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Abstract

Motion analysis and object tracking has been one of the principal focus of at-

tention over the past two decades within the computer vision community. The

interest of this research area lies in its wide range of applicability, extending from

autonomous vehicle and robot navigation tasks to entertainment and virtual reality

applications.

Even though impressive results have been obtained in specific problems, object

tracking is still an open problem, since available methods are prone to be sen-

sitive to several artifacts and non-stationary environment conditions, such as un-

predictable target movements, gradual or abrupt changes of illumination, similar

objects proximity or cluttered backgrounds. Multiple cue integration has been

proved to enhance the robustness of the tracking algorithms in front of such dis-

turbances. In recent years, due to the increasing power of the computers, there

has been a significant interest in building complex tracking systems which simul-

taneously consider multiple cues. However, most of these algorithms are based on

heuristics and ad-hoc rules formulated for specific applications, making impossi-

ble to extrapolate them to new environment conditions.

In this dissertation we propose a general probabilistic framework to integrate as

many object features as necessary, permitting them to mutually interact in order

to obtain a precise estimation of its state, and thus, a precise estimate of the tar-

get position. This framework is utilized to design a tracking algorithm, which is

validated on several video sequences involving abrupt position and illumination

changes, target camouflaging and non-rigid deformations. Among the utilized

features to represent the target, it is important to point out the use of a robust pa-

rameterization of the target color in an object dependent colorspace which allows

to distinguish the object from the background more clearly than other colorspaces

commonly used in literature.



In the last part of the dissertation, we design an approach to relighting static

and moving scenes with unknown geometry. The relighting is performed by an

‘image-based’ methodology, in which the rendering under new lighting conditions

is achieved by linear combinations of a set of pre-acquired reference images of

the scene illuminated by known light patterns. Since the placement and brightness

of the light sources composing such light patterns can be controlled, it is natural

to ask: what is the optimal way to illuminate the scene to reduce the number of

reference images that are needed? We show that the best way to light the scene

(i.e., the way that minimizes the number of reference images) is not using a se-

quence of single, compact light sources as is most commonly done, but rather to

use a sequence of lighting patterns as given by an object-dependent lighting basis.

It is important to note that when relighting video sequences, consecutive images

need to be aligned with respect to a common coordinate frame. However, since

each frame is generated by a different light pattern illuminating the scene, abrupt

illumination changes are produced between consecutive reference images. Under

these circumstances, the tracking framework designed in this dissertation plays a

central role. Finally, we present several relighting results on real video sequences

of moving objects, moving faces, and scenes containing both. In each case, al-

though a single video clip was captured, we are able to relight again and again,

controlling the lighting direction, extent, and color.
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Resum

L’anàlisi de moviment i seguiment d’objectes ha estat un dels pricipals focus

d’atenció en la comunitat de visió per computador durant les dues darreres dècades.

L’interès per aquesta àrea de recerca resideix en el seu ample ventall d’aplicabilitat,

que s’extén des de tasques de navegació de vehicles autònoms i robots, fins a apli-

cations en la indústria de l’entreteniment i realitat virtual.

Tot i que s’han aconseguit resultats espectaculars en problemes especı́fics, el segui-

ment d’objectes continua essent un problema obert, ja que els mètodes disponibles

són propensos a ser sensibles a diversos factors i condicions no estacionàries de

l’entorn, com ara moviments impredictibles de l’objecte a seguir, canvis suaus o

abruptes de la il·luminació, proximitat d’objectes similars o fons confusos. En-

front aquests factors de confusió la integració de múltiples caracterı́stiques ha de-

mostrat que permet millorar la robustesa dels algoritmes de seguiment. En els

darrers anys, degut a la creixent capacitat de càlcul dels ordinadors, hi ha hagut un

significatiu increment en el disseny de complexes sistemes de seguiment que con-

sideren simultàniament múltiples caracterı́stiques de l’objecte. No obstant, la ma-

joria d’aquests algoritmes estan basats en heurı́stiques i regles ad-hoc formulades

per aplicacions especı́fiques, fent-ne impossible l’extrapolació a noves condicions

de l’entorn.

En aquesta tesi proposem un marc probabilı́stic general per integrar el nombre

de caracterı́stiques de l’objecte que siguin necessàries, permetent que interactuin

mútuament per tal d’estimar-ne el seu estat amb precisió, i per tant, estimar amb

precisió la posició de l’objecte que s’està seguint. Aquest marc, s’utilitza pos-

teriorment per dissenyar un algoritme de seguiment, que es valida en diverses

seqüències de vı́deo que contenen canvis abruptes de posició i il·luminació, ca-

muflament de l’objecte i deformacions no rı́gides. Entre les caracterı́stiques que

s’han utilitzat per representar l’objecte, cal destacar la parametrització robusta del



color en un espai de color dependent de l’objecte, que permet distingir-lo del fons

més clarament que altres espais de color tı́picament ulitzats al llarg de la literatura.

En la darrera part de la tesi dissenyem una tècnica per re-il·luminar tant escenes

estàtiques com en moviment, de les que s’en desconeix la geometria. La re-

il·luminació es realitza amb un mètode ‘basat en imatges’, on la generació de

les images de l’escena sota noves condicions d’il·luminació s’aconsegueix a par-

tir de combinacions lineals d’un conjunt d’imatges de referència pre-capturades,

i que han estat generades il·luminant l’escena amb patrons de llum coneguts.

Com que la posició i intensitat de les fonts d’il·luminació que formen aquests

patrons de llum es pot controlar, és natural preguntar-nos: quina és la manera

més òptima d’il·luminar una escena per tal de reduir el nombre d’imatges de re-

ferència? Demostrem que la millor manera d’il·luminar l’escena (és a dir, la que

minimitza el nombre d’imatges de referència) no és utilitzant una seqüència de

fonts d’il·luminació puntuals, com es fa generalment, sinó a través d’una seqüència

de patrons de llum d’una base d’il·luminació dependent de l’objecte. És impor-

tant destacar que quan es re-il·luminen seqüències de vı́deo, les imatges succes-

sives s’han d’alinear respecte a un sistema de coordenades comú. Com que cada

imatge ha estat generada per un patró de llum diferent il·luminant l’escena, es

produiran canvis d’il·luminació bruscos entre imatges de referència consecutives.

Sota aquestes circumstàncies, el mètode de seguiment proposat en aquesta tesi juga

un paper fonamental. Finalment, presentem diversos resultats on re-il·luminem

seqüències de vı́deo reals d’objectes i cares d’actors en moviment. En cada cas,

tot i que s’adquireix un únic vı́deo, som capaços de re-il·luminar una i altra vegada,

controlant la direcció de la llum, la seva intensitat, i el color.
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Notation

Bayesian tracking

x state vector

z measurement vector

Z matrix of measurement vectors

p(x) prior density

p(x|Z) posterior density

p(xt|xt−1) dynamic model

p(z|x) observation (or measurement) model

Kalman filter

Σ state covariance

D process linear dynamic model

qd process noise

Σd process covariance noise

M observation (or measurement) linear dynamic model

qm observation noise

Σm observation covariance noise

K Kalman gain

x− a priori state estimate

x+ a posteriori state estimate

Σ− a priori state covariance estimate

Σ+ a posteriori state covariance estimate

I identity matrix

0 null matrix
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Particle filters

si i-th state vector sample

πi weight associated to i-th state vector sample

n number of particles

∼ sampling with replacement operation

⊗ convolution operation between probability density functions

× multiplication operation between probability density functions

Feature extraction

c ∈ R3×1 pixel color represented in the RGB colorspace

C matrix of pixels represented in the RGB colorspace

f ∈ R2×1 pixel color represented in the Fisher colorspace

F matrix of pixels represented in the Fisher colorspace

O object or foreground region of the image

B background region of the image

ε = {O,B} foreground-background class index

Sw within class scatter matrix

W ∈ R2×3 Fisher plane (W = [w1,w2]
T )

Sw within class scatter matrix

Sb between class scatter matrix

Σb non-parametric between class scatter matrix

mε number of Gaussian components fitted to the ε-class color distribution

µε,j mean of the j-th Gaussian component fitted to the ε-class color distribution

Σε,j covariance of the j-th Gaussian component fitted to the ε-class color distri-

bution

u pixel position in image (u = [u, v]T )

R matrix of contour points

Q matrix containing the snake rigidity and elasticity parameters

viii



H affine snake dynamic model

W object bounding box

Multiple cue integration

xi state vector associated to i-th object feature

X complete state vector representing the target (X = {x1, . . . ,xn})
E(xi) expected value of the i-th feature state

D survival diagnostic

ni number of samples approximating the xi state vector

sij j-th sample approximating the state of i-th feature

πij weight associated to sample sij

Hi scaling factor in the dynamic model of feature xi

qi translational factor in the dynamic model of feature xi

Video relighting

i gray level or single band image

I multiband image or array containing multiple single band images

lp p-th light pattern

Lp(Φl) radiance of the l-th light source in p-th light pattern

Φl global spherical coordinates of the l-th light source (Φl = [θl, φl]T )

L matrix of light patterns

E matrix of single light source patterns

Rui(Φl) reflectance of pixel ui as a result of illumination from direction Φl

R reflectance matrix (contains the reflectances Rui(Φl) ∀ pixel ui and ∀ light

direction Φl)

D decoding matrix

Υ(·) geometric and appearance warping function

‖ · ‖ Frobenius or Euclidean norm

| · | absolute value function
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Nomenclature

PDF Probability Density Function

EM Expectation Maximization

LDA Linear Discriminant Analysis

KNN K-Nearest Neighbours

GV F Gradient Vector Flow

MoG Mixture of Gaussians

BF Bayesian Filter

KF Kalman Filter

PF Particle Filter
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Chapter 1

Introduction

Nowadays, digital video cameras are becoming daily devices in our lives. Their relatively low

cost and portability properties have made them a popular travel mate for almost everybody.

Furthermore, apart from the conventional handycams of personal use, we can find video cam-

eras in a high variety of places and situations, for instance, mounted in building entrances, in

streets and highways, integrated into other instruments such as cell phones or pens, and we can

also find the so-called wearable video cameras, which are usually mounted on glasses or caps

and may be ‘worn’ by the user. This development has grown in parallel with the capacity of

the data storage devices, and as a consequence, large amounts of visual data may be collected

by the video cameras. Computer vision technology offers the possibility of automatically or

semi-automatically process these data, and perform tasks with a certain level of ‘intelligence’.

In most of the tasks involving the processing of video sequences, motion analysis and

object tracking play a central role. Actually, this specific area of the computer vision has

been one the the principal focus of attention of the research over the past two decades, with

increasingly impressive results in diverse tasks, extending from the autonomous vehicle and

robot navigation to entertainment and virtual reality applications.

Nevertheless, in spite of this variety of results and applications, object tracking is still an

open problem, since available methods are prone to be sensitive to several artifacts and non-

stationary conditions. We can enumerate a list of them:

• Changes of object pose and scale caused by the relative movement of the object with

respect to the camera. Furthermore, these movements might be abrupt.

• Non-rigid object deformations produced by some collisions or external forces applied

to the target.
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Illumination disturbances

Unexpected target movements

Occlusions and cluttered backgrounds

Figure 1.1: Illustrative examples of the disturbances that need to be addressed in a track-
ing application. First row: Illumination disturbances, caused by movements of the light source
and cast shadows. Second row: Unexpected target movements. Third row: occlusions of the
target and camouflage caused by cluttered backgrounds.

• Gradual illumination changes, usually generated by a smooth movement of the object

with respect to the light source, or conversely, produced by a smooth movement of the

light source (for instance the daylight generates gradual illumination changes).

• Abrupt illumination changes are one of the most critical difficulties to deal with, and

use to be caused by light switching or sudden occlusions of the light source.

• Complex surface properties, in terms of geometry and reflectance, might cause com-

plex illumination effects such as specularities or intereflections.
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• Shadows, especially the cast shadows produced when the target casts on itself or differ-

ent close objects cast shadows on the target.

• Camouflage of the tracked object due to cluttered backgrounds or backgrounds having

a similar appearance to that of the target.

The target representation is an important initial issue that needs to be addressed when de-

signing any visual tracking system. In the literature, the visual modules most commonly used

in tracking tasks include geometric cues, motion, color, contrast, textures, appearance and

shape. Distinct object features show different behaviours under the previously mentioned dis-

turbances. For instance, color usually is a robust cue under non-rigid deformations of the

object, and by contrast, it is sensitive to gradual illumination changes. Conversely, the con-

tour cue tends to be susceptible to non-rigid deformations and robust to gradual illumination

changes.

If the target moves in laboratory conditions under controlled lighting conditions, the effect

of the disturbances previously mentioned may be reduced, and the representation of the target

by a single feature might suffice. However, when the object moves out of these controlled

conditions, the representation of the object by a single feature is no longer effective. In these

circumstances the use of simultaneous redundant or complementary cues might significantly

enhance the performance of the tracking.

In recent years, due to the increasing power of the computers, there has been a significant

interest in building complex tracking systems which simultaneously consider multiple cues.

However, as it will be seen in Chapter 4, most of these algorithms are based on heuristics and

ad-hoc rules formulated for specific applications.

The goal of this dissertation is to establish a new and general probabilistic framework

for tracking purposes, allowing to integrate as many features as necessary, without increasing

dramatically the complexity of the system. As it will be seen in Chapter 5, the proposed

methodology improves the performance of existing approaches. Furthermore, in Chapter 3 we

focus on the feature selection stage, and in particular, we contribute with a new color space,

which we prove, is appropriate for tracking tasks. Finally, in Chapter 6, the proposed tracking

method is utilized to develop a video relighting methodology, which requires a tracking system

robust to abrupt illumination changes. This chapter also contributes a detailed study about the

optimal way to reilluminate a video sequence.
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1.1. MAIN CONTRIBUTIONS

In the rest of this chapter, we briefly discuss on the main contributions, give an outline of

the rest of the dissertation, and include a reference of the related publications.

1.1 Main contributions

The main contributions of the dissertation may be summarized as follows:

1. We propose a probabilistic framework to integrate as many features as necessary, for

tracking tasks. This method allows to integrate both conditionally dependent and condi-

tionally independent object cues, and any feature whose state vector is represented by a

Probability Density Function (PDF). In addition, the complexity of the system does not

increase dramatically with the number of integrated cues.

2. The proposed framework is applied to develop a robust tracking system that simultane-

ously accommodates both geometric and appearance object features. With this approach

we can deal with challenging video sequences suffering from cluttered backgrounds,

unexpected object dynamics, non-rigid deformations and abrupt illumination changes.

3. The specific representation and estimation procedure proposed for the color feature are

also novel contributions of this dissertation: the color feature is estimated through a

particle filter formulation, and represented on an adaptable colorspace dependent on the

tracked object.

4. The tracking algorithm is utilized to develop a video relighting algorithm, which requires

from the alignment of consecutive images suffering from abrupt illumination changes.

Apart from the application itself (video relighting is a novel field with only a small

number of previous contributions), we contribute by studying which is the optimal way

of illuminating a video sequence of a moving scenario, in order to subsequently relight

it with the minimum cost.

1.2 Thesis overview

The dissertation is organized according to the following chapters:

• Chapter 2 introduces the foundations of the visual tracking problem, seen as a Bayesian

process where conditional densities are propagated. Two Bayesian filters are analyzed

4
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from this point of view, namely, the Kalman filter and particle filters, emphasizing that

their operation may be described through the same stages: hypotheses generation (or

prediction) and hypotheses correction. Precisely, these filters will be used in order to

estimate the state of individual object features, and integrated in the probabilistic frame-

work proposed in Chapter 5.

• Chapter 3 describes the features that will be used to robustly represent the target, in-

cluding appearance and geometric cues. In this chapter, special attention will be given to

the selection of the colorspace where image points are represented. An object dependent

colorspace is proposed (we call it Fisher colorspace), which has the capacity to max-

imize the distance between the color representation of the target points from the color

representation of the background points. Note that this special feature is desirable for

tracking tasks.

Furthermore, the rest of object features will be described. In particular, we describe

the parameterization of the color points on the Fisher colorpace, through a Mixture of

Gaussians (MoG) model, the representation of the contour by a snake formulation, and

a rough estimate of the object position by a rectangular bounding box.

• Chapter 4 reviews previous approaches to integration of visual modules for tracking

and figure/background segmentation tasks. Based on the classification that Clark and

Yuille (23) suggested to classify general sensor fusion techniques, two major categories

are distinguished, namely the weakly coupled and strongly coupled, depending on the

degree of interaction between the visual modules. The taxonomy is completed and made

more precise by considering several subcategories. Over 50 papers (including the most

relevant works on the field over the last decade) are reviewed and classified into the

proposed taxonomy. Finally, the reviewed papers are analyzed in terms of robustness,

adaptability and complexity, which are properties that need to be considered when de-

signing a tracking system integrating various features.

• Chapter 5 focuses on the proposed framework for multiple cue integration for robust

tracking. The analysis and the techniques described in previous chapters are gathered

in order to propose a general probabilistic framework, allowing to integrate any number

of features. Initially, the method is theoretically described and validated by a simple

synthetic example which is used as a benchmark to compare the performance of the

5



1.3. DERIVED PUBLICATIONS

method suggested in the dissertation, to that of other related approaches. In the second

part of the chapter, based on the model just defined, we design a tracking algorithm able

to cope with several artifacts and non-linearities. Various tracking examples in diverse

and dynamic environments are presented.

• Chapter 6 describes the development of a video relighting application, where the track-

ing methodology proposed in Chapter 5 plays an important role for aligning consecutive

images that suffer from abrupt illumination changes. This chapter also analyzes the video

relighting problem in detail, and proposes the use of an object dependent lighting basis

to illuminate the object, which minimizes the relighting cost. Both synthetic and real

experiments show that the proposed lighting basis outperforms other existent bases.

• Chapter 7 summarizes the dissertation, and sums up the contributions. Future research

directions are also discussed.

1.3 Derived publications

The following is a list of the published work derived from this thesis:

1. F.Moreno-Noguer, A.Sanfeliu, D.Samaras, “Integration of deformable contours and a

multiple hypotheses Fisher color model for robust tracking in varying illuminant envi-

ronments”, ‘Minor changes’ after first correction stage in Image and Vision Computing.

2. F.Moreno-Noguer, S.K.Nayar, P.N.Belhumeur, “Optimal Illumination for Image and

Video Relighting (full paper)”, IEE European Conference on Visual Media Production

(CVMP), 2005.

3. F.Moreno-Noguer, A.Sanfeliu, D.Samaras, “Integration of Conditionally Dependent Ob-

ject Features for Robust Figure/Background Segmentation”, Proc. IEEE International

Conference on Computer Vision (ICCV) , 2005.

4. F.Moreno-Noguer, S.K.Nayar, P.N.Belhumeur, “Optimal Illumination for Image and

Video Relighting (short sketch)”, SIGGRAPH Sketch, 2005.

5. F.Moreno-Noguer, A.Sanfeliu, “A Framework to Integrate Particle Filters for Robust

Tracking in Non-stationary Environments”, Proc. Iberian Conference on Pattern Recog-

nition and Image Analysis (IBPRIA), LNCS 3522, 2005 , BEST PAPER AWARD.
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6. F.Moreno-Noguer, A.Sanfeliu, “Integration of Shape and a Multihypotheses Fisher Color

Model for Figure-Ground Segmentation in Non-Stationary Environments”, Proc. Inter-

national Conference on Pattern Recognition (ICPR), Vol.4, pp.771-774, 2004.

7. F.Moreno-Noguer, A.Sanfeliu, D.Samaras, “Fusion of a Multiple Hypotheses Color Model

and Deformable Contours for Figure Ground Segmentation in Dynamic Enviroments”,

Proc. Workshop on Articulated and Non-Rigid Motion (in conjunction with CVPR’04),

2004.

8. F.Moreno-Noguer, A.Sanfeliu, “Adaptative Color Model for Figure Ground Segmenta-

tion in Dynamic Environments”, Proc. Iberoamerican Congress on Pattern Recognition

(CIARP), pp.37-44, 2004.

9. F.Moreno-Noguer, J.Andrade-Cetto, A.Sanfeliu, “Fusion of Color and Shape for Object

Tracking under Varying Illumination”, Proc. Iberian Conference on Pattern Recognition

and Image Analysis (IBPRIA), LNCS 2652, pp.580-588, 2003.

10. F.Moreno-Noguer, A.Tarrida, J.Andrade-Cetto, A.Sanfeliu, “3D Real Time Head Track-

ing Fusing Color Histograms and Stereovision”, Proc. International Conference on Pat-

tern Recognition (ICPR), Vol.1, pp.368-371, 2002.

11. F.Moreno-Noguer, “Pattern recognition systems”, Final Year Project for the Electrical

Engineering Degree, University of Barcelona, 2002.

12. F.Moreno-Noguer, J.Andrade-Cetto, A.Sanfeliu, “Localization of Human Faces Fusing

Color Segmentation and Depth from Stereo”, Proc. IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA), pp.527-536, 2001.

13. F.Moreno-Noguer, “Development of a stereo vision system for a mobile robot”, Final

Year Project for the Industrial Engineering Degree, Technical University of Catalonia,

2001.
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Chapter 2

Tracking viewed as a temporal
propagation of conditional densities

In this chapter we will establish the bases of the tracking problem and introduce the formulation

that will be used in the following chapters. The tracking will be explained as a hypotheses gen-

eration and correction process in a Bayesian framework, which is equivalent to a propagation

of conditional densities through the time, where the conditional densities are represented by

Probability Density Functions (PDF’s). Two methodologies will be briefly described, namely

the Kalman filter and the particle filters. The integration of various object features whose state

is estimated by Kalman or particle filters will be examined in detail in Chapter 5.

2.1 Introduction

The main question to be addressed in this thesis refers to the inference of the states of several

target features as a function of time. Both the object and background may vary throughout

the sequence, follow nonlinear dynamics, suffer from deformations, and the scene might be af-

fected by illumination changes. In order to infer all these kind of changes, most visual tracking

techniques involve three basic elements, namely target representation, hypotheses generation,

and the correction of these hypotheses considering some external observations.

Target representation refers to the selection of the appropriate features allowing to discrim-

inate the target from the rest of the image. Usual modalities include geometric features, shape,

motion, and appearance, such as grey scale templates or color distributions. Several visual

modalities will be investigated in the next chapter.

Once a specific target feature has been represented by a parametric model, the goal of the
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tracking module is to estimate the feature state throughout time by a process of generation

and correction of candidate hypotheses. New hypotheses about the the target state are pro-

duced based on previous states and considering a dynamic model with a stochastic component.

Subsequently, the hypotheses are corrected by the observation of some image features (for in-

stance, if the target is represented by its contour, the observation might be the edges in the

image). This process can be expressed as a temporal propagation of conditional probabilities,

in terms of a Bayes filter: the a posteriori distribution p(xt|Zt) over the target state xt, given

the observations Zt = {zt0 , . . . , zt} up to time t, can be recursively updated according to the

Bayes rule (11):

p(xt|Zt) =
p(xt,Zt−1, zt)

p(Zt)
=
p(zt|xt,Zt−1)p(xt,Zt−1)

p(Zt)

Assuming that the observations zt0 , . . . , zt are conditionally independent it is satisfied that

p(zt|xt,Zt−1) = p(zt|xt), and the previous equation may be rewritten as:

p(xt|Zt) =
p(zt|xt)p(xt,Zt−1)

p(Zt)

Note that this is a Markovian dynamic model, since the state at time t only depends on the state

at time t− 1.

In order to introduce a dynamic model p(xt|xt−1), we perform the following expansion:

p(xt,Zt−1) =
∫
xt−1

p(xt|xt−1,Zt−1)p(xt−1|Zt−1)dxt−1 (2.1)

Since we are also assuming that the dynamical process is independent from previous observa-

tions, Eq. 2.1 can be simplified:

p(xt,Zt−1) =
∫
xt−1

p(xt|xt−1)p(xt−1|Zt−1)dxt−1

Finally, the equation that must be calculated or approximated by a tracking filter is:

p(xt|Zt) =
p(zt|xt)

∫
xt−1 p(xt|xt−1)p(xt−1|Zt−1)dxt−1

p(Zt)
(2.2)

where the term p(zt|xt) expresses the observation density, i.e, the probability of making obser-

vation zt given that the target state at time t is xt. The term p(xt|xt−1) represents the dynamic

model, i.e, the prediction of state xt at time t given the previous state xt−1.

From Eq. 2.2, it can be noted that the updating procedure of Bayesian filters is performed

through the two steps of hypotheses generation and hypotheses correction, previously men-

tioned:
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• Hypotheses generation: Given the dynamic model p(xt|xt−1) and the a posterior dis-

tribution at the previous time step p(xt−1|Zt−1), the state of the target is predicted ac-

cording to the following update rule:

p(xt|Zt−1) =
∫
xt−1

p(xt|xt−1)p(xt−1|Zt−1)dxt−1 (2.3)

• Hypotheses correction: The predicted state of the target p(xt|Zt−1) is corrected by the

observation model p(zt|xt):

p(xt|Zt) = αtp(zt|xt)p(xt|Zt−1) (2.4)

where αt = 1/p(Zt) is a normalizing constant ensuring that the posterior probability

over the entire state space sums up to one.

In the following sections we will briefly describe the well-known algorithms of Kalman and

particle filters, as representative examples for Bayesian tracking in continuous and discrete

spaces, respectively. In particular, in Chapter 5 we will use these filters to estimate and integrate

the state of several object features for robust tracking purposes.

2.2 Kalman filter

In the particular case that the observation density is assumed to be Gaussian, and the dynamics

are assumed to be linear with additive Gaussian noise, equations 2.3 and 2.4 result in the

Kalman filter (8; 10; 30; 58; 81; 136). In the Appendix A we derive the Kalman filter equations,

from the Bayesian point of view. Next, we simply include the main steps of the algorithm.

The evolution of the system (parameterized by a state vector x) at time t is described by

the dynamic model:

xt = Dtxt−1 + qt
d (2.5)

where Dt is a square matrix denoting the deterministic component of the dynamic model,

and qt
d is a random variable representing the process noise, assumed to be white with normal

distribution, i.e, qt
d ∼ N(0,Σt

d).

The state vector is related to the observation zt by the measurement equation:

zt = Mtxt + qt
m (2.6)
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where Mt is a matrix denoting the deterministic component of the measurement model, and

qt
m is a zero-mean, white and Gaussian variable representing the measurement noise, qt

m ∼
N(0,Σt

m).

Based on these models, Kalman filter updates the state vector and covariance estimates

using the following ‘prediction-correction’ cycle:

Hypothesis generation (prediction)

xt
− = Dtxt−1

+ Predicted state vector (2.7)

Σt
− = Σt

d + DtΣt−1
+ (Dt)T Predicted state covariance (2.8)

Hypothesis correction

xt
+ = xt

− + Kt[zt −Mtxt
−] State estimate (2.9)

Σt
+ = [I−KtMt]Σt

− State covariance estimate (2.10)

Kt = Σt
−(Mt)T [MtΣt

−(Mt)T + Σt
m]−1 Kalman Gain (2.11)

The subscripts ‘−’ and ‘+’ represent the a priori and a posteriori estimates respectively (for

further details, see Appendix A).

Figure 2.1 shows in a one dimensional example, how the Kalman filter can be seen as a

propagation of conditional densities process. Initially, a Gaussian distribution is available from

previous iteration, and represents the probability distribution of the state vector (Fig. 2.1a).

Next, a linear dynamic model with zero-mean, and white Gaussian noise is applied to this dis-

tribution, resulting in another Gaussian function (Fig. 2.1b). Finally, based on some observa-

tion, the propagated distribution is corrected, providing the a posteriori probability distribution

of the state (Fig. 2.1c) .

Even though Kalman filters make strong assumptions about the nature of the dynamic

model and observations, their computational efficiency has made them very popular, and use-

ful for situations where the dynamics of the target follow paths with relatively low uncertainty.

Nevertheless, in general and unconstrained situations, the observation densities involved in the

tracking problem can not be adjusted to Gaussian distributions, and consequently the linear

Kalman filter is not useful.

In order to handle nonlinearities both in the dynamic and observation models, several

approaches based on the Kalman filter have been proposed. The Extended Kalman Filter
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(a) (b) (c)

Figure 2.1: Probability density function propagation in a Kalman filter. (a) A posteriori
probability distribution of the target state at iteration t − 1. Although in a Kalman filter this
density is assumed to be a Gaussian distribution that might be analytically represented, we de-
pict how it would be a discretization of the Normal density, by a set of weighted particles. We
represent these set of particles below the PDF plot. Their corresponding weights are propor-
tional to the gray level, in such a way that darker tonalities represent higher weights. This kind
of representation will be used in following chapters, when describing the fusion scheme. (b) In
the prediction stage, the PDF of the state is propagated by a linear dynamic model with Gaus-
sian noise. (c) Finally, in the last stage, the PDF is corrected by considering a measurement.
Throughout the whole process, all the involved probability distributions are considered to be
Gaussian.

(EKF) (8; 40) approximates the non linear dynamics by a Taylor expansion, and subsequently

proceeds as for the linear Kalman filter. Another Kalman based approach, the Unscented

Kalman Filter (UKF) (57; 134) proceeds by considering a set of points that are determinis-

tically selected from p(xt−1|Zt−1), which is assumed to have a Gaussian distribution. These

points are subsequently propagated by a nonlinear dynamic model and used to re-estimate the

parameters of p(xt|Zt). However, the limitation of the EKF and UKF is that both of them

always assume a posteriori PDF with a Gaussian distribution, which is unrealistic especially in

cluttered environments.

Data association methods deal with nonlinearities in the observation model by using mul-

tiple hypotheses about the measurements. For instance, the Probabilistic Data Association

Filter (PDAF) (8) assigns only one of a finite set of measurements to the target, based on some

heuristic mechanisms. The Joint PDAF (JPDAF) extends the problem to the multitarget case,

where each target is tracked using the same modality. The Joint Likelihood Filter (107), goes a

step further, and allows to track different targets based on different modalities.

Nevertheless, the best results up to date, when both the dynamic and observation models

do not hold the Gaussian assumption, are obtained with trackers based on particle filter formu-

lations (3; 22; 32; 71; 83), where the Condensation algorithm (50; 51; 75), is perhaps the most
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(a) (b) (c)

Figure 2.2: Probability density function propagation in a particle filter. (a) A posteriori
probability distribution of the target state at iteration t−1. Note that when dealing with particle
filters, the assumption of Gaussian probability distributions is no longer necessary. (b) The
PDF of the state is propagated by a stochastic dynamic model. (c) Likewise in the Kalman
filter procedure, the propagated PDF is corrected considering external observations. On the
other side, in particle filters, multiple observations may be considered.

popular example in the computer vision community. In the following section, we will describe

how the particle filters realize the Bayes filter updates.

2.3 Particle filters

Particle filters (3; 22; 32; 50; 51; 71; 75; 83) are suitable for representing the propagation of

conditional densities, when the dynamic and observation probability distributions involved in

the process are non-Gaussian. The main idea in particle filters is to approximate the a posteriori

probability of the state by a set of random weighted samples. Subsequently, in order to simulate

the Bayesian filter propagation (Eq. 2.2), the dynamic and observation models are applied

individually to each one of the samples. Generally, the higher number of samples, the better

approximation of the real PDF’s is obtained. Fig. 2.2 depicts the stages of the propagation,

which likewise in the Kalman filter, are composed of a probabilistic propagation (prediction)

and a correction using some external measures (not only one, as in the Kalman filter). Next,

we will explain the details of the algorithm.

The a posteriori probability p(xt−1|Zt−1) (Fig. 2.3a) of the previous time step is approx-

imated by a set of n weighted samples {st−1
i , πt−1

i }, i = 1, . . . , n where πt−1
i ∈ [0, 1] is

the weight for particle st−1
i . The whole set of weights is normalized to sum up to one, i.e,∑n

i=1 πi = 1. Given this representation, the steps to estimate the a posteriori probability

p(xt|Zt) can be summarized as follows:
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2.3. PARTICLE FILTERS

Resampling: A common problem in particle filters refers to a degeneracy phenomenon, where

all but one particle will have negligible weight after a few iterations (3). This effect may

be reduced using a resampling stage at the beginning of each iteration, consisting in the

elimination of those particles having smaller weights and concentrating on particles with

larger weights. That is, the set {st−1
i , πt−1

i }, i = 1, . . . , n, is resampled (sampling with

replacement) according to the weights πt−1
i , in order to define a new set {s̃t−1

i , π̃t−1
i }.

The sampling with replacement is simulated on the basis of the following deterministic

algorithm (a different algorithm based on a random sampling is explained in (50)):

Deterministic resampling algorithm: Given the set {st
i, π

t
i}, i = 1, . . . , n, the cumu-

lative probabilities are calculated from πt
i :

ct0i = 0
cti =

∑i
j=1 π

t
i

Subsequently, the new particle set {s̃t
i, π̃

t
i}, i = 1, . . . , n is defined as follows:

s̃t
i = st

ε(i) where ε(i) is the smallest j such that ctj ≥ i
n

π̃t
i = 1

n

The result of this resampling phase can be observed in Fig. 2.3b. Note that the particles

with higher weight can be selected several times, and therefore, identical copies of these

elements may appear in the resampled set. On the other hand, some particles having low

weight may not be chosen at all, and are extinguished of the process. Observe that all

particle weights are identical at this point of the iteration.

Hypotheses generation (prediction): Each element of the set {s̃t−1
i , π̃t−1

i }, i = 1, . . . , n is

propagated according to a stochastic dynamic model, represented as a conditional density

p(xt|xt−1). A new set {st
i, π̃

t−1
i }, i = 1, . . . , n is generated, where st

i ∼ p(st
i|st−1

i ). In

this stage the weights associated to each particle are not modified (Fig. 2.3c).

Hypotheses correction: The stochastic resampling and propagation operations performed in

the two previous stages provide an approximation of the likelihood term p(xt|Zt−1) =∫
xt−1 p(xt|xt−1)p(xt−1|Zt−1)dxt−1 of the Bayes filter equation (Eq. 2.2). The subse-

quent action to realize consist of modifying the particle weights based on the observation

density p(zt|xt), allowing to obtain the set {st
i, π

t
i}, i = 1, . . . , n, which approximates

the a posteriori state density at time t, that is, p(xt|Zt). Weights πt
i are computed as:

πt
i ∝ p(zt|st

i)π̃
t−1
i

14



2.3. PARTICLE FILTERS

Figure 2.3: One iteration of a particle filter algorithm. (a) p(xt−1|Zt−1): A posteriori prob-
ability of the state at iteration t − 1, which is the input of the filter at iteration t. As it is
commented in the text, the PDF is approximated by a set of weighted particles. (b) Resampling
operation. Note that the number of samples is kept constant, and some particles having rela-
tively low weights are extinguished, while other particles with high weight are chosen several
times. (c) Sample propagation through a stochastic dynamic model p(xt|xt−1). The set of
propagated samples, approximate the distribution p(xt,Zt−1). At this point, the particles are
not weighted yet. (d) Observation function p(zt|xt). (e) The propagated samples are weighted
according to the observation function. This set of weighted particles approximates the a pos-
teriori distribution of the state vector, at iteration t, that is, p(xt|Zt) . On the right side of the
figure, the main steps of the particle filter algorithm are depicted by using the diagram adapted
from (75), where the symbol ∼ denotes the resampling operation, ∗ represents a convolution
operation by the dynamic model, and × is the multiplication by the observation density.

where p(zt|st
i) is a non-negative function representing the observation function (Fig. 2.3d).

Estimate: Although the prediction and correction stages are the main phases in a particle filter

iteration, it is common to include an extra final step, where the set of n samples {st
i, π

t
i}

is used to compute some estimate about the target state. For instance, a mean state of the

target might be calculated according to:

E(xt) =
n∑

i=1

πt
is

t
i
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2.4 Summary

In this chapter we have established the bases to analyze the tracking problem as a propagation

of conditional densities, which can be formulated by means of a Bayesian filter. From this point

of view, we have introduced the basic formulation of two recursive Bayesian filters which will

be used in following chapters: the Kalman filter, and particle filters. The former assumes that all

the probabilities involved in the process follow Gaussian distributions and linear dynamics with

Gaussian noise, while the latter allows to generalize the problem for non-Gaussian distributions

and non-linear dynamics. However, the procedure of both filters can be identically separated

in two stages. First, a prediction of the target state is formulated based on the target state at

the previous time step and considering a stochastic dynamic model. Subsequently, according

to some external observation, the predicted distribution is corrected.

All these concepts have been presented from a theoretical perspective. In the following

chapters, we will define each one of the filter components, in order to design a robust tracking

system. In Chapter 3, the state vectors associated to several target cues will be described.

In Chapter 5, we will concentrate on the dynamic and observation models of the individual

features. Furthermore, in Chapter 5, we will propose an integration scheme, for integrating

several filters (either Kalman and particle filters) into a same framework, which will allow to

develop a robust tracking algorithm.
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Chapter 3

Visual features for robust tracking

This chapter describes the visual features that will be used to characterize the target robustly.

Specifically, the object will be represented by appearance and geometric cues. The main con-

tribution of this chapter refers to the use of an object dependent colorspace (we call it Fisher

colorspace), which maximizes the distance between the target and background color repre-

sentation. This is a desirable property for any tracking system. Therefore, we will consider

the actual colorspace, and the color representation in such colorspace, as appearance features.

Geometric cues will be described by a snake approximating the object contour and a Kalman

predicted bounding box surrounding the object, which provides a rough estimation about its

position.

It is important to note that the present chapter, will only describe each one of the features.

In Chapter 5 all these cues will be integrated in a probabilistic framework for tracking purposes,

where the state of the features will be estimated by the Kalman and the particle filters described

in the previous chapter.

3.1 Introduction

Similar to any pattern classification task, visual tracking needs to address the initial issue about

the selection of the appropriate features to represent the target and allow to discriminate it

from the rest of the image. Since tracking applications search for efficient computational algo-

rithms, the selected features might be represented by concise parameterizations. Furthermore,

these cues should be robust to several artifacts present in real and unconstrained environments,

such as cluttered backgrounds, non-stationary lighting conditions or non-linear target dynam-

ics. By robustness, it is meant that the feature state remains constant or is adapted to these
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3.1. INTRODUCTION

non-stationary situations of the scene.

In the literature, the visual modules most commonly used in tracking tasks include geomet-

ric cues, motion, color, contrast, texture, appearance and shape. For instance, the separation

of various regions in video sequences, according to different motion models is considered by

Torr (127), and Torr and Zisserman (128). These works are based on an initially selected set of

image features (usually points of interest) whose correspondences in consecutive images can be

robustly determined. Based on the correspondence of this reduced set of points, an error mea-

sure is minimized and different movement models are identified. Each one of the pre-selected

pixels is classified to a specific motion class permiting to group and recognize image regions

having similar velocities. Other approaches minimize an error measure based on information

collected from all pixels in the images (not only a reduced set of points). For instance, Irani

and Anandan (49) employ a brightness constraint of all image points to identify the motion

groups present in a video sequence. It is assumed that the dominant motion corresponds to

the background points, and the target is identified by detecting image pixels that do not fit the

dominant motion. A similar work was previously presented by Black and Anandan (16).

Color distributions are also often used as target representations. A simple non-parametric

method for modeling color distributions are color histograms. For instance, Birchfield (13)

approximates the target color by a histogram, and then, the object of interest is localized in

successive frames by searching image regions with a similar histogram to that of the target.

The measure of similarity is based on a histogram intersection metric proposed by Swain and

Ballard (123). Sigal et al. (119) use a priori learned skin-like color histograms to classify all

image pixels into skin and no-skin classes. In other approaches, for instance Raja et al. (109),

and Yang et al. (144), the color distribution is represented by a parametric model using Mixture

of Gaussians. A completely different representation for color distributions is presented by

Wu and Huang (141), modeling target color by a SASOM (Structure Adaptative SOM) neural

network, whose structure is learned by an offline training.

Contour is another feature commonly used to characterize the target, basically because it

offers more robustness to smooth changes of illumination than appearance-based cues. The

tracking algorithms proposed by Isard and Blake (51), or MacCormick (75), are examples of

object trackers based on contours parameterized by B-splines.

Target shape can also be modeled by 3D meshes. For instance, Kuch and Huang (66) rep-

resent the surface of the target by a spline-based surface. Nevertheless, these methods require

a high number of parameters and control points to be specified. Other approaches approximate
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3.2. COLORSPACE SELECTION

the parts of an articulated target by geometric shapes parameterized by a reduced number of

parameters, such as in (120), where a human body is approximated and tracked by generalized

cylinders.

This brief description of existing techniques refers uniquely to the tracking methods that

represent the target using a single feature. To provide a more robust description of the object,

several features might be simultaneously considered. Multiple cue integration will be covered

in the following chapters (Chapter 4 and 5). In the present chapter we center our attention to

the description of the individual cues.

Specifically, in this thesis we will describe the object using both appearance and geometric

cues. The first appearance cue that will be considered, is an object dependent colorspace,

named Fisher colorspace. In almost all of the previous approaches, no attention has been paid

to the selection of the colorspace where the object is represented. Instead, in this dissertation

we propose to represent the color distribution of the target in the Fisher colorspace, which

maximizes the distance of the target colorpoints with respect to background colorpoints. This

colorspace is dependent on the object appearance, and consequently, can be considered as a

target feature. The distribution of the colorpoints onto the Fisher plane will be parameterized

by a Mixture of Gaussians model, fitted to the data using Expectation-Maximization (EM).

Furthermore, the object will be represented by its contour, approximated by a snake model.

This model, allows to deal with local and non-rigid deformations of the object.

Besides all these features, we will include a position prediction module which, based on

the Kalman filter, will provide a rough estimate of the position of a bounding box surrounding

the object. In the following sections we will describe in detail each one of the features.

3.2 Colorspace selection

An important initial issue for any color-based tracking or figure-ground segmentation algo-

rithm, concerns the selection of the colorspace where the data will be represented. Neverthe-

less, throughout the literature there is not a clear consensus about which colorspace to use.

A good review about different colorspaces, may be found in (38) and (121). Next, we just

overview the principal models.
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3.2. COLORSPACE SELECTION

3.2.1 Existing colorspaces

The most popular method to encode the color information is the RGB model, where the color is

represented by three components, resulting from the response of three separate photoreceptors:

R =
∫
λ σR(λ)E(λ)dλ G =

∫
λ σG(λ)E(λ)dλ B =

∫
λ σB(λ)E(λ)dλ (3.1)

where σk, with k = {R,G,B} is the sensitivity of the k-th type of receptor, E(λ) is the light

arriving to the receptor and λ are the wavelengths. The set of available colors is represented

in the cube of Fig. 3.1a. The axis connecting the corners corresponding to the white and black

color (gray level axis), defines the intensity of the color. As we will mention in the following

section, a desirable property of a colorspace is to exhibit certain invariance in the presence

of illumination changes. This may be accomplished by the normalized version of the ‘full’

colorspaces. For instance, in the case of the RGB colorspace, its normalized version would be

the rgb colorspace:

r =
R

R+G+B
g =

G

R+G+B
b =

B

R+G+B
(3.2)

Since r + g + b = 1, the normalized rgb can be represented by only considering two of the

components.

Other color models are inspired by human color perception. According to Foley et al. (37),

the human vision system uses three measurements to represent color, namely hue, saturation,

and brightness . Hue describes the ‘pure’ most similar color the light is perceived to be. Satura-

tion describes the distance of the color with respect to a gray with identical intensity. Brightness

refers to the perceived achromatic luminance of the light. Based on this description, it is de-

fined the HSV (Hue, Saturation and Value) color model, where each one of the components is

expressed as a function of the R,G,B components:

H(R,G,B) = arctan

( √
3(G−B)

(R−G) + (R−B)

)

S(R,G,B) = 1− min(R,G,B)
R+G+B

(3.3)

V (R,G,B) = R+G+B

If the RGB cube of Fig. 3.1a is seen from the gray level axis point of view, it allows to

define the parameters of the HSV colorspace. This is shown in Fig. 3.1b.
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3.2. COLORSPACE SELECTION

(a) (b)

Figure 3.1: Representation of the RGB and HSV colorspaces (a) RGB color cube. (b) HSV
color representation. Note that the parameters of the HSV colorspace can be determined seeing
the RGB color cube from the point of view of the gray level line.

Since the RGB colorspace excludes some colors of the visible spectrum and is too depen-

dent on the sensor features, the CIE (Commission Internationale d’Eclairage) defined the CIE

XYZ color model, which can be produced from RGB coordinates by an empirically computed

linear transformation. For instance, the matrix for a NTSC receiver system is:


 X
Y
Z


 =


 0.607 0.174 0.200

0.299 0.587 0.114
0.000 0.066 1.116




 R
G
B


 (3.4)

and the corresponding normalized components:

x =
X

X + Y + Z
y =

Y

X + Y + Z
z =

Z

X + Y + Z
(3.5)

From the coordinates XYZ, other CIE color models can be constructed. For instance, the

CIE Lab, which is expressed as:

L = 25 (100Y/Y0)
1/3 − 16

a = 500
[
(X/X0)

1/3 − (Y/Y0)
1/3

]
(3.6)

b = 200
[
(Y/Y0)

1/3 − (Z/Z0)
1/3

]
where (X0, Y0, Z0) are the X , Y and Z coordinates of a reference white patch. Many more

colorspaces can be defined basically as linear transformations of the RGB or XY Z coordi-

nates, such as the YUV and YIQ models, which are utilized in the European and American TV
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color system, respectively:
 Y
U
V


 =


 0.299 0.587 0.114
−0.147 −0.289 0.437
0.615 −0.515 −0.100




 R
G
B


 (3.7)


 Y
I
Q


 =


 0.299 0.587 0.114

0.596 −0.275 −0.321
0.212 −0.528 0.311




 R
G
B


 (3.8)

In (126) nine different colorspaces are compared for skin detection tasks.

3.2.2 Desirable colorspace properties

Among the various colorspaces just described, none has a clear advantage over the others.

This is the reason why, within the visual tracking literature, almost all previously described

colorspaces have been indistinctly utilized. For instance, the RGB colorspace is used in (100;

108; 124). The efforts described in (25; 114; 140; 145) represent color by the normalized RGB

model. Maybe the most extensively used colorspace is the HSV (109; 119; 122; 131; 141), and

a two dimensional version considering only the HS chromaticities components (48; 64; 102).

Some approaches (61; 139) are based on the YUV colorspace as well.

All this variety in the types of color models is due to the fact that there does not exist

a criterion for the selection of the appropriate colorspace. In most of the previously cited

approaches, the selection of the colorspace to use is based on some prior empirical experiments,

where the color model is selected by a trial and error procedure among the various available

colorspaces.

In contrast to previous approaches, in this thesis we propose to select the colorspace using

specific criteria focused on visual tracking applications. The premises that will define the

utilized colorspace are the following:

1. Since the first goal of visual tracking is to discriminate the object of interest from the rest

of the scene, an important function of the colorspace should be to maximize the distance

between target and background color distributions.

2. Furthermore, in order to deal with dynamic environments suffering from non-stationary

lighting conditions, the colorspace should demonstrate a certain degree of invariance to

illumination changes, that is, the optimal colorspace maximizing the foreground/background

separation should not be affected by appearance changes produced by illumination changes.
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Unfortunately, none of the existing colorspaces is tailored to satisfy the above criteria. At

most, those colorspaces involving some normalization of the R, G, B components, such as

normalized RGB or normalized XYZ, show invariance in the colorpoints representation when

images are affected by illumination changes (uniform scaling and shifting of the light). Nev-

ertheless, these colorspaces do not guarantee the separation of the foreground and background

classes, which is extremely important for tracking tasks.

In the following section, we will propose the use of a colorspace dependent on the target

and background appearances, which satisfies both previous criteria.

3.2.3 Fisher colorspace

In order to accomplish the first of the criteria previously mentioned, we will make use of

pattern recognition techniques. The representation of the target and background colorpoints

through a color model maximizing the separation of both classes may be analyzed as a stan-

dard classification problem based on Discriminant Analysis. In particular we are interested in

the linear techniques (Linear Discriminant Analysis -LDA-, also called Fisher Discriminant

Analysis (33; 39)). From this point of view our problem may be reduced to the search of the

hyperplane (Fisher plane) that best separates the two classes. The following section will show

that this linear transformation offers certain robustness to illumination changes (which is the

second criterion that we have previously defined for colorspace selection).

Next, the procedure for determining the Fisher colorspace will be explained in detail, which

will actually be the original RGB data projected onto the Fisher plane. This colorspace may

be computed from a single training image, acquired with a RGB camera and where the points

belonging to the object and the points belonging to the background are provided by the user.

Assume that the set of n image pixels are arranged into a n× 3 matrix C = [c1, . . . , cn]T ,

where the rows represent the individual pixels and the columns correspond to each of the color

channels in the RGB colorspace. nO of these pixels belong to the object O, represented by the

matrix CO = [cO,1, . . . , cO,nO
]T and the rest of nB pixels CB = [cB,1, . . . , cB,nB

]T belong to

the background B. We wish to determine which plane is the most effective in discriminating

between these two subsets of points. Let us denote such a plane by W = [w1,w2]
T ∈ R2×3,

where w1 and w2 are vectors in the RGB space, spanning the points lying on the plane. The

projection of CO and CB onto this plane, generates the sets FO = COWT ∈ RnO×2 and

FB = CBWT ∈ RnB×2, respectively.
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The goal of Fisher Discriminant Analysis is to find the best orientation of the plane W, such

that the separation of the projected subsets FO and FB is maximized. In order to determine

such a plane, Fisher-LDA considers the maximization of the following objective function:

J(W) =
WSbWT

WSwWT
(3.9)

where Sw is the within class scatter matrix and Sb is the between class scatter matrix. These

matrices are defined as:

Sw =
∑

ε={O,B}

nε

n

nε∑
i=1

(cε,i − c̄ε)(cε,i − c̄ε)T (3.10)

Sb =
∑

ε={O,B}
nε(c̄ε − c̄)(c̄ε − c̄)T (3.11)

where,

c̄ε =
1
nε

nε∑
i=1

cε,i is the ε-class mean vector (3.12)

c̄ =
∑

ε={O,B}

nε

n
c̄ε is the total mean vector (3.13)

Note that the maximization of the criterion in Eq. 3.9 makes sense in that it searches for

the separation of the class means in the projected space (high Sb), while at the same time the

classes remain compact (small Sw). The classic Fisher-LDA method (33) maximizes the J

objective function by constructing the rows of W with the eigenvectors of S−1
w Sb having the

highest eigenvalues.

Nevertheless, this approach has a limitation. In the general case of a C-class problem,

Sb will be the sum of C matrices of rank one, and since only C − 1 of these matrices are

independent (see Eqs. 3.11 and 3.13), the rank of Sb will be at most C − 1. As a consequence

the rank of S−1
w Sb will be C− 1 as well, and S−1

w Sb will have only C− 1 nonzero eigenvalues.

Subsequently, the hyperplane W will be spanned at most by C− 1 eigenvectors.

In the two class problem discussed here, this would mean that the RGB points would be

projected on a hyperplane of dimension one, i.e, a line. As will be discussed in the following

section, the projection of the data onto a linear space can increase robustness to illumination

changes. Therefore, the projection of the original data onto a line would satisfy these require-

ments, but with the cost of losing too much information. A better choice, consists of projecting

the RGB data onto a plane.
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In order to get a 2D discrimination plane, even in the case of 2 classes, we need to use

the nonparametric version of Linear Discriminant Analysis (39). The key point of this LDA

extension is that it computes the between class scatter matrix Sb using local information and

the K-Nearest Neighbors (KNN) rule, which allows to obtain a full rank matrix. For the object

(O) and background (B) classes of our particular problem, the nonparametric between class

scatter matrix (denoted Σb) is defined as,

Σb =
1
n

nO∑
i=1

wi

(
cO,i −Mk

B(cO,i)
)(

cO,i −Mk
B(cO,i)

)T

+
1
n

nB∑
i=1

wi

(
cB,i −Mk

O(cB,i)
)(

cB,i −Mk
O(cB,i)

)T
(3.14)

where Mk
ε (ci) is the mean of the k nearest neighbors in class ε = {O,B} to a point ci, and wi

is a weighting function for deemphasizing samples far from the classification boundary (39).

We conclude with the main steps of the algorithm, which given two sets {cO,1, · · · , cO,nO
},

{cB,1, · · · , cB,nB
} of RGB pixel values used as training data, obtains their optimum linear

mapping onto a 2D plane:

1. Calculate the within scatter matrix Sw based on Eq. 3.10

2. Transform the data so that the averaged covariance matrix Sw, becomes the identity

matrix (39). This can be achieved by whitening the original data with respect to Sw.

That is, transform c to d = Λ−1/2ΩT c, where Λ and Ω are the 3 × 3 eigenvalue and

eigenvector matrices of Sw.

3. Select k and (in the D-space, i.e, the space of d data) compute Σb using Eq. 3.14.

4. Select the two eigenvectors ψ1, ψ2 of Σb with the two largest eigenvalues. These vectors

are arranged into the matrix Ψ = [ψ1, ψ2] ∈ R3×2.

5. The optimum linear mapping from the original RGB space to the discriminant subspace

(we call it Fisher colorspace) is given by f = ΨT Λ−1/2ΩT c, where c ∈ R3×1 is a point

represented in the RGB colorspace and f ∈ R2×1 is its projection onto the Fisher plane.

Therefore, the Fisher plane can be written as:

W = ΨTΛ−1/2ΩT (3.15)
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(a) (b)

Figure 3.2: RGB color distribution of a scene. (a) Image of the scene. (b) Color distribution
of the image pixels, represented in the RGB colorspace.

Figures 3.2 and 3.3 depict the main steps to compute the Fisher plane, for two different

targets in the same image. Fig. 3.2a shows the scene and in Fig. 3.2b all the image pixels

are represented in the RGB colorspace. The main idea behind the Fisher colorspace is that

for color-based tracking tasks we can choose a colorspace dependent on the target appearance,

which maximizes its distance (in colorspace coordinates) with respect to the color of the rest

of image points. For example, if we wish to track the ladybird (Fig. 3.3a), the colorspace

can be selected offline as a simple calibration procedure before the tracking stage. The points

belonging to the object and background are initially provided (Fig. 3.3b), and the Fisher plane

is computed based on the non-parametric LDA explained previously (Fig. 3.3c). The separation

of the target and background colorpoints projected onto this plane is maximized (Fig. 3.3d,e).

In the case that the flower petals were the tracked object, the system would be trained according

to the equivalent stages indicated in Figures 3.3f- 3.3j. Note in Fig. 3.4, the difference of the

Fisher planes corresponding to the different targets.

3.2.4 Fisher colorspace in the presence of lighting changes

One desirable property that a colorspace should satisfy, is to provide a representation of the

scene invariant to illumination changes, i.e, when the lighting conditions change, an opti-

mal colorspace would be one where the color representation of the objects in the image were

maintained constant, or the mapping between the images under different illuminants could be

learned and used to correct the illumination changes. This is precisely the subject of interest

of the color constancy algorithms (6; 7; 34). Unfortunately, since this is a extremely challeng-

ing task, available methodologies are generally constrained to laboratory and artificial lighting
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 3.3: Stages for determining the Fisher plane for two different targets. (a)-(e): Fisher
colorspace for tracking the ladybird. (a) Hand segmented target image. (b) Manual separation
of the image pixels into the foreground (red) and background (blue) classes. (c) Fisher plane
adjusted to the training classes. (d) Projection of the foreground and background points onto
the Fisher plane. (e) Detail of the projected points. (f)-(j): Fisher colorspace for tracking the
flower petals. These figures have an equivalent meaning as figures (a)-(e).
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3.2. COLORSPACE SELECTION

Figure 3.4: Fisher planes for different targets. Detail of the Fisher planes associated to the
targets commented in Fig. 3.3. Note that the Fisher plane is ‘object-dependent’.

conditions.

As an alternative to the search of a color representation invariant to distinct illuminants, in

this thesis we propose to adapt both the colorspace and the colorpoints representation through

time (this will be discussed in Chapter 5).

Nevertheless, it is important to note that the Fisher colorspace is invariant to certain lighting

effects, such as uniform scaling and shifting of the image colorpoints. This invariace will

relax considerably the complexity of the colorspace adaptation process. Next we will show

how the Fisher colorspace remains stationary in the presence of the illumination artifacts just

mentioned:

Without loss of generality, in the following proofs and derivations we will assume the

parametric version of the Fisher plane, described by the maximization of the objective function

J(W) = (WSbWT )(WSwWT )−1 where Sb and Sw are defined by Eqs. 3.10 and 3.11,

respectively.

Lemma 1. The Fisher plane is invariant to uniform illumination scaling

Proof: Given all image points ci, i = 1, . . . , n represented in the RGB colorspace, a uniform

illumination scaling is defined by the mapping:

S: ci → αci (3.16)

where α is the scaling factor.
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We assume that the classification of the image points into the object (O) and background

(B) classes is available. Under these circumstances, the following statements about the

total mean and the class means are satisfied:

S(c̄ε) = S

(
1
nε

nε∑
i=1

cε,i

)
=

1
nε

nε∑
i=1

αcε,i

= α
1
nε

nε∑
i=1

cε,i = αc̄ε (3.17)

S(c̄) = S


 ∑

ε={O,B}

nε

n
c̄ε


 =

∑
ε={O,B}

nε

n
S(c̄ε)

=
∑

ε={O,B}

nε

n
αc̄ε = α

∑
ε={O,B}

nε

n
c̄ε = αc̄ (3.18)

As a consequence, the transformed within class scatter matrix and between class scatter

matrix may we written as

S(Sw) = S


 ∑

ε={O,B}

nε

n

nε∑
i=1

(cε,i − c̄ε)(cε,i − c̄ε)T




=
∑

ε={O,B}

nε

n

nε∑
i=1

(S(cε,i)− S(c̄ε))(S(cε,i)− S(c̄ε))T

=
∑

ε={O,B}

nε

n

nε∑
i=1

(αcε,i − αc̄ε)(αcε,i − αc̄ε)T

= α2
∑

ε={O,B}

nε

n

nε∑
i=1

(cε,i − c̄ε)(cε,i − c̄ε)T

= α2Sw (3.19)

S(Sb) = S


 ∑

ε={O,B}
nε(c̄ε − c̄)(c̄ε − c̄)T




=
∑

ε={O,B}
nε(S(c̄ε)− S(c̄))(S(c̄ε)− S(c̄))T

=
∑

ε={O,B}
nε(αc̄ε − αc̄)(αc̄ε − αc̄)T

= α2
∑

ε={O,B}
nε(c̄ε − c̄)(c̄ε − c̄)T

= α2Sb (3.20)
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Finally, the objective function to be maximized in order to compute the Fisher plane, is:

S(J(W)) = S

(
WSbWT

WSwWT

)
=

WS(Sb)WT

WS(Sw)WT

=
Wα2SbWT

Wα2SwWT
=

WSbWT

WSwWT
= J(W) (3.21)

Thus, the criteria used to compute the Fisher plane for two images related by a linear scal-

ing are exactly the same. Therefore, we conclude that the Fisher plane is invariant to uni-

form illumination scaling. �

Lemma 2. The Fisher plane is invariant to a uniform illumination shifting

Proof: The proof for this lemma is quite similar to the proof for lemma 1. In this case, given

all image points ci, i = 1, . . . , n represented in the RGB colorspace, a uniform lighting

shifting is defined by the mapping:

T: ci → ci + β (3.22)

where β is the shifting factor.

We assume again that the classification of the image points into the object (O) and back-

ground (B) classes is available. Subsequently, the class means and the total mean for the

lighting shifted image can be expressed as:

T(c̄ε) = T

(
1
nε

nε∑
i=1

cε,i

)
=

1
nε

nε∑
i=1

cε,i + β

=
nε

nε
β +

1
nε

nε∑
i=1

cε,i = c̄ε + β (3.23)

T(c̄) = T


 ∑

ε={O,B}

nε

n
c̄ε


 =

∑
ε={O,B}

nε

n
T(c̄ε)

=
∑

ε={O,B}

nε

n
(c̄ε + β) =

nO + nB

n
β +

∑
ε={O,B}

nε

n
c̄ε =

= c̄ + β (3.24)
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Figure 3.5: Sample images of a illumination varying sequence. Three distinct frames of
the sequence used to analyze the performance of the Fisher colorspace in front of illumination
changes. The frames correspond to the images of a still scenario (illuminated by natural light)
acquired at different times of the day.

In a similar manner we can recompute the equations for the scatter matrices:

T(Sw) = T


 ∑

ε={O,B}

nε

n

nε∑
i=1

(cε,i − c̄ε)(cε,i − c̄ε)T




=
∑

ε={O,B}

nε

n

nε∑
i=1

(T(cε,i)− T(c̄ε))(T(cε,i)− T(c̄ε))T

=
∑

ε={O,B}

nε

n

nε∑
i=1

(cε,i + β − c̄ε − β)(cε,i + β − c̄ε − β)T

=
∑

ε={O,B}

nε

n

nε∑
i=1

(cε,i − c̄ε)(cε,i − c̄ε)T

= Sw (3.25)

T(Sb) = T


 ∑

ε={O,B}
nε(c̄ε − c̄)(c̄ε − c̄)T




=
∑

ε={O,B}
nε(T(c̄ε)− T(c̄))(T(c̄ε)− T(c̄))T

=
∑

ε={O,B}
nε(c̄ε + β − c̄− β)(c̄ε + β − c̄− β)T

=
∑

ε={O,B}
nε(c̄ε − c̄)(c̄ε − c̄)T

= Sb (3.26)

Thus, the scatter matrices of both the original images and the images affected by a light-

ing shifting are equal. As a consequence, the objective functions used to compute the
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(a) (b)

Figure 3.6: Fisher colorspace in front of illumination changes. (a) Two different foregrounds
for which the Fisher colorspace under different illumination conditions has been computed. (b)
Representation of the Fisher colorspaces by their normal vectors. The surface of the sphere
represents the whole space of possible Fisher plane configurations. However, the Fisher planes
normals computed for each object are distributed on a small region onto the sphere (‘Fisher
planes i’ are associated to ‘Foreground i’ in Fig. 3.6a). This proves that the Fisher colorspace
presents some robustness in front of illumination changes.

Fisher plane are also equal, T(J(W)) = J(W), which means that the Fisher plane is

also invariant to a illumination shifting effect. �

The invariance of the Fisher plane to illumination changes is demonstrated in the following

experiment, where the non parametric LDA analysis is applied to an image sequence of a still

scenario illuminated by natural lighting that changes smoothly. The scene has been illuminated

during a whole day, acquiring one shot per minute. Figure 3.5 shows three representative

frames of the sequence.

Several foreground objects have been selected, and for each of them, the Fisher plane

has been computed throughout the whole sequence. The results show that the Fisher planes

(represented by their normal vectors) form separate clusters for every individual target, and the

variance in each cluster is relatively small, proving that the Fisher colorspace is quite invariant

to illumination changes. In Fig. 3.6b we depict the distribution of the normals to the Fisher

plane for two different targets (indicated in Fig. 3.6a). The unitary sphere represents the space

of all possible configurations of the normal to the Fisher plane. Observe how for each target,

the Fisher plane distributions just occupy a small region onto the configuration space.
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(a) (b)

Figure 3.7: Performance of the Fisher colorspace for camouflaging targets. (a) Experimen-
tal synthetic image: the target (central circle) has a similar appearance as the background of
the image. (b) The Fisher colorspace provides a projection plane, where the target color dis-
tribution (red color points) can still be separated from the background color distribution (blue
color points).

Nevertheless, in the real performance of the tracking system, the movement of the target

through the scene may cause new objects to appear in the image. Moreover, object appearance

may be affected by more complex illumination artifacts than the experienced in the previous

example, such as specularities and interreflexions, and even, the object appearance might un-

expectedly change. For all these reasons, in real applications the configuration of the Fisher

plane may suffer noticeable modifications and will need to be adapted.

3.2.5 Fisher versus other colorspaces

In order to finalize this section dedicated to the selection of the appropriate colorspace for

tracking tasks, we will proceed to compare the performance of the proposed Fisher colorspace,

versus other commonly used colorspaces. In order to make a fair comparison we will consider

only those colorspaces defined by two variables, such as the combination of two components

of the normalized RGB colorspace (namely rg, rb and gb), the combination of two components

of the normalized XYZ colorspace (xy, xz, and yz), and the two component combination of the

HSV colorspace.

At this point, a natural question that might arise is why we do not use the complete represen-

tation of the colorspaces, i.e, the three components of the RGB, XYZ or HSV colorspaces, since

it is known from the pattern recognition theory that when the dimensionality of the data is re-
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Fisher colorspace

rg rb gb

xy xz yz

HS HV SV

Figure 3.8: Representation of the foreground and background of Fig. 3.7 on different
colorspaces. Observe that the representation on the Fisher colorspace is the one that provides
a better foreground/background separation, making this colorspace appropriate for tracking
tasks.
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duced, relevant information might be lost. One reason why we represent the data by projecting

from the 3D colorspace to a 2D colorspace, is that this projection is similar to a normalization

process, and as it is observed in (36), normalization procedures reduce the dependencies of

the perceived colors to the illuminant color or to the geometry of the light sources. Further-

more, by reducing the color representation from 3D to 2D, the complexity of the subsequent

operations may be considerably simplified: fitting a parametric model to the color distributions

represented on a bidimensional space is much more simple than in 3D space, and the dynamics

to predict the movement of the color distributions on the plane may be more easily learned than

when the color distributions move freely in the 3D space.

Having made this clarification we proceed with the comparison of different colorspaces.

We begin by showing a naive example, where all but the Fisher colorspace are not capable to

properly separate the object from the background. Figure 3.7a shows the test image, where the

central circle is the target and the rest of the image represents the background. Observe that the

appearance of both classes is quite similar. In these circumstances where the target is in some

degree camouflaged with the background, the Fisher colorspace clearly performs better than

other colorspaces. Figure 3.7b shows the color distributions of all image points, represented

into the RGB colorspace. Blue dots correspond to the background points, and red dots are the

target color points. Note that both classes are in close contact. In spite of this, the projection

of the colorpoints onto the Fisher plane does not overlap the target and background classes.

On the other hand, when we represent the points using the other colorspaces, the two classes

are greatly overlapped, which will cause difficulties in future tracking tasks. Observe this in

Fig. 3.8, where the representations of the foreground and background classes are depicted for

each one of the colorspaces considered in the comparison.

A more precise comparison is obtained by computing the distance between the represen-

tation of the target and the background for each one of the colorspaces. In order to eliminate

a possible effect of scale when computing the distance, the data represented in each particular

colorspace is normalized. Subsequently, given the set of color points belonging to the object

YO = {yO,1, . . . ,yO,nO
} and the set of background color points YB = {yB,1, . . . ,yB,nB

}
points, the measure of distance between both sets is computed through the following metric:

dist(YO,YB) =

1
nO

nO∑
i=1

1
k

k∑
j=1

‖yO,i −NN
j
B(yO,i)‖2

|det(Sw)| (3.27)
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Test Image 1 Target 1-1 Target 1-2 Target 1-3

Test Image 2 Target 2-1

Test Image 3 Target 3-1

Test Image 4 Target 4-1

Figure 3.9: Test images used to compare the performance of different colorspaces. In each
row, are shown the test image and various targets for which the colorspaces are evaluated.

where NN
j
B(yO,i) is the j-th nearest neighbor in the set YB to a point yO,i, ‖ · ‖ is the Eu-

clidean norm, and | · | the absolute value function. Sw is the within class scatter matrix previ-

ously defined (Eq. 3.10). Note that with this metric equation we define the distance between

the foreground and background sets in the same terms as it was done with the Fisher objective

function (Eq. 3.9). That is, the metric is computed by considering the distance of each fore-

ground point yO,i, i = 1, . . . , nO with respect to its k-nearest neighbors in the background set

of points YB. Since we are also searching for a colorspace minimizing the variance of each
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3.3. COLOR DISTRIBUTION REPRESENTATION

class, the distance measure is divided by the determinant of the within class scatter matrix Sw.

According to this metric definition, we have computed the foreground background distance

for the test images and corresponding targets depicted in Fig. 3.9. Distance results for each

one of the experiments are shown in Table 3.1. Observe that in most of the experiments, the

Fisher colorspace proposed in this thesis is the colorspace providing a color representation of

the object and background with maximal separation.

Target 1-1 Target 1-2 Target 1-3 Target 2-1 Target 3-1 Target 4-1

Fisher 429.1 2445.5 202.1 133.8 9.9 74.2
rg 464.3 214.8 8.2 63.9 2.7 4.8
rb 115.5 219.1 4.0 61.6 1.8 4.9
gb 117.5 183.7 4.5 64.5 2.9 4.8
xy 141.3 275.0 2.8 54.3 1.7 4.5
xz 115.1 303.7 3.5 70.9 1.9 6.8
yz 87.7 274.1 4.7 88.0 4.2 7.9
HS 5.8 5.6 147.7 4.5 3.1 5.1
HV 5.4 1.3 156.1 0.3 5.1 16.4
SV 1.0 16.2 110.3 1.4 5.1 32.8

Table 3.1: Foreground-Background distances in various colorspaces. Each column repre-
sents a different experiment where the distance between the target and the background of the
image is evaluated according to Eq. 3.27. The label of each column indicates the corresponding
target in Fig. 3.9, and the rows consider different colorspaces. Note that the Fisher colorspace
proposed in this thesis provides the best results (maximal foreground-background distance) in
almost all the experiments.

3.3 Color distribution representation

After having selected the colorspace, the next step is to chose a model for representing the color

distribution of the object and background when RGB colorpoints are projected onto the Fisher

plane. One possible choice, consists of representing the color of the object by non-parametric

histograms. This technique has been extensively used in the computer vision community, es-

pecially in location and tracking applications (13; 56; 91; 100; 119; 123; 145). Although color

histograms have been demonstrated to be an effective and easy to implement tool for approx-

imating monochromatic color distributions, when the object to be modeled contains regions

with different colors, the number of pixels representing each color may be relatively low, and

a histogram representation might not suffice.
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In these circumstances the approximation of the color distributions by a Mixture of Gaus-

sians (MoG) model, represents a more effective approach (54; 109; 144). Using this model, the

conditional probability for a pixel f ∈ R2×1 (represented in the Fisher colorspace) belonging

to a multi-colored object O is expressed as a sum of mO Gaussian components:

p(f |O) =
mO∑
j=1

p(f |O, j)P (O, j) (3.28)

where P (O, j) corresponds to the a priori probability that pixel f was generated by the j-th

Gaussian component of the object color distribution, and where
∑mO

j=1 P (O, j) = 1. Each

component is a Gaussian distribution in the Fisher colorspace, with mean µO,j and covariance

matrix ΣO,j , i.e,

p(f |O, j) =
1√

det(2πΣO,j)
exp

[
−1

2
(f − µO,j)

TΣ−1
O,j(f − µO,j)

]
(3.29)

Similarly, the color distribution of the background points may be represented by a mixture

of mB Gaussian components.

3.3.1 Object segmentation using color

In order to track and segment the object out from the background, we may wish to compute

the a posteriori probability that each image pixel f belongs to the object O. Given the density

estimates for both the object O and the background B, this a posteriori probability is given by

the Bayes rule:

p(O|f) =
p(f |O)P (O)

p(f |O)P (O) + p(f |B)P (B)
(3.30)

where P (O) and P (B) are the prior probabilities of the object and background classes respec-

tively.

Fig. 3.10b shows an example of the Mixture of Gaussians model fitted to the foreground and

background color distributions (in the Fisher colorspace) of the image depicted in Fig 3.10a,

where the ladybird is selected as foreground. In this example, the foreground color distribution

is approximated by 5 Gaussian components, while the background distribution is approximated

with 4 components. The selection of the optimal number of components that best approximate

the data is not a trivial issue, and it will be discussed in the next subsection.

38



3.3. COLOR DISTRIBUTION REPRESENTATION

(a) (b)

p(f |O) p(f |B) p(O|f)

Figure 3.10: Foreground and background color distribution parameterization. Upper row:
(a) Original image, indicating the foreground (ladybird). (b) Foreground and background color
distributions and the corresponding Mixture of Gaussians models in the Fisher colorspace.
Lower row: Probability maps involved in the computation of the a posteriori probability dis-
tribution of the object. p(f |O) and p(f |B) are the a priori probability maps of the object and
background, respectively. Based on the Bayes rule, these conditional densities permit to com-
pute the a posteriori probability map of the object class. Brighter points correspond to more
likely pixels.

Once the Mixture of Gaussians model is adjusted to the data, the a posteriori probability

map associated to the foreground class, may be computed by first calculating the a priori condi-

tional densities p(f |O) and p(f |B). Subsequently, using the Bayes rule, these densities allow to

compute the a posteriori probability map p(O|f) (Fig. 3.10, lower row). In this image, brighter

points correspond to pixels that more likely will belong to the object.

3.3.2 Parameter estimation

The computation of Eq. 3.28 requires the estimate of the set of parameters of the Mixture

of Gaussians model for both the foreground and background color distributions (necessary

to determine p(f |O) and p(f |B)). Furthermore the prior probabilities p(O) and p(B) need

to be approximated, and are usually initialized to the expected area ratios of the foreground
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and background classes in the image. In order to estimate the parameters of the Gaussian

distributions, the Expectation-Maximization (EM) algorithm (15; 29) is the tool commonly

used in the computer vision literature (see for instance (54; 109; 144)). Next, we give a broad

outline of the EM algorithm.

Let F = [f1, . . . , fn] be a set of d-dimensional data points. The goal of the EM algorithm

is to determine the parameters of a Mixture of Gaussians model that fits the data. These pa-

rameters are the prior probabilities P (j), the set of means µj and covariance matrices Σj , for

j = 1, . . . ,m, where m is the number of Gaussian components, which needs to be specified

a priori. The EM algorithm is based on an initialization stage followed by an iterative process

between the expectation and maximization stages:

Parameter Initialization: The position of the means µj , the value of the covariance matrices

Σj and the priors P (j) need to be initialized. Bishop (15) suggests an initialization

strategy where the centers µj are placed on a random subset of the data. Σj are initialized

to matrices σjI, where I is the identity matrix and σj is the distance between µj and the

closest center. Finally all the priors P (j) are initialized to 1/m.

Expectation: The expectation stage consists in evaluating the a posteriori probabilities p(j|fi)
for each component of the Gaussian mixture. p(j|fi) represents the probabitility that the

data point fi was generated by the j-th Gaussian component. It may be computed by

using the Bayes rule, according to:

p(j|fi) =
p(fi|j)P (j)

p(fi)
=

p(fi|j)P (j)∑m
j=1 p(fi|j)P (j)

(3.31)

Let us call the sum of all these probabilities, the weight of the j-th component:

wj =
n∑

i=1

p(j|fi) (3.32)

Maximization: In this stage, the components of the Mixture of Gaussians are updated accord-

ing to the following expressions:

P (j)new =
wj

n
(3.33)

µnew
j =

1
wj

n∑
i=1

fi p (j|fi) (3.34)

Σnew
j =

1
wj

n∑
i=1

(
fi − µnew

j

) (
fi − µnew

j

)T
p (j|fi) (3.35)

The stages expectation and maximization are iterated until convergence.
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However, as it is observed by Figueiredo and Jain (35), the standard formulation of the

EM algorithm has several drawbacks, such as a high sensitivity to the parameter initialization

phase and that the number of Gaussian components needs to be specified a priori and it is not

automatically selected.

In this thesis we will estimate the parameters of the Mixture of Gaussians based on the

approach proposed in (35), which is basically a variant of the EM algorithm with some mod-

ifications allowing to overcome the limitations of the standard EM algorithm. The method

starts with a large number of mixture components and successively annihilates components for

which the weight defined in Eq. 3.32 is small. By starting with an initial number of Gaussian

components much larger than the optimal number, the dependence with the initial parame-

ters is reduced. The problem with the parameter initialization arises when there are too many

components in a region of the space, and too few in another. As it is noted in (35), in these

circumstances the EM algorithm is unable to move components across low-likelihood regions,

resulting in local maxima solutions. Nevertheless, by starting with a high number of compo-

nents and removing the unnecessary ones, this problem is avoided. The expectation, maximiza-

tion and annihilation stages are iterated until the convergence of a cost function, based on a

Minimum Message Lenght criterion (133).

Note that using this approach, both the problem of selecting the optimal number of compo-

nents as the initialization dependence problem are simultaneously solved. Fig. 3.11 shows an

example of the fitting procedure, for the color distribution of the ladybird depicted in Fig. 3.10a.

The process is initialized by considering a large number of components (m = 10), in such a

way that it is guaranteed that all the regions of the space containing data are covered by a

Gaussian. Subsequently, the expectation and maximization stages are iterated seeking for the

minimum of the message length cost function (the message length value associated to each

configuration is indicated below the plots). During the fitting process, those Gaussian compo-

nents not supported by the data are annihilated. Observe how removing some components, the

cost function is minimized, reaching the minimum value for m = 5 components, which is the

configuration chosen to approximate the color distribution.

3.4 Contour representation

Since color segmentation usually only gives a rough estimation about the object location, we

include the contour feature in the object representation. The use of geometric cues, although
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m=10, Mess.Lenght=−1.3071 m=9, Mess.Lenght=−1.3074 m=8, Mess.Lenght=−1.3066

m=7, Mess.Lenght=−1.3060 m=6, Mess.Lenght=−1.3046 m=5, Mess.Lenght=−1.3165

m=4, Mess.Lenght=−1.3098 m=3, Mess.Lenght=−1.2961 m=2, Mess.Lenght=−1.2551

m=1, Mess.Lenght=−1.2009

Figure 3.11: Fitting a Mixture of Gaussians. Automatic model selection for the color distri-
bution of the ladybird (Fig. 3.10a) using the method proposed in (35). Initially a large number
of components is selected (m = 10), but the process automatically annihilates the Gaussian
components not supported by the data. Below each plot we indicate the value of the cost func-
tion (Message lenght×1.0e−4). The configuration that minimizes the cost function, and thus,
best approximates the data, corresponds to m = 5.
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being more sensitive to clutter than appearance cues, allows to infer the position of the object

with high accuracy.

The contour of the object is modeled as a curve, which is discretized and represented by a

set of nc points in the image:

R =
[
(u1, v1)T , . . . , (unc , vnc)

T
]T

(3.36)

where (ui, vi) are the 2D image coordinates of the i-th point of the curve.

3.4.1 Adjusting the curve to the object countour

In order to adjust the curve describing the contour, to the object boundary, even when the

object suffers from non rigid deformations, we will make use of the snake (or deformable

curve) formulation (59).

A snake is a curve r(s) = [u(s), v(s)], s ∈ [0, 1], which moves through the image. In the

traditional snake formulation, the problem of adjusting a snake curve to the boundary of an

object can be viewed as a force balance equation:

Fint(r(s)) + Fext(r(s)) = 0 (3.37)

where Fint(r(s)) = α∂2r(s)
∂s2 + β ∂4r(s)

∂s4 are the internal forces that control the bending and

stretching of the snake (α and β are the elasticity and rigidity parameters, respectively). Fext(r(s))

are the external forces that pull the curve toward the edge image features. In the literature,

there exist several definitions for this external function. For instance, given a gray-level im-

age I(u, v), a typical external force used to pull the deformable contour toward the edges is

the Laplacian of the image, i.e, Fext = |∇2I(u, v)|, where ∇2 is the Laplacian operator. In

particular, in this thesis we will use the the Gradient Vector Flow (GVF) external force pro-

posed in (143), because it exhibits a larger capture range and better convergence performance

in boundary concavities than other methods. This external force, is computed as a diffusion of

the gradient vectors of a binary edge map from the image. Specifically, we generate the edge

map, using the Canny algorithm (21).

Equation 3.37 may be solved by writing the snake as a function of both space and time, i.e,

r(s)→ r(s, t) (we will write rt) and iterating over the following expression:

rt − rt−1

t = α
∂2rt−1

∂s2
+ β

∂4rt−1

∂s4
+ Fext(rt−1) (3.38)
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3.4. CONTOUR REPRESENTATION

(a) (b) (c)

Figure 3.12: Fitting a deformable curve to an object contour. (a) Original image and ini-
tial configuration of the contour. (b) Fitting process. Observe that using the Gradient Vector
Flow (143) external force, the snake can be fitted into boundary concavities. (c) Final configu-
ration of the snake.

wheret is the time step for each iteration. When the solution stabilizes (rt−1 = rt), Eq. 3.37

is satisfied.

For the numerical implementation we approximate the derivatives with finite differences,

and discretize the curve r(s, t) with nc points, so that the previous gradient descent method can

be rewritten as:

Rt = (I−tQ)−1(Rt−1 +tFext(Rt−1)) (3.39)

where R is the matrix defined in Eq. 3.36 containing the coordinates of the nc points of the

contour, Q is a nc × nc pentadiagonal matrix including the α and β parameters, and I is the

nc × nc identity matrix. Iterating over Eq. 3.39 the snake is locally fitted to the edges of the

image, only governed by its internal and external forces.

Fig. 3.12 depicts the process of fitting a deformable curve to the contour of an object. This

particular example shows the ability of the GVF snake to move into boundary concavities.

3.4.2 Robustness to clutter

One of the limitations of the contour based tracking algorithms, is that they are prone to be

sensitive to noisy edges that may be caused by a cluttered background. These false edges,

might distract the snake during the fitting procedure, unless it is initialized close to the true

object boundary. The example of Fig. 3.12 did not suffer from this drawback since the image

had no background. However, in the example of Fig. 3.13, when attempting to fit a deformable
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Initial configuration Non constrained snake Affine constrained snake

Figure 3.13: Fitting a deformable curve to an object contour in cluttered images. (a) Initial
configuration of the contour in an image with a high level of clutter. The shell of the snail is
the desired target. (b) The presence of clutter, generates false edges which distract the snake
to converge to the true object boundary. (c) If the snake is enforced to evolve under an affine
constraint, the correct silhouette of the tracked object may be maintained. However, this does
not guarantee the convergence to the true object boundary.

contour to the shell of the snail, the clutter and noise of the image causes confusion to the snake,

and it converges to false edges. Observe that even in the case that the contour is initialized close

to the true boundary (Fig. 3.13a), the snake algorithm fails when attempting to fit the contour

of the shell (Fig. 3.13b).

In order to reduce the influence of the distractors, some constraints might be enforced to the

movement of the snake. For instance, an affine constraint could be introduced into the snake

movement by considering the following equations:

Rt
H = (I−tQ)−1(Rt−1

H +tFext(Rt−1
H )) (3.40)

Rt
H = Rt−1

H H (3.41)

where H =


 a11 a12 t1
a21 a22 t2
0 0 1




Note that Eq. 3.40 is the same as Eq. 3.39, except that the matrix RH contains the homoge-

neous coordinates of the nc points of the curve, i.e, RH =
[
(u1, v1, 1)T , . . . , (unc , vnc , 1)T

]T
.

Combining Equations 3.40 and 3.41, we obtain the following iterative procedure for the affine

snake deformation:

Given the contour Rt−1
H at time t − 1, the matrix of parameters Q and the time

stept, the configuration of the contour is updated through the following steps:
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1. Estimate the affine matrix H = (JTJ)−1(Rt−1
H + Fext(Rt−1

H ))

where J = Rt−1
H −tQRt−1

H .

2. Normalize H with respect to the component H(3, 3).

Set H(3, 1) = H(3, 2) = 0 .

3. Update the contour points, i.e, Rt
H = Rt−1

H H .

Steps 1-3 are iterated until the convergence of Rt
H and Rt−1

H .

These kind of constraints improve the performance of the contour adjustment in the pres-

ence of clutter. However, they might not be enough to obtain a robust tracking if the level of

noise is relatively high. For instance, in the example of Fig. 3.13 previously introduced, we

can observe that even though the affine constrains allow to maintain the correct silhouette of

the object, the contour still does not converge to the true object boundary.

As it will be discussed in next chapters, the integration of other cues, such as color, may be

used to remove most of the noisy edges, which may guarantee the adjustment of the deformable

curve to the true object boundary.

3.5 Bounding box representation

The last object cue that will be considered refers to a module providing a rough estimation of

the object position, which will be used as initialization for other features. Specifically, in order

to adjust the colorspace feature introduced earlier, we will need an approximation of the region

in the image where the target is expected to be. This region does not need to be estimated

precisely, and will be represented as a rectangular bounding box surrounding the object, with a

sufficient gap to ensure that it contains the object.

One particularity of this feature, is that its estimation will be performed using the Kalman

filter instead of using particle filters. Furthermore, the correction term of the Kalman filter,

will have low importance, and the term with major importance in the estimation, will be the

prediction. Again, in the following chapters we will extend these ideas.

3.6 Summary

The selection of appropriate features in order to represent the object is a key initial issue in any

computer vision application, and specially for tracking purposes. These features, must allow

to characterize the target, and discriminate it from the rest of objects in the image.
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In the present chapter we have described the individual features that will be used to repre-

sent the object. At this point, we have not considered the relation among features; this will be

covered in Chapter 5, when describing the feature integration scheme.

In particular, we have described the object by appearance and geometric cues. Special at-

tention should be paid to the definition of a colorspace dependent on the object appearance.

This colorspace, which we call Fisher colorspace, has the capability of maximizing the dis-

tance between the representation of the target and background colorpoints, which is an impor-

tant property for any color based tracking system. The further are the object and background

representations, the easiest will be the segmentation, and therefore, the tracking process.

We have described the parameterization of the color distributions by Mixture of Gaussians

models, and the initialization of its parameters using a variant of the Expectation Maximization

algorithm.

In order to obtain a more precise information about the target position, we have also con-

sidered the representation of the object through geometric cues. An accurate estimate of the

object location may be obtained considering the contour feature, described by the points that

discretize a deformable curve (or snake). Furthermore, for initializing the colorspace feature,

the bounding box of the target will be used to provide a coarse estimate about the object loca-

tion.
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Chapter 4

Multiple cues integration for tracking
tasks: a review

Tracking and figure-ground segmentation of image sequences is a topic of great interest in

a wide variety of computer vision applications, extending from video compression to mobile

robot navigation. It has been observed that the simultaneous use of redundant and complemen-

tary cues for describing the target, increases noticeably the robustness of the system to non-

stationary environments, suffering from abrupt changes of illumination, cluttered backgrounds

and non-linear dynamics of the object movement/deformation. Although several surveys are

available for the general case of sensor fusion, these kind of reviews do not exist for the specific

case of unifying different types of data present in images, such as color, contours or motion.

In this chapter, we survey previous work on multiple cue integration techniques for tracking

and figure-ground segmentation tasks. We review, classify and analyze what we feel are the

most relevant approaches in the field over the past decade, discussing its relationship to the

framework presented in this thesis, which will be covered in detail in Chapter 5.

4.1 Introduction

Visual tracking and segmentation of the foreground objects out from the background in video

sequences are important initial tasks for a high number of computer vision applications, such

as object recognition, assembly in industrial tasks, mobile robot navigation, automatic video

editing and summarization, or video coding, where for instance codecs based on MPEG-4

require different objects to be represented separately.

It has been observed that the simultaneous use of complementary and redundant cues when
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representing the object (color, shape, geometry, motion, etc.), can significantly enhance the

figure-ground segmentation results. For example, based on the color distribution of the object,

one could increase the robustness of a contour tracking in a highly cluttered environment.

Conversely, the integration of shape and color cues could allow better tracking in the presence

of color distracters.

During the last decade, the number of papers dealing with the fusion of visual object cues

in the design of computer vision applications has grown significantly. Nevertheless, is does

not exist a survey paper giving an overview of the individual papers and structuring them into

groups depending on similar characteristics. These kind of surveys and taxonomies are only

available for the general case of multisensor fusion (9; 62; 74), which usually deals with the

integration of information provided by different sources (for instance integration of visual and

tactile sensing to identify and locate objects from among a group of known objects, such is

described in (44)). As a consequence, we think that a survey dealing exclusively with the

integration of visual modules for figure-ground segmentation (and tracking) tasks is of great

interests for the computer vision community. This is the main goal of the present chapter, to

propose a taxonomy and review the state of the art of such techniques and relate them with the

cue integration framework presented in this dissertation, which will be discussed in detail in

the following chapter.

In order to discriminate the object of interest from the background, the target can be charac-

terized by a set of different visual features. The features most commonly used in the literature

are: motion, color, contrast, texture, appearance and shape (the contour if we work with 2D

data, or the target surface if we work with 3D data). The purpose of the fusion techniques is

to properly combine the information of each of these features in order to infer the regions in

consecutive images having higher probability of belonging to the object.

Some desirable features of the fusion scheme (that will be taken into account later in the

chapter when analyzing different fusion algorithms) are the following:

• Robustness: In order to design a system robust to challenging environments, with clut-

tered backgrounds that might be confused with the target, changes of illumination and

non-linear dynamics, the fusion scheme needs to benefit from all the cues.

• Adaptability: Some of the cues which usually are reliable may degrade performance,

sometimes abruptly, in certain situations. In these circumstances, it is necessary a fusion
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scheme allowing for the automatic adaptability of the features. Adaptability is a key

feature to provide robustness.

• Modularity/Complexity/Scalability: In order that the system complexity does not in-

crease significantly when integrating additional object features, it is interesting to repre-

sent each cue by a separated module with the input and output signals clearly defined.

This allows to scale the system and integrate additional features with a reduced cost and

effort.

• Temporal consistency: Since we are dealing with video sequences, the fusion method-

ology needs to impose temporal consistency constrains in the segmentation results of

consecutive frames.

• Prediction module: If the target and the clutter are indistinguishable in terms of their

representations, the fusion scheme needs a prediction module in order to determine the

object segmentation at least for a short period of time, by using the prior knowledge

about the dynamics.

After this short introduction, the rest of the chapter is organized as follows. Section 4.2

describes the proposed taxonomy for multiple cue integration techniques tailored to tracking

tasks. Section 4.3 reviews the state of the art of the fusion techniques and classifies them

according to the proposed taxonomy. In Section 4.4, an analysis of different quality factors

of the fusion approaches is performed, and finally, Section 4.5 summarizes this chapter, and

establishes the bases to describe the cue integration framework proposed in this dissertation,

which will be discussed in next chapter.

4.2 Classification of multiple cues integration techniques

In this section we propose a general classification of the techniques for integrating multiple

visual modules in tracking tasks.

If we take into account the flow of information in the fusion scheme, we can classify the

fusion techniques as it is done by Clark and Yuille in (23). Note that the classification scheme

proposed by Clark and Yuille, refers to the general case of multiple sensor integration tech-

niques. We use the same general classification for the specific case of multiple cues integration,

for visual tracking tasks. Afterwards we propose a secondary classification and subdivide each
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(a) (b)

Figure 4.1: Categorization of the fusion algorithms into (a) weakly coupled and (b)
strongly coupled classes.

group in smaller classes. In (23), two major classes of fusion methods are considered, namely

the weakly coupled and strongly coupled. Into the former class, we would include those algo-

rithms which outputs are independently combined, i.e. the operation of each algorithm is not

affected by the fusion process (see Fig. 4.1a). Into the strongly coupled methods, the outputs

of different modules are no longer independent and the operation of one algorithm is affected

by the output of another module (see Fig. 4.1b).

Strongly coupled data fusion algorithms permit to represent dependencies between fea-

tures, providing improved priors for each algorithm (each algorithm is assumed to estimate

the state of a different cue). For instance, a usual method to evaluate the quality of an object

contour hypothesis is based on the ratio of the number of pixels inside the contour with object

color versus the number of pixels outside the contour with background color. This means that

the contour feature is not independent of the color feature, and this dependence can be repre-

sented using the strongly coupled methods. However, these methods are prone to be sensitive

to errors in a specific module, in such a way that an invalid output might be propagated through

the fusing scheme and have a negative effect in the subsequent modules. Moreover, strongly

coupled algorithms usually require the knowledge of feature interdependencies, and sometimes

this is not a trivial issue.

On the other hand, weakly coupled algorithms allow the design of straightforward fusion

methods, and the effect of a failure in one of the algorithms does not have repercussion in

other modules. Nevertheless, this fusion methodology is unable to deal with complex systems

containing highly correlated object features.
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Furthermore, we deem interesting to propose a secondary subdivision of the weakly and

strongly coupled methods based on the intrinsic methodology used when performing the fu-

sion. If the primary classification was based on the flow of information between algorithms,

this secondary classification has to do with the intrinsic mathematics involved when processing

this information. From this point of view, and considering the study performed in previous

works (1; 17; 72; 74), weakly coupled algorithms can be combined according to the method-

ologies of weighted average, voting, Bayesian theory and Fuzzy reasoning. On the other hand,

strongly coupled algorithms are subdivided in the following groups: recurrent heuristic meth-

ods, optimization-based and Bayesian methods.

Next, we will briefly describe and unify the notation for each one of these methods, con-

sidering that we wish to detect an object O in the image, by evaluating n features described by

x1, . . . ,xn (representing for instance color, contour, texture, movement, etc.):

• Weakly coupled algorithms

– Weighted average: The simplest method of feature fusion is to take a weighted

average of the estimate done for each cue. If p(O|xi) represents the posterior

object membership probability for cue xi, the cues are combined to obtain the

overall value of object membership (belief) using a weighted sum of its respective

responses:

Bel(x1, . . . ,xn,O) =
n∑

i=1

ωip(O|xi) (4.1)

This data fusion scheme is known as a linear opinion pool (48).

– Voting: In the general approach for the fusion of n features (x1, . . . ,xn) using the

voting approach, the estimate done for each cue (for instance the posterior probabil-

ity p(O|xi)) is binarized according to a particular threshold T , so that each feature

xi produces a binary vote vi at each image pixel location u, for the single class O

(i.e., vi(u,O) = 1⇔ p(O|xi) > T ). Subsequently, the decision of membership to

the O class may be done considering several schemes (101):

∗ Unanimity
n∑

i=1

vi(u,O) = n

∗ Byzantine
n∑

i=1

vi(u,O) >
2
3
n
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∗ Majority
n∑

i=1

vi(u,O) >
n

2

∗ m-out-of-n
n∑

i=1

vi(u,O) > m

For each of the schemes, the image pixel u is assigned to the class O if the previous

conditions are satisfied.

– Bayesian Methods: The Bayesian approach provides an elegant way of formulat-

ing the feature integration in terms of probability theory.

From Bayes theorem (11), the posterior object probability when features are con-

sidered independent may be expressed as:

p(O|x1,x2) =
p(O,x1,x2)
p(x1,x2)

=
p(x1|O)p(x2|O)p(O)

p(x1,x2)
(4.2)

This data fusion scheme is known as an independent opinion pool (48).

– Fuzzy Reasoning: Fuzzy logic (146) is also used to perform the fusion of sev-

eral object features, in such a way that the degrees of belief of each feature to the

object or background classes, are represented by membership functions. The mem-

bership function µxi gives a membership value µxi(u) for each image pixel when

evaluating feature xi.

The fusion of the responses of all features is done using the fuzzy composition

operation. One possible definition of this operator is through the ‘min’ operation:

µx1(u) ◦ µx2(u) ◦ . . . ◦ µxn(u) = min(µx1(u), µx2(u), . . . , µxn(u)) (4.3)

• Strongly coupled algorithms

– Recurrent heuristic methods: Recurrent heuristic techniques involve those algo-

rithms in which the prior used by a module can be affected by the output of another

module (which can itself be affected in some way by the original module), but the

fusion is performed by heuristic or ad-hoc rules, and not by rigorous optimiza-

tion or probabilistic methods. We include into this category those algorithms with

a feedforward relation, where the interaction between different cues is performed

sequentially.
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– Optimization-based methods: Rather than relying on heuristic rules, some ap-

proaches use optimization techniques when integrating object cues. These tech-

niques do not require to know a priori the relation between cues. That is, the whole

set of parameters describing each one of the cues is combined in specialized algo-

rithms to iteratively search the state of the features that best describe the target. For

instance, let the cue x1 be parameterized by λ = [λ1, . . . , λm] and the cue x2 be

parameterized by ν = [ν1, . . . , νn]. By considering the image at time t−1, It−1 as

the reference image and the image at time t, It as the image where the target needs

to be located, the goal of the optimization-based approaches is to minimize (over

parameters λ and ν) an energy function like:

E(λ,ν) =
∫

Ot−1

‖It(λ,ν)− It−1‖ (4.4)

where Ot−1 refers to the object pixels in image It−1.

– Bayesian Methods: Our final class of strongly coupled techniques involves those

algorithms in which the relation between cues is formulated through the Bayes’

theorem. Whereas in the Bayesian weakly coupled methods, the features where

considered mutually independent, now they are assumed to be conditionally de-

pendent. This is expressed by:

p(O|x1,x2) = p(x2|O,x1)p(x1|O)
p(O)

p(x1,x2)
(4.5)

= p(x1|O,x2)p(x2|O)
p(O)

p(x1,x2)
(4.6)

Equations 4.5 and 4.6 differentiate the cases where feature x2 depends on feature

x1 (Eq. 4.5), or that x1 depends on x2 (Eq. 4.6).

4.3 State of the art in fusion of visual modules

In this section we will review the state of the art of the tracking and figure ground segmentation

techniques that make use of multiple object cues. Note that figure ground segmentation in video

sequences is closely related to the tracking problem. The difference between both techniques

refers to the fact that whereas in tracking the goal consists on recovering the position of the

object points throughout time, in figure-ground segmentation the goal is to provide a dense

map of object membership. Therefore, figure-ground segmentation can be interpreted as an
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Weakly coupled fusion algorithms

Weighting average Voting Bayesian Fuzzy
Prokopowicz’94 (105) Nordlund’97 (99) Toyama’00 (130) Jadon’01 (53)

Crowley’97 (25) Bräutigan’98 (19) Sherrah’01 (114) Kragić’01 (64)
Birchfield’98 (14) Pirjanian’98 (104) Hayman’02 (48)

Khan’01 (61) Kragić’01 (64) Taylor’03 (124)
Shearer’01 (112) Leichter’04 (67)
Triesch’01 (131)
Hayman’02 (48)

Table 4.1: Subclasses into the weakly coupled category.

initial stage before solving the tracking. Consequently, in this review we will include both

tracking and figure-ground segmentation references.

Nevertheless, since we are only concerned on methods dealing with video sequences, we

will discard from our analysis all those references for static image segmentation. The reason is

that the techniques used in single image segmentation do not need to impose the temporal con-

sistency constrains commented above, and they can yield very different results when applied

to two consecutive (and similar) frames of a video sequence.

Next, the reviewed papers will be briefly described and classified according to the proposed

taxonomy. Tables 4.1 and 4.2 summarize the works that will be referenced in the following

sections.

4.3.1 Weakly coupled algorithms

4.3.1.1 Weighted average

Weighted average methods for cue integration is one of the simplest approaches. It is only

applicable when all the cues provide redundant information, that is, all of the cues provide

the position (or membership probability) of the object in the image. Subsequently, the fusion

method takes a weighted average of this redundant information.

The simplicity of the methodology allows real-time applications. Birchfield (14), integrates

color histograms and edges in order to track a person’s head. The integration is performed

through a weighted average approach, where the weights assigned to the estimation of each

feature are equal and kept constant.

More robust approaches are those that adapt the weighting parameters, depending on the

reliability of each feature. There are some methods that use binary weights, and only one of

55



4.3. STATE OF THE ART IN FUSION OF VISUAL MODULES

Strongly Coupled fusion algorithms

Recursive Optimization-Based Bayesian
Azoz’98 (4) Wren’97 (139) Isard’98 (51)

Darrel’98 (26) Cootes’98 (24) Rasmussen’98 (107)
Isard’98 (52) Hager’98 (45) MacCormick’00 (76; 77)

Beymer’99 (12) Shi’98 (116) Khan’04 (60)
Toyama’99 (129) Vetter’98 (132) Wu’04 (142)
Kruppa’01 (65) Shi’00 (117) Moreno-Noguer’05 (85)

Sherrah’01 (115) Tao’00 (125)
Moreno-Noguer’02 (92) Matthews’04 (80)

Siebel’02 (118)
Nummiaro’03 (100)

Shen’03 (113)
Spengler’03 (122)

Moreno-Noguer’04 (88)

Table 4.2: Subclasses into the strongly coupled category.

the features is used for each frame. For instance, Prokopowicz et al. (105) propose using one

out of several cues, color, motion, disparity and a template matching, for tracking tasks. The

selection of the appropriate cue for a specific target tracking is done based on heuristic and

empirical reasonings.

In the same way, the work presented by Crowley and Berard (25), cycles between three

different algorithms when tracking a face. The different algorithms are based on color his-

tograms, template matching and blinking detection, respectively. When a global confidence

factor decreases, the color module is used, because it is more robust (although less accurate

than template matching). Otherwise, if the global confidence factor is high, the tracking is per-

formed through the template matching, which is more accurate but less robust. The blinking

module is used to detect the eyes and re-initialize the template and color histogram. A similar

idea is used by Shearer et al. (112). Two trackers are run in parallel, a region tracker based on

color correlation and a contour tracker. The success of each algorithm is computed by separate

considering the consistency of the tracking results with previous frames. When both trackers

succeed, their response is combined, and when one of the trackers fails, its state is updated only

considering the response of the successful tracker.

Other approaches use adaptative and real valued weights. Khan and Shah (61) propose a

Maximum a Posteriori (MAP) framework for video segmentation using color, motion and a
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position prediction cue. This is a general approach that permits segmenting the image in more

than 2 classes (not only foreground and background). For instance, in the experiments shown

in (61), each sequence frame is segmented into 6 classes. Although the method has a Bayesian

background, we consider it to be a ‘weighted average technique’, as it assigns heuristic weights

to each feature, which are adjusted at each frame, based on some confidence measures.

The democratic integration scheme, introduced by Triesch and Malsburg (131) adaptatively

integrates different cues in a self-organized manner. The architecture is tested in a face tracking

experiment. Motion, color, position prediction, shape and contrast make independent assump-

tions about the target position, and a global estimation is obtained by a weighted average of

these assumptions. Subsequently each cue adapts toward the result agreed on, adapting both

the parameters describing the state of the cues, as the weights of the integration scheme. Al-

though the cue models used are quite simple, the complete system is able to overcome several

difficulties such as occlusions, abrupt changes of illumination and non-linear target dynamics.

However, the system is not tested in highly cluttered environments.

Hayman and Eklundh (48) present a similar approach. Although in their paper, the method-

ology is considered as a voting approach, the cue combination strategy follows the formulation

of a weighting scheme. In this work, motion, color, contrast and prediction cues are integrated

in order to perform figure ground segmentation of video sequences. Temporal consistency is

guaranteed by learning at each time step the models for color and contrast cues based on the

output of the overall algorithm in previous frames.

4.3.1.2 Voting

Voting algorithms are commonly used for integrating ‘simple’ visual cues when real-time tasks

are required, and when the model for each one of the cues is not available (therefore it is not

possible to validate the state of the cue by comparing with a model). Pirjanian et al. (104)

perform the real time tracking and control of a stereo head mounted on a pan tilt unit, by inte-

grating a blob tracking, image differencing, edge tracking and template matching modules. The

fusion is performed through a voting approach using a majority scheme. A similar approach is

presented by Kragić and Christensen (64) for visual servoing and robot end-effector tracking

tasks. In this approach an m-out-of-n voting scheme is used to integrate edges, disparity, color,

correlation with previous image and motion estimation. Bräutigan et al. (19) also use an m-out-

of-n voting scheme in order to integrate the response of several vision modules, for segmenting

planar regions of images. The visual modules used in this work are point based disparities,
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perspective distortion of texture patterns, algebraic invariants of five matched points, grey level

homogeneity, and monocular junction angles.

Nordlund and Eklundh (99) use two independent dense feature domains (motion and depth

from stereo) to produce a 2D histogram, i.e, the coordinate axis of the histogram are the pixel

motion and depth, respectively. Peaks in the histogram represent areas in the image which have

approximately constant values in both feature domains at the same time. Backprojecting these

peaks into the image, different image regions can be segmented. Note that this fusing scheme

is exactly the same than a voting approach in the unanimity modality, that is, each feature

produces a binary vote at each pixel location for a single class (or image region), and a pixel is

considered to belong to a specific region Ri if all of the features have voted for region Ri.

4.3.1.3 Bayesian theory

Bayesian theory provides a formalism to the fusion problem that allows the information of sev-

eral sources to be combined according to the rules of probability theory with the well-known

Bayes rule. One work that presents this formalism in the figure-ground segmentation field

is (48), by Hayman and Eklundh. In this work, the Bayesian approach to segmentation is de-

scribed (together with a weighted average approach -commented above-), and used to integrate

motion, color, image contrast and position prediction cues. For the experiments considered in

the paper, both techniques (Bayesian theory and weighted average) perform well. The reliabil-

ities of each cue are incorporated through hyper-priors on the model parameters. An additional

aspect of this approach is in suggesting mechanisms for suppressing cues when they are unre-

liable.

Bayesian networks (55), permit to represent efficiently probabilistic dependencies between

the true state of the target and the measures obtained from different cues. Toyama and Horvitz (130),

address the problem of multiple visual cue integration through a process of Bayesian Modality

Fusion (BMF). BMF uses a Bayesian network to combine the estimates of several complemen-

tary and independent object features: color, motion, and background subtraction. A reliability

indicator for each feature is incorporated into the network, similarly to the ‘democratic inte-

gration’ approach (131). The difference is that using Bayesian networks, the whole approach

can be formulated in a probabilistic way. Sherrah and Gong (114) extend the BMF into the

so called Continuous Global Evidence-Based BMF (CBMF). The main difference between the

BMF and CBMF is that the latter uses continuous rather than discrete variables, relieving the

complexity of inference. CBMF is used in (114) for tracking a human head by integrating skin
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color, motion (through frame differencing) and shape (through an ellipse fitting procedure).

The reliabilities of each feature are also introduced in the network in order to be adapted.

An example of Kalman filtering applied to fusion of visual cues is presented by Taylor and

Kleeman (124), which integrate color, edges and texture cues in order to estimate the pose of an

object. The set of cues conform the measurement vector of the filter and the pose of the object

is parameterized in the state vector to be predicted and estimated using the Kalman framework.

On the other hand, particle filters (see Section 2.3) realize the Bayes filter updates accord-

ing to a sampling procedure (often referred to as sequential importance sampling). This makes

them useful for representing arbitrary probability densities, outperforming the performance of

the Kalman filter which are rectricted to Gaussian distributions and linear dynamic models. In

that sense, Leichter et al. (67) propose a probabilistic framework to integrate multiple indepen-

dent tracking algorithms. The method is general in that it may be used for combining any set

of tracking algorithms that provide a Probability Density Function representation of the state

of the target, and in particular, it allows to combine multiple particle filters. The effectiveness

of the method is demonstrated in an experiment consisting of tracking the head of a person on

an indoor environment. Two particle filter algorithms are integrated, one based on color edges

that tracks the contour of the head, and the other based on difference between color regions

which tracks the vertical axis of the head.

4.3.1.4 Fuzzy theory

Fuzzy theory allows the uncertainty of each cue of belonging to a specific class to be repre-

sented by a continuous membership function, which expresses the degree of belief with a real

number from 0.0 to 1.0. Subsequently, the fusion of all cue beliefs is realized through the

fuzzy inference rules. For instance Kragić and Christensen (64) use a fuzzy approach for track-

ing the end-effector of a robot arm, in a visual servoing application. Edges, disparity, color

and correlation are the cues utilized. In this work, fuzzy methods are compared with the vot-

ing algorithms, and for the same experimental conditions it is observed that voting algorithms

perform better than methods based on fuzzy theory.

In (53) Jadon et al. develop a fuzzy-logic-based framework for detecting abrupt changes

and gradual changes between consecutive frames of a video sequence. The used features are

a measure (between two consecutive frames) of histogram intersection, pixel difference and

difference in the number of edge-pixels. Finally, these features are used to design fuzzy rules

and decide if a frame transition is affected by an abrupt or gradual change.
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4.3.2 Strongly coupled algorithms

4.3.2.1 Recurrent heuristic methods

The major part of the fusion techniques in the tracking and figure-ground literature are based

in a recurrent heuristic scheme, where some cues generate constrains for other cues. Most

of these techniques are ‘application specific’, and use ad-hoc rules when performing the cue

integration. For example, Azoz et al. (4) use color, motion and shape to track the human arm

dynamics. The integration method is based on a sequence of heuristics, which start with a rough

segmentation of the arm regions using the color module. Motion and shape are subsequently

applied to reduce the number of false blobs, and finally, a set of connectivity constrains between

the remaining blobs allow to find the shoulder, elbow and hand.

In the approach of Beymer and Konolige (12), depth from stereo and an intensity template

is used to track multiple persons. Initially, stereovision is applied in order to discriminate the

foreground objects depending on its depth, and subsequently a correlation with a grayscale

template allows the tracking of a specific target.

Darrel et al. (26) integrate several features for robust face tracking in the event of develop

a virtual mirror interface which can react to people and combine the user’s face with several

graphical effects. Stereo, color and grey-scale pattern matching modules are integrated into a

real-time tracking system. Stereo processing allows to isolate the figure of the user from other

objects in the background. Its result feeds into a skin-hue classifier which identifies and tracks

body parts. Finally, stereo and color results are used by the pattern matching to localize the

face within a region containing the head.

In one of the works derived from this dissertation (92) we integrate color histograms and

depth from stereo using a sequential scheme, for tracking faces in real-time (the system runs at

more than 30Hz). A first search of an elliptic shape with skin-like color is performed by color

histogram intersection. The result feeds into a stereo module, which computes the depth of the

face candidate and updates the size of the ellipse for the next iteration.

Another method specifically tailored to the particular application of people tracking is de-

scribed by Siebel and Maybank (118). This work executes in parallel multiple algorithms, a

motion tracker, a region tracker, a head detector and a contour tracker. Each one of the algo-

rithms is designed for a specific sub-task and is dependent on the output of other modules for

initialization or correction.
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Kruppa and Schiele (65) combine several features (color, template and contour) for the

purpose of detecting a face in an image. The particularity of the method is that the integration

of the features is performed in a sequential hierarchical way: first color and the template are

used in parallel in order to find two separate probability maps of the face. Next, these maps

are combined with the contour information to obtain a set ‘1’ of face candidates based on

the color/contour information, and a set ‘2’ of face candidates based on the template/contour

information. Finally, the faces are detected considering the face candidate that maximizes the

mutual information of the previous sets ‘1’ and ‘2’.

These previous methods are so ‘custom-made’ for a specific application that do not allow

to integrate extra cues. A more general approach is the Incremental Focus of Attention (IFA)

framework proposed by Toyama and Hager (129), which combines several tracking algorithms

into a layered hierarchy. The idea behind IFA has close resemblance to the idea presented by

Crowley and Berard (25), i.e, when conditions are good tracking is performed through accurate

although less robust algorithms, and as conditions deteriorate, tracking is performed through

more robust, yet less accurate algorithms. Besides proposing the fusion scheme, (129) presents

an experiment of tracking a face, where from low to high accuracy, the object cues that are used

are the color, motion, and shape (templates of several face features).

There are a set of works that do not exploit completely the strength of the particle filters,

as the multi-hypotheses framework is only used to estimate the change of a unique cue (for

instance the target position) and these hypotheses are weighted considering the state of other

features (for instance color and shape), which are approximated using only one hypothesis.

That is, just the position cue is actually estimated by the particle filter formulation. Although

particle filters are inspired on a Bayesian framework, this kind of approaches have a sequential

nature, thus belonging to the recurrent methods in the proposed taxonomy of fusion methods.

Along these lines, Nummiaro et al. (100) propose an adaptative color-based particle filter for

tracking. The target is modeled using an ellipse, and its position is estimated by multiple

hypotheses, which are weighted according to the color cue, by comparing their histogram with

a model histogram using the Bhattacharya distance.

In the same manner, Spengler and Schiele (122) extend the democratic integration (131)

scheme to a multi-hypothesis framework by weighting the different target position hypotheses

evaluating separately color and shape, and keeping the contribution of both cues constant. A

more robust approach is presented by Shen et al. (113), in which the contribution of each cue

is adapted depending on cue reliability.
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Sherrah and Gong (115) use the Condensation algorithm (51) to track the pose (position

and orientation) of a head. Each one of the position and orientation hypotheses is weighted

according to a reliability measure which takes into account the similarity with respect to a set

of templates (images acquired off-line for different individuals and different head poses) and

also, with respect to skin color information.

The ICondensation approach, by Isard and Blake (52), uses a slightly different approach to

integrate the color cue into the Condensation algorithm when tracking hands. Color informa-

tion is used as a prior to bias the shape hypotheses generation stage, and the individual samples

are weighted only based on edge data.

In order to enhance the robustness of the figure-ground segmentation with respect to il-

lumination changes, in our previous work (88) we use a particle filter to estimate the color

distribution of the target, which is parameterized by a Mixture of Gaussians. The multiple hy-

potheses are only generated about the color cue, and the corresponding weights are assigned

taking into account the shape information. The color estimate allows to segment the target

from the background, and subsequently the shape of the target is updated using deformable

contours. The snake fitting procedure is highly simplified after the figure ground segmentation

is performed using the color estimate.

4.3.2.2 Optimization-based algorithms

Recurrent methods use ad-hoc methodologies for fusing the different cues, many times relying

on heuristics and even manual tuning of parameters. On the other hand, optimization-based

approaches offer a general framework, where cue integration is performed through the min-

imization of functions of energy including the state of all the cues. These methods are less

‘application-dependent’, and do not require to know the relation between features. For instance,

Hager and Belhumeur (45) propose a region tracking algorithm able to cope with simultaneous

changes of shape and appearance. Geometric distortions of the target are accommodated by

introducing a motion model to the target, parameterized by affine deformations, and changes

in appearance are accommodated by incorporating illumination models, represented by linear

combinations of a small number of ‘basis’ images (obtained by applying Singular Value De-

composition (SVD) to a large training set of images). The parameters of the affine deformations

and the weights of each basis image (subspace coefficients) are simultaneously optimized by a

least squares procedure.
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A similar approach to this work are the Active Appearance Models (AAMs), by Cootes et

al. (24) and Matthews and Baker (80). AAMs model shape (defined by a mesh) and appearance

(defined by a set of basis images, as in (45)) separately, and are able to deal with simultaneous

geometric and appearance changes of the target. The adaptation process is achieved through

the minimization of an energy function involving the parameters of the mesh and the subspace

coefficients, usually by gradient descent algorithms. In (132), Vetter and Blanz extend the

AAMs and integrate the target 3D shape and appearance. The only difference with previous

methods is that in (132), the shape is modeled through a 3D mesh.

Wren et al. (139), present the ‘Pfinder’, an application in which color and shape are inte-

grated in order to track a person’s body. The person and background are modeled by its color

and shape (pixel positions inside the blob representing the person or the background) using

Gaussian models. Subsequently, given a new image, each pixel is classified to the object and

background classes, according to its distance with respect to the models. Furthermore, at each

iteration the person and background models are updated.

Tao et al. (125) propose a dynamic layer representation for tracking moving objects (in

particular they perform a vehicle tracking and segmentation from airborne cameras). Each

layer is approximated through three components, namely, motion, shape information and ap-

pearance, which are estimated simultaneously in a maximum a posteriori framework. For each

image sequence, the optimal solution is iteratively computed using the generalized Expectation

Maximization (EM) algorithm.

Shi and Malik (117), introduce the normalized cuts, a global technique for single image

and video segmentation. The segmentation process is performed through a graph partitioning

technique. Each image pixel represents a node of a graph and each pair of pixels are connected

by a graph edge. The weight of the edges connecting two pixels, reflects the likelihood that the

two pixels belong to one object, and can be computed by integrating any kind of image infor-

mation, such as brightness, color, texture and motion. In order to perform the segmentation,

the normalized cuts technique partitions the graph in disjoint parts such that the dissimilar-

ity between the different parts is maximized. When using the method for segmenting video

sequences (116), temporal consistency is guaranteed by connecting the nodes that are in a spa-

tiotemporal neighborhood. However, the drawback of this and related algorithms is that they

are slow.
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4.3.2.3 Bayesian theory

Bayesian theory, also allows the integration of the information provided by several cues, when

there is some kind of probabilistic dependence between the cues. Thus, for example, Ras-

mussen and Hager (107) propose a tracking method that combines color and edge information,

using a Joint Probability Data Association Filter (JPDAF). JPDAF improves the performance

of the PDAF filters (8) (extension of the Kalman Filter when multiple measurements of the

same event are validated) in that it incorporates an exclusion principle, which allows to share

information among separate PDAF trackers and prevents them from latching onto the same

target.

As we have previously stated, particle filters, have been demonstrated to be robust enough

for tracking objects that move with complex dynamics. Therefore, in order to achieve robust

tracking, some approaches have integrated appearance and shape in a particle filter framework,

where object appearance is represented by a set of basis images (usually collected using PCA),

which are linearly combined through the subspace coefficients. Then, the simplest approach

to incorporate the appearance into the particle filter, is to augment the state space of the target,

with the subspace coefficients (Isard and Blake (51)). Note that now, both features are estimated

using the particle filter framework, and not only one of the features, as was done in the particle

filter recurrent approach of the previous section. However, as it was observed by Khan et

al. in (60), to proceed by simply augmenting the state space is problematic because it suffers

from the curse of dimensionality problem (the number of samples in the particle filter increases

exponentially with the dimensionality of the state vector). The approach in (107), just presented

above, also suffers from the same problem. (60) proposes to use a Rao-Blackwellized particle

filter, where the subspace coefficients are integrated out of the state vectors. This procedure

reduces considerably the number of samples.

Partitioned sampling, introduced by MacCormick (75; 76; 77) is another technique which

allows to reduce the curse of dimensionality problem when using particle filters. The ba-

sic operation of the method consists of applying the ‘hypotheses generation’ and ‘hypotheses

correction’ stages (see Section 2.3 for a description of these operations), independently for dif-

ferent parts of a high dimensional state vector. This reduces considerably the region of the state

vector space where samples are propagated, and as a consequence, reduces also the number of

needed samples. A partitioned sampling technique can be easily adapted in order to create a

framework for integrating several object features in a tracking or figure-ground segmentation
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task. Nevertheless, in the original works, this technique has not been used for integrating sev-

eral features, but for tracking multiple objects (76) and articulated objects (77), in both cases

just considering the edges as a unique object feature.

Closely related to partitioned sampling is the approach proposed by Wu and Huang (142),

where two object features, color and shape (represented by an ellipse) are integrated in order

to track human faces in indoor environments. Although both features are used in a unique

particle filter, the prediction and observation stages are done separately and sequentially, in

order to reduce the curse of dimensionality problem previously commented.

In the next chapter of our dissertation, (and the associated work presented in (85; 87)) we

extend this formulation and propose a framework to integrate any number of (conditionally de-

pendent or conditionally independent) algorithms, whose output approximates the state of the

tracked object, and it is represented by a Probability Density Function (PDF). For instance, it

permits to combine an algorithm using Kalman filtering that represents the target state through

a Gaussian PDF, with another algorithm using a particle filter that represents the target state

through a general PDF. In particular, in the work described in (85), we combine three of the

object features presented in Chapter 3, namely the color, the contour and the Fisher colorspace.

All of the features are estimated through a particle filter formulation and integrated with the

proposed framework, allowing for a robust figure-background segmentation of rigid an non-

rigid objects in highly cluttered environments, with abrupt changes of both the target’s position

and appearance. This approach also extends the work of Leichter et al. (67), only valid for

combining conditionally independent features.

4.4 Analysis

It is difficult to compare the different algorithms described in the previous sections because

they are based on different assumptions and tested under different experiments. However, we

can give general comments and emphasize the main advantages and disadvantages for each one

of the groups conforming the proposed taxonomy. This analysis will be done in terms of some

of the ‘desired properties’ of the fusion scheme, indicated in the Introduction of this chapter.

4.4.1 Robustness

We consider that the robustness of a system is related to the ability of dealing with challeng-

ing and uncontrolled environment conditions, such as abrupt changes of illumination, cluttered
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backgrounds or non-linear dynamics of the target. As a global view, strongly coupled algo-

rithms perform better than weakly coupled, and exploit better the capabilities of each feature,

since usually, the performance of a specific module is enhanced when using the information of

another module as a prior. For instance, although the weighting average approach of the demo-

cratic integration, by Triesh and Marlsburg (131) (weakly coupled) succeeds in tracking when

there are abrupt illumination changes, the experiments shown by Khan et al. (60), (strongly

coupled, with a Rao-Blackwellized particle filter) are much more compelling.

Within the weakly coupled approaches, the fuzzy based fusion is probably the less robust

approach. In particular, Kragić and Christensen (64) compare voting and fuzzy approaches, in

which the former shows a considerably smaller tracking errors. The capabilities of averaging,

voting and Bayesian (when using single hypotheses) approaches is quite similar, as noted by

Hayman and Eklundh (48). We would like just to make a special mention with respect to the

Bayesian scheme for integrating multiple independent particle filters proposed by Leichter et

al. (67). Even though the examples shown in their work are not particularly challenging, we

believe that the considered framework is promising in terms of robustness. The most outstand-

ing attributes of this approach are that it is general and mathematically justified, and may be

used for combining any set of tracking algorithms (based on different visual modalities) that

provide a PDF estimate of the target. However, (67) assumes independence of the individual

algorithms which are integrated, and does not allow to exploit a possible dependence between

the combined visual modalities.

With respect to the strongly coupled algorithms, the recurrent approaches are methods built

for specific applications, using ad-hoc rules and hand-tuning of parameters. This makes them

difficult to be extrapolated to new operation conditions, and therefore, less robust. Moreover,

since cues use to be sequentially related, these are methods prone to be sensitive to anoma-

lous or uncertain cues. Optimization based integration algorithms, allow to design more robust

approaches; for instance Hager and Belhumeur (45), Cootes et al. (24) and Matthews and

Baker (80), propose tracking methods able to cope with changes of both geometry and illumi-

nation. The problem of these approaches is that they require of models that fit the data and prior

distributions of possible results (for instance a set of basis images spanning all possible results).

Similar inconveniences are suffered by Bayesian approaches based on a single hypothesis. This

might be overcome by Bayesian approaches with a particle filter formulation, since the fact of

using multiple hypothesis relaxes the need of a very accurate model. For instance, Khan et
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al. (60) (with a Rao-Blackwellized particle filter) impressive results in challenging environ-

ments. In next chapter, we will show that the probabilistic integration framework proposed in

this dissertation, offers a general methodology, which may be particularized to integrate object

features estimated by conditional dependent particle filters, permitting the tracking in highly

cluttered and dynamic environments.

4.4.2 Adaptability

The adaptability of the fusion scheme with respect to changes in the target and background

is a key issue for achieving robustness. Fusion methods typically use two methodologies for

adaptation: adjust the reliability associated with each cue or adapt the model describing a

particular feature of the target (2) (or a combination of both methods).

Weakly coupled schemes adapt the cues by adjusting their reliabilities in the fusion scheme.

For instance, Crowley and Berard (25), Prokopowicz et al. (105) and Shen et al. (112), use one

over several tracking modalities (each modality associated to a different object cue), depending

on the reliabilities of the cue for a specific experimental conditions. Triesh and Malsburg (131),

adjust the weights associated to each feature depending on some measure of quality. Further-

more, this approach updates the models describing the cues, using a linear rule. Toyama and

Horvitz (130) and Sherrah and Gong (114) introduce into the Bayesian networks a reliability

indicator for each feature, which needs to be inferred. In (48), Hayman and Eklundh integrate

the reliabilities into a Bayesian fusion scheme through hyper-priors on the model parameters.

While weakly coupled fusion approaches are mostly based on an adjustment of the reli-

abilities associated to each cue, strongly coupled methods update the model describing the

features. For instance, Nummiaro et al. (100), and Shen et al. (113) adapt the color feature by

adjusting a color histogram to match histograms of the target using a leaking integrator. More

robust approaches are those where the model parameters describing the change of the cues

are incorporated in the estimation process. For instance, in the optimization-based techniques

proposed by Hager and Belhumeur (45), the parameters describing an affine deformation and

an appearance change of the target, are inferred through the estimation process, and therefore

are automatically updated. Even more robust techniques are proposed by Khan et al. (60), Wu

and Huang (142) and the method proposed in this thesis (and the corresponding work in (85)),

where appearance and geometric parameters describing the target state are integrated and up-

dated through a particle filter framework. With a multiple hypotheses framework, different
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configurations of the model parameters are considered at each time step, providing robustness

to unexpected changes on the target state.

4.4.3 Modularity, complexity and scalability

Modularity in the design of the fusion scheme is an interesting capability, since it permits to

reduce the complexity of the overall integration process. Furthermore, modular systems are

easily scalable with extra features.

From this point of view, weakly coupled fusion approaches have a much more modular

structure than strongly coupled methods. This allows to use weakly coupled schemes for im-

plementing real time applications. For instance, Birchfield (14) tracks human faces using an

‘average weighting’ fusion approach. The applications proposed by Prokopowicz et al. (105),

Crowley and Berard (25), and Triesh and Malsburg (131) run also in real time. Voting and

fuzzy approaches are even more efficient, since they are model-free and do not require a pre-

cise mathematical model of the controlled process. Kragić and Christensen (64) implement a

real time visual servoing system using both schemes.

Although strongly coupled methods perform more robustly than weakly coupled ones, their

structure is complex and the flow of information does not follow linear paths, what makes diffi-

cult the tasks of replacing or introducing modules. This is specially reflected with the recursive

and optimization based approaches. As an example, Siebel and Maybank (118) combine a

set of visual modules using intricate relations of dependence, valid only for a specific appli-

cation. The recursive methods proposed by Azoz et al. (4), and Beymer and Konolige (12)

are designed in the same way. Even though optimization-based approaches have a less intricate

structure, they rarely work in real time, since these techniques are based on iterative procedures

(for instance gradient descend, in (24; 45; 80), or a graph partition technique in the normalized

cuts (117), by Shi and Malik). Similar complexity is observed when integrating several features

in a conventional particle filter framework, as is done by Isard and Blake (51). However, the

Rao-Blackwellized particle filter (Khan et al. (60)), and the partitioned sampling (MacCormick

and Blake (76; 77)) relax the high computational cost of using particle filters with high dimen-

sional state vectors. Inspired in the partitioned sampling, the work proposed in this dissertation

and described in next chapter (and in (85)) we propose a framework to integrate any number of

(conditionally dependent or independent) algorithms, where the complexity of the system does

not explode when introducing extra visual modules.
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4.5 Summary

Tracking and figure-ground segmentation in video sequences is a topic of significant interest in

a wide variety of computer vision tasks, extending from video coding to mobile robot naviga-

tion.

It is clear that the fusion of the information from multiple object features improves the

performance of such algorithms. For instance, one of the conclusions of the extensive and

popular survey on tracking algorithms presented by Moeslund and Granum (82), states that:

“For future systems to be more successful and less dependent of various assumptions new

methods and a combination of current methods should be developed, i.e., the combination

of various image cues, such as motion and silhouettes, and more extensive and adaptive use

of human models. Furthermore, new sensors or combinations of sensors might also be an

interesting path into the future.”

In this chapter we have reviewed the recent development on the research of integration of

visual object features for figure ground segmentation. We have presented a taxonomy, inspired

in the sensor fusion classification proposed by Clark and Yuille (23). Two major integration

categories are distinguished, namely weakly coupled and strongly coupled, depending on the

degree of interaction between the vision modules. In the former group, we include weighting

average, voting, Bayesian with independent cues and fuzzy integration approaches. Strongly

coupled schemes, are classified into recurrent, optimization-based and Bayesian with correlated

cues techniques. Almost 50 papers are reviewed and classified into the proposed taxonomy.

We have observed that most of the experiments in the reviewed papers, deal with highly

constrained environments. Challenging experimental conditions, like cluttered background,

abrupt changes of illumination, occlusions, template deformations or non-linear dynamics, are

only addressed by a reduced number or works. Furthermore, most of the works are designed

for specific applications, usually for computer-human interaction tasks and tracking parts of

the human body (hands, face, whole body, arms...).

Consequently, one of the main goals in future works should be to build more general fusion

approaches, not restricted to specific problems, and improve their robustness in non-stationary

environments, affected by the disturbances previously mentioned. Real time is another factor

that must be taken into account.

Among all the reviewed techniques, the most promising are the fusion approaches based

on a strongly coupled bayesian technique. Specifically, the methods fusing dependent particle
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filters are those that have showed better performances. For instance, the Rao-Blackwellized

particle filter framework proposed by Khan et al. (60), presents the challenging problem of

tracking an unmarked honey bee in an observation hive. Temporary occlusions, complex varia-

tions in the appearance and unpredictability of the bee’s movements are some of the difficulties

that need to be addressed by integrating appearance and geometry.

In next chapter we will present a framework that permits to deal with most of the lim-

itations of the reviewed papers. The methodology that we propose, provides a probabilistic

framework to integrate as many features as necessary, allowing the features to be both con-

ditionally dependent or independent, and described by PDF’s. In particular, this framework

permits to combine several particle filters, with other algorithms which output is a PDF, like

Kalman filters. Furthermore, since each object feature is attached to a different state vector, the

computational cost of the whole system is significantly lower than including all the features in

a unique state vector. Tracking results in highly cluttered environments, with abrupt changes

of illumination and object position will demonstrate the effectiveness of the method.
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Chapter 5

Probabilistic framework for
integrating multiple cues

Remind the main goal of the dissertation: propose a framework to integrate multiple object

cues, allowing to estimate the configuration of the target through video sequences which might

suffer from different artifacts, such as, abrupt changes of illumination, cluttered backgrounds

and non-linear dynamics. In previous chapters we have established the bases that will be used to

describe the proposed framework: Chapter 2 introduced the probabilistic algorithms (Kalman

and particle filters) used to estimate the state of the individual features. Chapter 3, defined the

features that will be used to represent the target, and Chapter 4 reviewed and analyzed previous

approaches in the computer vision literature that perform tracking based on multiple object

features.

The present chapter incorporates all this information in order to propose a new technique

for fusing multiple cues to robustly segment an object from the background (and subsequently

track it), in video sequences that suffer from the artifacts just mentioned. Robustness is

achieved by the integration and interaction of the appearance and geometric object features

described in Chapter 3, and by their estimation using non-linear particle filters (described in

Chapter 2). Most of previous approaches reviewed in Chapter 4, assume independence of the

object cues or simply apply a particle filter formulation to only one of the features, and assume

a smooth change in the rest, which can prove very limiting, especially when the state of some

features needs to be updated using other cues or when their dynamics follow non-linear and

unpredictable paths.

The technique presented here offers a general framework to integrate as many features as

necessary, the state of which is approximated via a Probability Density Function (PDF). Apart
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from permitting to combine several particle filters, the method is also valid for integration

of features estimated using the Kalman filter, and in general any algorithm which outputs a

PDF and satisfies a ‘hypotheses generation - hypotheses correction’ scheme (as described in

Chapter 2). Besides being analytically justified, the proposed approach is applied to develop a

robust tracking system that adapts online and simultaneously the colorspace where the image

points are represented, the color distributions of the object and background, and the contour

of the object. Results with synthetic data and real video sequences demonstrate the robustness

and versatility of our method.

5.1 Introduction

The integration of several visual features has been commonly used to improve the performance

of the techniques for tracking and figure-ground segmentation in video sequences. In the pre-

vious chapter we have reviewed the most relevant and recent works in this field. Based on

the classification proposed by Clark and Yuille in (23), the fusion methodologies have been

classified into the ‘weakly coupled’ and ‘strongly coupled’ techniques, where the former refers

to those fusion techniques assuming cue independence, and the latter consider dependence

between cues.

It has been observed that although weakly coupled methods permit to implement less costly

and real time applications, the most robust results are obtained when using strongly coupled

methods. In particular, the strongly coupled Bayesian methods, provide the best results, in

addition to an elegant formulation of the fusion scheme.

In this chapter, we introduce a probabilistic framework that integrates several object fea-

tures, which allows us to robustly segment the object from the rest of the image, in dynamically

changing sequences such as the one shown in Fig. 5.1, where the central leaf is the selected

target to track. Observe in the sample frames of the video sequence (top row of Fig. 5.1), some

of the artifacts that might convert the tracking in a challenging task: the abrupt change of illu-

mination between the first and second frames (which are consecutive frames of the sequence),

a highly cluttered background, and unpredictable dynamics of the target movement. In spite of

this, using the method that we are going to describe in the following sections, we are able to

segment and track the object. The bottom row of Fig. 5.1 shows the corresponding maps of the

foreground membership, where brighter points correspond to the pixels that more likely belong

to the foreground.
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Figure 5.1: Video sequence affected by different artifacts that make the tracking task
difficult. Top row: Original sequence, where the central leaf is the selected target. Note the
abrupt illumination change between the first and second frames (which are consecutive frames).
Also, the clutter and non-linear dynamics of the leaf complicate the tracking. Bottom row: Map
of foreground membership obtained using the method proposed in this chapter. Brighter points
correspond to pixels classified as foreground with high certainty.

In order to perform tracking under these kind of complex dynamics, we propose a method

where each one of the object features is estimated by a different algorithm satisfying the ‘hy-

potheses generation - hypotheses correction’ scheme (described in Chapter 2) and which output

is represented by a PDF. As will be shown in the following sections, we will restrict to Bayesian

filters such as the Kalman filter and particle filter (also described in Chapter 2).

A key consideration that must be taken into account is that we enable a conditional depen-

dence between cues. A similar approach is presented by Leichter et al. (67), where several

Bayesian filter algorithms are integrated for tracking tasks. However, in (67) it is assumed that

the methods are conditionally independent, i.e, each algorithm estimates the state of a target

feature based on some measurements which are conditionally independent of the measurements

used by the other algorithms. That is, if Bayesian filter BF1 is based on measurements (ob-

servations) z1 to estimate the state vector x1 (representing one object feature) and Bayesian

filter BF2 uses measurements z2 to estimate x2 (representing another object feature), for each

complete state vector of the object X = {x1,x2} it is assumed that:

p(z1, z2|X) = p(z1|x1)p(z2|x2) (5.1)
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Nevertheless, this assumption is very restrictive and many times is not satisfied, since it as-

sumes that the measurements used to estimate the feature x1 are independent from the mea-

surements used to estimate the feature x2. For instance, a usual method to weigh the samples of

a contour particle filter, is based on the ratio of the number of pixels inside the contour having

object color versus the number of pixels outside the contour having background color. This

means that the contour feature is not independent of the color feature. In this situation if z1

represents the observations for the color feature and z2 the corresponding for the contour, the

latter will be a function of both x1 and z1, i.e., z2 = z2(x1, z1). Based on the definition of the

conditional probability 1, it is straightforward to rewrite previous equation as:

p(z1, z2|X) =
p(z1, z2,x1,x2)

p(x1,x2)
=
p(z2|z1,x1,x2)p(z1,x1,x2)

p(x1,x2)
= p(z2|z1,x1,x2)p(z1|x1,x2) = p(z1|x1)p(z2|z1,x1,x2) (5.2)

In the last step we assume independence of z1 with respect to x2 and z2, i.e, z1 �= z1(x2, z2).

This formulation allows to simultaneously adapt both features, performing more robustly than

the ‘independent’ case.

MacCormick and Blake (76) and MacCormick and Isard (77) presented a closely related

work, that introduces the partitioned sampling, a technique allowing to reduce the curse of

dimensionality problem, affecting particle filters dealing with state vectors of high dimension-

ality. This method applies the ‘hypotheses generation’ and ‘hypothesis correction’ stages of a

particle filter, separately for different parts of the state vector. However, partitioned sampling

is specific for particle filters, and does not allow to integrate other types of algorithms. In this

sense, our formulation is more general, since any individual module might be represented by

any Bayesian filter or any algorithm with a PDF as output. As we have mentioned in Chapter 4,

Wu and Huang (142) propose an approach closely related to the partitioned sampling, where

two features (color and shape) are estimated using a single particle filter, but considering sep-

arate observations. Again, this framework is restricted to particle filters, and does not allow to

integrate other algorithms that might be suitable. Furthermore, in (142), the number of sam-

ples necessary to estimate each feature is not optimized, and each time step contains an inner

iterative process that increases noticeably the cost of the algorithm.

Another key difference between these ‘partitioned sampling’ based approaches and the

method proposed in this dissertation, is that using our approach it is more probable to associate

1 The conditional probability of an event a assuming the event b is given, denoted by p(a|b), is by definition
the ratio p(a|b) = p(a,b)

p(b)
, where it is assumed that p(b) is not 0.
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the best state vector configuration of one feature with the best state vector configuration of

another feature, and thus maximizing the join probability. In the works of (76; 77) and (142)

this is not guaranteed. This point will be discussed in more detail in following sections.

With these considerations, we can summarize the main contributions of our framework to

integrate multiple cues as follows:

1. We propose a probabilistic framework that can integrate as many features as necessary,

for tracking purposes. It is worth noting that:

(a) The state of the features may be approximated by any algorithm which outputs a

PDF. In particular, we have integrated features approximated by a Kalman filter

with features estimated through particle filters.

(b) The proposed framework is theoretically proven and validated in a tracking exam-

ple of synthetically generated data.

(c) The method allows to integrate both conditionally dependent and conditionally in-

dependent cues. In case of feature dependence, the relation between features is

considered during the observation phase of the algorithm.

(d) By estimating each feature with a separated algorithm, the probability of associ-

ating the best estimate of one feature with the best estimate of another feature is

maximized, and thus the join probability is also maximized.

2. The proposed framework is applied to develop a robust tracking system that simultane-

ously: (a) Adapts the colorspace where image points are represented. (b) Updates the

distributions of the object and background colorpoints. (c) Accommodates the contour

of the object.

3. The representation of the color feature by particle filters and the online adaption of the

colorspace are novel contributions of our work and make our system capable to track

objects in complex and highly cluttered environments, altered by unexpected changes of

color and illumination.

The rest of the chapter is organized as follows: Section 5.2 introduces the mathematical frame-

work of the method. In Section 5.3, a comprehensible example for one dimensional cues will

be explained, which will be used as a benchmark to compare the performance of our approach
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with the partitioned sampling approaches previously mentioned. The state vector of the fea-

tures used in the real operation of the method (which were described in Chapter 3), and its dy-

namic models are described in Section 5.4. In Section 5.5 we depict details about the complete

tracking algorithm. Results and conclusions are given in Sections 5.6 and 5.7, respectively.

5.2 Mathematical framework

In this Section we will define the mathematical background for the proposed framework. We

will start by defining the integration process of conditionally dependent features, and next, we

will explain how the conditional dependence between features is considered into the observa-

tion model.

5.2.1 Integration process

In the general case, let us describe the object being tracked by a set of F features, whose

configuration is specified by the state vectors x1, . . . ,xF , that are sequentially conditionally

dependent, i.e., feature i depends on feature i − 1 (later we will see that the integration of

independent cues is straightforward). These features have an associated set of measurements

z1, . . . , zF , where measurement zi allows to update the state vector xi of the i-th feature. The

conditional a posteriori probability p1 = p(x1|z1), . . . , pF = p(xF |zF ) is estimated using a

corresponding Bayesian filter BF1, . . . ,BFF , such as the Kalman filter or the particle filter

defined in Chapter 2. For the whole set of variables we assume that the dependence is only in

one direction:

xk = xk(zi,xi)

zk = zk(xi, zi)

}
⇐⇒ i < k (5.3)

Considering this dependence relationship we can add extra terms to the a posteriori prob-

ability computed for each Bayesian filter. In particular, the expression for the a posteriori

probability computed by BFi will be pi = p(xi|x1, . . . ,xi−1, z1, . . . , zi). Keeping this in

mind, next we will prove that the whole a posteriori probability can be computed sequentially,

as follows:

P = p(X|Z) = p(x1, . . . ,xF |z1, . . . , zF )

= p(x1|z1)p(x2|x1, z1, z2) · · · p(xF |x1, . . . ,xF−1, z1, . . . zF )

= p1p2 · · · pF (5.4)
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Proof. We will prove this by induction, and applying Bayes’ rule (39) and Eq. 5.3:

• Proof for 2 features:

p(x1,x2|z1, z2) =
p(x1,x2, z1, z2)

p(z1, z2)

=
p(x2|x1, z1, z2)p(x1, z1, z2)

p(z1, z2)
= p(x2|x1, z1, z2)p(x1|z1, z2)
= p(x1|z1)p(x2|x1, z1, z2)

• For F − 1 features we assume that

p(x1, . . . ,xF−1|z1, . . . , zF−1) = p(x1|z1)p(x2|x1, z1, z2) · · ·
· · · p(xF−1|x1, . . . ,xF−2, z1, . . . zF−1) (5.5)

• Proof for F features:

p(x1, . . . ,xF |z1, . . . , zF ) =
p(x1, . . . ,xF , z1, . . . , zF )

p(z1, . . . , zF )

=
p(xF |x1, . . . ,xF−1, z1, . . . , zF )p(x1, . . . ,xF−1, z1, . . . , zF )

p(z1, . . . , zF )

=
p(xF |x1, . . . ,xF−1, z1, . . . , zF )p(x1, . . . ,xF−1|z1, . . . , zF )p(z1, . . . , zF )

p(z1, . . . , zF )

= p(xF |x1, . . . ,xF−1, z1, . . . , zF )p(x1, . . . ,xF−1|z1, . . . , zF−1)

Eq. 5.5 = p(x1|z1)p(x2|x1, z1, z2) . . . p(xF |x1, . . . ,xF−1, z1, . . . zF )

Eq. 5.4 tells us that the whole a posteriori probability density function can be computed se-

quentially, starting with BF1 to generate p(x1|z1) which is then used to estimate p(x2|x1, z1, z2)

with BF2, and so on. Note that the inclusion of an extra feature xG (with the corresponding

measurement vector zG) independent from the rest, is straighforward. We just need to multiply

Eq. 5.4 by the posterior p(xG|zG).

Until now we have only considered the fusion of several Bayesian filters from the static

point of view. But in the iterative performance of the method, BFi receives as input at iteration

t, the output PDF of its state vector xi at the iteration t−1. We write the time expanded version

of the PDF for BFi as

pt
i = p(xt

i|xt
1, . . . ,x

t
i−1, z

t
1, . . . , z

t
i, p

t−1
i ) (5.6)
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The expression for the complete PDF from Eq. 5.4 may be expanded as:

P t = p(Xt|Zt) = p(xt
1, . . . ,x

t
F |zt

1, . . . , z
t
F )

= p(xt
1|zt

1, p
t−1
1 ) · · · p(xt

F |xt
1, . . . ,x

t
F−1, z

t
1, . . . z

t
F , p

t−1
F )

= pt
1p

t
2 · · · pt

F (5.7)

5.2.2 Introducing cue dependence into the observation model

In this subsection we will explain how the cue dependence is handled in the proposed proba-

bilistic framework.

The dependence between cues comes from the fact that in real tracking algorithms, it is

common to evaluate the generated hypotheses about a specific feature, according to the state

of another feature. For instance, as we have pointed out in the Introduction of this chapter,

contour particle filters use to weigh the predicted contour samples based on the ratio of the

number of pixels inside the contour with object color versus the number of pixels outside the

contour with background color. Therefore, the contour feature, for this kind of observation

model, is dependent on the color feature.

Now, let us assume that feature x2 (estimated by the Bayesian filter BF2) depends on

feature x1 (estimated by BF1). The probability distribution p(x1|z1), is introduced into the

observation model of the feature x2 according to the following cases:

1. BF1 is a Kalman filter, i.e, BF1 ≡ KF1:

The posterior probability estimating the state vector x1 will be a normal distribution, i.e.,

p(x1|z1) = Nx1(µx1
,Σx1). Likewise it is done in particle filters, the normal distribution

p(x1|z1) will be uniformly sampled, and approximated by a discrete set of weighted

particles {s1j , π1j}, j = 1, . . . , n1, where π1j is the result of evaluating the function

Nx1(µx1
,Σx1) for x1 = s1j .

(a) BF2 is a Kalman filter, i.e, BF2 ≡ KF2:

In order to evaluate the single hypothesis generated by KF2, the configuration of

the state vector corresponding to the feature ‘1’ will be the mean of p(x1|z1), that

is, µx1
.

(b) BF2 is a particle filter, i.e, BF2 ≡ PF2:

Let us call {s2j}, j = 1, . . . , n2 the set of n2 hypotheses that PF2 generates about

the state vector x2.
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Based on the deterministic resampling algorithm detailed in Section 2.3, the set

{s1j}, j = 1, . . . , n1 is resampled n2 times according to the weights π1j , to obtain

the new set {s̃1j}, j = 1, . . . , n2.

Finally, each sample s2j of feature ‘2’, is evaluated considering that the configu-

ration of feature ‘1’ is s̃1j . Observe, that the more likely is a configuration of the

feature ‘1’, the more times will be used to evaluate feature ‘2’.

2. BF1 is a particle filter, i.e, BF1 ≡ PF1:

In this case, the posterior probability estimating the state vector x1 will be a probability

distribution p(x1|z1) approximated by a discrete set of weighted particles {s1j , π1j},
j = 1, . . . , n1.

(a) BF2 is a Kalman filter, i.e, BF2 ≡ KF2:

To evaluate the single hypothesis generated by KF2, the configuration of the state

vector for feature ‘1’ to be considered, will be the expected value of the set {s1j , π1j},
j = 1, . . . , n1, computed as:

E(x1) =
n1∑

j=1

s1jπ1j

(b) BF2 is a particle filter, i.e, BF2 ≡ PF2:

The procedure is exactly the same than in the case 1b.

In Fig. 5.2 we show an example of how the cue dependence is handled in a case where

the two Bayesian filters that are integrated, are a Kalman filter (KF1) and a particle filter

(PF2). For this example, feature ‘2’ estimated by PF2 depends on feature ‘1’ estimated by

KF1. During the observation phase of the PF2, the multiple hypothesis {s2j}, j = 1, . . . , n2

generated in the prediction stage of the filter, need to be weighted according to some external

measurement. This measurement, will be performed based on the estimate of feature ‘1’ done

by KF1. For this purpose, the a posteriori PDF approximating p(x1|z1) is discretized into n1

weighted particles, {s1j , π1j}, j = 1, . . . , n1. Subsequently, this set is resampled n2 times

using a sampling with replacement. A set {s̃1j}, j = 1, . . . , n2 is obtained. Finally, each

sample s2j of the state vector x2 is weighted using the configuration of feature ‘1’ represented

by the sample s̃1j .
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Figure 5.2: Introducing cue dependence into the observation model. Example of how cue
dependence is handled in the proposed framework, in a case dealing with two features, one
estimated by a Kalman filter and the other estimated by a particle filter. The estimate x1

of feature ‘1’ state vector, carried out by KF1, is represented by a set of weighted samples
{s1j , π1j}, j = 1, . . . , n1. These particles are resampled n2 times (according to their weights),
in order to obtain the set {s̃1j}, j = 1, . . . , n2. Finally, each sample s2j , j = 1, . . . , n2 of
feature ‘2’ state vector, is weighted according to the configuration of the corresponding sample
s̃1j .

Observe in Fig. 5.2 that the samples {s1j} which have higher weights, have more chance to

be selected several times when evaluating the hypotheses {s2j}; thus allowing to group together

the more likely samples of feature ‘1’ with the more likely samples of feature ‘2’. Also it is

important to note that not all the features need to be approximated by the same number of

samples. In the example just described, x1 is estimated by n1 = 5 samples, whereas x2 is

estimated by n2 = 10 samples. This is an important advantage of the proposed framework,

especially when dealing with particle filters, since it permits to adapt the number of necessary

samples to estimate each feature, as a function of its particular requirements. Some features

might require a large number of samples to be appropriately estimated, while other features

might require just a reduced number of samples.

To make all the mathematical foundations more clear, in the next section we will apply this

method for a simulated case, with only two one-dimensional particle filters.
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Figure 5.3: Simulated true (black line) and observed (light blue line) paths described by a
point moving on a color-position space. For this example, color and position are represented
by one dimensional features.

5.3 Dependent object features in 1D

Let us assume that we want to track a single point that changes its position and color. Both

features lie on a one-dimensional space, that is, the point is moving on the horizontal axis,

between the [−1, 1] coordinates, and the color is also represented by a single value in the [0, 1]

interval. The movement of the point is simulated with a random dynamic model (centered in

µpos and scaled by αpos). Furthermore, we simulate an observation model, adding Gaussian

noise to the simulated position :

post = (post−1 − µpos)αpos + N(µnoise,pos, σnoise,pos)

obs post = post + N(µnoise,obs pos, σnoise,obs pos) (5.8)

Similar equations generate the models for color change and observation:

colt = (colt−1 − µcol)αcol + N(µnoise,col, σnoise,col)

obs colt = colt + N(µnoise,obs col, σnoise,obs col) (5.9)

Figure 5.3 shows the true and observed paths described by the simulated point, in the ‘color-

position-time’ space. Observe that the movement of the point suffers from abrupt changes in

both the color and position coordinates. As it is shown in (51), this kind of dynamics can be

succesfully tracked using particle filters. Therefore, the state of each one of the features will be

estimated through particle filters. We will use PF1 to track the color, with x1 and z1 represent-

ing the color state vector and its measurement, and PF2, x2 and z2 the corresponding particle
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filter, state vector and measurements assigned to the position. Thus, considering Equations 5.8

and 5.9, we make the following analogies:

PF1 : x1 = col z1 = obs col
PF2 : x2 = pos z2 = obs pos

At the starting point of iteration t, PF1 receives at its input pt−1
1 , the PDF of the color at

time t − 1, approximated with n1 weighted samples {st−1
1j , πt−1

1j } , j = 1, . . . , n1. This set is

resampled and propagated according to a random dynamic model of Gaussian noise:

st
1j = s̃t−1

1j + N(0, σdyn,col)

where s̃t−1
1j are the resampled particles.

Each one of these propagated samples is weighted taking into account its proximity to the

observed value of the color:

πt
1j ∼ e−(‖st

1j−obs colt‖)

The set {st
1j , π

t
1j} , j = 1, . . . , n1, is the output of the PF1 and represents an approximation

to the a posteriori probability distribution pt
1. This PDF, jointly with pt−1

2 feeds into PF2, the

particle filter responsible for estimating the position of the point. As in the previous particle

filter, pt−1
2 is approximated by a set of n2 samples and weights {st−1

2j , πt−1
2j }, j = 1, . . . , n2,

which are resampled and propagated using a random Gaussian dynamic model:

st
2j = s̃t−1

2j + N(0, σdyn,pos)

As we have previously pointed out, in real trackers, it is common to evaluate several target

positions based on some appearance measure of the object, in our case, color. So we will

proceed in a similar way for the weighting stage. To each sample st
2j , representing a position

of the point in space, we associate a sample st
1k, representing a color state in the color-space,

based on the weight πt
1k. This means that those color samples having larger weights (high

probability) will be used more times than those having low probability. In order to simulate

the weighting of the position samples taking into account the color configuration, the weight

assigned to each sample st
2j is computed with the following function, which considers both the

position and color state vectors:

πt
2j ∼ e−(‖st

1k−obs colt‖+‖st
2j−obs post‖)
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Figure 5.4: A posteriori PDF’s that take part in one iteration of the proposed algorithm.
pt−1
1 , pt−1

2 and P t−1 are the input PDF’s and pt
1, pt

2 and P t are the output PDF’s of the iteration.
Crosses represent the data values at time t − 1 and circles are the data values at time t. The
gray level of crosses and circles indicates if the data corresponds to the real value (black), to
the estimation done by the filter (dark gray) or the to observation (light gray).

The set {st
2j , π

t
2j}, j = 1, . . . , n2, represents the approximation to pt

2. Finally, we can

compute the complete a posteriori probability of the system at time t by:

P t = p(xt
1,x

t
2|zt

1, z
t
2) = pt

1p
t
2

In Fig. 5.4 we show all the a posteriori PDF’s in the ‘color-position’ space, generated in one

iteration of the algorithm. The estimates are computed sequentially for each one of the features.

First, the color state (pt
1) is estimated, based on the estimate at previous time step (pt−1

1 ) and the

color observation (zt
1). Subsequently, in cooperation with pt−1

2 and zt
2, pt

1 is used to estimate the

probability distribution of the position feature pt
2. Finally, the join probability P t is computed

as the product of pt
1 and pt

2.

5.3.1 Comparison with other approaches

The simple example just presented, will be considered as a testing sequence in order to com-

pare the efficiency of the integration method proposed in this dissertation, with that of previous

approaches, specifically, with the conventional Condensation algorithm (51) assuming inde-
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pendent cues and the partitioned sampling algorithm (76; 77) assuming dependence in the

propagation stage.

The comparison will be performed in terms of the accuracy in the tracking (distance be-

tween the estimated position and color and the true values), and in terms of the survival diag-

nostic (77). The survival diagnostic D for a particle set {si, πi}, i = 1, . . . , n is defined as:

D =

(
n∑

i=1

π2
i

)−1

(5.10)

This random variable may be interpreted as the number of particles which would survive a re-

sampling operation, and therefore it is an indicator whether the tracking performance is reliable

or not. A low value of D means that the tracker may lose the target. For instance, if π1 = 1 and

π2 = π3 = . . . = πn = 0, then D = 1. In these circumstances only one particle might survive

the resampling, and tracking would probably fail. On the other hand, if all the particles have

the same weight, π1 = π2 = . . . = πn = 1/n results in that D = n. This indicates that all

the n particles would survive an ideal resampling, and the tracking would not get lost. Made

this clarification, we proceed to study the performance of different algorithms in the tracking

problem proposed in this section.

In the first experiment, the problem has been examined by the conventional Condensation

algorithm, assuming that cues are independent. x1 and x2 are represented into the same state

vector, and the hypotheses generation and correction stages are applied simultaneously to both

features. Since the dynamic model of a specific feature has no clue about the state of the other

feature, particle samples are spread on a wide area of the state space and, as a consequence,

only a few particles will be located in the neighborhood of the true state. Figure 5.5a shows

the a posteriori density function obtained in one iteration of the algorithm. The dots represent

the different samples (in the ‘color-position’ configuration space), and the crosses are the true

value (black) and observed value (blue). The gray level of the particles is proportional to their

likelihood (darker gray levels are more probable particles). Observe that only a small number

of particles have a large weight. As a consequence, the survival diagnostic for this approach

will have low values.

A better approach may be obtained through the partitioned sampling algorithm. In this case,

the dynamics and measurements are not applied simultaneously, but are partitioned into two

components. First, the dynamics are applied in the x1 direction, and therefore the particles are

rearranged so that they concentrate around the color observation (by a process called weighted
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(a) Condensation (b) Partitioned Sampling (c) Proposed Method

Figure 5.5: A posteriori probability distributions for different particle filter based algo-
rithms. Comparison of the posterior obtained for three algorithms in the tracking example
presented in this section corresponding to a point moving in the ‘color-position’ space. The
results are for a particular iteration, and show how the filters approximate the true value (black
cross) based on a set of weighted particles (gray level circles). The gray level is proportional to
the probability of the sample, in such a way that darker gray levels indicate more likely samples.
Since the true value is only ideally available, the correction of the hypotheses is done based on
the observation (blue cross), which we have simulated to be the true value plus a Gaussian
noise. In the three experiments, have been used the same number of particles (n = 1000)
and the same dynamic models. However, note that the approach proposed in this thesis is the
method that concentrates a maximum number of samples around the true value.

resampling (76) which keeps the distribution unchanged). This arrangement enhances the es-

timation by concentrating more particles around the true state. Note in Figure 5.5b this effect

on the posterior distribution. Although particles are spread in the x2 direction, their variability

along the x1 direction is highly reduced. As a result, the number of particles having a large

weight is considerably bigger than when using the conventional Condensation.

It is important to note that in partitioned sampling, particles are propagated in the direction

x2 according to the likelihood of the samples of feature x1. Thus, best hypotheses of feature x1

have more chances to be propagated in the direction x2. Although this approach outperforms

the conventional Condensation algorithm, it still has a limitation, in that the best samples of

feature x1 do not need to be the best samples of feature x2. Therefore, the common association

of the best samples of feature x1 with the best samples of feature x2, is not guaranteed.

This is improved in the integration algorithm proposed in the present thesis. The key dif-

ference with respect to the previous approaches, is that we assume a different state vector for

each feature, and the hypotheses generation and correction stages are also applied separately.

In particular, the propagation of the particles for feature xi, is performed according to the par-
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ticles resampling its own probability distribution in the previous time step p(xt−1
i |Zt−1

i ), and

not according to the particles that better approximate another feature, avoiding the mentioned

problem suffered by partitioned sampling. In Figure 5.5c, we see that proceeding this way

the samples are much more concentrated around the true value than they were for the other

approaches, what improves noticeably the survival diagnostic.

Furthermore, while partitioned sampling considers the feature dependence during the hy-

potheses generation stage, we consider it in the hypotheses correction phase, where the pos-

terior of a specific feature is used to weight the samples of another feature. This permits in a

same iteration to update all the features representing the target.

Taking as a model the diagram symbology used in (75) to describe particle filter processes,

which we have introduced in Chapter 3, in Figure 5.6 we describe one time step of the conven-

tional Condensation algorithm, the partitioned sampling and the proposed algorithm. These

diagrams clearly reflect the difference between the compared algorithms just commented:

(a) Conventional Condensation (x = [x1,x2])

(b) Partitioned Sampling (x = [x1,x2])

(c) Proposed Method

Figure 5.6: Whole process diagrams of the Conventional Condensation, Partitioned Sam-
pling and the proposed algorithm. The symbology used in these diagrams is adapted
from (75), and it has been presented in Chapter 3 of this thesis. In the partitioned sampling
diagram, the symbol ∼ pt

1 has been introduced, which indicates a weighted resampling opera-
tion with respect to the importance function pt

1 (see (75) for details).
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(a) (b)

Figure 5.7: Tracking results obtained for the conventional Condensation, partitioned sam-
pling and the proposed method. Analysis of the three algorithms when are applied to the
tracking example explained in this section, which was a 20 iterations sequence. The analysis
is done in terms of the error (a) in the tracking (distance between the true state and the state
estimated by the algorithm) and in terms of the survival rate (b). In both cases the experiments
have been realized for different number of samples, and for each specific number of samples,
25 repetitions of the simulation have been done. The results we show, correspond to the mean
of these 25 repetitions, of 20 iterations each. Observe that the results agree with the a posteriori
distributions plotted in Fig 5.5, as the proposed method outperforms both the Condensation and
the partitioned sampling algorithms.

The plots of Figure 5.7 show the tracking results obtained for the three algorithms compared

in this section. In Figure 5.7a the algorithms are compared in terms of the tracking error,

where the error is computed as the distance between the filter estimate and the true value. For

instance, given a posterior approximated by the set {sj , πj}, j = 1, . . . , n, and the true state of

the tracked point given by xtrue, the value of the error is:

E(n) = ‖E(x)− xtrue‖ (5.11)

where, E(x) is the expected value approximated by the filter, i.e, E(x) =
∑n

j=1 sjπj , and ‖ · ‖
refers to the Euclidean norm. Observe that the error produced using the method proposed in

the dissertation is clearly smaller than the one produced by the other algorithms.

When analyzing the survival diagnostic for the same experiments, we may reach similar

conclusions. From Figure 5.7b it can be seen that the largest survival rates, and hence the most

reliable tracking results, are obtained when using the integration technique presented in this

chapter.
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Just a final remark for this section, concerning to the number of particles necessary to

achieve a desired level of performance. It is well known that the curse of dimensionality is one

of the main problems affecting particle filters, that is, when the dimensionality of the state space

increases, the number of required samples increases exponentially (60; 76; 142). Intuitively,

the number of samples is proportional to the volume of the search space. For instance, if a one-

dimensional space is sampled by n particles, the same sampling density in a two dimensional

space will require n2 particles, and so on. Nevertheless, in the proposed method the high

dimensional state vectors are separated into various small state vectors and the sampling is

particularized for of each low dimensional configuration space. The final number of required

particles corresponds to the sum of the particles used in each of these low dimensional spaces.

For example, if a two dimensional state vector can be separated into two one-dimensional state

vectors, the number of samples may be reduced from n2 (required in the two dimensional

configuration space) to 2n (required in the two one-dimensional spaces).

Furthermore, as we have previously pointed out, the number of samples may be adapted

for the particular requirements of each of the low dimensional state vectors.

5.4 Feature parameterization and dynamic model

In the preceding sections of this chapter, the integration framework has been presented from

a general point of view, and applied to a simple example involving one dimensional features,

which has allowed to highlight the important properties of the method, and compare it with

other approaches.

The rest of the chapter will describe a particular application of the proposed framework

for designing a tracking system able to work in real and dynamic environments. The target is

going to be represented by the features described in Chapter 3, which were a bounding box that

roughly approximated the image region where the target is expected to be, the color space that

best discriminated the target color from the background color, the color distribution into this

specific color space, and the object contour. In the following subsections, the parameterization

of these features and their respective dynamic models will be described.
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5.4.1 Object bounding box

State vector:

The bounding box of the object is just a rectangular shape, that gives a rough estimate

about the target position. It is parameterized by the following state vector x1 ∈ R5×1:

x1 = [u1, v1, a1, b1, θ1]
T (5.12)

where (u1, v1) are the coordinates of the center, a1 and b1 are the lengths of the sides of

the rectangle, and θ1 is the angle between a1 and the horizontal axis (see Fig. 5.8).

Dynamic model:

Since the bounding box is just used as a coarse initial estimate of the target position

at each iteration, its state may be calculated approximately by a Kalman filter, which

mostly relies in the prediction term. It has been stated in Chapter 2 (Section 5) that

Kalman filter is based on linear dynamic models with Gaussian white noise. However, a

better approximation to the dynamics is achieved by a second order process such as:

xt
1 = xt−1

1 + α(xt−1
1 − xt−2

1 ) + q1,h (5.13)

where the parameter α settles the adaptation velocity of the model and q1,h ∈ R5×1

is a random variable distributed as a Gaussian with zero mean and diagonal covariance

matrix Σ1,h ∈ R5×5.

In order to convert Eq. 5.13 into a linear dynamic model, it is considered an augmented

state-vector x̄t
1 ∈ R10×1:

x̄t
1 =

[
xt−1

1

xt
1

]
(5.14)

Then, the dynamic model may be rewritten as:

x̄t
1 = H1x̄t−1

1 + B1q1,h (5.15)

where

H1 =
[

05×5 I5×5

−α · I5×5 (1 + α) · I5×5

]
and B1 =

[
05×5

I5×5

]
(5.16)

This notation allows to represent a second order process as a linear dynamic model.
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(a) (b)

Figure 5.8: Bounding box feature. A rough estimation of the object position will be provided
by a bounding box surrounding the object, with a gap big enough to ensure that it contains the
target. (a) Bounding box example. (b) Bounding box parameterization.

5.4.2 Color space

An important contribution of this dissertation is the use of an object dependent colorspace

(called Fisher colorspace) that maximizes the distance between the object and background

colorpoints, which is a desired property for any color-based tracking system. This kind of

colorspace may be understood as an intrinsic object feature adaptable throughout the sequence.

Fisher plane is initialized by a training image, where the RGB colorpoints are manually

separated into foreground and background (Figure 5.9a,b). Following the procedure described

in Chapter 3 (Section 2), the Fisher plane is determined as the plane that maximizes the distance

between the projected classes, while they maintain a low variance (Figure 5.9c). Although it has

been proved that the Fisher plane is robust to illumination changes, the movement of the objects

in image, or complex illumination effects such as cast shadows, specularities, interreflexions,

etc., will cause the color distributions of both the object and background to change. As a

consequence, the Fisher plane needs to be adapted online. In particular, the adaptation will be

realized through a particle filter, with the following state vector and dynamic model:

State vector:

A Fisher plane spanned by the vectors w1 and w2, is parameterized by its normal vector,

x2 =
w1 ×w2

‖w1 ×w2‖ ∈ R3×1 (5.17)
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(a) (b) (c)

Figure 5.9: Fisher colorspace. (a) Representation of all image points in the RGB colorspace.
In the upper left corner of the figure the original image is shown. (b) Manual classification of
image points into foreground (O) and background (B) classes. The foreground (target to track)
is the leaf appearing in the center of the image. (c) The Fisher plane is determined from the
training points. This plane maximizes the separation of the projected classes, while keeping a
low variance.

Dynamic model:

The Fisher plane will be propagated by a dynamic model, consisting of a random scaling

and a random translation:

xt
2 = H2xt−1

2 + q2 (5.18)

where H2 ∼ A3×3(0,σH2) and q2 ∼ t3×1(µq2
,σq2). The random scaling matrix A

and the random translation vector t are defined as follows:

Am×m(µA,σA) =


 1 + a11 · · · a1m

...
. . .

...
am1 · · · 1 + amm




tm×1(µt,σt) = [t1, . . . , tm]T

(5.19)

Variables aij and ti are approximated by normal random values, aij ∼ N
(
µaij , σaij

)
,

ti ∼ N (µti , σti).

5.4.3 Color distribution

The projection of the RGB object and background colorpoints onto the Fisher plane, will be

represented by a mixture of Gaussians model. The initial configuration and number of Gaus-

sian components is computed through the EM modified algorithm proposed by Figueiredo and
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Jain (35), commented in Chapter 3 (Section 3.2). Using this algorithm, the Gaussian compo-

nents are adjusted independently to the foreground and background colorpoints, represented in

the Fisher colorspace (Fig. 5.10a). The state vector and dynamic model for such a model are

the following:

State vector:

The configurations of the MoG for O and B are parameterized by the vector

gε =




pε

µε

λε

θε


 ∈ R6nε×1 (5.20)

where ε = {O,B}, nε is the number of Gaussian components for the class ε, pε ∈
Rnε×1 contains the priors for each Gaussian component, µε ∈ R2nε×1 the centroids,

λε ∈ R2nε×1 the eigenvalues of the principal directions and θε ∈ Rnε×1 the angles

between the principal directions and the horizontal. In Figure 5.10b, all these parameters

for a single Gaussian are depicted. The state vector representing the color model will be:

x3 =
[

gO

gB

]
∈ R6nT×1 (5.21)

where nT = nO + nB. Note that the required parameters to completely characterize

a Gaussian component are its prior, the centroid and the covariance matrix. The first

two components are directly represented in the state vector. The covariance matrix may

be deduced from the eigenvalues and angle of the principal component. For instance,

let us assume that these parameters are λ1, λ2 and θ. The angle θ defines completely

the direction of the principal eigenvectors (assumed to be orthogonals), which may be

written as e1 = [cos θ, sin θ]T and e2 = [sin θ,− cos θ]T . Hence, the covariance matrix

associated to these parameters will be:

Σ = [e1, e2]
[
λ1 0
0 λ2

]
[e1, e2]

−1 (5.22)

Dynamic model:

Given a parameterization of the state vector xt−1
3 at the previous time step, it will be

propagated according to the random dynamic model:

xt
3 = H3xt−1

3 + q3 (5.23)

where H3 ∼ A6nT×6nT (0,σH3), q3 ∼ t6nT×1(µq3
,σq3). Matrix A and vector t are

defined in Eq. 5.19.
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(a) (b)
Figure 5.10: Color distribution representation. The set of object and background colorpoints
projected onto the Fisher plane, are represented by a Mixture of Gaussians (MoG) model. (a)
MoG models adjusted to the object and background classes. (b) Detail of the parameters used
to represent a single Gaussian component.

5.4.4 Object contour

Since color segmentation usually gives a rough estimation about the target location, we use the

contour of the object, to obtain a more precise tracking (see Chapter 3, Section 4). The state

vector and dynamic model used to represent the contour are:

State vector:

As stated in Chapter 3 (Sect.4), the contour will be represented by nc points in the image,

R = [(u1, v1)T , . . . , (unc , vnc)T ]T . We assign these values to the contour state vector:

x4 = [(u1, v1)T , . . . , (unc , vnc)
T ]T ∈ Rnc×2 (5.24)

Dynamic model:

The contour state vector xt−1
4 is propagated according to a dynamic model that produces

affine deformed and randomly translated copies of the original contour:

xt
4 = xt−1

4 H4 + q4 (5.25)

Again, H4 ∼ A2×2(0,σH4), q4 ∼ t2×1(µq4
,σq4).

5.4.5 A note about the parameters of the dynamic models

In all the dynamic models defined above there are certain parameters (Σ1,h, {σHi ,σpi ,µpi
},

i = {2, 3, 4}) that control the random performance of the model. Their value will determine
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the level of dispersion of the samples in the configuration space, and although they are an

important factor to consider when designing the tracker, they do not need to be estimated with

high accuracy. In particular, when using particle filters, poor estimates of these parameters

may be compensated by selecting a larger number of particles. On the other hand, a Kalman

filter might be more sensitive to the value of the covariance matrix Σ1,h defined in the dynamic

model, since its prediction is based on a single hypothesis. Nevertheless, in the tracker system

explained in this Section, the role of the Kalman filter is to provide a coarse estimate about the

bounding box surrounding the target. Therefore, poor estimates of Σ1,h are not such critical.

With these considerations, in the experiments that will be presented at the end of this chap-

ter, the parameters providing the random behaviour to the dynamic models, have been learned

off-line from training hand-segmented sequences using a simple least squares technique.

5.5 The complete tracking algorithm

In this Section we will integrate the tools described previously and analyze in detail the com-

plete method for tracking rigid and non-rigid objects in cluttered environments, under changing

illumination. Specifically, the target is going to be tracked, using the estimate of the four fea-

tures just defined: the bounding box (estimated by a Kalman filter KF1), the Fisher colorspace

(estimated through a particle filter PF2), the color distribution (estimated through PF3) and

the object contour (estimated using PF4). In the following subsections, the algorithm will be

described step by step. For a better understanding of the method, the reader is encouraged to

follow the flow diagram in Fig. 5.11.

5.5.1 Input at iteration t

At time t, for the bounding box feature, it is available the mean and covariance parameters

from the previous iteration, which estimate its posterior probability pt−1
1 . For the rest of xi fea-

tures, i = {2, 3, 4}, estimated through particle filters, a set of ni samples st−1
ij , j = 1, . . . , ni,

is available from the previous iteration. The structure of these samples is the same as the

corresponding state vector xi. Each sample has an associated weight πt−1
ij . The whole set

approximates the a posteriori PDF of the system, P t−1 = p(Xt−1|Zt−1) as defined in Eq. 5.7,

where X = {x1,x2,x3,x4} contains the state vectors of all the cues utilized to represent the

object, and Z = {z1, z2, z3, z4} refers to the observations measured to evaluate the features.

Obviously, also available is the input RGB image at time t, denoted by IRGB,t.
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5.5.2 Updating the bounding box PDF

It has been previously mentioned that the bounding box is estimated through a Kalman fil-

ter, which basically relies in the prediction term of the filter, and the correction introduced by

the observation has a low significance. The reason why we do not rely on the bounding box

observation is that we wish to deal with highly cluttered sequences, suffering from abrupt il-

lumination changes and unexpected object movements. In these circumstances the observation

of a single cue, might probably have a low reliability value. The robustness of the system

comes from the integration over all of the cues, and not because of a single cue. Therefore, the

estimate of the bounding box state will mostly come from the prediction done by the dynamic

model of the filter.

In order to obtain a Kalman filter with such a behaviour, a large value is assigned to the

covariance associated with the measurement noise, Σt
m,1. Next, let us see in detail how the

Kalman filter behaves, under these specifications. The basic steps of the Kalman filter pro-

cedure for a single iteration are detailed in Chapter 2 (Section 2), and are repeated here for

convenience:

Input data:

KF1, the Kalman filter associated with state vector x1, receives the bounding box esti-

mate of the two previous states, i.e, pt−1
1 = N(xt−1

1 ,Σt−1
1 ) and pt−2

1 = N(xt−2
1 ,Σt−2

1 ),

where x1 and Σ1 correspond to the a posteriori estimates of the mean and covariance.

Hypothesis Generation:

As it has been previously argued in Section 5.4.1, the means estimates are arranged into

an augmented state vector (in order to implement a second order dynamic model without

breaking the Kalman filter assumptions). Similarly, the covariances are arranged into an

augmented covariance matrix, which assumes independence between xt−1
1 and xt−2

1 :

x̄t−1
1,+ =

[
xt−2

1

xt−1
1

]
∈ R10×5 Σ̄t−1

1,+ =
[

Σt−2
1 05×5

05×5 Σt−1
1

]
∈ R10×10

where the subscript symbol ‘+’ indicates that the referred variable is a posterior estimate,

and the bar on the top is utilized for the augmented state variables. Using the Kalman

filter equations (Eq.2.8 and Eq.2.9), the state vector and covariance matrix are propagated
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to:

x̄t
1,− = H1x̄t−1

1,+

Σ̄t
1,− = Σ̄1,d + H1Σ̄t−1

1,+HT
1

where the matrix H1 ∈ R10×10 (Eq. 5.16) takes into account the second order model

dynamics, and Σ̄1,d ∈ R10×10 is the process noise covariance matrix. Here, the subscript

symbol ‘-’ indicates that the estimate is a priori.

Hypothesis Correction:

The first issue to consider in order to perform the hypothesis correction, refers to the

observation. Only the part of the state vector concerning to the bounding box parameter-

ization at time t, will be observed, i.e, the measurement equation will be expressed as:

zt
1 = M1x̄t

1 + q1,m

where M1 = [05×5, I5×5] allows to transform from the 10 × 1 dimensionality of x̄t
1 to

the 5×1 dimension of the observation zt
1. The random variable q1,m stands for the mea-

surement noise, and it is assumed to be zero-mean and Gaussian, q1,m ∼ N(0,Σ1,m).

In order to determine the state of the observation zt
1 a simple correlation method is used.

Let us call Wt−1 the rectangular window defined by the parameters of the state vector

xt−1
1 =

[
ut−1

1 , vt−1
1 , at−1

1 , bt−1
1 , θt−1

1

]T
. The observation zt

1, will be the same window

but with its centroid translated according to the parameters (du, dv) minimizing the fol-

lowing SSD (Sum of Squared Differences) criterion:

arg min
du,dv


 ∑

u,v∈Wt−1

(
IRGB,t−1(u, v)− IRGB,t(u+ du, v + dv)

)2
Subsequently, the value of the observation vector is defined as:

zt
1 =

[
ut−1

1 + du, vt−1
1 + dv, at−1

1 , bt−1
1 , θt−1

1

]T
Nevertheless, this observation is highly sensitive to the presence of clutter or lighting

changes, since the SSD operator is not robust under this kind of artifacts. Hence, a

low responsibility needs to be assigned to the observation measure about its contribution

to the final decision of the a posteriori probability. Kalman filter, allows to control the
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relative contribution of the prediction term and the observation term through the values of

the dynamic model covariance matrix Σ̄1,h ∈ R10×10 and the measurement covariance

matrix Σ1,m ∈ R5×5. In particular, for the purposes just mentioned, these matrices have

been selected offline such that they satisfy:

Σ1,m >> Σ̄1,h

Actually, since the matrices have a different dimension, this inequality refers to the com-

parison of Σ1,m and the lower right 5× 5 submatrix of Σ̄1,h.

Next, let us see (by examining the Kalman hypothesis correction equations) how these

constrains on the covariance matrices reduce the contribution of the observation term in

the final estimates. From Chapter 2 (Section 2), the hypothesis correction equations may

be written as:

Kt = Σ̄t
1,−(Mt

1)
T [Mt

1Σ̄
t
1,−(Mt

1)
T + Σ1,m]−1

x̄t
1,+ = x̄t

1,− + Kt[zt
1 −Mtx̄t

1,−]

Σ̄t
1,+ = [I−KtMt

1]Σ̄
t
1,−

The first of these equations computes the Kalman gain, K ∈ R5×10. Note that a large

measurement covariance matrix implies a small Kalman gain, i.e, Σ1,m �⇒ K �. As

a consequence (from the second and third equations):

x̄t
1,+ = x̄t

1,− + ∆xt
1

Σ̄t
1,+ = Σ̄t

1,− + ∆Σt
1

where ∆xt
1 and ∆Σt

1 are the corrections introduced by the observations, and are small

in comparison with the predicted values x̄t
1,− and Σ̄t

1,−, respectively. Thus, the observa-

tions are just utilized as a small bias for the predictions.

Output data:

Uniquely the parts of the augmented state vector and augmented covariance matrix which

make reference to the variable xt
1 are considered in the output of the algorithm:

xt
1 = [x̄t

1,+(6), . . . , x̄t
1,+(10)]T ∈ R5×1

(5.26)

Σt
1 =


 Σ̄t

1,+(6, 6) . . . Σ̄t
1,+(6, 6)

...
. . .

...
Σ̄t

1,+(10, 6) . . . Σ̄t
1,+(10, 10)


 ∈ R5×5
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(a) (b)

Figure 5.12: Uniform sampling of a normal distribution. (a) Original normal density PDF.
(b) Uniformly sampled density.

which determine the a posteriori estimate of the bounding box, pt
1 = N(xt

1,Σ
t
1). Since

this distribution is going to feed into subsequent particle filters based on discrete and

weighted samples of the state vector, it is necessary to discretize pt
1. Thus, the normal

density pt
1 is uniformly sampled (see Fig. 5.12) and approximated by a set of n1 weighted

particles:

pt
1 = N(xt

1,Σ
t
1) ∼=

n1∑
j=1

s1jπ1j (5.27)

5.5.3 Updating the Fisher plane PDF

Whereas the bounding box feature is approximately estimated through a kalman filter mostly

relying on its prediction component, the rest of the object cues are going to be estimated

through particle filters. In this subsection, the particle filter responsible of the Fisher plane

feature, PF2, will be described:

Input data:

At the starting point of iteration t, PF2, the particle filter associated with x2, receives

pt−1
2 , the PDF of the state vector x2 at time t− 1, approximated by n2 weighted samples

{st−1
2j , πt−1

2j }, j = 1, . . . , n2.

In addition, it also receives the output of the previous filter, KF1 estimating the feature

x1 by a set of n1 weighted samples, {st
1j , π

t
1j}, j = 1, . . . , n1.
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Figure 5.13: Generation of multiple hypotheses for the Fisher plane feature.

Hypotheses generation:

Using the standard procedure of the particle filters, the set of particles {st−1
2j , πt−1

2j },
j = 1, . . . , n2 are resampled using the deterministic sampling algorithm (Section 2.3)

and propagated to the set {st
2j} according to the dynamic model defined in Section 5.4.2.

Each sample represents a different configuration of the Fisher plane, Wj , j = 1, . . . , n2.

Figure 5.13 shows some samples of Fisher planes obtained after the hypotheses genera-

tion stage.

Hypotheses correction:

The keypoint of the proposed approach is that the cue dependence is considered during

the hypotheses correction stage. In particular, in order to assign a weight to the prop-

agated samples {st
2j}, j = 1, . . . , n2, the information provided from the output pt

1 of

KF1 is used. The discretized samples {st
1j , π

t
1j}, j = 1, . . . , n1 approximating pt

1 are

resampled n2 times, resulting in the set {s̃t
1j}, j = 1, . . . , n2. Note that this set may

contain repeated copies of the more likely samples of the bounding box. Then, every

Fisher plane sample st
2j is associated with a bounding box sample s̃t

1j . Let us call Wt
j

the rectangular bounding box defined by s̃t
1j .

Once we have defined a bounding box Wt
j for each Fisher plane st

2j , the basic idea is to

weigh the latter depending on how well it permits to discriminate the points inside Wt
j

from the points outside Wt
j .

To this end we select randomly two sets of RGB colorpoints, CRGB
W and CRGB

W
, inside

and outside Wt
j , respectively. These sets and the image IRGB,t are projected onto the nj
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Fisher planes, generating the nj triplets {CFisher
W,j ,C

Fisher
W,j

, IFisher,t
j }. For each triplet we

use the EM algorithm to fit a MoG to the sets CFisher
W,j and CFisher

W,j
.

Based on these MoGs we compute the a posteriori probability map p(Wt
j |IFisher,t

j ) for all

the (u, v) pixels of image IFisher,t
j , using the Bayes rule (Eq. 3.30). According to this

probability map, we assign the following weight to each sample:

πt
2j ∼

∑
(u,v)∈Wt

j

p
(
Wt

j |IFisher,t
j

)
nW

−

∑
(u,v)/∈Wt

j

p
(
Wt

j |IFisher,t
j

)
nW

where nW and nW are the number of image pixels in and out of Wt
j , respectively.

Output data:

The output of PF2 is the set {st
2j , π

t
2j}, j = 1, . . . , n2 approximating the estimate of the

a posteriori probability function pt
2 for the normal to the Fisher plane.

5.5.4 Updating the foreground and background color distributions PDF’s

Input data:

PF3, the particle filter associated with the state vector x3, receives at its input pt−1
3 ∼

{st−1
3j , πt−1

3j }, j = 1, . . . , n3, approximating the PDF of the color distributions in the

previous iteration, and pt
2 ∼ {st

2j , π
t
1j}, j = 1, . . . , n2, an approximation to the PDF of

the Fisher planes at time t.

Hypotheses generation:

Particles {st−1
3j } are resampled and propagated (using the dynamic model associated with

x3, described in Section 5.4.3) to the set {st
3j}, j = 1, . . . , n3. A sample st

3j represents

a MoG configuration for the foreground and background color points projected onto the

Fisher colorspace. Figure 5.14 (top) shows the appearance of different MoGs configura-

tions, resulting from the random propagation generated by the dynamic model.

Hypotheses correction:

Again, in order to assign the weight to these samples we use the information provided

from the output pt
2 of PF2. By the deterministic resampling method described pre-

viously, the set {st
2j}, j = 1, . . . , n2 is resampled n3 times, providing the set {s̃t

2j},
j = 1, . . . , n3. This allows to assign the most likely samples st

2j of Fisher planes to the

samples st
3j of MoGs.
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Figure 5.14: Generation of multiple hypotheses for the foreground (O) and background
(B) color distributions. Top: Several hypothesized MoG’s parameterizing the O and B color
distributions. Solid line ellipses and dashed line ellipses belong to the foreground and back-
ground MoG’s, respectively. Bottom: A posteriori probability maps of the object class, ob-
tained using the different color configurations. Note that some of the color configurations are
appropriate to discriminate the target (central leaf) from the rest of the background, whereas
using other configurations, O and B regions are undistinguishable.

The rest of the weighting process is similar to the one described in the previous section:

for a given sample st
3j , j = 1, . . . , n3, we project image IRGB,t to its associated Fisher

plane Wj parameterized by s̃t
2j . The new image will be IFisher,t

j = IRGB,tWT
j .

Using the MoGs of the object and background parameterized by the sample st
3j , the a

posteriori probability map p(O|IFisher,t
j ) is computed for all the pixels of IFisher,t

j , and the

weight πt
3j is assigned by:

πt
3j ∼

∑
(u,v)∈Wt

j

p
(
O|IFisher,t

j

)
nW

−

∑
(u,v)/∈W

p
(
O|IFisher,t

j

)
nW

where Wt
j , nW and nW were defined above.

In Fig. 5.14 (bottom), the a posteriori probability maps of the target (the central leaf)

are depicted. Notice how some of the MoG’s configurations provide a probability map

where the target is clearly distinguished from the background.
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Output data:

The set {st
3j , π

t
3j}, j = 1, . . . , n3 approximates the estimate of the a posteriori probabil-

ity function pt
3 for the fore/background color distributions.

5.5.5 Updating the contour PDF

Input data:

The last particle filter, PF4, receives at its input pt−1
4 ∼ {st−1

4j , π
(t−1)
4j }, j = 1, . . . , n4,

that approximates the PDF of the contours in the previous iteration, and pt
3 ∼ {st

3j , π
t
3j},

j = 1, . . . , n3, an approximation to the PDF of the color distributions of foreground and

background at time t.

Hypotheses generation:

In the same manner to the procedure utilized in PF2 and PF3, particles {st−1
4j } are re-

sampled and propagated to the set {st
4j}, j = 1, . . . , n4 according to the dynamic model

described in Section 5.4.4. This dynamic model, produces affine deformed and translated

copies of the original contours (see some examples in Figure 5.15, for the leaf tracking

example used in the whole chapter).

Hypotheses correction:

The set {st
4j} is weighted based on pt

3 through a similar process to the one described for

PF2 and PF3: initially, samples {st
3j , π

t
3j}, j = 1, . . . , n3 are resampled according to

the weights πt
3j , resulting in a new set {s̃t

3j}, j = 1, . . . , n4. Then, every color sample

s̃t
3j , j = 1, . . . , n4 is associated with each contour sample st

4j .

The a posteriori probability map p(O|IFisher,t
j ) assigned to s̃t

3j in the previous time step,

and the contour Rj represented by st
4j , are used to compute the weights for the contour

samples as follows:

πt
4j ∼

∑
(u,v)∈rj

p
(
O|IFisher,t

j

)
nRj

−

∑
(u,v)/∈Rj

p
(
O|IFisher,t

j

)
nRj

where nRj and nRj
are the number of image pixels inside and outside the contour Rj .

Output data:

Finally, the set of samples and weights {st
4j , π

t
4j}, j = 1, . . . , n4 approximate the esti-

mate of the a posteriori probability function pt
4 for the contours of the object.
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Figure 5.15: Generation of multiple hypotheses for the contour feature.

5.5.6 Algorithm output generation

As we have shown in Section 5.2, the complete a posteriori probability function, can be deter-

mined by

P t = p(xt
1,x

t
2,x

t
3,x

t
4|zt

1, z
t
2, z

t
3, z

t
4)

= pt
1p

t
2p

t
3p

t
4

= p1(xt
1|zt

1)p2(xt
2|xt

1, z
t
1, z

t
2)p3(xt

3|xt
1,x

t
2, z

t
1, z

t
2, z

t
3)p4(xt

4|xt
1,x

t
2,x

t
3, z

t
1, z

t
2, z

t
3, z

t
4)

∼ {{
st
4k

(
st
3j

(
st
2i(s

t
1h)

))}
,
{
πt

1hπ
t
2iπ

t
3jπ

t
4k

}}
= {st

l , π
t
l} (5.28)

where l = 1, . . . , n4. Eq. 5.28 reflects the fact that samples of state vector x4 are computed

taking into account samples of the state vector x3 (i.e, st
4k ≡ st

4k(s
t
3j)) and these have been

computed considering samples of x2 (i.e, st
3j ≡ st

3j(s
t
2i)) and these have considered samples

of x1 (i.e, st
2i ≡ st

2i(s
t
1h)). Observe that the final number of samples to approximate the whole

probability P t is determined by n4. Considering the final weights, the average contour is

computed as

Rt
avg =

n4∑
l=1

st
4lπ

t
l (5.29)

Since all the contour samples have been constructed with an affine deformation model, we

need to add an extra final stage in order to cope with non-linear deformations of the object

boundary. We use Rt
avg to initialize a deformable contour that is fitted to the contours of

the object using the traditional snake formulation (59) detailed in Chapter 3 (Section 4). This

adjustment is highly simplified by using the target position estimated by the color particle filter,

104



5.5. THE COMPLETE TRACKING ALGORITHM

(a) (b) (c)

(d) (e) (f)

Figure 5.16: Simplification of the snake fitting procedure using color information. (a) Orig-
inal cluttered image. (b) Edge features image obtained with a Canny edge detector. Observe
the large quantity of noisy edges detected, which might disrupt a traditional snake procedure
from converging to the true object contour. (c) Foreground a posteriori probability map ob-
tained using the color module. (d) Refined edge image, where most of the noisy edges have
been removed considering a mask obtained by applying simple morphological operations on
image (c). (e) Contour Rt

avg used as initialization for a snake fitting procedure . (f) Results of
the snake fitting.

as it is shown in Fig. 5.16, where the a posteriori probability map of the color module allows

to eliminate noisy edges from the original image.

Note the advantage of using the color module: traditional snake algorithms need to adjust

a given curve to the edges of an image. However, if the image contains a high level of clut-

ter (such as the image shown in Fig 5.16a), a standard edge detector may detect a lot of noisy

edges which might disturb the snake during the fitting procedure. For instance, Fig 5.16b shows

the edges detected by a Canny filter in the previous image. Under this type of edge images,

traditional snake algorithms are prone to fail. Nevertheless, by applying simple morphologi-

cal operations on the a posteriori probability map of the target provided by the color module

105



5.6. EXPERIMENTAL RESULTS

(Fig 5.16c) most of the noisy edges may be eliminated from the image (Fig 5.16d). Then, the

fitting procedure is considerably made easier. Figures 5.16e and 5.16f show the initialization

of the snake (by the averaged contour Rt
avg) and the final result of the adjustment, respectively.

5.6 Experimental results

In this Section we present the results of different experiments on both synthetic and real video

sequences, and examine the robustness of our system to several changing conditions of the

environment, in situations where other algorithms may fail.

Before discussing the results obtained, we would like to point out that since the proposed

algorithm has been implemented in an interpretative language (MATLAB), we cannot directly

discuss the time performance issues. Nevertheless, what is important to note, is that in the par-

ticular case of integrating several particle filters, the structure of the fusion framework allows

to reduce considerably the number of samples necessary to approximate the PDF representing

the state of the target. As we have previously argued in Section 5.3.1, this feature, settles the

problem of curse of dimensionality, undergone by particle filters when the size of the state

vector is increased.

In the following subsections, some experimental results will be reported. The first set of

experiments, deal with sequences where the lighting conditions or the appearance of the target

change continuously. In the last group of experiments, abrupt illumination changes will be

considered. In both cases, there are included examples of targets which deform rigidly and

non-rigidly.

5.6.1 Tracking under continuous lighting changes

In the first experiment, it is tracked a synthetically generated sequence of an ellipse that ran-

domly changes its position, color and shape in a cluttered background. In Fig. 5.17(top) we

depict the path followed by the color cue. Observe the non-linearity of the trajectory. As it

was shown in (51) these kind of paths can not be estimated by filters based on smooth dynamic

models, but instead we need to use filters able to cope with the non-linearities, such as the mul-

tihypotheses framework offered by particle filters. Results show that the method proposed in

this dissertation, based on multiple-multihypotheses algorithms allows to segment and track the

ellipse, even when the background has a similar color to the target (observe the frame before

last).
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Figure 5.17: Experiment 1: Tracking of a synthetic ellipse that randomly changes its color,
position and shape. Top: Path followed by the color distribution of the tracked ellipse. The
data is represented in the RGB colorspace. Note the non-linear change of the color, which
can not be predicted by a smooth dynamic model. Bottom: Some sequence frames showing
the tracking results; original frames (first row), tracking results (second row), and the target a
posteriori PDF map of the color module (third row). The proposed method integrating position
prediction, optimal color space selection, color distribution estimate and contour estimate is
able to segment the tracked ellipse even when the background contains highly disturbing ele-
ments. Observe in the last bust one frame, how the tracked ellipse is surrounded by another
ellipse with similar appearance. In spite of that, the tracker does not lose the target.
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Figure 5.18: Experiment 2: Tracking a camouflaging octopus. Top row: Original sequence.
Middle row: Results using the proposed method. A posteriori foreground PDF map obtained
by the color module (PF3).

In the second experiment (Fig. 5.18) we show how our method performs in a real video

sequence of an octopus changing its appearance while camouflaging. Observe that the fore-

ground a posteriori probability maps of the color module give a rough estimate about the target

position, especially when the octopus appearance is quite similar to the background. Neverthe-

less, a detailed detection of the target may be obtained by correcting the color estimate using

the shape module.

In order to emphasize the importance of adapting simultaneously color and contour features

using particle filters, in the rest of the experiments, the performance of the discussed algorithm

will be compared to a tracking technique that uses multiple hypotheses to predict the contour

of the object and accommodates the color with a predictive filter based on a simple smooth

dynamic model such as:

gt = (1− β)gt−2 + βgt−1 (5.30)

where g is the parameterization of the color distribution (with the same structure as in Eq. 5.20)

and β is a mixing factor. Actually, this approach is quite similar to the ICondensation technique

described in (52).
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Tracking results using a smooth color dynamic model

Tracking results using the proposed method

Figure 5.19: Experiment 3: Tracking results of a bending book in a sequence with smooth
change of illumination. Top row: Results using only a contour particle filter and assuming
smooth change of color. The method fails. Middle row: Results using the proposed method.
Bottom row: A posteriori object probability map of the color module (PF3).

Experiment 3 corresponds to the tracking of the non-rigid boundary of a bending book in a

video sequence, where the lighting conditions smoothly change from natural lighting to yellow

lighting. Fig. 5.19 shows some frames of the tracking results. Note that despite the smooth

change of illuminant, the smooth dynamic model is unable to track the contour of the object.

The reason of the failure is that the smooth dynamic model cannot cope with the effect of

self-shadowing produced during the movement of the book.

5.6.2 Tracking under abrupt lighting changes

In Experiment 4, the color distribution of the bending book sequence previously presented,

is manually modified in order to simulate an abrupt change of illumination. The top row of

Fig. 5.20 shows three consecutive frames presented to the algorithm. Note the abrupt illumi-

nation change occurred between frames t − 1 and t. Results prove the inability of the smooth

color model to predict such a change, since the a posterior probability map of the foreground
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It−2 It−1 It

p(O|It) p(O|It) Tracking results
-smooth dynamic model- -proposed method- -proposed method-

Figure 5.20: Experiment 4: Tracking results of a non-rigid object (a bending book) in a
sequence with abrupt changes of illumination. Top row: It−2, It−1 and It are three con-
secutive images. Note the abrupt change in illuminant between frames t − 1 and t. Bottom
left: p(O|It) map obtained assuming a smooth dynamic model of the color feature. There is
no good discrimination between the foreground and background. Bottom center: p(O|It) map
provided by the proposed framework. The fore/background discrimination is clearly enhanced
with respect to the smooth dynamic model case. Bottom right: Tracking results obtained after
using p(O|It) to eliminate false edges from image and fitting a deformable contour to the object
boundary.

region depicted in Fig. 5.20 (bottom-left) does not discriminate between foreground and back-

ground, whereas a good result is obtained with the method proposed is this chapter (Fig 5.20,

bottom-center and bottom-right).

In Fig. 5.21 (Experiment 5) similar results are presented when tracking a rigid object (the

can) in a sequence that also suffers from abrupt illumination changes. Note again, that the

smooth dynamic model to predict the color change is not appropriate.

In the final experiment (Experiment 6) we have tested the algorithm with the sequence of

a moving leaf used as example throughout the whole chapter. Although this is a challenging

sequence because it is highly cluttered, the illumination changes abruptly and the target moves

unpredictably, we can perform the tracking with the proposed method. Fig. 5.22 shows some

frames of the tracking results. Observe the abrupt change of illumination between the first and

second frames, which leads to failure when we try to track using a contour particle filter with a

smooth color prediction.
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It−2 It−1 It

p(O|It) p(O|It) Tracking results
-smooth dynamic model- -proposed method- -proposed method-

Figure 5.21: Experiment 5: Tracking results of a rigid object (the can) in a sequence with
abrupt changes of illumination. See Fig. 5.20 for interpretation of results.

5.7 Summary

The use of various cues to represent the object permits the enhancement of visual tracking al-

gorithms, and make them more robust to several artifacts existing in video sequences dealing

with real and unconstrained environments. Nevertheless, most of the algorithms in the com-

puter vision literature addressing the tracking problem by the integration of different cues, are

based on specific heuristics, or do not take complete profit from the dependence between object

features.

In this chapter, a general probabilistic framework allowing to integrate any number of ob-

ject features has been described. The state of the features may be estimated by any algorithm

which outputs a PDF (for instance particle filters or Kalman filter), and the method allows to

integrate both dependent and independent features.

The proposed framework is theoretically proven and validated in a tracking example with

synthetic data, which has been used as a bechmark to compare the performance of our method

with other well-known algorithms from the field. The best results in terms of accuracy and

reliability are obtained by the method presented here. Furthermore, in the specific case that

the integrated features are estimated by particle filters, the method does not suffer from the

curse of dimensionality problem, which usually affects particle filter formulations, producing
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Frame #41 Frame #42 Frame #47 Frame #55

Tracking results using a smooth color dynamic model

Tracking results using the proposed method

Figure 5.22: Experiment 6: Tracking results of a leaf. Tracking results of a cluttered se-
quence, where the target moves following unexpected paths. Furthermore, the sequence suffers
from an abrupt change of illumination (observe it between Frame #41 and Frame #42). Top
row: Results using a contour-based particle filter and assuming smooth change of the color
feature. The method fails. Middle row: Successful results obtained using the method proposed
in this chapter. Bottom row: A posteriori PDF map of the color module (PF3). Observe how
the tracked leaf is clearly detected, and the unexpected illumination change does not destabilize
the tracker.
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exponential increases in the computation when the dimensionality of the state space increases.

Finally, the features defined in Chapter 3 have been integrated in the framework in order

to design a robust tracking algorithm that simultaneously accommodates the colorspace where

the image points are represented, the color distributions of the object and background and

the contour of the object. The effectiveness of the method has been proven by successfully

tracking objects from synthetic and real sequences presenting high content of clutter, non-rigid

boundaries, unexpected target movements and abrupt changes of illumination.
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Chapter 6

Optimal illumination for video
relighting

As we have mentioned in the introductory chapter, visual tracking is a tool utilized in a vari-

ety of tasks extending from autonomous vehicle navigation to video entertainment and virtual

reality applications. This chapter will present an interesting application of the proposed track-

ing methodology concerning to video relighting. In the following sections, it will be explained

how an ‘image-based’ approach may be used for relighting video sequences: images under new

lighting conditions will be rendered from a linear combination of a set of pre-acquired images,

illuminated by different (and known) light patterns. The main contribution of the chapter will

be in the study of the optimal way to illuminate the scene, in the sense of determining which

are the light patterns that need to be projected on the scenario, in order that using a minimum

number of them, the best relighting results are obtained.

Within this framework, the tracking methodology suggested in previous chapter will play

a fundamental role, since a very important part of the video relighting procedure refers to the

pixel alignment in consecutive frames, where each frame corresponds to an image of the scene,

illuminated by a distinct light pattern. These light patterns produce abrupt illumination changes

between consecutive images. Chapter 5 has proved that the proposed tracking algorithm is

appropriate to deal with such kind of difficulties. However, since the video relighting requires

to solve the correspondence in consecutive images at a pixel level, an additional optical-flow

stage will be necessary, although highly simplified after solving the first tracking stage. We will

see that the combination of both techniques allows the alignment and subsequent relighting of

the video sequences.
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(a) (b) (c)

Figure 6.1: Relighting a still object example. Relighting is done by combining images ac-
quired under known illumination. (a) The scene is illuminated by different light patterns, for
instance single light sources (the bulbs). (b) Reference images acquired when the object is illu-
minated by the known light sources indicated in the plot (a). (c) A new image under unknown
lighting conditions may be rendered by linear combination of the reference images. This ex-
ample relights the object as if it were illuminated by a single light source placed on the blue
cross of plot (a).

6.1 Introduction

Relighting images of still objects with unknown geometry has recently become a research topic

of great interest in both computer vision and computer graphics (27; 28; 42; 68; 70; 97; 98;

106; 110; 138). The ability of photorealistically modeling the object, or part of the object,

under changes in lighting may be used in many applications, such as object recognition and

identification tasks or image-based rendering of objects and textures.

Most of the techniques use an image-based approach; the images under new lighting condi-

tions are synthesized from a set of reference images previously acquired under known illumina-

tion conditions. Considering that the lighting process obeys the rules of superposition (20; 97),

new images are generated via linear combination of the set of reference images (see Fig. 6.1).

A natural extension of the problem refers to the relighting of video sequences, which en-

ables additional and interesting applications, mainly in the context of multimedia and enter-

tainment. For instance, it could be applied to re-illuminate the action of an actor, recorded

indoors, and illuminated with the light of an outdoor environment in a post-processing stage.

However, this extension of the problem has only been covered by a few references, and existing

results are constrained to highly controlled environments, where the moving object is clearly

discriminated from the background and where the relighting method is not optimized. By re-
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lighting optimization we mean to synthesize the images as close (in a L2 sense) to real images

as possible.

The relighting methodology used for re-illuminating video sequences is similar to the tech-

nique used for relighting static objects, i.e, a specific frame of the sequence under new lighting

conditions is generated as a linear combination of reference images illuminated with known

lighting conditions. Nevertheless, the movement of the object between consecutive reference

frames introduces additional difficulties. First of all, consecutive images are geometrically

warped, and corresponding points at different frames are misaligned. Secondly, since the ori-

entation of the corresponding points at different frames with respect to the light sources is

different, their appearance changes, even though the light position and intensity remains con-

stant. In the following we will call this error, orientation error. All these difficulties make

that the superposition principle cannot be directly applied in order to relight the frames of a

video sequence. Previously, all of the reference images used to relight a specific frame, need to

be aligned with respect to the same coordinate frame. Note that although a perfect alignment

could be achieved, the orientation error cannot be removed. At the most we can reduce it by

using a low number of reference images.

Therefore, the methodology for relighting video sequences involves two main subtasks:

from one side, we need to seek for an alignment algorithm robust to abrupt illumination

changes, since consecutive reference frames are illuminated by different lighting patterns,

which produce abrupt changes on the temporal appearance of the object. On the other side,

it is necessary to optimize the relighting process, such that the error in the rendering results is

minimized using as few reference images as possible.

Next, we briefly describe each of this tasks, summarizing the main contributions of the

chapter.

6.1.1 Optimal relighting of video sequences

It has been shown in the literature that image-based relighting of scenes with unknown geom-

etry can be achieved through linear combinations of a set of pre-acquired reference images.

Since the placement and brightness of the light sources can be controlled, it is natural to ask:

what is the optimal way to illuminate the scene to reduce the number of reference images that

are needed?

In this chapter we show that the best way to light the scene (i.e., the way that minimizes

the number of reference images) is not using a sequence of single, compact light sources as is
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most commonly done, but rather to use a sequence of lighting patterns as given by an object-

dependent lighting basis. While this lighting basis, which we call the optimal lighting basis

(OLB), depends on camera and scene properties, we show that it can be determined as a simple

calibration procedure before acquisition. We demonstrate through experiments on real and

synthetic data that the optimal lighting basis significantly reduces the number of reference

images that are needed to achieve a desired level of accuracy in the relit images. This reduction

in the number of needed images is particularly critical in the problem of relighting in video,

as corresponding points on moving objects must be aligned from frame to frame during each

cycle of the lighting basis.

We show, however, that the efficiencies gained by the optimal lighting basis simplify con-

siderably the alignment problem, making the relighting in video possible. We present several

relighting results on real video sequences of moving objects, moving faces, and scenes con-

taining both. In each case, although a single video clip was captured, we are able to relight

again and again, controlling the lighting direction, extent, and color.

6.1.2 Image alignment in dynamic environments

One of the main problems to solve when relighting moving objects refers to the alignment.

Specifically, we need to align points across a window of frames so that when we superpose the

reference frames in order to render an image under new lighting conditions, we do not blur the

information from different points on the object. To do this, we estimate the optical flow over

the sequence of images. This problem is made more difficult by the fact that the illumination

varies from one frame to the next due to the use of a different lighting pattern for each frame.

In recent works, usually the movement of the objects in dynamic and changing environments,

is measured by means of structured light techniques (135; 147) or by using the motion capture

technology, where some reflective or magnetic markers that can be easily tracked, are placed on

the surface of the moving object (47). However, these kind of techniques are not valid for our

purposes because they are invasive, in the sense that they might change the appearance of the

object. In order to have a general and non-invasive application, we use passive computer vision

techniques and the alignment is accomplished in two stages. First, using the methodology

described in the previous chapter we apply a foreground/background segmentation over the

moving regions, and second, each segmented region in consecutive frames, is aligned using a

modification of the Lucas Kanade (73) optical flow algorithm, that increases the insensitivity

of the algorithm to illumination changes.
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After this short discussion, the rest of the chapter is organized as follows: In Section 6.2,

we review related work on image and video relighting. In Section 6.3, we describe the re-

lighting process of still and moving objects. In Section 6.4, we focus on the selection of the

best illuminant basis for relighting. The performance of different light basis is analyzed for

synthetic data in Section 6.5. The experiments are extended to real data in Section 6.6, where

we show the relighting results of real video sequences. Precisely in this section we will dis-

cuss the proposed optical flow algorithm, which includes the tracking method described in the

Chapter 5. Chapter summarization is given in Section 6.7.

6.2 Related work

A great deal of past work has focused on relighting scenes using pre-synthesized (31) or pre-

acquired (27; 43; 46; 63; 78; 79) reference images. In each of these, the reference images

are gathered by systematically varying the lighting direction. If the sampling of the lighting

directions is dense enough, then due to the linearity of scene radiance, images of the scene

under a user specified illumination can be synthesized by superposition of the single light

source images, see again (31).

In nearly all of this work the reference images were acquired under single, compact source

illumination. In (46), incandescent spot lights were used to sample 66 lighting directions on

a sphere as reference images of a human face were gathered. In (43), xenon strobes were

used to sample 64 lighting directions on a geodesic dome as reference images of a human

face were gathered. In (27), a moving compact light source was used to sample 2048 lighting

directions for the illumination of, yet again, a human face. Yet, here the density of the sampling

allowed for impressively accurate results in the synthesis of effects such as specularities and

cast shadows. In (79) compact light sources were used to sample 60 illumination directions per

viewpoint for objects made of specular and fuzzy materials. And in (96), a moving spotlight

was used to gather 4096 images of a still-life.

One of the aims of the work presented in this chapter is to show that illumination using

single, compact light sources is not the most efficient for relighting. In contrast to much of

this past work, we will show that if properly chosen lighting patterns are used to illuminate

the scene, then many fewer reference images need be gathered. This is not the first work to

consider using light patterns for relighting. However, all of the lighting bases that have been

used in the existing literature to date are pre-chosen and are not a function of the camera or
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scene properties. In (97) natural skylight illumination is approximated by a set of steerable

functions. Schnechner et al. (110) use a scheme based on Hadamard codes for reducing Signal

to Noise Ratio in the images. Debevec et al. (41) use terms of the spherical harmonic basis. An

analysis of the efficiency of spherical harmonics for relighting can be found in (106); however,

the optimality of a spherical harmonic basis holds only for objects with Lambertian reflectance

and scenes without cast shadows.

Finally, this is not the first work to consider relighting in video. Debevec et al. (28) use a

sphere of controlled light sources to light a moving object during acquisition with illumination

pre-acquired from a different environment. While any illumination can be specified during

acquisition, the resulting video sequence cannot be relit. In order to relight a moving face, (47;

98; 103) first fit 3-D models to the face shape and then used this to render frames under new

illumination.

The recent work of Gardner et al. (41) is probably the closest to the video relighting com-

ponent proposed in this chapter. Like ours, the goal of their work is to acquire a video sequence

that can be relit again and again according to user specified illumination. To do this, (41) ac-

quire and then process, as we do, a video sequence in which the lighting is systematically

varied over the course of the sequence. Gardner et al. (41) use ten light patterns representing

the first nine terms of spherical harmonics plus one directional light source to relight the face

of an actor. In contrast, we develop and then use an object-dependent lighting basis that is

significantly more efficient for video relighting. In our experiments, we have shown that we

can reduce the number of light patterns that are needed by a factor of 2− 3. This is, as we will

argue later, critical for the case of moving objects which require frame by frame alignment. A

disadvantage of our method, however, is that it requires computation of the optimal lighting

basis. Still, this can be accomplished within a few seconds prior to video capture.

6.3 Relighting with a lighting basis

In this section, we give a mathematical description of the relighting process using a lighting

basis. We first define relighting for still objects and then introduce time dependence in the

formulation in order to take into account the relighting of moving objects in video sequences.
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6.3.1 Relighting in static scenes

Our setup is as follows. The scene is illuminated simultaneously by m single light sources,

each of varying brightness; we call this illumination a light pattern. We assume that the light

sources are distant, so they can be parameterized as a function of direction only. Let the m-

dimensional array lp = [Lp(θ1, φ1), . . . , Lp(θm, φm)]T be the vector of radiances of all the

single light sources generating the p-th lighting pattern, where Lp(θl, φl) is the radiance of the

l-th light source of the p-th light pattern, and Φl = [θl, φl]T are the global spherical coordinates

of the l-th light source.

In order to compute the image of a pixel ui = [ui, vi]T we make use of the properties of

image superposition (20; 97; 137):

1. The image resulting from multiplying each pixel by a factor α is equivalent to an image

resulting from a light source with intensity multiplied by the same factor.

2. An image of a scene illuminated by two light sources L(Φ1) and L(Φ2), equals the sum

of an image illuminated with L(Φ1) and another image illuminated with L(Φ2).

From these properties, we compute the image of a pixel ui under the light pattern lp as follows

ip(ui) =
m∑

l=1

Rui(Φl)Lp(Φl) = rT
ui

lp (6.1)

where rui = [Rui(Φ1), . . . , Rui(Φm)]T is anm-dimensional vector with the elementsRui(Φl)

being the reflectance of pixel ui as a result of illumination from direction Φl, see again (27).

The above equation can be extended in order to consider all the n image pixels

ip = Rlp (6.2)

where i ∈ Rn×1 contains all image points (gray level images arranged in a vector form)1, and

R = [ru1 , . . . , run ]T is an n × m matrix of reflectance functions for all image points (we

call it reflectance matrix). Note that the rows of R denote image pixels, while the columns

correspond to different light source positions.

Now the collection of p reference images of the scene illuminated by p lighting patterns

can be expressed by

IL = RL (6.3)

1Observe that we consider gray level images, and therefore they can be represented as a n × 1 vector ‘i’.
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where IL = [i1, . . . , ip] is an n × p matrix containing the images of the object under different

lights and L = [l1, . . . , lp] is an m× p matrix representing the different lighting patterns used

to illuminate the object. We now need to determine how the image of the scene illuminated by

lighting patterns can be decoded into images of the scene illuminated by single light sources.

Consider acquiring a set of m reference images each of which is illuminated by a single

point light source. The lighting in the i-th image can be represented by a vector ei in which

the i-th element has the value 1 and the remaining elements have the value 0. The matrix of all

m single light source patterns can be written as E = [e1, . . . , em]. Note that these light source

patterns, as given by the columns of E, form the standard basis; note also that E is the identity

matrix. Now the images formed by these single light source patterns can be written as

IE = RE (6.4)

where R is the reflectance matrix described earlier.

We need to find the linear transformation D that will decode the reference images acquired

using the lighting patterns to recover the images that would be created under single light source

illumination E. By decode we mean we can find IE as

IL D = RLD = RE = IE (6.5)

If the lighting patterns are linearly independent and the number of patterns p is greater than

or equal to the number of single light sources m, then we can decode the lighting patterns

exactly using the decoder matrix D = L−1. If the number of lighting patterns p is less than

the number of single light sources m then the rank(L) < m. In this case we cannot invert

the matrix of lighting patterns L and must settle for an approximate decoding as given by

D = L+ = (LTL)−1LT . In both cases, we write

ID = IL D ≈ RE (6.6)

where ID is the matrix of decoded reference images.

Relighting can then be achieved taking the desired linear combinations of the decoded

images ID. For example, imagine you want to relight a scene with user specified illumination

lnew, we get the image of the scene under this illumination as given by inew = IDlnew ≈
Rlnew.
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Figure 6.2: Alignment of images it1 and it2 .

6.3.2 Relighting in video

For relighting moving objects, we illuminate the object with a sequence of p lighting patterns,

synchronizing the lighting system with the camera, such that each image of the object is ac-

quired with a single light pattern. To relight the video in a post-processing stage we first need

to perform an optical flow alignment between consecutive frames. However, at this point we

will delay the details of the optical flow alignment method until later in the chapter.

Let it1(u) denote a frame acquired at time t1 under illumination given by lighting pattern

lmod (t1,p) where mod (t1, p) is remainder of t1 divided by p. This mod (·) addresses

the fact that we are cycling through the p patterns over the course of the sequence. Let

it1 (Υ(u;q12)) denote the frame it1(u) acquired at time t1 but warped in such a way that it

is aligned with it2(u) acquired at time t2. The warping function Υ(u;q12) takes the pixel u in

the time frame of it1 and maps it to the subpixel location Υ(u;q12) in frame it2 . Note that q12

is the vector of warping parameters needed for the mapping from t1 to t2 (see Fig. 6.2 for an

interpretation of the warping function).

In order to decode the lighting patterns at any given time t, we require a set of frames of

the scene – in the pose of frame t – taken under p different lighting patterns. To do this, we

take a window of p frames centered at frame t and align each of these p− 1 frames to frame t.

(We align only p− 1 as frame t is already aligned.) Let the first frame in the window be called

frame t1, let the middle frame be t, and let the last frame be tp. This gives a matrix of p aligned

frames that can be written as follows:

It
L =

[
it1(Υ(u;q1t)), . . . , itp(Υ(u;qpt))

]
,

where ti = t − �p
2� + i − 1. Now to relight the video sequence, we decode each frame using
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the same decoding matrix D to get It
D = It

LD. Finally every frame can be relit much like the

static case. If the user specifies the lighting at time t as l t
new, we can compute the relit image

in frame t as itnew = It
Dltnew.

6.3.3 Sources of error

If the object being relit remains static, error in relighting and decoding arises only if we use

a subset of the lighting basis, i.e., we use p m-dimensional vectors (where p < m) to span

the m-dimensional space of lights. This error, which we call the sub-basis error, is reduced by

using a higher number of light patterns and converges to zero when p = m.

If the object moves, we need to consider two additional sources of error. There is intrinsic

error in the alignment from the optical flow algorithm; we call this the alignment error. Since

we need only to align the images that are inside a temporal window of length p, this error

is reduced by decreasing the size of the temporal window, i.e., by decreasing the number of

lighting patterns. This error can also be decreased by increasing the frame rate of the camera.

In our experiments we used a camera capable of acquiring 30 frames per second (fps), but

faster cameras are readily available.

Finally, there is the error produced as an object in the scene changes its orientation with

respect to the camera or light sources; we call this the orientation error. Even if the displace-

ment in the scene is perfectly realigned with the alignment algorithm, the displacement itself

can induce relative orientation change of surface points with respect to the camera and the light

sources. A simple rotation of the object between frames will induce this error. And, if the

camera and light source are close to the scene, a translation of the object can induce this error

as well. As with the alignment error, the orientation error can again be reduced either by using

a low number of lighting patterns p or by increasing the camera’s frame rate.

Fig. 6.3 depicts all three of these sources of error for an experiment using images gener-

ated from a synthetic 3-D head. As the data used was synthetic, we were able to isolate and

separately display each source of error. A brief discussion of each is included within the figure.

6.4 Selecting the optimal lighting basis

We now concentrate on the selection of the optimal lighting basis L for relighting video se-

quences. As we have shown at the end of the previous section, the alignment and orientation

errors can be reduced with the use of fewer lighting patterns. However, the sub-basis error
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Sub-Basis Error Alignment Error

Sub-Basis Error: Error produced when using
a reduced number of lighting patterns. Upper
row, left to right: Ground truth image; image
decoded using only 3 lighting patterns; image
decoded using 9 lighting patterns. Lower row:
Error when using 3 lighting patterns and 9 light-
ing patterns, respectively.

Alignment Error: Error produced by inaccura-
cies in the optical flow alignment. Upper row:
it1 ; it2 ; aligned image it2(Υ(u;q21)). Lower
row: Error before the alignment |it1 − it2 |; Er-
ror after the alignment, |it1 − it2(Υ(u;q21))|.
This error will increase as the displacement in
the scene becomes larger; thus it will increase
as more lighting patterns are used.

Orientation Error

Orientation Error: The displacement of a patch between frame t1 and t2 can cause a change in
orientation with respect to the camera or light sources. This will cause errors as described below even
when perfect geometric alignment is achieved before decoding the image. Left: Diagram showing
how the movement between times t1 and t2 of a patch w.r.t. a light source effects its appearance.
When frames t1 and t2 are used to decode image values at point u they induce error. Right, upper
row: it1 ; it2 ; aligned image it2(Υ(u;q21)). In this case, we assume a perfect alignment, so that
the error is produced only by the change of appearance of the head because of its relative movement
w.r.t. the light sources. Right, lower row: Error before alignment, |it1 − it2 |; error even after
perfect alignment, |it1 − it2(Υ(u;q21))|. This error will also increase as the displacement in the
scene becomes larger; thus it will increase as more lighting patterns are used.

Figure 6.3: Sources of error when relighting video sequences.
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increases as the number of lighting patterns decreases. Therefore, we need to find the lighting

basis that minimizes the sub-basis error.

Our goal is to synthesize images of the scene under new illumination conditions such that

the synthesized images are as close (in an L2 sense) to real images as possible. Equivalently,

for a desired level of accuracy, we want to find the lighting basis that minimizes the number of

reference images that need to be acquired – for reasons detailed in Section 3.3. It is important

to note that this optimal lighting basis is a complex function of camera and scene properties

and, thus, is what we call an object-dependent lighting basis. Yet, we will show subsequently

that this optimal basis can be determined using singular value decomposition (SVD) on images

gathered during a calibration step before acquisition. For a typical scene this calibration can be

done in a matter of seconds before video capture.

Consider again acquiring a set of m reference images each of which is illuminated by a

single, compact point light source. The lighting in the i-th image can be represented by a

vector ei in which the i-th element has the value 1 and the remaining elements have the value

0. The matrix of all m single light source patterns can be written as E = [e1, . . . , em]. Note

also E is the identity matrix.

Now the images formed by these single light source patterns can be written as

IE = RE (6.7)

where R is the reflectance matrix described earlier.

Now let’s say that instead of illuminating the scene with a sequence of single light sources

as given by E, we illuminate the scene with the optimal lighting basis denoted by L∗. Under

this illumination we get a different set of reference images IL∗ as

IL∗ = RL∗ (6.8)

Now there exits a linear transformation D∗ = (L∗)−1 that will decode the reference images

acquired using the optimal lighting basis to recover the images that would be created under

single light source illumination E. By decode we mean we can find IE as

I∗L D∗ = RL∗ D∗ = R = IE (6.9)

But how is the optimal basis chosen given that we have measured IE?

Recall that we want to find the lighting basis that minimizes the number of reference images

that need to be acquired. Our goal is to acquire many fewer than m reference images, yet
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Figure 6.4: Computing the optimal lighting basis using SVD. First row: Images of the object
illuminated by a single light source in different positions (columns of matrix IE). Second
row: Optimal image basis (columns of matrix U). They contain both positive values, shown
in grey, and negative values, shown in blue. Third row: Lighting patterns from the optimal
lighting basis (rows of matrix L∗). They also contain positive and negative values. Observe the
correspondence between the selected optimal lighting basis and the images basis shown in the
upper row. Fourth row: Offset and scaling of the optimal lighting basis in order to make all its
values positive.

still be able to decode these images to approximate, with the highest possible accuracy, the

full set of reference images under point source illumination. If we perform a singular value

decomposition (SVD), we can write

IE = USVT (6.10)

where U is an orthogonal matrix; S is a diagonal matrix whose non-zero elements are singular

values in decreasing order of IE; VT is an orthogonal matrix. We choose as the optimal

basis L∗ = V and the optimal decoding matrix D∗ = VT ; we claim they are optimal in the

following sense.

Let L be an m × p matrix formed from the first p columns of L∗. Likewise let D be a

p × m matrix formed from the first p rows of D∗. Finally, let the p images acquired under

illumination L be denoted again as IL. We then write the following approximation

IE ∼= ID = IL D (6.11)
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Figure 6.5: The first 6 patterns of three object-independent lighting bases. Spherical har-
monics (first row), Fourier (second row) and Haar basis (third row). Compare these bases to
the optimal lighting basis in Fig.6.4.

Now for any choice of p, the lighting patterns L extracted from the optimal lighting basis L∗

minimize the sub-basis error in the above approximation, i.e., minimize the Frobenius norm

‖IE − ID‖.
Note that since the matrix L∗ contains negative values in some elements, we must offset

and scale each basis to range between 0 and 1 to make a physically feasible lighting basis.

Fig. 6.4 shows an optimal lighting basis for a synthetic 3-D head computed from a superset of

the images in the first row. Compare this optimal lighting basis to the bases shown in Fig. 6.5.

6.5 Experiments with synthetic data

We now show, using several experiments with synthetic data, that the scene-dependent optimal

lighting basis (OLB) performs better than the Fourier lighting basis (FLB), Haar lighting basis

(HaLB) and spherical harmonic lighting basis (SHLB). We present these results for both static

as well as moving objects. In the case of moving objects, since we are using synthetic data, we

can assume perfect alignment so as to focus on the sub-basis errors produced by the different

types of bases.

6.5.1 Performance comparison for static objects

In the first experiment, we compare the four lighting bases: FLB, HaLB, SHLB, and OLB. We

use the bases as illumination patterns to render images of static synthetic objects. Then, for

each case, we recover (decode) single light source images from the rendered images. These
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Figure 6.6: The two different configurations of the light sources used in the synthetic
experiments. Left: Light sources lying on a sphere. Used for the comparison of the OLB with
SHLB lighting patterns. Right: Light sources lying on a plane. Used for the comparison of the
OLB with the Fourier and Haar lighting patterns.

recovered images are compared with rendered single light source images (ground truth) to

compare the performances of the lighting bases. This experiment is done for several objects:

a glossy sphere, and three non-convex objects: a human face, a buddha’s statue and a dragon

(courtesy of Cyberware). These models are assumed to have Lambertian reflectance with con-

stant albedo.

When comparing the optimal bases with the Fourier and Haar bases, we assume that there

are 12× 12 light sources that lie on a plane. The object is assumed to be placed in front of the

plane. On the other hand, since spherical harmonics are suitable only for use on a sphere, to

make our comparison fair, both OLB and SHLB patterns are represented through 20× 20 light

sources lying on a whole sphere (see Fig. 6.6).

Our comparison is done using the following steps for each of the lighting bases (FLB,

HaLB, SHLB, and OLB):

1. Render images of the object using single light sources.

2. Render images of the object using the lighting basis.

3. Decode single light source images of the object from the lighting basis images, as ex-

plained in Section 6.3.

4. Compute the sub-basis error (using the Frobenius norm) between the decoded and ground

truth single light source images.
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Sphere Gr. Truth Dragon Gr. Truth Face Gr. Truth Buddha Gr. Truth

FLB 16basis HaLB 3basis SHLB 7basis SHLB 3basis

OLB 16basis OLB 3basis OLB 7basis OLB 3basis

Error FLB Error HaLB Error SHLB Error SHLB

Error OLB Error OLB Error OLB Error OLB

Figure 6.7: Examples of reconstructed images, and reconstruction error for the synthetic
static experiments. Each column corresponds to a different experiment. For these examples
we see that with the same number of basis images, the optimal lighting basis performs much
better than the Fourier, Haar, and spherical harmonics lighting basis.
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Sphere

Dragon

Face

Buddha

Figure 6.8: The sub-basis errors in the synthetic experiments for the different types of
lighting bases plotted as a function of the number of basis images, for the synthetic sphere,
dragon, face and buddha statue. Here, we have included plots for SVD approximation of the
original data (see text for details).
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Figure 6.9: Gains of the OLB with respect to all the other lighting basis, (for all synthetic
and static experiments), plotted as a function of the number of basis images used. For any
given number of OLB images, the corresponding number of images of any other lighting basis
that are needed to achieve the same reconstruction error equals the gain value. For instance, in
the ‘buddha’ experiment instead of 6 optimal basis images, we will need to use 6 × 1.8 ≈ 11
SHLB images, 6 × 1.5 ≈ 9 FLB images or 6 × 2.3 ≈ 14 HaLB images. Note that we cannot
directly compare the results of the SHLB with the results of the FLB (or HaLB), because the
former have been obtained with the lights lying on a sphere, while in the later, the lights lie on
a plane.

Fig. 6.7 shows several examples where the differences between the decoding results ob-

tained using the optimal lighting basis and the spherical harmonics, Haar or Fourier lighting

basis are clearly visible, especially when the object has a ‘complex’ geometry.

Fig. 6.8 shows the sub-basis errors for the different types of lighting bases in each of the

experiments, plotted as a function of the number of basis images. We have also included

the errors obtained when approximating the ground truth images using the most significative

eigenvectors, resulting from the SVD decomposition of the single light source images. Note

that these eigenvector images are not physically feasible through a relighting process because

they contain negative values. We include these results just as a baseline case for comparison.

Fig. 6.9 shows the gains of the OLB with respect to all the other lighting basis plotted as a

function of the number of basis images used. For any given number of optimal lighting basis
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First and last frames Sequence of the rotating face

First and last frames Sequence of the rotating dragon

Figure 6.10: Experiment with synthetic moving objects for the ‘male’ and ‘dragon’ exper-
iments. Left: the first and last images in the rendered sequences. Right: Reconstruction error
for both experiments, plotted as a function of the frames of the sequence (horizontal axis), for
the different lighting basis types and different numbers of basis images used for each type (the
number next to each plot).

images, the corresponding number of images of any other lighting basis that are needed to

achieve the same reconstruction error equals the gain value. It is clear from this plot that the

optimal lighting basis is significantly more efficient than the others.

6.5.2 Performance comparison for moving objects

The second experiment relates to decoding rendered video sequences of the ‘face’ and ‘dragon’

models, that rotate around the vertical axis. Again, we assume that the object surfaces have

Lambertian reflectance with constant albedo. The rendered sequences have 50 frames, and the

rotation between consecutive frames is 1 degree. Just like in the experiment with static objects,

when comparing the performance of the SHLB and OLB, the object is assumed to be lit by
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a spherical source, while when comparing the OLB with the HaLB and FLB, the sources are

placed on a plane. The illumination pattern is varied from one frame to the next based on the

chosen lighting basis.

In Fig. 6.10(left) we show the first and the last frames of the sequences. Since these are

synthetic examples, the alignment between frames is known to us and the only sources of error

in the decoded images is due to the use of a lower number of basis images (sub-basis error) and

the change in surface orientation with respect to the camera and the light sources (orientation

error). Fig. 6.10(right) shows the reconstruction error (computed as an average over recon-

structions of all the single sources) plotted as a function of the frames of the sequence, for each

of the experiments. Note that the plotted error includes the sub-basis and the orientation errors.

In each experiment, the different plots correspond to different lighting bases types and different

numbers of basis images used for each type.

From the plots in Fig. 6.10(right), we can see that optimal lighting basis performs much

better than SHLB, FLB and HaLB, even in video sequences. For instance, in the synthetic

face example, with 5 images of the optimal lighting basis we obtain decoding results similar to

using 9 spherical harmonic, 9 Fourier and 16 Haar basis images. Note that the optimal lighting

basis was computed using rendered single source images of only the initial orientation (seen

in the first frames) of the face and dragon. Even though these bases were used for all other

orientations, we see that the reconstruction error does not increase noticeably as the objects

rotate.

This efficiency of our optimal lighting basis is critical in the context of video relighting.

The smaller the number of required lighting patterns, the easier it is to align the images and

the lower is the orientation error. In other words, a lighting basis with lower sub-basis error

naturally results in lower alignment and orientation errors.

6.6 Experiments with real scenes

In the preceding section, we have shown that our lighting basis is optimal for relighting moving

objects in an ideal setting: Lambertian objects having constant albedo, linear light sources

with equal power, a linear image acquisition system and no errors in the alignment. We now

report experiments with real scenes. We use a setup that is calibrated to satisfy many of the

assumptions we have made. We then apply our relighting method to static and dynamic scenes
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Figure 6.11: Experimental setup used for the real experiments.

that include non-Lambertian surfaces. In each case we show that the use of the optimal lighting

basis enables us to produce relit videos of high quality.

6.6.1 Experimental setup

Our setup is based on the system described in (110). The components of our setup are a color

camera (Dragonfly IEEE-1394, color, 640× 480 pixels) running at 30fps and a PC-controlled

projector (Infocus LP820). The projector projects the basis patterns on a white wall, which

in turn illuminates the scene (see Fig. 6.11). The scene is captured using the camera which

is synchronized with the projector. The complete system has frame rate of 22fps. Note that

a significantly higher frame rate can be achieved using a high-speed camera and a projector

with a higher refresh rate. However, even with the current system, the efficiency of the optimal

lighting basis allows us to capture and relight scenes with objects that move at reasonable

speeds.

Since our setup uses a planar surface as the source area, we will only compare the results

of using the optimal lighting basis with the Fourier and Haar lighting basis. Note that spherical

harmonics are inappropriate for such a setup as they are defined over the sphere.

6.6.2 System calibration

One of the key assumptions we have made is that the light sources are linear and that the camera

has a linear response. To this end, we have measured the radiometric response functions of the

projector and the camera and used these response functions to linearize our system. Fig. 6.12a

and Fig. 6.12b plot the response of these devices. We can verify that the response of the
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(a) (b) (c)

Figure 6.12: Camera and projector calibration. A basic assumption we have made in our
experiments is linearity. Therefore, the camera and projector response needs to be calibrated
such as the linearity is guaranteed. (a) Camera response computed using a Macbeth chart.
The horizontal axis represents the measured brightness of the Macbeth chart elements and the
vertical axis are its tabulated irradiances. Observe that the camera response is highly linear. (b)
Projector response (it needs to be linearized). (c) Fall-off of the power light source because of
distance. For a uniform light pattern, those lights further from the center of the scene produce
a lower radiance. This effect is corrected by reducing the radiance of the brighter sources so as
to equalize them to the darker ones.

camera may be considered linear and does not need to be corrected. However, the response of

the projector needs to be linearized.

We also need to ensure that there is no angular variation in source brightness with respect

to the center of the scene. The main reason for such a variation is that we are generating our

sources on a plane rather than a sphere. Since the system has been radiometrically linearized,

a single image of the plane taken with a uniform image projected by the projector reveals the

fall-off function. Fig. 6.12c depicts this function, which has been discretized according to the

resolution that will be used to generate the light patterns. In order to remove this fall-off effect,

the radiance of the brighter light sources is reduced so as to equalize them to the darker ones.

With these simple calibrations done, our system satisfies the source and camera linearity

assumption we have made.

6.6.3 Relighting static objects

In order to validate our theoretical results and our empirical results with synthetic data, we

conducted experiments with static scenes, before moving on to dynamic ones.

Fig. 6.13 shows the objects used for this experiment, a mannequin head and a statue (bust of

David). In both cases, a 8× 8 grid of patches were used as the individual controllable sources.
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Gr. Truth FLB 7 basis OLB 7 basis Error FLB Error OLB

Gr. Truth HaLB 3 basis OLB 3 basis Error HaLB Error OLB

Figure 6.13: Examples of reconstructed images for the mannequin head and the statue.

Note that the Lambertian assumption is not valid for both objects as they each have specular

components in their reflectance. Even so, due to the additive nature of light (20), the specular

reflections can also be reproduced using a linear combination of measurements as long as these

reflections do not saturate the camera or produce complex interreflections.

In Fig. 6.13 we show examples of reconstructed images for each of the objects. We see that

for the same number of basis, OLB perform better than FLB and HaLB. The differences in the

reconstruction quality and error images are clearly visible. In Fig. 6.14, the errors in decoding

are plotted as a function of the number of basis images used, for the Fourier, Haar and the

optimal lighting bases. As expected, the optimal lighting basis is significantly more efficient

than the other bases.

6.6.4 Relighting real moving objects

The challenge when relighting moving objects is alignment. Specifically, we need to align

points across a window of frames so that when we decode the light patterns we do not blur the

information from different points on the object. To do this, we estimate the optical flow over

the sequence of images. This problem is made more difficult by the fact that the illumination

varies from one frame to the next due to the use of a lighting basis.
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(a) Decoding Error for Mannequin Head (b) Decoding Error for Real Statue

(c) Optimal Lighting Basis Gain

Figure 6.14: Decoding errors for the synthetic static experiments. (a) Reconstruction errors
for the mannequin in Fig. 6.13 plotted as a function of the number of basis images used, for
the Fourier, Haar and the optimal lighting bases. (b) Reconstruction errors for the statue in
Fig. 6.13 plotted as a function of the number of basis images used, for the Fourier, Haar and
the optimal lighting bases. (c) The gain of the OLB with respect to FLB and HaLB for both
experiments, plotted as a function of the number of basis images used.

The alignment may be accomplished by splitting it into two subtasks. Initially a figure

background segmentation is performed in order to obtain the correspondence between moving

regions in consecutive images. Afterwards, the optical flow of these segmented regions may be

computed in order to obtain the correspondence at the subpixel level. Note that if the optical

flow were applied to the whole image (and not only to the moving segmented regions), the

procedure would be much more complicated and time expensive. By restricting the optical

flow algorithm to only small regions of the image highly simplifies the alignment.

Several approaches use alternative techniques apart from ‘passive’ computer vision algo-

rithms to address each one of these subtasks. For instance, (28) solves the object/background

subtraction using infrared light sources and covering the background with special clothes,
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(a) (b) (c)

Figure 6.15: Foreground/Background segmentation. (a) Image It1 . (b) Image It2 . (c) Fore-
ground/background separation in image It2 . This segmentation is performed adapting the color
and contour features from image It1 . Note that although the two consecutive frames suffer from
an abrupt change in appearance (because of the projection of different light patterns), the track-
ing algorithm proposed in this dissertation allows to obtain a correct foreground/background
separation.

which allow an easy and fast figure/background separation. However the use of infrared cam-

eras is constrained to the tracking of heat sources, such as the human body. In order to address

the optical flow, some approaches make use of the motion capture technology, where reflective

or magnetic markers, which may be easily tracked, are sticked on the surface of the target (47).

However, these techniques are invasive and might modify the reflectance properties of the sur-

face. The use of structured light techniques might also simplify the computation of the pixel

correpondences throughout time (135; 147). Nevertheless, this is also an invasive technique

that might produce some non-desirable artifacts on the image.

In order to obtain a more general approach, not constrained to any type of target, and with-

out requiring from external techniques, we solve both the figure/background segmentation and

optical flow by using computer vision algorithms specially tailored to deal with illumination

changes in consecutive frames.

The figure/background subtraction is performed by the approach presented in the previous

chapter of this dissertation. As we have stated, the use of particle filter formulations to adapt

simultaneously the colorspace where the image points are represented, the color distributions

of the object and background and the contour of the object, make the method suitable to address

the tracking problem in scenarios with abrupt illumination changes, such are the sequences of

images illuminated by the light patterns considered in this chapter. Fig. 6.15 shows a result of

this segmentation process. Observe that although the abrupt illumination change between two

consecutive images (Fig. 6.15a and b), the proposed algorithm is able to address this change

138



6.6. EXPERIMENTS WITH REAL SCENES

and segment the moving face.

The alignment task is completed by applying an optical flow algorithm to the segmented

moving regions, based on a modification of the Lucas-Kanade (73) algorithm. The original

version of the algorithm has been adapted in order to increase its robustness to the illumination

changes produced by the multiplexed light patterns. Next we give the details of the algorithm:

6.6.4.1 Optical flow using a modification of the Lucas-Kanade algorithm

Our methodology is inspired on the analysis of the algorithm described in (5).

The goal of the Lucas-Kanade algorithm, is to align a template t(u) to an image i(u), where

u = [u, v]T are the pixel coordinates. With the notation of the warping function introduced in

Section 3 of the present chapter, the problem may be formulated as the minimization of the sum

of the squared error between the template t(u) and the image i(u) warped onto the coordinate

frame of the template:

Ψ1 =
∑
u

[t(u)− i(Υ(u;qit))]
2 (6.12)

where qit are the warping parameters mapping from the image to the template.

In this expression, it is assumed that the template t(u) and the image i(u) are simply

related by a geometric warping. In order to introduce appearance variation in the formulation

of the algorithm, Baker et al. (5) consider the minimization of the following function:

Ψ2 =
∑
u

[t(u) +
k∑

i=1

λiai(u)− i(Υ(u;qit))]2 (6.13)

where ai is a set of known appearance variation images, combined with the unknown param-

eters λi, i = 1, . . . , k. This approach has the inconvenience that requires to know a priori the

set of images ai.

Instead, we propose to use a more general minimization function where the changes in the

illumination of the template are described by a function Υ1. The new expression to optimize

is:

Ψ3 =
∑
u

[Υ1(t(u);q1)− i(Υ2(u;q2))]2 (6.14)

where the function Υ1, with the vector of parameters q1, stands for appearance transformations

in the template t(u), and Υ2 with the vector of parameters q2, takes into account the geometric

transformations of image i(u).
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To minimize eq. 6.14 we follow a similar optimization procedure than in (5). The mini-

mization is performed simultaneously w.r.t. q1 and q2, and the summation is computed over

all of the pixels in the template t(u). Let us assume that the current estimation of q1 and

q2 is known and then we solve iteratively for increments ∆q1 and ∆q2. Then, the iterative

procedure will include the following two steps:

1. Minimize the function

Ψ3 =
∑
u

[Υ1(t(u);q1 + ∆q1)− i(Υ2(u;q2 + ∆q2))]
2 (6.15)

2. Update parameters
q1 ← q1 + ∆q1

q2 ← q2 + ∆q2
(6.16)

The two steps are iterated until the convergence of the parameters q1 and q2.

Subsequently, we will derive the optimization of the non-linear Equation 6.15, using a

Gauss-Newton gradient descent method. First, the equation is linearized w.r.t. q1 and q2

performing a first order Taylor expansion:

Ψ̃3 =
∑
u

[{
Υ1(t(u);q1) +

∂Υ1(t(u);q1)
∂q1

∆q1

}

−
{
i(Υ2(u;q2)) +∇i(Υ2(u;q2))

∂Υ2

∂q2
∆q2

}]2

=
∑
u

[
{Υ1(t(u);q1)− i(Υ2(u;q2))}︸ ︷︷ ︸

ε(u)

+
[

∂Υ1(t(u);q1)
∂q1

∂Υ2
∂q2

]
︸ ︷︷ ︸

SD(u)

[
∆q1

∆q2

]
︸ ︷︷ ︸

∆q

]2

=
∑
u

[ε(u) + SD(u)∆q]2 (6.17)

In the previous expressions, ∇i =
(

∂i
∂u ,

∂i
∂v

)
refers to the image gradient, ε(u) is the error

image, SD(u) are the steepest descent images and ∆q is the vector of parameters.

In order to minimize the linearized function Ψ̃3, we compute its partial derivative w.r.t. ∆q

and equal to zero:

∂Ψ̃3

∂∆q
= 0 ⇒

∑
u

SD(u)T [ε(u) + SD(u)∆q] = 0 (6.18)
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Pyramid level 1 Pyramid level 3

Figure 6.16: Pyramidal implementation of the optical flow algorithm. Left: Pair of aligned
template and error image, for the first level of the pyramid. The alignment is performed for the
whole template at the same time. Right: Pair of aligned template and error image, for the third
level of the pyramid. The alignment is performed independently for each patch of the grid.
Observe that different patches have different displacements. This allows to reduce the error,
specially on the regions of the nose and the mouth. The error at the contour of the template is
produced for slight discrepancies in the figure/ground separation of consecutive frames. This
error can be eliminated in a post-processing stage.

Solving eq. 6.18 for ∆q, we get the closed expression:

∆q = −H−1
∑
u

SD(u)T ε(u) (6.19)

where H =
∑
u

SD(u)TSD(u) is the Hessian matrix.

To summarize, the solution of the algorithm consist of applying iteratively eqs. 6.16 and 6.19

until the convergence of the vector of parameters ∆q.

For the experimental results that will be shown next, the transformations Υ1 and Υ2 have

been approximated by affine functions, that is:

Υ1(t(u);q1) =
[

1 + q11 q12

] [ t(u)
1

]

Υ2(u;q2) =
[

1 + q21 q23 q25

q22 1 + q24 q26

] u
v
1


 (6.20)

where q1 = [q11, q12]T and q2 = [q21, q22, . . . , q26]T . Furthermore, in order to handle local

deformations of the object being tracked, or to deal with patches of the object that have different

change of appearance, we have used a pyramidal implementation. That is, the optical flow is

initially applied to the whole area of the object, and subsequently it is applied to small patches,

where the initial conditions are given for the results at the previous pyramidal level. Fig. 6.16

shows how with this procedure the alignment error is reduced. Once the alignment is solved,

the video sequences are decoded or relighted using the procedure explained in Section 6.3.

141



6.6. EXPERIMENTS WITH REAL SCENES

Frame #1 with lighting pattern Frame #47 with lighting pattern

Frame #1 relit with single light source Frame #47 relit with single light source

Figure 6.17: Relighting a tennis ball. Upper row: two basis image frames of a tennis ball
and the lighting pattern used to produce them. Lower row: Relighting results with a single
white light source moving in the horizontal axis. The grid in the lighting pattern shows the
distribution of the original light sources used to generate the lighting pattern.

6.6.4.2 Relighting results of real video sequences

To conclude this section, we will present some relighting results for real video sequences (Fig-

ures 6.17, 6.18 and 6.19).

In Fig. 6.17 we show the results of relighting a moving tennis ball. In an off-line procedure,

we acquired images of the ball illuminated by single light sources where the sources were

arranged in an 8 × 12 grid on the source plane. Using these images we computed the optimal

lighting basis, and the first 3 of these light patterns were used to illuminate the ball while it was

moved. The final sequence is acquired at 22fps, and contains 100 frames (the size of the light

pattern grid, the frame rate, and the number of optimal lighting basis was the same for all of

these experiments). In Fig. 6.17 (bottom row), we show results of relighting the moving ball

with a white point light source that moves smoothly across the horizontal axis.

Similar results on the relighting of a human face are shown in Fig. 6.18. In this case,

the original sequence has 400 frames. Here, we have included the results of relighting the

face with the illumination from New York City’s Times Square and the Columbia University

campus, which were captured by simply panning a video camera with a wide-angle lens.
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Frame #15 illuminated with reference light Frame #111 illuminated with reference light

Frame #15 relit with single color light Frame #111 relit with single color light

Frame #15 relit with environment light A Frame #111 relit with environment light A

Frame #15 relit with environment light B Frame #111 relit with environment light B

Figure 6.18: Relighting a moving face with several lighting conditions. First row: two
basis image frames of a human face and lighting patterns used to produce them. The lighting
patterns correspond to two of the components of the OLB proposed in this chapter. Second row:
Relighting results with a single color light moving in the horizontal axis. Third and fourth rows:
Relighting results with lighting from New York City’s Times Square and Columbia University
Campus, respectively.
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Frame #23 with lighting pattern Frame #190 with lighting pattern

Frame #23 relit with single light source Frame #190 relit with single light source

Frame #23 locally relit Frame #190 locally relit

Figure 6.19: Relighting a corner of a room. Upper row: two basis image frames of a corner
of a room and the lighting patterns used to produce them. Middle row: Relighting results with
a single white light source moving in the horizontal axis. Lower row: Local relighting of the
scene. The gray light source is a frontal light illuminating the whole scene. The blue light
locally relights the cup while the green light focuses on the face.

As we have previously mentioned, one of the advantages of the camera-projector setup that

we are using is its scalability. Using this setup we can relight small objects as well as large

scenes. In Fig. 6.19, we present results for a room scene with a moving person. In this case,

the original sequence has 400 frames. We also use this example to demonstrate that the method

may be used for local relighting tasks, where different parts of the scene are lit by different

sources. Notice the green light that is focused on the face of the person and the blue light that

is shone on the cup. From the cast shadows, one can see that these sources illuminate their

respective regions from different directions.
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6.7 Summary

Relighting video sequences has recently become an interesting research topic for both computer

vision and computer graphics areas. In the same manner than when relighting still images, the

reillumination of video sequences may be performed through an image-based approach, where

images under new illumination conditions may be generated from linear combinations of a set

of basis images, previously acquired under known lighting conditions.

Maybe the most important problem to solve when relighting video sequences, refers to the

alignment of the basis images with respect to a common coordinate frame, such that they may

be used to generate new relighted frames by just simple linear combinations. This problem is

particularly tough because consecutive basis images are illuminated by different light patterns,

and thus they suffer from abrupt changes of illumination.

As we have commented in the previous chapter (and proved through a set of experiments),

the tracking algorithm proposed in this dissertation is robust to illumination changes. There-

fore, we have used this framework to segment and track the moving image regions throughout

the video sequence. Subsequently, the result of the figure/background segmentation feeds into

an optical flow algorithm which solves the correspondence of these regions at a pixel level.

Apart from the application itself, in this chapter we have also contributed in the study of

the lighting basis used to generate the basis images. In particular, we have proposed the use of

an object-dependent lighting basis which is optimal in the sense that it minimizes the number

of reference images that are needed for relighting. The basis is generated off-line, computing

SVD over the set of images of the still object illuminated by single light sources. Once the light

basis is computed, a subset of the light patterns is used for illuminating the objects in either still

scenes or video. Our analysis shows that the lighting basis used here is indeed more effective

than other object independent lighting bases.
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Chapter 7

Conclusions and Future Work

From old movies like “2001: A Space Oddysey” (1968) to most recent films such as “The

Matrix” (1999), “Artificial Intelligence” (2001), “Terminator 3” (2003), or “I Robot” (2004),

the fantasy of the scriptwriters seems to be endless, and transports us for a pair of hours to fu-

turistic worlds where the mechanical and computational capabilities of robots are astonishing,

even outperforming the human being. Unfortunately (or fortunately) this is just science fiction

(Fig. 7.1).

The reality is that current research in artificial intelligence, and all its related areas, like

robotics or computer vision, are far away from these futuristic worlds, and need to be content

by tackling much more humble objectives. A simple task like tracking an object with the eye,

which is naturally accomplished for a person, is still an open problem in computer vision. Un-

predictable movements of the target, gradual or abrupt changes of illumination, similar objects

proximity, cluttered backgrounds, are some of the artifacts that convert the visual tracking in a

Figure 7.1: This is just science fiction ... Left and center: Frames from “Terminator 3” (cour-
tesy of Columbia TriStar c©2003 Columbia TriStar). Right: A frame from “I Robot” (courtesy
of Fox c©2004 Fox).
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really challenging task to be executed by computers.

The work in the present dissertation has addressed this specific problem. We have pro-

posed a tracking framework permitting to deal with disturbances like the just mentioned. The

main contributions may be summarized in four major groups. Firstly, we have suggested to

use a robust representation of the target color in a colorspace that allows to distinguish the

object from the background more clearly than other colorspaces commonly used in literature.

Secondly, we have proposed a new probabilistic framework to integrate as many features as

necessary, permitting them to mutually interact in order to enhance the estimation of its state.

Next, this framework has been utilized to design a real tracking algorithm, validated on sev-

eral video sequences involving non-linear and non-stationary environments. Finally, a novel

video relighting technique has been presented, where the tracking framework designed in this

dissertation plays a central role, since the relighting methodology requires to align sequences

of images affected by abrupt illumination changes. Furthermore, we have proposed a lighting

basis to illuminate the scene, which is optimal for relighting tasks.

In the following sections, the main conclusions and future research for each of the compo-

nents will be discussed.

7.1 Colorspace representation

An important initial issue that needs to be considered when designing a tracking application

refers to the selection of the features to represent the target, allowing to discriminate it from the

rest of the scene. Common object cues previously utilized in the literature are shape, motion,

geometry or appearance. Within the latter group, color emerges as one of the most utilized

features. However, none of the existing approaches paid attention to the selection of the col-

orspace where image points are represented. Usually, normalized colorspaces have been pro-

posed, based on some criteria of invariance with respect to illumination changes. Nevertheless,

this is not the appropriate criterion for a tracking task. In such applications it is more interest-

ing to choose a colorpace maximizing the separability of the target colorpoints with respect to

the background colorpoints.

In Chapter 3 we have described the Fisher colorspace, which, based on the nonparametric

Linear Discriminant Analysis (LDA) (39), computes a plane where the RGB colorpoints of

the original images are projected, and the distance between the representation of the target

and background colorpoints is maximized. The performance of this colorspace was compared

147



7.2. PROBABILISTIC FRAMEWORK FOR MULTIPLE CUES INTEGRATION

to that of other standard colorspaces, in terms of object/background separability, confirming

that the Fisher colorpace is the one that maximizes the distance between both classes. Other

interesting properties have been deduced, such as the invariance of the Fisher plane to uniform

lighting scalings and translations. However, since we are dealing with moving sequences, the

appearance of object and background may dynamically change, requiring the Fisher plane to

be updated throughout time. Therefore, it will be estimated like any other object feature.

7.1.1 Future Research

Although the Fisher colorspace has proved to be more effective than other existent colorpaces,

its performance still might be improved. Since LDA is a linear technique, when the background

and foreground classes are highly overlapped a non-linear technique would be more effective

for the separation. In this sense, we leave as part of future work to investigate non-linear

separation methods such as the Kernel Principal Component Analysis (KPCA) (111) or the

Kernel LDA (KLDA) (69).

7.2 Probabilistic framework for multiple cues integration

Enhance the target representation by using multiple cues has been a common strategy to im-

prove the performance of the tracking techniques. However, most of these algorithms are based

on heuristics and ad-hoc rules that only work for specific applications.

In Chapter 5 we have described a new and general probabilistic framework that permits

to integrate as many features as necessary, estimated by any algorithm satisfying a hypothe-

ses generation - hypotheses correction scheme and which output is a PDF. This framework

allows to integrate both dependent and independent features, and in the special case of de-

pendent features estimated by particle filters, it differs from the partitioned sampling based

approaches (76; 77; 142), in the sense that the dependence is considered during the hypotheses

correction stage and not during the hypotheses generation phase. This, proves to be much more

effective in terms of tracking accuracy and reliability (measured through the survival diagnostic

proposed in (77)). Furthermore, since the dynamic model is separately applied to each individ-

ual feature and not simultaneously to a global state vector containing all the features, the search

area in the configuration space where the hypotheses are formulated is relatively small. As a

consequence, in the case that the integrated features are estimated by particle filters, the method

proposed here does not suffer from the curse of dimensionality problem, which usually affects
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particle filter formulations, producing exponential increases in the computation cost when the

dimensionality of the state space increases.

7.2.1 Future Research

Note that the proposed framework only considers the integration of multiple cues for a single

object tracking. In future research it is planned to extend this formulation to multiple object

and multiple cues integration.

7.3 Design of a robust tracking algorithm

In the second part of Chapter 5, the bounding box, colorspace, color distribution and contour

features have been integrated in the proposed framework in order to design a robust tracking

system that simultaneously accommodates all of the cues. Robustness is provided by the fea-

ture integration process as well as by the cue estimation using particle filters. The effectiveness

of the method is demonstrated by successfully tracking rigid and non-rigid objects in highly

non-stationary environments, which contain cluttered backgrounds and suffer from abrupt illu-

mination changes and non-linear target dynamics. These experiments comprise both synthetic

and real video sequences, from indoor and outdoor scenes.

7.3.1 Future Research

More exhaustive analysis might be performed in future work with respect to the following

issues:

• Feature representation models: Some of the features presented here have been param-

eterized by simple state vectors that might be improved. For instance, a B-spline model

could be used to represent the contour, instead of a discrete set of points distributed along

the contour. In the current implementation, the number of Gaussian components approx-

imating the foreground and background color distributions is kept constant, resulting

in a color state vector of constant dimensionality. However, new components could be

incorporated and some of the components removed from the model if it were necessary.

• Inclusion of other features: The representation of the target might be enhanced by

including extra features. Texture, depth, motion are some examples of visual cues which

could be considered in the future.
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• Dynamic models: The dynamic models used here when propagating each one of the

features, are based on random scalings followed by an addition of Gaussian noise. More

accurate dynamic models could be taken into account, for instance second order auto-

regressive processes. If a more precise dynamic model is used, the number of samples

necessary to approximate the estimation of the features might be reduced.

7.4 Video relighting

A novel and interesting application of the tracking method to video relighting has been de-

scribed in Chapter 6, which contributes in the following two main topics:

Image alignment under abrupt illumination changes

As we have previously argued, the video relighting is achieved by a linear combination of the

pre-acquired sequence frames illuminated under known light patterns, and aligned with re-

spect to a common coordinate frame. The projection of the light patterns on the scene causes

abrupt illumination changes in consecutive images of the sequence, and therefore the align-

ment algorithm needs to be robust to such illumination changes. The first of the contributions

of Chapter 6 refers to the use of the proposed tracking algorithm and an adaption of the Lucas-

Kanade (73) optical flow algorithm to perform the alignment.

Optimal illumination for video relighting

Although the image alignment is an essential issue to accomphish video relighting, the main

contribution of Chapter 6 concerns to the study of the optimal illumination for video relighting.

We have started studying the relighting problem for images of still objects, which is also

achieved by linear combination of a set of reference images illuminated under known lighting

patterns. In previous approaches, these reference images are most often acquired by either

moving a single compact light source over a sphere surrounding the scene, or by sequentially

turning on one source at a time among an array of compact sources.

For most relighting-based applications, the goal is to synthesize images of the scene under

new illumination conditions such that the synthesized images are as close (in an L2 sense) to

real images as possible. The denser the sampling of the lighting directions for the reference

images, the higher the quality of the synthesized images. And one could expect to achieve

errorless relighting results (under the assumption of distant light sources), if one were to sample
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the space of lighting directions with infinite resolution. Yet, in no case is this practical or even

feasible, thus one must settle with the implicit trade-off between quality and the number of

reference images.

We have showed in Chapter 6 that it is not simply the number of reference images that

determines the quality of relighting, but also the way in which the scene is illuminated. In

particular, we showed that the best way (i.e., the way that minimizes the number of reference

images) to light the scene is not using a sequence of compact, single point light sources as is

most commonly done, but rather to use a sequence chosen from a family, or basis, of lighting

patterns each composed of many compact light sources of varying brightness. Furthermore,

we showed that the optimal lighting basis can be determined as a simple calibration procedure

before acquisition. We demonstrated through experiments on real and synthetic data that the

optimal lighting basis significantly reduces the number of reference images that are needed to

achieve a desired level of accuracy in the relit images.

This reduction in the number of needed images is particularly critical in the problem of

relighting in video as demonstrated by Gardner et al. (41). The reason for this is that the

fewer number of reference frames the easiest is the alignment problem commented above. In

Chapter 6, we have showed that the optimal lighting basis can reduce the number of light

patterns that are needed by a factor of 2− 3 as compared to the spherical harmonic basis used

in (41), or other ‘object independent’ lighting bases such as Fourier or Haar bases.

We have presented several relighting results on real video sequences of moving objects,

moving faces, and scenes containing both. In each case although a single video clip was cap-

tured, we were able to relight again and again, controlling the lighting direction, extent, and

color. In addition, we showed that lighting can be changed over the course of the sequence to

produce the effect of a moving source. The lighting could be specified by the user or by some

pre-acquired measurement of natural illumination such as an environment map. In the exam-

ples presented in this dissertation, we used a video camera with a wide angle lens to acquire a

temporally dynamic measurement of the lighting in New York City’s Times Square and in the

Columbia University campus. These lighting maps were then used to relight one of the video

clips of a human face. Finally, we showed that the lighting can even be controlled locally, so

that different objects in a scene can be relit in different ways.
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7.4. VIDEO RELIGHTING

7.4.1 Future Research

Yet, challenges remain for improving the performance of the system. In particular, we are

investigating ways of using higher frame rate cameras to reduce the relighting errors and allow

for faster motion within the video sequences. Furthermore, we are considering the use of

adaptive motion-dependent relighting bases which adapt based on the motion detected in the

scene. For instance, if the target moves fast, a fewer number of basis would be used (in order to

simplify the alignment problem), and in case that the target remains static or has low motion,

more basis might be used for relighting.
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Appendix A

Kalman as a Bayesian Filter

In this Appendix we will derive the Kalman filter equations (Eqs. 2.7 to 2.11) from the Bayesian

point of view, instead of the common demonstration based on the minimization of the expected

error, as it is done in the original Kalman filter work (58) and in most of the literature of the

field (8; 10; 30; 81; 136). Although the Bayesian origin of the filter is also recognized in the

majority of the papers, we have not found a clear demonstration, apart from a proof for the one

dimensional case in (38). Next we will prove for the general case, that with the assumptions of

a linear dynamic model with Gaussian white noise (Eq. 2.5) and Gaussian observation model

(Eq. 2.6), the equation of the Bayesian filter (Eq. 2.2) leads to the Kalman filter equations1.

Initial Assumptions:

xt = Dtxt−1 + qt
d with qt

d ∼ N(0,Σt
d)

therefore p(xt|xt−1) = Nxt(Dtxt−1,Σt
d) (A.1)

zt = Mtxt + qt
m with qt

m ∼ N(0,Σt
m)

therefore p(zt|xt) = Nzt(Mtxt,Σt
m) (A.2)

p(xt|Zt) = Nxt(xt
+,Σ

t
+) (A.3)

Prediction: In the prediction stage, the goal is to compute the likelihood p(xt|Zt−1) given the

a posteriori PDF in previous iteration p(xt−1|Zt−1) and the dynamic model p(xt|xt−1),

as depicted in Eq. 2.3. Using the relations defined in Eqs. A.1 and A.3, and considering

1I would like to thank J.M.Porta-Pleite, for his help in this Section
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A. Kalman as a Bayesian Filter

the linear algebra operations from Appendix B, we have

p(xt|Zt−1) =
∫
xt−1

p(xt|xt−1)p(xt−1|Zt−1)dxt−1

(Eqs. A.1, A.3) =
∫
xt−1

Nxt(Dtxt−1,Σt
d) ·Nxt−1(xt−1

+ ,Σt−1
+ )dxt−1

(Eq. B.4) =
∫
xt−1

N−Dtxt−1(−xt,Σt
d) ·Nxt−1(xt−1

+ ,Σt−1
+ )dxt−1

(Eq. B.3) ∝
∫
xt−1

Nxt−1((Dt)−1xt, (Dt)−1Σt
d(D

t)−T ) ·Nxt−1(xt−1
+ ,Σt−1

+ )dxt−1

(Eq. B.5) ∝
∫
xt−1

N(Dt)−1xt(xt−1
+ , (Dt)−1Σt

d(D
t)−T + Σt−1

+ ) ·Nxt−1(mc,Σc)dxt−1

As the first term of the integral does not depend on xt−1, it can be moved out of the

integral:

p(xt|Zt−1) ∝ N(Dt)−1xt(xt−1
+ , (Dt)−1Σt

d(D
t)−T + Σt−1

+ ) ·
∫
xt−1

Nxt−1(mc,Σc)dxt−1

︸ ︷︷ ︸
=1

∝ N(Dt)−1xt(xt−1
+ , (Dt)−1Σt

d(D
t)−T + Σt−1

+ )

(Eq. B.3) ∝ Nxt(Dtxt−1
+ ,Σt

d + DtΣt−1
+ (Dt)T )

Therefore, the prediction of the state and covariance, can be expressed as

xt
− = Dtxt−1

+ (A.4)

Σt
− = Σt

d + DtΣt−1
+ (Dt)T (A.5)

which correspond to the predicted state and predicted covariance equations of the Kalman

filter (Eqs. 2.7 and 2.8).

Correction: In the correction stage, the predicted distribution p(xt|Zt−1) = Nxt(xt−,Σt−)

and the observation density p(zt|xt) = Nzt(Mtxt,Σt
m) are combined according to

Eq. 2.4 in order to obtain the a posteriori estimates of the state and covariance:

p(xt|Zt) ∝ p(zt|xt)p(xt|Zt−1)

∝ Nzt(Mtxt,Σt
m) ·Nxt(xt

−,Σ
t
−)

(Eq. B.4) ∝ N−Mtxt(−zt,Σt
m) ·Nxt(xt

−,Σ
t
−)

(Eq. B.3) ∝ Nxt((Mt)−1zt, (Mt)−1Σt
m(Mt)−T ) ·Nxt(xt

−,Σ
t
−)

(Eq. B.5) ∝ N(Mt)−1zt(xt
−, (M

t)−1Σt
m(Mt)−T + Σt

−) ·Nxt(mc,Σc)
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A. Kalman as a Bayesian Filter

Since the first term is not a function of xt we can consider it as a proportional factor. As

a consequence, the a posteriori distribution is reduced to:

p(xt|Zt) ∝ Nxt(mc,Σc) = Nxt(xt
+,Σ

t
+)

where the terms xt
+ and Σt

+ are expressed according to Eqs. B.6 and B.7 respectively.

Rearranging the terms, it can be showed that these expressions correspond precisely to

the equations 2.9, 2.10, and 2.11 of the Kalman filter in the correction stage. Let us start

rearranging the components of the covariance term:

Σt
+ = ((Mt)T (Σt

m)−1Mt + (Σt
−)−1)−1

(Eq. B.1) = Σt
− −Σt

−(Mt)T (Σt
m + MtΣt

−(Mt)T )−1︸ ︷︷ ︸
Kt

MtΣt
−)

= Σt
− −KtMtΣt

− (A.6)

where

Kt = Σt
−(Mt)T (Σt

m + MtΣt
−(Mt)T )−1 (A.7)

is the Kalman gain. Note that Eqs. A.6 and A.7 correspond to the Kalman covariance

update rule (Eq. 2.10) and Kalman gain (Eq. 2.11), respectively.

With respect to the state vector term, we have:

xt
+ = Σt

+((Mt)T (Σt
m)−1Mt(Mt)−1zt + (Σt

−)−1xt
−)

= Σt
+((Mt)T (Σt

m)−1zt + (Σt
−)−1xt

−)

= (Σt
− −KtMtΣt

−)((Mt)T (Σt
m)−1zt + (Σt

−)−1xt
−)

= xt
− −KtMtxt

− +
(
Σt

−(Mt)T (Σt
m)−1 −KtMtΣt

−(Mt)T (Σt
m)−1

)
zt

(A.8)

We can show that:

Kt = Σt
−(Mt)T (Σt

m)−1 −KtMtΣt
−(Mt)T (Σt

m)−1 (A.9)

Proof:
Kt = Σt−(Mt)T (Σt

m)−1 −KtMtΣt−(Mt)T (Σt
m)−1 ⇔

Kt(I + MtΣt−(Mt)T (Σt
m)−1) = Σt−(Mt)T (Σt

m)−1 ⇔
Kt = Σt−(Mt)T (Σt

m)−1(I + MtΣt−(Mt)T (Σt
m)−1)−1 ⇔

Kt = Σt−(Mt)T (Σt
m + MtΣt−(Mt)T )−1
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A. Kalman as a Bayesian Filter

which is true according to the previous definition of the Kalman gain (Eqs. 2.11 and A.7).

Therefore, equation A.8 can be shortened to

xt
+ = xt

− −KtMtxt
− + Ktzt

= xt
− −Kt(Mtxt

− + zt) (A.10)

that is the same expression as the state update rule in the Kalman filter formulation

(Eq. 2.9).
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Appendix B

Mathematical Formulas

B.1 Matrix Relations

Formulae obtained from (18).

The Woodbury indentity Inverse :

(A + CBCT )−1 = A−1 −A−1C(B−1 + CTA−1C)−1CTA−1 (B.1)

B.2 Normal Densities

Formulae obtained from (18).

Normal density PDF: The density of x ∼ N(m,Σ) is

p(x) =
1√

det(2πΣ)
exp

[
−1

2
(x−m)TΣ−1(x−m)

]
(B.2)

Rearranging Means:

NAx(m,Σ) ∝ Nx(A−1m,A−1ΣA−T ) (B.3)

Nx(Am,Σ) = N−Am(−x,Σ) (B.4)

Product of Gaussian densities:

Nx(m1,Σ1) ·Nx(m2,Σ2) = Nm1(m2, (Σ1 + Σ2)) ·Nx(mc,Σc) (B.5)

where:

mc = (Σ−1
1 + Σ−1

2 )−1(Σ−1
1 m1 + Σ−1

2 m2) (B.6)

Σc = (Σ−1
1 + Σ−1

2 )−1 (B.7)
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Dentro de mi corazón
yo conservo una ilusión
y por decir la verdad
no tengo fe en lo que espero,
mas tampoco desespero,
de que se haga realidad.

Ramon Noguer Fàbrega
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