposed in [Gir07]. Indeed, the latter could model better the appearance and disap-
pearance of multipath signals. Improvements can be achieved at the expenses of a higher
complexity.

To sum up, Laplace’s PF provides an efficient algorithm to track evolving GNSS
signal parameters in the presence of on/off multipath replicas that requires weaker model
assumptions than KF-based solutions.
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Appendix 3.A Useful equalities

The Chapman-Kolmogorov equation
Conditional densities can be manipulated in order to obtain more tractable expressions

by removing some variables. Denote some random variables as x1, 9 and z3. If we want
to remove x5 from the joint pdf f(zy,x2|z3), we integrate with respect to this variable,

f(z1|zs) = /_OO f(x1]za, v3)dzs (3.111)

On the other hand, if x5 has to be removed from f(z1|xs, z3), the Chapman-Kolmogorov
equation [Pap01] is extensively used:

flxy|zs) = /_OO f(xy, zalxs) f(wa]zs)drs . (3.112)

The Bayes’ rule

Bayes’ rule [Bay63] states that the probability density function of an event = conditioned
to the event y can be expressed as

flzly) = % : (3.113)

where the denominator can be computed using the Total probability theorem:

fly) = /_ ) p(ylx)p(x)dz . (3.114)

o0
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Appendix 3.B The Unscented Transform

The UT was introduced in [Jul02a, Jul02b, Jul04] and it is a key process in the UKF
algorithm. The UT aims at computing the statistics of a r.v. at the output of a nonlinear
system. At a glance, the UT deterministically selects a set of points of the r.v. of interest,
referred to as sigma points, and propagates the set through the nonlinear transformation.
Based on the output points, the UT proposes a mean and a covariance matrix for the re-
sulting transformed distribution. Notice that the UT differs from a Monte-Carlo approach
in the sense that the process is deterministic, whereas in the latter each realization yields
to different a result.

Consider a, a r.v. whose mean is denoted by a and covariance P,. We would like to
calculate the resulting mean and covariance matrix at the output of a nonlinear process
f(-) of the transformed r.v. b using the UT. Taking into account that f : R" +—— R"
the UT generates 2n, + 1 sample points selected deterministically such that the mean
and covariance of a is completely captured. The i—th sigma point and its weight is de-
noted by A; and W;, respectively. A selection scheme that achieves such mean /covariance
characterization is:

Ay = a
A = é+\/(na—|—m)[Pa]i7: i=1,... n

A = 5—\/(na—|—m)[Pa]i7: i=na+1,...,2n, (3.115)

where k is a tunable scaling parameter such that x + n, # 0. A common choice is kK =
/ﬁ%(na + Rg) — N4, where k1 is a positive scaling parameter which can be made arbitrarily
small to minimize higher order effects (e.g. 1073). k; determines the spread of the sigma
points around a. ks is a secondary parameter usually set to 0. The weights associated the
points in (3.115) are:

K
Wo =
Ng + K
0.5
WZ' = izl,...,na
Ng + K
0.5 .
W, = i=ng+1,....2n, (3.116)
Ng + K
2Ng
satisfying that > W, = 1, i.e., weights are normalized.
i=0

Actually, the sigma points in (3.115) used to characterize the mean and covariance
are the mean itself and a set of points located around it and controlled by the elements
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in matrix P,. Intuitively, the objective of parameter x is to adjust the distance among
the generated sigma points and the mean. Therefore, if the dimension of the SS model
increases, the distance increases also increases which forces the transform to take into
account non-local effects.

In order to characterize the resulting r.v. after the nonlinear system, each of the
generated sigma points are propagated through f(-),

obtaining 2n, + 1 sample points that are used to characterize the transformed mean and
covariance of the new r.v. as

2Ngq
b = Y WhB
=0

2Nq

P, = > W,(B,—b)(Bi—b)" | (3.118)

respectively. The latter expressions are an accurate approximation of the first and second
order statistics of the resulting stochastic process at the output of a process f(-) for an
input a.

To sum up, the sigma points completely capture the true mean and covariance of
the Gaussian r.v., and when propagated through a nonlinear system, the transformed
points also capture the posterior mean and covariance accurately up to third order for
any nonlinearity.
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Appendix 3.C Selection of Importance Density using
Laplace’s approximation

The idea behind the choice of 7(7%|Tk—1,Xx) X p(Xg|Tk)p(Tk|Tk—1) in equation (3.96) is
that if both likelihood and prior distributions are unimodal and Gaussian, the resulting
importance density is also unimodal and Gaussian. Furthermore, analytical expressions
for its mean and covariance can be derived from those of p(xx|m) and p(7k|Tr—1). In
our application the prior pdf is already Gaussian and unimodal, but the likelihood has
to be approximated. The latter is done using Laplace’s method, which yields analytical
Gaussian approximations of densities from a Taylor series expansion at the mode of the
density (7). Considering second order terms, the log-likelihood can be approximated as

L(ty) = Inp(xg|mi) (3.119)
L|

Q

1
"t §(Tk — 7)Mo (L5, (k= Ta)

where we have recognized that V. (L£)|,, = 0, since it is being evaluated at the mode. Iden-
tifying terms in (3.119), the following Gaussian approximation of the likelihood function
arises

p(xx|Tk) %N(fk,ik) ; (3.120)

where the mode, 71, and the inverse Hessian evaluated at the mode, i.e., X = H-1(L)] "
are its mean and covariance respectively.

Hence, the importance density is Gaussian and can be obtained as the result of a
product of Gaussians:

7T<7'k‘7'k717 Xk) X p(Xk\Tk)p(Tk\qu)

= N(fk,§k>N(FT,ka_1,ET7k) (3121)

and 7 (7 |Tk_1,Xx) can also be expressed as N (t, X), being the problem to analytically
obtain p, and 3.

Taking logarithms and neglecting additive constants, we can express (3.121) as

1 N
In(N (pr, 2r)) 5(7% — 1) S (e — )

1
+ 5(7% - FT,kafl)TE;,lg(Tk —F kTio1) (3.122)
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which can be reorganized, neglecting the multiplicative constant, as
In (N (pr, 25)) o< T (i;l + E;i) T
— 7 (i},;li-k + EgiFT,m,O
- (f},;li-k + EQiFT,m_l)T T
n (i-kT S +T,?,1FZ?,CE;,1€FT,W,1> , (3.123)
yielding to
sl = 1 (f};l + 2;;) T
ey tu, = 7 (f],;li'k + E;’,lcFﬂka,l)
puly—ty = (21217_'16 + ET,}CFT,ka1)T Th
pls -y, = (fkT S+ TkalFZkE;,quTﬁkaA) . (3.124)

From the latter, it is lengthy (but straightforward) to obtain the mean and covariance
of the Gaussian importance density in (3.121):

Bre = g (21217_% + E;iFT,kaA)
~ —1
s, = (2,;1 + 2;,1) , (3.125)

respectively.

This result is obtained under the assumption that 7, ~ F, ,7,_1, such that the equality
for pI'¥ 1, in (3.124) holds. The latter is reasonable since the evolution of the parameter
is supposed to be small compared to the observation interval of K samples.
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Appendix 3.D Gradient and Hessian of A} (7y)

This Appendix is devoted to the derivation of the Gradient and the Hessian of the cost
function:
Ay (1) = [ Tyexe |17 (i — p) 27 (7 — ) (3.126)

as defined in (3.102). These operators are required in the Newton-Raphson algorithm run
to obtain the importance density in Laplace’s PF.

The expressions for the Gradient and the Hessian of A}, (1) can be obtained as

VT(—/V];) = —kaVT(Hk (Tk))Xk -+ 2;1(Tk — [,LT)
H-(AL) = —x{HA(I (70)xk + 2,1 (3.127)

respectively. The first terms in the expressions in (3.127) are obtained taking into account
the definition of the orthogonal complement of a projection matrix. Then, the problem
of computing V. (A}) and H,(A}) is solved after obtaining V,(Il;) and H,(II;). In the
sequel, we provide some guides to analytically obtain these expressions.

From the definition of the Projection matrix IT, = Hk(HkHHk)*le it arises, after
lengthy but straightforward mathematical manipulation, that its Gradient and Hessian
respectively are

H
V() = TV (HOH] + (T3 V, () H])
H(I) = V. (II})V.(H)H! + I-H, (H,)H]
+ TV (H) V- (H)) + (V- (I, (H)H]

H
+ HiHT(Hk)HL+HﬁVT(Hk)VT(HL)> , (3.128)

where IT} £ I-II; and thus V,(IT}) = —V,(II;). A detailed derivation of the expressions
in (3.128) can be found in [FP06, p. 96-98] and [Ott93], where a similar problem was
addressed. An interested reader is referred to this reference for further details.

For the sake of clarity, we introduced the Moore-Penrose pseudoinverse in the notation
H| 2 (HIH,)'HY, (3.129)
whose Gradient can be obtained as

V. (H}) = (HHy) 7'V, (Hy) "I — HLV, (H)H], | (3.130)

Thus, after obtaining V,(Hy) and H,(Hy), the expressions in equation (3.128) can
be evaluated from which one is able to compute V,(A}) and H,(A}) in (3.127). The
derivation of the required expressions is provided in Appendix 3.E.
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Appendix 3.E Gradient and Hessian of matrix H;

As showed in Appendix 3.D, the computation of V,(A}) and H,(A}) requires obtaining
V. (Hy) and H,(Hy). This is the aim of this appendix.

First, we note that V.(Hy) can be decomposed as the derivative with respect to each

element of 7

V7'0 (Hk)
VT(Hk) = : (3.131)

VTMA (Hk)

and recalling that Hy = QJ (1:), where Qy is defined as the basis function matrix in
equation (3.76).

Then, the Gradient of Hy with respect to the i-th element of 7 is

0 VTZ(QZ((IC — 1)K—|— 1;7—i,k)) 0

Vo (Hy) = : (3.132)

0 Vo (@i(kK; k) 0
whose dimensions are K x M and
Volai(k; 7)) = —ai(K37ig) (3.133)

where ¢;(k'; 7; ) stands for the derivative of time of waveform g¢;(¢; 7; ) evaluated at instant
K.

Similarly, the Hessian of Hj, is defined as

AD(HL) ... AR (Hy)
H,(Hy) = : - : : (3.134)
AR (Hg) oo AR (Hy)
where
AD(Hg) = 0 Vi#j (3.135)
0 AT(q((k—1)K+1;7)) 0
AT(Hp) = | : :
0 AT(qi (KK Tik)) 0
and
AT (@i (k' 7in)) = Gk i) (3.136)

Gi(k'; i) standing for the second derivative of time of waveform ¢;(t;7;x) evaluated at
instant &’.
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Direct Position Estimation

IVIDE and Conquer. This is the approach taken in many signal processing applica-

tions due to its ability to split complex mathematical problems in several problems
of reduced complexity. In addition, this methodology allows the exploitation of paral-
lel structures in hardware architectures; or make use of concurrency and multithreading
scheduling when designing under the Software-Defined Radio (SDR) paradigm. The design
of GNSS receivers provides one of the clearest examples of this approach. Ultimately, the
aim of a GNSS receiver is to estimate its position, based on the signals emitted by a con-
stellation of satellites. As discussed in Chapter 2, the estimation is composed of two steps:
synchronization and trilateration. At a glance, the receiver computes its relative distance
to each visible satellite from the estimated synchronization parameters (time-delays and
Doppler-shifts, gathered in vectors 7 and f; respectively) and uses these distances to cal-
culate its position p through solving a geometrical problem. This methodology (depicted
in the upper diagram of Figure 4.1) has been widespread used in the design of GNSS
receivers and, thus, we refer to it as the conventional approach to GNSS positioning.

The conventional approach is computationally affordable and a number of algorithms
can be found in the literature to estimate synchronization parameters, refer to Chapter
2. However, [Par96] pointed out some of its drawbacks:

e The estimation errors committed in 7 are propagated to the next step, the position
calculation. These estimates can be severely distorted by a number of effects, as

87
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seen in Chapter 2. One of these sources of error is the multipath propagation, which
introduces a bias relatively large under coherent multipath. Chapter 3 proposed an
algorithm to mitigate this effect, however, we saw that there is still a remaining
error which is indeed propagated to the positioning algorithm. It is not evident how
these errors are propagated when transformed by the nonlinear system of equations
that yield to the position calculation, but it seems clear that little can be done at
that point when observables are corrupted. Chapter 5 will treat the transformation
of synchronization errors into positioning errors.

The conventional approach requires independent and uncoupled estimators for each
channel (satellite). The implications are twofold. On the one hand, the implemen-
tation of such approach requires replicate hardware or software structures. On the
other hand, the approach does not take into consideration possible dependencies
among channels, which could improve the estimation performance.

Related to the previous point, a GNSS receiver can have a minimum of 8-12 parallel
channels. Since the ultimate parameter of interest is the PVT solution (i.e., posi-
tion, velocity and time defined in a three dimensional space), it seems that there
exists a possible redundancy because the receiver estimates in a higher dimensional
parameter space (code and carrier phase for each channel). Thus, the conventional
approach increases the dimensionality of the problem with respect to the one strictly
(and theoretically) required.

The use of prior information is not straightforward when dealing with synchroniza-
tion parameters. From Chapter 3, one can conclude that a number of Bayesian filters
can be used to track and estimate synchronization parameters, but the state-space
evolution of these time-varying parameters is not evident and many alternatives
exist. The model proposed in Section 3.3.2 is a useful simplification of reality, but
more realistic SS models would require expensive test-field campaigns [Ste04] and
the ability of the algorithm to discern among a number of synchronization evolution
models depending on the dynamics of the receiver. This is by far more difficult than
considering prior information when the parameter of interest is user’s position itself,
where the physical meaning of the parameter helps the inclusion of side information
as will be seen in Section 4.8.

Although the cross-correlation properties of spreading sequences used in GNSS sig-
nals provide a rather high processing gain, there is indeed a remaining Multiple
Access Interference (MAI) that is not combated in conventional receivers (cf. Chap-
ter 2). To overcome such limitation, one could incorporate multiple access techniques
[Vit95] to GNSS receivers, jointly processing signals from different satellites [11t94].
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{%la fd1}

Synch. Satellite #1

x(t)  —— 5 Navigation Solution —— PVT

{%Mv fdM}

Synch. Satellite §M

x(t) —— Direct Position Estimation approach ——— PVT

Figure 4.1: Block diagram comparing the operation of a conventional GNSS receiver and
the proposed Direct Position Estimation approach.

This dissertation proposes to avoid the two-steps position calculation in order to over-
come the above drawbacks. The chapter presents what is referred to as the Direct Position
Estimation (DPE) approach. DPE takes a different approach to the positioning problem.
DPE focuses on the estimation (directly from the received and sampled IF signal, x(t))
of position coordinates, which are indeed the parameters of interest to the end-user. The
avoidance of intermediate estimation steps will be seen to help to partially overcome some
limitations of the conventional approach, such as the degradation in position accuracy due
to multipath and severe channel fading conditions. The lower diagram in Figure 4.1 shows
the conceptual operation, as compared to the conventional receiver in the upper side.

The chapter is organized as follows. Section 4.1 presents the DPE concept and a
motivation for its use consisting in proving that the two-steps approach cannot overcome
the performance of a direct estimation. The latter is a general result, which applied to
the GNSS case justifies the design of receivers under the DPE framework. Section 4.2
describes the signal model considered along the discussion. Two main differences exist
between this model and the one considered in Chapter 3. On the one hand, the model
in Chapter 3 accounted for the LOSS of a given satellite and M — 1 multipath replicas.
In contrast, the signal model in Section 4.2 explicitly describes the LOSSs of all visible
satellites and does not consider multipath replicas, implicitly included in the noise term.
In this case, we use M to denote the number of visible satellites. Notice that we are not
using the notation My, as introduced in Chapter 2, for the sake of clarity. On the other
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hand, this chapter assumes the more general receiver composed of an antenna array front-
end. The optimal position estimation under the ML criterion is discussed in Section 4.3,
whose asymptotical efficiency is proved. In Section 4.4 a comparison between DPE and
conventional approaches is provided. Section 4.5 presents the concept of position-based
synchronization, which considers the extraction of synchronization parameters from the
estimated position under the DPE framework. Position-based synchronization proposes a
synchronization methodology which is the other way around of the conventional approach.
A number of algorithms to implement the ML estimator of position in a SDR receiver are
discussed in Section 4.6. Recalling that the final objective for proposing a DPE framework
to design GNSS receivers is the inclusion of prior information in a natural way, Section
4.8 presents the Bayesian counterpart of DPE. This is referred to as the Bayesian Direct
Position Estimation (BDPE) in the sequel. Finally, at the light of the DPE framework,
previous related work is exposed and discussed. Thus, Section 4.10 provides some insight
to other work that share the idea of a direct position estimation.

4.1 Direct Position Estimation approach: back-
ground and motivation

Although the conventional two-steps position determination is the approach taken tradi-
tionally, it is seen to have a number of drawbacks. In contrast, DPE proposes an alterna-
tive where the estimation of user’s position is performed directly from the received and
sampled signal. Thus, avoiding intermediate steps and jointly considering signals from all
satellites when estimating p.

Both approaches are illustrated in Figure 4.1. The conventional approach (upper dia-
gram) was discussed in Chapter 2, consisting in a two-steps procedure:

1. Estimation of synchronization parameters. The receiver is equipped with a
number of tracking channels, in charge of estimating both time-delays and Doppler-
shifts of the acquired satellites. In general, this estimation is performed indepen-
dently among channels by a bank of Delay /Phase Lock Loops or more sophisticated
signal processing techniques.. We denote as 7; and f;, the delay and Doppler devi-
ation of the i-th satellite, being the ¢-th entries in vectors T and f; respectively.

2. Position calculation. As discussed in Chapter 2, these estimates provide a measure
of the relative distance between the receiver an each satellite. Then, an estimate of
the receiver’s position is obtained by solving a geometrical problem, referred to as
trilateration. This is typically done relying on LS or WLS algorithms.
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The lower diagram in Figure 4.1 shows the conceptual idea of DPE approach: merging
the two-steps approach into a single estimation problem. DPE addresses some of the
inherent drawbacks of the conventional two-steps approach. The dependencies between
channels are efficiently exploited, in the sense that signals from visible satellites are jointly
processed to obtain user’s position (which is the common driving parameter of these
signals). Due to the joint processing of satellite signals, MAI is also optimally mitigated.

A recent result in [Ama08b| provides the means to show that the conventional two-
steps approach cannot overcome the performance of DPE. This interesting result is the
core of Proposition 4.1.

Proposition 4.1. Let v € T C R™ and v € I' C R™ be two unknown parameters s.t.
there exist an injective function g(-) : ' —— T,

v=yg(v) ,Vyel (4.1)
that relates both. Function g(-) has a unique inverse mapping
y=gt'(v),YveT (4.2)

under the subset T = {v | v =g(v),¥y €T} C T.

Denote by 41 and Ay the K-samples estimators of v based on single—step and two—steps
approaches, respectively. Similarly, (%) and 3(%2) represent the covariance matriz of
each estimator.

Then,
C £ lim (B(32) — () (4.3)

K—oo

18 a positive semidefinite matriz.
Proof. See Appendix 4.A. O

Proposition 4.1 provides the mathematical justification to the DPE approach. Roughly
speaking, the result means that the covariance of the two-steps approach cannot be smaller
than the covariance of the one-step estimator [Clo09¢]. Thus, the estimation performance
of the conventional approach can only be, at most, equal than the one provided by the
DPE approach, in the MSE sense. The latter claim is stated in Corollary 4.1, for the sake
of clarity. This is a strong result that is the basis of DPE framework, as it opens the door
to the design of future GNSS receivers with enhanced performance.

Corollary 4.1. Direct Position Estimation approach outperforms conventional two-steps
positioning, in the MSE sense.
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This chapter is devoted to the study and evaluation of DPE approach for GNSS
receivers. Signal model, optimal estimator (in the ML sense), algorithms, architectures
and inclusion of prior data is discussed, emphasizing the similarities and differences of the
approach with respect to the conventional approach taken by GNSS receivers.

4.2 Signal Model

A GNSS antenna receives measurements which are considered to be a superposition of
plane waves corrupted by noise and, possibly, interferences and multipath. An antenna
receives M scaled, time—delayed and Doppler—shifted signals with known signal structure.
Each signal correspond to the line-of-sight signal (LOSS) of one of the M visible satellites.
The receiving complex baseband [Pro94] signal can be modeled as

x(t) = Z a;qi(t — 1) exp{j2n fat} +n(t) (4.4)

where ¢;(t) is the transmitted complex baseband low-rate navigation signal spread by the
pseudorandom code of the i—th satellite, considered known. a; is its complex amplitude, 7;
is the time-delay, f;, the Doppler deviation and n(t) represents zero-mean additive noise
and other unmodeled terms. The model in (4.4) is obtained from (2.1)-(2.5) and (2.12)
with a; = a; exp{joio}, ¢:(t) = qr.:(t) + jqo.(t) and only considering LOSS propagation.

In the multiple antenna receiver, an N element antenna array receives M scaled,
time—delayed and Doppler—shifted signals with known structure. Each antenna element
receives a replica of the complex baseband signal modeled by equation (4.4), with a
different phase depending on the array geometry and the Directions Of Arrival (DOA)
[Mon80, Joh93, Tre02]. Then, the single-snapshot model can be expressed in compact
form as

x(t) = G(0, $)Ad(t, 7, ) + n(t) (4.5)

where each row corresponds to one antenna and

e x(t) € CNV*! is the observed signal vector,

e G(0,¢) € CN*M is the spatial signature matrix (see Appendix 4.B), related to the
array geometry and the DOA of the impinging signals. 8, ¢ € RM*! stand for the
azimuth and elevation vectors of the M sources, respectively,

o A ¢ CM*M ig a diagonal matrix with the elements of complex amplitude vector
a=lay,...,ay]" € CM*1 along its diagonal,
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o 7.f; € RMX1 are column vectors which contain time-delays and Doppler-shifts of
each satellite,

o d(t,7,£)) = [di(t),...,dy(t)]" € CM*! where each component is defined by

di(t) = qi(t — i) exp{j27 fa,t} ,
the delayed Doppler—shifted narrowband signals envelopes, and

e n(t) € CV*! represents additive noise and all other disturbing terms, like multipath
of each signal or interferences. Statistically, this term is considered a zero-mean,
complex, temporally white, circularly symmetric Gaussian vector process with an
unknown arbitrary covariance matrix, 3,. Thus, given two instants ¢; and t;, it
holds that:

E{n(t)} = 0
Efn(t)n’ (1)} = 0
E{n(t)n"(t;)} = Z.0(t; —t;) .

This model is built upon the narrowband array assumption, in which the time required
for the signal to propagate along the array aperture is much smaller than the inverse of the
signal bandwidth. Thus, a phase—shift can be used to describe the propagation from one
antenna to another. For instance, current GPS L1 C/A navigation signals are reported
to be emitted with a 20 MHz bandwidth [Ser06a], whose inverse is 50 nanoseconds or 15
meters in spatial terms. Therefore the array is expected to be much smaller, since the
carrier wavelength is on the order of 20 centimeters, for the assumption to be reasonable.
In the same way, we have assumed that the Doppler effect can be modeled by a frequency
shift, which is commonly referred to as the narrowband signal assumption [Sto96]. This
assumption is also reasonable provided that navigation systems are placed in the L band,

with a carrier frequency on the order of 1 GHz, being much more larger than the signal
bandwidth.

Consider that K snapshots of the impinging signal are taken at a suitable sampling
rate f,. Then, the sampled data can be expressed as’

X = G(0,$)AD(r,f;) + N (4.6)

1Rigorously, the model in (4.6) should be expressed as
Xy = G(O, o) ApD (i, £4,) + Ny

where the time dependence of the parameters is made explicit. However, for the sake of clarity, we have
omitted the discrete time instant subscript k, since the parameters of interest are assumed piecewise
constant during the observation interval. Thus, if not otherwise stated, the main problem is to estimated
the deterministic and unknown parameters of the model.
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using the following definitions:

o X = [x(tg),...,x(tx_1)] € CV*E referred to as the spatiotemporal data matrix.

o D(7,£;) = [d(to,7,£1),...,d(tx_1,7,£5)] € C**K known as the basis—function
matrix.

e N = [n(y),...,n(txg_1)] € CV*X a matrix containing all undesired contributions
to X. This matrix will be assumed having a Gaussian distribution, with zero mean,
and with an arbitrary and unknown covariance matrix 3,,.

o f,=1/T;, being T, =t — t)_1.

Notice that we assume that the parameters of interest of the model and the covariance
matrix of the error are piecewise constant during the observation interval, i.e., they do
not change in K/ f, seconds. However, small variations are allowed in the long term, i.e.,
among different observation windows. This assumption is reasonable in GNSS since this
interval is on the order of tens of milliseconds and the variation of such parameters is
typically much slower [Par96].

We can rearrange spatial signatures and complex amplitudes in an equivalent channel
matrix H = G(0,¢)A + E, which is assumed arbitrary and unknown. The resulting
unstructured spatial response model is given by

X = HD(r,f;) + N , (4.7)

where H takes into account possible mismodeling errors, gathered in matrix E. Notice
that the structure of matrix H is arbitrary, in contrast to GA. The contribution of E is
typically bounded, meaning that these errors are considered small. This is expressed as

IE[r <e¢ , €>0. (4.8)

The model in equation (4.7) is the approach taken hereinafter, which provides desirable
advantages with respect to the structured model in (4.6):

e In many GNSS applications, it seems reasonable to consider that DOAs of impinging
signals are a priori known. However, this knowledge implies that somewhat complex
DOA estimation algorithms must be used and that a nearly perfect calibration is
required. The latter presents a technological challenge and many possible sources of
errors might jeopardize the operation of the algorithm [Swi98]. To name a few: errors
in the antenna elements gain/phase measurements, unmodeled mutual coupling,
quantization error (if a beamforming algorithm is used), environmental changes,
mechanical modifications of the antenna hardware, etc.
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e The above calibration errors are gathered in H, which is treated as a channel matrix
and estimated. This is possible because DOAs and amplitudes do not force H to have
a certain structure, indeed its structure is arbitrary. The payback is its inability to
estimate carrier phases, since the spatial reference is lost in the unstructured model
case.

e It was seen in [FP06] that the asymptotical performance of an estimator based on the
unstructured array model is the same as a solution based on (4.6). This is because
synchronization and DOA parameters are uncoupled [Dog01, FP09a], meaning that
theoretically an estimator of 7 and/or f; does not require the knowledge of the
angles 8 and ¢. As a consequence, it is not only easier to implement the unstructured
approach than the structured one, but asymptotically equivalent.

The signal model presented so far is valid for the conventional approach, where the in-
coming signal is parameterized by synchronization parameters. These parameters include
time—delay and Doppler—shifts, which we gather in an unknown vector:

v:{;;}, (4.9)

for the sake of clarity.

DPE approach is based on a simple fact: synchronization parameters of each satellite
can be expressed as functions of the same common parameters (including user position).
After inspecting GNSS observables in (2.21) and (2.22), one can easily identify that

-
fq

> 1>

fa(v) (4.10)

being v € R™ a vector gathering all considered motion parameters, whose simplest con-
figuration is v = [pT, vl 5t} T, i.e., receiver’s position, velocity and clock bias respectively.
However, DPE is a quite general approach and -« can include a plethora of parameters
[BSO1, Gus02]. Specifically, the i-th satellite’s synchronization parameters can be written
in terms of the elements of ~ as:

cri = || pi—p || +c (0t = dty)

T Pi— P fc
(v, PiTP [ 411
fdz ( ) || Pz‘—PHC ( )

with the definitions done in (2.21) and (2.22): p; and v; are the position and velocity of
the i-th satellite; f. is the carrier frequency; and ¢ represents the speed of light.
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Then, whereas equation (4.4) is a time-frequency parameterization of the incoming sig-
nals, the signal model considered in the DPE approach is parameterized by . Considering
(4.10), the received complex baseband is modeled as

(t) = Z a;qi(t — 7i (7)) exp{s2n fa, (v) £} + () , (4.12)

being the DPE counterpart of the array model in (4.7)
X =HD (v) + N. (4.13)

where the same definitions hold as in the conventional signal model. 7 stands for the
vector containing all considered position and motion parameters to be estimated in the
Direct Position Estimation approach, as well as the receiver clock bias?.

4.3 Maximum Likelihood Estimation of Position in
GNSS receivers

Parameter estimation methods have been thoroughly covered in the literature [Leh83,
Kay93]. The Maximum Likelihood (ML) principle presents an optimal paradigm to ob-
tain a parameter estimator that asymptotically attain its lower variance bound, i.e., the
Cramér-Rao Bound (CRB), as the number of samples goes to infinity. ML is based on
the maximization of the distribution of measurements conditional on the value of the pa-
rameter. Thus, for a set of K recorded samples gathered in x, the Maximum Likelihood
Estimator (MLE) of a parameter £ is the solution to

éML = arg mgx {p(x|€)} . (4.14)

Under mild regularity conditions, the asymptotical distribution (for large data sets)
of the estimator satisfies that

b, ~ N (€,3:'(€)) | (4.15)

where Jp(&) is the Fisher Information Matrix (FIM) evaluated at the true value of pa-
rameter € — concepts developed in Section 5.1 — Thus, the claim is that the MLE is

2Tt is important to keep in mind that, in the sequel, v is the vector containing time-delay and Doppler-
shift of each visible satellite. Notice that v is the target parameter in the conventional positioning ap-
proach. In contrast, v gathers all unknown parameters of the DPE approach, such as position, velocity
or clock bias.
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asymptotically efficient, i.e., it attains the lowest variance predicted by the CRB as K
increases. The regularity conditions include the existence of the derivatives of the log-
likelihood function and the FIM being non-zero. For further details and a rigorous proof,
refer to [Kay93, Appendix 7.B].

This section provides the derivation of the MLE of position for the general case of
an antenna array based receiver. For the particularization to the single antenna case,
refer to Appendix 4.D. The asymptotical consistency of the MLE of position is proved in
Appendix 4.E, considering both front-end architectures.

The derivation of the MLE of position is performed taking advantage of the invariance
principle of ML estimates [Kay93]. Hence, first vy, is computed [FP06] and then, using
equations (2.21) and (2.22), A, is obtained. This strategy is adopted in order to highlight
the differences among both frameworks, being equivalent to a direct derivation of the MLE
of ~.

Applying the logarithm to the likelihood function of measurements in equation (4.7),
and neglecting irrelevant additive and multiplicative constants, we obtain the negative
log-likelihood function which depends on the unknown parameters of the model® X,,, H

and v
A (Z,,H,v) =In(det (X)) + Tr (,,'C (H,v)) , (4.16)

being C (H, v) defined as

C (H, v) :%(X—HD(U)) (X — HD(v))" . (4.17)

With the following cross-correlation definitions

A 1 H A _ 1 H
Ry, (v) = R (v) Ra(v) = §D(U)DH(U) (4.18)

equation (4.17) can be expressed as
C(H,v) = R,, — R,gH” — HRY, + HR ,,H" | (4.19)
where we have omitted the dependence on v for the sake of clarity.

Thus, the joint ML estimate of 3,, H, and v is given by the minimization of the
resulting cost function

En,MLa I:IMLa Uy, = arg z:mglv {Al (En, H, ’U)} . (4-2())

3 where the trace property z7Bz = Tr (BzzH) is used.
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Using the following standard matrix calculus results

d1n (det (Z)) _ _

57 — (Z l)T — (ZT) 1

§Tr(Z7'B)

——— = -Z'BzZ! 4.21
57 (4.21)

we obtain the gradient of (4.16) with respect to the covariance matrix,
oA
521 =y -2 C(H,v) 2. (4.22)

Assuming that K > N + M, so that matrix C (H,v) is invertible w.p.1., the MLE of
the covariance matrix is given by

~

En,ML =C (H, 'U) (423)

‘HI:IML/U":’ML '

A cost function dependent on H and v is obtained by substituting (4.23) in (4.16),
A (H,v) = In <det (Rm ~R,,H7 — HRY ¢ HRddHH)> . (4.24)

Adding and subtracting ﬁﬁdﬁgjﬁ;& to the argument of the determinant in (4.24)

and using the hermitian property of the autocorrelation matrix, the cost function can be
expressed as

~

A (H,v) = In <det <Rm ~ R, R;RA+
N N ~ “ “ H
+ (H-R.Ry)) Ra (H - RuRy)) ))
> In <det (Rm - Rmdﬁgjf{@) , (4.25)

where we use the fact that the determinant is a nondecreasing function, which means that
for any positive definite matrix W and any non-negative definite matrix V, it satisfies

det <W + \7) > det <W> , (4.26)

where the equality only holds for VvV =0. Inspecting (4.25), we can identify the terms:
Vo= (H-RaRy) Ry (H- RGBS (4.27)
W = R,, - R.Ry,RY (4.28)

where it is straightforward that see that (4.27) is a non-negative definite matrix due to
its quadratic form. We used Proposition 4.2 to verify the positive definiteness of (4.28).
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Proposition 4.2. Considering the correlation definitions in (4.18),

W = R,, — R..R IR, (4.29)

1s a positive definite matrix. Meaning that, for any real vector u # 0, we have that
u"Wu >0 . (4.30)
Proof. See Appendix 4.C. m

The value of the channel matrix that nulls V and therefore minimizes A5 is the ML
estimator

Hyr, = R.aRy) (4.31)

V=ML
also known as the Wiener estimator. Substitution of the latter in equation (4.23) shows
that W is the ML estimate of X, i.e.,

~ A~

oL = W (4.32)

The ML estimation of time-delays and Doppler-shifts is then obtained by minimizing
the nonlinear cost function resulting from the substitution of (4.31) in (4.24),

Uy, = arg min {ln (det <f{m — Rde;;RﬁJ) } , (4.33)

i.e., the minimization of the logarithm of the determinant of the covariance estimate:

Maximum Likelihood synchronization:

Oyp, = arg mgn {ln <det (W (v))) } : (4.34)

W (U) = sz - Rxd (U> Rgdl (U) jo (U)

Our aim is to obtain an expression of the likelihood function dependent on the target
motion vector -y, i.e., as a function of user position instead of the synchronization param-
eters. Recall that v = v(), or equivalently 7 = 7(v) and f; = f;(v), as evidenced in
equations (4.10) and (4.11). Thus, the ML estimation of position is given by the vector ~
that optimizes the likelihood cost function

Maximum Likelihood positioning:

(4.35)

AmL = arg mﬁyin {ln (det <W (’7))) }
W (7) = Reo = Rea (1) Ryl (M) R ()
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due to the invariance principle of the ML estimates under injective functions [Pap01]. In
the sequel, we use the definitions

Aw) 2 In (det (W(v)>> (4.36)
In (det (W m)) , (4.37)

that represent the cost functions in (4.34) and (4.35), respectively. Notice from (4.32) that
the matrix in the optimization problem is the MLE of the unknown covariance matrix.

The determinant of the covariance matrix is commonly known as the generalized variance
[Wil32]. Intuitive interpretations of the MLE can be found in [FP09b].

-
2
(1>

4.4 Comparison of Conventional and Direct Position
Estimation frameworks

The two frameworks have core differences in several aspects. This section is devoted to
the qualitative comparison of conventional and DPE approaches. The aim of this section
is to highlight the pros and cons of both alternatives and to discuss their characteristics.

4.4.1 Optimization problem

Important differences appear when considering the optimization problems in equations
(4.34) and (4.35), i.e., finding the ML estimate of synchronization parameters v or the
ML estimate of vector ~y.

The most apparent difference is that whereas in the synchronization—parameter based
positioning a two-dimensional optimization has to be performed per tracked satellite, the
position-dependent cost function takes into account signals coming from all satellites to
obtain a position estimate, dealing with a single multivariate optimization problem. Thus,
in the conventional approach M two-dimensional optimization problems must be solved
to estimate each pair {7, fs,}ir, £ {v;},. Hence, particularizing (4.34) to solve the
parameters of the i-th satellite we have that

v, = argmin{ln (det (W(UQ))} i={1,...,M}
v;
N A 1 _
W(v) = Re— Xd! (v) (di(v)df (v)) b, (v) X (4.38)
where we use the definition d;(v;) £ [di(to),...,d;i(tx_1)]. Notice that M optimizations
according to (4.38) are performed independently and in parallel. In contrast, a dim{~y}-
dimensional problem has to be faced in the DPE’s framework, as provided by (4.35).
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Figure 4.2: Optimum constellation to minimize GDOP with M = 6 satellites. Three-
dimensional illustration in (a) and a zenithal perspective in (b).

In order to gain some insight into the optimization problems at hand, the resulting ML
cost functions for two distinct scenarios are plotted and discussed. For the conventional
two-steps approach the plotted function is that of a particular satellite, as expressed by
(4.38). The latter results in a two-dimensional function, which can be plotted as a function
of time-delay and Doppler deviation. However, notice that in general the problem dealt by
a DPE approach is n,-dimensional, with n, = dim{~}. The minimum dimension of the
I' space is 4, i.e., when - is composed of the three-dimensional receiver position and its
clock bias (if there is not any side-information regarding any of the parameters in « that
allows marginalization). This fact makes impossible to plot the ML cost function A (7).
For the sake of clarity, we now consider that one of the coordinates (say z) and the receiver
clock bias are known (or vary slowly with time and can be tracked by other methods)
so that we can plot the three-dimensional cost function for the problem consisting in
estimating v = [z,]". Nevertheless, we remark that this setting is only for qualitative
analysis purposes performed within this section and that « has to be composed of all
unknown motion parameters for a given scenario (as done in Section 4.7 to provide realistic
simulation results).

With this setup, a number of simulations are performed, evaluating the cost function
for different coordinate errors. Normalized ML cost functions are shown considering two
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Figure 4.3: The ML cost function in equation (4.38) as a function of synchronization
parameters of the locally generated code of the i-th satellite. Whereas in (a) there is a
wide ambiguity region, fine synchronism focuses on a reduced search-space as in (b). The
latter is the case of tracking loops.

types of front-end architectures for the GNSS receiver: a single antenna and a circular
antenna array composed of 8 antenna elements. A benchmark scenario is simulated com-
posed of 6 satellites in a constellation that minimizes the Geometric Dilution Of Precision
(GDOP), according to [Par96]. The GDOP provides a measure of the quality of a satellite
constellation. Roughly speaking, small GDOP values correspond to better geometries.
The constellation is shown in Figure 4.2 in east-north-up (ENU) coordinates [Gre01], the
satellites form a four-sided pyramid in a hemisphere with two satellites at zenith, being all
satellites equally spaced. In particular, the considered constellation simulates C/A code
on the L1 carrier of the GPS signal with a chip rate of 1.023 MHz. Carrier-to-noise density
ratios are set for all satellites to 45 dB-Hz. Signals are bandpass filtered at the receiver
with a bandwidth of 2 MHz, downconverted to an Intermediate Frequency of 4.309 MHz
and digitized at a sampling frequency of 5.714 MHz. The observation period is 1 ms or,
equivalently, K = 5714 recorded samples.

Figure 4.3 shows the ML cost function obtained as a function of v;. Without loss of
generality, these figures consider N = 1 antenna. Initially, the search space has to be
expanded to account for all possible delay and Doppler values [Par96| in what is referred
to as signal acquisition. Afterwards, the search space is reduced for fine synchronization.
The latter is carried typically by tracking loops (DLL and PLL) running for each satellite.
After optimizing the cost function for each visible satellite, synchronization estimates are
used to obtain an estimation of user’s position, as discussed in Chapter 2.
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Figure 4.4: The ML cost function in equation (4.37) as a function of the unknown motion
parameters of the receiver, v = [z, y]T

Analogously, Figure 4.4 shows the ML cost function for the considered reference sce-
nario when the optimization problem consists in finding the value of v that minimizes
A (), i.e., the DPE problem. Although from these Figures we can guess that the function
is minimized when the true values of v are evaluated, a prove on the consistency of the
MLE of position can be found in Appendix 4.E, which states that for K — oo the cost
function attains its global optimum when evaluated at the true value of v, i.e., when no
error is committed. Figure 4.4 presents the results for the two architectures under study
(single antenna and antenna array receivers). As done in Figure 4.3, the cost function is
plotted twice: first with a wide search space and then with a reduced interval. The latter
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Figure 4.5: ML cost function for the conventional two-steps approach in the presence of
a multipath replica: multiple optima can degrade synchronization’s performance.

points out that the optimization problem is not convex [Boy03], as the surface of the cost
function appears to be rough, i.e., not smooth. This is an important result since, from the
latter figures, one could wrongly state that the optimization problem can be considered
convex in the neighborhood of the true value of 4. Thus, when designing optimization
algorithms in Section 4.6, one must be aware of that characteristic of A (7).

In addition to the benchmark scenario, a multipath replica for satellite f1 is introduced.
Its signal-to-multipath ratio (SMR) is 3 dB, impinging the receiver with same elevation
as the LOSS and an azimuth of 6; + 180°, where 6; represents the azimuth of the LOSS of
the i-th satellite as defined in Appendix 4.B. The relative delay is 1 chip with respect to
the LOSS and the Doppler-shift is 2000 Hz. For the conventional approach, it can be seen
in Figure 4.5 the effect of the multipath replica in the cost function: an additional local
minimum appears for each multipath replica in the scenario. This is caused due to the high
correlation between the LOSS and this kind of interference. Indeed, this can complicate
the operation of an optimization algorithm in order to avoid local optima. Multipath
with relative delays lower than the chip period are referred to as coherent multipath,
representing the dominant source of error in high precision applications as it may cause
a bias in delay and carrier—phase estimations [Van93]. The simplest implementation of
the ML cost function in the conventional approach is the DLL (Delay Lock Loop). The
problem which arises is that the order of this estimator (the DLL) is chosen according
to the assumption that only the LOSS is present. This means that this estimator tries
to estimate the relative propagation delay of only the LOSS. As said, in case the LOSS
is corrupted by several (or a single) superimposed delayed replicas, i.e., multipath, this
estimator becomes biased. Aiming at reducing multipath’s effect, many alternatives have
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Figure 4.6: The ML cost function in equation (4.37) as a function of the unknown position
of the user receiver, «y, for a single antenna based receiver and an antenna array archi-
tecture. A multipath replica is present in the scenario with SMR = 3 dB and a relative

delay of 1 chip with respect to the LOSS.

been proposed in the literature (including those proposed in Chapter 3) and the reader is

referred to Chapter 2 for an overview.

In contrast, the effect of multipath seems to be diametrically opposed when adopting
DPE. Figure 4.6 depicts DPE’s cost function under that setup. It is remarkable that no
secondary optimum appears due to multipath replica. Considering that position is jointly
estimated with the information (measurements) of all in—view satellites, a diversity is in-
troduced in this estimation as the propagation path for each satellite link is independent.
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The approach presented takes advantage of this diversity, being robust against fading mul-
tipath channels [Clo06¢|. Thus, we can claim that DPE provides an appealing framework
for multipath mitigation purposes — claim which has to be yet validated in Section 4.7
with computer simulation results and in Chapter 5 by evaluating the theoretical variance
bound of the estimator. Similarly, the adoption of DPE helps when the LOSS is blocked,
which might occur when a severe fading affects a given satellite link due to obstacles in
the LOSS direction. In that situation, the rest of in—view satellites provide information
regarding user position and the estimation of 4 can be performed. Figures for the signal
blockage scenario are omitted, as they would be similar to those in Figure 4.4.

4.4.2 Receiver’s architecture and requirements

In Chapter 2, the two possible architectures for an antenna array based receiver were dis-
cussed. Namely, DBF and statistical array processing. Either alternatives were depicted
in Figures 2.6 and 2.7, respectively. Figures 4.7 and 4.8 provide the DPE’s counterpart
to those architectures, correspondingly. In the former, a DBF technique is selected to
compute array weights and, then, DPE’s solution corresponds to the case of a single an-
tenna receiver (N = 1 antenna element). The MLE of position under this setup can be
consulted in Appendix 4.D. Along this dissertation, we are interested in the statistical
array processing approach, i.e., finding the MLE of position as the solution to the opti-
mization problem given by (4.35). Henceforth, we do not have to worry about designing
DBF algorithms since we are taking a statistical array processing approach (see Appendix
2.A). Nevertheless, DBF could be considered as in Figure 4.7, relying on a single antenna
DPE’s approach.

The proposed DPE paradigm claims to provide a framework to overcome inherent
limitations of conventional GNSS receivers. Nevertheless, the potential benefits of DPE
do not come at no cost. On the one hand, the computational complexity of DPE is
higher to that of the 2-steps approach. Whereas in the former a single multivariate non-
convex optimization problem has to be faced, the latter splits the solution in several lower
dimensional problems (which in addition can be lightly handled by efficient correlation
structures, refer to Chapter 2). Therefore, an effort should be done in order to find efficient
algorithms to implement DPE in real-time GNSS receivers, topic discussed in Section 4.6.
On the other hand, the transmitters have to be highly accurate in transmitting the signals
synchronously. This assumption is reasonable in the GNSS application since satellites are
continuously monitored for that purpose. In addition, an accurate estimation of the i-th
satellite clock bias — performed by the control segment — is broadcasted in the navigation
message in order to correct this possible source of error.
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Figure 4.8: DPE approach in a SDR antenna array GNSS receiver. A multivariate opti-
mization problem provides user’s position.
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Some analogies hold between conventional and DPE positioning. The optimization in
(4.35), the core operation in DPE’s approach, can be regarded as the analogous operation
to signal tracking (plus navigation solution) in conventional GNSS receivers. In the sense
that this optimization is performed periodically, tracing the values of the elements in
~. Similarly, tracking modules usually require a prior estimation of the parameter of
interest, vector « in this case. Indeed, this prior estimate reminds of the signal acquisition
carried out in conventional GNSS receivers, where a coarse estimation of synchronization
parameters is performed. Figure 4.9 illustrates the blocks composing either acquisition
and tracking modules of both positioning approaches. The corresponding operations are
as follows:

Conventional approach. First, digitized signal is processed in order to obtain a coarse
value of synchronization parameters (estimates of time-delays and Doppler-shifts,
gathered in ©,). This is referred to as signal acquisition, probably constituting one of
the most computationally demanding operations of a GNSS receiver. Afterwards, the
receiver starts a tracking mode where, on the one hand, synchronization parameters
are continuously traced to obtain finer estimates, denoted by ©;. On the other hand,
a navigation solution is computed, which involves the demodulation of the low-rate
navigation message, construction of observables using v and position calculation
as discussed in Section 2.2.3. The process undertaken in Figure 4.9(a) was already
discussed in Chapter 2, where further comments can be found.

DPE approach. In this case, the receiver also follows the two modes of operation: ac-
quisition and tracking, as depicted in Figure 4.9(b). Acquisition involves a coarse
estimation of synchronization parameters as in the conventional approach. These
estimates are obtained after correlation of the received signal with locally generated
satellite codes, ©U.. These estimates are used to demodulate the navigation message
and compute a coarse positioning solution, 4., which serves as an initialization point
for the optimization algorithm in charge of (4.35). The error values of these synchro-
nization coarse estimates is typically on the order of j:% for GPS C/A receivers.
Roughly, this is equivalent to an error of £150 meters. We saw in Section 4.4.1 that
an initialization point with these requirements will be located in the neighborhood
of the global optimum, being a good candidate for algorithm warm up. Notice that
other GNSS signals produce even lower acquisition errors.

The two-steps approach of conventional receivers can be clearly identified in Figure
4.9(a) within receiver’s tracking mode (consisting in fine synchronization and position
computation). In contrast, DPE’s tracking mode consists of the optimization problem that
implements the MLE of position, i.e., a single-step approach. Do not confuse the two-steps
with acquisition and tracking, which are the modes of operation of either receivers.
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Figure 4.9: Acquisition and Tracking schemes for (a) conventional and (b) DPE positioning
approaches.

4.4.3 Asymptotical accuracy

The theoretical lower bound of accuracy of any unbiased estimator is given by the Cramér-
Rao Bound (CRB). Thus, it seems suitable that one needs to derive the bound to answer
the question: “how better can DPE perform compared to the conventional approach?”.
Due to its importance, Chapter 5 is devoted to the study and comparison of conventional
and DPE bounds. Nevertheless these bounds are used in Section 4.7 this Chapter as a
benchmark for the proposed implementation of the MLE of position.
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4.5 The concept of Position-based Synchronization

Although estimates obtained with the proposed approach are the user coordinates them-
selves, it might be desirable to obtain synchronization parameters. This can be accom-
plished by undoing the transformations in (2.21) and (2.24) as these transformations are
expressed by injective functions. The estimation of synchronization parameters relying on
position estimates is referred to as Position-based Synchronization [Clo06¢|, which can be
used as a figure of merit when comparing DPE performance to algorithms that estimate
synchronization parameters. Let the contribution of M visible satellites be gathered in the
measured vector x(t). Then, DPE is in charge of estimating « as discussed hereinbefore.
Time-delays and Doppler-shifts of each satellite (included in vector v) can be expressed
in terms of observables, which are related to user’s motion parameters. Recalling from
(2.21) and (2.24), this relation reads as

pi(y) = | pi—p I +c(0t —dt;) +e
oi(y) = (vi—v)" PiTP . (515 - 5151) + €y, (4.39)
Ipi =P |
where ¢ € {1,..., M}. Therefore, 7; and f;, can be univocally obtained from 4 using

(4.39) and (2.22) as

o= —p(v)

fa, = ((575 — 5751) — %m(’?’)) fe, (4.40)

where f. is the carrier frequency of the signal. Figure 4.10 shows the conceptual idea,
where we use the definitions

p1(Y) p1(y)
: and  p(§) = : : (4.41)

pM'(v) P (Y)

A

p()

Position-based Synchronization can aid when tracking satellites with low carrier-to-
noise density ratios since position is jointly estimated considering information of all in—
view satellites. Thus, taking advantage of this diversity, for instance in indoor navigation
or in environments where the loss of tracking with certain satellites might occur due to
severe fading conditions and signal blockages, among other scenario-dependant nuisance
effects.
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Figure 4.10: Position-based Synchronization. Time-delays and Doppler-shifts can be ob-
tained from DPE solution.

4.6 Optimization algorithms

As discussed thus far, DPE involves the optimization of (4.35), i.e., a multivari-
ate/nonlinear cost function which is not convex at all. Thus, obtaining the MLE of
position requires the design of algorithms to perform the aforementioned optimization
problem in finite time. A number of alternatives can be explored [Ant07, Mic96]. This
section discusses some of the possible choices and presents the algorithm used hereinafter
when presenting DPE results in Section 4.7.

A first approach could be to use a brute force method, evaluating the function on a
coarse grid to roughly locate the global minimum, and then resorting to other methods
to iteratively attain the optimum. As proposed in [FP06], one can combine a grid-based
methodology with a spline interpolation of the cost function in the vicinity of the optimum
[Bar98]. This algorithm has the advantage of being simple to implement, whose only
tunable parameters are the number of points in the grid and the distance among them.
However, it is not suitable for high-dimensional problems since the grid of points where
the cost function has to be evaluated increases exponentially with the dimensionality of
~. Hence, although this approach is optimal in the sense that it attains the instantaneous
optimum of the cost function for an appropriate grid setup, its implementation can be
computationally prohibitive.

Gradient-like methods provide an iterative solution for functional optimization [Arf01],
e.g., Steepest Descent [Caud7] and Newton-Raphson algorithms. These algorithms are
based on the computation of the functional gradient, which carries information about the
slope of the function and, thus, the location of the optimum. Notice that this approach is
valid for the optimization of convex functions, which is not the case in the DPE problem.
A variation suited for the problem at hand can consist in performing a smoothing of the
cost function or a quadratic approximation.

A general method for finding ML estimates that are too complex for direct solution is
given by the Space-Alternating Generalized Expectation-Maximization (SAGE) algorithm
[Fes94]. SAGE is a generalization of the Expectation-Maximization algorithm presented
in [Dem77]. SAGE allows a complex multivariate optimization problem to be simplified
into a number of decoupled optimization problems and solved in two steps: E-step and



112 Chapter 4. Direct Position Estimation

M-step. First, the state-space is divided in subsets. Then, the expectation of the likelihood
is evaluated for some subset of parameters while the others are assumed known. In the M-
step, the maximization of the expectation found in the E-step provides the ML estimates
of the parameters in the subset. The algorithm iterates E and M steps with the unknown
subset of parameters being replaced.

Another alternative is to consider Monte-Carlo methods to design a well-suited op-
timization algorithm, e.g. the Metropolis-Hastings algorithm [Dou05]. To this aim, Se-
quential Monte-Carlo (SMC) methods were investigated and adapted to the multivariate
optimization problem at hand in [CloO6b]. Basically, the algorithm generates a set of sup-
port points in which the ML cost function is evaluated, the trial point associated to the
lowest weight is then propagated to the next iteration until convergence. The proposed
algorithm resembles Population Monte-Carlo (PMC) optimization algorithms [Cap04].
Although its performance was seen to overcome other tested methods [Clo06¢], it involves
intensive computational operations which prevents its use when implementing DPE.

Therefore, the need for an efficient, simple and computationally affordable algorithm
is still an issue. Hereinafter we suggest an optimization algorithm that accomplishes the
three requirements: the Accelerated Random Search (ARS) algorithm [App04]. ARS is
a modification of the Pure Random Search (PRS) algorithm. Thus, we first sketch the
operation of the latter to provide the foundations of the former.

Let A(v) be a real-valued, bounded function with compact support I' C R™. PRS
attempts to solve the generic problem

min {A(7)} (4.42)

~el’

by generating a stream of Ny i.i.d. realizations of ~, denoted as {’y}fvzsl. These sam-
ples are generated uniformly on I'. Then, (4.42) is found after computing M; =
min {A (y): i =1,..., Ns}. The analogous problem of finding the maximum of the func-
tion can be dealt similarly. The goodness of PRS is that the sequence M; converges a.s. to
the minimum under a mild requirement: the function must be measurable. Unfortunately,
the convergence of the PRS is extremely slow in many cases (e.g. when n, is large) and
one might require a large number of trial points to converge.

ARS is an iterative algorithm to solve (4.42). It presents some modifications, which
are basically focused to alleviate the convergence issues of PRS. Hereinafter we index the
iterations of the algorithm by i = {0, ..., Niter — 1}. Basically, at the i-th iteration, the
algorithm proposes to draw sample points (7) from a uniform distribution on a closed
ball centered at the current minimizer (v°). Let the closed ball of radius d* centered at
~% be defined as

B(v',d)={3€Tl : |-+ <d}, (4.43)
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then a sample point is generated as
¥~U(B(v'.d)) , (4.44)

at the i-th iteration. Thus, B (4*,d") C T for any 4" € T". The radius of the ball in (4.43)
is regulated as follows:

e if the value of the function evaluated at the new sample point is smaller than the
previous one (i.e., A (4) < A (")), the former is set as the minimizer and the radius
of the ball is set to its maximum value d,,... This is done in order to avoid being
trapped in local minima.

e when the value of the function evaluated at the generated sample is larger than the
previous trial, the new sample is discarded and the radius of the ball is reduced by
a contraction factor cy. As a rule of thumb, the contraction factor is set to ¢y = 2
if not otherwise stated. This strategy improves the accuracy of the optimization, as
the search space is reduced by reducing the ball’s hypervolume.

e whenever the radius falls below a minimum threshold, d,.;,, it is restarted to its
initial value. In general, it is convenient to fix the initial value of the radius to its
maximum.

e In general, the radius of the ball can be different for each component in . Mean-
ing that it can be designed according to the particularities of each element in the
unknown parameter vector.

The application of the ARS algorithm to the DPE problem is detailed in Algorithm
4.1. The simplicity of the algorithm presents it as an appealing alternative to compute the
ML estimates under the DPE framework. The claim for its simple implementation and
reduced computational cost is twofold. First, it only requires the evaluation of the cost
function in (4.35), as opposite to other more complex approaches where the computation
of the gradient and hessian are required. Secondly, ARS is an algorithm that requires
few parameters to be tuned. This contrast with the majority of Monte-Carlo based meth-
ods, which typically involve the adjustment of a large number of parameters for proper
operation, e.g. the Simulated Annealing algorithm [Laa88, Ott89].

4.7 Simulation results

This section studies the performance of the MLE of position under the DPE framework,
as compared to the conventional two-steps approach. We considered the civilian GPS
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Algorithm 4.1 Direct Position Estimation by the Accelerated Random Search (ARS)
algorithm

Require: din, dmax; ¢f; Niter

Ensure: 4\, = arg r’?el%l {A ()}

Initialization:
1. d° = doax
2: 4 from acquisition or previous estimate.
Algorithm iterations:
3: for i =0 to Ny — 1 do

4:  Generate ¥ ~ U (B (v, d"))
5 if A(¥) < A(%°) then
6: ,),i—l—l — :Y

7 dit! = doax

8 else

9: N

10: dtt =4

11: endif

12: if 4! < d,,;, then
13: dit! = dax

14:  end if

15: end for

16: Amr, = ,-YNicerfl

navigation signal, as described in Section 2.1.1. The simulated receiver filtered the signal
with a pre-correlation filter with a 1.1 MHz cutoff frequency and digitized it at a sampling
rate of f; = 5.714 MHz. The observation time was 1 ms, which corresponds to K = 5714
samples. Two receiver architectures were considered: one considering a single antenna
receiver (N = 1) and another with an 8-element circular antenna array (N = 8). The
receiver was considered static in either cases. The recreated scenario corresponded to a
realistic constellation geometry, with an elevation mask of 5° and with M = 7 visible
satellites. Table 4.1 shows PRN code numbers [Par96], azimuth and elevations of the
generated satellites.

PRN f 9 12 17 18 26 28 29
Azimuth, 6 || 288.9 | 215.2 | 87.9 | 295.4 | 123.5 | 46.1 | 130.6
Elevation, ¢ || 46.9 | 245 |29.1 | 32.1 | 71.5 | 244 | 60.7

Table 4.1: Azimuth and elevation values (in degrees) of the visible satellites.
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The optimality criterion considered is the Mean Squared Error (MSE). Let € be an
estimator of an unknown vector parameter &, then the MSE matrix is defined as

S(€) = Ex { (6-¢)(é- s)T} , (4.45)

which measures the averaged mean squared deviation of the estimator from the true value
of the parameter. The MSE matrix can be decomposed in two terms:

S(€) = C(§) +b(E)bT(¢) , (4.46)

where

C(é) £ By { (5 —Eye {E}) <€ — Eye {£}>T}
& By {€)-¢

represent the covariance matrix and bias of the estimator, respectively. Thus, when as-
sessing the performance of an estimator, we have to keep in mind that the MSE value has
the contribution of both statistical measures. An estimator is said to be unbiased when
Ey e {é} = £ and in that case we have that S(é) = C(é) The unbiased assumption is

~

considered in the derivation of the CRB in Section 5.1, which provides a bound on C(§).
For the sake of clarity, we consider the Root MSE (RMSE) of position as the standard
metric hereinafter. This metric is defined from the MSE of the coordinates of p as

(4.47)

RMSE{p} £ |/MSE{p}
MSE{p} 2 E{(p-p)"(p—p)}

E{(z—2)’} +E{(y—9)*} +E{(z — 2)*}
MSE{#} + MSE{j} + MSE{z} (4.48)

and the CRB of position is plotted similarly, following (5.77).

As discussed in Section 4.6, DPE was implemented using the ARS algorithm (see
Algorithm 4.1). In order to provide a fair comparison between DPE and the two-steps
approach, the parallel optimization of synchronization parameters in (4.38) was imple-
mented also with the ARS algorithm. The designed values for either cases are shown in
Table 4.2. Notice that
]T and dmax = [dmax,my dmax,yy dmax,z]T (449>

dmin = [dmin,xa dmin,y7 dmin,z
are specified in units of meters in the DPE case and that we have different values in

dmin - [dmin,m dmin,fd]T and dmax - [dmaX,Ta dmax,fd]T (45())
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Parameter | Value || Units

Parameter Value || Units Arnin + 10 T, [s]
dminﬂ;y dmin,ya dmin,z 1 [m} dmax,r 10_3 Tc [S]
dmax,xa dmax,y: dmax,z 50 [m} dmin,fd 1073 [HZ]
Cr 2 - dmax,fd 1000 [HZ]
Niter 200 - cy 2 -

1 Niter 200 .

ML positioning T

ML synchronization

Table 4.2: ARS algorithm parameters used to compute the MLE of position and the MLE
of synchronization parameters.

for the estimation of time-delays and Doppler-shifts. Therefore, the pairs {dmin,r: max.r }
and {dmin,f,, dmax.f,} are expressed in units of time and frequency, respectively.

After obtaining synchronization estimates by the ARS algorithm, in the two-steps
positioning approach, these estimates were used to compute user’s position. This calculus
was done with the LS and WLS solutions, as provided in equations (2.29) and (2.31),
respectively. Thus, the figures depict the actual positioning error of both approaches. As
commented in Chapter 2, the construction of weighting matrix €2,, is not unique. In the
sequel, we consider that the diagonal entries in €2,, are the carrier-to-noise density ratios
(C'/Ny) of the corresponding satellites, normalized to the highest C'/Ny value. Thus, if
(C/Ny), denotes the C/Ny of the i-th satellite, the weighting matrix of the WLS problem
in (2.31) is constructed as

Q, = % diag {(C/No)y -+ + (C/No)ys} (4.51)

with
n=max{(C/No);, -, (C/No)y} (4.52)

being a normalizing factor.

With this setup, a number of scenarios were tested, averaging the results over 200
independent Monte Carlo runs. These scenarios were used also in Section 5.3, computing
the CRBs used in this chapter. Namely, these scenarios are:

Scenario 1: All satellites are assumed with equal C'/ Ny, with this value being swept from
20 to 50 dB-Hz.

Scenario 2: All satellites in the constellation are received with C'/Ny = 45 dB-Hz but
satellite 49, whose C/Ny is swept from 10 to 55 dB-Hz. This configuration models,
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for instance, the blockage of that satellite which is seen as a reduction of its received
strength.

Scenario 3: A multipath replica for satellite #9 is present, whose SMR is 3 dB. The
relative azimuth of the replica with respect to the LOSS is 180°, with the same
elevation angle. All satellites are received with a C/Ny = 45 dB-Hz. The swept
parameter in this case is the relative delay between the LOSS of 49 and its replica,
which is varied from 0 to 27T..

Scenario 4: Similar as Scenario 3, but in addition to multipath propagation for satellite
#9, we have that (C'/Np),y = 25 dB-Hz and SMR = —20 dB.

Recreating Scenario 1, the results of each position estimator are shown in Figure
4.11(a). It arises that the RMSE performances attain their corresponding CRBs and
that both estimators have similar asymptotical bounds. However, we can see that the
variance of DPE’s estimator is smaller than the one achieved by a LS processing of ML
estimates of time-delays and Doppler-shifts. Notice that, for this scenario, LS and WLS
solutions are equivalent. In addition, a close look will reveal that the CRB derived under
DPE’s framework is lower than the bound of a conventional 2-steps approach. This was
already predicted by Corollary 4.1. However, simulation results point out that the bound
provided by the CRB might not be valid for low C'/Ny. The reason is that the CRB falls
in the category of small-error bounds, meaning that its validity is conditional on having
small estimation errors. Thus, other bounds could be explored to have more accurate
benchmarks under that regime as discussed in Chapter 5 (cf. [Tre07]).

Figure 4.11(b) plots the results for Scenario 2. As expected, the two-steps WLS solu-
tion outperforms the performance of the LS approach. An interesting effect is seen after
satellite #9 reaches C'/Ny = 45 dB-Hz, i.e., the power level of the rest of satellites. At
that point, the overall position RMSE degrades due to an increase of the Multiple Access
Interference (MAI) that satellite 9 induces to the rest. Since the estimation of synchro-
nization parameters is performed independently, a conventional receiver is not immune to
MALI In contrast, DPE provides an optimal ML approach to jointly process all signals,
analogously as done in multiuser communication systems [Vit95]. Again, the CRB is not
tight enough for low C'/Ny values.

Figure 4.12 presents the results for the multipath environments recreated by Scenarios
3 and 4. As pointed out many times in the literature (cf. [Sou02], for instance), time-delay
ML estimates are biased for close multipath. That bias is propagated through the LS-based
(or WLS-based) positioning solution. Similarly, we can detect the same effect in the DPE
solution. However, the degradation is less severe in the latter, as can be seen from the
bias curves depicted in Figure 4.13 for the case of Scenario 3. Notice that we plotted the
bias for each coordinate in p. From the figures we cannot conclude that the y coordinate
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Figure 4.11: RMSE{p} of MLE of position against the corresponding CRB. Scenario 1
in (a) and Scenario 2 in (b), with N = 1 antenna.

has a smaller bias in general, and we can only claim that for the specific setup simulated
it does. However, it gives the idea that the geometry of the problem will indeed affect the
actual bias of each coordinate.

4.8 Bayesian Direct Position Estimation approach

The proposed DPE framework parameterizes signal model with motion parameters ()
instead of being synchronization dependent (v). This fact is not only seen to provide
performance improvements when implementing the corresponding MLEs, but it also al-
lows the use of prior information in a more natural way. The latter claim comes after
observing the parameters of interest under each positioning approach. Under the conven-
tional approach it is difficult to propose an evolution model or a prior distribution for v,
i.e., time-delays and Doppler-shifts. We experienced this challenge in Chapter 3, where
a rather simplistic DSS model was considered (cf. Section 3.3.2). Although the assumed
prior distribution in (3.81) was useful and exhibited relatively good performance results,
it is evident that it is not capturing the true evolution of synchronization parameters. Es-
tablishing such a model represents a tough problem to deal with. In contrast, DPE arises
as an appealing framework for the inclusion of prior information since the modeling of
motion parameters gathered in < has been vastly addressed in the literature, for instance
[Gus02] and the references therein. The aprioristic information regarding user’s coordi-
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Figure 4.12: RMSE{p} of MLE of position against CRBs as a function of the relative
multipath delay. Scenario 3 in (a) and Scenario 4 in (b), with NV = 1 antenna.
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Figure 4.13: Bias committed in each position coordinate using both MLEs of position as
a function of the relative multipath delay. Scenario 3 and N = 1 antenna.
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nates can either be obtained from existing motion models [BS01], delivered by an Inertial
Measurement Unit (IMU) in an ultra-tight integration configuration [Gre01, Far99] or by
any other available source of information concerning user’s motion like altimeters or dead
reckoning methods. Therefore, we can claim that the use of prior information when the
target parameter is 7 is conceptually easier than in the conventional v-based positioning
approach, where the use of prior information is somehow less apparent since the evolution
of these parameters cannot be modeled easily*.

The aim of this section is to present, formulate and propose a Bayesian framework
following DPE’s philosophy. We refer to the use of prior information under DPE’s ap-
proach as the Bayesian Direct Position Estimation (BDPE) approach to GNSS position-
ing. Section 4.8.1 presents the considered system model, which is expressed as a discrete
state-space (DSS) model. A DSS model is composed of a measurement equation and a
state evolution equation. The former admits few modifications and is obtained straightfor-
wardly from the DPE signal model already discussed hereinbefore. In contrast, the latter
accepts a number of alternatives which might be only limited by the specific application
and the available side information. Some of the possible state equations are discussed,
but it is important to keep in mind that many other alternatives can be considered, being
the list not limited to those examples. Finally, Section 4.8.2 discusses the algorithms that
can be contemplated in order to implement the BDPE paradigm in a GNSS receiver. In
particular, simulation results are provided using a Particle Filtering algorithm to verify
the feasibility of BDPE’s approach.

4.8.1 System model

The Bayesian approach is the natural way to account for prior information. It relies on the
marginal posterior distribution p(~x|x1.x) to estimate vy, given all available measurements
X1.x up to time k. Therefore, we deal with the filtering problem, in contrast to the static
parameter estimation problem adopted so far under DPE’s framework. An overview of
Bayesian theoretical foundations and algorithms can be consulted in Section 3.1, the
reader is referred to this part of the dissertation for further information. Hereinafter we
consider the tracking of ~, € R™ given measurements x; € C™ at time index k, where
n, and n, are the dimensions of the state and measurement vectors, respectively. The
problem is generically represented by a DSS model. State equation models the evolution

4Actually, the inclusion of prior information in the conventional approach is generally done when
computing the navigation solution. Notice that there is a subtle difference in using prior information in
the DPE framework and its conventional counterpart. Whereas the latter operates at the observable level,
DPE manipulates the received sampled signal. This has important repercussions from a signal processing
point of view since, in the conventional approach, prior information is introduced after v is estimated,
possibly affected by its inherent errors, e.g. multipath biases.
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of target states (on which measurements depend on) as a discrete—time stochastic model,
in general

Y = fk*l(ﬁ’k*l) Vk) ) (453)

where f;_1(+) is a known, possibly non-linear, function of the state ~; and vy is referred
to as process noise. v gathers any mismodeling effect or disturbances in the state char-
acterization. The relation between measurements and states is generically expressed as

X = hk(’)’k, nk) > (454)

where hy(+) is a known possibly non-linear function and ny, is referred to as measurement
noise. Both process and measurement noise are assumed white, with known statistics and
mutually independent. The initial a priori distribution of the state vector is assumed to
be known, p(7o).

Hereinbelow, we proceed to identify the possible configurations of the general DSS
model described by (4.53) and (4.54). First, the measurement model is described. As
said, the considered measurement model is inspired in DPE’s signal model, but including
the time dependency of parameters (or states). Afterwards, examples of state equations
are proposed, bearing in mind that the list is not limited to those. Namely, we discuss
motion models, Inertial Measurement Unit’s data, atmospheric models and map matching
alternatives.

Measurement equation

For the sake of simplicity, we consider the single antenna based receiver hereinafter. Sim-
ilarly as done in Appendix 4.D, the K-snapshots signal model reads as:

X = ¢, D(y) + 1y (4.55)

where

o x;, € CY¥ is the observed signal vector, digitized at a suitable sampling rate of
f s =1 / TS7

e ¢, = diag{A,} and A, € CM*M g the diagonal matrix whose elements are the
complex amplitudes of the M received signals®,

e D(v) = [Ad(EKT,,vk),...,d((k+ 1)KT, — Ty, vx)] € CM*E known as the basis—
function matrix and

5We are not taking the risk of confusing the reader with the same notation for complex amplitudes
and acceleration vector. For this reason complex amplitudes are denoted by cj hereinafter this section.
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e n;, € C™X represents K snapshots of zero-mean AWGN with piecewise constant

variance 02 during the observation interval.

Refer to Section 4.2 for further explanations and definitions of the elements in equation
(4.55), where the static parameter problem was treated. As a difference, the model in (4.55)
assumes that K samples are recorded each time-instant k, thus, it accounts for evolving
states.

State equation: a bunch of alternatives

We present a number of examples from the myriad of alternatives that can be considered
for the choice of a state equation in (4.53). Namely: motion models, Inertial Measurement
Unit’s data, atmospheric models and map matching techniques.

1. Motion models. If one is merely interested in the modeling of position (pg), ve-
locity (vg) and/or acceleration (ay), then the following motion models provide an
appealing and simple approach to it [Gus02]. From the differential equations p; = vy,
v, = a; and Newton’s law (relating forces to acceleration), we obtain:

Constant velocity: P: = Po + Vot

Constant acceleration: p; = pg + Vot + aog , (4.56)

which are continuous-time models for motion [Tip78]. In the sequel we consider the
discrete-time model by introducing the states update period 7. The value of 7, has
to be chosen according to the time elapsed between two consecutive time instants
k and k + 1. Agreeing with the definitions in (4.55), we can identify that 7, = KT
in our case.

The general state equation can be rearranged to take into account that some states
are inputs of the system (measurable somehow), defined as uy. Thus, state evolution
can be split in the contribution of two terms: previous state vector and measured
inputs. We can broadly express the linear discrete-time state model as

Y = F v + Foupo + v (4.57)

where F, is the transitional matrix and F, is the matrix that relates inputs with
states. The noise term vy, is regarded as zero-mean and Gaussian distributed with
covariance matrix 3, ;. In the sequel, a number of motion models are considered.
However, it is worth saying that there exist a plethora of possibilities depending on
the application itself and that combinations of the following models are possible.
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o Velocity measurable: If the velocity is assumed to be measurable, for instance
by a speedometer, equation (4.57) reduces to,

Pr = Pr-1 + v 1+ . (4.58)
Yk Fovi—1  Fuugp_g

Under this motion model, only position is considered in the state vector and
acceleration is not taken into consideration. Indeed, this is the simplest model
that can be considered in a positioning application.

o Velocity and Acceleration measurable: If measurements of acceleration are also
available, this information can be introduced in the state equation by increasing
the input vector, resulting in

Vi_—
b —py + (705 Ty < i )M, (459)
Yk Fyve—1 ~ ’

where I3 is the 3 x 3 identity matrix. This might be the case of car and plane
applications, where other devices (apart from the GNSS receiver itself) can
feed such side information to the state equation.

o Acceleration measurable: Notice that for the models in (4.58) and (4.59) we
assume a perfect knowledge of velocity and acceleration values. If only acceler-
ation can be measurable, as is the case of many navigation applications, we can
model the true acceleration a; as being the sum of the observed acceleration
and a bias term:

With this setup, acceleration is the measured input signal and both veloc-
ity vector and acceleration bias are part of the state vector. Thus, our state
equation is now of the form:

ot I 7.1 51\ [ P
Vi = 0 I3 T, -1 Vi—1
day, 0 O I; dag_
Yk Fr\/:y;_l
+ T, I3 | ap—1+v (4.61)
0

Fuyug_1
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2. Inertial Measurement Unit data. The use of IMUs to improve the position

solution provided by conventional GNSS receivers has been widely studied in the
literature. The sensors used in an IMU could be a triad of gyros for measuring
angular-rate and accelerometers for measuring acceleration or specific forces, @}
and E% respectively. Other configurations include an additional axis for calibration

purposes.

An Inertial Navigation System (INS) is a self-contained navigator that generates an
attitude (a.k.a. orientation), velocity and position solution at rates higher than those
achievable by a GNSS receiver. An INS is the device that combines these IMU sen-
sors and navigation algorithms. The INS algorithms for generating attitude, velocity
and position involve, in part, performing the mathematical operation of integration
at the output of these sensors. Thus, any error at the output of the sensors leads to
correlated attitude, position, and velocity errors that are potentially unbounded. A
GNSS receiver, on the other hand, generates position and velocity estimates with
bounded errors. Their error characteristics are complementary, being this the main
reason to integrate GNSS/INS systems in many applications. GNSS/INS integration
architectures can be classified into loose, tight and ultra-tight coupling, depending
on the degree of integration between both systems [Gre01, Lac07]. Loose GNSS/INS
integration makes the GNSS receiver and the INS operate as independent navigation
systems whose positions estimates are blended to form an integrated third position
solution. Tight GNSS/INS integration, in contrast, reduces GNSS and INS to their
basic sensor functions, that is, pseudorange, accelerations, and gyro measurements
are used to generate a single blended navigation solution. In general, classical tight
architectures provide more accurate solutions than loose approaches [Gro08]. Fur-
thermore, tight integration is able to keep extracting useful information from a
GNSS receiver in situations where fewer than four satellites are visible. Ultra-tight
constitutes the most complex GNSS/INS integration architecture [Bab04, BerO8b].
In this case, the outputs of the IMU are used to dynamically tune the parameters
that govern the inner tracking loops of the GNSS receiver, e.g. DLL bandwidth.

Herein we consider an integration of INS data with GNSS measurements under the
BDPE framework. This integration scheme might resemble the ultra-tight architec-
ture, in the sense that INS data is used to rule the estimation of position directly
from the received signal stream.

The general state propagation model considers attitude, velocity and position - refer-
enced to, and resolved in, the ECEF frame [Gre01]-, together with the accelerometer
(b,) and gyro biases (b,) referenced in the body frame. The INS partition of the
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state vector comprises the following 15 states:

b
Vi,
P, | o (4.62)
bb
ag
b
bgk

Yk

where the superscript e is used to denote the ECEF frame and the superscript b
is used to denote the body frame, that read as e-frame and b-frame respectively.
Subscript k£ denotes the discrete time index. To obtain the INS system model, the
time derivative of each state must be calculated. The attitude propagation is derived
first, followed by velocity, position, accelerometer and gyro biases propagation.

The attitude evolution uses the angular-rate measurement ¢, provided by the INS.
This attitude is expressed as the body-to-Earth-frame coordinate transformation
matrix:

br—1 b1 br—1

e <I3+Q" T)—Q;; e T (4.63)

where Q2 is a skew-symmetric matrix® with the contributions of the gyro angular
rate measurements and the gyro bias. At the k-th time instant, it is constructed as,

b b
Qibk = [wibk X}
b T
Wiy, = [w?b,z’ w?b,y’ Wfb,z] ‘k
= @) —bl . (4.64)

where [wfbk x} denotes the skew-symmetric matrix defined as

b b
X N 9 —Wip 2 wibéy
[wibk X] = Wibb,z ? ~Wib (4.65)
_wib,y Wib,z 0 k

In equation (4.63), 75 is the interval between the input of successive accelerometer
and gyro outputs to the inertial navigation equations and matrix €2, is the angular
rate matrix for Earth rotation in the e-frame:

0 —Wie 0
Q. = we 0 0], (4.66)
0 0 0

6A is a skew-symmetric matrix if it satisfies that AT = —A.
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in the WGS84" [EUR9S] value for the Earth’s angular rate is w;, = 7.292115 x 107°
rad/s.

The velocity and position update equations use the specific forces measured along
the b-frame coordinate system, f5. Hence, we have to change the coordinate system
to the e-frame. The velocity update equation reads as
b
Vi, = Vi, + (G fh 8- 2%, ) Te (4.67)
where vector gf represents the gravity vector calculated in the e-frame and f}, is
computed with the specific force measurements and the accelerometer bias:

fb

bk —1

=f, —b> (4.68)

ibg—1 ak—1
Similarly, the position update equation is computed as

2

e e e e ,];
+ ( bk,lfil;;k,l +8 — 2Q¢evibk,1> by

We can assume that accelerometer and gyro biases are constant except for a random
component that we can represent as random processes:

bgk = bZ + Uakfl
by = b+, ., (4.70)

whereas b? and b? are constant and depend on the manufacturer, v, and v, are
r.v. which represent the accelerometers and gyros noises, respectively.

As one can see, the main sources of system noise on the inertial navigation solution
are random walk on the velocity due to noise on the accelerometer specific-force
measurements and random walk of the attitude due to the noise on the gyro angular-
rate measurements. In addition, where separate accelerometer and gyro dynamic
bias states are not estimated, the in-run time variation of the accelerometer and
gyro biases can be approximated as white noise.

3. Atmospheric models. The propagation of GNSS signals through the atmosphere
affects its reception. In particular, the uppermost and the lower parts of the

"The World Geodetic System (WGS) is an international standard for navigation coordinates. The
standard comprises a coordinate frame for the Earth, a reference ellipsoid and a gravitational equipotential
surface (a.k.a. the geoid) that defines the nominal sea level. There have been a number of versions, being
the latest released in 1984 and denoted by WGS84.
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atmosphere cause non-negligible effects, ionosphere and troposphere respectively
[Par96, Gre01].

The free electrons in the ionosphere (due to gases ionized by solar radiation) causes
GNSS signal to propagate through a dispersive medium. In that case, the propaga-
tion velocity is no longer the vacuum speed of light, but a function of the carrier
frequency (o< 1/f2). This is seen as a delay in the signal modulation (i.e., pseudo-
range is delayed) and as an advancement of the phase of the signal in an identical
amount. There are 3 alternatives to combat the effect of ionosphere in observable
measurements:

(a) A parametric model of such delays is available due to Klobuchar [Klo76], with
its parameters being broadcasted in the navigation message by the satellites.
For instance, conventional single-frequency GPS receivers make use of the
eight coefficients of the Ionospheric Correction Algorithm (ICA) model [K1087],
which are transmitted in the GPS navigation message. Other ionospheric mod-
els can be found in the literature such as DGR [Gio90] and NeQuick [IR97].

(b) More sophisticated dual-frequency GNSS receivers can directly solve for the
delay, taking advantage of its dependency with the carrier frequency. We are
not taking this approach in the dissertation, as we consider single-frequency
receivers.

(¢) Another solution is to rely on a real-time correction network, which broadcasts
ionospheric corrections for a number of reference stations. This is referred to
as differential operation. In Satellite-Based Augmentation systems (SBAS) like
WAAS or EGNOS, the correction for the ionospheric delay is achieved by
transmitting a grid of vertical ionospheric delay values and performing some
kind of interpolation [Rho05].

Regarding the tropospheric delay, it is a function of elevation and altitude of the
receiver, and is dependent on many factors such as atmospheric pressure, temper-
ature and relative humidity. Unlike the ionospheric delay, the tropospheric delay
is not frequency-dependent (because it is not a dispersive medium at GNSS fre-
quencies) and it cannot therefore be eliminated through linear combinations of ob-
servations on different frequency bands. Thus, it becomes the dominant source of
atmospheric error in multiple-frequency receivers. In contrast to ionosphere-induced
delays, the tropospheric path delay lengthens the propagation time equally for code
and carrier signal components. The mitigation of such effect is typically achieve by
differential techniques and interpolation, due to its high spatial correlation. Refer
to [Hop69, Saa73, Jan91, HW97] for an overview of tropospheric models, which re-
mains as an open topic due to the difficulty in modeling the water vapor (the basic
component of troposphere).
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Taking these atmospheric effects into consideration, the pseudorange observable of
the i-th satellite presented in (2.21) can be better described as

Pi :H P: — P H +C(5t—5ti)+cA[+0AT—F€i , (471)

where ¢ is the speed of light and the same definitions assumed in (2.21) hold. The
ionospheric and tropospheric caused delays are denoted by A; and Ar, respectively.
These delays are obtained either using atmospheric models or by differential tech-
niques. Thus, A; and Ar can be regarded as inputs of the DSS model. Considering
a generic unknown state vector «, the general filtering problem can be augmented
to account for such side-information

Yo = fe1 (w1, Ar, Agy, vk) (4.72)
Ap,.,Ap, <= Atmospheric models or differential techniques .

The inclusion of atmospheric information is thus independent of the state evolution
and can run independently. All state equation alternatives allow the use of such
data, which will improve its results since, at the end, they all rely on the observable
equation (4.71). It is out of the scope of this dissertation the study of atmospheric
models and an interested reader is referred to the provided references. At this point,
it suffices to say that these values can be straightforwardly computed from the
navigation message and/or by differential approaches.

Map matching. Finally, in order to show the versatility of the approach, a way of
integrating information from maps is sketched. At a glance, car navigation by map
matching consists in matching trajectories to a possible path in the road network.
Map matching can be easily incorporated in the state-evolution function within the
BDPE framework. The process of map matching is represented by the functional

M():T+—T, (4.73)

where I' is the subset in R™ that contains v. Then, M(-) is a function that maps
state evolution into the space of possible states (e.g., force the trajectory of a car to
be inside highway lanes). Including the time instant subindex k, the state equation
turns to:

Yie = My (fe—1 (Ye—1, V%)) (4.74)

where 7, can be composed of any motion parameter, as explained before. Actually
this model is complementary with the ones discussed previously since f_; (+) is left
arbitrary (as in the atmospheric data case). However it is presented here to reinforce
the framework nature of BDPE, which can be considered as a way to gather any
sort of prior information in the position computation.
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4.8.2 Algorithms and simulation results

Section 4.8.1 presents some of the alternatives for the design of the DSS model in the
BDPE approach. As a conclusion, we can say that the model is composed of a nonlinear
measurement equation and that a large number of state configurations can be envisaged,
depending on the particular application. Some of them being linear and others nonlinear.

The algorithms that can be used to deal with such DSS models were extensively de-
scribed in the first part of Chapter 3, where Bayesian filtering was discussed. Due to the
nonlinearity of the measurement equation (and possible nonlinearities in the state evo-
lution), we have to deal with suboptimal algorithms as those presented in Section 3.1.3.
For example, Extended Kalman Filter, Gaussian Filters (e.g. the Unscented Kalman Fil-
ter) [Ito00] or Particle Filters are possible candidates. However, the list is not limited to
these algorithms, and the selection of a given filtering algorithm is closely related to the
application and, consequently, to the DSS model. Thus, the design of a BDPE algorithm
should be determined on a case-by-case basis. It is not the aim of this dissertation to
present rather complex BDPE algorithms, but to prove the feasibility of such approach.
Therefore, without loss of generality, the Bootstrap Filter (BF for short) is used in the
simulation results herein due to its simple implementation (see Section 3.2.5 for details).
Recall that the BF is a particular implementation of a PF. At a glance, PFs sequen-
tially characterize the posterior distribution of a filtering problem based on Monte-Carlo
integration convergence results and the Sequential Importance Sampling (SIS) concept
[Dju03, Dou0la, Ris04]. Basically, this characterization involves the approximation of the
filtering distribution by a set of Ny random samples taken from an importance density
function, 7(-), with associated importance weights w}. In general,

vi o~ T(Vlvi_1, Xik)
. PR P(Yel Y1)

w _ e (4.75)
. w (Vi Ve—1> Xk)
and
i W}
Wy = =N, (4.76)
Zj:l w;,

N

are the normalized weights. For a set of generated particles, {~;, wj}};"|, the characteri-

zation of the marginal posterior distribution is given by

N
POvelxin) = D wid(we — i) (4.77)

i=1
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Parameter Value Units
7 5.714 [MIZ]
f. 1.023 [MHz]
B 1.1 [MHZ]
K 1073 [s]
M 7 -
PRN¢ 9-12-17-18-26-28-29 -
elev. cutoff 5° [degrees]

Table 4.3: Parameters of the generated signal.

being §(-) the Kronecker’s delta function. Then, the MMSE estimate of 7, can be com-
puted as

N
Y= wivi . (4.78)
=1

The BF considers a particular setup for the equations in (4.75), where the transitional
prior is used as the importance density function, i.e.,

Yo ~ PGl
Wy o Wi pXe[YE) (4.79)

and, in the following simulations, we have considered that resampling is systematically
performed whenever the condition N¢; < %NS holds. Ny is the effective sample size, as
defined in (3.52).

The trajectory of a mobile receiver is simulated using SatNav Toolbox of GPSoft,
see left-hand side in Figure 4.14. The resulting trajectory is then used to feed a signal
generation tool, aiming at testing BDPE under realistic conditions. The simulated signal
follows the standard for GPS C/A code signal. The main characteristics of the recreated
environment are summarized in Table 4.3. Right-hand side of Figure 4.14 plots the evolv-
ing Signal-to-Noise ratios (SNR) of each visible satellite, for the whole considered interval
of 60 seconds.

The Bootstrap Filter (BF) algorithm designed for the following simulations considers
that ~; contains the 3-D position coordinates of the mobile receiver and that the model
in equation (4.58) is used to model the transition between states, that is the algorithm
has knowledge of the 3-D velocity of the receiver. Figure 4.15 shows the RMSE of each
position coordinate as obtained by the BF implementing the Bayesian DPE concept when
considering Ny = {50,200} particles. The algorithm processes K samples at each instant k
and outputs a filtered state ~y,. With the simulated setup, it is equivalent to say that each
millisecond the filter processes 5714 samples. From simulation results, BDPE stands as a
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Figure 4.14: Recreated scenario. Simulated trajectory using SatNav Toolbox for Matlab
by GPSoft in (a) and SNRs of the visible satellites in (b).

reliable approach to positioning while considering side information. As discussed earlier,
other state evolutions can be used which could eventually improve the results presented of
this simple example. Nevertheless, the aim of the section is to point out the applicability
of BDPE. A further improvement of the results, in terms of variance reduction, is to
average over a few of milliseconds (as it is usually done in conventional receivers).

4.9 DPE vs BDPE: open and closed loop interpreta-
tions

We can say that DPE and BDPE are the obverse and reverse of the same coin: although
they share many important features, important differences exist between them. So far we
distinguished DPE and BDPE as being the ML and Bayesian counterparts of the same
concept, respectively. We stressed that their main difference is whether the parameter of
interest is static or dynamic, respectively. However, this is not strictly true since DPE —
following the ML paradigm — can be considered for time-varying parameters by assuming
it piecewise constant during the observation interval and applying the estimator each time
a new set of samples become available. The optimum static parameter estimator, under
the ML criterion, was derived in Section 4.3 and the Bayesian approach was discussed
in Section 4.8. Furthermore, we claimed that the use of a priori data constitutes an
inherent difference between both alternatives. When considered, the dynamical model
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Figure 4.15: RMSE of the BDPE position coordinates solution, implemented by a BF

plays an important role as discussed earlier. Yet another interpretation can be given to
these approaches. From an implementation point of view, whereas DPE describes an
open loop architecture, BDPE is a closed loop implementation of the direct positioning
approach proposed in the dissertation.

As exposed in Section 4.3, the solution of DPE’s approach requires the optimization
of a cost function, denoted by A(%;x;) and defined in (4.35). Notice that here we make
explicit its dependence with measurements, x;. In Section 4.6 a number of optimization
methods were analyzed, with the ARS algorithm being selected. In Figure 4.16 the oper-
ation of such algorithm is sketched. Observe that the bulk of optimization algorithms are
in accordance to that diagram, substituting the dashed boxed with its corresponding op-
erations. Therefore, it arises that one deals with an open loop scheme when implementing
DPE in a GNSS receiver. Although the algorithm operates in an iterative way, it is not
using feedback from the output to control its operation. The ARS algorithm in particular
provides an estimate of ~ given the measurements in k after Ny, iterations. Thus, if
T, denotes the sampling period and x; is composed of K samples, the algorithm has to
ensure that its execution is performed before the next set of sample data is available, i.e.,
teNiter < KT, with t, being the execution time of one iteration of the algorithm.

Conversely, BDPE is implemented under the Bayesian filtering paradigm. A number of
algorithms can be considered to that aim, the larger part of them sharing the same closed
loop architecture. For example, if one implements BDPE by means of a KF-like algorithm,
the resulting scheme is shown in Figure 4.17(a). Similarly, a generic PF implementation
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Figure 4.16: Open loop architecture of DPE approach, as implemented by the ARS algo-
rithm.

would provide the closed loop algorithm depicted in Figure 4.17(b). Although both algo-
rithms are conceptually different, their architectures are alike. Either algorithms take into
consideration measurements and previous estimates to perform the classical prediction-
update steps, discussed in Section 3.1. Generally, closed loop systems are used to obtain
more accurate results or improve adaptive control. In this case, it is necessary provide
feedback of the output of the system to the filtering algorithm. A particular advantage of
using this scheme is that measurements can be handled sequentially as they are received,
avoiding large memory sizes for further calculations (as is the case of DPE and its cost
function optimization).

4.10 Related work

As far as the author knows, Direct Position Estimation is a novel topic in the GNSS
positioning application. Nevertheless, there is some related work in the literature which is
worth mentioning. In particular, two interesting ideas share some of the concepts of DPE.
Namely, a GNSS receiver architecture that breaks the independency among tracking loops
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Figure 4.17: KF like (a) and PF (b) implementations of BDPE, either describe a closed
loop architecture.
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and a single-step radiolocation procedure. These contributions are discussed in Sections
4.10.1 and 4.10.2 respectively.

4.10.1 Vector Delay Locked Loop

In [Par96], the idea of jointly processing all visible satellites was initially proposed. The
so-called Vector Delay Locked Loop (VDLL) merges the two possible loops in a GNSS
receiver: delay lock loops and position loops. The former are the bank of DLLs and FLLs;
the latter loop comes after making the LS positioning problem recursive, then one deals
with an EKF loop where the states are the position coordinates and the measurement
consists of the set of outputs of the PRN code correlators. Thus, a VDLL replaces tracking
loops by the navigation processor, since it indeed controls the code and carrier NCO.
Actually, the VDLL algorithm can be seen as a particularization of the BDPE approach
when using the EKF algorithm with a specific DSS model configuration. The VDLL has
the feature of not requiring additional hardware equipment, thus its implementation does
not involve any increase in power, weight or size. It was seen that the VDLL provides good
performances in weak signal conditions and in the presence of interferences [Pan06, Las07].

4.10.2 Radiolocation by Direct Position Determination

The two-steps approach is also the basis of radiolocation and geolocation applications,
refer to [Foy76] and the references therein. The problem in this case is to locate a radiating
emitter using a set of receivers®. The mobile terminal radiolocation problem is depicted in
Figure 4.18. With this setup, the i-th Base Station (BS) estimates one or more location
dependent signal parameters from its measurements, denoted by x;(¢). For instance, these
parameters can be the Time Of Arrival (TOA), Angle Of Arrival (AOA), Doppler-shift or
signal strength [Tor84]. Notice that these parameters are used to infer a relative distance
between the emitter and the i-th BS. Afterwards, the estimated distances to each receiver
are jointly processed to compute the mobile’s position in a Fusion Center (FC).

Recently, [Wei04] proposed to merge the two-steps in a single estimation process. This
approach was termed as Direct Position Determination (DPD) in [Ama05], where the
localization of multiple emitters was faced. In [Ama08a] this principle was applied to the

8Unfortunately, it is not difficult to imagine a number of military applications of radiolocation. Actu-
ally, the research interest in that field increased during World War II due to its evident usage. Nevertheless,
nowadays one can find civilian geolocation applications such as the international cooperation programme
Cospas/Sarsat [Sca84], which aims at supporting Search and Rescue teams in catastrophes and accidents
by locating the emitter of a distress beacon. Cospas/Sarsat has received some attention in the literature,
due to its inclusion as a payload of Galileo satellites [FP05a, FPO6].
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Figure 4.18: Radiolocation problem: location of an emitter by a set of receivers.

radiolocation of emitters using Doppler measurements. In a DPD approach, the FC gathers
all measurements acquired by the BSs, which are jointly processed to compute emitter’s
position without intermediate steps. This implies an increased network complexity since
the amount of data to be transmitted to the FC is larger than the conventional approach,
where only the estimated relative distances are transmitted from each BS to the FC.

Although conceptually opposed to the GNSS problem, which is the positioning of a
receiver instead of an emitter, the signal processing methodology of both applications is
similar. DPD shares the basic idea of the DPE approach proposed in this dissertation:
reducing the conventional two-steps position solution to a direct estimation of position
coordinates. The main difference between both is conceptual. DPD was envisaged for
the radiolocation problem, i.e., computing the position of a transmitter by measuring its
relative distance to a number of BSs. Thus, a Fusion Center is in charge of determining
the position of the transmitter based on the measurements of the BSs. Conversely, a
GNSS receiver aims at locating itself by measuring its relative distance to a number
of transmitters (satellites). Hence, the fundamental problem is different in the GNSS
application. DPD and DPE can provide parallel and overlapped work notwithstanding,
which is worth to take into consideration.
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4.11 Summary

Conventional GNSS receivers are based on a two-steps procedure to compute user’s posi-
tion: estimation of synchronization parameters and position calculation by trilateration.
With this idea being already reviewed in Chapter 2, the present chapter emphasized the
drawbacks of this approach. Basically, the main problems associated to this positioning
procedure are due to independent estimation of synchronization parameters, neglecting
the existing constraints among them. Namely, the fact that time-delays and Doppler-shifts
can be parameterized by common parameters, i.e., position, velocity and clock bias.

The core contribution of this chapter is the study of a Direct Position Estimation
(DPE) approach, as an alternative to conventional two-steps positioning approach. By
proving Proposition 4.1, we were able to claim that DPE outperforms a two-steps pro-
cedure in the MSE sense. Bearing this in mind, we developed a framework where GNSS
receivers with improved capabilities can be conceived. DPE was studied from many points
of view:

e The MLE of position was derived in Section 4.3, consisting in a nonlinear multivari-
ate optimization problem. Notice that, in general, this estimator is different from
that obtained after solving the MLE of synchronization parameters and plugging
in the WLS trilateration problem. This difference became evident in computer sim-
ulation results discussed in Section 4.7, where both positioning alternatives were
compared. A number of significative scenarios were tested, validating Proposition
4.1 and its Corollary. Also, DPE was seen to be a twofold promising alternative. On
the one hand, improving the performance in scenarios where independent sources of
errors among satellite links were affecting the receiver (e.g. multipath propagation).
On the other hand, providing an optimal way to deal with MAI, in the ML sense.

e In simulations, the optimization was performed by the Accelerated Random Search
(ARS) algorithm, which was deemed a suitable algorithm after inspecting the na-
ture of the optimization problem (cf. Section 4.6). ARS is an iterative optimization
algorithm with the particularity of having few tunable parameters and providing
a.s. convergence to the optimum. With such algorithm, the MLE of position was
seen to be asymptotically efficient in the sense that it attains the CRB.

e A qualitative comparison of DPE and two-steps approaches was given in Section
4.4, in contrast to the quantitative analysis in Section 4.7. Section 4.4.1 involved
a comparison of the optimization problem arose by MLE of position and synchro-
nization parameters, DPE and conventional approaches respectively. Following the
SDR paradigm, in Section 4.4.2 the basic block diagram of a GNSS receiver imple-
menting DPE was outlined. In addition, its possible operation was discussed and
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compared to the conventional acquisition and tracking modes. The comparison of
both alternatives in terms of positioning accuracy was left to the simulation results
(MSE performance) and Chapter 5 (theoretical variance bounds).

Position-based synchronization proposes the other way around to the conventional
approach, that is to say, obtaining synchronization parameters from user’s position
computed under DPE’s approach. This concept was introduced in Section 4.5.

Apart from its improved performance in the static parameter case, DPE has another
important feature: it allows the use of prior information naturally when estimating
user’s position. Since the parameter of interest includes (being not limited to) motion
parameters, elicitation of prior distributions or evolution models for such parameters
is easer when compared to the case of synchronization parameters. Thus, DPE
was seen to provide a general foundation for the inclusion of prior information in
GNSS receivers, as discussed in Section 4.8. The Bayesian counterpart of DPE’s
approach was termed as Bayesian Direct Position Estimation (BDPE). The general
framework to study such approach is Bayesian filtering, including DSS modeling of
the system. Whereas measurement equation admits few alternatives, selection of the
state equation is not restricted to a specific configuration. Therefore, a number of
state configurations were proposed considering prior data of different nature (from
INS data to atmospheric information, including motion models). Simulation results
showed the feasibility of BDPE.

Section 4.9 compared the possible implementations of DPE and BDPE concepts.
An interpretation in terms of open and closed loop architectures was given for DPE
and its Bayesian version, respectively.

Summarizing, this chapter proposed a novel alternative for GNSS positioning where

the conventional two-steps approach is combined into a single optimization problem. DPE
was seen to provide, at least, the same performance than the conventional approach and
improved capabilities in hazardous scenario conditions. Due to its novelty, a number of
open issues are yet to be investigated as will be commented in Chapter 6.
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Appendix 4.A Proof of Proposition 4.1

Denote the log-likelihood function of measurements x given ~ by L (x|g(y)) =
Inp (x|g(7)). Then, the MLE of « is
Y, = argmax {£ (x|g(v))} , (4.80)

which equals 7, by definition. Notice that the optimization search in (4.80) shall be
performed only over the space T'.

The two-steps approach consists in first estimating the MLE of v as the solution to
Oy, = argmax {L(x|v)} (4.81)
veY

and, then, use this estimate to obtain ~y, using its relation with v. For instance, the second
estimation step can be done by a WLS, which is the common choice in conventional GNSS
receivers:

Y = argmin {A(7)}

= argmin { (&1~ 9())" Qu (B~ 9() | (1482)

YE

where €2, is a real, positive definite and symmetric weighting matrix.

To prove (4.3), we first obtain the asymptotical expressions of the covariance matrices
of the estimators, 3(4;) and X(42) respectively.

Since the one-step estimator is the MLE, it is well-known that it is asymptotically
efficient under regularity conditions [Sch91]. This means that its asymptotical covariance
equals the inverse of the Fisher Information Matrix (FIM), defined as Jp(vy) € R™*™.

Thus,
T S(5) (E{M%BM) (35(25(7») })

£ J: (). (4.83)

Using the chain rule we can extend the derivative as

oL (x|g(v)) 0oL (x|v) ovT oL (x|v)
10% 9y 0y v

(4.84)
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which substituted in (4.83) results in

Jim ¥(3) = (m: { (%’f oL éﬁ'v)) (a;: oL éi’w)T})_l

- (e[ rpma )

oy Ov Jov 0Oy
" [OL (x|v) 0L (x]v) | dv -
oy ov ov 0y
ovT v\

where Jp(v) € R™*™ is the FIM of v.

Now we focus on the covariance matrix of ~,. According to [Che05], for large data

sets,
st~ (2 { G2 )) (SR (B {TRE)) T e

can be used as an approximation. We know that:

A(y) 2 (Dun — 9(7)" Qu (Due — 9(7))
B~ 2% (o g()
PA~)  ov" | Ov
oy QWQUJ% ; (4.87)

which, substituted in (4.86), yields to

) ovT o -1
S(4) = (Eﬁ {%nw%})

Es {Q%Qw (Omr, — 9(7)) (Q%Qw (Omr, — 9(’)’))) }

ovT  ov)\ !
E, {222 o, %Y (4
(’”{ O w07}> (4.88)
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The first and last expectations in (4.88) do not contain terms with ©, thus we can
neglect the expectation there

. ovT v\ !
3(A2) <Wﬂw%>
3UT . R T 3’0
WQwE@ {(UML —9(%)) (OmL — g(7)) } Qw%

ovT v\ !
- 0,2 o4
(37 “’37> (4.89)

We now recall that the covariance matrix of Uy, tends to the inverse FIM under
regularity conditions, then

ovT v\ ot ov (vT v\ "
lim X(42) = | —Q,— —0 Q,— | —Q,— ) 4.
gz = (Grogy) Graaswng (Gregs) - o
Defining
ov”
VvV, =
1 87
Vv, = (Vi V1) 'v,Q, , (4.91)

for the sake of clarity, we have that the asymptotical variances can be expressed as

Jim B(31) = (ViJe(w)V]) ™ (4.92)
Jim 3(%,) = VoJp(v) VY. (4.93)

Substituting (4.92) and (4.93) into (4.3),
C 2 VyJp(v)VE — (VI p(v)VT) | (4.94)

we are ready to verify its positive semidefiniteness, i.e., for any real vector u # 0, we have
that
u’Cu>0. (4.95)

Define the vectors

a = J}1/2(U)V2Tu
1

b = J 0V (Vidp(v)VT) " u (4.96)
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and, by the Cauchy-Schwartz inequality”, we have
' VoJp(v)VIiu) (u? (Vi Ip(v)VT “u) = (u? V1Jp(v)VT “u 220. 4.97
2 1 1

Recalling that (VlJ F(U)VlT)_1 is a non-negative definite matrix, since it represents a
covariance matrix, we can write (4.97) as

u? (VQJF(U)VQT - (VlJF(v)VlT)”) u>0, (4.98)

proving (4.95), g.e.d. m

Notice that the inequality in (4.98) becomes equality when we choose the weighting
matrix such that Q, = Jp(v). However, the true value of v is not available, which
reinforces the idea that the one-step estimation cannot be outperformed by the two-steps
approach.

9Cauchy-Schwartz inequality: || a [|?|| b [|> —(a’b)? > 0
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Appendix 4.B Derivation of the Spatial Signature
Matrix

An FEast-North-Up (ENU) local plane coordinate system is used in the receiver calcu-
lations, with the phase center of the array being typically considered as the origin (see
Figure 4.19).

L

i-th satellite

b 90ﬁ

L

Figure 4.19: Definition of the azimuth and elevation angles for the i-th satellite, 8; and ¢;
respectively. The origin of the ENU coordinate system is the phase center of the array.

Considering M sources and N antennas with arbitrary geometry, we are interested in
the time delay of each source observed in each antenna. This can be expressed in a matrix
form as

GT = exp {jTKR} , (4.99)
where K € RM>3 is referred to as the wavenumber matrix, defined as
cos(by) cos(¢1)  sin(6q) cos(fy)  sin(¢y)
K = : : : (4.100)
cos(fyr) cos(par) sin(Byr) cos(Opr)  sin(oar)
and having its rows pointing toward the corresponding emitter, being 6; the angle of the

i-th source defined anticlockwise from the e axis on the en plane and ¢; the angle respect
the en plane. The other term in (4.99),

Tey v Tey
R=| ry .. my |, (4.101)
Ty Tun

is the matrix of sensor element position, normalized to units of half wavelengths with
respect the e, n and u axes.
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Appendix 4.C Proof of Proposition 4.2

To prove that W = f{m — f{xdf{;;f{ﬁl is a positive definite matrix, we use the cross—
correlation definitions in equation (4.18) in W to obtain

1
W = E(HD+N)(HD+N)H

N % (HD + N) D" (DD”) ™' D (HD + N)* . (4.102)

Neglecting irrelevant constants, we can further manipulating equation (4.102):
W « HDD”HY + HDN” + ND”H"” + NN¥
— HDD” (DD”) "' DD”H” — HDD” (DD”) ™' DN”
— ND7 (DD”) "' DD”H” - ND” (DD”) ' DN"
which yields to:
W « HDD”HY + HDN” + ND"H"” + NN/
— HDD”HY — HDN#
NDH” - ND” (DD") "' DN . (4.103)

The expression in (4.103) is clearly equivalent to:

A

W « NN7 - ND” (DD")"' DN”
I- D" (DD¥) ™' D) N

I-Ppu)NT | (4.104)

where I is the identity matrix and Ppr = D (DH )T is the projection matrix over the
subspace spanned by the columns of D¥. Notice that I — Ppx is also a projection matrix,
which projects over the subspace orthogonal to the latter. As projection matrices are
non—negative definite and the expression obtained in (4.104) has a quadratic form, the
proof on the positive definiteness of matrix W is concluded. O
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Appendix 4.D MLE of position in single-antenna
based receivers

The K-snapshots array signal model in (4.13) has its single antenna counterpart in:
x =aD(v) +n, (4.105)

where

x € C*¥ is the observed signal vector,

a € CM ig a vector whose elements are the complex amplitudes of the M received
signals a = [ay, ..., aum],

v € R*Mx1 gathers T and f, i.e., time-delays and Doppler-shifts of each visible
satellite,

e D(v) =[d(ty,v),...,d(tx_1,v)] € CM*K known as the basis—function matrix and

e n € C™X represents K snapshots of zero-mean AWGN with piecewise constant
variance o2 during the observation interval.

We first take into account that the MLE is equivalent to the solution obtained by
a Least Squares (LS) criterion under the assumption of zero-mean AWGN. Neglecting
additive and multiplicative constants, maximizing the likelihood function of measurement
equation (4.13) is equivalent to minimizing

Ao, T £) 2 A(a,0) = % [x — aD(v)|]? (4.106)

with respect to a,v. With the following cross-correlations estimation definitions:

. 1 5 1
Toz = EXXH R.q(v) = EXDH(’U)

. R . 1

Ry.(v) = RE (v) Ryq(v) = ED(’U)DH(’U) : (4.107)

it is straightforward to obtain the MLE of amplitudes as

A

ayr, = Rua(v)R (v) (4.108)

~ Y
T=7mL.fa=fay;

which is the Wiener solution.
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The ML estimation of synchronization parameters is then obtained by minimizing the
nonlinear cost function resulting from the substitution of (4.108) in (4.106),

TML, fdML = argmin{A(7,f;)} = arg mgn {A(v)}

£y
— argmin {7« - Rxd(v)f{;;(mf{g;(v)} . (4.100)
T,1q

Our aim is to obtain an expression of the likelihood function dependent on 4, i.e., as a
function of user position instead of the synchronization parameters. Notice that 7 = 7(~)
and f; 2 f4(7), as described by equations (2.21) and (2.22). Thus the MLE of user position
is given by the vector v that maximizes the likelihood function or, equivalently, the vector
~ that minimizes A (). As thanks to the invariance principle of the ML estimates under
injective functions [Pap01]. Hence,

ML = argmgn {A (’7)}

~ argmin {70 — Roa (1) Ry () RE ()] - (4.110)
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Appendix 4.E Consistency of the MLE of position

An estimator of a parameter -y is said to be consistent if its estimates converge in prob-
ability to the true value (hereinafter denoted by “) of the parameter as K — oo, being
K the number of samples used. We first deal with the single antenna based receiver and
then, treat the more general antenna array case.

e Single—antenna case:

The asymptotic values of the correlation terms in (4.107) are

- 1
lim R,y = lim — (aD(¥) +n) D" (v) = aCu(¥,7) (4.111)
K—oo K—oo K
I;li{l)o Tew = Tzz [PE)HOO Rdd = Cdd(’)’, 7) (4112)
1
where Caa(n,m) = [}im ?D(n)DH(m) : (4.113)

The limit of the ML cost function in (4.110) is constructed from substitution of the
latter expressions in A (7). Then, adding and subtracting aCg(,~)a?, we have:

-1

im A(y) = 7w —aCu(¥,7)Cot (7,7)ClL(5,~)al

K—oo
= aQa’ + Jim A (%) (4.114)
Q = Cu(¥.%) = Caa(¥.7)Col (v, V)Clh(¥.7) - (4.115)

The problem is prove that 4/ minimizes the ML cost function

lim A(y) > lim A(Y) ,Vy (4.116)

K—o0 K—o00

which occurs if €2 is a non—negative definite matrix, since is straightforward to prove that
A () is a positive definite matrix. Notice that €2 is the Schur complement of Cg4(7y, ")
in the matrix formed as

Cdd(’uya’?) Cdd(i’)?’) T i D(’?) Hois "
( Chi(%,7) Caa(v,7) ) = g ( D(~) ) (D7(%) D(v) ), (4.117)

being the matrix non-negative, due to its quadratic form, any Schur complement of it is
also non-negative, q.e.d.
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e Antenna array case:

The asymptotic values of the correlation terms in equation (4.18) are:

lim f{m = R,

K—oo
.o 1 y H
dim Ryg = lim - (HD(7) + N)D"(v)
= HCdd(’?a’Y)
I}Eﬂded = Cu(v,7) (4.118)
where we define )
Caa(n,m) = lim ED(n)DH(m) (4.119)

and take into account that noise is uncorrelated with the signal space.

For the sake of clarity, A () stands for the ML cost function in equation (4.35):

A(y) = In

W (7)]

= In|Ruy — Rau (9) Ry () RE ()] (4.120)

and the limit of A (7) is constructed from substitution of the asymptotic correlation
expressions and the addition and subtraction of HC (¥, 4)H, resulting in:

lim A(y) = ln|Rm—HCdd(

K—oo ) d
= In |wa — HCdd('y )
+ H(Cal¥.5) — Caal3, >cd-;<fy,~/>cfd<fv,v>)HH\. (4.121)

d (’)’ ’Y)Cdd(’v)S’Y)HH‘

We make use of a linear algebra result: the determinant is a nondecreasing function.
Therefore, for any possible matrix B; and any possible non-negative definite matrix B,
the determinant satisfies that

B:+By] = [B;(I+Bi'B,)]
= |By| |1+ B7'By|
> B4, (4.122)

since the eigenvalues of I+B B, are greater or equal than 1, and the equality only holds
when By = 0. Applying this result to equation (4.121), we can identify the term

B, = HQ(¥,v)H" (4.123)
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Notice that By is non-negative definite since €2 is the Schur complement of Cgy(7,7) in
the matrix formed as

Caa(¥,7)  Caa(7,7) = 1 i D(%) H(x H
( ChL(v.7) Caalv,7) ) e ( D(v) ) (D7(%) D(v)) , (4.124)

being the matrix non-negative, due to its quadratic form, any Schur complement of it is
also non-negative. This proves that

lim A(y) > In|Rs — HCy(y,%)HY| = lim A(¥) vy (4.125)

K—oo K—oo

and the equality holds if and only Q(%, ) = 0, which is only possible when v = %, g.e.d.



Fundamental Bounds in GNSS
Positioning

HE variance of any unbiased estimator is lower bounded. This can be somewhat

frustrating, since it states that, no matter how hard we try, the best estimator we
can envisage cannot outperform the theoretical performance bound for a given scenario.
However, being honest, one cannot expect that a given estimator performs identically (and
ideally) under different scenarios. For example, if we aim at estimating the value of a DC
level corrupted by thermal noise, it is intuitive that the higher the noise power, the worse
our estimates will be (as proved in [Kay93], for instance). Thus, after the initial deception,
the knowledge of such a bound turns to provide benefits from a statistical signal processing
perspective. First, the bound can be used as a benchmark to compare the performance of
any unbiased estimator. Secondly, if an estimator is seen to attain the theoretical bound,
one can claim that it is the Minimum Variance Unbiased (MVU) estimator. Last, but not
least, the variance bound can be used to have a quantitative result on the accuracy of the
MVU estimator. The latter provides the feasible performance values that one can expect
when implementing an unbiased estimator, thus, providing a reference for performance
benchmarking.

Many variance bounds can be found in the literature. A comprehensive overview and a
collection of the most relevant papers on the topic can be found in [Tre07]. These bounds
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can be divided into two main categories: classical and Bayesian bounds. Whereas the
former considers a nonrandom parameter of interest, the latter assumes that the parameter
is drawn from a given distribution [Tre07]. Based on the covariance inequality [Leh83,
p. 123], we can consider a number of bounds under the aforementioned classification.
(Classical variance bounds are — in increasing hierarchy, i.e., tighter bounds — the Cramér-
Rao Bound (or CRB for short) [Fis22, Rao45, Cra46]; the Bhattacharyya Bound [Bha46];
and the Barankin Bound [Bar49]. The Bayesian counterparts of these variance bounds
are the Posterior or Bayesian CRB (PCRB) [Shu57, Tre68]; the Weighted PCRB [Bob87];
the Bayesian Bhattacharyya Bound [Tre68]; the Bobrovsky-Zakai Bound [Bob75, Bob87,
Reu97]; and the Weiss-Weinstein Bound] [Wei85]. Also listed in an increasing hierarchy.

The above are bounds on the variance of an unbiased estimator!, or equivalently on its
covariance matrix. However, there are other types of bounds such as the Ziv-Zakai family
[Ziv69]. Ziv-Zakai bounds relate the MSE in the estimation problem to the probability of
error in a binary hypothesis testing problem.

The CRB falls in the category of small-error bounds, meaning that its validity is
conditional on having small estimation errors. Thus, for instance, the value of the CRB
for low SNR or finite samples size conditions might not be accurate, even providing a
meaningless bound in these cases. The Bhattacharyya inequality provides also a small
error-bound. On the contrary, Barankin bound is of the class of large-error bounds, which
gives tighter results for a wider range of cases. Although the CRB is the less tighter,
it is one of the most used bounds in statistical signal processing when assessing the
performance of parameter estimation algorithms [Kay93]. This is because, in general, the
CRB is by far the easiest to evaluate compared to the rest of existing bounds. Hereinafter,
we will focus on the CRB, letting as future work the derivation of other bounds.

Although we focus on the deterministic (or conditional) CRB, a number of alterna-
tives were proposed in the literature which are listed here for the sake of completeness.
The modified CRB proposed in [D’A94] provides a bound more relaxed than the CRB
which is usually not possible to attain, whose goodness is that it can deal with nuisance
parameters in the model. The modified CRB is used in a communications framework, with
data symbols being treated as nuisance parameters in synchronization algorithms. The
stochastic CRB [Ott93, Ger01, Sto01] deals with the case of unknown noise distributions.
Thus, the target parameter is extended to include the parameters that describe the noise
term of the model. In [Sto98] a constrained CRB was proposed, useful when the param-
eter estimation process considers differentiable and deterministic constraints. Recently,
the intrinsic CRB [Smi05] extended the CRB to the case in which the parameter space
is a connected Riemannian manifold. In contrast, the CRB considers that the parameter

!They can be adapted for the biased estimator case, see [Abe93] for instance.
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space represents an open subset of some Euclidean space. The latter is not always true
[Xav05].

Our aim is to study the theoretical variance bounds of the unbiased estimators treated
along the dissertation for the different GNSS positioning problems. In that vein, we can
distinguish three problems:

1. What is the lowest attainable positioning accuracy of the conventional two-steps
approach?

2. We know from Proposition 4.1 that a Direct Position Estimation (DPE) approach
cannot be outperformed by the conventional approach, but, what is the quantitative
improvement of using DPE? and, under which conditions we obtain such a significant
improvement in the MSE sense?

3. Dealing with the nonlinear filtering problem presented in Chapter 3, we might be
interested in evaluating how far the tested Bayesian algorithms are from the theo-
retical bound.

The first two points refer to the study of the theoretical lower bound of the two existing
GNSS positioning approaches. Namely, the conventional two-steps approach and the DPE
approach proposed in Chapter 4. Whereas the CRB of synchronization parameters has
been addressed in the literature, its relation to the final positioning error has not been
revealed yet. For example, [SGO0] and [FP06] developed the CRB expressions for the
synchronization, DOA and amplitude parameters considering an antenna array receiver.
Previously, [Wei94] derived an easy-to-compute formula for the single antenna receiver,
stating that the lowest standard deviation of any unbiased time—delay estimator 7; is

. —4
V (C/NO)iBTobs

where index i refers to the i-th satellite, (C'/Ny); is the corresponding carrier-to-noise
density ratio, B is the bandwidth of the low-pass filter at the receiver and T, the ob-
servation time. This bound has the advantage of having a simple formula, which can be
implemented without tedious signal simulations. However, it has potential pitfalls such
as the inability to take into account complex scenarios, for instance considering inter-
ference or multipath propagation. In that sense, the bounds reported in [SG00, FP0G]
are more versatile and tighter, at the expenses of an increased computational complex-
ity when evaluated. Surprisingly, obtaining an accurate positioning error bound has not
been addressed in the literature. The approach taken so far has been to compute the
CRB of synchronization parameters — for example as in (5.1) — and obtain the order of
magnitude of the positioning error as the error committed in the pseudorange estimate,




154 Chapter 5. Fundamental Bounds in GNSS Positioning

i.e., 0,, = c 0, where c stands for the speed of light constant [Gre01]. This computation
provides a coarse order of magnitude of the positioning error committed, but it is rather
clumsy when one aims at computing the real CRB of position, where the contribution of
all visible satellites is taken into consideration. In Section 5.1.1 we will obtain the CRB
of position for the conventional approach, based on the results by [FP06] on the CRB of
synchronization parameters. Thus, establishing a rigorous link between the well-known
problem of GNSS synchronization and the final estimated position. Section 5.1.2 presents
the CRB analysis of the DPE approach, that is to say the lower bound of a direct esti-
mation of position. The latter is also a novel result which constitutes a valuable tool to
compare both positioning approaches. Notice that the results in Section 5.1 refer to the
classical parameter estimation case, where no prior data is used.

Section 5.2 discusses the third point in the above list. In that case, the aim is to
provide a benchmark bound for the Bayesian tracking algorithms considered in Chapter
3. Thus, the PCRB is studied for general DSS models and particularized for the model
dealt in Chapter 3 to track synchronization and amplitude parameters of both the LOSS
and its multipath replicas.

5.1 Cramér-Rao Bound

The multiple-parameter CRB states that, for any unbiased estimate of a generic, real-
valued parameter vector &€, the covariance matrix of the estimates

c@) 2 me{(é-€) (¢-¢)'| (5.2

is bounded as X

C(&) > I (§) (5.3)
where Jr(€) is commonly referred to as the Fisher Information Matrix or FIM, whose
inverse is the CRB matrix [Sch91]. The matrix inequality in (5.3) means that C(€)—J3!(€)
is a non-negative definite matrix. With In p(x|&€) being the log-likelihood function, the FIM
elements are defined by

[JF(é)}u’U N o {8111(;95(:(‘5) 3111(;);3(’5) }

N 9” Inp(x[€)
- {0} o4

with the expectations being over the distribution of data x conditioned upon parameter

&, ie., p(x|€).
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Therefore, this result provides a lower bound on the variance of any unbiased estimator
of the parameter &,:

Exg{(éu —@)2} > [I(8)],.. - (5.5)

if the equality holds, the estimator éu is said to be efficient, meaning that its variance
attains the CRB by efficiently using data. An interesting result states that for £y, being
the MLE of &, it is asymptotically distributed (for large data sets) according to

L ~ N (€3:(8)) , (5.6)

meaning that ML estimators are asymptotically unbiased and asymptotically efficient, as
they attain the CRB.

Let us consider the generic single snapshot signal model expressed as
X(t) = pa(t, &) + n(tx) € CV (5.7)

for convenience, with n(t¢x) being additive complex Gaussian noise with an arbitrary
covariance matrix X,, [Woo56]. For this model the likelihood function is

1

p(x[§) = dot (7V5,) exp (— (x(tr) — pa(tr, €))7 2,1 (x(ty) — Nz(tk,é))> . (58

Under these assumptions, using the Slepian-Bang’s formula [Kay93, Sto97], we know
that the u, v-th element of the FIM for the generic K snapshots case is

— —182n —182”
Ir@l,, = K Tf{zn %, " afu}

K-1
o {Za(uxgg,s>>ﬂzjauxa<§k,s>} | 59)
k=0 u v

The rest of the section particularizes (5.9) to obtain the CRB of position of conven-
tional and DPE approaches, Sections 5.1.1 and 5.1.2 respectively. The former is based
on the transformation of the CRB of synchronization parameters using the WLS equa-
tion in (2.31). This equation relates synchronization parameters to the position of the
receiver in the conventional approach. For the sake of clarity, each section reproduces the
corresponding signal model which was already presented in Section 4.2, repetita juvant.

5.1.1 Conventional positioning approach

In the multiple antenna receiver, an N element antenna array receives M scaled, time—
delayed and Doppler—shifted signals with known structure. M corresponds to the number
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of visible satellites. Each antenna element receives a replica of the complex baseband
signal modeled by equation (4.4), with a different phase depending on the array geometry
and the Directions Of Arrival (DOA) [Mon80, Joh93, Tre02]. Then, the single-snapshot
model for the conventional approach can be expressed in compact form as

x(t) = G(0, $)Ad(t, 7, ;) + n(t) (5.10)

where each row corresponds to one antenna and

e x(t) € CN*! is the observed signal vector,

o G(0,¢) € CV*M i5 the spatial signature matrix, related to the array geometry and
the DOA of the impinging signals. 8, ¢ € RM*! stand for the azimuth and elevation
vectors of the M sources, respectively,

o A ¢ CM*M ig a diagonal matrix with the elements of complex amplitude vector
a=lay,...,ay]" € CM*1 along its diagonal,

o 7.f; ¢ RMX! are column vectors which contain time-delays and Doppler-shifts of
each satellite,

o d(t,.f)) =[dy,... ,dM}T € CM*1 where each component is defined by

di = ql(t — Ti) exp{j?wfdit} s
the delayed Doppler—shifted narrowband signals envelopes, and

e n(t) € CV*! represents additive noise and all other disturbing terms, like multipath
of each signal or interferences. Statistically, this term is considered Gaussian with
an arbitrary covariance matrix, 3.

In this case, from equation (5.10) we have that
P (t, €a) = G(0, @)Ad(ty, T, 14) (5.11)
and the vector of unknown parameters is

(81

Ea=1| ¥ |, (5.12)

(¥

which can be split into amplitudes a;, Directions of Arrival 1 and synchronization pa-
rameters v:

a = [R{a}”,3{a}7]" e RPMX!
b = [OT’QST}T c R2Mx1
v = [T ] e rRMX (5.13)
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Therefore, the FIM can be expressed with submatrices, 2M x 2M sized:

Jaa Jia Jga

Jr€a) = | Jpa Ty Joy | - (5.14)
Jva Jv'(,b J'uv

The elements of such submatrices can be computed using the definition obtained in
equation (5.9), accounting that 3, is independent of &£4. For u,v € {1,...,2M}:

— oA
= 2 d(t) Ayt d(t 1
Jonan %{k:o k) 0%(} Ga% (t )} (5.15)
K-1
8GH
Jpuan = d(t)TA" — 5.16
Yury {k:O k) 8% } (5.16)
K-1
Joa, = 25}%{ 8da( APGHY } (5.17)
k=0 Vu
K-1
aGH
J = 2R d(t,) A ———%~ Adt 5.18
K-1
od(t
J. = 2R AHGHEnl 5.19
o {k:O 0. a% } (5.19)
=2 ad(t) ad(ty)
Jow, = —kAHGHz:;lGA—’“ : (5.20)
prt v, v,

where % is an all-zero 2M x 2M matrix except for a 1 in the u,u position in case of

1 <u < M, and an all-zero 2M x 2M matrix except for a j = v/—1 in the u, u position
in case of M < u < 2M. Here, the case 1 < u < M stands for the derivative with respect
to the elements of R{a} and the case M < u < 2M stands for the derivative with respect
to the elements of J{a}.

Let define GT = exp {j7rKR}, where K € RM*3 is the wavenumber matrix, defined
as

cos(6y) cos(¢1)  sin(6y)cos(6y)  sin(¢y)
cos(fyr) cos(ppr) sin(Byr) cos(0yr)  sin(pay)

and having its rows pointing toward the corresponding emitter, with #; being the angle
of the source i defined anticlockwise from the x axis on the xy plane and ¢; the angle
respect the xy plane. Refer to Appendix 4.B for details on the spatial signature matrix.
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On the other hand,

Tay v Ty
R=1\| 7, ... 7y (5.22)
Tay eor Tay

is the matrix of sensor element position normalized to units of half wavelengths with
respect the x, y and z axes. Then, the derivative of G is

OKT

0.~ jrRT 50 ®exp {jrTRTK"} | (5.23)
where the derivatives of K, are:
0K . 2 .9
90, [— sin(6,,) cos(¢y), cos®(0,) — sin®(6,), 0] for1<u< M (5.24)
for the u—th row and zeros otherwise; and
0K .
D0, [— cos(Ou—nr)) SIn(Gu—n1)), 0, cos(dru—nn))] for M <u <2M (5.25)

for the (u— M)—th row and zeros otherwise. Hence, in (5.24) the derivative is with respect
to the elements of € and in (5.25) with respect to the elements of ¢. Finally,

0
od(t -
0( k) = | —qu(ty — 7,)es?autn for1<u< M (5.26)
U _
0
and
0
0d t ' j2m
af)k) = | J2rteaqu-nn(te = Tuoan)e e for M <u<2M (5.27)
0

stand for the derivatives with respect to the elements of 7 and f;, respectively. In the first
case, ¢;(t) is the derivative of time of the waveform ¢;(t).

Using equations (5.23-5.27) into (5.15-5.20), the FIM is completely defined and there-
fore the CRB for all the parameters can be directly computed by inverting (5.14).
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The conventional approach provides a deterministic mapping between time-delay es-
timates and the positioning solution, as provided by equation (2.31). Thus, it suffices to
transform the CRB obtained for the former to evaluate the CRB of the latter. According
to [Kay93], if the desired estimate can be expressed as [p7, 6t]7 = g(#), then its covariance
matrix is bounded by
09() ;-1 99(1)"

or 77 or
where J, is the FIM of the time-delay parameter, obtained from (5.20) with 1 < {u,v} <
M. In this case we know from (2.28) and (2.31) that

C(p,ot) >

(5.28)

o

g(T) = ( % ) + (T, T) " T7Q,y , (5.29)

where its Jacobian matrix is

dg(T)
or

considering that the linearization point is the true position, i.e., p° = p, and c is the speed
of light. Notice that we consider the conventional positioning approach with pseudorange
measurements, therefore it is not justified to observe that Doppler deviations are not
explicitly used in (5.28). Indeed, as justified in Chapter 2, Doppler shifts are implicitly
used in order to stabilize the tracking loops in charge of estimating 7.

= ¢(T"Q,T) ' T7Q, , (5.30)

From the above it follows that the covariance matrix of position and clock offset
estimates in the conventional approach is lower bounded by the CRB matrix as

5 -1 -1 T
C(p,3t) > ¢ (T, T) " T, ) 3.} (170, T) " T, ) | (5.31)

where J—! is expressed in units of time.

5.1.2 Direct Position Estimation approach

In the multiple antenna receiver, an N element antenna array receives M scaled, time—
delayed and Doppler—shifted signals with known structure. M corresponds to the number
of visible satellites. Each antenna element receives a replica of the complex baseband signal
modeled by equation (4.12), with a different phase depending on the array geometry and
the Directions Of Arrival (DOA) [Mon80, Joh93, Tre02]. Then, the single-snapshot model
for the DPE approach can be expressed in compact form as

x(t) = G(6, ¢)Ad(t, ) + n(t) (5.32)

where each row corresponds to one antenna and
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e x(t) € CNV*! is the observed signal vector,

o G(0,¢) € CN*M i5 the spatial signature matrix, related to the array geometry and
the DOA of the impinging signals. 8, ¢ € R™*! stand for the azimuth and elevation
vectors of the M sources, respectively,

o A ¢ CMXM ig a diagonal matrix with the elements of complex amplitude vector
a=lay,...,ay]" € CM*1 along its diagonal,

e v € R™*! is the column vector gathering all considered motion parameters, whose
simplest configuration is v = [p”, v7, 5t]T,

o d(t,v) =[di,...,dy]" € CM¥! where each component is defined by

di = qi(t — 7i(7)) exp{j27 fa,(¥)t} ,
the delayed Doppler—shifted narrowband signals envelopes as functions of «, and

e n(t) € CV*! represents additive noise and all other disturbing terms, like multipath
of each signal or interferences. Statistically, this term is considered Gaussian with
an arbitrary covariance matrix, 3.

In this case,
Ba(tr, €8) = G(0, @) Ad(ty, ) (5.33)

and the vector of unknown parameters is

Es=| ¥ |, (5.34)

where v can include any parameter related to the position and motion of the receiver,
and the receiver clock drift.

Therefore, the FIM can be expressed with submatrices:

Joa I, IT,
Jr€s) = Jpa Jyyp Ty |, (5.35)
J’va J‘Y"P J'w

where Joa, Jypa and Jyy are 20 x 2M sized, previously defined in (5.15), (5.16) and

(5.18) respectively. Then, we have to determine the values of J.q, Jqy € REMVIXZM anq
J’y’y c Rdim{'y}xdim{'y}:
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K1
od(t 0A
Jay = 2R (1) AHGHQ 'G——d(t) (5.36)
=~ O davy
J = 2R Kzl ad(tk)HAHGHQ‘la—GAd(t ) (5.37)
S s gy, |
=2 ad(t)! ad(ty)
I = 2R ATGHQIGA— | (5.38)
=~ O M
where the expression for a(tk is the one lacking in these expressions.
Yu
Recalling the model in (5.32), we can express the basis-function vector as
d(te,v) = alte — 7(v)) © exp{j2nfa(v)ti} | (5.39)
with q(t, — 7(7)) € CM*! being the vector containing ¢;(t, — 7;(7y)) in its i—th row, i.e.,

q(ty —7(7)) =

Then, derivating (5.39) with respect to v, — the u-th element in v — we have

ad(t)

a1tk — (7))

aur (e — 7 (7))

0y

+ q(ts —7(7)) ©

where

oq(ty — (7))
M

04
0 exp{j2mfa(y)tx}
0V ’

Iq1 (t—71())
0Yu

Aqn (tk ;TJVI ()

OVu
— 220G, (4 — 71 (7)) M
o () x~ Od(tr)
- )3
otm() ' i=1 a7
— =5 (b — e ()

(5.40)

(5.41)

(5.42)
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and
dexp{j2m fa, (7)tr}
dexp{j2rfy(v)tx} .
0Vu b} eXp{jQﬂ'}dM (Mtx}
Ovu

. - 8
J2mty exp{g2m fa, (V) } =5 fdl

= : : (5.43)
: : )
J2mty, exp{j2m fa,, ()t }—2— fdM il
in (a) we used the result in equation (5.26).
Substituting (5.42) and (5.42) in (5.41), and rearranging terms, it results that
od(tx) _ Z@d tr) or ()
Y Ori I
od(ty) \ . 9fa(v)
+ © ; 5.44
(2 ot ) o (544
where 244 ang 240s) 4re calculated using equations (5.26) and (5.27), respectively
gk e : 27), :
In the sequel we consider that
p
~= | v |, (5.45)
ot

i.e., the parameter of interest gathers position coordinates p = [z, v, 2]7, velocity coordi-

nates v = [v,, vy, v,]7 and the bias of the receiver clock §t. Thus, we have that dim{~} = 7.
O1(v) ()
oy oy

In that case, the —th row of matrices and are

omy \ " afdi @)

aTi (7) 372?‘7 and afdz (7) _ (
Oy on) Oy AT
oot 86t

—

) : (5.46)
)

respectively. The derivatives in (5.46) can be found in Appendices 5.A and 5.B. The
derivatives with respect to 7, of the synchronization parameters 7(7) and f;() follow
from their definitions in equations (2.21) and (2.22), respectively.

At this point, all the elements in equation (5.35) can be computed. Therefore, the
inversion of the FIM matrix in (5.35) yields to the computation of the CRB of position
under the DPE framework.
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5.2 Posterior Cramér-Rao Bound

The Posterior Cramér-Rao Bound (PCRB) provides a lower bound on the MSE matrix
for random parameters®. The Bayesian paradigm considers that the parameter of interest
& is random with a given a priori distribution, denoted by p(€). Then, the estimation

C(€) 2 Exe { (6-¢) (é- s)T} (5.47)

is bounded as R
C(é) = 35'(6) , (5.48)
where J5'(€) is referred to as the Bayesian Information Matrix (BIM), its inverse provides

the PCRB matrix [Tre07]. The matrix inequality in (5.48) means that C(€) —J5'(€) is a
non-negative definite matrix. The BIM elements are computed as

s g {alnmx,s)alnp(x,s)}
Il T €,

B 9?Inp(x, &)
- _E"’g{ 08,08, } (49

with the expectations being over the joint distribution of data x and the parameter &,
i.e., p(x,€&). Similarly as in the CRB, an Bayesian estimator of a random parameter is
said to be Bayesian efficient when its variance attains the PCRB.

[JB(S)]u,v

The BIM can be expressed as the summation of two terms: Jp(&) and Jp(&) [Tre68].
The former corresponds to the contribution of data measurements and the latter represents
the information provided by prior, i.e.,

Ip(&) =Ip(&) +JIp(E) , (5.50)

where the u, v-th element of each term is obtained as

s g {alnp<x|s>alnp<x|s>}
T I, dE,

B 92 In p(x|€)
N _E"‘{ €, 0€, }

(72520
= Ee{[Tr(©),, ) (5.51)

2We can also find the Posterior Cramér-Rao Bound in the literature under the name of Bayesian
Cramér-Rao Bound. Along the dissertation we used the former, as it is widespread used in nonlinear
filtering literature.

RECIC)
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and

Tr(E), 2 B THR T

= —F {%} : (5.52)

From (5.51) we observe that the contribution of data to the Bayesian bound is equiva-
lent to the expected value of Jr (&) over the distribution p(&). Thus, the data contribution
to the Bayesian estimation process corresponds to the averaged information matrix of the
deterministic case, i.e., the FIM. Moreover, when no prior data is considered, Jp (&) equals
Jr(€) and the term Jp(&) disappears. Which reduces to the deterministic case discussed
in Section 5.1.

So far, the PCRB was discussed from a static parameter estimation point of view.
In other words, parameter & was the realization of a r.v. which we wanted to estimate.
Another setup is possible. Dealing with the nonlinear filtering problem, tracking the time
evolution of the parameter of interest (a.k.a. state vector) is the objective. As extensively
discussed in Chapter 3 a state-space model can be used to characterize the evolution of
the system and, particularly, we considered the discrete state-space model. We will see
in Section 5.2.1 that, in that case, the evaluation of the PCRB can be demanding due
to a dimensionality growth with time. Fortunately, a result due to [Tic98| allows one to
compute the bound recursively. The result was extended in [Sim01] to the prediction and
smoothing problems discussed in Section 3.1.

5.2.1 Recursive computation of the PCRB for Nonlinear Filter-
ing

Let x, € C"™ be a vector of measured data, z; € R™ an unknown random pa-
rameter and Zj(x1,) an estimator of z, considering available data at time instant k,
X1 = {X1,...,Xx}. The discrete state-space model provides a twofold characterization of
the system under study, i.e., evolution of states and measurement dependence with states:

z, = fr_1(zp—1, %) (5.53)
X = hk(zk,nk), (554)

respectively. f;_1(-) and hy(-) are known, possibly nonlinear, functions of the state z. vy
and n; are referred to as process and measurement noises, respectively. Both noises are
assumed with known statistics and mutually independent. The initial a prior: distribution
of the state vector is assumed known, p(zo).



5.2. Posterior Cramér-Rao Bound 165

For the filtering problem, the minimum theoretical achievable error variance is given
by the PCRB [Ris04, Tre07, Ber01]. The PCRB states that the covariance matrix of
the estimation error is bounded by the inverse of the Bayesian Information Matrix?,
Jip € R e,

Cr(zr) £ Exy iz, { (2n(x1:6) — 2) (Z0(x1) —20)" } > T (5.55)

where the expectation is with respect to both measurements and states. The inequality
in (5.55) means that the difference Cj(z;) — J,.' is a positive semidefinite matrix and,
if the equality holds, the estimator is said to be statistically efficient. Let the Trajectory
Information Matrix, J(zo,;) € REHDn=x(:+ns he the information matrix derived from
the joint distribution for estimating zg., and defined as

J(zo) = Ex, 2, {—AZ{;;: IDP(XLk,Zo:k)} ) (5.56)

where we define z.;, = {2, ..., 2z} as the entire trajectory of state-vectors. We are inter-
ested in the problem of computing the BIM for estimating xj, to compute the bound in
(5.55). Decomposing zg.x and J(zo.x) as

20 = ( 0k > (5.57)

Zj,

and

J(zox) = (gﬁi gi) (5.58)

é Exk,zk {_AZSZ:i 1np<X1:ka ZO:k)} ]Exk.,zk {_A;]g:k—l lnp(xlzka ZO:k)}
Exk,zk {_Aizzk_l 1np<xlzka ZO:k)} Exk,zk {_A:: In p(xlzk7 ZO:k)}

respectively, we can compute the PCRB, J,;l € R™*™  as the lower-right corner of
J N zo), i,
Jy=C,—-B{A;'B; . (5.59)

Notice that the computation of the n, x n, BIM involves either the inversion of A, €
RFn=xkn= or the inversion of J=!(zg,). Clearly, this can imply a high computational cost.

3where we dropped the subindex B for the sake of clarity, while keeping in mind that

[I>

J5 J5(zk)

= JD(Zk)—FJp(Zk)

_E Oln p(xi|zk) 0lnp(x|zi) T E Olnp(zy|zr—1) Olnp(zg|zi—1)
Kol 0z, 0zy, Zk 0zy, 0zy, ’
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k=1 k=2 k=3 k=4
J1
J(zo:1) Jo
J(20.2) J3
J(20:3) Ju
J(20.4)

Figure 5.1: Dimensionality growth of the Trajectory Information Matrix with &.

As depicted in Figure 5.1, the dimensionality of J(z¢.;) grows with k. This poses a
computational problem to the computation of the PCRB, which conveys the idea of deriv-
ing a recursive computation of the bound. Some papers proposed to relate the nonlinear
filtering problem to an equivalent linear system, e.g., [Bob75]. However, the problem is
partially solved in these approaches and still the recursion was to be found by [Tic98].
The latter provides a recipe for computing J; without manipulating large matrices, such
as J(zo.;). Proposition 5.1 states the main result of that work.

Proposition 5.1. The sequence {Ji} of posterior information submatrices for estimating
state vectors {zy} can be obtained using the following recursion:

Jps1 =D? D (J, +D}') "' D2, (5.60)
where
D' = I {—AZ’; lnp(zk+1|zk)}
D;? = [ {—AZ’;“ lnp(zk+1|zk)}
DY = By, {05, np(zenlz) | = D]
Di2 = Kz 2000 {—A;:E lnp(zk+1|zk)}
Tt Eain {080 p(un|2001) } (5.61)

and the initialization is done considering the prior density of the states:

Jo=E, {—AZInp(zo)} . (5.62)
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Proof. See Appendix 5.C. O

The recursion in (5.60) is extremely useful in many cases where the computation of
the PCRB is mathematically untractable. In addition, matrices involved in the recursive
formula are n, X n, in contrast to the problem in equation (5.56) which has a dimension
that increases with k (see Figure 5.1).

When the general DSS model described by (5.53) and (5.54) is particularized, some
simplifications apply to the recursive computation of the PCRB in (5.60) and (5.61). The
rest of the section is devoted to present three of those particularizations, with the latter
being the model considered in Chapter 3.

Additive Gaussian Noise

In this case, the general DSS model is expressed as:

z, = f_1(zk—1) + vy
X = hk(Zk) + ng , (563)

where both process and measurement noise are zero-mean and Gaussian distributed, with
covariance matrices being X, , and 3, , respectively. Then, we have that

1
_ lnp(Zk_H’Zk) = 1+ 5 (Zk—i-l — fk(Zk)>T Ez_qu (Zk+1 — fk(Zk)) (564)
1 _
—Inp(Xgps1|Zet1) = 2+ B (Xhs1 — hk+1(zk+1))T En,}c+1 (X1 — hrg1(zig1))

where ¢; and ¢y are constants, and
D!! = E, {F{E;}Cf?‘k}
D2 - _E, {F{ } i
DP = B+, (AL, 50 B (5.65)

In (5.65) we use the definitions of Jacobian of hy(z;) and h(z,) evaluated at the true
value of z:

Hk = [Vzkhf(zk)f
Fr = [V fl(z)] (5.66)

respectively.
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The difficulty in evaluating (5.65) comes due to the need of performing the expectation
over 7 and zj. 1. The common approach is to approximate such expectations using Monte-
Carlo simulation, i.e., create a significative number of state-vector trajectories, calculate
the corresponding PCRB and average them to obtain the theoretical PCRB of the system
under study. In certain cases, where the process noise is small, the expectation can be
dropped out as a good approximation.

Linear systems under Additive Gaussian Noise

The linear DSS model corrupted by AGN reduces to :

zr, = Frzp1+uv,

X = Hka + ng s (567)
where Fy_; and H, are known matrices that represent linear functions, referred to as
transitional and measurement matrices respectively. v, and ny are mutually independent

random variables drawn from a zero-mean white Gaussian probability density function
with known covariance matrices, 3, , and 3, j respectively.

In this case, it is straightforward to show that the recursion can be expressed as:

_ _ _ -1 _ _
Jk+1 = Ez,llc - Ez,llch (Jk + FZZZ,/Ich) Fzzz,llc + H£+12k-|1-17nHk+1 ) (568>
and using the matrix inversion lemma
_ ~1 _
Jip1 = (B +FLI'F) +H S Hey (5.69)

we obtain an expression with two terms: one corresponds to the process prediction and
the other to the measurement update.

Linear states and nonlinear measurements under Additive Gaussian Noise

Counsider a DSS model as:
z, = Fizp-1+v;
X = hk(Zk) +ny , (570)

where the previous definitions hold. Some simplifications apply to (5.65 under that DSS
model. Considering that states are drawn from a Gaussian pdf and p(zo) = N (zg, Xo..),
after mathematical manipulation of equation (5.62) we obtain that Jy = 3 ! In addition,

D! = F/X|F;
D> = -F{X,
D = ¥} +E,., {HL, 50, Hoal . (5.71)
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where we use the definitions in (5.66). Notice that, after simplifications due to the model
at hand, matrices D}!, D}? and D?! are deterministic and can be easily obtained. How-
ever, due to the non-linearity in the measurement model, the expectation operator in
the computation of D?? cannot be dropped out. In order to compute this expectation, a
Monte-Carlo approximation can be performed as previously commented.

The particularization in (5.70) is the case of the model considered in Chapter 3.
Recalling from Section 3.3, maintaining the definitions therein, we can express the studied
DSS model as

zr = Frzp1+1v,
Ri{a

x; = QI (m)T [ ’J{{a:}} } +ny , (5.72)

hl:(;k)

where T = ( Iy | jIM) and with
R{ax}
zi, 2 | J{a,} | e R3Mx1, (5.73)
Tk

being the state vector (complex amplitudes and time-delays). Notice that M stands for
the number of received signals from a given satellite (LOSS plus multipath replicas). With
this setup

H, = [V,hl(z)]"
— | (Tabt@] [uni)] (7.0 @] (5.74)
with
[Vahi(z)]" = [Q(m)T 11, QF ()T 1]
A2 hg(zk>r = QYT Las, .., Q7 (7)T 1anf] (5.75)

where 1; represents the all-zeros vector except for a 1 in the i-th position. The gradient
V., hg(zk)}T following Appendix 3.E.

5.3 Computer Simulations

The expressions for the CRB of both approaches can be applied to any of the existing
GNSS signal structures. In particular, we considered hereinafter the well-known Global
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Positioning System, GPS for short. The civilian GPS signal is referred to as the Coarse
Acquisition (C/A) code and it is a spread—spectrum signal transmitted at a carrier fre-
quency of f. = 1575.42 MHz with a chip rate of 1.023 MHz, see Chapter 2. For the
considered GPS receiver architecture, the received signal was filtered with a 1.1 MHz
bandwidth filter, down-converted to baseband and then digitized at a sampling frequency
of fy = 5.714 MHz. The observation time was 1 ms, which corresponds to K = 5714 sam-
ples. Two receiver architectures were considered: one considering a single antenna receiver
(N = 1) and another with an 8-element circular antenna array (N = 8). The receiver was
considered static in both cases, i.e., v = 07, without loss of generality.

The recreated scenario corresponds to a realistic constellation geometry, with an ele-
vation mask of 5°. In particular, two versions were simulated. The first one consisted of
M = 7 satellites, whose azimuth and elevation angles were (in degrees)

6 = [288.9,215.2,87.9,295.4,123.5,46.1,130.6]"
¢ = [46.9,24.5,29.1,32.1,71.5,24.4,60.7]" (5.76)

respectively. The corresponding PRN code numbers [Par96] of each satellite in (5.76) were
{9,12,17,18,26,28,29}. The second considered scenario was one with M = 4 satellites,
those with PRN numbers {9,12,17,18}, with the same geometry described by (5.76).
Basically, the latter emulates the occultation of three satellites (i.e., {26,28,29}) in the
first considered scenario. Both geometries are illustrated in Figure 5.2.

In order to avoid plotting the bounds for the three position coordinates, the following
figures depict the CRB of the three-dimensional position vector, defined as

o, 2E{(p—0)' (p—D)} =07 + 0, + 07, (5.77)
2

where o2, 05 and o2 are the CRBs of each coordinate, as computed by the corresponding
CRB. Recall that what is referred to as the conventional approach is the positioning
solution given by first estimating synchronization parameters independently and using
those estimates to compute user’s location.

With this setup, Figure 5.3 shows a comparison of both derived CRBs of position as
a function of the C'/Ny of the visible satellites. For the sake of simplicity, we considered
that all satellites had the same C/Ny. Under that scenario, both conventional and DPE
approaches appear to have similar bounds in terms of position accuracy. Hence, potentially
both positioning alternatives are able to obtain same performances in such ideal scenario.

DPE performance improvement was seen to came from the fact that each satellite has
its independent propagation channel. This introduces a kind of diversity which we can
refer to as satellital diversity [Clo06f]. The diversity feature of a direct positioning ap-
proach was pointed out also in [Ama05, Ama08al, for the radiolocation problem. Aiming
at proving this concept, an scenario where all but one satellites had the same C'/Ny = 45
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180

Figure 5.2: Constellation geometries considered in the simulations, the red box represents
the receiver location with respect to satellites. (a) corresponds to M = 4 satellites and
(b) to M = 7 visible satellites.

dB-Hz whereas one varied its C'/N, in a range was tested. The results are plotted in
Figure 5.4. It can be seen that DPE exhibits some robustness against sudden shadowing
of one of the satellites in the constellation. This is because the rest of visible satellites are
used to estimate user’s position, overcoming a weaker power level of the faded satellite.
On the contrary, if that satellite is used to compute user’s position in the conventional
approach, it can yield to higher error variances as seen in Figure 5.4. The conventional
approach is improved when the WLS algorithm (refer to equation (2.31) for further com-
ments) is considered, with the weighting matrix being computed as in (4.51). However,
the conventional approach is still unable to attain the performance of a direct estimation
approach. Surprisingly, under a certain C'/Ny threshold, the use of a single antenna based
receiver implementing the DPE approach can overcome the results of an antenna array
receiver under the conventional positioning approach (in the specific setup in Figure 5.4
this threshold is on the order of 25 dB-Hz).

A more challenging scenario was tested, that accounted for multipath propagation.
GNSS receivers are only interested in estimating delays of signals received directly from
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the satellites, since they are the ones that carry information of direct propagation time.
Hence, reflections distort the received signal in a way that may cause a bias in delay and
carrier-phase estimations [Van93]. Multipath is known to be one of the most hazardous
effects in GNSS receivers and probably the dominant source of error in high-precision
applications. A result given in [Wei95] says that any unbiased time delay estimator based
on a single antenna has a variance that approaches to infinity when the relative delay
between the LOSS and its replica approach to zero. Relatively short delays are just the
case of real-life multipath, where the scatterers use to be close to the receiver and the
extra path covered by the wave is shorter than one chip period (about 300 m for a chip
rate of 1.023 Mcps), situation referred to as coherent multipath in the literature.

For the following test, a multipath signal for satellite 19 was introduced whose signal-
to-multipath ratio (SMR) was 3 dB. The relative azimuth of the replica with respect to
the LOSS was 180°, with the same elevation angle. All satellites had same power levels,
C/Ny = 45 dB-Hz. Figure 5.5 shows the squared root CRBs as a function of the relative
delay between the multipath replica and the LOSS of satellite §9, normalized to the chip
period T.. The results in Figure 5.5 are in accordance with those published in [Clo07b],
in which DPE was seen to provide the receiver with improved multipath mitigation capa-
bilities with respect to the conventional approach. It is important to remark that, even in
the single antenna case, the receiver is able to virtually eliminate coherent multipath ef-
fects when implementing DPE. Finally, we tested an scenario where the multipath replica
had higher power than the LOSS. That is the case of most indoor propagation channels
or urban channels. In particular the scenario considered that C'/Ny, = 45 dB-Hz for all
satellites, except for £9 that C'/Ny = 25 dB-Hz, and the SMR was —20 dB. The results
are shown in Figure 5.6 for the single antenna receiver and in Figure 5.7 for the circular
antenna array architecture. It can be observed that DPE potentially improves the perfor-
mance of the conventional approach for the two constellation geometries considered and
that it outperforms the latter when both consider antenna array based front-ends. Again,
the use of WLS improves the results of LS-based positioning but DPE is more robust to
the multipath effect.

5.4 Summary

The need for an accurate knowledge of estimation bounds is present in many (if not
all) signal processing applications. Definitely, it is also the case of the GNSS positioning
problem which drives the dissertation. The objectives of this chapter are twofold: illustrate
the derivation of the variance bounds (particularly the CRB) for a number of interesting
signal processing problems found in the GNSS literature; and use these results in the
preceding chapters of the dissertation. Namely, we discussed the bounds for:
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Figure 5.3: CRB versus C'/Nj of the satellites.
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Figure 5.4: CRB as a function of the C'/Nj of one of the satellites and C'/Ny = 45 dB-Hz
for the rest. (a) DPE vs. conventional approach with LS and (b) DPE vs. conventional
approach with WLS.
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Figure 5.6: CRB as a function of the relative multipath delay. In this case, the replica has
higher power level than the LOSS with N = 1. (a) DPE vs. conventional approach with

LS and (b) DPE vs. conventional approach with WLS.
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Figure 5.7: CRB as a function of the relative multipath delay. In this case, the replica has
higher power level than the LOSS and N = 8 antenna elements. (a) DPE vs. conventional
approach with LS and (b) DPE vs. conventional approach with WLS.

1. Conventional two-steps positioning approach. Although the CRB of synchro-
nization parameters (i.e., the first estimation step) can be found in [SG00] and
[FP06], still an accurate link showing the dependency between the estimation of
these parameters and the final user position determination was still unavailable.
Section 5.1.1 sketched the of derivation the CRB for position coordinates consider-
ing the conventional approach.

2. Direct Position Estimation approach. DPE is one of the novel contributions
of this dissertation, see Chapter 4. Therefore, positioning bounds under DPE’s ap-
proach were not found in the literature. In Section 5.1.2 the CRB of position under
the DPE framework was derived. This bound provides a valuable tool to determine
the gain that a GNSS receiver can achieve by implementing DPE, in contrast to the
conventional positioning approach.

3. Tracking of synchronization parameters using a Bayesian filter. Chapter
3 was devoted to the study of Bayesian filters to mitigate the effect of multipath
propagation. In that case, the PCRB is used as the benchmark bound to compare
the MSE curves obtained by the tested algorithms. The PCRB and its recursive
version were discussed in Section 5.2.
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Section 5.3 presented a number of simulation results comparing the CRB of position
considering the two positioning approaches. As pointed out in Proposition 4.1, the con-
ventional two-steps approach cannot overcome a direct positioning approach. Simulation
results provided quantitative results to assess the performance gain of considering DPE.
Tests run showed that the performance improvement comes from the joint processing of
satellites that have independent propagation channels. Thus, DPE can deal better with
scenarios where certain satellites are jeopardized by independent effects. This is the case
of multipath propagation, where the conventional approach was seen to fail, in the sense
that it introduces a bias in the final estimation. The robustness exhibited by DPE comes
after recognizing that received signals from visible satellites depend on the same user
position. In contrast, the two-steps approach does not take into account this constraint.
The results comparing the PCRB to the variances achieved by the tested algorithms were
showed in Chapter 3.
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Appendix 5.A Time-delays derivative with respect

to v

To deal with the derivative of 875—,(77) we consider

v = [pTavTaéﬂT = [mayazavzavyvvzadt]

and recall from equation (2.21) that
1
i(v) = [P —p || +(0t = 6ti) + e

Then, applying basic linear algebra we obtain
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Notice that (5.84) is only valid when the components of the acceleration vector (a =

laz, ay, aZ]T) are not null, otherwise the derivative is equal to 07
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Appendix 5.B Doppler-shifts derivative with respect
to ~

We aim at obtaining 8fda",§,7), with 4 being as defined in (5.78). Recall from equation (2.22)

that the Doppler deviation corresponding to the ¢-th satellite can be expressed as:

fo,=—(vi—=v) w —, (5.86)

then, its derivative with respect to the elements in ~ are:
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with a = [ay, ay,a,]" being the acceleration coordinates vector of the receiver.
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To compute the derivatives we apply that the derivatives of the direction vector u;
with respect to p and v are
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respectively.
0fa; ()
9
has non-null velocity. Similarly, %’\EV) is computed differently if the receiver has constant
velocity or if it has a certain non-null acceleration.

We have two expressions for depending on whether the receiver is static or it
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Appendix 5.C Proof of Proposition 5.1

Proceeding as in [Tic98], let us write the joint distribution of measurements and states as

p(X1:k+1, Zo:k+1) = p(XLk, ZO:k)p(Zk—f—l |Zo:k, X1:k)P(Xk+1 |Zk+1, Z0:k, Xl:k)
= p(X1:k: Z0:k)P(Zht1| 28 )P (K41 |Zht1) - (5.94)

Using the decomposition of J(z¢.;) made in (5.58), the definitions in (5.61) and the
expression for the joint distribution in (5.94), the Trajectory Information Matrix can be
written in block form as

A, B, 0
J(zor1) = | B{ Ci+D;'! D? | . (5.95)
0 D! D2
The desired BIM can be found as the n, x n_ lower-right submatrix of J=!(zg.x41):
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which follows from basic algebra [Gol96]. O



Conclusions and Directions for
Future Research

HIS thesis has dealt with the two probably core signal processing problems of a GNSS

receiver: synchronization and positioning. In addition, we studied the fundamental
accuracy bounds of those problems. The present is a conclusive chapter that aims at enu-
merating the conclusions and contributions arose by the research reported in the foregoing
chapters. Additionally, a list of topics that may be the subject for future research is also
suggested.

The first part of the dissertation dealt with the challenge of tracking the synchro-
nization parameters of one or several replicas of a signal from a given satellite. Notice
that the structure of these navigation signals (either LOSS or its replicas) is known. This
problem was studied in Chapter 3 making use of Bayesian filtering ideas, thus considering
a closed-loop scheme and using prior information about synchronization parameters’ evo-
lution. Initially, the chapter started with a review of the Bayesian approach to nonlinear
filtering, performing a major revision of concepts and algorithms. Specifically, particle
filtering was extensively discussed, constituting one of the main tools along the thesis.
The use of a Bayesian Filters, as conceived in this part of the thesis, can be regarded
as a substitute of DLL-like algorithms with enhanced multipath mitigation capabilities.
A general DSS model was proposed, consisting of a measurement equation and a state
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evolution model. The former considered the summation of samples of a direct signal and
M — 1 superimposed multipath replicas, thus taking explicitly into account the contribu-
tion of these M — 1 signals. The state vector was composed of the set of synchronization
parameters (i.e., time-delays and complex amplitudes) of the LOSS and its replicas. Since
the a priori evolution of these parameters is difficult to model, we adopted a first-order
autoregressive prior. This model seems rather simplistic, however this simplicity makes it
suitable in a wide range of scenarios, as the obtained performance results told us. Starting
from this rather general model, many Bayesian filtering algorithms can be implemented.
In particular, three algorithms were proposed and tested: the EKF, the UKF and a PF.
The first two algorithms admit few modifications and they were used in its standard for-
mulation. Conversely, the design of a PF is typically related to problem to be solved. An
initial solution consisted of a Bootstrap Filter with an ad-hoc choice of the importance
distribution. Nevertheless, this was seen to require a large number of particles and exhibit
some limitations when used for online filtering, whereas for batch processing it could be
considered. Therefore, designing a PF was tailored at i) obtaining enhanced performance
results in multipath environments and i) reducing the computational complexity involved
in the implementation of PFs. Both objectives were approached by designing a PF that
made an efficient usage of particles, that is to say, decreasing the required number of sam-
ples to characterize the posterior distribution with a certain accuracy. Two actions were
considered. First, a variance reduction technique was introduced to optimally deal with
the linear part of the DSS model. This procedure is referred to as Rao-Blackwellization.
Roughly speaking, Rao-Blackwellization tells us that in the presence of linear substruc-
tures in the DSS model, the optimal algorithm to deal with them is the KF. This technique
had a twofold implication: it reduced the dimension of the state-space that the PF had to
account for and the linear states were optimally processed by the KF. Secondly, the design
of an importance density function close to the optimal is known to increase the particle
efficiency of PFs. In Chapter 3, an approximation of the optimal importance distribution
was proposed. This approximation consisted in a local approximation of the likelihood
distribution, relying on the Laplace’s method. This approximation was implemented by
a Newton-Raphson algorithm. The algorithm was completed by a procedure to extract
Doppler-shifts of both LOSS and multipath replicas of the signal from their corresponding
complex amplitudes estimates. The procedure took into account that Doppler deviation
can be seen as a linear term in the formulation of the carrier-phase of the signal.

At the conclusion of this thesis, there remain some research lines related to this topic
which might be worth exploring:

— Improve the assumed DSS model by using more sophisticated prior information of
synchronization parameters. Additionally, a switching model could be considered to
model different dynamics of the receiver or appearance/disappearance of multipath
replicas.
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— Currently, the number of signals is considered fixed or estimated somehow. A re-
markable improvement of the PF algorithm could rely on its ability to estimate this
parameter, M. This will enhance the performance of the filter, at the expenses of
increasing its computational cost [Dju01]. In any case, an analysis of the sensitivity
of the algorithms to model inaccuracies seems appropriate.

— Study the computational complexity of the algorithms.

— One of the main concerns of PFs is their required computational cost. Although
the generation of particles can be parallelized, large sample pools yield to imprac-
tical algorithms. Thus, major concern should be devoted to design particle filtering
algorithms with reduced computational cost.

— Performance comparison with other Bayesian Filters that recently appeared in the
literature. For instance, the Cost Reference Particle Filter (CRPF) or the Cubature
Kalman Filter [Ara08] are appealing candidates to improve the results of the already
proposed PF.

— Implementation of the proposed algorithms (and new ones) in digital platforms
such as FPGAs should be a mid-term objective. This would stress the validity of
the algorithms in real-time applications.

— Design of similar tracking algorithms for an antenna-array based receiver. In that
case, the state-space should be extended to accommodate the spatial parameters
(i.e., Angle-Of-Arrivals of the signals) or to the elements of the equivalent chan-
nel matrix, depending on the assumed array model (structured or unstructured,
respectively).

The second main topic proposed in the thesis was the Direct Position Estimation
(DPE) of GNSS receivers. One of the main threads of the thesis was the use of prior
information. In Chapter 3 we saw that, though possible, the use of a priori information is
not straightforward when dealing with the tracking of synchronization parameters. The
reason is the lack of reliable models and devices to provide side information relative to
these parameters. Therefore, it seems more convenient to rely on the Bayesian principle
when the parameters of interest are the receiver motion parameters. In this case, many
sources of prior information can be found and accounted, which was one of the motivations
for the study of DPE’s approach. DPE proposed to estimate user’s position directly from
the sampled data stream, in contrast to the conventional two-steps approach consisting
of synchronization and positioning. Chapter 4 was delved into the proposal and analysis
of the DPE approach. The chapter started highlighting the drawbacks of two-steps’ po-
sitioning and proving that it cannot outperform a direct position estimation. The rest of
the chapter was divided into two parts.
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The first was devoted to the analysis of DPE from a ML standpoint, where no prior
information was introduced in the process. Due to the novelty of the proposed approach,
an analysis of the MLE of position under DPE’s framework and a comparison with the
conventional positioning approach seemed mandatory before investigating the capabilities
of DPE to incorporate prior information. Therefore, it is not surprising that the study
of DPE following the ML principle deserved an important space in the dissertation. The
signal model was exposed, evidencing the constraint that synchronization parameters of
different satellites depend on a common parameter: user’s position. The latter was seen to
constitute an essential and powerful concept, being the basis of DPE. The MLE of position
was derived for the antenna-array case. Besides, the MLE of synchronization parameters
was also provided. Either estimators result in the optimization of a cost function, which
turns to be the minimization of the generalized variance. Both positioning approaches
were compared under several criteria. For instance, we saw that the effect of multipath
replicas in the shape of the cost function was different between both approaches. When the
optimization was done with respect to the synchronization parameters, an additional local
optimum appeared for each multipath replica. This effect is known to degrade the per-
formance of conventional synchronization techniques. Conversely, the effect in the case of
optimizing with respect to position coordinates was mitigated: no local optima appeared.
This qualitative analysis provided the means to understand the performance improve-
ments of the approach in the presented simulation results. The architecture of a receiver
implementing the DPE approach was discussed and compared to the architecture of a
conventional GNSS receiver. A possible Acquisition/Tracking procedure was proposed.
Position-based Synchronization was introduced, where the receiver took the other way
around of the conventional approach by computing satellite’s synchronization parameters
from the estimated position coordinates. The main impact of considering position-based
synchronization is that the receiver could be able to keep track of a satellite even under
weak signal conditions or signal blockages, because it is relying on the whole constel-
lation to synchronize each individual satellite. The optimization of the cost function to
obtain the ML estimators manifested some challenges, mainly due to its non-convexity
and the multivariate nature of the problems. Consequently, optimization algorithms were
studied. The Accelerated Random Search (ARS) algorithm was the most appealing candi-
date because of its simplicity, versatility and performance. The ARS algorithm was then
used to implement the MLE of synchronization parameters and the MLE of position,
comparing both positioning approaches under realistic scenarios. Either RMSE perfor-
mances were also compared to the theoretical variance bound give by the Cramér-Rao
Bound and derived in Chapter 5. The results were in accordance to Proposition 4.1, hence
DPE’s performance was outperforming the conventional procedure. Remarkable results
were obtained in indoor/outdoor multipath conditions, with bias reductions.

The second part of Chapter 4 studied the inclusion of side information into the position
filtering process, based on DPE’s philosophy. The framework was termed Bayesian Direct
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Position Estimation (BDPE). Since the Bayesian paradigm is the natural framework for
this approach, the general DSS model was introduced. The measurements of the DSS
model were restricted to the case of a single antenna based receiver, for the sake of
simplicity. Whereas the latter admits few modifications, the state evolution model was seen
to be adaptable to the nature of the side information and type of application considered.
Therefore, we centered our discussion of possible state-spaces to some relevant cases,
bearing in mind that the list is almost infinite. The examples proposed covered a wide
range of possibilities, ranging from motion models to the use of Inertial Measurement
Units, atmospheric models and map matching. Similarly, the list of Bayesian Filters that
can be considered to implement BDPE is not closed (Chapter 3 provided an overview).
For the sake of simplicity, we considered the Bootstrap Filter in the discussed simulation
results. Notice that it was not the aim of the thesis to provide efficient algorithms to carry
out BDPE’s approach, but to prove the feasibility of the concept. Finally, an interpretation
of DPE and BDPE in terms of open and closed loop architectures was given, intended to
point possible implementation architectures.

Due to its novelty, this part of the thesis is probably the one which envisages more
topics for future work. For instance,

— Introduce the dependency of the AOA of the satellites with respect to ~. Simi-
larly, the carrier-phase is considered independent of + in this thesis for the sake of
simplicity, though it could be related.

— Conceive DPE as a fusion procedure to gather signals from distinct GNSS constel-
lations. That is to say, increase the signal model in (4.4) with the contribution of
several navigation signals, e.g. GPS and Galileo.

— Study the relation of the DPE approach and the VDLL, mathematically establishing
their relation if possible.

— Design efficient implementation strategies for DPE. One alternative could consist
on following the architectures in the vein of those proposed for the VDLL.

— Study efficient algorithms for the implementation of BDPE. CRPF and derivative-
free KF solutions such us the UKF, Gaussian Quadrature or Cubature Kalman
Filter seem suitable candidates, taking into consideration the nonlinearity of the
measurement equation.

— Analyze the antenna-array receiver under the BDPE approach.

— Study the relation between the BDPE using IMU data with the so-called ultra-tight
coupling integration of IMU and GNSS data.
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— Use Precise Point Positioning concepts to improve the accuracy of the BDPE ap-
proach. Basically, one could consider the use of several frequencies and carrier-
phases.

— Implementation of DPE/BDPE in a software receiver will indeed constitute and
important milestone.

Chapter 5 discussed the fundamental bounds of GNSS synchronization and position-
ing. Results for the former were already published in the literature. However, the impact
of synchronizing each satellite with a given accuracy in the final position estimate was not
yet reported. The chapter was divided into two parts. First, the Cramér-Rao Bound of
position was derived for either positioning approaches (conventional and DPE) and com-
pared under realistic scenarios. These results were used in Chapter 4 for benchmarking.
Secondly, the Posterior Cramér-Rao Bound was introduced, providing an accuracy bound
for the tracking problem dealt in Chapter 3.
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