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Chapter 1IntroductionIt is often maintained that statistics starts with the data, and this thesis triesto follow that principle, since it is in large part dedicated to the analysis of(multivariate) data originating from marine environmental monitoring surveys,as well as to aspects of the statistical methodology used in this kind of studies.Such (expensive) surveys are carried out in order to gain insight in the impactof human industrial activities on biological systems, and their results are, as wehope, to some extent taken into account by authorities as part of their environ-mental policy.In Norway, oil companies exploiting platforms in the North Sea are obliged bylaw to carry out impact studies on a regular basis. Akvaplan-Niva in Tr�msois involved in the realization of such studies. Reinhold Fieler of Akvaplan-Niva,involved in the analysis of the data produced by these surveys, kindly providedthe data sets used in this thesis.The data sets obtained in the annually repeated surveys fall broadly into twocategories. We have counts of many organisms at various locations (biologicaldata) and measurements of chemicals at the same locations (chemical or envi-ronmental data). We are not able to control the level of any of these variables,but merely observe the values they happen to take; data is observational, andof multivariate nature.We proceed to give a general outline of this thesis, and at the same time sum-marize some of the main results. Chapter 2 explains the details of the samplingprocedure and provides a univariate analysis of the variables involved. Relia-bility calculations show that the biological data has in general poor reliability,except for a small group of highly abundant species. The Poisson distributionis the natural candidate for describing the biological abundance, but is seen tobe inadequate, except for rare species. After the use of an appropriate transfor-mation, the chemical variables are seen to be approximately normal.In chapter 3 the problem of �nding a particular probability distribution for



2species counts is addressed in more detail. The Poisson distribution is often notsatisfying, due to many zeros and occasionally high counts. In chapter 3 we tryto take the sparseness of the data into account by introducing an extra para-meter for the zero outcome. The mathematics of such a zero-inated Poissondistribution are studied in detail, where we obtain expressions for the expec-tation and variance of such a distribution, and derive the likelihood equationsnecessary to estimate the parameters. For most species, the extra parameterfor the zero outcome turns out to be statistically signi�cant. A truncated zero-inated Poisson and mixtures of Poisson distributions are also considered.The abundance of a species at a certain site is thought to be determined bythe physical and chemical characteristics of the environment, though biologicalfactors like competition, cooperation and predator-prey relationships can alsoplay their role. In chapter 4 we start, after some bivariate explorative analysis,to model the survey data with the use of regression models, on a species byspecies basis, with abundance as the response variable and the chemical data aspredictors. Some particular species have been selected for this purpose. Manyof the problems that complicate regression analysis are encountered with thesurvey data: outliers, multicollinearity due to very high correlations betweenthe environmental variables, and violation of the independence assumption dueto the fact that repeated observations made at the same site resemble. Thoughit is hard to generalize, very rare species are probably best modelled by logisticregression, rare species by Poisson regression, and abundant species by randomcoe�cient models. In general, a unimodal response model seems not very aptfor the data, as most species display a pattern of decrease with increasing con-centrations of the heavy metals.Treatment of the data on a species by species basis is too elaborate, making itnecessary to follow a multivariate approach where all data are used simultane-ously. Reciprocal averaging is an algorithm that has been used by ecologists forthe analysis of tables of species counts since the seventies, though nowadays theprocedure is probably better known under the name of correspondence analysis(CA). Chapter 5 gives a brief review of CA, with attention for some more theo-retical details. It provides a new proof for the bounds of the singular values inCA, and also shows that the standard coordinates obtained by CA can be usedto construct centring matrices.Applications of CA to the species data are described in chapter 6. We dedi-cate some attention to stability issues, and compare di�erent ordinations fromdi�erent replicates by procrustes rotation. Stacking data matrices from di�er-ent years into one large matrix allows us to analyze data from di�erent yearssimultaneously, and gives very well interpretable output. The analysis of thespecies data is kept separate from the analysis of the chemical data, where forthe analysis of the latter we present some results obtained by doing principalcomponent analysis. Chemical changes experienced by the stations are also re-vealed by an integrated analysis of the combined annual data matrices.Chapter 7 addresses the problem of the representation of the environmental dataas supplementary variables in a biplot obtained by CA. In fact, the representa-tion of a supplementary continuous variable in a CA biplot is a topic of interest



1. Introduction 3beyond the particular ecological context. Chapter 7 develops some methodol-ogy for obtaining optimal directions for supplementary variables in CA. This isdone by minimizing projection errors obtained when site coordinates from CAare projected onto supplementary variables. Attention is given to aspects suchas the quality of the display of these variables, type of scaling used, relationshipswith other methods, and the geometrical properties of the solution. It is shownwith both real and arti�cial data that these supplementary variables are of greathelp in interpreting CA output. The same problem of displaying supplementaryvariables is also of interest in the context of PCA, and is taken up again inchapter 8, where we develop the same methodology for PCA. If the right typeof scaling is used in CA and PCA, the optimal directions for supplementaryvariables can be obtained by calculating correlation coe�cients.In chapter 7, environmental information is used in an indirect manner, posteriorto the analysis of the species data. Canonical Correspondence Analysis (CCA),proposed by Ter Braak (1986), is probably the most popular method for usingenvironmental information in a direct manner. Chapter 9 is a theoretical chap-ter on CCA, describing how CCA can be obtained by working linear restrictionsinto the basic CA equations. The chapter also contains many interesting theo-retical results, such as bounds obtained for inertias, use of generalized inverses,speci�cation of the trivial dimension, conditional optimality of the represen-tation of the environmental data, and so on. It is shown that CCA can alsobe performed by doing a principal coordinates analysis of a particular distancematrix. Most important, we �nd out that CCA does not optimize the represen-tation of species optima, and that the quality statistics in use only resume thequality of the display of the abundance data. Therefore, statistics for the qualityof representation of the species optima in CCA are needed and proposed. Qual-ity statistics for the representation of the environmental data are also provided.Biplots in CCA are discussed, and an algorithm for the automated calibrationof biplot axes has been developed.Chapter 10 deals with some applications of CCA to the survey data. CCA re-veals the preferences of some of the more abundant species in the survey. Afew species are seen to prefer the contaminated conditions. We also do someattempts to reduce the amount of variables, and to partial out spatial e�ects.Chapter 11 is an attempt to modify CCA in such a way that it does representspecies optima in an optimal way. A weighted principal component analysis ofthe matrix of weighted averages is seen to be capable to explain more varianceof the species optima, and is proposed as an alternative. Samples can be rep-resented in this analysis in a supplementary manner, where one can choose tooptimize the representation of the species data or of the environmental data.Arti�cial data and survey data illustrate this alternative approach, and suggestthat the environmental data are also better represented this way.Some suggestions for further research are commented on in the last chapter, anda selection of the many computer programs used in this thesis are presented inan appendix. Most of the standard types of analysis (regression, anova) wereperformed with the statistical package Stata, whereas all the multivariate workwas done with self-written programs in Matlab. Finally, this thesis itself was



4typeset with the Emtex version of LATEX on a Pentium PC.



Chapter 2Sampling & UnivariateAspectsThis chapter describes the sampling procedure and the characteristics of thedata obtained, and discusses some results of a descriptive univariate analysis ofthe data.2.1 The Sampling ProcedureA network of stations has been established in the Norwegian oil �eld Eko�sk inthe North Sea. Geographical maps of the stations are shown in �gures 2.1, 2.2and 2.3. Eko�sk is located west of Stavanger (Norway). All stations are locatedat a particular distance from a pollution source, an oil platform. The latteris represented by the origin of the three �gures. Each station is visited oncea year, in May, and eight grab samples are taken at the bottom of the oceanoor of each station (also called \site"). Data from three consecutive years areconsidered in this thesis: 1990, 1991 and 1992. The station network has un-dergone some changes from year to year, as the number of stations has beenreduced over the years in order to reduce expenses. In 1990 about 40 stationswere sampled within a radius of about six kilometers, where the stations form astar-like orientation (see �gure 2.1). A more detailed map of the stations closeto the platform is shown in �gure 2.2. In 1992 most stations visited were withina radius of 2.5 kilometers from the platform (see �gure 2.3). A few stations(40,42) are farther away, about 30 kilometers eastward from the platform, andare called \reference" stations, since they are supposed to experience no inu-ence of pollution, and to reect more \natural" conditions.A team of specialized biologists analyzes �ve of the eight grab samples, count-ing all the animals they �nd. The animals, more than 200 species, are benthicorganisms and consist mainly of worms and molluscs. The other three grabsamples are used for chemical analysis, and the concentration of about 13 en-vironmental variables is measured: Total Hydrocarbon Content (THC), TotalOrganic Content (TOC), Pelite (Pel), heavy metals like Lead (Pb), Zinc (Zn),



2.2. The Biological Variables 6
-4 -2 0 2 4 6

-4

-2

0

2

4

6
 1

 2

 3

 4

 6

 7

 8 9

10

11

12

13
14  

16

17

18

19

20

21
22 23   

  
  

  

28

  
    
  

33

34         39

N

40, 42

Figure 2.1: Ekofisk Station Network in 1990Cadmium (Cd), Copper (Cu), Iron (Fe) and Mercury (Hg), Barium (Ba), Pris-tane and the ratios n-C17/pristane and n-C18/pristane. Most of these variableswere recorded each year. Other variables of potential interest are the distance ofeach station to the pollution source, temperature and depth. The temperatureis not recorded as it is being considered too variable. The depth of all stationsin the Eko�sk �eld is between 67 and 72 meters. The variability in depth isconsidered irrelevant, as changes in depth of less than 10 meters do not a�ectthe species composition (Reinhold Fieler, personal communication).We notice here that the chemical sampling is destructive; a grab used for chem-ical analysis cannot be used for biological analysis any more. This is the reasonthat separate samples are taken for chemical and biological analysis. In laterchapters we will want to try to explain species abundance in terms of the chem-ical variables, for instance by regression. We note here that in such regressions,the chemical measurements of the biological sample are in fact not available,but are estimated from di�erent samples at the same location.Taking distance apart, we thus have two types of variables, the biological vari-ables and the chemical variables, the latter often also being referred to as envi-ronmental variables. A separate section is dedicated to each category.2.2 The Biological VariablesThe biological variables are the species abundances for each year, and consistof counts of species at a series of locations (called stations or sites). Abundancedata is known to be bulky, sparse and noisy. (Jongman et al., 1987). Bulky
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Figure 2.2: Ekofisk Inner Stations in 1990because of the large number of species involved (e.g. 152 in 1990), sparse be-cause of the fact that many species are absent at many locations, and noisysince repeated sampling can produce vastly di�erent values. It is impossible todescribe all biological variables one by one, as there are too many. There arespecies which are highly frequent and others which are absent or rare. A roughindication of this: in 1990 152 species were found; 73 (48%) of these had a totalabundance (summing the 5 replicates) in the range 1-10, 52 (34%) of these werein the range 11-100, 23 (15%) in the range 101-1000 and 4 (3%) > 1000.A few species ranging from highly abundant to rare are selected in order to givean impression of the distribution of the variable abundance. The boxplots ofAmphiura �liformis (1), Chaetozone setosa (2), Nephtys longosetosa (3), Pri-onospio cirrifera (4), Nephtys caeca (5) and Jassa marmorata (6) are shown in�gure 2.4 (upper panel). These boxplots illustrate that species abundance tendsto be positively skewed, with occasional high outliers, and high probabilities forthe lower values (0 in particular). The lower panel of �gure 2.4 shows the box-plots of the same species, where the abundance has been transformed by takingthe square root. This reduces the positive skew considerably, and symmetrizesthe distributions. This transformation will therefore often be applied before anyfurther analysis. To give an impression of the high amount of zero counts, thesparseness of the abundance matrix has been calculated for each year, using onlyspecies actually present in at least one of the samples: 1990: 70.7 %, 1991: 59.7% and 1992: 63.4 % sparse. For individual replicates the degree of sparsenesswill even be higher.
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Figure 2.3: Ekofisk Station Network in 19922.2.1 The Reliability of the Biological DataThe fact that we dispose of replicates enables us to calculate reliabilities, alsocalled intraclass correlation coe�cients of reliability (Fleiss, 1986, p. 3). Anobserved value (x) is considered to be the sum of a \signal" plus an error,x = t + e, and if the distribution of the errors is independent of signal t, onehas that �2x = �2t + �2e. The intraclass coe�cient of reliability (R) is de�ned asthe fraction: R = �2t�2t + �2e : (2.1)Since R is a fraction, theoretically we have that 0 � R � 1. In practice however,reliability coe�cients are estimated from an analysis of variance. In particular,reliabilities can be calculated as (Fleiss, 1986, p. 11):R̂ = BMS �WMSBMS + (k � 1)WMS ; (2.2)where BMS and WMS are the \between" and \within" mean sum of squares ofthe analysis of variance table, and k is the number of replicates. With estimator(2.2) it can occasionally happen that small negative reliabilities are found. Inpractice, this happens quite frequently with abundance data of rare species (seebelow). When all replicate measurements coincide with their mean, the WMSterm vanishes, and R̂ reaches its upper bound of 1. On the other hand, whenthe means of the replicates at each station coincide with the overall mean ofall observations, term BMS in (2.2) vanishes, and R̂ achieves a lower boundof �1=(k � 1). This in contrast to the ordinary correlation coe�cient, whichis bounded below by -1. For the data at hand, biological reliabilities are thus
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2.2. The Biological Variables 10in graph 2.5. These are: Capitella capitata (0.83), Goniada maculata (0.82),Scoloplos armiger (0.80), Sthenelais limicola (0.78), Amphiura �liformis (0.76),Myriochele oculata (0.75), Chaetozone setosa (0.60), Eudorella sp. (0.59), Pho-ronis sp. (0.57), and Nemertini indet. (0.54). These are the species that willbe preferentially used in subsequent chapters whenever we try to model speciesabundance in terms of other variables. As a consequence of the low reliabilityof the species data, possible correlations between the abundances of di�erentspecies will be attenuated, and may even be rendered insigni�cant. Fleiss (1986,p. 12) also gives an expression for an approximate 95% one-sided con�denceinterval for the reliability. These con�dence limits are indicated by a dot foreach species in �gure 2.5. The reliability of 60% of the species does not di�ersigni�cantly from zero. This means that for 60% of the species, the di�erencesobserved between the stations are due to random measurement error only.2.2.2 The Distribution of the Biological VariablesWhat would be an adequate probability distribution to describe species abun-dance? Counts of phenomena in time or space are often described by a Poissondistribution, and Poisson distributions were �tted to the abundance of some ofthe species. If the species distributions do follow a Poisson distribution, thenthe sum of the �ve replicates should theoretically also follow a Poisson distri-bution, with a mean that is the sum of the means of the individual replicates.In the �rst instance, we try to assess whether the sum of �ve replicates is inagreement with a Poisson distribution. Figure 2.6 shows expected probabilities(open circles) and observed probabilities (plusses) for the six species previouslymentioned. This �gure shows that if we use the Poisson probability distributionto describe species abundance, we systematically underestimate the amount ofzeros, we overestimate the probability of obtaining intermediate values, and weunderestimate the outlying higher values. By mere visual inspection, only forthe rarer species like Nephtys caeca and Jassa marmorata the �t of the Poissondistribution seems acceptable.
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2. Sampling & Univariate Aspects 11We note that summing the �ve replicates increases the counts. There are how-ever, only 41 samples. Summing the counts then makes that many theoreticaloutcomes under the Poisson distribution, are in practice never observed in thedata. This is especially evident in the graphs of Amphiura �liformis and Chaeto-zone setosa above.The sample means (�̂) and sample variances (s2) of the six selected species areshown in table 2.1. The variance exceeds the mean for all species. For Poissondistributed data the variance theoretically equals the mean, so that the samplevariance is higher than expected under a Poisson distribution. Phrased in otherwords, there is considerable overdispersion.As a way of assessing whether the abundance of a particular species followsa Poisson distribution, bootstrap resampling was used as described by Noreen(1989, chapter 4), Hamilton (1998, appendix 2) and Manly (1997). The test-statistic considered (T ) is the quotient of the sample mean and the samplevariance. For data which truly follow a Poisson distribution this statistic is 1.With bootstrapping the theoretical distribution of the test-statistic does notneed to be speci�ed, and is in practice often unknown. Using 500 bootstrapsamples, a 95% con�dence interval for the test statistic was obtained by usingthe 2.5 and 97.5 percentiles of the bootstrap distribution. If the value of 1 isnot included in this interval, the hypothesis that the data follow a Poisson dis-tribution is rejected. In practice, the bootstrap distribution of the test statistichas a mean that does not coincide exactly with the value of T obtained fromthe original sample. To correct for this bias, the bootstrap distribution can beshifted (Noreen, 1989, chapter 4), so that it is centred on the value of T obtainedfrom the original sample. The test statistic, con�dence intervals and the biasfor the six species considered are shown in table 2.1, as well as the species' totalabundance (N ).Species N �̂ s2 T bias 95% CIAmp.�l. 1067 26.68 357.15 0.075 0.005 (0.050 - 0.122)Cha.set. 413 10.33 197.35 0.052 0.009 (0.039 - 0.125)Nep.lon. 152 3.80 9.14 0.416 0.018 (0.323 - 0.601)Pri.cir. 103 2.58 13.69 0.188 0.013 (0.149 - 0.287)Nep.cae. 31 0.78 1.26 0.617 0.071 (0.420 - 1.130)Jas.mar. 15 0.38 2.04 0.184 0.090 (0.129 - 1.000)Table 2.1: Bootstrap confidence intervals of TTable 2.1 shows that statistic T is less than one for all species considered. Therarer the species, the wider the con�dence interval. The hypothesis that thesummed species abundances follow a Poisson distributions must in general berejected expect for rare species. The bootstrap distributions showed a little biasand positive skew.Bootstrapping was also applied to a single replicate only, in order to see if in-dividual replicates are in better agreement with a Poisson distribution. The



2.2. The Biological Variables 12species N �̂ s2 T bias 95% CIAmp.�l. 207 5.05 19.30 0.261 0.031 (0.178 - 0.480)Cha.set. 70 1.71 7.61 0.224 0.079 (0.131 - 0.677)Nep.lon. 30 0.73 1.40 0.522 0.089 (0.331 - 1.143)Pri.cir. 29 0.71 3.61 0.196 0.138 (0.123 - 1.116)Nep.cae.a 8 0.20 0.36 0.541 0.086 (0.383 - 1.111)Jas.mar.b 3 0.07 0.22 0.333 0.258 (0.333 - 1.000)a5 bootstrap samples all zerob38 % of bootstrap samples all zeroTable 2.2: Bootstrap confidence intervals of T , one replicate onlyresults are shown in table 2.2. For the two most abundant species, the Pois-son distribution has to be rejected. For species with a total abundance of 30or lower, the Poisson distribution can, in general, not be rejected. Note that,when we correct the con�dence interval of Jassa marmorata for bias, the Poissondistribution has to be rejected. For very rare species, bootstrapping becomesproblematic, as many bootstrap samples arise that consist only of zeros. Forsuch bootstrap samples the test statistic is not de�ned. However, a bootstrapsample consisting of zeros only has equal mean and variance, both zero, and thisis in perfect agreement with a Poisson distribution. One could therefore arguethat these bootstrap samples should be assigned the value T = 1, as is done forthe two rarest species in table 2.2. The con�dence intervals for statistic T arewider when using a single replicate, suggesting that data gets closer to beingPoisson distributed as smaller volumes are considered.From a more formal point of view, one could apply Pearson's �2-test for good-ness of �t to test the null hypothesis that data are Poisson distributed. However,this requires that the data is grouped into bins with at least 5 observations perbin (Rice, 1995, p. 242). This grouping can be done in many ways, and eachgrouping will give a di�erent value for the �2-statistic. Also, 40 samples isa rather small number to divide over bins with a minimum of 5 counts. AKolmogorov-Smirnov test for \Poissonness" can neither be applied because thedata is discrete. Tests for discrete distributions based on the empirical distri-bution function (EDF), analogous to the Kolmogorov-Smirnov test, have beendescribed by Stephens (1986) and Pettitt and Stephens (1977), but seem not tobe available for the Poisson distribution (Agostino and Stephens, 1986, pp. 176).The bootstrap test was applied to the whole database of 152 species. For 46%of the species the Poisson distribution had to be rejected, and for 54% it couldnot be rejected. A separate chapter (3) is dedicated to trying to describe thespecies distributions more accurately, where we try to take the sparseness of thedata into account.



2. Sampling & Univariate Aspects 132.3 The Chemical VariablesA total of about 13 chemical variables were measured at each station anually.The variables considered are Total Hydrocarbon Content (THC), Total OrganicContent (TOC), the heavy metals Lead (Pb), Zinc (Zn), Cadmium(Cd), Copper(Cu), Mercury (Hg) and Iron (Fe), Barium (Ba), the ratios n-C17/pristane, n-C18/phytane, Pristane and Pelite. Most of these chemicals are related to thedrilling process (Reinhold Fieler, personal communication).
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Figure 2.7: Boxplots of log-transformed Chemical VariablesBarium sulfate is introduced together with other chemicals as a weight compo-nent in the drilling uid that serves to smear the drilling process. The otherheavy metals come along with Barium sulfate. Barium is known not to have bi-ological e�ects but the other heavy metals do. Pristane, a natural component ofoil, is an indicator of oil degradation. The ratios n-C17/pristane, n-C18/phytaneare used to measure the degree of oil degradation. Pelite is a sedimentologicalvariable, all particles less than 0.063 mm in diameter are called pelite (silt).All chemical variables are measured in milligrams per kilogram (mg/kg) exceptn-C17/pristane and n-C18/phytane, which are ratios, and TOC which is a per-centage. Figure 2.7 shows boxplots of the chemical variables, where the variableshave been transformed by taking natural logarithms. Among the heavy met-als, Barium and Iron tend to have high concentrations, whereas Cadmium andMercury have lower concentrations. The logarithmic transformation has con-siderably symmetrized the distributions of the chemical variables, though somepositive skew remains for several variables. It is di�cult to �nd a single trans-formation that is satisfactory for all the variables simultaneously. Occasionallya zero observation is found among the means of the chemical variables. Thenatural logarithm of zero is not de�ned. In order to be able to proceed with theanalysis, a small value of 0.01 was assigned to these observations. These recod-ings pop up as outliers in the boxplots of C17,C18 and Pristane, and correspondto reference station 40, where these components were not detectable. These ob-servations are also outliers in the original scale of measurement, though thearbitrary values assigned will determine how outlying they are in transformed



2.3. The Chemical Variables 14scale.Since there are three replicates of each chemical sample, reliability calculationswere also performed for the chemical variables. The reliability coe�cients (R̂)for the variables under study are listed in table 2.3, together with their 95%lower con�dence limits.Chemical R 95% limit D pBa 0.93 0.90 0.147 0.300Cd 0.91 0.87 0.221 0.029Cu 0.89 0.84 0.169 0.165Fe 0.96 0.93 0.272 0.004Hg 0.83 0.75 0.478 0.000Pb 0.95 0.93 0.217 0.034Zn 0.96 0.93 0.211 0.042C17 0.91 0.86 0.225 0.025C18 0.92 0.88 0.211 0.043Pri 0.92 0.88 0.277 0.003THC 0.94 0.91 0.214 0.038TOC 0.90 0.85 0.324 0.000Table 2.3: Reliabilities of log-transformed Chemical Variables in 1990As is clear from table 2.3, all the chemical variables have excellent reliabil-ity. The reliability of Copper and Pristane improved considerably due to thelog transformation. It is clear that the chemical data do not su�er so muchfrom measurement error as the biological data. Reliabilities listed in table 2.3are comparable with values obtained for 1991 and 1992 (Fieler and Greenacre,1994, p. 13).What distribution can be used to describe the chemical data, after the logarith-mic transformation? The boxplots in �gure 2.7 suggest that the transformedchemical variables are probably not far from normality, though the positiveskew might make the tails di�erent from those of the normal distribution. In-deed, a formal Kolgomorov-Smirnov test for normality shows that the normalityassumption must be rejected for most log transformed variables. Kolgomorov-Smirnov's D-statistics and p-values are listed in the last two columns of table2.3, and only for Ba and Cu normality can not be rejected. A stronger trans-formation with a negative power, such as �x�0:25 might be employed to furtherreduce positive skew. The boxplots of the environmental variables transformedby this negative power are shown in �gure 2.8.Normality can now no longer be rejected for Ba, Cd, Pb, Zn and THC (D-statistics not shown). Figures 2.7 and 2.8 illustrate that there is no simpletransformation which is satisfactory for all variables. On the other hand, itis not very practical to decide on a di�erent transformation for each variableseparately, as the number of variables is quite large. In general the �x�0:25transformation seems more satisfactory than taking natural logarithms, thoughtaking logarithms is the more common statistical practice. Whatever transfor-
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Figure 2.8: Boxplots of �x�1=4 transformed Chemical Variablesmation we choose, in subsequent chapters on modelling, we can expect a fewoutliers to cause trouble.2.4 Total Abundance and DiversityIn order to gain some more basic insight into the database, we study some basicrelationships such as the total amount of organisms at each station and thenumber of di�erent species found at each location in 1990. Figure 2.9, upperleft panel, shows the number of species found at each station as a function oftheir logtransformed distance from the platform. It is clear that the numberof species increases as we move away from the platform, and that this increaselevels o� after a certain distance. The inner ring of stations 30,31,36 and 37,the most close to the platform, have the lowest amount of species. Station 3 isoutlying as it is also poor in species content, whereas station 14 has the highestamount of species. Note that many stations in the network have an amount ofspecies that is comparable to the reference station 40.Graph 2.9, upper right panel, shows the logtransformed total amount of or-ganisms as a function of logtransformed distance. It is striking to see that thesame group of stations with few species actually contains the highest amountof organisms. Stations 15 and 24 also stand out for their high total abundance.The high total abundance of the inner ring (30,31,36 and 37) is actually dueto one species, Capitella capitata which makes up 44% of the total abundanceof all organisms 1990. The high abundance of station 24 and 15 is mainly dueto Myriochele oculata, which makes up more than 9% of the total abundance.Whereas the upper right panel of graph 2.9 suggests that the total amount oforganisms decreases and levels o� with increasing distance, actually the reversehappens when these two most abundant species are left out of consideration(�gure 2.9, lower left panel). Apart from this inner ring, the total amounts oforganisms at each station (including the reference station) are roughly of equal
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Figure 2.9: Species Diversity and Abundance in 1990order of magnitude, say about 300 organisms on the average.



Chapter 3The Distribution of SpeciesAbundance3.1 IntroductionCounts of phenomena in time or space follow, as many elementary textbooksin statistics expose, a Poisson distribution (see Feller (1971) or Rice (1995) forsome examples). In ecological applications however, the assumption that countsof species in an area or volume follow a Poisson distribution is often not satis-�ed (Jongman et al., 1987, pp. 19-20). Count data of organisms in space oftenconsists mainly of zeros, data being extremely sparse. On the other hand, veryhigh counts are sometimes recorded due to clustering of organisms. These twophenomena contribute to overdispersion: the variance of the counts is largerthan the mean, whereas for the Poisson distribution sample variance and meanare theoretically equal. Thus, a statistical problem in ecology is to decide upona particular distribution for species abundance. The data discussed in the pre-vious chapter con�rm this picture. In this chapter we continue to adhere tothe Poisson probability distribution for describing species abundance, but tryto account for the sparse nature of the data in three ways: (i) by using a Poissondistribution and allowing for extra zeros (\zero ination", (S�rensen, 1999)) (ii)by using a truncated Poisson distribution, without the zero outcome, but withzero ination, and (iii) by using mixtures of two Poisson distributions. In thenext section we derive the maximum likelihood equations for the three di�erentregimes.3.2 Maximum Likelihood EstimationThe Poisson probability distribution is given by the formula:p(x; �) = �xe��x! x = 0; 1; : : :



3.2. Maximum Likelihood Estimation 18The mean and the variance of a variable with a Poisson distribution are both�, and it is easily shown that the maximum likelihood (ML) estimator for pa-rameter � is given by the sample mean. We try to account for overdispersionin three di�erent ways. We derive the likelihood equations for each regime inseparate sections below.3.2.1 A Poisson with Zero InationIn this regime a surplus of zeros is accommodated for the in the following way:we imagine that the counts follow in principle a Poisson distribution, but thatthere is an additional chance � to obtain a zero. This is why it is called a \zero-inated" Poisson. A random sample of size N from a zero-inated Poisson canbe generated as follows: take �N zeros and add N (1 � �) observations from aPoisson distribution with parameter �. The probability distribution of a zero-inated Poisson random variable (X) is given by:p(x;�; �) = � � + (1� �)e�� if x = 0(1� �)e���x=x! if x = 1; 2; : : : (3.1)It is straightforward to show that:E(X) = 1Xx=1x(1� �)e���x=x! = (1� �)�:Naturally, if there are no extra zeros (� = 0) the expectation E(X) is just thatof an ordinary Poisson random variable. The variance of X is found to be:V (X) = E(X2)� (E(X))2 = (1� �)(1 + ��)�:Clearly, if � = 0 the variance is also that of an ordinary Poisson, and indeed,(3.1) reduces to the Poisson frequency function. We notice that for the zero-inated Poisson the ratio of expectation and variance is no longer a constant,but is given by 1=(1+��), this in contrast to the ordinary Poisson. We introducean indicator variable Ii taking value 0 if the count is 0 (xi = 0) and 1 for nonzerocounts (xi 6= 0). The likelihood function is then given by:L(�; �) = NYi=1�Ii(1 � �)�xie��xi! + (1� Ii)(� + (1� �)e��)� : (3.2)Taking natural logarithms, and de�ning D as the number of zero observationsthe loglikelihood function becomes:l(�; �) = ln(L(�; �)) = N�DXi=1 ln�(1� �)�xie��xi! �+D ln �� + (1� �)e��� ; (3.3)where i in the �rst summation indexes the non-zero counts only. Setting �rst-order derivatives to zero, we obtain from @l=@� = 0 :� = D=N � e��1� e�� : (3.4)



3. The Distribution of Species Abundance 19This shows that for large �, � approximates the fraction of zero counts in thedata. It is clear that parameter � is a function of parameter �. From @l=@� = 0we obtain after some algebra:D � N + (1=�)N�DXi=1 xi = D(1 � �)�e� + 1� � : (3.5)Substituting (3.4) in (3.5), we obtain an expression in one parameter only:� e�e� � 1 = PN�Di=1 xiN �D :This shows that if � is large, � will approximate the mean of the non-zero countsin the sample. At this point it seems not possible to derive explicit expressionsfor the ML estimates of � or � separately in terms of the data only. As aconsequence, the ML estimates for � and � need to be obtained numerically,by maximizing (3.3) using for instance a Newton-Raphson algorithm. With theNewton-Raphson method, the maximum of the loglikelihood function can befound iteratively (Dobson, 1991, chapter 4). To do so, we need to obtain from(3.3) the vector of �rst order derivatives (the score vector u = [@l=@�; @l=@�])and the 2 by 2 matrix of second order derivatives:H = � @2l=@�2 @2l=@�@�@2l=@�@� @2l=@�2 � ; (3.6)where �E(H) is known as the information matrix. The kth approximation ofthe parameter vector b = [�; �] is then given by:b(k) = b(k�1) �H�1u(k�1): (3.7)We need a vector of initial estimates, b(0). For b(0) one can take a vectorcontaining for instance the fraction of zeros in the sample and the mean of the(non-zero) counts of the sample. When we de�ne the quantities S = 1=(e� � 1)and Q = �=(1 � �), then for the zero-inated Poisson, the score vector u andthe Hessian H are given by:u = �D �N1� � + D� + S ;D � N + Pxi� � DQe� + 1�and H = " D�N(1��)2 � D(�+S)2 De�(�e�+1��)2De�(�e�+1��)2 �Pxi�2 + DQe�(Qe�+1)2 # ;In section 3.3 we give a numerical example of this algorithm. We note that it isalso possible to derive estimators for � and � by the method of moments (MOM,(Rice, 1995, section 8.4)). For the zero-inated Poisson these estimators werederived: �̂ = �2=(x) + x � 1 and �̂ = (x � �2)=(x � �2 � x2), and are seen tocollapse to the sample mean and zero respectively, when data is truly Poisson(�2 = x). These estimators have the advantage that they can be calculatedstraight from the sample mean and the sample variance. These estimators arenot considered any further, as maximum likelihood estimators are in generalmore precise (Rice, 1995, section 8.5). They can however, still be used as initialestimates for the numerical maximization.



3.2. Maximum Likelihood Estimation 203.2.2 A Truncated Poisson with Zero InationWe consider a truncated Poisson distribution without the zero outcome. Sincethe probability of obtaining a zero under the Poisson distribution is e��, theremaining non-zero outcomes sum to 1� e��, so that the probability frequencyfunction of a truncated Poisson can be described by:p(x; �) = �xe��x!(1� e��) x = 1; : : :We now consider a regime where we obtain zero counts with probability �, andnon-zero observations come from a truncated Poisson distribution. This can beimagined as drawing balls from two urns. The �rst urn only contains zeros andones, obeying a Bernoulli probability distribution, and the second urn containsnon-zero integers corresponding to a truncated Poisson. If we draw a zero fromthe �rst urn, we write it down. If we draw a one, we take a ball from thesecond urn and write down its number. Random data from such a schemecan be generated as follows: again we take �N zeros. Next we add N (1 � �)non-zero observations from a Poisson distribution with parameter �. From apractical point of view, this means that a sample larger than N (1 � �) mustbe drawn from an ordinary Poisson to reach the required number of non-zeros.The probability distribution of the truncated Poisson random variable with anadditional probability � of obtaining a zero is given by:p(x;�; �) = ( � if x = 0(1� �) e���xx!(1�e��) if x = 1; 2; : : :It is straightforward to show that the expectation of such a random variable(X) is: E(X) = �(1� �)1� e�� ;and with some algebra we obtain the variance as:V (X) = �(1 � �)f(� + 1)(1� e��) � �(1 � �)g(1� e��)2 :Again using an indicator variable Ii, the likelihood function is given by:L(�; �) = NYi=1�Ii(1� �) �xie��xi!(1� e��) + (1� Ii)�� : (3.8)and the log-likelihood becomes:l(�; �) = lnL(�; �) = N�DXi=1 (xi ln��ln xi!)+(N�D) ln (1� �)e��1� e�� +D ln �; (3.9)Setting @l=@� = @l=@� = 0 it can be shown that:� = D=N;and



3. The Distribution of Species Abundance 21�1� e�� = 1N �D N�DXi=1 xi:It turns out that � is just the fraction of zero counts, and so � can be obtaineddirectly from the data. There is no explicit expression for � in terms of thedata, � must be inferred from a graph of function �1�e�� , or be obtained bythe numerical optimization of (3.9). In contrast to the zero inated ordinaryPoisson, here parameters � and � are not related to each other.3.2.3 A Mixture of Two PoissonsWe consider a mixture of two Poisson distributions with di�erent means �1and �2. A mixture coe�cient � (� � [0; 1]) indicates the probability that anobservation comes from the �rst distribution with �1, and so (1 � �) is theprobability that an observation comes from the second Poisson distribution withparameter �2. A random sample from a mixture can be generated by creating aBernoulli random variable B, with a probability of success � and generating twoPoisson random variables, P1 and P2 with parameters �1 and �2 respectively.The mixture of two Poissons is then calculated as B � P1 + (1 � B) � P2. Theprobability distribution of a mixture of two Poissons becomes:q(x;�1; �2; �) = �p1(x) + (1� �)p2(x):It is easily shown that the expectation of a random variable X following amixture of two Poissons is given by:E(X) = ��1 + (1� �)�2;whereas the variance is:V (X) = ��1(�1 + 1) + (1� �)�2(�2 + 1)� f��1 + (1� �)�2g2:The likelihood function is given by:L(�1; �2; �) = q(x1; x2; : : : ; xn;�1; �2; �)= NYi=1 q(xi;�1; �2; �)= NYi=1���1xie��1xi! + (1 � �)�2xie��2xi! � :Taking natural logarithms, the loglikelihood function becomes:lnL(�1; �2; �) = NXi=1 ln���1xie��1xi! + (1� �)�2xie��2xi! � : (3.10)Setting �rst order derivatives to zero, we obtain the set of equations:



3.3. Application to Species Count Data 22@l=@� = NXi=1 �xi1 e��1 + �xi2 e��2��xi1 e��1 + (1� �)�xi2 e��2 = 0;@l=@�1 = NXi=1 �e��1(xi�xi�11 � �xi1 )��xi1 e��1 + (1� �)�xi2 e��2 = 0;@l=@�2 = NXi=1 (1� �)e��2(xi�xi�12 � �xi2 )��xi1 e��1 + (1� �)�xi2 e��2 = 0:Again, it seems not possible to solve these equations in closed form for parame-ters �; �1 and �2. We thus proceed by numerically maximizing (3.10). Becausexi! is a constant factor in (3.10), in practice we will try to maximize:lnL(�1; �2; �) = NXi=1 ln ���1xie��1 + (1� �)�2xie��2� ;which is a function of three parameters. Some practical issues of the estimationof mixtures are described in a recent review by Haughton (1997).We note that the previously considered zero-inated Poisson is in fact a partic-ular case of a mixture of two Poissons. Consider the frequency function of themixture: q(x;�1; �2; �) = ��x1e��1x! + (1� �)�x2e��2x! :If �1 = 0 this reduces to:p(x;�1; �) = � �+ (1� �)e��2 if x = 0(1� �)e��2�x2=x! if x = 1; 2; : : : (3.11)This is precisely the frequency function of a zero-inated Poisson with para-meters (�; �2), where mixture-coe�cient � represents the additional chance ofobtaining a zero (cf. 3.1). In the same way, if �2 = 0 a zero-inated Poissonarises with parameters (1 � �; �1), and the additional probability of a zero iscan be calculated from the mixture coe�cient as 1� �. From a computationalpoint of view, a program that maximizes the likelihood function of a mixturethus provides a general tool if it allows parameters to be �xed. The Poisson(� = 0 or � = 1) and the zero-inated Poisson (�1 = 0 or �2 = 0) can then beestimated as special cases of the mixture.3.3 Application to Species Count DataIn this section we show a detailed example of an application of the three regimesdescribed above, using abundance data of one particular species, Nephtys caeca,and we present some results of how these regimes do in general for all species.We use 41 benthic samples of this species taken in 1990. The sample mean is0.78 and the sample variance is 1.26, indicating that there is overdispersion.



3. The Distribution of Species Abundance 23Regime Parameters�1 �2 � �Poisson 0.78 (0.14) - - -Poisson + 0 1.21 (0.31) - 0.36 (0.14) -T. Poisson + 0 1.21 (0.31) - 0.55 (0.08) -Mixture 1.75 (1.16) 0.33 (0.40) - 0.31 (0.43)Table 3.1: ML-Estimates for different regimesTable 3.1 lists estimates for the parameters of the di�erent regimes with theirstandard errors in parentheses. Notice that the mixture coe�cient � is notsigni�cantly di�erent from 1, suggesting us that the data is better describedby single Poisson distribution. The optimization routine used for maximizingthe log-likelihood function (routine ml from Stata version 5.0) frequently hadconvergence problems when maximizing the objective functions (3.3) or (3.9),giving 'infeasible steps'. These problems were resolved by reparametrizing �by its logit, ln (�=(1 � �)), and � by ln (�). Standard errors for the originalparameters can then be obtained using the delta method (Dunn, 1989).
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3.3. Application to Species Count Data 24left graph, a feature that is absent in the right graph. Whatever data we have,under the zero-inated Poisson, the optimal pair (�̂; �̂) should always be on thiscurve. As is logical, under the truncated regime the estimates of � and � arelarger then under the non-truncated regime. Parameter � di�ers signi�cantlyfrom zero under both zero-inated regimes, suggesting that it makes sense toinclude this extra parameter to account for sparseness.Table 3.2 illustrates the iteration history of the Newton-Raphson algorithmgiven by (3.7). As initial estimates we use for � the fraction of zeros in thesample, 0.55, and for � we take the sample mean, 0.775. The algorithm con-verges in about 5 iterations. At convergence, the inverse of the informationmatrix is [0.0199 0.0265; 0.0265 0.0969]. By taking the square root of the diag-onal elements, we obtain the standard errors for � and �, p0:0199 � 0:14 andp0:0969� 0:31. This all coincides well with the reported estimates in table 3.1,where we employed optimization routine ML from statistical package STATA.With thisML routine it is su�cient to supply a function that calculates the con-tribution of one case to the likelihood function. Routine ML has the additionaladvantage that the parameters can be constrained to be within a certain range.An illustrative program is given in appendix A.1. A simple program using (3.7)can go astray, especially if we are close to the boundaries of the parameter space.The inverse of the information matrix at convergence allows us to calculate thecorrelation between the parameters as 0:0265=(p0:0199p0:0969) � 0:60. Thispositive correlation is consistent with the observed positively inclined principalaxis of the level curves in �gure 3.1 (left panel). At convergence the informationmatrix turned out to be positive de�nite, meaning that the Hessian in (3.6) isnegative de�nite, and that the solution corresponds to a maximum.Iteration � � ln (L)0 0.550 0.775 -54.1771 0.354 1.040 -49.1012 0.347 1.169 -48.8673 0.358 1.206 -48.8594 0.358 1.207 -48.8595 0.358 1.207 -48.859Table 3.2: Iteration History for ML estimates of a zero-inflated Poisson3.3.1 General ResultsThe bootstrap test described in chapter 2 was carried out for one particularreplicate of all species. By choosing one replicate, several species turned out tocontain zero counts only, leaving 112 species with at least one nonzero count.For 70% of these species, bootstrap samples arise which consist only of zeros.Such samples were assigned T = 1 (cf. chapter 2 p. 12). For 40% of the species,the Poisson distribution had to be rejected, and for 60% it could not be rejected.In order to see if the zero-inated regimes and mixtures considered for Nephtyscaeca in the previous section are useful in general, calculations are repeated fora subset of the species of varying total abundance.



3. The Distribution of Species Abundance 25Poisson Zero-inated Poisson Trunc. Zero-inf. PoissonSpecies N �̂ �̂ �̂ �̂ �̂Amp.�l. 1067 26.68 30.49 (0.93) 0.13 (0.05) 30.49 (0.93) 0.13 (0.05)Cha.set. 413 10.33 11.80 (0.58) 0.12 (0.05) 11.80 (0.58) 0.13 (0.05)Nep.lon. 152 3.80 4.71 (0.39) 0.19 (0.06) 4.71 (0.39) 0.20 (0.06)Pri.cir. 103 2.58 4.64 (0.47) 0.44 (0.08) 4.64 (0.47) 0.45 (0.08)Nep.cae. 31 0.78 1.21 (0.31) 0.36 (0.14) 1.21 (0.31) 0.55 (0.08)Jas.mar. 15 0.38 3.65 (0.99) 0.90 (0.05) 3.65 (0.99) 0.90 (0.05)Table 3.3: Parameter Estimates for the Zero-inflated Poisson and theTruncated Zero-inflated PoissonTable 3.3 shows that for the six selected species the zero inated regime has asigni�cant parameter �. For Jassa marmorata the parameter is not signi�cantlydi�erent from 1, suggesting data consists of zeros only. When we �t a zeroinated Poisson to all 112 species, about 48% has a parameter � that di�ers sig-ni�cantly from zero, though in 16% percent of the species, it is not statisticallydi�erent from 1. In about 49% of the species, there are problems of convergence.These cases correspond to samples that consist almost entirely of zeros, wherewe are close to the boundary of the parameter space � = 1. Only in about 3% ofthe species, parameter � does not di�er signi�cantly from 0. Table 3.4 shows theestimates of the parameters of a mixture of two Poisson distributions (columns3 to 5). The mixture coe�cient � in table 3.4 applies to the Poisson distribu-tion with �1 (the fourth column). For the most abundant species the mixturecoe�cient is signi�cantly di�erent from zero (and also from 1). In estimating amixture we typically obtain one � smaller than the mean of the ordinary Pois-son and a second � larger than the latter. For the Nephtys caeca the mixturecoe�cient is not signi�cant, and the �'s do not di�er signi�cantly from zero.For Nephtys longosetosa �2 does not di�er signi�cantly from zero, and thereforeone would re-estimate a zero-inated Poisson. Note that Jassa marmorata andNephtys caeca, with insigni�cant mixture coe�cients, were precisely species forwhich a Poisson distribution could not be discarded (see page 11, table 2.1).Species N � �1 �2 �Amp.�l. 1067 26.68 33.84 (1.05) 2.00 (0.48) 0.76 (0.07)Cha.set. 413 10.33 32.04 (1.91) 4.04 (0.37) 0.22 (0.07)Nep.lon. 152 3.80 5.49 (0.85) 0.79 (0.69) 0.64 (0.16)Pri.cir. 103 2.58 7.01 (0.82) 0.42 (0.15) 0.33 (0.08)Nep.cae. 31 0.78 1.75 (1.16) 0.33 (0.40) 0.31 (0.43)Jas.mar. 15 0.38 4.45 (1.35) 0.02 (0.03) 0.08 (0.05)Table 3.4: Parameter Estimates for Poisson MixturesIn general, we conclude that for frequent to moderately abundant species Poissonmixtures are useful for describing the summed abundances. The zero inatedPoisson distribution does well for many of the species considered, in table 3.3



3.3. Application to Species Count Data 26parameter � is always signi�cantly di�erent from zero. However, for very rarespecies � is close to one, usually not signi�cantly di�erent from 1, suggesting alldata are zero. For these cases, the Poisson distribution remains probably moreadequate.



Chapter 4Some Regression Models4.1 IntroductionThe physical, chemical and biological characteristics of the environment deter-mine which species can survive in a certain environment. In many ecologicalstudies, the probability of �nding a particular species at a certain location isassumed to depend on environmental variables such as temperature, humidity,pH, etc. It is thus natural to think of regressing species abundance onto environ-mental variables, in an attempt to explain variations in abundance in terms ofenvironmental variables. In this chapter some results of such regression analysesare presented. Some attention is paid to the particular nature of the data underconsideration. First, as explained in chapter 2 when aspects of sampling wereconsidered, the data consists of �ve repeated measurements of species counts,and three repeated measurements of the chemical variables at each location.When one takes repeated measurements at the same location, it is to be ex-pected that the measurements made at the same location will be more similarto each other, than observations made at di�erent locations. Observations mightthus not be entirely independent. Another point to have in mind is that theresponse variable tends to be sparse and might not be normally distributed. Infact the response variable is discrete and non-negative, because it is a countvariable. It is thus natural to consider alternatives to ordinary regression thataccount for these characteristics. In particular, variance components models areconsidered when working with repeated measurements, and Poisson regressionis used as an alternative when dealing with count data.An important theoretical reference point in ecological studies of the dependenceof abundance on environmental variables is the unimodal response model. Of-ten species are supposed to respond to an environmental variable in a unimodalway: abundance increases over a certain range of the environmental variable,reaches a maximum, and then starts to decrease for higher values of the en-vironmental variable. An example of a unimodal response curve is shown in�gure 4.1, where the curve depicted is a Gaussian curve, and the response issymmetric around an optimum (O), with a certain spread around the optimum,
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Environmental VariableFigure 4.1: A Unimodal Response Modelcalled the tolerance (t) of the species. Note that the Gaussian curve in �gure 4.1is conceived as a response function, not to be confused with a probability den-sity. Attention is however, not necessarily restricted to symmetric or gaussiancurves, parabolas or nonsymmetric curves could do as unimodal response curvesas well. Ordinary regression analysis amounts to �tting straight lines to data,not curves like in �gure 4.1. However, due to the transformations applied to thedata (square root transformation, natural logarithm) and inclusion of quadraticterms, typically curvilinear models are �tted to the original data, though theydo not necessarily all correspond to unimodal models. The nature of the �ttedmodels (linear, convex, unimodal, etc) in the applications below will always beindicated.Naturally, regression theory will not be described in detail here, as there are ex-cellent books on the topic (Draper and Smith, 1981; Hamilton, 1992). However,because of the special relevance of variance components models for repeatedmeasurements and of Poisson regression for rare species (see applications be-low), brief theoretical accounts of these are interspersed with the applicationsbelow.The outline of the remaining part of this chapter is as follows. First, a separatesection is dedicated to an exploratory data analysis of the bivariate relationshipsin the data from 1990. Next, we treat some applications of ordinary regressionmodels and some of the alternatives to the data of three selected species in par-ticular. The chapter closes with some conclusions and general remarks.



4. Some Regression Models 294.2 Descriptive Bivariate AnalysisBefore doing any regression, we �rst explore the bivariate relationships in thedata with the aid of some scatterplots matrices in order to get an impressionof the associations between the di�erent variables. The data used is from 1990,because this year has the largest number of samples (39). Three di�erent scatter-plot matrices are constructed: a scatterplot matrix of the ten species abundanceswith the best reliabilities (�gure 4.2), a scatterplot matrix of all environmen-tal variables (�gure 4.3) and a between set scatterplot matrix plotting the tenselected species versus ten selected environmental variables (�gure 4.4).
Figure 4.2: Scatterplot matrix of 10 SpeciesFigure 4.2 shows a positive association between the abundances of the speciesAmphiura �liformis, Sthenelais limicola, Goniada maculata and Phoronis sp..Other species seem to show no association with others at all, like Capitellacapitata and Nemertini indet.. Two very high outliers for Myriochele oculatamake it di�cult to see its relationship with other species. These exceptionaloutliers correspond to station 24 and 15, both stations relatively close to theplatform. Species Chaetozone setosa seems to be negatively associated with thegroup Amphiura �liformis, Sthenelais limicola and Goniada maculata.The scatterplot matrix of the thirteen log-transformed chemical variables, dis-played in �gure 4.3 shows clearer patterns. It is evident that many variablesare closely associated, in particular the group of heavy metals Cd, Cu, Fe, Pband Zn. This is also con�rmed by an inspection of the correlation matrix of thevariables in table 4.2, showing high correlations between all heavy metals, THC,TOC and PEL. An outlier masks much of the relationships of the variables C17,C18 and PRI with the rest, as there is one station, reference station 40, that isvery low on these variables. Omission of this outlier reveals a negative associa-



4.2. Descriptive Bivariate Analysis 30
Figure 4.3: Scatterplot matrix of environmental variablestion between C18, Pristane and the heavy metal group. Variable Hg has manycoincident measurements.Figure 4.4 shows scatterplots of the ten selected species against ten selectedenvironmental variables. The ten species in the vertical dimension are, readingdown, Myriochele oculata, Goniada maculata, Chaetozone setosa, Amphiura �l-iformis, Sthenelais limicola, Phoronis sp., Scoloplos armiger, Nemertini indet.,Capitella capitata and Eudorella sp.. The horizontal dimension shows, from leftto right, the variables lBa, lCd, lCu, lFe, lPEL, lPb, lZn, lPri, lTHC and lTOC.Some outliers have been removed, as they mask possible relationships (referencestation 40, and stations 24 and 15 for Myriochele oculata). Goniada maculataseems to decrease with increasing concentrations of heavy metals. Chaetozonesetosa seems to increase with most environmental variables, though at high con-centrations its abundance drops.Exploratory band regression (Hamilton, 1998, p. 187) is used to get an im-pression of the nature of the responses of the species with respect to the envi-ronmental variables, and of the assumed prevalence of the unimodal responsepattern. In exploratory band regression, the horizontal axis is divided into aseries of vertical bands of equal width. For each band the median is calculated,and the medians so obtained are connected by straight lines or cubic splines.The interest is focused on the character of the species response with respect tothe variables in their original scale of measurement. Due to the positive skewof most environmental variables, exploratory band regression with say, eightbands, has the disadvantage that most bands will contain no data. This is im-proved if the log-transformed data are used, and positive skew is reduced. It
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Figure 4.4: Scatterplots of Abundance versus Environmental variables.Species in the vertical dimension are, reading down, Myriochele oculata,Goniada maculata, Chaetozone setosa, Amphiura �liformis, Sthenelaislimicola, Phoronis sp., Scoloplos armiger, Nemertini indet., Capitella capitataand Eudorella sp.. The horizontal dimension shows, from left to right, thevariables lBa, lCd, lCu, lFe, lPEL, lPb, lZn, lPri, lTHC and lTOC.should be kept in mind that this way, we screen relationships in the logarithmicscale. Figure 4.4 shows exploratory band regressions for the ten selected specieswith respect to ten environmental variables. The horizontal axes are dividedinto eight equal-sized bands. If samples are spread uniformly over the horizontalaxis, each band should contain about �ve observations. Chaetozone setosa isabout the only species that shows a consistent unimodal pattern with respect tonearly all variables. Nemertini indet. also shows single-peakedness for severalvariables. The overall pattern however, is that abundance decays with increas-ing values for the environmental variables. An exception is the variable PRI,nearly all species seem to increase with higher concentrations of this variable.In general, the data at hand do not seem to correspond with a unimodal modelfor species response. A unimodalist might respond that this is due to the factthat only a limited range of the environmental variable has been sampled. If awider range would have been sampled, the decaying patterns observed in �gure4.4 could turn out to be part of a unimodal response curve. However, these aresurvey data, and it is not possible to control the range of the environmentalvariable as in a laboratory experiment.As a starting point, we choose three species of varying total abundance andtry to model them in terms of the environmental variables for 1990. The three



4.3. Goniada maculata 32species selected form relatively extreme cases. The �rst one, Goniada macu-lata, is highly abundant. Considering all individual replicates, this species isonly 10% sparse. Another selected species, Gari sp., is rare and 90% sparse.Next, Chaetozone setosa is considered because it seems to behave more like aunimodal species. It is hoped that these species form reference points, and thatthe modelling problems encountered here are representative of what one couldencounter, to a lesser extent, in regressions with the other species.For the three species under consideration, we �rst regress the total sums of theirabundance onto the chemical variables. For the chemical variables we have threereplicates, but none of these replicates has a speci�c link to any of the biologicalreplicates. We use the mean of the 3 chemical replicates as an estimate forthe (missing) chemical observation of a biological sample. Next, we go down tothe replicate level, and again regress species abundance onto the means of thechemical variables. A categorical variable with about 40 categories is createdto indicate to which station each observation belongs. Finally we also take thenonnegative discrete nature of the response variable into account and considerPoisson regressions of the three species.4.3 Goniada maculataGoniada maculata is one of the most abundant species in the survey, with amean abundance of 7.6 per replicate and a standard deviation of 4.5. Goni-ada maculata was absent in about only 10% percent of all samples, and has areliability of 0.60 when data are square root transformed.4.3.1 Regression of Summed AbundancesFirst, the sums of the abundances over the �ve replicates are regressed ontothe means of each of the log-transformed environmental variables separately.The results of these regressions are briey summarized in table 4.1. Table 4.1shows the amount of explained variance in abundance (R2) and the regressioncoe�cient (b) with its standard error (se) for each variable. As a convention,a leading "l" in a variable name will be used to stress that we deal with thelog-transformed values.It is clear that nearly all variables explain a substantial part of the variationin abundance of Goniada maculata. Only lPRI is not signi�cant, and lC18 isat the borderline. However, for lC17, lC18 and lPRI, there is a very inuen-tial outlier, reference station 40, that is very low on these variables. Whenthis outlier is deleted, both lC18 and lPRI are highly signi�cant. Estimatesfor lC18: b = 3:21(0:46) with R2 = 0:5745, and lPRI: b = 4:53(0:83) withR2 = 0:4507. The estimates for lC17 change drastically, lC17: b = �4:89(0:45)with R2 = 0:7648. These regressions suggest that in principle all variablesshould enter as candidates in a multiple regression model. The outlying refer-ence station (40) is omitted from the analysis, as it keeps bothering the multipleregressions as well. This station is very di�erent from all the others (see sec-tion 6.3.1 on principal components). Table 4.1 shows that all variables exceptlC18 and lPRI have negative regression coe�cients. Increasing concentrations



4. Some Regression Models 33R2 b (se)lBa 0.229 -0.84 (0.25)lCd 0.717 -1.36 (0.14)lCu 0.545 -0.90 (0.14)lFe 0.692 -2.81 (0.31)lHg 0.542 -2.51 (0.38)lPb 0.731 -1.71 (0.17)lZn 0.707 -1.37 (0.14)lC17 0.270 -1.52 (0.41)lC18 0.101 0.68 (0.34)lPRI 0.021 0.32 (0.36)lTHC 0.802 -0.95 (0.08)lTOC 0.671 -3.78 (0.43)lPEL 0.641 -1.48 (0.18)Table 4.1: Regression coefficients for Goniada maculataof heavy metals, THC, TOC and PEL would thus reduce the abundance of Go-niada maculata.When we construct an initial multiple regression model, regressing abundanceon all environmental variables, multicollinearity is present. Many of the explana-tory variables are highly correlated, as indicated by their correlation matrix intable 4.2. When we regress each predictor on the others, very high coe�cientsof determination (R2) are found, showing that the predictors share large part oftheir variation. Multicollinearity is further evident from the correlation matrixbetween the regression coe�cients, where some high correlations are present(e.g. a correlation of -0.95 between lFe and the intercept). Under presence ofmulticollinearity the standard errors are inated and so the estimated regressioncoe�cients are imprecise (Hamilton, 1992, pp. 133-136).Ba Cd Cu Fe Hg Pb Zn C17 C18 Pri THC TOC PELBa 1.00Cd 0.39 1.00Cu 0.17 0.77 1.00Fe 0.31 0.95 0.89 1.00Hg 0.31 0.97 0.70 0.89 1.00Pb 0.35 0.97 0.79 0.97 0.91 1.00Zn 0.20 0.86 0.98 0.96 0.79 0.89 1.00C17 0.55 0.83 0.70 0.85 0.75 0.83 0.77 1.00C18 -0.70 -0.49 -0.27 -0.41 -0.43 -0.49 -0.33 -0.36 1.00Pri -0.41 -0.36 -0.18 -0.28 -0.34 -0.36 -0.22 -0.31 0.71 1.00THC 0.36 0.96 0.74 0.93 0.91 0.98 0.84 0.81 -0.50 -0.38 1.00TOC 0.27 0.94 0.89 0.99 0.86 0.97 0.95 0.83 -0.41 -0.28 0.93 1.00PEL 0.30 0.88 0.74 0.93 0.79 0.92 0.84 0.84 -0.43 -0.31 0.88 0.94 1.00Table 4.2: Correlations between Environmental Variables, 1990Insigni�cant terms, often o�ending because of multicollinearity, are droppedfrom the full model one at a time. Proceeding in this manner, we arrive at a�nal regression model:sqrt(N) = 5.72 - 2.36 lC17 - 0.59 lTHC(0.84) (0.63) (0.12)Log transformed THC and C17 together account for 85% of the variance in



4.3. Goniada maculata 34the square root transformed total abundance of Goniada maculata. The in-tercept gives the square root of the expected abundance when lTHC and lC17are both zero in the log scale. This corresponds to an expected abundance of(5:72)2 � 33, when there is 1 milligram of Hydrocarbon per kilo and the n-C17/pristane ratio is 1. It remains nevertheless di�cult to assess which of thevariables do really a�ect the abundance of Goniada maculata. Many insigni�-cant predictors have been dropped from the regression equation, but these sharevariation with the ones remaining in the equation, and so the importance of thelatter might easily be overstated. As an alternative a data reduction techniqueis employed, as many variables are so highly correlated. Thus the abundance ofGoniada maculata is regressed onto principal components (regression onto prin-cipal components often shortly indicated as PCAR). The principal componentanalysis of the chemical data is discussed in more detail later in chapter 6. The�rst component accounts for 85% of the variance of the chemical data. Onlythe �rst principal component turns out to be signi�cant, and the correspondingregression model is: sqrt(N) = 5.78 - 1.88 PC1,(0.16) (0.16)where 79% of the variance in the transformed abundance of Goniada maculatais explained by the �rst principal component, and the �rst principal componentis highly signi�cant. Figure 4.5 shows the �tted regression line.
Figure 4.5: Regression on First Principal ComponentIn order to get a better idea of how the di�erent variables a�ect the abundanceof Goniada maculata, some conditional e�ects plots are constructed. Since both



4. Some Regression Models 35the response variable and the predictors have been transformed, the relation-ship between abundance and environmental variables is not linear any more,but curvilinear. A conditional e�ects plot graphs the �tted values of the res-ponse variable against one of the predictors, where all other predictors are heldconstant (Hamilton, 1992, pp. 158). With a conditional e�ects plot, it becomesclear what the curvilinear regression on THC and C17 above means in terms ofthe original variables.
Figure 4.6: Conditional effects PlotThe conditional e�ects plots of C17 and THC are shown in �gure 4.6. The mid-dle curve shows the relationship between abundance and the x-variable, whenthe other covariate is held �xed at its mean. The top curve show the samerelationship when the other covariate is kept constant at its minimum, and thebottom curve depicts likewise the relationship when the other covariate is at itsmaximum. The vertical lines in the plots correspond to the 10th and 90th per-centile of the x-variable. As can be seen from the plots, THC exerts its largeste�ect for values in the range of its 10th percentile, and the drop in abundancetails o� pretty quickly as THC increases. On the other hand C17 seems to a�ectthe abundance of Goniada maculata at a slowly decaying rate, ranging from its10th percentile to its 90th percentile. There is some sign of interaction. Wesee that if THC is at its maximum, the e�ect of C17 seems less severe, as thecorresponding curve tails o� slower compared to the curve with THC at its mean.We notice here that the square root and log transformation were chosen to re-duce skew. If we consider one environmental variable (x) only, then the �ttedabundance (N ) is expressed in terms of x as:



4.3. Goniada maculata 36N = (a+ b lnx)2 (4.1)This function achieves a minimum if x = e�ab=b2, and increases without limitfor large x. There is an inection point at x = e(b�a)=b. Function (4.1) is convexover (0; e(b�a)=b) and concave over (e(b�a)=b;1). It runs thus contrary to theidea that the response of a species to an environmental variable is unimodal,that is, single-peaked and with a maximum rather than a minimum. Applyingstandard statistical transformations to reduce skew thus leads to an empiricalmodel that does not correspond to the theoretical unimodal model. A responsethat is unimodal, at least over part of the range of the environmental variable,can be obtained if quadratic terms of the log-transformed environmental vari-able are included in (4.1).Unimodal response curves can also be obtained by �tting parabolas to log-transformed abundance data (Jongman et al., 1987, p. 41), thus choosing adi�erent transformation for the response variable. In the case of Goniada mac-ulata, the log-transformation is not adequate, as it would introduce consider-able negative skew, whereas the square root transformation is satisfying. Whenquadratic terms are introduced in the multiple regression model they turn out tobe insigni�cant and o�ending as they cause multicollinearity. Another problemof the logarithmic transformation is that the log of zero is not de�ned, whereasfor the square root transformation zeros are not problematic. We thus keep themultiple regression model proposed, even though it does not correspond to aunimodal response.We also note that the variables in the study are mainly pollutants, likely tohave toxic e�ects on the organisms. Their e�ect might be very di�erent from avariable like say, temperature. For temperature some interval can probably bediscerned for which its increase improves the physiological conditions of the or-ganism under study, and an increase in abundance over that particular intervalis expected. For pollutants like heavy metals the situation could be di�erent,e.g. if no such a pro�table range exists, a pattern of decay is maybe more ade-quate than a unimodal response.4.3.2 Taking Replicates into AccountIn the previous section, abundances were summed over the �ve replicates. Doingso, a possible component of variation within the stations is ignored. In this sec-tion the �ve replicates are kept separate. What are the corresponding chemicalmeasurements of each replicate? In fact, these are not available. There are onlythree chemical measurements of other samples at the same location. The meanof these three measurements is used as the estimate of the chemical variablesof the biological sample. At each mean of a chemical variable, there are thus�ve biological observations. This situation is illustrated in �gure 4.7, where ascatterplot of Goniada maculata is shown against Barium.One can test for signi�cant di�erences between the stations, by using a cate-gorical variable indicating to which station an observation belongs. A onewayanalysis of variance (ANOVA) shows that there are signi�cant di�erences be-
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Figure 4.7: Scatterplot of Goniada maculata versus Bariumtween the stations (F = 11:70; p < 0:00005). However, the Bartlett's �2-test forequality of the variances is signi�cant, and this casts doubt on the assumptionof equality of variances that underlies ANOVA. The square root transforma-tion improves this situation, since ANOVA with the transformed abundances(F = 18:41; p < 0:00005) gives a nonsigni�cant Bartlett �2. Anyway, a Kruskal-Wallis test is used as a non-parametric alternative, where the null-hypothesisnow states that the median abundance is equal for all stations. The Kruskal-Wallis test gives a �238 of 130.5, (p = 0:0001), and supports the hypothesis thatthere are di�erences between the stations. Which are the stations that di�er?By inspecting the boxplots for each station separately it becomes clear that Go-niada maculata is nearly absent at stations 3 and 37, and considerably lower on25, 30, 31, 32, 35 and 36. This is a set of stations that is close to the platform(see chapter 2, p. 7).The regressions of square root transformed abundance are again performed ontoeach of the variables separately. Doing so for the \unaggregated" data gives re-sults that are qualitatively comparable to table 4.1: all variables have signi�cantnegative coe�cients, except lC17 and lPRI that have positive regression coef-�cients. The amounts of variance explained are in general lower than in table4.1. Dropping insigni�cant variables from the full model one by one, we againend up with the regression model:sqrt(N) = 2.50 - 1.13 lC17 - 0.29 lTHC,(0.28) (0.21) (0.04)and the coe�cient of determination (R2) is 71%. Figure 4.8 shows the residualsof this regression, where residuals are labelled with their station number. At �rst



4.3. Goniada maculata 38sight these residuals look okay, there are no signs of curvature or large outliers.However, the sample size is 190, and �gure 4.8 seems to contain a much smalleramount of points. This is suspicious as there must be many coinciding residuals.When we take a close look at the residuals within one particular stations, wesee that the residuals tend to be similar in order of magnitude. But when wecompare residuals across di�erent stations, we see larger di�erences. Phrasedin other words, the residuals show some intraclass correlation. In a standardresidual plot like �gure 4.8 without station numbers, this intraclass correlationcan easily go unnoticed. The intraclass correlation of the residuals is foundto be 0.23, and di�ers signi�cantly from zero. The residuals can thus not beregarded independent, and one of the basic assumptions of the regression modelis violated.
Figure 4.8: Residual plotAs a consequence, standard errors might be biased, and T-tests might be inval-idated. In order to cope with this problem of intraclass correlation, a randomcoe�cient model is used, where the intercept of the regression is allowed to varyamong stations. The model then becomes:Nij = �j + �xij + "ij ; (4.2)where the �rst term on the RHS can be written as: �j = � + uj, � being themean intercept, and uj the deviation from the mean intercept of station j. Theintercept is supposed to follow a N (�; �2u) distribution. Residuals uj and "ijare assumed uncorrelated. Model (4.2) is a multilevel model, where the hierar-chical structure of the data is recognized: the �rst level is formed by the actualmeasurements, the second level is formed by the stations. More details on thistype of models, embedded in an educational context, can be found in Goldstein(1987). The important feature of this model in this context is that it allows



4. Some Regression Models 39for intraclass correlation in the response variable. In particular, the variancein abundance given by model (4.2) is �2u + �2e , and the covariance between twomeasurements at the same station is: cov(uj + eij; uj + eij) = cov(uj ; uj) = �2u,so that the intraclass correlation of the response variable is: � = �2u=(�2u + �2e).Estimating this model we obtain:sqrt(Abun) = 2.50 - 1.13 lC17 - 0.29 lTHC(0.40) (0.30) (0.06)Notice that the estimated coe�cients are virtually the same as in the ordinaryregression model previously commented, but that the standard errors obtainedare larger, and that the con�dence intervals for the coe�cients are thus wider.When we calculate again the intraclass correlation, but now for the residuals ofthe random coe�cient model, we �nd a value of -0.15, not signi�cantly di�erentfrom 0. The residuals (level 1) are now free of intraclass correlation, and theassumption of independence is no longer being violated. Phrased in another way:an ANOVA of the residuals of the ordinary regression model gives signi�cantdi�erences between the means of stations (F = 2:51; p = 0:000). An ANOVAof the residuals of the random coe�cients model however, is not signi�cant anymore (F = 0:36; p = 0:999). The random coe�cient model is thus the preferredmodel. The variance components �2u and �2" are estimated 0.09 (s.e. 0.03)and 0.28 (s.e. 0.03) respectively. The variance within stations is thus aboutthree times larger as the variance between stations. The intraclass correlationin square root abundance, given the model, is then 0.24, that is to say that24% of the total variance in abundance of Goniada maculata is due to variationbetween stations. A graphical illustration of the random intercept model isgiven in �gure 4.9, using only one predictor, lTHC.4.3.3 Poisson RegressionPoisson regression is a particular case of a generalized linear model (McCullaghand Nelder, 1989). Three components are distinguished in generalized linearmodels: a random component, a systematic component and a link function. Therandom component consists of a response vector y of n components, containingoutcomes of a random variable Y, identically distributed with vector of means�: E(Y) = �: (4.3)The systematic component consists of a linear combination of the covariatesx1;x2; : : : ;xp and is called the linear predictor �:� = pXi=1 xi�i = X�: (4.4)A link function, g(�), links the random and systematic component:�i = g(�i): (4.5)
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Figure 4.9: Random Intercept model for Goniada maculataOrdinary regression corresponds to a generalized linear model where the re-sponse variable is normally distributed, and where the link function is the iden-tity function. In the case considered here, Poisson regression, the responsevariable is a count variable, assumed to follow a Poisson distribution, and thelink function is chosen to be the natural logarithm, so that one has:�i = ln�i: (4.6)The model �tted to the data so becomes:�i = e�o+�1xi1+�2xi2+����pxip : (4.7)The parameters of a generalized linear model can be estimated by an iterativeweighted least squares algorithm (McCullagh and Nelder, 1989; Dobson, 1991).In this context, �i is the expected abundance. When we consider only onepredictor, holding the other ones constant, we have:�i = e�+�1xi1 = ce�1xi1 ; (4.8)with c = e� , and � = �o + �2xi2 + � � ��pxip. Depending on the sign of coe�-cient �1, we thus �t a model of exponential growth or exponential decay, not aunimodal response model. Model (4.8) has the disadvantage that, for �1 > 0,abundance increases without limit as x increases, which is not very realistic.When a Poisson regression is carried out for the total abundances of Goniadamaculata onto the �rst principal component, we �nd the regression model:N = 3.45 - 0.72 pc1,(0.03) (0.05)



4. Some Regression Models 41The regression coe�cients of this model are signi�cant, but the goodness of �tstatistic �2 is large, 153.4 (p = 0:000). Given the model, one has to reject thehypothesis that these data are Poisson distributed. This also happens whenwe build regression models using the original (log-transformed) variables ratherthen principal components, and also when we use all individual replicates ratherthan their sums. For an abundant species like Goniada maculata, Poisson re-gression thus seems not to make much sense. In fact, the �2-statistic suggeststhat data might be overdispersed. This is e�ectively the case, as the samplevariance is much larger than the mean. We would have to try to take thisoverdispersion into account, or might consider negative binomial regression asan alternative (Hilbe, 1994). These approaches are not further considered here.4.4 Gari sp.In this section we consider the same type of models as considered for Goniadamaculata. Species Gari sp. di�ers from Goniada maculata in the sense that ithas a very low reliability of 0.08, not signi�cantly di�erent from zero, and thatit is a rare species. There is overdispersion, as the quotient of sample mean andvariance is 0.6. However, the distribution of the total abundance of Gari sp. canhardly be considered di�erent from a Poisson distribution, because the quotienthas a 95% bootstrap con�dence interval of (0.43,0.99) (see also chapter 2).4.4.1 Regression of Summed AbundancesRegressing the square root transformed total abundance of Gari sp. onto the log-transformed environmental variables, one by one, shows that only the regressionon lBa is signi�cant: sqrt(N) = -1.54 + 0.26 lBa(0.76) (0.10)lBa explains 16% of the variance in square root abundance. The �tted regressionline is shown in the upper left panel of �gure 4.10. The upper right panelshows the relationship between abundance and Barium when the variables aretransformed back to their original scale.In the left panel, the size of the points is proportional to their leverage. Thereare 4 cases at the extremes of the regression line that exert leverage above thecritical level of 2K=n, where K is the number of estimated parameters and n isthe sample size (Hamilton, 1998). Another case statistic called dfbeta measuresthe inuence of each case on the regression coe�cients. The dfbetas of all caseshowever, are below the critical level, and the estimated regression coe�cientsdo not change much if these cases are deleted. Upon deletion, other cases inturn appear with high leverage. The station with the highest abundance is anoutlier with an exceptionally high residual, but its deletion neither changes theregression estimates very much. Thus, we retain the regression equation aboveas describing the relationship between the abundance of Gari sp. and lBa.A word of care is in place here, however. If we adopt a signi�cance level of 0.05,we have a chance of 1/20 of �nding a signi�cant regression coe�cient by chancealone. When we screen 20 variables, we can be almost sure that one of them is
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Figure 4.10: Regression of Gari sp. on Barium. Upper panels show linearregression, lower panels show Poisson regression, both in original and log scale.signi�cant. With 13 variables in the survey, it thus might come as no surprisethat a species seems to respond at least to one of them.When the regression of the abundance of Gari sp. with respect to principalcomponents is considered, Gari sp. turns out to decrease signi�cantly with thesecond principal component, whereas the �rst principal component is insigni�-cant. sqrt(N) = 0.01 pc1 - 0.28 pc2,(0.10) (0.10)About 14% of the variance is explained by the �rst two principal components.This regression is consistent with results reported for lBa, as the �rst principalcomponent correlates positively with lBa, and the second negatively.Since Gari sp. is so sparse, Poisson regression is also considered for its totalabundance (see section on Poisson regression below).4.4.2 Taking Replicates into AccountWhen we consider all replicates of the abundance, forming �ve repeated mea-surements at the means of the chemical variables, only about 10% of the ob-servations is non-zero, and they are all whether 1 or 2. Only a 2% of thecounts consist actually of the value 2. With so few counts di�erent from out-comes (0,1) we recode the data as absence-presence data and perform logisticregression, rather than considering ordinary regression or Poisson regression. In



4. Some Regression Models 43logistic regression, the logit (log odds) is modelled as a linear function of the kpredictors: L̂ = ln (p=(1� p)) = �0 + kXi=1 �ixi; (4.9)where p is the probability of occurrence. Logistic regression is also a particularcase of a generalized linear model, where the distribution of the response vari-able is binomial, and the link function is the logit function. Only the logisticregression onto lBa is signi�cant:L = -9.78 + 0.94 lBa(3.02) (0.37)If the concentration of Barium is zero in the log scale (corresponding to 1 mil-ligram of Barium per kilo in the original scale), the estimated logit is -9.78. Thismeans that the odds of �nding Gari sp. are e�9:78 or in other words that theprobability of �nding one or more specimens of Gari sp. at this concentration ofBarium is 1=(1 + e�L̂) = 1=(1 + e9:78) = 5:7� 10�5. An increase of one unit inthe log scale of Barium (that is a multiplication of the concentration of Bariumby a factor e � 2:718 in the original scale) multiplies the odds for �nding Garisp. by a factor e�1 = e0:94 � 2:56. Logistic regression �ts a S-shaped curve tothe probabilities of �nding Gari sp. as a function of lBa. Data points and �ttedcurve are shown in �gure 4.11.
Figure 4.11: Logistic Regression of Gari sp. on BariumIt should be kept in mind however, that this result is based on a highly skewedresponse variable: only about 10% of the cases correspond to y = 1. We also



4.4. Gari sp. 44note that because the log transformation was used to reduce skew in the en-vironmental variables, the odds of �nding Gari sp. are in fact modelled as apower function of the concentration of Barium in its original scale, �1 being thepower: p=(1� p) = e�0+�1 ln x = e�0x�1 : (4.10)The deviance residuals of the logistic regression are shown in the right panel ofgraph 4.11. Most residuals line up along horizontal curves. The lowest curvecorresponds to stations where Gari sp. has not been found. The second lowestcurve correspond to stations where Gari sp. has been found once, the third low-est curve where it has appeared twice. The one station (23) with an exceptionalhigh residual is the only one where is has been detected three times. Deletionof this station does hardly alter the coe�cient of lBa (b0 : �10:09; b1 : 0:96).Curious things happen when we analyze the deviance residuals or Pearson resid-uals of the logistic regression. For any one station, the �ve chemical measure-ments for lBa are identical (because the biological replicates were assigned themeans of the chemical replicates). Whereas the sample size is 195, the numberof predictor patterns is thus only 39. Software for logistic regression typicallycalculates the residuals for the number of predictor patterns (X-patterns), andeach observation within such a pattern is assigned the same residual. As aconsequence, the residuals of the logistic regression on lBa have an intraclasscorrelation of 1. This suggest that residuals can not be regarded as independent,even though the response variable has no intraclass correlation at all ! This is anundesirable characteristic of the analysis. If the binary response variable showsvariation within groups, it would be natural that the residuals within groupsalso display variation. The detected intraclass correlation in the residuals ishere taken to be an artifact produced by the way residuals are calculated. Asthe response variable has an intraclass correlation of only 0.08, we do not worryabout dependence of observations.4.4.3 Poisson RegressionBecause the distribution of the summed abundances of Gari sp. hardly di�ersfrom a Poisson, Poisson regression can be considered for the sums:N = -7.30 + 0.85 lBa(2.59) (0.31)In this case, the �2-statistic for goodness of �t is 43.27, and the null hypothesisthat the data, given the model, are Poisson can not be rejected (p = 0:189).For a rare (and thus sparse) species like Gari sp., Poisson regression seemsto be useful. The �tted regression line is shown in the two bottom panels of�gure 4.10, both in the log transformed scale as well as in the original scaleof measurement. We notice that when log transformed environmental variablesare used, the actual response model that is �tted when Poisson regression isused is also a power of the environmental variable. E.g. in Poisson regressionwith a log-transformed predictor we have:



4. Some Regression Models 45ŷ = e�0+�1 ln x = e�0x�1 : (4.11)This function is concave if 0 � �1 � 1, and convex if �1 � 1 (we assume x > 0,otherwise the log-transformation would not be possible), and without optimum.Such a response function is realistic in the sense that negative outcomes are notpossible, but it has the disadvantage that abundance can increase without limit.The deviance residuals of the Poisson regression are plotted against the linearpredictor in �gure 4.12. The residuals line up in curves which correspond to totalabundances of 0,1,2,3 or 4. There is clearly heteroscedasticity, as the varianceof the residuals increases for higher values of the linear predictor.
Figure 4.12: Deviance residuals versus Linear Predictor for Gari sp.Merely for the sake of comparison with logistic regression, we also consider thePoisson regression for the unaggregated data. The response variable is assumeddiscrete, and we no longer use the square root transformation. Again, only theregression with predictor lBa is signi�cant:N = -8.96 + 0.85 lBa(2.56) (0.31)The �2-statistic for goodness of �t is now 96.4, and the null hypothesis that thedata, given the model, are Poisson can certainly not be rejected (p = 1:000).It is clear that the Poisson distribution becomes more apt when all replicatesare considered rather then their sums. The regression equations for sums andreplicates are very similar, the coe�cients for lBa are the same, and the inter-cepts do not di�er signi�cantly from each other. The deviance residuals havean intraclass correlation of 0.06, which is not signi�cantly di�erent from 0, and



4.5. Chaetozone setosa 46thus there is no need to specify a particular model to account for intraclasscorrelation.4.5 Chaetozone setosaSome regressions for Chaetozone setosa are considered, as this is one of the fewspecies that seems to show a unimodal response. Chaetozone setosa is one ofthe most abundant species, and has a reliability of 0.6, and its distribution isnot Poisson (cf. table 2.1).4.5.1 Regression of Summed AbundancesWhen the total abundance of Chaetozone setosa is regressed onto each predic-tor separately, only lBa and lTOC turn out to be signi�cant. The exploratoryband regressions of section 4.2 however, showed evidence for curvature in therelationship of the abundance of Chaetozone setosa and several environmentalvariables. When quadratic terms are included more variables pop up as signi�-cant, notably the heavy metals lCd, lFe, lPb, lZn and lTHC. The results of thesigni�cant regressions are summarized in table 4.3 (intercepts not shown).R2 b1 b2lBa 0.16 0.78 (0.29) -cCd 0.43 1.18 (0.30) -0.78 (0.14)cFe 0.32 2.78 (0.97) -2.78 (0.69)cPb 0.35 1.30 (0.42) -1.06 (0.23)cZn 0.36 1.14 (0.35) -0.65 (0.14)cTHC 0.22 0.58 (0.21) -0.28 (0.08)lTOC 0.12 -1.43 (0.65) -Table 4.3: Regression coefficients for Chaetozone setosa. Interceptnot shown, b1 for the linear term, b2 for the quadratic term.The introduction of quadratic terms leads to multicollinearity, as the quadraticterms tend to be correlated with their non-quadratic counterparts. This is partlycircumvented by centring the log transformed environmental variables on theirmeans. This reduces multicollinearity considerably, and produces more precisestandard errors. To stress this centring, a leading 'c' in a variable name indi-cates that a variable is centred on the mean after the log transformation.All regressions with quadratic terms (b2) in table 4.3 have a negative coe�-cient for the quadratic term. Without backtransforming the variables we �t aparabola to the log-transformed data, which corresponds to a concave responsefunction if the coe�cient of the quadratic term is negative. Thus we �t a uni-modal model with a maximum in the log-transformed scale. In the originalscale, abundance is related to an environmental variable by:N = �b0 + b1 lnx+ b2ln2 x�2 ; (4.12)



4. Some Regression Models 47which is a polynomial in lnx. Depending on the values of the coe�cients, amaximum is possible.But how unimodal is Chaetozone setosa? Four of the �tted quadratic regres-sions shown in table 4.3, in the log-transformed scale, are shown in �gure 4.13.In all four graphs we see that most data points scatter around the left half ofthe parabola. Only about �ve stations are actually responsible for the curvaturein the data. These �ve stations are the same stations in all four graphs, andcorrespond to stations 3,31,37,30 and 36. Apart from station 3, these are thestations that are the most close to the platform, and are very high on heavymetals and THC. If this group of stations is left out of consideration, Chaeto-zone setosa shows an overall pattern of linear increase with the environmentalvariables. More data in the right tail of the distribution of Cd, Fe, Pb and THCwould be welcome in order to con�rm the unimodal response pattern.
Figure 4.13: Regressions with Quadratic term for Chaetozone setosaAnother feature of �gure 4.13 is that the parabolic response curves �tted in thelog scale are strictly symmetric. This means that they rise as steep on the left asthey fall on the right. This seems a bit restrictive, as the response pattern withrespect to lTHC for instance suggests rather a gradual rise followed by a steepdrop. In the original scale of measurement however, this symmetry does notexist. The relationship between abundance and the four variables previouslyconsidered in the original scales of measurement is shown in �gure 4.14.In the original scale of measurement, the quadratic regression models imply aunimodal response pattern. Note that the response curves do not follow thesteep rise in abundance entirely, but incline much before. With the appearanceof so many relevant quadratic terms, it becomes complicated to construct an



4.5. Chaetozone setosa 48
Figure 4.14: Response of Chaetozone setosa in original scaleoverall �nal model for Chaetozone setosa. When the amount of variables is re-duced by a principal component analysis, the abundance of Chaetozone setosadepends in a quadratic fashion on both components. We resume this with themodel: sqrt(N) = -0.56 pc1 - 1.63 pc2 + 0.57 pc2^2(0.26) (0.24) (0.18)This model explains 53% of the variation in abundance of Chaetozone setosa.The squared �rst principal component is left out, as it correlates highly withboth the �rst and the second principal component, causing multicollinearity andinating the standard errors.4.5.2 Taking Replicates into AccountFor the desaggregated data, we use the variance components model previouslydescribed in (4.2), this because the relatively high reliability of Chaetozonesetosa leads to residuals with intraclass correlation that are not independent.Many signi�cant relationships are detected. These are summarized briey intable 4.4.Note that there are some di�erences in comparison with regressions using sums.Speci�cally, lPRI is now signi�cant, where it was not, and lTOC is insigni�cant,where it was before. The amounts of variance explained are lower in compari-son with regressions using sums. If we again adopt the strategy to include allterms in table 4.4, and drop insigni�cant terms one by one, we end up with theregression model:



4. Some Regression Models 49R2 b1 b2lBa 0.12 0.37 (0.13) -cCd 0.28 0.56 (0.14) -0.34 (0.07)cFe 0.21 1.34 (0.45) -1.26 (0.32)cPb 0.23 0.61 (0.20) -0.46 (0.11)cZn 0.23 0.53 (0.17) -0.28 (0.07)cTHC 0.16 0.28 (0.09) -0.12 (0.04)lPri 0.07 -0.88 (0.43)Table 4.4: Regression coefficients for individual replicates ofChaetozone setosasqrt(N) = 2.76 + 0.33 cCd - 0.32 cCd^2 - 1.17 lPRI(0.44) (0.15) (0.06) (0.42)Though, as stated in previous sections, such an equation probably overstatesthe importance of the predictors (notably Cd), because of shared variance withother predictors.4.5.3 Poisson RegressionChaetozone setosa is highly abundant, and its distribution is not Poisson. Pois-son regression does not work for the total abundance and neither for the unag-gregated data. One would have to take overdispersion into account.4.6 ConclusionsThis chapter illustrates that the construction of regression models for the speciesis elaborate, requiring checks for multicollinearity, careful checking of residualsfor outliers, leverage, intraclass correlation and so on. If the interest is focusedon the response of a particular species, all this is necessary. However, with atotal of 152 species in 1990, regression modelling for each species separately is aprodigious amount of work. Ecological interest might be focused on a particularspecies, but often the response of the community of species as a whole is of in-terest. This asks for an approach that treats all the species data simultaneouslyin a single multivariate approach, and this is the subject of the next chapters.4.6.1 To Sum or Not to SumIn the models above, distinction has been made between regressions based on thesummed abundance and on separate treatment of all replicates. When shouldwe choose to perform the \aggregated" analysis or the \unaggregated" analysis?Imagine we have a theoretical species with a reliability of 1. The counts of the�ve replicates of such a species at a particular station are equal, as there is novariation within stations. Say our total sample size is about 200. The regressioncoe�cients obtained when regressing abundance onto an environmental variableare now identical to the regression coe�cients obtained would we regress the



4.6. Conclusions 50means of the �ve replicates onto the means of the environmental variables. Ev-idently, the standard errors of the coe�cients do change as we use aggregateddata, because the sample size is now 40. Do we regress using summed abun-dance, then the regression coe�cient for the environmental variable will stillbe identical to the one obtained in the unaggregated regression, whereas theintercept will be exactly 5 times as large. With regressing the sums, evidentlythe standard errors are also larger compared to the \unaggregated" regression.In the \unaggregated" regression however, intraclass correlation violates the in-dependence assumption, and variance components models would be needed toaccount for this, which in turn will produce larger standard errors.In short, if the purpose is to study one particular species, there is no need tosum or average the species counts. A larger sample size is preferable, and ifintraclass correlation is present, we can use a variance components model like(4.2) to account for this.In fact the idea to sum is a preliminary step to prepare the stage for a themultivariate approach when we study many species simultaneously. It simpli-�es the multivariate analysis, as we need to consider only one correspondenceanalysis or one principal component analysis of the biological data matrix. Notaggregating the abundances implies �ve multivariate analyses of the biologicaldata, whose results then need to be integrated in some way. If the reliability ofthe species data is very high, then nearly all variation is between stations, andprobably not much is lost by summing or averaging before doing multivariateanalysis. Unfortunately however, most species have a low reliability, and wewould ignore a important component of variation by summing. This topic istreated in some more detail in the next chapter.4.6.2 Variation over TimeIn this chapter we only considered data of one particular year, and that yearwas chosen for regression analysis because it had the highest number of samples.But because the sampling is repeated every year, there is also a time dimension.A complication is that the station network has undergone changes from yearto year, and in more recent years less samples have been taken. A subset ofabout 12 stations can be identi�ed that has been sampled every year. Severalapproaches are possible in order to consider the time dimension. A simpleapproach would be to concatenate the data sets from several years, and to usebinary indicators that tell to which year a particular sample belongs. By testingif slope or intercept dummies made with these indicators di�er from zero, onecould test for signi�cant di�erences between the years. Another approach wouldbe to use a random coe�cients model with three levels: the replicates being levelone, station level two and years level three.4.6.3 Poisson RegressionPoisson regression was found to useful for rare species, for which a Poissondistribution can often not be rejected as a probability model. If nearly all thecounts consists of zero and ones, one might even consider to recode the data



4. Some Regression Models 51entirely as absence-presence data and to perform logistic regression. For moreabundant species, as already detected in section 2.2, species counts are oftenoverdispersed. One would have to take overdispersion into account, or try otheralternatives such as negative binomial regression.4.6.4 Correlations between SpeciesIt should also be stressed that in this chapter a few species have been analysed,but independently from others. In practice, the abundances of the di�erentspecies can be related, as is also clear from the scatterplot matrix in �gure 4.2.In particular, some species might live in symbiosis where they mutually pro�tfrom each other, and their abundances might be expected to correlate positively.Others might be predators or preys, and their abundances could correlate neg-atively. Yet others might be entirely indi�erent with respect to each other.Detailed biological knowledge of the relationships between the species them-selves and their population dynamics is needed for building models accountingfor correlations between species. With two species this could already get prettycomplex, not to speak of 152.4.6.5 Unimodal ModelsWith Chaetozone setosa as an exception, not many species seem to show aunimodal response. This can be because there is no such response, or becausea too limited range of the environmental variables was sampled. It would beinteresting to measure abundance over a wide range of equally spaced intervalsof the environmental variable. In a monitoring survey like this, that is notpossible. In order to assess if a species responds in a unimodal manner toan environmental variable, one would need to control for these variables in anexperimental setting.4.6.6 Relationships DetectedWe briey summarize the relationships detected for the species considered inthis chapter. The abundance of Goniada maculata is seen to decrease signi�-cantly with the �rst principal component. We cannot disentangle the e�ects ofthe variables really responsible (C17, THC, heavy metals) for this, as they allcorrelate very highly. Gari sp. increases signi�cantly for higher concentrationsof Ba. However, we screened so many variables that this still might be a chancee�ect. Chaetozone setosa shows a unimodal pattern with respect to many ofthe contaminants, and seems to be a species preferring contaminated conditions.This species seems to respond signi�cantly to heavy metals and THC, thoughagain we can not disentangle their separate e�ects.
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Chapter 5Theory of CorrespondenceAnalysis5.1 IntroductionIn previous chapters, we have focused on the analysis of abundance data con-sidering one species at a time. In this chapter we move to the multivariateanalysis of the species data, where the abundances of all species are consideredsimultaneously. The techniques that come to mind in this context are principalcomponent analysis (PCA) and correspondence analysis (CA). PCA is usuallyapplied to a data matrix of continuous variables, whereas here we deal withnonnegative count data. Abundance data are however, often treated as quan-titative, and PCA has been applied to abundance data (See e.g. Digby andKempton (1987) for some examples). The more usual approach however, ismaybe to use PCA for the matrix of continuous environmental measurements,and CA for the species count data.Correspondence analysis is a multivariate method used for the analysis of ca-tegorical data in the form of contingency tables. It is also used in a graphi-cal, exploratory sense for tables of nonnegative count data, where the data arestrictly speaking not given in the form of a contingency table. CA has oftenbeen employed as a tool for the analysis of multivariate species count data, e.g.a matrix of species counts at di�erent locations, in order to obtain an ordina-tion diagram of species and sites. Such ordination diagrams were initially madeby ecologists using a reciprocal averaging algorithm, which is equivalent to CA(Hill, 1974).The theory of correspondence analysis has extensively been described by Green-acre (1984) and can also be found in other textbooks on multivariate analysissuch as chapter 8 in Gi� (1981), or section 8.5 in Mardia (1979).We briey mention the di�erent approaches one could use to introduce CA. In



5.2. Basic Theory 54the Gi�-system of multivariate analysis (Gi�, 1981), CA is considered to be aspecial case of homogeneity analysis (Michailidis and de Leeuw, 1998, section2.5.1). In homogeneity analysis a loss function is de�ned which is minimizedwith respect to both scores for cases and classes of categorical variables, usingparticular restrictions. An alternating least squares algorithm is employed tocompute the solution.The French approach to CA is essentially geometrical, and described by Benz�ecri(1973) and Greenacre (1984; 1993b). Here, the data table (called abundancematrix in this ecological context) is expressed as a set of pro�le vectors. In geo-metrical terms, the pro�le vectors form a cloud of points in high-dimensionalspace, and the object is to �t an optimal plane that best approximates thiscloud in a least squares sense.Yet another approach to CA is Nishisato's (1980) dual scaling (also called opti-mal scaling (Nishisato, 1996, p. 563)). In dual scaling the purpose is to assign areal number to the categories of a categorical variable, as if we would transforma categorical variable into a quantitative one (quanti�cation). This is achievedby maximizing the so-called correlation ratio (the ratio of the between sum ofsquares and total sum of squares of the quanti�cations), which is algebraicallyequivalent to the eigenvalue problem of CA (Greenacre, 1984, section 4.3). How-ever, dual scaling seems to be applicable to a wider variety of categorical datathan is CA (Nishisato, 1996).This chapter presents a brief account of the theory, following the notation ofGreenacre, and serves mainly for the purpose of reference in the next chapters(7,9). The chapter also exposes some more theoretical details concerning corre-spondence analysis, e.g. bounds obtained for singular values (inertias), biplotsof correspondence analysis, etc. Applications with the marine biological surveydata are dealt with in the next chapter.5.2 Basic TheoryWe consider an I � J matrix N with all elements non-negative, nij � 0. Fromthis matrix we construct the correspondence matrix P formed by dividing allelements of N by the sum of all elements of N:P = N=10N1: (5.1)Would we multiply our data in N by a scalar, then the sum of all elements ofN would also be multiplied by the same scalar, and thus the correspondencematrix would remain the same. Since P is at the heart of the analysis that isto follow, it is clear that CA is invariant with respect to multiplication of thedata by a scalar.We introduce two column vectors r and c containing the row and column sums(also called row and column masses) of P respectively, and build diagonal ma-trices Dr and Dc from these vectors:



5. Theory of Correspondence Analysis 55r = P1; c = P01; Dr = diag(r); Dc = diag(c): (5.2)If rows and columns would be independent then the elements of the correspon-dence matrix P could simply be calculated as the products of the correspondingmarginals: pij = ricj. In CA we precisely study the deviations from this in-dependence model, and do the following least squares approximation to thesedeviations: D�1=2r (P� rc0)Dc�1=2 = �UD�V0; (5.3)with identi�cation conditions �U0 �U = I and �V0 �V = I. Principal and standardcoordinates for rows (F and� respectively) and columns (G and � respectively)are obtained as: F = D�1=2r �UD; G = D�1=2c �VD;� = D�1=2r �U; � =D�1=2c �V: (5.4)Expression (5.3) clari�es how the data a weighted prior to the search of anoptimal plane of representation. The weighting is maybe best understood interms of the correspondence matrix P, as this relates directly to our data in N.The correspondence matrix P gets premultiplied by D�1=2r and postmultipliedby D�1=2c . Column categories with a high associated mass have their elementsdivided by the square root of that mass, and are so downweighted with respectto categories with a low mass. The same holds for the row categories. In ourecological context it means that rare species and sites with few organisms areupweighted in the analysis.5.3 Variations on a Computational ThemeInstead of working with a matrix of deviations from independence, one can alsodo CA by working with a matrix of pro�les. From the correspondence matrixwe build the matrix of row pro�les, by dividing each row by its sum. The matrixof row pro�les R and the matrix of column pro�les C can then be expressed as:R = D�1r P; C = D�1c P0: (5.5)Notice that the vector of column masses c is just the vector of the weightedaverages of the row pro�les, where the weights are the row masses r, since:r0D�1r P = 10P = c0. Similarly, the row masses also equal the weighted averagesof the column pro�les. The pro�les are now centred with respect to the averagerow pro�le, c, to obtain the centred row pro�les D�1r P � 1c0. The centringoperation can also be performed by the postmultiplication of the row pro�lesby an idempotent centring matrix I� 1c0. In the next step of the analysis, wetry to get an optimal display of the centred row pro�les in a subspace of lowdimensionality, usually a two-dimensional graph. Geometrically we can imaginethis as stacking a plane into the multidimensional cloud of pro�le vectors thatis as \close" to the cloud as possible. This is done by a (weighted) least squaresapproximation to the matrix of centred row pro�les, which can be achieved bythe generalized singular value decomposition:



5.3. Variations on a Computational Theme 56D�1r P� 1c0 =UDV0: (5.6)The left singular vectors satisfy the identi�cation conditionsU0DrU = I and theright singular vectors V0D�1c V = I. A similar decomposition can be performedon the column pro�les. The singular value decomposition gives us the axesof the optimal subspace. In this context, the columns of V form the basis ofthe optimal subspace for the row pro�les. The coordinates of the pro�les inthe optimal subspace, the principal coordinates, are given by equation (5.7).In the same way, using the decomposition of the column pro�les, the principalcoordinates of the latter (G) can be obtained as well:F = UD; G = D�1c VD: (5.7)We have so arrived at an optimal representation of the row pro�les. The princi-pal coordinates have a weighted mean 0, and the weighted variance of these co-ordinates are precisely the elements of D2, since r0F = r0(D�1r P�1c0)D�1c V =(10P � c0)D�1c V = (c0 � c0)D�1c V = 0, and F0DrF = DU0DrUD = D2. Inthe same manner, we derive for the weighted mean and weighted variances ofthe principal column coordinates that c0G = 0 and G0DcG = D2.It would be interesting to have, in the same plane, representations for thecolumns of the data table (the sites). We can think of a column categoryas an extreme pro�le, a unit vector with all subjects concentrated in one cat-egory only. In our ecological context, this means that we represent a site as atheoretical species, a species that only occupies that one particular site. Therepresentation of the column categories can then be obtained by projecting thesetheoretical pro�les (\vertices") onto the optimal plane. We thus form a J � Jidentity matrix, and can obtain the vertices or standard column coordinates,with respect to the basis of the plane as:� = D�1c V; (5.8)where the identi�cation conditions of (5.6) now imply �0Dc� = I. When thedecomposition of the column pro�les is considered, we �nd in an analogous man-ner the standard row coordinates � = U, where �0Dr� = I. The standardcoordinates have a weighted mean of zero because c0� = c0GD�1 = 0 andr0� = r0FD�1 = 0.Decomposition (5.6) can easily be obtained from (5.3); the singular vectors ofdecomposition (5.3) are related to the singular vectors of (5.6) by �U = D1=2r Uand �V = D�1=2c V.The analysis based on the pro�les has maybe some intuitive appeal, as we canimagine our data as pro�le vectors which we want to represent optimally. Equa-tion (5.6) can, however, be rewritten in many ways. We can for instance, alsowork with the pro�les without centring them. This has the consequence that wewill �nd an extra (trivial) dimension in the solution with an associated singularvalue of 1, a left singular vector 1 and a right singular vector c. The centringoperation is usually done just with the purpose of omitting this trivial dimen-sion. CA has the particular property that dimension k of the solution of the



5. Theory of Correspondence Analysis 57centred data precisely equals dimension k + 1 of the solution of the uncentreddata. For the sake of comparison, we note that in principal components analysisthis is not the case. In principal component analysis one usually does a singularvalue decomposition of the centred data matrix of continuous variables, but theso obtained singular values and singular vectors will usually not appear in thesingular value decomposition of the raw uncentred data.Note that (5.6) can also be reexpressed in such a way that we do a decomposi-tion of P, or if one wants, of the raw data N. Through algebraic manipulationthe corresponding identi�cation conditions can be easily derived as well as themodi�ed expressions for the principal coordinates. The point is that the �naloutput of the analysis, the numerical values of F, G, � and � will always bethe same.A singular value decomposition can always be rephrased as an eigenvector-eigenvalue decomposition (also called the spectral decomposition). If we callT = D�1=2r PD�1=2c , using the non-centred version of (5.3), then the character-istic equations of correspondence analysis become:T0T = D�1=2c P0D�1r PD�1=2c = �VD2 �V0;TT0 = D�1=2r PD�1c P0D�1=2r = �UD2 �U0: (5.9)By postmultiplying equation (5.6) by D�1c V0 we obtain the equation:F = (D�1r P� 1c0)D�1c V = (D�1r P� 1c0)� = D�1r P�: (5.10)This well-known result expresses that the principal coordinates are weightedaverages of the standard column coordinates, the weights being given by theelements of the row pro�les. These relationships are known as the transitionformulae or barycentric relationships. It also makes clear that the principalcoordinates are always \interior" with respect to the standard coordinates, andthat the principal coordinates will coincide with the vertex points if the pro�lesare all elementary vectors. Similarly, from the decomposition of the columnpro�les (equation (5.15) below) we derive that the principal coordinates of thecolumns are weighted averages of the standard row coordinates:G = (D�1c P0 � 1r0)� = D�1c P0�: (5.11)We still need to specify precisely what we mean by \closeness" of the pro�lesto the optimal plane. The distance measure used in correspondence analysis isnot the ordinary Euclidean distance, but the so-called �2-distance. The squared�2-distance between two particular row pro�les xi and xi0 is given by:d2(xi;xi0) = (xi � xi0)0D�1c (xi � xi0) = JXj=1 1cj �pijri � pi0jri0 �2 : (5.12)The di�erence between the Euclidean distance and the �2-distance lies in thefactor 1=cj, which gives the rarer column categories a relatively larger contribu-tion to the �2-distance. The total dispersion in the multidimensional cloud ofpro�les, called the total inertia, is measured by a weighted average of squared



5.4. Biplots in Correspondence Analysis 58�2-distances between pro�le vectors and the average pro�le, and is expressedas:IXi=1 ri(xi � c)0D�1c (xi � c) = tr(Dr(R � 1c0)D�1c (R� 1c0)0) = tr(D2); (5.13)where we substituted (5.6). Thus, the total dispersion or inertia is preciselythe sum of the squared singular values. Each dimension in the solution givesa contribution to the total inertia given by one element on the diagonal of D2,and these contributions are called the principal inertias. The plane \closest" tothe cloud of pro�les is the plane for which the weighted sum of �2-distances tothe plane is minimal. The actual minimization problem of CA is maybe bestunderstood in terms of decomposition (5.3). If we do a rank 2 approximationto the data, we want to minimize the sum of the squared errors, that is weminimize the squared Euclidean matrix norm:kD�1=2r PD�1=2c � �U(2)D(2) �V0(2) k2E = k �U(r)D(r) �V0(r) k2E =tr(�V(r)D(r) �U0(r) �U(r)D(r) �V0(r)) = tr(D2(r));where we use �U(2) to indicate the �rst two columns of �U and �U(r) to indicatethe remaining columns. Minimizing squared errors thus corresponds to mini-mizing the inertia in the remaining dimension. Because the total inertia is aconstant, it means that we maximize inertia in the 2-dimensional plane. Theequation above can be seen as the loss function of correspondence analysis.We note that the inertia of a data table is related to the well-known �2-statisticused for testing for independence of rows and columns of the table since:�2 =Xi Xj (nij � nricj)2nricj = nXi Xj (pij � ricj)2ricj =ntr(D�1r (P� rc0)D�1c (P� rc0)0) = ntr(D2);where n = 10N1. In this thesis however, we will hardly ever calculate this �2-statistic. Using the �2-statistic for inference presupposes that the data in thecontingency table constitutes a random sample of observations for which twocategorical variables have been recorded. With our matrix of species counts thesample does not consist of the sum of all elements of the table. Here, a sampleis one column in the abundance matrix (one grab). The abundance matrixis thus a compilation of information from di�erent samples, and it would beinappropriate to calculate a �2-statistic.5.4 Biplots in Correspondence AnalysisDecomposition (5.6) shows that the pro�les can be factored as the product ofthe matrices F and �:D�1r P� 1c0 = UDV0 = F(Dc�)0: (5.14)



5. Theory of Correspondence Analysis 59This is a form of the biplot factorization described by Gabriel (1971) and Gabrieland Odoro� (1990). The joint plot of the �rst two columns of F and the �rsttwo rescaled columns of � so gives an optimal 2-D representation of the data,where the individual data points are represented by the scalar products betweenthe rows of F and �. This particular biplot is called the asymmetric map ofthe row pro�les. Alternatively, the decomposition of the centred column pro�lesgives: D�1c P0 � 1r0 =G(Dr�)0; (5.15)which o�ers another biplot, and is called the asymmetric map of the columnpro�les. Both factorizations described by (5.14) and (5.15), are approximationsto the matrices of pro�les that are optimal in the least squares sense. As de-scribed in detail by Greenacre (1993a), vectors from the origin of the biplotto the vertices can be calibrated, that is, tick marks could be drawn on thosevectors, allowing one to approximately read o� the original data in the biplotlike one would do in a scatterplot.However, the graphical output of a correspondence analysis is often reported inthe form of a symmetric map, that is by jointly plotting the columns of F andG. Such a map must be interpreted with care, and is not a biplot (Greenacre,1993b, chapter 13). We pursue this point here in some detail. If we considerthe scalar products between the rows of F and G we have:FG0 = UD2V0D�1c = (D�1r P� 1c0)�D�0: (5.16)This shows that the scalar products in FG0 are not approximations to the pro-�les, but to a linear transformation of the pro�les. The transformation seemsnot to correspond to a simple rotation or stretching. We do not recover ouroriginal data, but elements of matrix that is of no particular interest, and thatseems neither to be optimally approximated in the least squares sense.We want to draw some attention to the interpretation of the distances betweenthe vertex points (standard column coordinates) and the origin of the display.In general, frequent column categories will tend to lie in the centre of the biplot,whereas rare categories will often appear towards to border of the display. Thiscan be inferred from the standardization �0Dc� = I. Imagine we consider alldimensions in the CA solution, including the trivial one, a �rst column of onesin matrix �. Matrices � and ��0 are then square and of full rank and we canwrite: ��0Dc��0 = ��0; (5.17)from which we obtain that ��0 = D�1c . If we de�ne �̂ to be the solution withoutthe trivial dimension, that is � = h1 j �̂i then:��0 = � 1 �̂ � � 10�̂0 � = 110 + �̂�̂0 =D�1c ; (5.18)and thus �̂�̂0 = D�1c �110. When we use all columns of the CA solution, exceptthe trivial column of ones, we can build an idempotent centring matrix that,



5.5. Bounds for Principal Inertias 60when applied to a vector, centres it on the weighted mean. This centring matrixis given by: �̂�̂0Dc = (D�1c � 110)Dc = I� 1c0; (5.19)which is seen to be idempotent because (I�1c0)0(I�1c0) = I�1c0�1c0+1c01c0 =I� 1c0. This matrix will be used extensively in chapter 7.A CA has min(I � 1; J � 1) dimensions in the solution. In the above, we tacitlyassumed J < I, which is usually the case in ecological research, as there arenormally more species than samples. If however, the number of species deter-mines the number of dimensions in the solution, because there are fewer speciesthan sites, then evidently ��0 is singular and (5.18) does not hold any more.Analogous results can be derived for the standard row coordinates, giving theidempotent centring matrix ��0Dr when I < J .The diagonal elements of �̂�̂0 are the squared euclidean distances of the vertexpoints from the origin, so that the distance of a vertex point to the origin inbiplot (5.14) is given by 1=pcj � 1. Thus, if a column category is rare, cj willbe small, and its distance to the origin will be large. Conversely, a large columnweight gives a small distance to the origin. Note that this is a \full space" result,meaning that it will be exact when we have a data matrix of three columns onlythat is perfectly represented in 2-dimensional space. For larger data matriceswith more columns, the distances of the vertex points to the centre of the mapwill only be approximately 1=pcj � 1, where at the moment we ignore whetherthis approximation is optimal in any sense.5.5 Bounds for Principal InertiasThe singular values in decompositions (5.6) and (5.3) turn out to be always inthe [0,1] interval. This is explained by Greenacre (1984, pp. 108-116) by show-ing that principal inertias correspond to squared canonical correlations obtainedin a canonical correlation analysis of the indicator matrices corresponding to acontingency table. Neudecker, Satorra and van den Velden (1997) formulated afundamental matrix result on scaling in multivariate analysis, stating that anymatrixT of the fromD�1=2r PD�1=2c , matrixP being non-negative, has singularvalues in the interval [0,1]. Notice that T is precisely the noncentred version ofequation (5.3). A algebraical proof of this result based on Gergshgorin's theo-rem was given by Gra�elman (1998), and is included below.Consider the singular value decomposition of T as T = UDV0 with U0U = Iand V0V = I. The singular values of matrix T are the square roots of theeigenvalues of matrix T0T since T0T = VDU0UDV0 = VD2V0. Bounds onthe eigenvalues therefore imply bounds on the singular values.First, since T0T is a nonnegative de�nite matrix, all its eigenvalues are nonneg-ative, and so the singular values of T are also nonnegative.



5. Theory of Correspondence Analysis 61Bounds for the largest eigenvalue �F of a nonnegative matrix A = T0T canbe obtained by applying Gershgorin's theorem. Barbolla and Sanz (1998, pp.336-338) give a detailed derivation of these bounds, and we use their result:mini f pXj=1 aijg � �F � maxi f pXj=1 aijg: (5.20)Note that A = T0T = D�1=2c P0D�1r PD�1=2c has the same eigenvalues as B =D�1c P0D�1r P sinceD�1=2c P0D�1r PD�1=2c v = �v impliesD�1c P0D�1r PD�1=2c v =�D�1=2c v and so D�1c P0D�1r Pu = �u, where u = D�1=2c v.The rows of B sum to 1 since D�1c P0D�1r P1 = D�1c P0D�1r r = D�1c P01 =D�1c c = 1. Applying Gershgorin's theorem we obtain bounds for the eigenvaluesof B: mini f pXj=1 bijg = maxi f pXj=1 bijg = 1:So �F = 1, which shows that the matrix B, and so A, always has an eigen-value of 1, and that this is the largest one. Consequently, the singular values ofT lie all in the closed interval [0,1], and there will always be a singular value of 1.Alternative proofs were given by Puntanen and Styan (1998). Yet another el-egant proof exists (van de Velden, personal communication; van de Velden etal. (1999)), based on the fact that eigenvalues are bounded by the matrix norm(Graybill, 1983, p. 98).5.6 Some Extreme CasesIn this section we consider the correspondence analysis of a few extreme datamatrices, which are very unlikely to occur in practice, but which can serve as areference pictures. In the �rst place, consider a square matrix of pro�les whereall subjects (species or whatever) are concentrated into one particular columncategory (e.g. a site), and that each column category also only contains itemsof one particular subject. Such a data matrix N has the strongest possible as-sociation between its column and row categories. If there are as many rows ascolumns, then they could be reordered in such a way as to obtain a diagonaldata matrix, and we have that P = N=10N1 = Dr = Dc. The matrix of pro-�les will then be the identity matrix, D�1r P = D�1r Dr = I. By the transitionformulae (5.10), vertices and row pro�les will coincide (F = �), and since thesingular values of an identity matrix are all 1, all principal inertias are 1, andthe pro�les attain their maximal dispersion. The total inertia for such data hasthe maximum possible value of J � 1.On the other end of the extreme is a data matrix with no association betweenthe rows and the columns whatsoever. Such a data matrix is in perfect agree-ment with the independence model, and each element of the correspondencematrix pij can be obtained as the product of the elements of the masses ricj. Inthat case the matrix of row pro�les is of rank one, since D�1r P = D�1r rc0 = 1c0,



5.6. Some Extreme Cases 62and there will exist no solutions beyond the trivial one, and the total inertia is 0.All data sets that can arise in practice, will be somewhere in between these twoextremes. A Matlab program for performing CA is given in appendix A.4.



Chapter 6Applications ofCorrespondence Analysisand Principal ComponentAnalysis6.1 IntroductionIn this chapter we keep in �rst instance the biological and chemical data sep-arate. We discuss applications of correspondence analysis to the species datain some detail, and with attention for some particular topics: resampling tech-niques to study the stability of the obtained ordination diagrams, the compar-ison of CA maps obtained from replicates and aggregated data and the use ofthe long matrix to study all replicates simultaneouslyFrom an ecological point of view, it is interesting to see whether ordinationsobtained over the di�erent years are similar, or very different. In particular,ecologists are interested to see how and why the species composition of a com-munity changes over time. We therefore select a subset of stations that has beensampled every year, and compare the respective ordinations obtained. We willmake occasional use of procrustes analysis to compare ordinations. For analyz-ing the environmental data matrix we use principal component analysis, andcompare the biplots produced for the three successive years. We also do someattempts to perform an integrated analysis of data from all years simultaneously.A particular analysis is often based on data from one particular year. Thesampling is however, annually repeated, so that the full data set does not consistof a single matrix, but is better considered a three-way matrix (or data \cube")in which time is the third dimension. One could easily be led into thinkingthat the data at hand are longitudinal, though this is strictly speaking not



6.2. Biological Data 64the case. Longitudinal data tables often arise in social surveys where a groupof respondents is classi�ed on two categorical variables at several time points.Often the same set of respondents is being interviewed each time, making thatthe total of the data table is in principle �xed. In our context, the organismsare disposed of after sampling, and each year a di�erent group of organisms iscollected. As a consequence, the grand total of the data table is not �xed, butis a random variable. Data of this type has been called \trend data" (van derHeijden, 1987, pp. 89).6.2 Biological DataAs a starting point, we perform CA for the species data from 1990. The abun-dance matrix (sum of �ve replicates) consists of 152 species at 39 locations witha total of 22.280 organisms. 1990 is the year with the largest number of samples.For 1991 we study a subset of 36 species at 12 locations that sum to a totalof 3791 organisms. CA is applied at the replicate level and procrustes rotationis employed to compare ordinations. Next, the 1992 data will be treated (to-talling 9445 organisms, 166 species and 12 locations) with some considerationfor stability issues. The section closes with a study with integrated use of thedata from three successive years.6.2.1 The CA of 1990Figure 6.1 shows the asymmetric map of the row pro�les for 1990. The twodimensional map captures 59% of the total inertia of the data matrix. Moredetails of the inertia decomposition are given in table 6.1. The �rst axis contraststhe stations 30,31,36 and 37 with the rest, whereas the second axis opposesstations 24 and 15 with the rest, with 40 on the other extreme. Species with aquality in 2-D larger than 0.5 (that is to say with more that 50% of their inertiaaccounted for by the display) are labelled in the map.Dim. Inertia % % Cum.1 0.9572 35.89 35.892 0.6175 23.15 59.043 0.2460 9.22 68.274 0.1087 4.07 72.345 0.0831 3.12 75.46... ... ... ...Table 6.1: Inertia Decomposition of Species Data, 1990Of all 152 species only two have determined the orientation of the principal axes.The relative contributions of all species to the �rst and the second axis are verysmall, except for Capitella capitata and Myriochele oculata. Capitella capitatacontributes 55% to the inertia of the �rst axis, whereas Myriochele oculatacontributes 80% to the second axis. The most salient features of this analysisare thus the very high abundance of Capitella capitata at stations 30,31,36



6. Applications of Correspondence Analysis and PrincipalComponent Analysis 65and 37, and the very high abundance of Myriochele oculata at stations 24 and15. Indeed, when we check the data matrix we �nd that Capitella capitata isextremely abundant at the four stations mentioned, is also present at station 3,but practically absent everywhere else.
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Figure 6.1: Asymmetric map of Row Profiles for 1990Some species like Buccinum undatum and Diastylis have a good quality of rep-resentation, as they are accidentally close to the optimal plane, though they donot contribute to the axes, as these are very rare species. We see that, althoughCA is known to downweight frequent species, the highly frequent ones still dom-inate the analysis. Most stations and species cluster very close together at thebottom of the diagram, their interpretation being obscured by the outliers. Wecan consider deletion of one or more outliers. For instance, when we deleteCapitella capitata, the newly obtained map captures about 44% of the inertia ofthe remaining 151 species, and what was the second dimension in the previousanalysis, the contrast 24,15 versus 40 then essentially becomes the �rst dimen-sion in the analysis, with Myriochele oculata contributing 81% to the inertia ofthis dimension. The second dimension then captures a distinction between 40and the group 30,36,37 and 3, the latter group sorted out as being more high onNemertini indet. which is the main contributor of this new second axis (22%).The process of deleting inuential species can be repeated ad in�nitum, andin fact, it is surprising to see that often only one or two species determine theorientation of a principal ax.6.2.2 The CA of 1991; Replicates and SumsThere are �ve biological replicates, and the CA shown in the previous sectionis based on the sum of these �ve replicates. But how consistent is the informa-



6.2. Biological Data 66tion provided by these �ve replicates? This has been considered for individualspecies with reliability calculations (cf. chapter 2, page 9). Here, we judgethis consistency in the multivariate sense by performing CA for each of the �vereplicates separately, and comparing the ordinations of the sites so obtained.We choose that subset of species that is present in all the replicates. Figure 6.2shows the ordination diagrams (asymmetric maps of the column pro�les) for thesum and the �ve replicates in 1991. The �rst dimension in the CA of the sumshows that this dimension opposes reference station 40 with station 15. Thesame contrast is also detected clearly in the replicates A and B, though in B itpops up as the second dimension in the analysis.
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6. Applications of Correspondence Analysis and PrincipalComponent Analysis 676.2.3 Procrustes Rotation of ReplicatesProcrustes rotation is a multivariate method for comparing ordinations, de-signed by Gower (1971; 1975). The mathematics of the method can also befound in Mardia (1979, section 14.7) and Digby and Kempton (1987, chapter4). There are two types of procrustes rotation. One, called classical procrustesrotation, tries to optimally match one ordination to a second one which is kept�xed, by the operations of translation, rotation, reection and stretching. Theother type of analysis is called generalized procrustes rotation, and considers theproblem of �nding one consensus ordination based on a series of ordinations,e.g. replicate samples or sampling repeated at di�erent time points. On one
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6.2. Biological Data 68Replicate p RSSA 0.6378 1.1072B 0.5821 1.6820C 0.4174 2.3559D 0.5160 1.7875E 0.4628 2.1399Table 6.2: Statistics of Procrustes Rotation6.2.4 Analysis of the Long MatrixIn this section we consider another way to compare the analysis of the replicateswith an analysis based on their sum. Imagine we stack the �ve replicates ver-tically on top of each other, in one large matrix, the long matrix. The longmatrix has a certain total amount of inertia reecting the variability of the pro-�les. If we take averages (or sums) of the �ve samples, and replace the originalmeasurements by these averages (or sums), we obtain a long matrix that willin general have a lower inertia, as part of the variation is averaged out. Dueto the principle of distributional equivalence (Greenacre, 1984, pp. 65-66), ananalysis based on the long matrix of (repeated) means will essentially be thesame as an analysis based on just one single matrix of means (or sums). This isbecause the species pro�les of the long matrix of sums will have �ve identicalpro�les for each species, and consequently �ve coinciding points for each speciesin the biplot. We would have found the same coordinates as with an analysisbased on a single copy of the matrix of sums. The total amount of inertia andits decomposition are the same for the long matrix of sums and a single copyof the matrix of sums.The long matrix of the �ve replicates can be seen as a partitioning of thespecies. The total inertia (It) of the long matrix can then be decomposed intoa between-sites component (Ib) and a within-sites component (Iw): It = Ib+Iw .By calculating the percentages (Ib=It)� 100 and (Iw=It)� 100, we can have animpression of how much inertia is due to variation between stations and howmuch is due to variation within stations. The latter quantity indicates howmuch variability we ignore by using sums instead of replicates.We note here that the inertia of the matrix of the sums of the �ve replicatesis identical to the Ib component of the analysis of the long matrix. Columncoordinates and the centres of gravity (weighted means) of the replicated speciespoints obtained in the CA of the long matrix are usually numerically di�erentfrom column coordinates and species coordinates obtained in an analysis of thematrix of sums. They di�er however, only by a simple rotation. A procrustesanalysis of both con�gurations of points shows that one can be perfectly matchedto the other.Table 6.3 shows the total, between-sites and within-sites inertia for the longmatrix of each of the three years. For each year, a subset of species has beendetermined that was present in all �ve replicates. It is clear that for all thethree years a substantial part of over 40% of the total inertia is due to variation
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6.2. Biological Data 70of the total variability is within years, and that within-sites components makesup the largest part of the total inertia: 79.3%.6.2.5 The CA of 1992; Stability IssuesIt is possible to investigate the stability of the map obtained by CA (Greenacre,1993b, chapter 20). For instance, if we would have obtained another abundancematrix with the same total amount of organisms, would the ordination remainthe same and still separate out station 40? We can get some idea of the variabil-ity of the points in the CA map by using resampling techniques. The abundancematrix does not correspond to a particular sampling design where the row orcolumn totals are �xed prior to analysis. We resample the data with the onlyconstraint that the overall sum (n) of the abundance matrix is constant.
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6. Applications of Correspondence Analysis and PrincipalComponent Analysis 716.2.6 The Time DimensionAs already stated in the introduction, the survey data consist in fact of a seriesof abundance matrices pertaining to di�erent time points. We can study eachyear separately, and compare the annual ordinations obtained, as is illustratedin �gure 6.6. These three ordinations are based on a subset of 62 species thatwas present over all the years and 12 stations that have been sampled every year.The ordination diagrams capture respectively 73%, 55% and 63% of the totalinertia for each year. Only the two species with the highest quality (� 0.84)are labelled in the display, in order to keep them readable. The ordination from1991 can be matched to some extend to the one from 1992 if we interchange the�rst and the second principal axis. Indeed, there are considerable correlationsbetween the principal axes of di�erent years, though we have to be aware thatthe sample size is small. Most notably, the �rst axis of 1990 has a correlation of-0.69 with the �rst axis of 1992, and the �rst axis of 1991 has correlation -0.75with the second axis of 1992. The main contributors to the axes are Myriocheleoculata (axis 1) and Eudorella sp., Scoloplos armiger (axis 2) in 1990, Amphiura�liformis, Chaetozone setosa (axis 1) and Chaetozone setosa (axis 2) in 1991,Myriochele oculata (axis 1) and Chaetozone setosa (axis 2) in 1992. Briey, wesee that in 1990, station 24 and 15 separate out, with Myriochele oculata beinghigh on these stations. In 1991 Chaetozone setosa is high on 15, in 1992, Myri-ochele oculata is high on 24, and Chaetozone setosa on 15. In general, there is asmall subset of a few abundant species that tend to dominate in the ordinations,and stations 15,24 and 40 are in general singled out on the extremes of at leastone of the principal axes. However, the ordinations vary a lot, and it is veryhard to trace the changes that have take place from year to year. We note thatit is possible to calibrate the vertex vectors in, for instance, the ordination of1990. The species points projecting onto the vector between origin and vertexpoint have abundance higher than average at that site, whereas species pointsprojecting on the other side of the origin have abundance below the average.But each year has a di�erent origin, and because the vector lengths vary fromone year to another, the vector for any particular station will have a di�erentcalibration each year. Indeed, if we would want to infer from these graphs thatspecies so-and-so is higher on station so-and-so in 1990 than in 1991, it would benecessary to calibrate the vertex vectors in both graphs. And still the procedurewould be prone to error, since the projections recover the data approximately,and species so-and-so might have good quality in 1990, but bad quality in 1991.So it remains di�cult to trace the changes that have take place from year toyear.We could also consider to treat the successive years in one integrated analysis.For instance, data from 1991 can be mapped into the CA-1990 map as supple-mentary points. This has the disadvantage that the optimal plane is determinedonly by the 1990 data, and such a procedure is neither symmetric since projec-tion of the 1990 data into a 1991 optimal plane would give a di�erent result.A di�erent integrated approach is possible by stacking the annual matrices intoone large data matrix. The di�erent ways to do this (columnwise, rowwise andothers) are discussed in more detail by van der Heijden (1987) in the context ofcontingency tables. By concatenating the columns of the annual matrices in the
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6.3. Chemical Data 746.3.1 The PCA of 1990The biplot obtained from a principal component analysis of the 1990 data isshown in �gure 6.8. The analysis is successful in the sense that 88% percent
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6.3. Chemical Data 76Dim. � % Var. Expl. % Cum.1 10.27 78.97 78.972 1.15 8.87 87.843 0.60 4.63 92.484 0.31 2.41 94.885 0.27 2.08 96.966 0.15 1.15 98.12... ... ... ...Table 6.4: Eigenvalues of PCAare shown in �gure 6.10.
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6. Applications of Correspondence Analysis and PrincipalComponent Analysis 77spect to Pelite from 1991 to 1992. Reference station 40 was relatively high onPEL and TOC in 1991. These interpretations were veri�ed by looking at thedata matrix. However, the same problems mentioned for comparing CA-biplotsalso apply here (cf. section 6.2.6 p. 71)In �gure 6.11 we present Gabriel's biplot for the broad matrix of the envi-ronmental data, constructed by interactive coding of year and environmentalvariables. Vector labels ending with an 'a' pertain to 1990, with a 'b' to 1991and with a 'c' to 1992. Such an analysis can reveal the change in correlationstructure between the variables (van der Heijden, 1987, pp. 189-192).
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6.4. Conclusions 78We also present the result of the analysis of the long matrix in �gure 6.12.Here a PCA has been performed on the data matrix consisting of three annualchemical data matrices placed at the bottom of each other, so here we applyinteractive coding of year and site. Changes in the means of the variables forthe di�erent years can inuence the correlation structure between the variables.To avoid this, the stacking operation was done with the centred data matricesfor each year, so that the e�ect of a changing mean has been eliminated (van derHeijden, 1987). The PCA biplot of the long matrix in �gure 6.12 explains 83%of the variation of the long matrix, and shows that some stations experiencelarge changes with respect to the environmental data. Notably, station 15 in-creases in THC, TOC and all heavy metals in 1991, followed by a decrease in1992. Station 8 is characterized by a decrease on all chemicals in 1991, followedby a sharp increase on Pel in 1992. Station 24 also decreases on all variablesin 1991, followed by a general increase in 1992. Station 40 shows a more stablechemical composition, with a slight decrease on all components in 1991.
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Figure 6.12: PCA biplot of the Long matrix6.4 ConclusionsIn this chapter we have seen some applications of CA to the biological data.The method has shown to be very useful for detecting some prominent featuresof the data set, notably the detection of highly abundant species at particularlocations.Another noteworthy point is that the stations of the inner ring (30,31,36,37)and station 40 are separated out in both the analysis of the biological data andin the analysis of the chemical data. This strongly suggests both data sets are



6. Applications of Correspondence Analysis and PrincipalComponent Analysis 79related. In particular, the analysis suggests that a species like Capitella cap-itata has a preference for contaminated conditions. Many biological scenarioscan underlie such an observed preference; Capitella capitata could be abundantjust because the environmental variables take optimumvalues for this organism,or because Capitella capitata feeds on other organisms that do well under theseconditions, or because his predators or competitors are absent under these con-ditions. Without further speci�c knowledge about the biological relationshipsbetween the species and their population dynamics it is impossible to explainthe detected high abundance of Capitella capitata in more detail.To get an idea of the degree of association between the two data sets, we com-pute some correlations between principal axes from CA and the �rst principalcomponent, and �nd some high values that draw attention. In particular, the�rst principal components of the three successive years have correlations 0.72,-0.75 and 0.85 with CA axes 2, 1 and 2 of the succesive years respectively.The changes in the biological ordinations from year to year are di�cult to de-tect when data from each year is analyzed separately. Though stacking thedi�erent matrices increases the dimensionality of the problem, it yields veryinterpretable output that depicts how abundance of some species has changedwith time. Analogously, by stacking the chemical data matrices we get a pictureof which stations experienced changes with respect to which variables.
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Chapter 7Optimal Directions forSupplementary Variables inCorrespondence Analysis7.1 IntroductionIn the previous chapter we used CA as an ordination method for the speciesdata, and obtained maps of sites and species that allow us to appreciate dif-ferences between the sites and between the species. With certain choices ofscaling for the rows and the columns, these maps form biplots (Gabriel, 1971;Greenacre, 1993a), and species abundances can approximately be recovered byprojecting the species points onto appropriately calibrated site vectors.One of the basic purposes of ecological studies is to explain the variation inspecies composition of the sites in terms of environmental conditions (temper-ature, pH, pollutants, etc). This is called gradient analysis, and it can beperformed in several ways.If environmental information about the sites is not explicitly measured, butpresent as circumstantial knowledge, for instance if some sites are known to bepolluted or extremely dry, this knowledge can be used in the interpretation ofthe CA biplot, where extreme sites then happen to separate out. For example,station 40 and the inner station ring sorted out in many of the CA's discussedin the previous chapter. The same stations also separated out in the PCA of thechemical data. This is probably not accidental; the chemical composition of theenvironment will a�ect the species composition. If the �rst CA axis separatescontaminated stations from non-contaminated ones, then the �rst principal axiscan be interpreted as \contamination", and if it correlates strongly with someexplicitly measured environmental variable, the axis might be identi�ed as be-ing that variable. When environmental information is not collected, CA can bethought to uncover the hidden or latent environmental variables that do a�ect



7.2. Representing Supplementary Variables 82the species composition (Ter Braak and Prentice, 1988). The identi�cation ofthe principal axes with environmental variables greatly helps the interpretationof the display. Rather than detecting which species are high (or low) at whichstation, we can now infer the chemical constitution of the sites and the chemicalpreferences of the species. Seen this way, depicting environmental informationin the CA biplot becomes a topic of keen interest. We are neither restricted toonly interpret principal axes. Any direction in the biplot that strongly correlateswith an environmental variable can be labelled with the name of that variable.The process of relating principal axes after an analysis of the species data withenvironmental information is called indirect gradient analysis. In this chapterwe consider a particular approach for indirect gradient analysis, where we �rstperform CA of the abundance data, and then try to represent environmentalinformation in the CA map as well as possible. This is done by minimizing errorsin the projections of the site coordinates onto the environmental vectors. Severalparticularities of this method will be pointed out. Computationally, the analysiscan be performed by any software capable of doing correspondence analysis andregression. It can also be done with the Canoco program (Ter Braak, 1988).We will use arti�cial data as an illustration of the method, and apply the methodto the survey data described in previous chapters. Part of this chapter waspresented at the Spanish Biometry Conference in 1997 (Gra�elman, 1997).7.2 Representing Supplementary VariablesWe �rst perform correspondence analysis of the abundance matrixN (I speciesby J sites), by doing a singular value decomposition of the matrix containingdeviations from independence (Gi�, 1981, section 8.3), or (5.3) in chapter 5:D�1=2r (P� rc0)D�1=2c = UDV0: (7.1)P is the correspondence matrix (N divided by its grand total), r and c arecolumn vectors containing the row and column sums of P respectively, andDr and Dc are diagonal matrices built from these vectors. The identi�cationconditions of this singular value decomposition are U0U = I and V0V = I. Theprincipal coordinates, following the notation of (Greenacre, 1984), are given byF =D�1=2r UD and G = D�1=2c VD; the standard coordinates by � = D�1=2r Uand � = D�1=2c V, both for rows and columns respectively. The joint plot of therows of F and � is called the asymmetric map of the row pro�les (Greenacre,1993b), and this plot forms a biplot (Gabriel and Odoro�, 1990) since we canrewrite (7.1) as: (D�1r P� 1c0)D�1c = F�0: (7.2)In Figure 7.1 we consider the asymmetric map of the row pro�les of a small�ctitious data set. Closed circles (�) represent principal coordinates of the rows(species), and open circles (�) standard coordinates of the columns (sites). Inthis biplot we want to represent in the �rst instance, just one variable (column)of the matrix of supplementary environmental variables Z, say zj. We do notassume any centring or standardization of zj . However, the algebraical resultsthat follow can be somewhat simpli�ed if we assume zj to be standardized



7. Optimal Directions for Supplementary Variables inCorrespondence Analysis 83by �rst centring by subtracting the weighted mean, and then dividing by theweighted standard deviation:zj  (zj � 1c0zj)=q(zj � 1c0zj)0Dc(zj � 1c0zj): (7.3)Variable zj will then have a weighted mean of zero and a weighted variance of1. A hypothetical vector � representing this variable is drawn in the biplot (see�g 7.1). We assume that it is possible to calibrate this vector like the axis of ascatterplot. Projecting the column points onto this vector, one should then beable to recover the original supplementary data. Since there are usually manycolumn points, one will hardly ever be able to recover supplementary quan-titative measurements exactly. We can at best approximate our variable by avector of estimates ẑj, and so there will be errors ej = ẑj�zj in the projections.
�3 �2 �1 0 1 2 3�3�2�101

23 � ���� �����First Principal AxisSecondPrincipalAxis ẑj zj �+
Figure 7.1: A CA biplot with added variable vectorThe problem then becomes to �nd an environmental vector � in such a waythat the overall error is minimized, for example by minimizing the sum of thesquared errors. Geometrically one can imagine this as rotating the vector �in �gure 7.1, until a direction is found where the sum of the squared errors isminimal. So we minimize:e0e = (z� ẑ)0(z� ẑ) = (z� ���)0(z� ���); (7.4)where ẑ are the environmental measurements as estimated in the biplot, �contains the standard site coordinates of the CA solution (7.1) and � is a scalarthat serves as a normalization factor for vector �. We need to minimize:L(�;�) = z0z� 2�z0�� + �2�0�0��: (7.5)



7.2. Representing Supplementary Variables 84Setting �rst order derivatives equal to zero, the solution of the minimizationproblem is found to be: � = 1� (�0�)�1�0z; (7.6)with � =k (�0�)�1�0z k. The solution vector is given by the normalized re-gression coe�cients obtained in the regression of the environmental variable onthe site coordinates. Note that, if one wants to explain the ordination in termsof the environmental variables, one would be tempted to regress � on z. But ifone searches for an optimal graphical display of both matrices N and Z, thenprecisely the reverse is required. CA uses a particular way of weighting the data,where column j is weighted by mass cj . It therefore seems logical to weight theprojection errors in the same manner, and to minimize e0Dce rather than e0e.Introducing this weighting, one obtains a simpli�ed solution vector:� = 1� (�0Dc�)�1�0Dcz = 1��0Dcz; (7.7)since � has normalization �0Dc� = I, and where now � =k �0Dcz k. The solu-tion vector is now a vector of normalized regression coe�cients of the weightedregression of z on �. However, it can be shown that � is also a vector of weightedcorrelation coe�cients. We have � = pz0Dc��0Dcz =p(z � 1c0z)0Dc(z� 1c0z),because ��0Dc is an idempotent centring matrix (cf. (5.19)). So the scalar �is actually the square root of the weighted variance of z, and any element �k of� can be written as: �k = PJj=1 jkcjzjqPJj=1 zj2cjqPJj=1 jk2cj : (7.8)Equation (7.8) is the weighted correlation coe�cient between z and dimensionk of the standard column coordinates ik of the CA solution; the weightedvariance of the latter is 1 by construction. An environmental variable that has aperfect correlation (in the weighted sense) with a dimension in the CA solution,will coincide with the principal axis in the diagram. This is of great help inassigning meaning to the theoretical CA axes. Note that the solution vector �has as many elements as there are dimensions in the CA solution. In a two-dimensional biplot, we represent � by just plotting the �rst two elements of thevector. The representation of the correlations in this biplot is not approximate,but is exact in the sense that they can be read o� the principal axes. Theinterpretation of � as a vector of weighted correlations is independent of anystandardization or centring of z. We note that the solution of (7.6) is identicalto the solution of (7.7) if z is centred by subtracting weighted means. Theprojections of the site points can now be described as:��� = ��0Dcz = z� 1c0z: (7.9)So environmental scores are recovered as deviations from the weighted mean ofthe variable. Note that ��0Dc is an idempotent Dc-symmetric centring ma-trix (Searle, 1982, chapter 3; Saporta, 1990, p. 480) , that applied to a vector,brings it into deviate form about its weighted mean. This is easily proved fromequation (5.18) on page 59, considering � without the trivial column of ones so



7. Optimal Directions for Supplementary Variables inCorrespondence Analysis 85that: ��0Dcz = (D�1c � 110)Dcz = (I � 1c0)z = z� 1c0z.The next natural step is to look if projections of the species points onto thevector � also have some interpretation:�F� = F�0Dcz = (D�1r P� 1c0)z: (7.10)This equation shows that we are recovering the (centred) weighted averages ofthe species with respect to the environmental variables, where the species abun-dance at each site is used as a weight. Equation (7.10) shows that the weightedaverages of the species are perfectly recovered when we consider the full space,that is, all k dimensions of the CA solution, and all corresponding k dimensionsof vector �. In the case of a two-dimensional biplot, these weighted averagesare not represented exactly, the weighted average of species i is approximatedby �(fi1v1 + fi2v2), normalization factor � being one if z is standardized. Thisapproximation is optimal in a weighted least squares sense (see below). Equa-tion (7.10) is a nice result since the weighted average of a species is an estimateof the optimum of the species for that particular variable (Ter Braak, 1985),and so the map gives us an indication of species preferences as well. The sameinterpretation is usually made in canonical correspondence analysis (Ter Braak,1986) and is also treated in chapter 9. The average row pro�le, c, is representedby the origin of the CA biplot. This implies that, on the scale of the supplemen-tary vector, the origin represents the weighted average c0z of the supplementaryvariable. This will be zero if the variable is centred by subtracting its weightedmean.If we apply the transition equations of CA (cf. equation (5.10), p. 57) to theprojected site points, we get the projected species points as a result:(D�1r P� 1c0)��� = �(UDV0)�� = �F�: (7.11)This illustrates that the transition equations hold for projections onto a vectorin any possible direction of the biplot. It also suggests that we might mini-mize errors in weighted averages obtained when we project species points ontothe environmental variable vector. The minimization problem, here using theweights r, then becomes:e0Dre = (�F� � (D�1r P� 1c0)z)0Dr(�F� � (D�1r P� 1c0)z): (7.12)If one develops the Lagrangian for this expression, then one obtains the samesolution as given by (7.7). This shows that the two minimization problems areequivalent.Instead of minimizing the errors in the projections, one could also maximizethe weighted correlation between the real environmental scores z and their es-timates from the biplot ẑ. This gives again the same solution vector describedby (7.7).One can apply the solution given by (7.7) repeatedly to di�erent environmentalvariables, and in this way, represent several environmental variables in the CAbiplot. Each vector is added independently from any other. We can rephrase



7.3. Quality of Representation 86(7.7) in matrix terms to obtain the whole set Ve of environmental vectors inone step as: Ve = �0DcZD��1; (7.13)with Z a J�Qmatrix of supplementary variables, andD� = diag(Z0Dc��0DcZ) 12 .The columns of Ve represent the variables and are (normalized) regression co-e�cients in the simultaneous multiple regressions of Z on �.There is yet another approach that gives the solution described by (7.7) and(7.13). In fact, when we look for a vector � to represent a variable, we tryto construct a conditional biplot for matrix Z, where the representation of therows of that matrix (the sites) are �xed, as they are given by CA. A biplot ofZ is then given by the factorization:Z = �H0 =) H0 = �0DcZ; (7.14)where H is a matrix whose rows represent the variables. If we normalize therows of H we obtain (7.13).7.3 Quality of RepresentationThe above results apply to the full space of the correspondence analysis solution,and we now consider how well the data are represented in a graphical displayof low dimensionality (usually 2). We evaluate the representation of 3 matricesof interest, N;Z and the matrix of weighted averages of the species, D�1r PZ.For matrix N, the quality of the display is given by the percentage of inertiacaptured by the low-dimensional map. For any of the environmental variablesin the matrix Z, we take as a quality measure the fraction of weighted varianceof the variable represented in the map. Substitution of (7.7) in the weightedversion of (7.4) gives us the following expression for the errors:e0Dce = z0Dcz� ẑ0Dcẑ = z0Dcz � z0Dc��0Dcz; (7.15)and we obtain as a measure of quality:ẑ0Dcẑz0Dcz = KXk=1 r2k(z;�k) = R2; (7.16)where rk denotes the weighted correlation coe�cient between z and dimensionk of the standard column coordinates. Equation (7.16) shows that the qualityof representation of a variable depends on the number of dimensions of the CAsolution considered and is given by the coe�cient of determination (R2). Itrephrases the well-known result that regression on orthogonal variables givesan R2 that is the sum of squared correlations (R2 = PKk=1 r2k), but here ina weighted sense. It is evident from (7.16) that the sum of squared weightedcorrelations cannot exceed 1. This means that if a variable is highly correlatedwith a particular dimension in the CA map, it must be nearly uncorrelated withthe other dimensions, and this is just another formulation for the fact that the



7. Optimal Directions for Supplementary Variables inCorrespondence Analysis 87principal axis in CA are uncorrelated.The quality of representation of a particular vector in two dimensions is alsoindicated by its length. The length of the vector in two dimensions (�(2)) is:k �(2) k=q�(2)0�(2) =sz0Dc�(2)�(2)0Dczz0Dcz =r ẑ0Dcẑz0Dcz = pR2: (7.17)Note that we use �(2) to indicate the �rst two columns of matrix � and �(2) forthe �rst two elements of vector �. Equation (7.17) shows that the length is justthe square root of the amount of weighted variance explained by the biplot. Onecan therefore, as in principal component analysis, draw a unit circle in the CAbiplot. Vectors with their head on the unit circle have a perfect representationin the biplot, since (7.15) and (7.16) show that if R2 = 1 the errors vanish andprojection of the site points on the variable vectors recovers the data matrixZ exactly. This will only happen when the environmental variables are exactlinear combinations of the standard CA site scores. For instance, ifN has threecolumns, the CA solution will have two dimensions, and the norm of �(2) willalways be one, and R2 will also be one. In this case, one can recover supplemen-tary data from the biplot without error, regardless of the number of variables.For multiple variables, we can take the mean of the coe�cients of determina-tion as a measure of the overall quality of representation of the supplementaryvariables, that is (1=Q)PQq=1R2q .Next, how well are the weighted averages of the species with respect to thesupplementary variables represented? As a criterion for the quality of represen-tation we consider the amount of the weighted variance in the weighted averagesexplained by a low dimensionalmap. Using �rst just one supplementary variablez, we use (7.12) to develop this criterion:e0Dre = ((D�1r P� 1c0)z� �F(2)�(2))0Dr((D�1r P� 1c0)z � �F(2)�(2))= (UDV0z� �F(2)�(2))0Dr(UDV0z� �F(2)�(2))= �2�0D2� � �2�(2)0D2(2)�(2): (7.18)Using the fact that � is a vector of correlation coe�cients, a measure for thequality of the m-dimensional representation of the weighted averages is:�(m) 0D2(m)�(m)� 0D2� = Pmk=1 r2kd2kPKk=1 r2kd2k : (7.19)This shows that the quality of a two-dimensional representation of the weightedaverages depends on two factors: the weighted correlations of the supplemen-tary variable with the principal axes and the amount of inertia explained by thetwo-dimensional display. Note that if the CA solution has only 2 dimensions,the quality of representation of the weighted averages is 1, and there will be noerrors when we try to recover the weighted averages of the species with respectto the supplementary variables from the map. If the CA solution has more than



7.4. Supplementary Vectors in the CA Symmetric Map 88two dimensions, then the higher the percentage of inertia explained by the two-dimensional map, and the higher the correlations between the supplementaryvariable and the �rst two principal axes, the better the representation of theweighted averages in two dimensions.For multiple supplementary variables the overall criterion of representation ofthe weighted averages becomes:tr(Ve(m) 0D2(m)Ve(m))tr(Ve0D2Ve) = PQq=1Pmk=1 rqk2d2kPQq=1PKk=1 rqk2d2k ; (7.20)where rqk denotes the weighted correlation between variable q and principal axisk.One might wonder about the angles between di�erent supplementary variables.Those angles do turn out to be approximations to the weighted correlationsbetween the supplementary variables:Ve0Ve = D�1� Z0Dc��0DcZD�1� = D�1� Z0DcZ:D�1� (7.21)Considering the full space of the solution, term ��0Dc is the centring matrixthat transforms Z into a matrix of deviations from the weighted means (cf. (7.9)p. 84). Then (7.21) implies that the scalar product between two supplementaryvariable vectors is their weighted correlation:�i0�j = zi0Dczjpzi0Dczipzj 0Dczj = r(zi; zj): (7.22)When only a few dimensions of the solution are considered, ��0Dc is no longera centring matrix, and the cosine of the angle between two variable vectors doesnot represent their weighted correlation exactly, but only approximately, andwe ignore whether this approximation is optimal in some sense.7.4 Supplementary Vectors in the CA Symmet-ric MapThough the symmetric map in CA is not an interesting biplot (cf. section 5.4 p.58), this type of scaling is often used in practice. We therefore also consider therepresentation of supplementary variables in the symmetric map in some moredetail. The minimization problem previously described is basically the same asin equation (7.5), but now � is replaced by G. Doing the same algebra, thesolution is then given by:� = 1� (G0DcG)�1G0Dcz = 1�D�2G0Dcz; (7.23)with � =k (G0DcG)�1G0Dcz k. � is again a vector of normalized regressioncoe�cients. It is tempting to think that � then will again be a vector of weightedcorrelation coe�cients, this time between G and z. This is however, not thecase. First we notice that � is again the square root of the weighted variance of



7. Optimal Directions for Supplementary Variables inCorrespondence Analysis 89z because pz0DcG(G0DcG)�2G0Dcz = pz0Dc��0Dcz = pz0Dcz, and thuswe can write the kth element of � as:�k = PJj=1 gjkcjzjqPJj=1 cjzj2d2j = PJj=1 gjkcjzjqPJj=1 cjzj2qd2j � 1qd2j ; (7.24)where we use the property that the principal inertias (d2j) are the weightedvariances of the principal coordinates in G. Equation (7.24) shows that � is avector of weighted correlation coe�cients, but that each correlation is dividedby the square root of the principal inertia. Thus, it would be wrong to plotweighted correlations in the symmetric map in order to obtain the optimal di-rection. Calculating weighted correlations is however, a sensible computationalstep to arrive at the solution. Result (7.24) can also be understood in a more in-tuitive way. Principal coordinates are a rescaling of the standard coordinates. Ifweighted correlations provide the optimal direction when standard coordinatesare used, the same rescaling should be applied to the weighted correlations inorder to obtain the optimal direction when using principal coordinates. This isalso clear if we substitute G = �D in (7.23):� = 1�D�2G0Dcz = 1�D�2D�0Dcz = 1�D�1�0Dcz: (7.25)How wrong is it to plot weighted correlations? Because inertias are positivenumbers, there will be no sign reversals, and plotting weighted correlations doesyield a vector that always lies in the same quadrant as the correct direction.When the �rst and the second inertia are approximately equal, the rescalingamounts to multiplying the �rst two elements of � by a constant. As a con-sequence, considering 2 dimensions, the length of the vector is mistaken by aconstant factor, though the direction found is close to the correct one. However,when the �rst and second inertia are very di�erent, that is, the �rst principalinertia captures a large part of the dispersion, and the second one a small part,then plotting the weighted correlations gives a very di�erent direction.7.5 A Di�erent View on Supplementary Pointsin CAWhen we consider supplementary cases instead of supplementary continuousvariables, then the position of such supplementary points in the CA map is usu-ally calculated using transition formulae (5.10). However, we could try to �ndthe position of a supplementary point by using the same methodology exposedin this chapter. We could search for a supplementary vector, representing thesupplementary point (a case), in such a way that its projections onto the sitevectors are as best as possible. As illustrated in section 7.7 below, site vectorscan be calibrated in such a way that the pro�les of the species can be approx-imately recovered when projecting species points (rows) onto the site vectors(columns). For a supplementary point, we can apply the same argument: wetry to �nd a vector x in the biplot that has the property that its projectionsonto all site vectors, the rows of matrix �, have minimal error. If there is a setof supplementary points, then they need to have the same centre of gravity as



7.6. Relationships with other Methods 90the pro�les that were used in the CA. That is to say, we �rst need to centreany supplementary point p onto the average row pro�le, c, so that p p� c.Next, when we project the species points onto the site vectors, and want torecover data in pro�le form, then we need to use the rescaled site vectors Dc�,rather than �. This because the pro�les can be written as D�1r P = F(Dc�)0(see also section 5.4). In order to work out the projections, we need the normsof the row vectors of Dc�, which are given by Dc��0Dc = Dc, where the latterequality only holds in the full space, and including the trivial column of ones.Row vectors with norm one are thus obtained as D�1=2c Dc� = D1=2c �. Theestimated pro�les for a supplementary point, expressed as a column vector, arethus given by: D1=2c �x: (7.26)Letting column vector p be the true supplementary pro�le, we try to minimize:(D1=2c �x� p)0(D1=2c �x� p): (7.27)Doing similar algebra as before, without particular restrictions for the norm ofx, we �nd that the solution is given byxk x k = 1qp0D1=2c ��0D1=2c p�0D1=2c p = 1k p k�0D1=2c p: (7.28)We note that, when the elements of the supplementary pro�le p are �rst dividedby the square root of their respective column masses, then (7.28) gives the samesolution as the transition formulae, up to a constant factor. When we choosethe appropriate norm for the solution vector, the supplementary point foundwill coincide exactly with the one obtained by using the transition formulae.The squared norms of the species point vectors in the CA solution are given bythe diagonal elements of FF0 = D�1r PD�1c P0D�1r , so that the solution vectorx has to be rescaled to make its norm p0D�1c p.7.6 Relationships with other MethodsIn this subsection we comment on the relationships of our approach with othermultivariate methods. The other methods we consider are indirect gradientanalysis as proposed by Dargie (1984), canonical correspondence analysis (CCA,(Ter Braak, 1986)) and weighted principal component analysis.7.6.1 Indirect Gradient AnalysisDargie (1984) described, in the context of multidimensional scaling, a procedurefor �nding a direction of maximal correlation between habitat variables andordination axes as: � = arctan (b2b1 ); (7.29)where � is the angle with respect to the ordination axis, and b1 and b2 are theregression coe�cients of z on the ordination axes. The length of this direction



7. Optimal Directions for Supplementary Variables inCorrespondence Analysis 91is rescaled to reect R2. If the regression is weighted, and CA is used as theordination method, Dargie's proposal will give the same solution as (7.7).7.6.2 Canonical Correspondence AnalysisCanonical correspondence analysis (Ter Braak, 1986) is a technique that alsoprovides a biplot of species and sites and environmental vectors, and is describedin detail in chapter 9. CCA can be seen as a CA, where the standard site coordi-nates have been restricted to be linear combinations of environmental variables.In the particular case that the number of variables is as large or larger thanthe number of sites minus one (Q � J � 1), the CCA solution is equal to theCA solution, but will still give us a representation in the biplot for the environ-mental variables. The environmental vectors obtained this way have the samedirection as the ones obtained by (7.7) and (7.13), but a di�erent length. To goshort, the CCA solution can be obtained by the singular value decomposition(cf. (Jongman et al., 1987, section 5.9), chapter ):D1=2r (D�1r P� 1c0)Z(Z0DcZ)�1=2 = ATW0; (7.30)with A0A = I andW0W = I. Species coordinates and variable coordinates aregiven by F =D�1=2r AT and 
 = (Z0DcZ)1=2W respectively. Since we considerconditions where CA and CCA solution coincide (inertia decomposition, speciesand site coordinates being the same in both types of analysis), premultiplying(7.30) by D�1U0 and simplifying using (7.1) leads to:
0 = �0DcZ: (7.31)This is the same solution as described before (7.13), if the rows of 
 are nor-malized.7.6.3 Weighted Principal Component AnalysisThe factorization of Z in (7.14), and the fact that the cosine of any angle betweentwo column vectors of Ve approximates a (weighted) correlation is reminiscentof principal component analysis and suggests that the analysis is close to aweighted principal component analysis of Z.In a weighted principal component analysis (WPCA) of Z one extracts eigen-values and eigenvectors of the weighted correlation matrix of the variables, orone can use a corresponding singular value decomposition:D 12c Z = �U�D�V0: (7.32)Standardized principal components, uncorrelated in the weighted sense, aregiven by D 12c �U, and satisfy similar identi�cation conditions as the standardcolumn coordinates in CA: (D�12c �U)0Dc(D�12c �U) = Iq and �0Dc� = IJ�1 re-spectively. This implies that, if Q = J � 1, and if we consider the full space ofthe solution, then a particular column vector in CA will lie with its head on the



7.7. An Example with Arti�cial data 92same sphere as the corresponding site vector (a case) in WPCA, as well as thatthe angles between site vectors are the same in the CA and the WPCA. How-ever, the �rst principal component captures the direction of maximal variance ofthe site scores, a direction that does not necessarily coincide with the directionof maximum spread of row pro�les as captured by the �rst principal axis in CA.Principal axes of both biplots will therefore usually not coincide. In practiceit means that if Gabriel's biplot is put on top of the CA biplot, and rotatedto make the site points coincide, then the variable vectors of the WPCA willcoincide with the ones obtained by our regression approach. Because of the signindeterminacy of eigenvectors in both analyses, one has to choose a particularreection of the WPCA (or CA) output before this can be done. Because of thisand the fact that the above only applies to full space solutions with a numberof variables that is one less then the number of sites (Q = J � 1), this methodof calculating the solution is of very little practical use; it will work for datasets that have a perfect representation in 2 dimensional space. The equivalenceunder these particular circumstances just described can easily be veri�ed byapplying a procrustes rotation to the joint set of coordinates of variables andsites in the two types of analysis. The procrustes rotation then gives a perfect�t with RSS=0 and the scaling factor equals 1.7.7 An Example with Arti�cial dataIn this section we present some examples. First, we consider a small arti�cialdata set illustrating a perfect �t. The data are shown in table 7.1. The �rstthree rows list the raw data (abundances and environmental variables Z1 andZ2), the second three rows the species pro�les, and the last two rows representthe weighted averages of the species with respect to Z1 and Z2, as well as theweighted averages of the variables. Note that chemical gradients are present inthe data, as the concentrations of Z1 and Z2 increase over the 3 sites.Spec 1 Spec 2 Spec 3 Spec 4 Spec 5 Z1 Z2Site A 10 5 15 30 10 4.0 1.0Site B 20 5 15 20 20 6.0 4.0Site C 30 10 15 10 10 1.0 6.0Site A 0.1667 0.2500 0.3333 0.5000 0.2500 - -Site B 0.3333 0.2500 0.3333 0.3333 0.5000 - -Site C 0.5000 0.5000 0.3333 0.1667 0.2500 - -wa Z1 3.1667 3.0000 3.6667 4.1667 4.2500 3.71 -wa Z2 4.5000 4.2500 3.6667 2.8333 3.7500 - 3.73Table 7.1: Artificial Abundance and Environmental DataSince the abundance matrix is a 5 by 3 table, the CA solution has two dimen-sions, and a two-dimensional biplot will represent 100 percent of the inertiaof this table, and species pro�les can be perfectly recovered by projecting the



7. Optimal Directions for Supplementary Variables inCorrespondence Analysis 93species points onto the column vectors. In particular, the �rst dimension cap-tures 82.2% of the total inertia, and the second dimension 17.8%. The upperleft graph in �gure 7.2 shows ordinary CA output, the asymmetric map of thespecies pro�les, with vectors pointing to the site vertices.
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 6Figure 7.2: CA biplots with supplementary vectorsThe upper right graph shows the same CA biplot, but now the site vectors havebeen automatically calibrated, and one can recover the pro�les of the speciesperfectly (e.g. species 4 projected onto vector A gives us exactly 0.5, cf. table7.1). The lower left graph shows the CA output with the two added supple-mentary vectors Z1 and Z2, with their tips on the unit circle, indicating thatthe biplot represents all their weighted variance, and that the presentation ofenvironmental data is therefore also perfect. Note how the three sites line upalong the vectors Z1 and Z2: Z1 increases over the sites in order C,A and Band Z2 over the sites in order A,B and C, which is in accordance with theraw data values. The sites also line up along the �rst principal axis in orderA,B and C, and we could say that the CA has "picked up" the Z2 gradientin our data set. The lower right graph shows again the same biplot, but nowthe variable vectors have also been calibrated so that one unit on the variablevector is one unit in the original scale of the variable. Projecting the site pointsonto these vectors will now recover the raw environmental data exactly, andprojecting the species points will recover their weighted averages exactly (e.g.Site B projects onto value 6 with respect to Z1 and 4 with respect to Z2, pro-jecting species 5 yields a weighted average of about 4.2 with respect to variable



7.8. Real Data Applications 94Z1, and a weighted average around 3.8 with respect to variable Z2, cf. table 7.1)An increasing number of species could have been added to the data table withoutany loss in the quality of the representation. However, if more sites are includedin the analysis, then there will be extra dimensions in the solution and theprojections just explained can only be approximate. The weighted correlationbetween the variables Z1 and Z2 is -0.4947, and is correctly reected by an angleof 120 degrees between the two vectors.7.8 Real Data ApplicationsWe apply the methodology described in sections 7.2 and 7.3 to the survey datafrom 1992, with 166 species, 12 sites and 10 environmental variables: PEL, THC,TOC, Ba, heavy metals Cd, Cu, Fe, Pb, and Zn. We also include the distancefrom the platform as a variable. The left graph in �gure 7.3 shows the twodimensional CA solution. The �rst dimension captures 28.4% of the inertia andthe second dimension captures 23.5%, giving an overall quality of the display of51.9%. The interpretation of the CA map, irrespective of the chemical data, hasbeen commented on previously (cf. section 6.2.5): the horizontal axis separatesthe non-polluted reference station (40) from the rest. The second dimensioncaptures a di�erence between stations 40, 24 and 15. These 3 stations are thebest-represented ones in the map. Many species in the map are relatively ill-represented. A few ones with a high quality (� 0:9) in the display have beenlabelled. These are Amphiura �liformis, Myriochele oculata and Chaetozonesetosa. Amphiura �liformis and Myriochele oculata are the main contributorsto the �rst principal axis, whereas the second axis is mainly determined byChaetozone setosa and Myriochele oculata.From the map one infers that Amphiura �liformis is relatively more abundantat the reference station, while Chaetozone setosa is high on station 15 andMyriochele oculata on 24. These are the stations closest to the platform. Thissuggests Chaetozone setosa and Myriochele oculata could be considered indica-tors of pollution.The right graph of �gure 7.3 shows the same data, after zooming in a bit, andwith added environmental vectors. This �gure shows that nearly all variableshave a considerable amount of their weighted variance accounted for in 2 dimen-sions. Only Pelite is ill-represented. The display of these variables greatly helpsthe interpretation of the theoretical CA axes. It is clear that all heavy metals,TOC and THC are associated with the second CA axis, whereas the horizontalprincipal axis has a relatively high negative correlation with Distance. The dis-tance vector reects the fact that reference station 40 is far away, 12 and 8 areat intermediate distance, and the other stations are close to the platform. Wecould globally resume the CA diagram by saying that the �rst axis is distance,and the second axis pollution. It is clear that, apart from Pelite, all the otherenvironmental variables are correlated. The obtuse angle between distance andmost chemical variables shows, as expected, distance to be negatively correlatedwith these variables. The biplot shows a whole bunch of vectors pointing upalong the vertical axis. The biplot explains 59.16% of the weighted varianceof the supplementary environmental variables (distance excluded). Individual
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Figure 7.3: CA biplot and CA biplot with supplementary vectorsqualities of representation for the variables are: PEL 1.68%, THC 61.26%, TOC45.91%, Ba 88.99%, Cd 67.39%, Cu 78.61%, Fe 31.24%, Pb 77.04%, Zn 80.31%,and Distance 77.73%. Regarding the weighted averages, the biplot explains87.1% of their variance (distance excluded). For reasons of space the rightgraph of �gure 7.3 does not show the species labels, though by comparison withthe left graph it is clear that Chaetozone setosa projects high on the pollutants,whereas Myriochele oculata and Amphiura �liformis project low. This con�rmsthat Chaetozone setosa indicates pollution, though our previous interpretationof Myriochele oculata seems wrong: it is low on the pollution vectors. Mostclearly, Amphiura �liformis is low on all pollutants and high on station 40, sug-gesting this species dislikes contamination.Pel THC TOC Ba Cd Cu Fe Pb Zn DisPEL 1.00 0.25 -0.06 0.43 0.51 0.59 0.29 0.30 0.31 -0.96THC 0.13 1.00 0.95 0.98 0.96 0.93 1.00 1.00 1.00 -0.51TOC 0.16 0.65 1.00 0.88 0.83 0.77 0.93 0.93 0.93 -0.21Ba 0.08 0.88 0.72 1.00 1.00 0.98 0.99 0.99 0.99 -0.66Cd 0.00 0.84 0.54 0.90 1.00 1.00 0.97 0.97 0.98 -0.72Cu 0.03 0.83 0.49 0.91 0.97 1.00 0.95 0.95 0.95 -0.78Fe -0.11 0.33 0.44 0.61 0.46 0.48 1.00 1.00 1.00 -0.54Pb -0.07 0.82 0.66 0.94 0.91 0.90 0.71 1.00 1.00 -0.55Zn -0.05 0.81 0.56 0.90 0.94 0.94 0.57 0.95 1.00 -0.56Dis -0.19 -0.24 -0.01 -0.50 -0.41 -0.49 -0.40 -0.36 -0.36 1.00Table 7.2: Real versus Estimated correlationsTable 7.2 shows the weighted correlations between the variables. Below diagonal



7.8. Real Data Applications 96elements are the correlations based on the data, above diagonal elements are thecorrelations estimated from the biplot. Note that there are some sign reversalsfor PEL. The estimated correlations are nearly always (much) larger than thecorrect correlations. The biplot in �gure 7.3 therefore considerably exaggeratesthe correlations between the variables. This is likely to happen in any biplot,notably when there are several uncorrelated variables. If we imagine threevariables that are uncorrelated, then it is already impossible to depict therecorrelations correctly in two dimensions, since it is impossible to draw threevectors all at right angles with each other in a two dimensional plane. Thus,it is inevitable that a 2-D biplot with three uncorrelated variables suggestscorrelations being too high.
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Figure 7.4: WPCA biplot and CA biplot with added principalcomponentsWe can try to reduce the amount of variables by a weighted principal componentanalysis (WPCA), which would give us a few orthogonal directions to add tothe CA biplot. The biplot of the principal component analysis and the CAbiplot with added principal components are displayed in �gure 7.4. The variabledistance has been excluded from the WPCA. Gabriel's biplot of the WPCA alsoshows the high intercorrelations between TOC, THC and all heavy metals. The�rst principal component explains 69.7% of the total weighted variance, andcan be described as pollution due to these variables. The second principalcomponent can be identi�ed as Pelite, and accounts for 12.6% of the weightedvariance. Station 40 is again singled out as a non-polluted station, being low onall measured variables, whereas station 15 seems to be a very polluted station.Station 8 and 14 are relatively high on Pelite. The right graph of �gure 7.4shows again the CA solution, but now two vectors representing the �rst andsecond principal component have been added. The second axis of the graph is



7. Optimal Directions for Supplementary Variables inCorrespondence Analysis 97clearly associated with the �rst principal component (P1). The second principalcomponent is ill-represented in the graph, as was Pelite in graph 7.3.7.9 ConclusionsIn this chapter we have treated theory and application of representing supple-mentary continuous variables in a CA biplot. Such representations turn outto be very useful in interpreting the CA solution. We have also shown that itis often possible to depict supplementary variables with good quality, notablywhen the CA biplot explains a large percentage of inertia and the correlationsbetween the principal axes and the supplementary variables are high.The analysis proposed remains in the realm of indirect gradient analysis, since�rst the species data are optimally represented and then environmental variablesare added. Chapter 9 is dedicated to the theory of canonical correspondenceanalysis (CCA), which is a form of direct gradient analysis since it uses thespecies data and chemical variables simultaneously, and which is related to theproposed indirect analysis in this chapter (cf. section 7.6.2).
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Chapter 8Optimal Directions forSupplementary Variables inPrincipal ComponentAnalysis8.1 IntroductionIn the previous chapter we have seen how we can represent environmental vari-ables in a biplot in an optimalmanner, in the context of correspondence analysis.The abundance matrix considered could also be analyzed by principal compo-nent analysis (PCA), and so we are also tempted to search for the optimalrepresentation of external variables in a biplot obtained by PCA. This is infact a topic of a more general interest beyond the particular ecological contextconsidered here, as it concerns the representation of supplementary variablesin a PCA biplot. PCA is performed on a particular set of variables, and itcan be of interest to depict another variable, deliberately not included in thePCA, in a PCA biplot posterior to the analysis. A clear example of this is alsogiven by the data at hand. In chapter 6 we considered the PCA of the chemicaldata. The variable distance is evidently not included in such an analysis, sinceit is a di�erent type of variable. However, its representation in the PCA biplotcan be very informative, as it might reveal that stations high on a particularchemical are close or far away from the platform. We therefore also considerthe representation of supplementary variables in a PCA biplot in more detail.Expressions for calculating supplementary variable vectors in PCA are derivedbelow, and we illustrate the results with an example from the Eko�sk oil �eld.



8.2. PCA in a Nutshell 1008.2 PCA in a NutshellWe consider the PCA of a standardized data matrix X. Principal componentscan be obtained by calculating eigenvectors of the covariance matrix. Whendata are standardized, as we assume here, the covariance matrix equals thecorrelation matrix. Phrased in terms of a singular value decomposition, we doa low rank approximation to the standardized data:X = ~UT~V0; (8.1)with ~U0 ~U = I and ~V0 ~V = I. We use a tilde (~) to avoid possible confusionwith previously used matrices in CA or CCA (U, F, etc.). Standardized prin-cipal components (~F) and coordinates for the variable vectors (~H) can then beobtained as: ~F = pn~U ~H = (1=pn)~VT; (8.2)where n is the sample size. If the variables are standardized then ~H containsthe correlations of the standardized principal components with the variablesbecause: (1=n)X0~F = (1=n)~VT~U0 ~Upn = (1=pn)~VT. Principal componentsare linear combinations of the original variables with maximal variance, and canthus be obtained by a linear transformation of the data matrix. Using (8.1) we�nd: ~F = pn~U = pnX~VT�1 = XC; (8.3)where matrix C = pn~VT�1 is known as the standardized score coe�cient ma-trix. Postmultiplying the original data by this matrix gives the standardizedprincipal components.The results of a PCA are often represented in a graph, Gabriel's biplot (1971),by plotting the �rst two columns of ~F and ~H. In this graph, the cosine of anangle between two variable vectors approximates their correlation because:~H~H0 = 1n ~VT2 ~V0 = 1nX0X: (8.4)Let hi be the ith row of ~H, and xi be the ith column of X. We then �nd:cos(hi;hj) = hi0hjk hi kk hj k = 1nxi0xj1pn k xi k 1pn k xj k= 1nxi0xjq 1nxi0xiq 1nxj 0xj = r(xi;xj): (8.5)This result is a full space result. The correlation between xi and xj will berecovered exactly when all columns of ~H are considered. In a two-dimensionalbiplot correlations will be represented perfectly if the data matrix consists oftwo variables only. With more variables correlations can only be recoveredapproximately, and the analysis was not designed to optimize this propertyexplicitly. We note that in (8.5) we have k hi k=q 1nxi0xi, which means (again



8. Optimal Directions for Supplementary Variables in PrincipalComponent Analysis 101in the full space) that the length of a variable vector represents the standarddeviation of the corresponding original variable (here 1). However, because ~H isa matrix containing correlations, it is more accurate to say that, by Pythagoras,the length of a variable vector in a two-dimensional biplot is described by:qr2(xi; ~F1) + r2(xi; ~F2); (8.6)where ~F1 and ~F2 indicate the �rst and the second principal component re-spectively. This states that the length corresponds to a multiple correlationcoe�cient. Thus, the length of the vector indicates the amount of varianceof xi explained by a regression onto the �rst two principal components. Theamount of variance explained is used as a quality measure, thus the longer thevector, the better it is represented.More details on PCA are provided by many textbooks and papers on multi-variate analysis, see for instance Dillon (1984, chapter 2) for a introduction,Mardia (1979), J�oreskog (1993), Rao (1964) or the book by Jolli�e (1986) formore theoretical details.8.3 Supplementary VariablesSay we have a supplementary variable z that we want to represent by a vector� in the biplot. As in chapter 7, we assume it is possible to calibrate such asupplementary vector, and we minimize projections errors of the cases. Theseprojections are given by: ẑ = �~F�; (8.7)where � is a normalization factor. We try to minimize:(z � ẑ)0(z � ẑ) = (z� �~F�)0(z � �~F�): (8.8)Note that we project the points corresponding to the cases onto the supple-mentary variable vector. In the context of the PCA of an abundance matrix,this means that we are projecting the species points, whereas in chapter 7 weminimized projections errors of the site points. In most applications, it will bemore natural to project the cases points, corresponding to the rows of the datamatrix. In the interpretation of a PCA biplot one projects cases onto variablevectors to approximately recover the data. The natural step is do to the samewith respect to the supplementary variable, and therefore to minimize objectivefunction (8.8). It seems not to make much sense to project a variable vectoronto a supplementary variable vector. When we consider abundance data, thisis somewhat di�erent. If species are considered cases and sites variables, thenthe natural thing would be to project the sites, and thus to project variablesrather than cases. The species points might however, also be projected as theymight give an idea of the preferred environment for the species. Therefore, bothprojections were considered in the context of CA in chapter 7. For the moment,we continue to consider the projection of cases, this being probably more usefulin general.



8.3. Supplementary Variables 102The derivation of the solution, without a unit norm constraint for �, is analogousto problem (7.4) described in chapter 7. The Lagrangian is given by:L(�; �) = z0z � 2�z0~F� + �2�0~F0~F� (8.9)Setting @L=@� = 0 and @L=@� = 0 we �nd, after some algebra, that the solutionis given by: � = 1� (~F0~F)�1~F0z = 1� (nI)�1~F0z = 1�n ~F0z: (8.10)From @L=@� = 0 it follows that: � = 1n z0~F�� 0� ; (8.11)which after substitution in (8.10) gives the solution:�k � k = 1pz0~F~F0z ~F0z; (8.12)where we used the property that �=k � k has norm one. Strictly speaking, thesolution given by (8.12) is not identi�ed, because if vector � is a solution, thenany multiple of � is also a solution. We can require the norm of � to be one,such that the solution is given by:� = 1pz0~F~F0z ~F0z: (8.13)We notice that we could also have introduced the norm one restriction straightat the beginning and minimize:L(� ; �; �) = z0z� 2�z0~F� + �2� 0~F0~F� + �(1� �0�); (8.14)instead of (8.9). When working out the solution of this minimization problem,the Lagrange multiplier � turns out to be zero, and the solution vector found isthe same as given by (8.13).Standardized principal components have zero mean and unit variance. If weassume z also to be standardized, then (1=n)~F0z is a vector of correlation co-e�cients between the supplementary variable and standardized principal com-ponents. Because pz0~F~F0z is a positive constant, the solution vector � is avector that is proportional to the vector of correlations. If the supplementaryvariable z happens to correlate perfectly with one of the principal components,it must be uncorrelated with all others. As a consequence � will be an elemen-tary vector consisting of a sole 1 and all other elements equal to zero. Such avariable will thus coincide precisely with one particular axis in the solution of aPCA. We proceed to discuss some properties of the solution, where we assumethe norm of � to be one.First, we note that the matrix of second order derivatives of the Lagrangian withrespect to � is given by @2L=@�2 = 2�2~F0~F = 2�2nI, which is a positive de�nitematrix. The solution described by (8.13) thus indeed corresponds to a minimum.



8. Optimal Directions for Supplementary Variables in PrincipalComponent Analysis 1038.4 Quality of RepresentationThe values of variable z estimated in the biplot become:ẑ = �~F� = 1n ~F~F0z: (8.15)This equation has a geometrical interpretation. Vector ẑ can be considered tobe the projection of vector z onto the space spanned by the principal compo-nents. The associated projector matrix is given by ~F(~F0~F)�1~F0 = ~F(nI)�1~F0 =(1=n)~F~F0. Or, in other words, ẑ is also given by the �tted values of the regres-sion of z on ~F.We can now evaluate the quality of representation of the supplementary variable.Our measure of quality is the amount of variance of the supplementary variableaccounted for by the display. In a formula this equals:1n ẑ0ẑ1nz0z = z0~F(~F0~F)~F0z 1n2z0z = z0~F~F0z 1nz0z = 1nz0~F~F0z 1n1nz0z = KXk=1 r2k(z; ~Fk): (8.16)When z is centred on the mean, ~F0z 1n is the vector of covariances betweenprincipal components and the supplementary variable. Thus, the quality ofrepresentation of the variable is the sum of the squared correlations with theprincipal components, and corresponds to the amount of variance of z explainedby a regression onto principal components.The length of the supplementary vector � in 2D also has a particular interpre-tation. We work out the length in 2D of the solution vector:k �(2) k= qz0~F(2)~F0(2)zpz0~F~F0z = qr2(z; ~F1) + r2(z; ~F2)qP r2i (z; ~Fi) (8.17)Thus, the length corresponds to the square root of the quotient of two amountsof variance explained in the regression of z on principal components. The quo-tient is the amount of variance explained in the regression of z on the �rst twoprincipal components divided by the amount of variance explained by the re-gression on all principal components. A long vector tells us that the regressiononto the �rst principal components is successful. This interpretation of the vec-tor length of � is maybe not very attractive. The ordinary non-supplementaryvariable vectors have lengths that reect the percentage of their variance ex-plained, and so indicate their quality. It would be nice to maintain the sameinterpretation for supplementary variable vectors. Because any multiple of � isalso a solution of the minimization problem posed (cf. 8.12), we might as wellrescale the vector � in order to obtain a more attractive interpretation. Wecould rescale � in such a way that its length does reect the amount of varianceexplained by the �rst two principal components, just like ordinary variable vec-tors in the display. This can be achieved if we choose the norm of � in (8.12)to be (1=n)pz0~F~F0z, so that solution (8.13) changes to:



8.5. Angles between Variables 104� = 1n ~F0z; (8.18)which is a vector of correlations between principal components and the supple-mentary variable, if the latter is assumed to be standardized. The 2D length ofthis vector is q1=(n2)z0~F(2)~F0(2)z = qr2(z; ~F1) + r2(z; ~F2) and is the squareroot of the amount of variance explained, just like for ordinary variables (cf.(8.6)).8.5 Angles between VariablesAs noted before (cf. 8.5), the cosine of an angle between two variable vectors in aPCA biplot approximates the correlation between the variables. How about theangle between a supplementary variable vector and the other variable vectorsobtained by PCA? Can we also interpret the cosine of those angles to approxi-mate correlations between the supplementary variables and the other variables?Surprisingly enough, this turns out to be the case. In order to verify this, wede�ne a new minimization problem. We search again for an optimal direction� in the PCA biplot that depicts the correlations between z and X as best aspossible. The rows of ~H contain the vectors representing the variables obtainedin the PCA. If we indicate correlations between variables by the cosinus of theangle between their vectors, then the correlation between z and the ith variableused in PCA is estimated by:cos(�;hi) = h0i�k hi kk � k (8.19)The rows of ~H are unit norm when the data are standardized (cf. (8.4)). Thecorrelations between z and X are estimated in the biplot by �~Hv, and wecan minimize the sum of squared errors of estimated correlations minus realcorrelations: (�~H� � 1nX0z)0(�~H� � 1nX0z); (8.20)what amounts to minimizing:L(�;�) = � 0 ~H0 ~H� � 2�n � ~H0X0z + (1=n2)z0XX0z: (8.21)Setting �rst order derivatives to zero, we �nd from @L=@� = 0 that:��0 ~H0 ~H� = (1=n)� 0 ~H0X0z (8.22)and from @L=@� = 0 that:� = 1�n (~H0 ~H)�1 ~H0X0z = 1�n (~H0 ~H)�1 ~H0(~VT~U0)z= 1�n (~H0 ~H)�1 ~H0 ~HF0z = 1�nF0z; (8.23)



8. Optimal Directions for Supplementary Variables in PrincipalComponent Analysis 105and by substituting (8.22) in (8.23) we �nd that:�k � k = 1pz0FF0zF0z: (8.24)Thus, it turns out that the solution of this minimization problem is identical tothe solution we found before, when we minimized projection errors of the casesonto the supplementary vector, as is described by equation (8.13). We concludethat correlations between the supplementary variable and the ordinary variablesare optimally represented.8.6 A Di�erent ScalingResults of a PCA are not always reported using standardized principal com-ponents as considered so far. Another type of scaling consists of a biplot ofnon-standardized principal components 	 and vectors � and can also be cal-culated from the decomposition in (8.1) as:	 = ~UT � = ~V: (8.25)The di�erent types of scaling of the results are described by Gabriel (1971) andJolli�e (1986, section 5.3). In the scaling used in (8.25) angles between variablevectors do no longer approximate correlations. However, this scaling has theadvantage that a biplot really shows the larger dispersion of the �rst principalcomponent, as 	 is not standardized.In this scaling, the objective is to minimize (z��	�)0(z��	�). The optimaldirection for a supplementary variable is in this scaling is given by:�k � k = 1pz0	T�4	0zT�2	0z: (8.26)This vector does not correspond to a vector of correlation coe�cients betweenprincipal components and environmental variables. When this type of scaling isused in PCA, it is thus not correct to plot correlation coe�cients. We rewrite(8.26):�k � k = 1pz0	T�4	0zT�2	0z = 1pz0 ~UT�2 ~U0zT�1 ~U0z = 1pz0~FT�2~F0zT�1~F0z;(8.27)where the vector ~F0z is proportional to the correlations between ~F and z. How-ever, the multiplication by T�1 makes that its elements are divided by thestandard deviations of the principal components in T.In a two-dimensional biplot, this means that if the eigenvalues of the �rst twoprincipal components are equal, the optimal direction will coincide with thecorrelation vector. If there are di�erences in the eigenvalues, which is usuallythe case, the two directions will di�er, and plotting correlations is mistaken.



8.7. Supplementary Cases 1068.7 Supplementary CasesIn the framework of this chapter, we complement the material above with anindication of how supplementary cases might be added to a PCA biplot. Asindicated above, standardized principal components can be obtained from theoriginal data by postmultiplying these by the standardized score coe�cient ma-trix. If we have a matrix with supplementary cases to depict in the biplot,Xsup,then �rst we center this matrix on the means of the original variables (in matrixX) used in the PCA: Xsup  Xsup � 1n110X; (8.28)where we note that the new Xsup will in general not have columns with zeromean. Next, the data in Xsup are \standardized" by dividing each variable bythe standard deviations of the variables in X. The variance of the columns ofXsup will neither be one. The corresponding coordinates for the supplementarycases (Fsup) are now obtained as:Fsup = XsupC: (8.29)When we use non-standardized principal components, 	, then the latter canbe obtained from the data by postmuliplying by V since 	= UT= XV. Withthis scaling, supplementary cases can thus be represented in a PCA-biplot by:Fsup = XsupV; (8.30)where Xsup has been centred and standardized as described above.8.8 An ExampleIn this section we repeat the PCA of the chemical data from 1990 shown earlierin section 6.3.1, p. 74, where we now use distance as a supplementary variable,and the outlying station 40 as a supplementary case. The biplot of this analysisis shown in �gure 8.1.Using formula (8.29) we �nd that the coordinates for station 40 to be (0.04,-10.01). Station 40 thus remains a highly outlying point (not shown in �gure8.1) low on most of the variables, except Barium. This interpretation is largelyconsistent compared with the analysis where station 40 was included as an ac-tive point (cf. graph 6.8 p. 74), except for its position with respect to Barium.The supplementary variable distance is shown by an arrow in �gure 8.1, andcoincides with the direction separating the inner ring stations 36, 37, 30 and31 from the outer stations 20, 16, 10, 1 and 6 (cf. �gures 2.1, 2.2 on pp. 6and 7). Distance is seen to be correlated with C18 and degradation parameterPristane (cf. �gure 6.9 p. 75). The distance vector has a 2D length of 0.81.This means that 66% (0:812 = 0:66) of the variance in distance is accounted forby the �rst two principal components. Figure 8.1 can be complemented withother geographical information such as East-West or North-South distances, butthese variables had a very low quality and are not shown.



8. Optimal Directions for Supplementary Variables in PrincipalComponent Analysis 107
-2 -1 0 1 2

-2

-1

0

1

2

1 

2 

3 

4 

6 
7 

8 
9 

10

11

12
13
14
15

16

17

18

19

20

21

2223

24

25

26

27

28

29

30

31

32

33

34
35

36

37

38
39

First Principal Component (78.97 %)

S
e
co

n
d
 P

ri
n
ci

p
a
l C

o
m

p
o
n
e
n
t 
(8

.8
6
9
 %

)
DisFigure 8.1: PCA for 1990, station 40 and Distance supplementaryFigure 8.2 shows the results of analysis, but now using result (8.26) with non-standardized principal components. The larger dispersion along the horizontalaxis is now very clear. The length of vector Distance has been multiplied bya factor 10 to make it more visible. The vector length could also have beenrescaled to reect R2 as in the previous analysis, making the vector fall withinthe unit circle. However, if the principal components have a large variance, theunit circle becomes very small, making the vectors di�cult to see and interpret.
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Chapter 9Theory of CanonicalCorrespondence Analysis9.1 IntroductionIn the previous chapter, we �rst performed correspondence analysis to get anoptimal picture of the species data, and then tried to �t environmental informa-tion to a CA biplot in an optimal way. This procedure belongs to the realm ofindirect gradient analysis, where latent gradients are extracted from the speciesdata, and environmental data are related to these in a second step.Canonical correspondence analysis, �rst described by Ter Braak (1986), is amethod for direct gradient analysis. In direct gradient analysis, environmentalinformation is used simultaneously with the species data when theoretical gra-dients are extracted. Over the last decade, canonical correspondence analysis(CCA) has become an important multivariate technique in ecology (Palmer,1993). One of the mainstays of the method is the assumption of a nonlin-ear relationship between (linearly combined) environmental axes and speciesabundance, known as the unimodal response model (Ter Braak, 1985). Manyapplications of CCA can be found in the ecological literature (Birks and Austin,1992; Ter Braak, 1994). The behaviour of CCA under varying circumstances(multicollinearity, noise, etc.) has been investigated in various simulation stud-ies (Palmer, 1993; Johnson and Altman, 1999; McCune, 1997).From a more theoretical point of view, it is possible to arrive at the basic equa-tions of CCA from di�erent perspectives, most of them being described in theliterature. For instance, CCA is a maximization of the dispersion of the speciesscores using a linear restriction on the site scores (Ter Braak, 1987, section 5.5;Johnson, 1999). CA with linear restrictions has also been described by B�ocken-holt and Takane (1994) and Takane (1991). Alternatively, CCA has been statedto be a weighted least squares approximation to the weighted averages of thespecies with respect to the environmental variables (Ter Braak, 1986). It is alsopossible to cast CCA in the framework of reciprocal averaging, where the recip-



9.2. Theory of CCA 110rocal averaging algorithm is combined with the regression of site scores ontoenvironmental variables. CCA has also been formulated as a weighted principalcomponent analysis of a matrix of weighted averages (Ter Braak, 1987).The purpose of this chapter is to give a detailed and transparent mathemati-cal exposition of CCA, parting from the viewpoint of ordinary correspondenceanalysis (CA). We describe CCA by projecting (scaled) standardized residualsonto a space spanned by environmental variables. A detailed treatment of manytheoretical aspects of CCA will be given (singular value decomposition, biplots,bounds for singular values, use of Moore-Penrose inverse, etc), several of whichare, to our knowledge, not described in the literature. We will also show thatit is possible to do CCA on the basis of a distance matrix. Some illustrativeexamples using arti�cial data are presented, reserving applications of CCA tothe survey data from the Eko�sk oil �eld for the next chapter. Special attentionwill be paid to the issue of the interpretation of the graphical output of CCA.9.2 Theory of CCAWe start again with the singular value decomposition that is at the heart ofordinary correspondence analysis (CA), and then introduce linear constraints.CA can be performed by the s.v.d. ((5.3), p. 55):D�1=2r (P� rc0)Dc�1=2 = UDV0; (9.1)where P is the I � J abundance matrix (species by sites) divided by its grandtotal (P being called the correspondence matrix), r and c are column vectorscontaining the row sums and column sums of P respectively, Dr and Dc arediagonal matrices built from these vectors. Right and left singular vectors areorthogonal, satisfying U0U = I and V0V = I. Matrix (P � rc0) is the matrixcontaining the deviations from the independence model (no association betweenrows and columns). In later formulae we will use ~P = P � rc0 to indicate thismatrix of deviations. The LHS of (9.1) is known as the matrix of standardizedresiduals (van der Heijden, 1987, p. 31; Gabriel and Odoro�, 1990, p. 483),divided by a factor of pn, where n is the grand total of the abundance matrix.We will refer to matrix ~P as the matrix of scaled standardized residuals. Princi-pal and standard coordinates for rows (F;�) and columns (G;�) are obtainedas: F = D�1=2r UD; G = D�1=2c VD;� = D�1=2r U; � =D�1=2c V; (9.2)where the notation of Greenacre (1984) has been adopted. We want to constrainthe standard site coordinates to be linear combinations of the environmentalvariables. Such a constrained analysis can be performed by projecting the rowsof the matrix of scaled standardized residuals onto the space spanned by theenvironmental variables. CCA is, in fact, the CA of these projections1. The1This does not mean that one can obtain the CCA solution simply by the use of a programfor ordinary CA. This is because a program for CA will usually presuppose that data o�eredare in raw form, and consequently the program will �rst divide by the grand total, do thecentring operation, operations which are a nuisance in this case. A computer program fordoing CCA is given in appendix A.2.



9. Theory of Canonical Correspondence Analysis 111situation is akin to the relationship described by Tenenhaus (1998, chapter 4)between redundancy analysis (van den Wollenberg, 1977) and principal compo-nent analysis. Let Z be the J �Q matrix of environmental variables, where weassume the columns of Z to be centred on the weighted means (c0Z = 0), andstandardized by dividing by the square root of the weighted variance. Weightingsites by the square root of their total abundance, the constrained analysis canbe performed by postmultiplication of the LHS of (9.1) by the symmetric idem-potent projector matrixD1=2c Z(Z0DcZ)�1Z0D1=2c . The constrained analysis canbe performed by the s.v.d.:(D�1=2r ~PD�1=2c )(D1=2c Z(Z0DcZ)�1Z0D1=2c ) = UlDlV0l : (9.3)We use the subindex l to distinguish the matrices on the RHS from their coun-terparts in ordinary CA, as given by (9.1), and to stress that they are linearlyconstrained dimensions. Introduction of linear constraints in CA by the use ofprojection matrices has also been described by B�ockenholt and Takane (1991).Coordinates for rows (species) and columns (sites) are obtained by the expres-sions: Fl = D�1=2r UlDl; Gl = D�1=2c VlDl;�l =D�1=2r Ul; �l =D�1=2c Vl: (9.4)The reader will notice that the only di�erence between these expressions andtheir counterparts in ordinary CA resides in the subindex l. When there aremore sites than variables, as is often the case, not all dimensions in the analysiswill be restricted. This seems not to be recognized in many applied studies, asmany authors state that as many axes can be extracted as there are variables(Johnson and Altman, 1999, p. 41; Ter Braak, 1986, p. 1167), though theirexistence is recognized in a later paper by Ter Braak (1994, p. 130). Therewill be Q restricted dimensions and J � 1 � Q unrestricted dimensions. Un-constrained dimensions in the analysis can be obtained by projecting the rowsof the matrix of scaled standardized residuals onto the space orthogonal to theone spanned by the environmental variables. This can be achieved by post-multiplying the LHS of (9.1) by the symmetric idempotent projector matrix(I�D1=2c Z(Z0DcZ)�1Z0D1=2c ). In order to extract these unconstrained axes, wedo a second s.v.d.:(D�1=2r ~PD�1=2c )(I �D1=2c Z(Z0DcZ)�1Z0D1=2c ) = UuDuV0u; (9.5)where we now use subindex u to stress that these are unconstrained axes. Speciesand site coordinates in the unconstrained dimensions are obtained by the sameformulae as in (9.4), but changing subindex l for subindex u. Thus, all speciesand site coordinates can in principle be obtained by two singular value decom-positions, and there is no strict need to use a reciprocal averaging algorithm.In his original paper on CCA, Ter Braak (1986, appendix) describes CCA as adecomposition of a species by variables matrix rather than the species by sitesmatrices considered so far. The s.v.d. described by Ter Braak is:D1=2r (D�1r ~PZ)(Z0DcZ)�1=2 = UlDlW0; (9.6)with U0lUl = I and W0W = I. This decomposition is easily obtained fromequation (9.3) by postmultiplying by D1=2c Z(Z0DcZ)�1=2 and setting W =



9.2. Theory of CCA 112(Z0DcZ)�1=2Z0D1=2c Vl, and focuses only on the constrained dimensions. Froms.v.d. (9.6) it is clear that CCA is invariant with respect to multiplication ofthe environmental data by a scalar. Thus it does not matter whether an envi-ronmental variable is expressed in say milligrams per kg or in nanograms perkg, the results of the analysis will be the same. Just like CA, the analysis isalso invariant with respect to scalar multiplication of the abundance matrix.When using (9.6), principal and standard coordinates for the species (Fl;�l),variables (H;
) and sites (Gl;�l) are found as:Fl = D�1=2r UlDl; �l = D�1=2r Ul;H = (Z0DcZ)1=2WDl; 
 = (Z0DcZ)1=2W;Gl = �lDl; �l = Z(Z0DcZ)�1=2W: (9.7)The standard site coordinates are linear combinations of the environmental vari-ables, �l = ZB, where the matrix with the coe�cients of the linear combinationscan be obtained as: B = (Z0DcZ)�1=2W: (9.8)If matrix �l is known, B can be also be obtained as the matrix of regressioncoe�cients: B = (Z0DcZ)�1Z0Dc�l: (9.9)We note that from �lDc�l = I follows that BB0Z0DcZBB0 = BB0, and if thecoe�cient matrix B is of full rank then BB0 = (Z0DcZ)�1. We see that (9.6) isa low rank approximation to the weighted averages of the species (weighted bythe square root of their abundance), but postmultiplied by the square root ofthe inverse of the correlation matrix of environmental variables. If the environ-mental variables are uncorrelated in the weighted sense, then CCA amounts toa least squares �t to the matrix of weighted averages. However, environmentalvariables are often correlated, and we arrive at the conclusion that CCA is,strictly speaking, not a least squares �t to the weighted averages, in contrast tothe �rst paper about CCA (Ter Braak, 1986, p. 1172).When environmental variables are standardized, we see that 
 represents amatrix of correlation coe�cients between environmental variables and standardsite coordinates: Z0Dc�l = Z0DcZB = (Z0DcZ)1=2W = 
: (9.10)We note that the environmental variables and the unrestricted site coordinates(�u) are uncorrelated. Because the standard site coordinates are uncorrelatedin the weighted sense, we have �u0Dc�l = �u0DcZB = 0. Postmultiplicationby B0(BB0)�1 gives �u0DcZ = 0. From (9.6) we �nd the loss function of CCA:kD�1=2r PZ(Z0DcZ)�1=2 �U(2)D(2)W0(2) k2E = kU(r)D(r)W0(r) k2E =tr(W(r)D(r)U0(r)U(r)D(r)W0(r)) = tr(D2(r));For the sake of completeness, we note that s.v.d. (9.6) can be rewritten as thespectral decomposition:



9. Theory of Canonical Correspondence Analysis 113T0T = (Z0DcZ)�1=2Z0P0D�1r PZ(Z0DcZ)�1=2 =WD2lW0; (9.11)where we use T to indicate the LHS of (9.6). After some manipulation, this canbe rewritten as: (Z0DcZ)�1Z0P0D�1r PZB = BD2l ; (9.12)with B = (Z0DcZ)�1=2W. This shows that the coe�cients of the linear combi-nationsB can be obtained as eigenvectors of the matrix (Z0DcZ)�1Z0P0D�1r PZ,and this is precisely the approach described by Johnson and Altman (1999, p.41). This result is also reminiscent of canonical correlation analysis, where onesearches linear combinations that maximize the correlation between two sets ofvariables.9.2.1 Dimensions in the SolutionIn ordinary CA the solution has min(I � 1; J � 1) dimensions, when the trivialone is omitted. The CCA solution has actually the same number of dimensions.Q of these dimensions are restricted, and the remaining ones are not. We candistinguish three situations with respect to the number of variables (Q) and thenumber of sites (J).� J�1 > Q. This is the normal situation in CCA. Matrix Z has rank Q, andmatrix Z0DcZ, the weighted variance-covariance matrix, is of full rank Qand invertible.� J � 1 = Q. In this case precisely all dimensions are linearly constrained.Z is still of rank Q, and Z0DcZ is still of full rank Q. The solution is nowidentical to that of ordinary CA.� J �1 < Q. Z has rank J , and Z0DcZ has rank J as well, and is singular ifJ < Q. The solution now equals ordinary CA if we use the Moore-Penroseinverse inverse of Z0DcZ in the calculations. An analytical proof of thisis given in section 9.2.2.In the second case, J � 1 = Q, the species and site coordinates obtained fromthe CCA will equal their CA counterparts. In order to illustrate the equivalencewith CA more clearly, imagine that the standard site coordinates obtained withCA are exact linear combinations of the environmental variables, e.g. that wehave � = Z. Then, by (9.10), the variable vectors turn out to be elementaryvectors coinciding precisely with the axes of the display. Substituting Z = � inequation (9.9) reduces the coe�cient matrixB to identity, and so shows the stan-dard site coordinates of CCA equal there CA counterparts: �l = ZB = �I = �.On a personal computer, these things are easily veri�ed by feeding � obtainedby CA as environmental data into a program for CCA.We note that in the last two cases (J � 1 � Q), it still remains useful toperform CCA rather than CA, because CCA also provides a representationof the environmental data (the variable vectors). In CA there exists a trivialdimension in the solution with an associated singular value of 1. How is this



9.2. Theory of CCA 114in decomposition (9.6)? In the current layout with Z centred on the weightedmeans and containing environmental variables only, there is no trivial dimension.However, if we do CCA by a reciprocal averaging algorithm (cf. section 9.3.3),a trivial dimension does pop up, and has an associated singular value of 1. Thisis because in such an algorithm we are regressing on Z, and thus a �rst columnof ones is included in Z for estimating the intercept. If Z contains a leadingcolumn of ones, then the trivial dimension can be omitted from the solution byusing the centred correspondence matrix (~P), as we did when we used the s.v.d.in (9.6). It is not su�cient only to centre Z on the weighted mean, in that casethe trivial dimension will remain. Obviously, it does not hurt to centre both.When Z does not contain a �rst column of ones, then Z must be centred onthe weighted mean, and it is not su�cient to centre only the correspondencematrix. Again, it does not hurt to centre both. A proof for the existence of thetrivial dimension is given in section 9.2.3.9.2.2 Use of the Moore-Penrose Inverse in CCAGeneralized inverses, the Moore-Penrose inverse in particular, play an importantrole in multivariate analysis. Introductions to the Moore-Penrose inverse canbe found in Searle (1982, chapter 8), Magnus and Neudecker (1994, chapter 2),Graybill (1983, chapter 6) and Rao (1971). In this section we show that, whenwe use the Moore-Penrose inverse in case the covariance matrix of environmentalvariables is singular, the CCA solution will reduce to the CA solution. This hasbeen published as a linear algebra problem (Gra�elman, 1999c). We considerthe singular value decomposition of CCA as given by (9.6), and Z centred bysubtracting weighted means without leading column of ones. Then, from (9.6),(9.8) and (9.9):D�1=2r ~PZ(Z0DcZ)�1=2 = UlDlW0 = UlDl�0lDcZ(Z0DcZ)�1=2:Postmultiply by (Z0DcZ)�1=2Z0D1=2c to obtain:(D�1=2r ~PD�1=2c )D1=2c Z(Z0DcZ)�1Z0D1=2c = UlDl�l0DcZ(Z0DcZ)�1Z0D1=2c :(9.13)Consider now the case where Q > J and Z0DcZ is singular. We de�ne X =D1=2c Z, and use the Moore-Penrose inverse of Z0DcZ, which we denote by(X0X)+. Then we replace D1=2c Z(Z0DcZ)�1Z0D1=2c by X(X0X)+X0= XX+(X0)+X0 = XX+(X+)0X0 = XX+(XX+)0, where proofs of the proper-ties (X0X)+ = X+(X0)+ and (X0)+ = (X+)0 can be found in Graybill (1983,pp. 108-110).We use two of the Moore-Penrose conditions, X+ = X+XX+ and X+X =(X+X)0, substituting the latter in the �rst: X+ = (X+X)X+ = (X+X)0X+ =X0(X+)0X+ = X0(XX0)+. Because X has full row rank J , (XX0) is non-singular and thus (XX0)+ = (XX0)�1 so that X+ = X0(XX0)�1. As a conse-quence the term XX+ = XX0(XX0)�1 = I.Consequently D1=2c Z(Z0DcZ)�1Z0D1=2c = XX+(XX+)0 = II0 = I:



9. Theory of Canonical Correspondence Analysis 115Equation (9.13) thus reduces toD�1=2r ~PD�1=2c I = UlDl�l 0D1=2c I, from which itfollows that D�1=2r ~PD�1=2c = UDV0 = UlDl�l0D1=2c . Assuming no repetitionsof singular values and ignoring the indeterminacy of the sign of the singular vec-tors, the singular value decomposition will be unique and we have U = Ul, D =Dl (thus implying F = Fl) and V = D1=2c �l. Because V = D1=2c � = D1=2c �l,also � = �l: 29.2.3 The Trivial DimensionIn this section we prove the existence of a trivial dimension in CCA with anassociated singular value of 1, if Z contains a leading column of ones. The s.v.d.(9.6), with P not centred, corresponds with the eigenvalue-eigenvector problem:D�1=2r PZ(Z0DcZ)�1Z0P0D�1=2r u = �u; (9.14)which, by premultiplication by D�1=2r becomes:D�1r PZ(Z0DcZ)�1Z0P0w = �w; (9.15)where w = D�1=2r u. We partition Z as [1 j Z]. Substitution in (9.15) gives:D�1r P[1 j Z]� 1 c0ZZ0c Z0DcZ ��1[1 j Z]0P0w = �w: (9.16)Assuming Z to be centred on the weighted means, we have to �nd the inverseof the partitioned matrix: � 1 000 Z0DcZ ��1: (9.17)Inverses of partitioned matrices occur often in multivariate statistics. Expres-sions for the inverse of a partitioned matrix exist and are described in manytextbooks on linear algebra (Magnus and Neudecker, 1994, p. 11). Using theseresults, the inverse of the matrix above in (9.17) is:� 1 000 (Z0DcZ)�1 � ; (9.18)making that (9.16) reduces to:(1r0 +D�1r PZ(Z0DcZ)�1Z0P0)w = �w: (9.19)If we choose w = 1, then the second term on the LHS is a zero matrix becauseZ0P01 = Z0c = 0, and we have 1r01 = 1 = �1. Thus � = 1 is an eigenvalueof (9.15) with associated eigenvector 1, and correspondingly � = 1 is also aneigenvalue of (9.14) with associated eigenvector D1=2r 1. This dimension is unin-teresting because the species coordinates show no variation with respect to thisaxis.



9.2. Theory of CCA 1169.2.4 Inertia Decomposition and Inertia BoundsIn ordinary CA the total inertia of the abundance matrix is given by (cf. equa-tion (5.13), page 58) : tr(~PD�1c ~P0D�1r ): (9.20)If we sum (9.3) and (9.5), we see that in CCA the matrix of scaled standardizedresiduals is decomposed as:D�1=2r ~PD�1=2c = UlDlV0l +UuDuV0u: (9.21)Consequently, the total inertia as calculated in ordinary CA, can be decomposedin a constrained and an unconstrained part as:tr(~P0D�1r ~PD�1c ) = tr(D2l ) + tr(D2u): (9.22)Analogous to CA, principal inertias are also weighted variances of the principalcoordinates, and so we �nd for CCA F0lDrFl =D2l for the restricted dimensions,and F0uDrFu = D2u for the unconstrained dimensions. In a similar manner wehave for the sites G0lDcGl = D2l and G0uDcGu = D2u.Just as in ordinary CA, principal inertias can be further decomposed into con-tributions of the rows (species) and the columns (sites) to the principal inertias,and we can also work out contributions of the principal axes to the row or col-umn inertias, calculate the qualities of representation of the rows in a subspaceof certain dimension, and so on. The whole inertia decomposition for rows andcolumns can be concisely expressed by the respective hadamard products:Dr([Fl j Fu]� [Fl j Fu]); Dc([Gl jGu]� [Gl jGu]); (9.23)where the columns sums of these matrices give the principal inertias, and therow sums give row and column inertias respectively.We note that the inertia of the restricted dimensions can also be obtained from(9.3) as: tr(Dr(D�1r ~P)Z(Z0DcZ)�1Z0(D�1r ~P)0) = tr(D2l ): (9.24)and also from (9.7) by:H0(Z0DcZ)�1H = DlW0WDl = D2l : (9.25)We have shown in section 5.5 that principal inertias in CA are always in theinterval [0; 1]. Since CCA is a linearly restricted form of CA, we expect theprincipal inertias in CCA also to be in the [0; 1] interval, and to be smaller orat best equal to principal inertias obtained in CA. We proceed to give a formalalgebraical proof of this. It turns out that this problem can be expressed in amore general way as �nding bounds for the eigenvalues of the product of a sym-metric idempotent and a non-negative de�nite matrix. As such, the problemhas been published (Gra�elman and van de Velden, 1999). We �rst formulateand solve the general problem and then show how it is embedded in CCA.



9. Theory of Canonical Correspondence Analysis 117Let A be an n � n non-negative de�nite matrix, and let M be a symmetricidempotent matrix. Show that:�i(AM) � �i(A) (i = 1; : : : ; n); (9.26)where �i(�) and �i(�) represent the eigenvalues of the respective matrices in de-creasing order of magnitude.SinceM is idempotent, it can be factored as GG0, where the n� k matrixG issemi-orthogonal, G0G = Ik, and k is the rank of M. The eigenvalue equationAMw = �w gives AGG0w = �w, and can be rewritten as G0AGz = �z,where z = G0w. Matrices AM and G0AG thus have the same (non-zero)eigenvalues. Moreover, because A is non-negative de�nite, G0AG is also non-negative de�nite, hence all eigenvalues �i ofAM are larger than or equal to zero.For the rank of AM we have: r(AM) = r, where r = min(r(A); r(M)). Sincethe eigenvector-eigenvalue decomposition of AM can be rephrased as the spec-tral decomposition of a symmetric matrix (G0AG above), we conclude thatAMhas exactly n � r zero eigenvalues. Hence, for i = r + 1; :::; n, the inequality�i � �i is trivial. In order to prove the result for i = 1; : : : ; r we shall use thefollowing known result (Magnus and Neudecker, 1994, pp. 205-207):�i = maxT0x=0 x0Axx0x � maxC0x=0 x0Axx0x (i = 1; : : : ; n);where C is any n� (i� 1) matrix and T is an n� (i� 1) matrix of orthogonaleigenvectors corresponding to the i� 1 largest eigenvalues. Since the introduc-tion of extra constraints never increases the maximum, we �nd:�i = maxT0x=0 x0Axx0x � maxT0x = 0x = Gy x0Axx0x = maxT0Gy=0 y0G0AGyy0y � �i;where we have used the semi-orthogonality ofG. 2The result �i � �i directly carries over to CCA if we rewrite s.v.d. (9.6) as aspectral decomposition:T0T = (Z0DcZ)�1=2Z0P0D�1r PZ(Z0DcZ)�1=2 =WD2lW0: (9.27)We premultiply by (Z0DcZ)�1=2, postmultiply byW and set (Z0DcZ)�1=2W =X to �nd: (Z0DcZ)�1Z0P0D�1r PZX = XD; (9.28)and premultiply by D1=2c Z and set D1=2c ZX = Y to �nd:D1=2c Z(Z0DcZ)�1Z0D1=2c D�1=2c P0D�1r PD�1=2c Y = YD; (9.29)where M = D1=2c Z(Z0DcZ)�1Z0D1=2c is easily shown to be idempotent, andA = D�1=2c P0D�1r PD�1=2c is the non-negative de�nite matrix subject to a spec-tral decomposition in ordinary CA (cf. equation (5.9), page 57).



9.2. Theory of CCA 118Thus we have shown that the spectral decomposition of CCA can be written inthe formMAv = �v. Matrix MA has the same eigenvalues as AM in (9.26)because premultiplication by A gives AMAv = �Av and thus AMz = �z withz = Av.9.2.5 Quality of RepresentationFrom equation (9.6) we see that the squared singular values (eigenvalues) ob-tained in CCA can be used as a measure of quality of the representation of matrixD�1=2r ~PZ(Z0DcZ)�1=2, and from the previous equations (9.20) and (9.22) it isclear that D2l contains the inertias of the species points in the restricted dimen-sions. To indicate the quality of the display of the abundance data, it is mostfair to express the fraction of inertia captured with respect to the total as wouldbe obtained by ordinary CA. The quality of an n-dimensional representation isgiven by: Pni=1 d2iPQi=1 d2li +PJ�1i=1+Q d2ui ; (9.30)di indicating the ith singular value in the analysis, whether constrained or not.As indicated in section 9.2, these eigenvalues are weighted variances of the prin-cipal coordinates of the species (or sites). They thus indicate the fraction ofinertia of the abundance matrix that is captured by a low dimensional display.This is however, in contrast to what Ter Braak writes in his original paper onCCA (Ter Braak, 1986, pp. 1172). We cite: \... the measure of goodness of �texpresses the percentage variance of the weighted averages ...". From (9.6) wehave however: tr(D2l ) = tr((Z0DcZ)�1Z0P0D�1r PZ); (9.31)which does not correspond to a weighted variance of the weighted averages, asthe covariance matrix of the latter would be described by:(D�1r PZ)0Dr(D�1r PZ) = Z0P0D�1r PZ: (9.32)Comparing these two equations, we see that the trace of (9.32) will equal (9.31)if the environmental variables are uncorrelated in the weighted sense. Thus,the interpretation of the eigenvalues as fractions of the (weighted) variance ofthe weighted averages is correct if and only if the environmental variables areuncorrelated in the weighted sense. This will hardly ever occur in practice, asenvironmental variables tend to be correlated. Weighted uncorrelatedness canbe achieved if we, prior to performing CCA, reduce the amount of environmen-tal variables by a weighted principal component analysis. Thus, we concludethat the proper interpretation of the eigenvalues is that they are inertias of theabundance matrix. A numerical example in section 9.5 will help to further clar-ify this issue.CCA is usually employed with the idea to get a picture of the species optimawith respect to the environmental variables. If the eigenvalues indicate onlyhow well the abundance data are displayed, then it is thus very important towork out another statistic: how much of the variance in the weighted averages of



9. Theory of Canonical Correspondence Analysis 119the species is accounted for by a low dimensional display? Estimated weightedaverages of the species in the display are given by Fl
0 (see also (9.39)), becausethe rows of 
 are of norm one if the variables are standardized. The weightedvariance accounted for by a 2-D map is thus given by the diagonal elements ofthe matrix:(Fl(2)
0(2))0Dr(Fl(2)
0(2)) = 
(2)F0l(2)DrFl(2)
0(2) = 
(2)D2(2)
0(2): (9.33)The fraction of weighted variance explained is 2D thus given by tr(
(2)D2(2)
0(2))=tr(
D2l
0) . As noted before in equation (9.10), matrix 
 represents a matrixof weighted correlations, and thus we can write the variance fraction explainedby a k-dimensional solution in scalar form as:PQi=1Pkl=1 ril2dll2PQi=1PQl=1 ril2dll2 ; (9.34)where ri is the weighted correlation between environmental variables and re-stricted site coordinates. Notice that this development is entirely analogous towhat we did when we considered the quality of display of the weighted averagesin the indirect approach. (cf. section 7.3 p. 87). From (9.34) it is clear thatif there are only one or two variables involved, the display of the weighted av-erages will be perfect (e.g. with two variables Q = k = 2). This is illustratedwith a numerical example in section 9.5. We can also calculate the qualities ofrepresentation of the weighted averages for each variable separately, by usingjust one row of matrix
. The quality of representation of the weighted averagesin k dimensions with respect to the ith variable only is then given by:kXl=1 ril2dll2= QXl=1 ril2dll2: (9.35)Last, we evaluate the quality of representation of the matrix of environmentalvariables, Z. This matrix is approximated by the projections of the site pointsonto the variable vectors, given by �l
0. The weighted variance explained bya 2D map is then (�l(2)
0(2))0Dc�l(2)
0(2) = 
(2)
0(2). The fraction of varianceexplained then becomes:tr(
l(2)
0l(2))=tr(Z0DcZ) = tr(Z0DcZWW0)=tr(Z0DcZ); (9.36)where we used that W = (Z0DcZ)�1=2
. Thus, if environmental variables areuncorrelated (in the weighted sense), then we have tr(Z0DcZ) = tr(Iq) = Qand tr(Z0DcZWW0) = tr(WW0) = tr(W0W) = I(k) = k. The quality of thedisplay is then just k=Q, with k the number of dimensions chosen for represen-tation (usually two) and Q the number of variables. For instance, a CCA with3 uncorrelated environmental variables will always explain 2=3 of the weightedvariance of the environmental variables in a two-dimensional biplot.Since we know that 
 contains the correlations between the environmentalvariables and the restricted axes of the CCA solution, we can also write (9.36)as:



9.2. Theory of CCA 120tr(

0)=tr(Z0DcZ) = tr(Z0Dc�l�0lDcZ)=tr(Z0DcZ) (9.37)Matrix �l�0lDc is, when all columns of �l are considered, an idempotent cen-tring matrix, centring Z on the weighted mean (the situation is analogous toequation (5.18) on page 59). However, Z is already centred on the weightedmean, and thus tr(Z0Dc�l�0lDcZ) = tr(Z0DcZ). Consequently, we also arriveat the conclusion that when we have only one or two variables, Z can be dis-played perfectly in two dimensions.Equation (9.36) can also be written in scalar form as:1Q QXi=1 2Xj=1 r2ij; (9.38)showing that if the correlations of the variables with the �rst two axes of thedisplay are high, then we will explain a relatively large percentage of the varianceof Z.9.2.6 Biplots and Calibrations in CCAAsymmetric maps in ordinary CA are biplots (Greenacre, 1993a; 1993b). Vec-tors in a biplot can be calibrated, and tickmarks can be drawn along the vector,once the length of one unit along a variable or site vector has been calculated(Greenacre, 1993b, pp 107-108).Equations (9.3) and (9.6) form approximations of species by sites and species byvariables matrices respectively. Equation (9.6) shows that we when we plot the�rst two columns of Fl and 
, we approximate the matrix of weighted averagesof the species with respect to the variables:D�1r ~PZ = D�1=2r UlDlW0(Z0DcZ)1=2 = Fl
0: (9.39)We can obtain a biplot of the weighted averages. Rewriting this in scalar nota-tion we can recover the weighted average of species i on variable q as:JXj=1 (pijri � cj)zjq � fi1!q1 + fi2!q2: (9.40)The left hand side of this equation expresses the di�erences in weighted aver-age of species i with respect to variable q from the over-all weighted average ofvariable q.When we look only at the restricted dimensions of decomposition (9.21) we getan approximation of the centred row pro�les when we plot the �rst two columnsof Fl and �lDc:D�1r ~P = D�1=2r (D�1=2r ~PD�1=2c )D1=2c � D�1=2r (UlDlV0l)D1=2c = Fl(Dc�l)0;(9.41)what we can write in scalar notation as:



9. Theory of Canonical Correspondence Analysis 121(pijri � cj) � fi1(cj1j) + fi2(cj2j); (9.42)where now the pro�les of the species across the stations are approximated in 2Dby the scalar products of species and rescaled site vectors.It is tempting also to project site points onto the variable vectors in order to esti-mate values for environmental variables at the sites. There is some justi�cationfor this since: �l
0 = ZB
0 = ZBW0(Z0DcZ)1=2 = Z: (9.43)Projecting standard site coordinates onto the variables axes reconstitutes ex-actly our environmental data matrix. But equation (9.43) is a full space result,that is, we will recover Z when we consider all columns of �l and 
. If we usea subset of the columns of �l and 
, we will \approximate" Z, but we don'tknow how good or how bad, as in the analysis we did no explicit least squaresapproximation to Z.In order to investigate if the display of the environmental data matrix Z is opti-mal in any sense, consider the following argument. The s.v.d (9.6) decomposesa species by variables matrix, producing in the �rst place coordinates for speciesand variables. We can consider adding the site points in a supplementary man-ner, and try to represent them as best as possible, given the species scores andvariable vectors. That is to say, we optimize the display of Z conditional on thefact that �rst the LHS of (9.6) is optimally represented. This amounts to adapt-ing a minimization problem solved previously ((7.28) p. 90 or (8.26) p. 105) forthis situation. One row of the environmental data matrix Z, here indicated bythe Q� 1 column vector zj , is represented as a supplementary vector g in thebiplot. zj is estimated in the biplot by �
g, as the rows of 
 have norm one.The minimization problem is thus:e0e = (zj � �
g)0(zj � �
g); (9.44)which has the solution:gk g k = 1qz0j
(
0
)�2
0zj (
0
)�1
0zj: (9.45)If we are willing to minimize e0(Z0DcZ)�1e rather than e0e, then we have thesolution vector: gk g k = 
0(Z0DcZ)�1zj; (9.46)which, in matrix form, gives us all site coordinates asDgZ(Z0DcZ)�1
,Dg tak-ing care of the normalization of the rows. This is precisely the matrix of standardsite coordinates obtained in CCA, since by (9.7) �l = ZB = Z(Z0DcZ)�1=2W =Z(Z0DcZ)�1
, but then with rows normalized to one. Thus, we �nd that therepresentation of Z is optimal, conditional on the display of the species by vari-ables matrix, and using a transformation of the errors by multiplying them by(Z0DcZ)�1=2.



9.2. Theory of CCA 1229.2.7 Geometrical Properties: Distances, Angles and Vec-tor Lengths.It is known that in ordinary CA, the Euclidean distances between principalcoordinates in an asymmetric map represent �2-distances between the row pro-�les. In CCA, the distance interpretation between species points (in the re-stricted dimensions) is as follows. If we call the weighted averages of the species,T =D�1r ~PZ, then we have:T(Z0DcZ)�1T0 = D�1=2r UlDlW0WDlU0lD�1=2r = FlF0l: (9.47)It follows that the Euclidean distance between the principal coordinates of thespecies represents the weighted Mahalanobis distance between the weighted av-erages of the species with respect to the environmental variables: d2M(ti; ti0) =(ti � ti0)0(Z0DcZ)�1(ti � ti0) = (fi � fi0)0(fi � fi0) = d2E(fi; fi0).From (9.21), and using the centred row pro�les R = D�1r ~P, we have:RD�1c R0 = FlF0l + FuF0u: (9.48)This means that the Euclidean distance between the principal coordinates of thespecies also represents the �2-distance between the row pro�les: d2�2(ri; ri0) =(ri � ri0)0D�1c (ri � ri0) = (fi � fi0)0(fi � fi0) = d2E(fi; fi0). Thus, Euclidean dis-tances between species points have a double distance interpretation.We can also consider the distances between the sites, irrespective of their speciescomposition, but just on the basis of their chemical constitution, as in a PCA.We have, using BB0 = (ZDcZ)�1 :Z(Z0DcZ)�1Z0 = ZBB0Z0 = �l�l0: (9.49)This means that the Euclidean distance between the standard site scores rep-resents a weighted Mahalanobis distance between the sites, using only environ-mental information. d2M (zi; zi0) = (zi�zi0)0(Z0DcZ)�1(zi�zi0 ) = (i�i0 )0(i�i0) = d2E(i; i0). The joint ordination diagram of species, sites and variables iscalled a triplot, and we consider the interpretation of the angles in the triplotbetween the variable vectors. Because

0 = (Z0DcZB)(B0Z0DcZ) = Z0DcZ; (9.50)which is again a full space result, we �nd:cos(!i;!j) = !0i!jk !i kk !j k = z0iDczjpz0iDcziqz0jDczj ; (9.51)and so the cosine of the angle between two variable vectors represents a weightedcorrelation coe�cient between environmental variables, where the weights arethe square roots of the total abundances at the sites. Finally, the length ofa variable vector is proportional to the weighted variance of an environmentalvariable, because: k !j k=q!0j!j =qz0jDczj: (9.52)



9. Theory of Canonical Correspondence Analysis 1239.2.8 Invariance of CCAIt has been mentioned before that CCA is invariant under scalar multiplicationof the environmental data and under scalar multiplication of the species data.With scale invariant we mean that \results" remain the same if we multiply thedata by a scalar. Mardia (1979) has noted that canonical correlation analysis(CCR) is invariant under non-singular linear transformations of the data. Inthis section we investigate whether CCA is invariant under non-singular lineartransformations of the environmental data. Consider we do a linear transforma-tion of the environmental data by postmultiplying Z by a Q � Q non-singularmatrix Q, such that we get new environmental data ~Z = ZQ. Calling theLHS of (9.6) T, we can rewrite (9.6) as the spectral decomposition of TT0, andsubstitute ~Z for Z to �nd:TT0 = D�1=2r ~P~Z(~Z0Dc~Z)�1~Z0~P0D�1=2r = UlD2lU0l; (9.53)and substituting ~Z = ZQ we �nd:D�1=2r ~PZQ(Q0Z0DcZQ)�1Q0Z0~P0D�1=2r Ul =UlD2l ; (9.54)and we see that Q disappears, as this reduces to:D�1=2r ~PZ(Z0DcZ)�1Z0~P0D�1=2r Ul = UlD2l : (9.55)Thus, the eigenvalues, and consequently the decomposition in principal inertiasremains unaltered. The eigenvectors Ul also remain the same, and consequentlythe species coordinates will neither change. We can do the same for the spectraldecomposition of T0T (cf. equation (9.11)), what also leads to the conclusionthat the eigenvalues remain unaltered, but that the vectors for the environmentalvariables do alter. In short, the only matrices of the analysis that are alteredunder linear transformation of the environmental variables are 
 and B.9.3 Relationships with Other MethodsIn this section we comment on the relationship between CCA and principal coor-dinates analysis, weighted principal component analysis and explain a reciprocalaveraging algorithm for CCA.9.3.1 Principal Coordinates AnalysisIn this section we develop a distance-based approach to canonical correspon-dence analysis, and show this to be equivalent to the analysis based on casesby variables matrices. This section was previously presented at the SpanishBiometry Conference (Gra�elman, 1999a).Multivariate methods like principal component analysis, multiple regression,canonical correlation analysis and others usually operate on data coded in acases by variables matrix. Cluster analysis, multidimensional scaling methodsand principal coordinates analysis on the other hand require a (symmetric) dis-tance or similaritymatrix, and the object of the analysis is to represent distances



9.3. Relationships with Other Methods 124between cases and/or objects as well as possible in a two-dimensional plane.Some of the methods traditionally based on a cases by variables matrix havebeen shown to have equivalent distance-based formulations. Notably, Gower(1966) has shown that is possible to do a principal component analysis by do-ing principal coordinates analysis (PCO) using a matrix of Euclidean distances.The equivalence between PCO and PCA is well-known, and was the subject ofa recently published linear algebra problem (van de Velden et al., 1999; Graf-felman, 1999b). Digby and Kempton (1987, p. 90) wrote that it is possibleto approximate correspondence analysis (CA) by doing a PCO on a matrix of�2-distances. However, Greenacre (1984) showed that correspondence analysisis exactly equivalent to \two dual principal coordinates analyses", if we weightand double-centre the distance matrices in the right way.As PCA and CA can be formulated in a distance-based manner, it should also bepossible to perform the canonical form of correspondence analysis in a distance-based manner, although it is not immediately evident which distances one needsto consider, and what distance measure one should use. In the next section adistance-based approach to CCA will be developed, and its equivalence to theusual approach will be shown.We start again with the singular value decomposition:T = D1=2r (D�1r PZ)(Z0DcZ)�1=2 = UlDlW0; (9.56)where Z is assumed to be centred on the weighted mean. Principal coordinates ofthe species are now found as Fl =D�1=2r UlDl, standard coordinates of the sitesare given by �l = Z(Z0DcZ)�1=2W, and the variables are represented by 
 =(Z0DcZ)1=2W. Note that the site coordinates are standardized and uncorre-lated in the weighted sense because �0lDc�l =W0W = I. Note also that, if thevariables are standardized by dividing them by the square root of their weightedvariance, then the coordinates for the variables are actually weighted correla-tions between �l and Z, since Z0Dc�l = Z0DcZ(Z0DcZ)�1=2W = (Z0DcZ)1=2W =
. Equation (9.56) shows that CCA is, in fact, a weighted least squares �t tothe matrix of (centred) weighted averages of the species with respect to theenvironmental variables, postmultiplied by the square root of the inverse of thecorrelation matrix. These weighted averages are estimates of the optima of thespecies for the variables, where the responses of the species with respect to thevariables are assumed to follow a Gaussian curve.We continue by exposing a distance-based approach, and shows that it is equiv-alent to (9.56). The development is similar to the distance-based approach toCA, described by Greenacre (1984 pp. 81-82). First, we construct the matrix ofweighted averages ("optima") of the species with respect to the Q environmentalvariables: X =D�1r PZ; (9.57)and consider the distances between the optima of the species. Rather than usingEuclidean distances, we use a weighted Mahalanobis distance. The squared



9. Theory of Canonical Correspondence Analysis 125distance between the optima of two species i and i0, taking into account allenvironmental variables, can then be described by:d2ij = (xi � xi0)0(Z0DcZ)�1(xi � xi0): (9.58)This weighted Mahalanobis distance is scale-invariant, that is, changing the scaleof measurement of the variables will not a�ect the distance between the speciesoptima. Consider also the matrix S of scalar products between the optima,using the Mahalanobis metric: S = X(Z0DcZ)�1X0. The I � I distance matrix�Mbetween the optima of the species can then be obtained as:�M = s10 + 1s0 � 2S; (9.59)where s = diag(S). What follows next is essentially a weighted PCO, witha particular centring of �M . In PCO, the �rst step is to double-centre thedistance matrix, by subtracting row and column means and adding the overallmean. This can be achieved by pre and post multiplication of the distancematrix by an idempotent centring matrix, Q = (I� 1r0) so that:Q�MQ0 = Qs10Q0 +Q1s0Q0 � 2QSQ0 = �2QSQ0; (9.60)because Q1 = (I � 1r0)1 = 1 � 1r01 = 1 � 1 = 0. After double-centring, theweighted means of the columns and of the rows are zero, because r0Q = r0(I �1r0) = r0 � r0 = 0. Equation (9.60) can be rewritten as �12Q�MQ0 = QSQ0.Notice that if S is calculated using a centred Z, then the double-centred distancematrix is given simply by �2S, the transformation of S not being necessary.Next, we weight the species by their total abundance, so that we obtain:�12D1=2r Q�MQ0D1=2r = D1=2r (D�1r PZ)(Z0DcZ)�1(D�1r PZ)0D1=2r (9.61)As in PCO, we do a least squares �t to the scalar product matrix on the RHSof (9.61), where the optimal plane is found by the spectral decomposition:D1=2r (D�1r PZ)(Z0DcZ)�1(D�1r PZ)0D1=2r = UlD2lU0l = TT0 (9.62)We can rewrite this as:(D�1r PZ)(Z0DcZ)�1(D�1r PZ)0 = D�1=2r UlD2lU0lD�1=2r = Û0D2l Û; (9.63)where Û = D�1=2r U. The principal coordinates in this weighted analysis areF = ÛDl = D�1=2r UlDl. We tentatively called the eigenvectors of (9.62) Ul,as they relate to the left singular vectors in (9.56). Thus, the principal coor-dinates found in the PCO of weighted mahalanobis distances between optimacorrespond exactly with the species coordinates of CCA.The analysis is not yet complete. CCA also produces coordinates for sites andvariables. How can these be obtained in the distance-based approach? In orderto �nd the coordinates of the sites, we consider a second distance matrix�M2.It is a J � I distance matrix between the optima of J hypothetical species thatoccur only at one particular site (\vertex species" representing the sites) andthe I \ordinary" species. Double-centring this matrix, we get:



9.3. Relationships with Other Methods 126�12R�M2Q0 = (IZ)(Z0DcZ)�1(D�1r PZ)0; (9.64)Where R is the idempotent centring matrix(I� 1c0). The weighted row meansand columnmeans of (9.64) are both zero (r0Q = 00; c0R = 00). We consider theJ rows of (9.64) as supplementary vectors, and project them onto the optimalplane provided by PCO in equation (9.62). We therefore need the projectormatrix Pr = Ul(U0lUl)�1U0l, and the coordinates of the sites, with respect tobasis Ul are obtained as:G = Z(Z0DcZ)�1Z0P0D�1=2r Ul: (9.65)These are principal coordinates, the standard coordinates � being obtained bypostmultiplying by D�1l . Because Z(Z0DcZ)�1Z0P0D�1=2r UlD�1l =Z(Z0DcZ)�1=2T0UlD�1l = Z(Z0DcZ)�1=2WDlU0lUlD�1l = Z(Z0DcZ)�1=2W,the equivalence with the coordinates obtained by the singular value decomposi-tion in (9.56) is clear.The last step is to obtain coordinates for the environmental variables. Givenan ordination diagram with species and site coordinates, optimal directions forthe environmental variables can be found by plotting (weighted) correlationcoe�cients between the variables and the standard coordinates of the sites, thestandard coordinates of the variables are so obtained as:
 = Z0Dc�l = Z0DcZ(Z0DcZ)�1=2W = (Z0DcZ)1=2W; (9.66)where Z now has been assumed to be standardized in the weighted sense.9.3.2 Principal Component AnalysisIn one of the earlier papers on CCA, Ter Braak (1987, p. 76, appendix) mentionsCCA to be equivalent to a weighted principal component analysis (WPCA)applied to a matrix of weighted averages. In a previous section, it was noted thatangles between variable vectors in a CCA represent weighted correlations, vectorlength variances, which also suggest that we are close to some kind of principalcomponent analysis. In this section we elaborate the relationship between PCAand CCA in more detail. A weighted principal component analysis can beperformed by the singular value decomposition:DwX = ÛD̂V̂0; (9.67)where we use hats (̂ ) to stress that these matrices refer to PCA results, andnot to CCA or CA results considered previously. Dw is a diagonal matrix builtfrom a vector of case weights w, and X is an n � p data matrix of continuousvariables. The standardized principal components are given by D�1=2w Û, andcoordinates for variable vectors are V̂D̂, allowing us to construct a biplot byplotting the �rst two columns of these matrices. If we take X to be a matrixof weighted averages, and weight the species by the square root of their totalabundance, then we have: D�1=2r PZ = ÛD̂V̂0: (9.68)



9. Theory of Canonical Correspondence Analysis 127The similarity of this decomposition with the previously described s.v.d. of CCAis striking (cf. (9.6), page 111). If we assume Z to be centred on the weightedmean and standardized by dividing by the square root of the weighted variance,then the only di�erence between (9.68) and (9.6) is the postmultiplication bythe square root of the inverse of the weighted correlation matrix (Z0DcZ)�1=2in the latter. Thus, if the environmental variables happen to be uncorrelated inthe weighted sense, then (Z0DcZ)�1=2 reduces to an identity matrix, and by theuniqueness of the s.v.d. we have that the principal components coincide withrescaled CCA species coordinates, and the variable vectors of both methods arealso related by a rescaling.However, note that the preceding does not mean that we can actually performCCA by merely stacking a matrix of weighted averages into a PCA program.Standard software for (weighted) PCA will usually centre or standardize thedata prior to subsequent analysis. This modi�es the matrix of weighted aver-ages, and so we no longer do an s.v.d. of the weighted averages. Note that inthis case it is not possible to simply \undo" the centring operation by a lineartransformation of the data. \Undoing" the centring operation here implies thatthere exist a matrix Q such that (I� 1r0)Q = I. Premultiplication of the databy Q would so prevent the centring. However, this is not possible because thecentring matrix (I�1r0) is singular, and its inverse, the desired matrixQ, doesnot exist. ((I�1r0) is singular because r0(I�1r0) = 0, thus a linear combinationof the rows of the centring matrix sums to the zero vector, meaning that onerow of the centring matrix is a linear combination of the others. More precisely,the rank of the centring matrix is I � 1 (the rank of an idempotent equals thetrace so tr(I � 1r0) = tr(I) � 1 = I � 1). In order to perform CCA by PCA,when environmental variables are uncorrelated, one needs a PCA routine thatdoes not centre or standardize the data but leaves this to the user.9.3.3 Reciprocal AveragingIt is well known that CA can performed by using a reciprocal averaging algo-rithm (Hill, 1974; Greenacre, 1984). The same is also true for CCA (Ter Braak,1986), and the reciprocal averaging algorithm underlies the Canoco software(Ter Braak, 1988). For the purpose of illustration and later reference, we de-scribe a simpli�ed version of this algorithm in box 9.1. In short, we start with aI-dimensional vector of random species scores, which are standardized by sub-tracting the weighted mean and dividing by the square root of the weightedvariance, where the weights are abundances of the species at the sites. Sitescores are calculated as weighted averages (routine wa) of the species scores andvice verse, until the scores no longer change. As a criterion for convergence,we require the sum of squared di�erences between the scores of two succes-sive iterations to be smaller than some particular value. After taking weightedaverages, scores need to be standardized again to prevent a decrease in variance.After convergence, vector species will contain the standard coordinates of thespecies (the �rst column of �l) and vector sites will contain the standardcoordinates of the sites (the �rst column of �l) as given in (9.7). The algorithmcan be extended in order to obtain the second and higher order dimensions by



9.4. Transition Equations 128including extra steps that require coordinates in the higher dimensions to beuncorrelated with previously extracted coordinates. A more general version ofthe algorithm has been described by Ter Braak and Prentice (1988).1. species := random(I,1);2. standardize(species);3. convergence := false;4. while not(convergence) do5. sites := wa(species);6. oldscores := sites;7. standardize(sites);8. siteslc := fitregr(sites,Z);9. species := wa(siteslc);10. standardize(species);11. convergence := (ssq(sites-oldscores) < 0.0001);12. end;Box 9.1: A Reciprocal Averaging Algorithm for CCAIn step 8 the site scores are assigned the �tted values of the regression of thesite scores onto the environmental variables. This step precisely restricts thestandard site scores to be linear combinations of the environmental variables.Notice that after convergence we have two sets of site scores: the ones whichare linear combinations of the variables (siteslc) and the ones which are not,but are weighted averages of the species scores (sites). In the literature theseare known as LC site scores and WA site scores respectively (Palmer, 1993; Mc-Cune, 1997).Note also that if step 8 would be made inactive, and the scores passed to routinewa in step 9 would be sites rather than siteslc, this algorithm will convergeto the �rst dimension of the ordinary CA solution.The approach to CCA in this chapter is exclusively based on the singular valuedecomposition from which we obtain the LC site scores, but not the WA scores.In our approach, WA site scores (principal coordinates) can be obtained byapplying the transition equations from ordinary CA to the standard speciesscores (cf. (5.11) p. 57). Standard WA sites scores are then calculated by post-multiplying by the square root of the inverse of the inertias of the restricteddimensions.9.4 Transition EquationsIn ordinary CA, species scores and site scores are related to each other by thetransition formulae. These formulae express that principal coordinates of speciesand sites are weighted averages of the standard coordinates of sites and species



9. Theory of Canonical Correspondence Analysis 129respectively (cf. equations (5.10) and (5.11) on page 57).CCA provides three sets of coordinates in the restricted dimensions, and so inprinciple we can look for three sets of transition equations: between speciesand sites, species and variables, and sites and variables. With some algebraicmanipulation these can all be derived from previous equations (9.6) and (9.7).First, the transition from species to sites and from sites to species:Gl = (Z(Z0DcZ)�1Z0Dc)(D�1c P0�l); Fl = D�1r P�l: (9.69)From this we can see that principal site coordinates can be considered weightedaverages of standard species coordinates (D�1c P0�), but projected onto thesubspace spanned by the environmental variable with the idempotent projectormatrix (Z(Z0DcZ)�1Z0Dc). On the other hand, principal coordinates of thespecies are weighted averages of the standard site coordinates just like in ordi-nary CA.Formulae (9.69) can be used for supplementary point calculation. If the abun-dances of the species at a supplementary site are expressed as a pro�le, thispro�le can be substituted for D�1c P0 in the �rst equation, and the principalcoordinates of the supplementary site are found. In the same manner, a sup-plementary pro�le of a species over the sites can be substituted into the secondequation in order to obtain a supplementary species point.For the sake of completeness, we also give equations relating species and vari-ables, and sites and variables, though these seem not to be very interpretable, atleast not as weighted average relationships. The relationship between variablesand species can be expressed as:Fl = D�1r PZ(Z0DcZ)�1
; H = Z0Dc(D�1c P0�l); (9.70)where the latter of the two can be seen as weighted covariances between variablesand weighted averages of standard species coordinates. Considering sites andvariables, we �nd the equations:
 = Z0Dc�l; �l = Z(Z0DcZ)�1
: (9.71)9.5 An Example with Arti�cial DataWe have created an arti�cial data set of �ve species and �ve sites, with threeenvironmental variables in order to illustrate some of the previously exposedtheory. First we will do an ordinary CA of the abundance data, followed bya CCA of the abundance data with two of the environmental variables. Sincethe representation of the weighted averages of the species in a 2-dimensionalbiplot is perfect when one has only two environmental variables (cf. equation(9.34)), we continue to analyse the same table with an extra third environmentalvariable. This allows us to investigate errors that are obtained when projectingsite points and species points onto environmental variable vectors.The data is shown in table 9.2, and is represented in di�erent forms. The �rstset of rows gives the raw data, the counts for the �ve species (Sp1 through Sp5)



9.5. An Example with Arti�cial Data 130Sp1 Sp2 Sp3 Sp4 Sp5 V1 V2 V3A 4 5 2 1 0 5 2 1B 6 2 2 4 0 7 1 6C 8 1 2 8 4 10 3 12D 10 0 2 4 6 12 0 6E 12 0 2 1 8 14 1 1A 0.1000 0.6250 0.2000 0.0556 0.0000 -1.7627 0.5647 -1.0869B 0.1500 0.2500 0.2000 0.2222 0.0000 -1.1052 -0.3505 0.0929C 0.2000 0.1250 0.2000 0.4444 0.2222 -0.1189 1.4800 1.5086D 0.2500 0.0000 0.2000 0.2222 0.3333 0.5386 -1.2658 0.0929E 0.3000 0.0000 0.2000 0.0556 0.4444 1.1961 -0.3505 -1.0869V1 10.7500 6.1250 9.6000 9.7222 12.4444 10.3617 - -V2 1.2500 1.8750 1.4000 1.7222 1.1111 - 1.3830 -V3 5.2000 3.6250 5.2000 8.1111 5.1111 - - 5.6064V1 0.1277 -1.3929 -0.2504 -0.2102 0.6847 1.0000 -0.3746 -0.1210V2 -0.1217 0.4503 0.0156 0.3105 -0.2488 -0.3746 1.0000 0.5288V3 -0.0959 -0.4675 -0.0959 0.5910 -0.1169 -0.1210 0.5288 1.0000Table 9.2: Artificial data set, abundances and environmental variablesat the �ve sites (A,B,C,D,E), and the raw measurements for the environmentalvariables V1; V2 and V3. The second set of rows lists the row pro�les of the speciesand the standardized environmental variables. The third row block gives theweighted averages of the species with respect to the raw environmental datafollowed by the weighted averages of the variables. The last set of rows givesthe weighted averages with respect to the standardized environmental variables,and the last diagonal block of the table gives the weighted correlation coe�cientsbetween the variables. We see that V1 is increasing over the 5 sites, whereas V2shows no clear gradient. Sp1 seems to respond to V1, having higher abundancesfor stations where V1 is high. Sp2 prefers the lower values of V1, whereas Sp5prefers the higher ones. Sp3 is indi�erent with respect to the environmentalvariables, and Sp4 shows a unimodal response.9.5.1 CA of the Arti�cial DataThe CA asymmetric map of the row pro�les, as presented in �gure 9.1 is madewithout using environmental data, but in its interpretation, external environ-mental information can be used, according to the methodology developed inchapter 7. Here the �rst principal axis separates the stations in order of in-creasing concentration of V1 (from right to left). It also separates the species1 and 5, which are high on V1, from 2, which is low on V1. The �rst principalaxis could therefore be labelled as decreasing concentration of V1. This is alsojusti�ed by the high negative correlation (-0.96) between the �rst axis and V1.Note that the con�guration of the site points takes the form of a horseshoe.The inertia decomposition of CA (table 9.3) shows that we capture 97.8% ofthe inertia in a two dimensional plane, which means that we have a map ofhigh quality. This is con�rmed by inspection of the detailed CA statistics (notshown). Except for species 1 and site B, all points have a quality of over0.9. A special algorithm has been developed in order to automatically cali-brate the oblique vertex vectors in the asymmetric map. Standard softwarefor correspondence analysis does not allow such automated calibration. The
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 1Figure 9.1: CA Asymmetric Map for Abundance Datacalibration is shown in �gure 9.1, only for site A, in order to keep the graphicreadable. The exact proportions of the species Sp1 through Sp5 with respectto the site A, based on the original data, are [0:100 0:625 0:200 0:056 0:000]respectively. In �gure 9.1 these numbers are very well approximated by pro-jecting Sp1 through Sp5 onto the calibrated site vector for site A. This gives usthe values [0:109 0:614 0:208 0:050 � 0:014]. If we calculate these projectionsexactly, with respect to all the site vectors, we �nd small errors which can beassembled into an inertia component of 0.0089. This precisely equals the inertiaof the third and fourth dimension which is not represented in the display.9.5.2 CCA of the Arti�cial DataWe now present the results of a CCA of the same data described in table 9.2,using only the �rst two variables, V1 and V2. We begin by considering the inertiadecomposition of CCA given in table 9.4.Notice that the total inertia of the abundance matrix in the 2D CCA map(72.6%) is less than the total inertia in the CA map. We have lost about 25.2%of the total inertia by restricting the solution. This illustrates that the linearlyconstrained optimal plain will always capture less inertia than the optimal CAplane (or at best as much). Another noteworthy point is that the inertia in thethird dimension is much higher than the inertia in the second dimension. InCA the amount of inertia always decreases when we look at the next dimension.



9.5. An Example with Arti�cial Data 132Dim. Inertia % Cum. %1 0.2964 73.46 73.462 0.0982 24.33 97.793 0.0089 2.20 99.994 0.0000 0.01 100.00Total 0.4035 100Table 9.3: Inertia Decomposition CADim. Inertia % Cum. %1 0.2770 68.65 68.652 0.0159 3.95 72.603 0.1058 26.22 98.814 0.0048 1.19 100.00Total 0.4035 100.00Table 9.4: Inertia Decomposition CCAThis also holds in CCA when restricted dimensions and unrestricted dimensionsare considered separately.Panel A in �gure 9.2 shows the biplot of a CCA for the data in table 9.2. Theorigin of the map represents the weighted averages of the variables. At thesame time the origin also represents the average species pro�le. We see thatvariable V1 virtually coincides with the horizontal axis, this axis is could be la-belled V1, whereas the vertical axis has high negative correlation with V2 (-0.92).Note that both variables vectors have the head of their arrows on the unit cir-cle, which means that all their weighted variance is accounted for by the display.In panel B of �gure 9.2 we show the same CCA output, but now we have cal-ibrated the variable vectors. Increments of half a unit have been marked o�on both vectors. When we project species points onto the two environmentalvariables, the weighted averages of the species are recovered perfectly, there isno error (cf. fourth set of rows of table 9.2). When we project site points ontoenvironmental vectors we see that there is neither error in the values of the envi-ronmental variables we recover (cf. second diagonal block of table 9.2). Becausewe standardized the environmental data, the values we recover are weighted av-erages of the species with respect to standardized environmental variables, andwhen we project site points, we recover standardized values for the environmen-tal variables. In panel B, due to the standardization, one unit on vector V1 isthe same as one unit on vector V2. If we prefer to recover our original data,then it is perfectly possible to change the calibration of the variable vectors inorder to do so. It that case, the origin represents the weighted averages of thevariables in their original units (10.36 and 1.38 for V1 and V2 respectively), andthe calibration of the variable vectors is changed. This is shown in panel C,where we can now recover the raw environmental data values of table 9.2 (�rstset of rows, second set of columns) and the weighted averages in the original
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 0.1.2.3.4.5Figure 9.2: CCA Biplotsscale (third set of rows) without error.In the same map, we can also calibrate the site vectors. This calibration isshown in panel D of �gure 9.2 for site A. One can approximately recover thepro�les of the species by projecting them onto the site vectors. In this casethere are errors. For instance, Sp2 projects onto a value of about 0.45 for site Awhereas its true value is 0.625. The most erroneous interpretation in the mapseems to be that of Sp2 with respect to site E. Table 9.5 lists the pro�les basedon the data and the pro�les recovered from the map.These errors were calculated by actually carrying out all possible projectionsin the map. The errors can be assembled into a component of inertia with theformula: IXi=1 ri JXj=1 e2ij=cj or tr(DrED�1c E0); (9.72)Where E is a I � J matrix of errors. For the errors in table 9.5 this gives aninertia of 0.1106, which is exactly the quantity of inertia outside the 2 dimen-sional plane (cf. table 9.4).The site coordinates we plotted so far have always been the ones that are lin-ear combinations of the environmental variables (�l), and are called LC scores.



9.5. An Example with Arti�cial Data 134A B C D EData Sp1 0.1000 0.1500 0.2000 0.2500 0.3000Sp2 0.6250 0.2500 0.1250 0.0000 0.0000Sp3 0.2000 0.2000 0.2000 0.2000 0.2000Sp4 0.0556 0.2222 0.4444 0.2222 0.0556Sp5 0.0000 0.0000 0.2222 0.3333 0.4444Map Sp1 0.1000 0.1377 0.2108 0.2715 0.2800Sp2 0.4421 0.3877 0.2560 0.0792 -0.1649Sp3 0.1851 0.2005 0.2200 0.2251 0.1692Sp4 0.1717 0.1528 0.3455 0.1404 0.1896Sp5 -0.0265 0.0352 0.2279 0.3181 0.4453Table 9.5: Species profiles of original data and recovered from the mapThis seems a natural choice, since we are doing a restricted analysis. However,the singular value decomposition at the heart of the method is decomposinga species by variables matrix (cf. equation (9.6)). This is the matrix whosedisplay is optimized, and the site points are in fact added in a second step, oncethey are calculated as the weights B are known (cf. (9.8),(9.9)) We might alsoconsider to plot site points that are not linear combinations (the WA scores) ifthis is convenient for some reason, as it will not a�ect the optimal display of thespecies by variables matrix. The confusion about the type of site points to usehas also been noticed by Palmer (1993) and McCune (1997). We thus extendour work with the arti�cial data set considering also site coordinates that arenot linear combinations.In graph 9.3. we present again the same CCA biplot, but now both sets of sitecoordinates are plotted. The WA site scores are indicated in lower case and witha cross (x), and are connected to their corresponding LC scores (open circles)by a dotted line. We see that the projections of these site coordinates onto theenvironmental variables is no longer free of error. With respect to variable V1the use of these WA coordinates seems not too bad, the ordering of the sites be-ing correct. With respect to the second variable however, the order is destroyedand large errors are found in the projections.We can also project the species points onto the site vectors pointing to the WAscores. These vectors can also be calibrated, and approximations of the pro�lesof the species can be obtained just as we did before. And with use of formula(9.72) these errors can again be compiled into an inertia component, which takesa value of 0.0308 for the arti�cial data under consideration. For this data setthe abundance matrix thus has a better representation when we use WA scores.We can of course not generalize about this beyond the particular data set wehave analyzed. However, the simulation results described by McCune (1997)point in the same direction: the species data are better displayed when we useWA site coordinates rather than LC site coordinates.
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Figure 9.3: CCA Biplot with LC and WA site scores9.5.3 CCA with Three VariablesWe continue with a CCA for the same data table 9.2, but extended with thethird variable, V3. With three variables the display of the weighted averagesof the species will no longer be perfect in a 2-dimensional map, thus allowingus to investigate errors produced when projecting species and site points ontothe variable vectors. The new decomposition of inertia is shown in the �rst �vecolumns of table 9.6.Note that if we take the third variable into account, we can now represent 95.5%of the inertia in 2 dimensions, much more than with only 2 variables, but ofcourse, still a bit less than the ordinary CA (97.8%). The CCA biplot of thedata is shown in �gure 9.4.The graph shows that variables V1 and V3 have an excellent display in the map,but that V2 has a worse representation. With 3 variables, there are now slightdi�erences in the weighted averages of the species obtained from the map andfrom the real data. Both are listed in table 9.7, measured in standard deviations.The weighted variance of the weighted averages is 0.4239, whereas the weightedvariance represented in the map is 0.4216, making that the quality of the displayof the weighted averages of the species is 0.9947. We could also have calculatedthis by working out the quotient of the weighted sums of inertias and squaredcorrelations in equation (9.34). The quality of the representation of the weightedaverages for solutions of di�erent dimensionality is given in the seventh column



9.5. An Example with Arti�cial Data 136Dim Inertia % cpia cprib cvwac cpvwad cveve cpvevf1 0.2936 72.76 72.76 75.58 0.3087 72.84 1.0516 35.052 0.0917 22.72 95.48 99.19 0.4216 99.47 2.2829 76.103 0.0032 0.78 96.27 100.00 0.4239 100.00 3.0000 100.004 0.0151 3.73 100.00 103.88 - - - -Total 0.4035 100.00aCumulative percentage of inertiabCumulative percentage of inertia w.r.t. total inertia in constrained dimensionscCumulative explained weighted variance of weighted averagesdCumulative percentage of explained weighted variance of weighted averageseCumulative explained weighted variance of environmental variablesfCumulative percentage of explained weighted variance of environmental variablesTable 9.6: Inertia Decomposition of CCA with 3 variablesof table 9.6. The weighted averages of the species have an excellent represen-tation in �gure 9.4, and species preferences can be inferred from the map withcon�dence. We also want to contrast this with the fraction of the sum of the�rst two eigenvalues with respect to the total: 0.9548. This example thus alsoillustrates our point that the eigenvalues do not indicate fractions of weightedvariance in the weighted averages, but correspond to fractions of the total inertiaof the abundance matrix. (compare columns 4,5 and 7 in table 9.6)The errors in the weighted averages can also be assembled into an inertia com-ponent with the formula: tr(DrE(Z0DcZ)�10E0): (9.73)This gives us a lost inertia of 0.0032, exactly the amount of inertia of the third
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Figure 9.4: CCA Map for Abundance Data with 3 variable vectors



9. Theory of Canonical Correspondence Analysis 137Data MapSpecies V1 V2 V3 V1 V2 V31 0.1277 -0.1217 -0.0959 0.1315 -0.0835 -0.08842 -1.3929 0.4503 -0.4675 -1.3989 0.3901 -0.47923 -0.2504 0.0156 -0.0959 -0.2452 0.0678 -0.08574 -0.2102 0.3105 0.5910 -0.2122 0.2908 0.58715 0.6847 -0.2488 -0.1169 0.6779 -0.3162 -0.1300Table 9.7: Weighted averages of species (original data andrecovered from the map)dimension. In general, the formula above will give us the inertia in the remainingrestricted dimensions (the dimensions outside the 2D plane that are restricted).We evaluate projections of the site coordinates onto the environmental variablevectors. Environmental values for the sites and projections obtained from themap are shown in table 9.8, expressed in standardized units.Site V1 V2 V3 V1 V2 V3A -1.7627 0.5647 -1.0869 -1.7879 0.3150 -1.1355B -1.1052 -0.3505 0.0929 -1.0198 0.4976 0.2581C -0.1189 1.4800 1.5086 -0.2125 0.5507 1.3275D 0.5386 -1.2658 0.0929 0.6509 -0.1510 0.3101E 1.1961 -0.3505 -1.0869 1.1434 -0.8736 -1.1888Table 9.8: Environmental values for the sites (original data andrecovered from the map)We can express how well the environmental data in Z is represented in thedisplay by calculating the fraction of weighted variance of the environmentalvariables accounted for. These fractions are shown as the last column in table9.6 and shown that the map in �gure 9.4 still captures 76.1% of the weightedvariance of the environmental variables.9.5.4 CCA with Three Principal ComponentsFinally, we want to illustrate our assertion that the eigenvalues of a CCA doindicate fractions of weighted variance when environmental variables are un-correlated. We therefore repeat the analysis above, where we replace the threevariables considered by the �rst three principal components obtained from aweighted principal component analysis of the environmental data. The graphof this analysis is shown in �gure 9.5.Note that the �rst two principal components show up as two nearly orthogonaldirections in the display. The third component has a much shorter vector, as itis uncorrelated with the previous two and can no longer be correctly represented
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Figure 9.5: CCA using Principal Componentsin 2D. Inertia decomposition and fractions of explained variance are shown intable 9.9. This table shows that the inertia decomposition obtained is exactlythe same one as when the original variables were used rather then principalcomponents (cf. table 9.6). Principal components are linear combinations ofthe original variables, and can be obtained from the original data by postmulti-plication with the score coe�cient matrix. In section 9.2.8 CCA was shown tobe invariant under linear transformation of the environmental data, and the factthat the inertia decomposition is the same when we use principal componentsmerely illustrates this.Dim Inertia % cpi cpri cvwa cpvwa cvev cpvev1 0.2936 72.76 72.76 75.58 0.2936 75.58 1.0000 33.332 0.0917 22.72 95.48 99.19 0.3852 99.19 2.0000 66.673 0.0032 0.78 96.27 100.00 0.3884 100.00 3.0000 100.004 0.0151 3.73 100.00 103.88 - - - -Total 0.4035 100.00Table 9.9: Inertia Decomposition of CCA with 3 Principal ComponentsCumulative fractions of inertia are expressed in two ways in table 9.9 (as wellas in table 9.6). The fourth column gives the cumulative percentages of inertiaexplained, with respect to the total inertia in the abundance matrix, 0.4035.The �fth column gives the same information, but with respect to the totalinertia in the restricted dimensions only (0.3884). We see that the quality of thespecies data, if environmental variables are uncorrelated, and if expressed with



9. Theory of Canonical Correspondence Analysis 139respect to the inertia in the restricted dimensions, is the same as the amount ofweighted variance explained of the weighted averages.We also note that the fractions of weighted variance of Z accounted for by aone, two or three dimensional solution are 1/3, 2/3 and 1 respectively, which isin precise agreement with what we predict from theory (cf. (9.36), p. 119).9.6 ConclusionsIn this chapter we have gone through the theory of canonical correspondenceanalysis. In this section we briey summarize the main results that are, to ourknowledge not or not correctly described in the literature. First, we noted that aCCA has in fact J�1 dimensions in its solution, whereas most authors hold thisto be Q, the number of environmental variables. Next, CCA is held to optimallyrepresent species optima, these optima being estimated by the weighted averagesof the species with respect to the environmental variables. We have shownthat this is strictly speaking not the case due to the postmultiplication of theweighted averages by the square root of the inverse of the correlation matrix ofenvironmental variables, an operation that renders CCA scale invariant. It iswell known that when we have more variables than samples, the CCA solutionequals the CA solution. This chapter has provided an analytical proof of thisobservation. We precisely stated the conditions under which the CCA solutionincludes a trivial dimension, and what we need to do omit this dimension.Principal inertias in CA are in the interval [0,1], and have provided a proofthat the same holds in CCA. We have derived quality statistics that indicatethe quality of all three matrices displayed in CCA, the abundance matrix, theenvironmental data matrix and the matrix of weighted averages. This chapteralso shows that CCA can be seen as principal coordinates analysis of a matrixof weighted Mahalanobis distances between species optima.
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Chapter 10Applications of CanonicalCorrespondence Analysis10.1 IntroductionThis chapter deals with some applications of CCA to the Eko�sk database.Prior to analysis, we applied the square root transformation to the species dataand the log transformation to the chemical data. This has the advantage thatthe inuence of highly abundant species likeMyriochele oculata and Chaetozonesetosa is somewhat reduced, and that the inuence of chemically aberrant sta-tions will also be diminished. Many applications of CCA are can be found in theecological literature, see for instance (Ter Braak, 1986; Johnson and Altman,1999; Ter Braak, 1994).10.2 CCA of 1992Figure 10.1 shows the solution of a CCA of the data from 1992 (148 species,11 stations and 9 variables). Station 40 has been eliminated. If station 40is included, the �rst axis opposes this station to all others, with all contam-inants pointing away from station 40. Station 40 is thus very di�erent fromthe rest, as it is not contaminated, and shows up as an outlier in the analysis.Its deletion allows us to perceive more details about the contaminated stations.We can infer from the map that Chaetozone setosa is a species preferring con-taminated conditions, with high concentrations of heavy metals, Barium andorganic components, whereas species like Amphiura �liformis, Timoclea ovata,Trichobranchus sp. and Nephtys hombergi prefer less contaminated conditions.Though the projection of site points with respect to the environmental variablesis not explicitly optimized in CCA, the analysis suggests stations 15,14 and 13to be the most contaminated ones. This is a group of stations relatively closeto the southern side of the platform (cf. �gure 2.3 p. 8). On the other hand, we�nd the more remote stations 8, 12 and 18 in the upper right of the display, sug-
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Tri.sp.Figure 10.1: CCA of 1992, all species.gesting these stations are the lowest on the contaminants. The vectors for thepollutants thus seem to coincide with what can be seen as a distance-directionin the biplot.Dim Inertiaa % V(WA)b % V(WA) V(Z)c % V(Z)1 0.1255 16.9 0.3479 40.8 2.7723 30.82 0.0952 29.6 0.6241 73.2 5.6746 63.13 0.0900 41.7 0.6454 75.7 5.9113 65.7... ... ... ... ... ... ...Total 0.7445 100.0 0.8521 100.0 9.0000 100.0aInertia of the matrix N, not cumulativebCumulative weighted variance of D�1r PZcCumulative weighted variance of ZTable 10.1: Inertia and Variance Decomposition for CCA, 1992The basic numerical results of the analysis are shown in table 10.1. The two-dimensional diagram is seen to capture 30% of the inertia of the abundancematrix, 73% of the weighted variance of the weighted averages (column V(WA))of the species, and 63% of the weighted variance of the environmental variables(column V(Z)). The total inertia, 0.7445, can be partitioned into a restrictedpart of 0.6794 (91.3%) and an unconstrained part, 0.0650 (8.7%).10.2.1 Reducing the Number of SpeciesBecause there are so many species, it is impossible to show them all with theirnames in a biplot. In �gure 10.1 we only labelled the ones that have a consid-



10. Applications of Canonical Correspondence Analysis 143erable fraction of their inertia accounted for by the display (> 0:6) and have atotal abundance larger than 20. Selecting only well-displayed species still pro-duces a crowded display with a large amount of relatively well-displayed rarespecies, who merely happen to be close to the optimal plane. Alternatively, onecould delete the rarer species (e.g. all species with a total abundance of lessthan 10), who usually have little inuence in the analysis anyway. This has thedisadvantage that we ignore some of the (expensive) biological information. Wemust however, use some rule to reduce the amount of species, simply becauseit is impossible to label 148 species and 11 stations in one plot. We report theresults of another CCA, where we used only the 50 most abundant species. Thismeans that we deleted all species with a total abundance of 13 or lower. Someof the station points become outliers, making it di�cult to jointly plot stationsand species.
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10.2. CCA of 1992 144Dim Inertia % V(WA) % V(WA) V(Z) % V(Z)1 0.0678 30.6 0.2761 71.8 4.0724 45.22 0.0395 48.4 0.3200 83.2 5.1842 57.63 0.0263 60.2 0.3401 88.5 5.9478 66.1... ... ... ... ... ... ...Total 0.2217 100 0.3844 100 9.0000 100Table 10.2: Inertia and Variance Decomposition for CCA of 50 mostabundant species, 1992CCA statistics of the analysis are given in table 10.2.10.2.2 Partialling out Spatial E�ectsIn the �rst analysis of this chapter, (cf. �gure 10.1), we commented on thepresence of a distance direction in the biplot. In the analysis with the reducedset of species, this e�ect is still present. In order to quantify this, we reportthat in the latter analysis the �rst CCA axis has a high correlation of 0.81 withdistance, whereas the second CCA axis has correlation of 0.28 with distance.In a successive analysis, we try to partial out these spatial e�ects. This is doneby regressing all pollutants onto the Euclidean distance from the platform, theeast-west distance from the platform and the north-south distance from theplatform. Next, CCA is performed using the residuals of this simultaneousmultiple regression as environmental variables. These residuals are uncorrelatedwith the three distance variables, and allow us to perform an analysis wherethe distance-e�ects have been removed. The biplot of this analysis is shown
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10. Applications of Canonical Correspondence Analysis 145in �gure 10.3. The quality of the display of the di�erent data matrices hassomewhat changed, compared to the previous analysis (see table 10.3). Thespecies optima and the environmental variables are now better represented,whereas the display of the abundance matrix is worse. Variable Pel has gainedconsiderably in quality of representation, and coincides with the second axis.The horizontal axis of the display has become more closely associated to organicand heavy metal pollution. Two of the more abundant species of the survey,Mysella bidentata and Phoronis sp. pop up in the analysis as species havinghigh optima for Fe. The qualities of representation of the di�erent matrices aregiven in table 10.3. The two-dimensional biplot of �gure 10.3 captures 31.0%of the inertia of the abundance matrix, 85.4% of the variance of the weightedaverages and 67.6% of the variance of the environmental data. Of the totalamount of inertia, 0.2217, 0.1289 is in the restricted dimensions, and 0.0928 inthe remaining dimensions.Dim Inertia % V(WA) % V(WA) V(Z) % V(Z)1 0.0427 19.3 0.2099 74.7 4.9145 54.62 0.0259 31.0 0.2401 85.4 6.0796 67.63 0.0173 38.8 0.2657 94.5 7.5616 84.0... ... ... ... ... ... ...Total 0.2217 100 0.2811 100 9.0000 100Table 10.3: Inertia and Variance Decomposition for CCA, distancespartialled out
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10.2. CCA of 1992 146will recover the station grid exactly, just because we have only two variables.With two variables, the display of the environmental data (the distances fromthe platform in this case) in a two-dimensional biplot is perfect (cf. section9.2.5). This is shown in �gure 10.4. If we rotate and reect �gure 10.4 in theright way, the station grid is the same as the geographical map in �gure 2.3 onpage 8, up to a stretching factor.In this analysis, we see that most species cluster in the center of the display. Aspecies like Hemilamprops rosea is seen to be more prevalent in the east of the�eld. Species who form part of the cluster in the center could be interpreted asbeing species who like pollution, since the origin now represents the platform.For instance, a species like Chaetozone setosa, known to prefer contaminatedconditions on the basis of prior analysis, can be found here. On the other hand,according to Ter Braak (1987, pp. 74), species not who do not respond to anyof the measured environmental variables also often end up in the center of thedisplay.10.2.3 Reducing the Number of VariablesIf we would perform ordinary CA on the 1992 data, and add the variables assupplementary vectors, (cf. chapter 7) then we obtain an ordination that is verysimilar to the one in section 10.2.1. This analysis is shown in �gure 10.5.
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10. Applications of Canonical Correspondence Analysis 147(9) is large in comparison with the number of sites (11, after deletion of station40), and the analysis is not very restrictive. A more restrictive analysis could becarried out if we would drop some environmental variables. This brings along aproblem of variable selection, and we have no a priori reasons to keep or dropparticular variables. Nearly all environmental variables are closely correlated.Rather then dropping one or more variables, we might as well try to reduce theamount of variables by a PCA, before doing a CCA. In this case, we performa PCA of all heavy metals, in the hope that we can reduce these �ve variablesto one or two heavy metal components. This turns out to work pretty well.A PCA of all the heavy metals gives a �rst principal component that explains80.7% of the variance of the heavy metals, and that can be used to replace theheavy metal variables.The biplot of this analysis is shown in �gure 10.6. The biplot shows that the
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10.3. Conclusions 148Dim Inertia % V(WA) % V(WA) V(Z) % V(Z)1 0.0622 28.1 0.1634 79.4 2.6253 52.52 0.0206 37.3 0.1902 92.4 3.9294 78.63 0.0160 44.5 0.1980 96.2 4.4177 88.4... ... ... ... ... ... ...Total 0.2217 100 0.2057 100 5.0000 100Table 10.4: Inertia and Variance Decomposition for CCA after datareductionThe Canoco program from Ter Braak (1998) provides facilities for ranking en-vironmental variables in order of importance. We do not review the theory ofthese facilities, but merely give the results from their application. The Canocoprogram provides a forward selection routine for the inclusion of environmentalvariables in the analysis. When all environmental variables are included in theCCA, the amount of inertia in the restricted dimensions can be calculated. Thesame can be done for a series of separate CCA's, each with one variable only.The environmental variable giving the highest amount of inertia is thought tobe the most important one. In a next step, one can calculate the increase ininertia obtained when another variable is included in the analysis, given thatthe most important one is already included, and so on. This is the basis ofthe forward selection algorithm. The Canoco program provides a Monte Carlopermutation test to assess the statistical signi�cance of the variables.When we use the 1992 data set of the 50 most abundant species, Cu and Znare the only signi�cant variables, and contribute most to the total amount ofrestricted inertia. However, there is a large group of variables that, when used assole environmental variables, give a virtually equal total amount of (restricted)inertia. For instance, one-variable CCA's with Cd, Zn, Ba, THC or Cu giveamounts of inertia (in the restricted dimension) of .05, .05, .06, .06, and .06respectively. The choice of Cu as the \most important" environmental variableis thus rather arbitrary, it might as well be Ba or THC. For these data, theforward selection procedure is not conclusive, as there are several variables witha similar contribution.10.3 ConclusionsIn the di�erent analyses performed, we have seen that CCA helps us to discoverthe preferences of the species, though usually only a few species are representedwith good quality. Some rule for reducing the number of species is necessary,simply because we have to many species to be able to depict them in a singlediagram. In a previous chapter we noted that several species have a monotonedecreasing pattern along the environmental variables. Though not consideredhere, in such circumstances, we could also use reduncancy analysis for analyzingthe data.



Chapter 11An Alternative forCanonical CorrespondenceAnalysis11.1 IntroductionWe noted in chapter 9 that CCA does, strictly speaking, not optimize the displayof species optima, where the latter are estimated by a matrix of weighted aver-ages. The singular value decomposition (9.6) on page 111 shows that the matrixof weighted averages is postmultiplied by the inverse of a variance-covariancematrix, and that CCA optimizes the display of the product of these two. Theestimation of the species optima is an important aspect in ecological research.For this reason, we dedicate this chapter to an optimal display of the weightedaverages, in an attempt to graphically depict these weighted averages as bestas possible. In the next section, we develop the algebra for this, and in a latersection, we give an application.11.2 Optimal Display of Weighted AveragesWe can do a low rank approximation to the matrix of weighted averages, wherewe maintain the weighting of the species by the square root of their total abun-dance: T = D1=2r (D�1r PZ) = ÛD̂V̂0: (11.1)This is just the singular value decomposition of CCA, where the postmultiplica-tion by (Z0DcZ)�1=2 has been left out. We use hats ^ to distinguish the resultsof this type of analysis, maintaining the same notation (F̂ for species, Ŵ forvariables, �̂ for sites). The postmultiplication by (Z0DcZ)�1=2 has been justi�edby noting that it renders CCA scale-invariant with respect to scalar multipli-cation (Ter Braak, 1986, appendix). It does not matter whether environmental



11.2. Optimal Display of Weighted Averages 150variables are measured in milligrams or grams per kilo, the matrix decomposedby CCA is the same. However, in practice environmental variables are nearlyalways standardized. As a consequence, the analysis is already scale-invariant.Whether a variable is expressed in milligrams per kilo or grams per kilo, thestandardized values of that variable will be the same. If data are always stan-dardized, then there is no need that the statistical method we use takes specialprecautions. In other words, the postmultiplication by (Z0DcZ)�1=2 becomesunnecessary.
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Figure 11.1: A PCA biplot with a supplementary site pointThe singular value decomposition proposed in (11.1) is easily seen to be equiv-alent to the spectral decomposition:T0T = (Z0P0D�1r )Dr(D�1r PZ) = V̂D̂2V̂0: (11.2)This shows that we do in fact a spectral decomposition of the weighted covari-ance matrix of the weighted averages. The proposed analysis thus amounts to aweighted principal component analysis of the matrix of weighted averages. Thisanalysis provides us a biplot of the matrix of weighted averages. Projectingspecies points onto variable vectors in such a biplot allows us to approximatethe optima of the species as estimated by the weighted averages with respect tothe environmental variables. With this approach, the display of the weightedaverages is explicitly optimized. The representation of the samples (sites) is ab-sent in this analysis. However, site coordinates can be added to a biplot in verymuch the same way as we added supplementary variables in CA (cf. chapter 7)or PCA (cf. chapter 8). In �gure 11.1 we show such a (�ctitious) biplot, withspecies points (�), a variable vector (w), and supplementary site points (�). Theaim is to add the site vector g in an optimal way, where di�erent criteria can



11. An Alternative for Canonical Correspondence Analysis 151be used for what is meant by optimal.First, we can try to optimize the representation of the species abundances.This amounts to minimizing the projection errors obtained when projecting thespecies points onto the added site vectors, as illustrated for one species in �g-ure 11.1. Second, we can also try to optimally represent the environmental datamatrix Z, by minimizing projection errors for the sites onto the variable vectors.This is illustrated for one variable w and one site vector g in �gure 11.1. It isalso possible to minimize both projection errors simultaneously, in an attemptto display both Z and N as best as possible. This constitutes a compromisebetween the two alternatives just mentioned. In this chapter we develop thealgebra for each of these methods, and give an example of an application.We �rst have to specify the type of PCA we perform. In equation (11.2), weassume, for the sake of comparison with CCA, that the columns of Z are centredon their weighted means (c0Z), and standardized by dividing by the square rootof their weighted variances. This does not mean that the matrix of weightedaverages, D�1r PZ is also standardized. If we want to consider a PCA of thecorrelation matrix, the latter matrix would �rst have to be standardized bypostmultiplying by a diagonal matrix with the reciprocal of the square root ofthe variances of each of the columns of the matrix of weighted averages (note thatthis is a di�erent kind of postmultiplication than the one performed in CCA).If we do not carry out this standardization, then we are performing a PCA ofa covariance matrix, and not of a correlation matrix. An analysis based onthe covariance matrix has the disadvantage that variables with a large variancedominate in the analysis. Here the matrix to be analyzed consists of weightedaverages of the standardized values in Z. The variances of these columns arenot necessarily equal, but will be of the same order of magnitude. A PCA ofsuch a covariance matrix is not likely to be dominated by a sole variable with alarge variance. With the s.v.d. of equation (11.1), scores for the standardizedprincipal components (F̂) and for the variable vectors (Ŵ) are given by:F̂ =D�1=2r Û; Ŵ = V̂D̂: (11.3)In the following two sections we derive expressions for adding site vectors to thePCA biplot considered, using the two di�erent minimizations explained above.11.3 Optimizing the Display of AbundancesThe projection errors of the species points onto a hypothetical site vector g (acolumn vector), are given by �F̂g, and the objective function is:e0e = (�F̂g �D�1r pj)0(�F̂g�D�1r pj); (11.4)where we assume to recover abundances as elements of pro�les, and where pjindicates the jth column of the correspondence matrix, and � is a normalizationfactor. Note that D�1r pj is not a pro�le, but an I � 1 column in the matrix ofrow pro�les. We have to take care that the two vectors, estimates �F̂g and datavector D�1r pj are centred on the same mean. This is guaranteed because theprincipal components have weighted mean zero (r0F̂ = 0) and the site vector



11.4. Optimizing the Display of Environmental Data 152D�1r pj as well, if we assume the pro�les have been centred on the average pro�le:D�1r pj  D�1r pj�1cj, so that r0(D�1r pj�1cj) = 10pj�cj = cj�cj = 0. Thisminimization problem is entirely equivalent to the one previously described,when looking for optimal directions for supplementary variables in PCA. Weapply solution (8.10) to �nd:gk g k = 1qpj 0D�1r F̂(F̂0F̂)�2F̂0D�1r pj (F̂0F̂)�1F̂0D�1r pj; (11.5)or, in matrix notation, we obtain all site vectors simultaneously as the rows of thematrix �̂ = DgP0D�1r F̂(F̂0F̂)�1 withDg = diag(P0D�1r F̂(F̂F̂)�2F̂0D�1r P)�1=2.The data matrix D�1r P is then approximated by F̂(F̂0F̂)�1F̂0D�1r P.It is natural to weight the errors in the minimization above by the square rootof the total abundance of each species, as this is also done in the analysis givenby (11.1), and thus to minimize e0Dre. This simpli�es the solution to:gk g k = F̂0pjqp0jF̂F̂0pj ; (11.6)which for all sites simultaneously gives �̂ = DgP0F̂. The pro�les are then ap-proximated by F̂F̂0P. The quality of representation can be calculated as thefraction of the weighted variance in the species pro�les explained by this ap-proximation.Given that an optimal direction has been found for the di�erent sites, can wecalculate how well the environmental data is represented? We can project thesite vectors onto the environmental variables, and work out what part of theweighted variance of Z they make up. This is however, somewhat arbitrary,because it will depend on the norm we choose for the supplementary vectorsg. Therefore, it is di�cult to say how well the environmental data in Z arerepresented in comparison with CCA.11.4 Optimizing the Display of EnvironmentalDataIt is evident that with two variables environmental data can be representedwithout error. With two variables, we can draw perpendiculars from the twovariable vectors at the true chemical values measured at that site. The pointwhere the two perpendiculars intersect is the optimal position for the site point.With more than two variables this is not possible any more, and we have toallow for error. We indicate one site, the jth row of matrix Z, as the Q � 1column vector zj . First, we take care that the observations in this vector arecentred on the respective weighted means: zj  zj � Z0c. If we consider onesupplementary site vector g, then its projections onto all variable vectors, givenby the rows of Ŵ, are �DwŴg, withDw = diag(ŴŴ0)�1=2. These projections



11. An Alternative for Canonical Correspondence Analysis 153now approximate a case (row) of the matrix of environmental variables, Z. Weminimize: e0e = (zj � �DwŴg)0(zj � �DwŴg): (11.7)Even though we represent a supplementary site, and not a variable as consideredpreviously in chapters 7 and 8, the algebraical problem is very similar, and thesolution is given by applying result (8.12):gk g k = 1qz0jDwŴ(Ŵ0D2wŴ)�2Ŵ0Dwzj (Ŵ0D2wŴ)�1Ŵ0Dwzj: (11.8)All supplementary site coordinates can be obtained simultaneously with thematrix expression �̂ =D�ZDwŴ(Ŵ0D2wŴ)�1, where �̂ is the J by Q matrixof site coordinates, and D� = diag(ZDwŴ(Ŵ0D2wŴ)�2Ŵ0DwZ0)�1=2 takescare of the normalization of the rows of �̂. Matrix Z0 is approximated by theprojections DwŴ�̂0D�1� = DwW(W0D2wW)�1W0DwZ0. When the full spaceof the PCA solution is considered, the latter expression collapses to Z0, databeing recovered exactly. When using only the �rst two dimensions of a PCA,we only use the �rst two columns of Ŵ and recover Z only approximately. Thefraction of the weighted variance of this approximated Z with respect to thetotal weighted variance of Z is again used as a measure for the quality of repre-sentation.We note that equations (11.6) and (11.8) again represent normalized regressioncoe�cients. The response \variables" in those regressions do not need to bevariables in the usual sense, they can as well correspond to cases in a data ma-trix.11.5 An Example with Arti�cial DataWe use the same arti�cial data of chapter 9 in table 9.2 (page 130), and apply aPCA to the matrix of weighted averages, where we add sites as supplementaryinformation. The result is shown in �gure 11.2.Since there are three variables, a maximum of three principal components canbe extracted. Table 11.1 provides the quality of the display of the di�erentmatrices, for the CCA and for two di�erent approaches considered above.For matrixN, the criterion for the quality of representation is the fraction of theweighted variance of the row pro�les explained by the biplot. When optimizingthe display of N, 97.7% of the weighted variance of the pro�les is captured bythe two-dimensional solution, so we can recover species pro�les with con�dence.If we compare �gure 11.2 with the pro�les in table 9.2 on page 130, then wesee that the �gure is consistent with these numbers. For instance, in the graphthe species line up along site A in order 2,3,1,4 and 5 which is the same as theorder of the pro�les values in table 9.2. Projections onto other site vectors arealso largely in agreement with the data table. In fact, the ordination diagram of�gure 11.2 highly resembles the ordination diagram obtained by CCA in �gure
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E Figure 11.2: WPCA of species optima with supplementary sites(optimizing N)9.4 on page 136.To facilitate the comparison, the ordination in �gure 11.2 has been reectedin the horizontal axis. The qualitative interpretation of the two maps is notdi�erent. In CCA the dispersion of the sample points is seen to be larger. Inthe analysis in �gure 11.2 we found the coordinates for the samples using thearbitrary norm one constraint, and with a di�erent choice of norm a di�erentdegree of dispersion would have been obtained.We can not compare this fraction of weighted variance of the pro�les with thequality of the species data in CCA, since the latter method uses a di�erent cri-Method Dim CV(N)a %CV(N) Inertia %Ib V(WA)c %CV(WA) d CV(Z)e %CV(Z)PCA + 1 0.0483 68.64 - - 0.3190 75.26 - -opt. N 2 0.0688 97.70 - - 0.1033 99.63 - -3 0.0704 99.97 - - 0.0016 100.00 - -PCA + 1 - - - - 0.3190 75.26 1.3588 45.29opt. Z 2 - - - - 0.1033 99.63 2.5258 84.193 - - - - 0.0016 100.00 3.0000 100.00CCA 1 - - 0.2936 72.76 0.3087 72.84 1.0516 35.052 - - 0.0917 22.72 0.4216 99.47 2.2829 76.103 - - 0.0032 0.78 0.4239 100.00 3.0000 100.004 - - 0.0151 3.73 - - -Total - - 0.4035 100.00aCumulative variance of species pro�lesbPercentage of inertiacFor CCA variances are cumulativedCumulative variance of weighted averageseCumulative variance of environmental variablesTable 11.1: Variance Decomposition of WPCA with 3 variables



11. An Alternative for Canonical Correspondence Analysis 155terion for the �t of the species data, namely the inertias, as given in columns 5and 6 of table 11.1.Note that we indeed obtain slightly higher amounts of variance explained for theweighted averages than CCA does (columns 7 and 8). Thus, we have achieveda better representation of the species preferences. This was to be expected, aswe now explicitly optimized these. We expect this to be true for any data set.When we optimize, after the WPCA, the representation of Z, then the 2D solu-tion captures 84% of the weighted variance present in the environmental data,whereas the CCA of the same data captures 76.1% of the variance of Z. Thebiplot of this analysis is shown in �gure 11.3. The site points have changed theirpositions and should now be interpreted with respect to the variable vectors.The sites line up along the variables vectors in approximately the right order(cf. table 9.2). The better display of Z holds for this data set, and withoutmore theoretical work, we cannot generalize about this beyond the particulardata set studied.
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24Figure 11.4: WPCA of 1992; (optimizing N)The corresponding CCA of this data set was discussed in section 10.2.1. Theordination obtained here strongly resembles the ones discussed in 10.2.1 and10.2.2. Chaetozone setosa is again high on the contaminants, Eudorellopsisdeformis low, Mysella bidentata and Phoronis sp. are again high on Fe. Thequalitative interpretation of the two types of analysis is essentially the same.The statistics in table 11.2 show however that the WPCA explains more than91% of the variance in the weighted averages, about 8.5 percent more than CCA.Graph 11.4 displays about 42% of the variance of the species pro�les.Method Dim CV(N) %CV(N) Inertia %CI V(WA) %CV(WA) CV(Z) %CV(Z)PCA + 1 0.0056 0.2793 - - 0.3262 84.86 - -opt. N 2 0.0085 0.4239 - - 0.0261 91.65 - -3 0.0189 0.9430 - - 0.0199 96.83 - -PCA + 1 - - - - 0.3262 84.86 6.1508 68.34opt. Z 2 - - - - 0.0261 91.65 7.1999 80.003 - - - - 0.0199 96.83 8.1177 90.20CCA 1 - - 0.0678 30.6 0.2761 71.8 4.0724 45.22 - - 0.0395 48.4 0.3200 83.2 5.1842 57.63 - - 0.0263 60.2 0.3401 88.5 5.9478 66.1Table 11.2: Variance decomposition of WPCA for 1992 Ekofisk dataWhen we optimize the display of the environmental data after the PCA, stations9, 14 and 15 appear as the most contaminated stations, just like in CCA. Asshown in table 11.2, a 2D biplot of that analysis captures 80% of the varianceof the environmental data, whereas the corresponding CCA captures 58%.



11. An Alternative for Canonical Correspondence Analysis 15711.7 ConclusionsIn this chapter we considered the PCA of the matrix of weighted averages asan alternative for CCA. Ordinations obtained by this method are very similarto the ones obtained by CCA. Amounts of weighted variance explained of thespecies optima are higher. If we choose to optimize the display of the environ-mental data after the PCA, then we can also account for more variance of theenvironmental data.
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Chapter 12Suggestions for FurtherResearchA doctoral thesis is never �nished, though from a practical point of view, abook can not grow without limit. In this last chapter we therefore consider afew suggestions for further research that are inspired by the work presented inprevious chapters.12.1 Canonical Correlation AnalysisIt may have come as a surprise that canonical correlation analysis (CCR) hasnot been applied to the survey data. There is an entire book by Gittins (1985)dedicated to applications of CCR to ecological data. First, it should be notedthat CCR has not become such a popular multivariate methods as CA, PCA,or, in an ecological context, CCA. This probably has to do with the fact that allthese method produce fancy biplots which are relatively easy to interpret. Onthe contrary, the output of a CCR is highly numerical. From a more practicalpoint of view, the computations become di�cult because there is a singular-ity problem, and standard statistical packages complain. In this survey thereare many more species than sites, which makes one of the variance-covariancematrices used in CCR singular. Mardia (1979), referring to Rao (1971), notesthese problems can be solved by the use of generalized inverses, but no appli-cations are given. It would be interesting to try (and interpret) CCR, with aproperly implemented generalized inverse. A program that can be modi�ed forthis purpose is given in appendix A.3.12.2 Redundancy AnalysisIt has been noted in chapter 4 that many species decrease in abundance as afunction of the environmental variables, and that only a few species show aunimodal response. If the decrease is close to linear, then redundancy analysismight be a promising alternative for the analysis of the survey data. Redun-



12.3. Data Fusion Problems 160dancy analysis corresponds to principal component analysis with linear con-straints (Ter Braak and Prentice, 1988).12.3 Data Fusion ProblemsIn section 2.1 it has been mentioned that the station network has been reducedover the years in order to save expenses (cf. section 2.1). Priority has been givento the chemical data: for all three consecutive years the chemical informationis present for about 40 stations, but in 1991 and 1992 biological variables havebeen measured for about 12 stations only. Thus, there exists a large hole inthe biological data for these years. The estimation of the missing biologicaldata for 1991 and 1992 constitutes a data fusion problem. Di�erent methodscan be conceived to estimate the missing biological data, like imputations bynearest neighbour methods, or prediction with previously estimated regressionequations.12.4 PLS regressionThe number of samples in the survey data is small with respect to the numberof variables, in particular for the data from 1991 and 1992. If we would like toinvestigate, by ordinary multiple regression, how the abundance of one particularspecies depends on the abundance of others, then this in not possible, dueto the singularity of the cross-product matrix of the predictors, X0X. PLS(Partial Least Squares) regression (Tenenhaus, 1998) was specially designed forthe situation where the number of predictors exceeds the number of observations,and could be applied in these circumstances.



Appendix ASome Computer programsA.1 Estimation of a Zero-Inated Poisson*! version 1.0 Jan Graffelmanprogram define poi2zeroversion 5.0local varlist "required existing"parse "`*'"parse "`varlist'",parse(" ")gen i = 1replace i = 0 if `1' == 0quietly summ i, detaillocal te = 1.0 - _result(3)local mu = ln(`te'/(1-`te'))quietly summ `1' if i, detaillocal la = _result(3)local lla = ln(`la')matrix b0 = (`lla',`mu')matrix colnames b0 = lla1:_cons mu:_consml beginml function cas2contml method lfeq lla1 : `1'eq mu :ml model b = lla1 mu, depv(10) from(b0)ml sample mysampml max f vml post mixtlf, title(Poisson With Zeros:lf method)ml mlout mixtlfcapture drop ilocal la1 = exp([lla1][_cons])local te1 = 1/(exp(-[mu][_cons])+1)local ste1 = `te1'*(1-`te1')*[mu]_se[_cons]local sla1 = `la1'*[lla1]_se[_cons]local te1ll = `te1'-invnorm(0.975)*`ste1'local te1ul = `te1'+invnorm(0.975)*`ste1'local la1ll = `la1'-invnorm(0.975)*`sla1'local la1ul = `la1'+invnorm(0.975)*`sla1'#delimit ;disp in green _col(1) "------------------------------------------------------------------------------" ;disp in yellow "$S_eqnm1" _col(12) in yellow %10.6f `la1' _col(23) in yellow %10.6f `sla1'_col(57) in yellow %10.6f `la1ll' _col(70) in yellow %10.6f `la1ul' ;disp in green _col(1) "------------------------------------------------------------------------------" ;disp in yellow "$S_eqnm2" _col(12) in yellow %10.6f `te1' _col(23) in yellow %10.6f `ste1'_col(57) in yellow %10.6f `te1ll' _col(70) in yellow %10.6f `te1ul' ;disp in green _col(1) "------------------------------------------------------------------------------" ;#delimit crendprogram define cas2contlocal lnf "`1'"local lla1 "`2'"local mu "`3'"#delimit ;quietly replace `lnf' = cond(i,-ln(1+exp(`mu'))+`lla1'*$S_mldepn- exp(`lla1') - lnfact($S_mldepn),ln(1-exp(-`mu'-exp(`lla1'))) -ln(exp(-`mu') + 1)) ;#delimit crend 161



A.2. Canonical Correspondence Analysis 162A.2 Canonical Correspondence Analysisfunction y = cca(N,Z,verbose)%% Examples:%% cca(N,Z,verbose)% cca(N,Z,1)% cca(N,Z)%%% Parameters:%% N: The I x J (species by sites) abundance matrix.% Z: The Q x J (variables by sites) environmental data matrix.% verbose: a number determining how much output is shown.% 0 - no numerical output% 1 - show everything (profiles, principal & standard coordinates, etc).%% Jan Graffelman% Universitat Pompeu Fabra% Last change: September 1999%[I J] = size(N); % I species, J sites, Q variables.[J Q] = size(Z);n = sum(sum(N)); % gran totalP = N/n; % percentage tabler = sum(P')'; % row masses (average column profile)c = sum(P)'; % column masses (average row profile)Dr = diag(r); % row masses in diagonal formDc = diag(c); % column masses in diagonal formRP = inv(Dr)*P; % row profilesCorr = corrcoef(Z); % correlation between the variables.OZ = Z;% centre Z on weighted meanZ = wcen(Z,c);% standardize by dividing by weighted standard deviation.S = Z'*Dc*Z;wvar=diag(S);Z = Z*inv(sqrt(diag(wvar)));% weighted correlation matrixS = Z'*Dc*Z;% weighted averages of speciesWA = (inv(Dr)*P - ones(length(r),1)*c')*Z;[Ul,Dl,W] = gensvd(WA,Dr,pinv(S));k = rank(Dl);Dl = Dl(1:k,1:k);Ul = Ul(:,1:k);W = W(:,1:k);% Calculate coordinatesFl = Ul*Dl;H = W*Dl;PHI = Fl*inv(Dl);OMEGA = W;% Calculate Weights.B = pinv(S)*W;% Site points (standard coordinates)SP = Z*B;% site points in principal coordinates:Gl = SP*Dl;%% Analyse the unrestricted dimensions%R = (inv(Dr)*P - ones(length(r),1)*c') - Ul*Dl*B'*Z'*Dc;% rank remaining dimensionsrr = rank(R);rr = (J-1)-Q;[Uu Du Vu] = gensvd(R,Dr,inv(Dc));Uu = Uu(:,1:rr);Vu = Vu(:,1:rr);



A. Some Computer programs 163Du = Du(1:rr,1:rr);% Coordinates in unrestricted dimensionsFu = Uu*Du;PHIu = Uu;Gu = inv(Dc)*Vu*Du;GAMu = inv(Dc)*Vu;% Site scores in restricted dimensions that are NOT LC of% the environmental variables (Ter Braak's sample scores)% Note: results do not coincide with canoco for the unrestricted% dimensions.D = diag([diag(Dl) ; diag(Du)]');TBS = inv(Dc)*P'*[PHI PHIu]*inv(D);% Total CCA inertiaCCA_IN = trace(Dl*Dl)+trace(Du*Du);% CCA inertia in restricted spaceRES_CCA_IN = trace(Dl*Dl);% CCA inertia in remaining dimensionsUNRES_CCA_IN = trace(Du*Du);% Principal Inertias: absolute, relative and cumulativeINABS = [diag(Dl*Dl); diag(Du*Du)]';INREL = INABS/sum(INABS)*100;INCUM = cumsum(INREL);% inertia contributionsG = [Gl Gu];DECsi = Dc*G.*G;F = [Fl Fu];DECsp = Dr*F.*F;% contributions species to axessptoax = DECsp*inv(diag(INABS));% contributions axes to speciesaxtosp = inv(diag(sum(DECsp')))*DECsp;% contributions spites to axessitoax = DECsi*inv(diag(INABS));% contributions axes to sitesaxtosi = inv(diag(sum(DECsi')))*DECsi;% Ter Braak inter set correlationsINTER = wcorrm([Z TBS],c);INTER = INTER(1:Q,(Q+1):2*Q);if verbose == 1fprintf(1,'Numerical Output CCA\n\n')disp('Abundance Matrix:')disp(N)disp('Chemicial Data (variables x sites): ')disp(OZ)disp('Chemicial Data (variables x sites) (centered):')disp(Z)disp('Rank Abundance Matrix:')disp(rank(N))disp('Rank Environmental data Matrix:');disp(rank(Z))disp('Correspondence Matrix:')disp(P)disp('Species profiles:')disp(RP)disp('Column masses:')disp(c)disp('Row masses:')disp(r)disp('Total Inertia for CCA')disp(CCA_IN)disp('Inertias in restricted and unrestricted dimensions')disp([CCA_IN RES_CCA_IN UNRES_CCA_IN])



A.3. Canonical Correlation Analysis 164disp([100 RES_CCA_IN/CCA_IN*100 UNRES_CCA_IN/CCA_IN*100])disp('Principal Inertias')disp([INABS; INREL; INCUM])disp('Species Inertias')disp(sum(DECsp'))disp('Contributions of species to axes')disp(sptoax)disp('Contributions axes to species')disp(axtosp)disp('Site Inertias')disp(sum(DECsi'))disp('Contributions of sites to axes')disp(sitoax)disp('Contributions axes to sites')disp(axtosi)disp('Principal coordinates of the Species: ');disp([Fl Fu])disp('Principal coordinates of the Variables: ')disp(H)disp('Standard coordinates of the Species: ');disp(PHI)disp('Standard coordinates of the Variables: ')disp(OMEGA)disp('Standard coordinates of the Sites: ')disp(SP)disp('Ter Braak sample scores (not LC): ')disp(TBS)disp('Principal coordinates of the sites: ')disp([Gl Gu])disp('Weighted averages of the Chemical Variables:');disp(c'*OZ)disp('Ordinary Correlations between the variables:');disp(Corr)disp('Weighted Correlations between the variables:');disp(wcorrm(Z,c))disp('Ter Braak Inter set Correlations: (env. var x axes)')disp(INTER)disp('Weighted averages of the Species for the chemical variables');disp('using abundances as weights:');disp(RP*Z)disp('Weights for the environmental Variables:')disp(B)endA.3 Canonical Correlation Analysisfunction [U, V] = canocorr(X,Y,verbose)%% Examples:%% canocorr(X,Y,verbose)%% Parameters:%% X: first data matrix% Y: second data matrix% verbose: 0 - be silent (default) 1 - show numerical output.% U: canonical variates X-variables% V: canonical variates Y-variables%% The program CANOCORR performs Canonical Correlation Analysis%% Jan Graffelman% University Pompeu Fabra% Last change 17 september 1999if exist('verbose') == 0verbose = 0;end[n,p] = size(X);[n,q] = size(Y);Xc = sd(X);



A. Some Computer programs 165Yc = sd(Y);S11 = 1/(n-1)*Xc'*Xc;S22 = 1/(n-1)*Yc'*Yc;S12 = 1/(n-1)*Xc'*Yc;[v,d] = eig(S11);rr = rank(S11);v = v(:,1:rr);d = d(1:rr,1:rr);S11mh = v*pinv(sqrt(d))*v';[v,d] = eig(S22);rr = rank(S22);v = v(:,1:rr);d = d(1:rr,1:rr);S22mh = v*pinv(sqrt(d))*v';% Computational scheme: singular value decompositionK = S11mh*S12*S22mh;[uu,dd,vv] = svd(K,0);dim = min([p q]);dd = dd(1:dim,1:dim);uu = uu(:,1:dim);vv = vv(:,1:dim);% Canonical WeightsA = S11mh*uu;B = S22mh*vv;% Canonical VariatesU = Xc*A;V = Yc*B;% compute canonical loadings (correlations with original variables)R = corrcoef([X U]);Rx = R(1:p,(p+1):(p+dim));R = corrcoef([Y V]);Ry = R(1:q,(q+1):(q+dim));% variance explained by canonical variatesVex = 1/p*diag(Rx'*Rx);Vey = 1/q*diag(Ry'*Ry);% redundancy coefficients (amount of variance in Y-set accounted% for by the X-set).Redygx= dd*dd*Vey;Redxgy= dd*dd*Vex;% Cross loadingsR = corrcoef([Y U]);CrossYU = R(1:q,(q+1):(q+dim));R = corrcoef([X V]);CrossXV = R(1:p,(p+1):(p+dim));Wilks = det(eye(dim,dim)-dd*dd);Chi = -1*((n-1) - 0.5*(p+q+1))*log(Wilks);pval = 1-chi2cdf(Chi,p*q);if verbose == 1disp('Canonical Weights (Coefficients of LC) variables x variates')ABdisp('Canonical Variates')UVdisp('Canonical Correlations')diag(dd) % same as cov([U V])disp('Correlations with X-Variables (Canonical loadings: Xvariables x Xvariates)')Rxdisp('Correlations with Y-Variables (Canonical loadings: Yvariables x Yvariates)')Rydisp('Correlations with X-Variables (Cross loadings: Xvariables x Yvariates)')CrossXVdisp('Correlations with Y-Variables (Cross loadings: Yvariables x Xvariates)')CrossYUdisp('% variance explained by canonical x-variates:')[(1:dim)' Vex]disp('% variance explained by canonical y-variates:')[(1:dim)' Vey]disp('Reduncancy coefficient (amount of of variance in criterion set accounted for by predictor set)')Redygxdisp('Reduncancy coefficient (amount of of variance in predictor set accounted for by criterion set)')Redxgydisp('Significance of first canonical variate:')fprintf(1,'Wilks lambda: %6.4f Chi^2: %10.4f p-value: %6.4f\n',[Wilks Chi pval])end



A.4. Correspondence Analysis 166A.4 Correspondence Analysisfunction y = sca(x,verbose,plottype)%% Examples:%% sca(x)% sca(x,verbose,plottype)%%% Parameters:%% x: a raw N x P contingency table% verbose: a number determining how much output is shown.% 0 - no numerical output% 1 - show everything (profiles, principal & standard coordinates, etc).% plottype: allows to specify which plot is generated. There are% 4 possibilities:% 0 - No graphical output.% 1 - Symmetric map (default)% 2 - Asymmetric map of the rows.% 3 - Asymmetric map of the columns.%% The program SCA performs simple correspondence analysis.%% Jan Graffelman% University Pompeu Fabra% Last change 14 february 1996[I,J] = size(x);if exist('verbose') == 0verbose = 0;endif exist('plottype') == 0plottype = 0;end%% Preparation of the data.%N = sum(sum(x)); % grand totalP = x/N; % table of percentages, the correspondence table[I J] = size(P); % get dimensions of the IxJ tabler = (sum(P'))'; % row masses (average column profile)c = (sum(P))'; % column masses (average row profile)Dr = diag(r);Dc = diag(c);RP = inv(Dr)*P; % row profilesCP = P*inv(Dc); % column profilesA = inv(sqrt(Dr))*(P - r*c')*inv(sqrt(Dc)); % standardized residuals.%% Chisquare calculations:%CHI = sum(sum(A.*A))*N;chicon = N*A.*A;%% SVD and calculation of coordinates.%[U,D,V] = svd(A,0);k = rank(D);D = D([1:k], [1:k]);U = U(:,[1:k]); % basis for the rowsV = V(:,[1:k]); % basis for the columns%% principal coordinates:%F = inv(sqrt(Dr))*U*D;G = inv(sqrt(Dc))*V*D;%% standard coordinates:%PHI = inv(sqrt(Dr))*U;GAM = inv(sqrt(Dc))*V;%% Inertia and inertia contributions:%PRIN_IN = D*D;% total inertia:IN_TOT = sum(diag(PRIN_IN));% Percentage of explained dispersion for each dimension:



A. Some Computer programs 167IN_DIM = (diag(PRIN_IN)/IN_TOT)'*100;% Cumulative percentage of explained dispersion:IN_DIM_CUM = cumsum(IN_DIM);% Decompostion of Principal Inertias for each row:ROW_DEC = Dr*F.*F;% Row inertias:ROW_INERT = sum(ROW_DEC');% Row inertias relative to total inertia.ROW_INERT_RELTOTOT = ROW_INERT/sum(ROW_INERT);% Correlations of row profiles and axes:SQUAR_ROW_CORR = inv(diag(ROW_INERT))*ROW_DEC;ROW_CORR = sign(F).*sqrt(SQUAR_ROW_CORR);% Contributions of principal axis to the rows (or% quality of the rows for each principal axis)% Contributions of axis to rows.CON_AXTOROW = SQUAR_ROW_CORR;% Contribution of rows to axis.CON_ROWTOAX = ROW_DEC*inv(PRIN_IN);% Quality in two dimensionsQUA_ROW = CON_AXTOROW(:,1:2);QUA_ROW = sum(QUA_ROW');%% Now similar things for the columns%% decomposition of inertia for each column.COL_DEC = Dc*G.*G;% Contributions of the columns to principal inertiasCON_COLTOAX = COL_DEC*inv(PRIN_IN);% Column inertiasCOL_INERT = sum(COL_DEC');% Column inertias relative to total inertia.COL_INERT_RELTOTOT = COL_INERT/sum(COL_INERT);% Correlations of column profiles and axes:SQUAR_COL_CORR = inv(diag(COL_INERT))*COL_DEC;COL_CORR = sign(G).*sqrt(SQUAR_COL_CORR);% Contributions of principal axis to columns (or% quality of the columns for each principal axis)% Contributions of axis to columnsCON_AXTOCOL = SQUAR_COL_CORR;% Contributions of columns to axisCON_COLTOAX = COL_DEC*inv(PRIN_IN);% Quality in two dimensionsQUA_COL = CON_AXTOCOL(:,1:2);QUA_COL = sum(QUA_COL');%% Now show all numerical output%if verbose == 0;elseif verbose == 1disp('Grand total:')disp(N);disp('Correspondence Matrix:');disp(P);disp('Row masses:');disp(r);disp('Column masses:');disp(c);disp('Row Profiles:')



A.4. Correspondence Analysis 168disp(RP);disp('Column Profiles:')disp(CP);disp('Standardized residuals:');disp(A);disp('Chi-square:');disp(CHI);disp('Chi-square contributions:');disp(chicon);disp('Singular Values:');disp(D);disp('Left singular vectors:');disp(U);disp('Right singular vectors:');disp(V);disp('Principal coordinates of the rows:');disp(F);disp('Principal coordinates of the columns:');disp(G);disp('Standard coordinates of the rows:');disp(PHI);disp('Standard coordinates of the columns:');disp(GAM);disp('Total Inertia:');disp(IN_TOT);disp('Inertias for each dimension:');disp(diag(PRIN_IN));disp('Percentage of explained dispersion for each dimension:')disp(IN_DIM);disp('Cumulative percentage of explained dispersion:')disp(IN_DIM_CUM);disp('Decomposition of inertia for each row:')disp(ROW_DEC)disp('Contribution of each row on the inertia of each dimension:');disp(CON_ROWTOAX);disp('Contribution of each principal axis to the rows:')disp(CON_AXTOROW);disp('Correlations of row profiles and axes:')disp(ROW_CORR)disp('Row inertias:')disp(ROW_INERT)disp('Row inertias relative to total:')disp(ROW_INERT_RELTOTOT)disp('Quality of the rows for each principal axis:')disp(CON_ROWTOAX)disp('Quality of the rows in two dimensions:')disp(QUA_ROW')disp('Decomposition of inertia for each column:')disp(COL_DEC)disp('Contributions of the columns to principal inertias:')disp(CON_COLTOAX)disp('Correlations between columns and principal axes:')disp(COL_CORR)disp('Column inertias:')disp(COL_INERT)disp('Column inertias relative to total:')disp(COL_INERT_RELTOTOT)disp('Quality of the columns for each principal axis')disp(CON_COLTOAX)disp('Quality of the columns in two dimensions')disp(QUA_COL)elseerror('unknown value for parameter verbose')end%% Now show the graphical output%if plottype == 0;elseif plottype == 1plot(F(:,1),F(:,2),'.',G(:,1),G(:,2),'o');ax([F(:,1:2); G(:,1:2)]);title('Symmetric Map');elseif plottype == 2plot(F(:,1),F(:,2),'.',GAM(:,1),GAM(:,2),'o');ax([F(:,1:2); GAM(:,1:2)]);title('Asymmetric Map of the Rows');elseif plottype == 3plot(G(:,1),G(:,2),'.',PHI(:,1),PHI(:,2),'o');ax([G(:,1:2); PHI(:,1:2)]);title('Asymmetric Map of the Columns');elseerror('Unkown value for parameter plottype');end;
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