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Chapter 1

Introduction

Power electronic systems consist of one or more electronic power converters that use

power semiconductor devices controlled by integrated circuits. Roughly speaking, a

power converter transforms an input voltage Vi into an output voltage V0.

There are different patterns to classify the converters used in power electronics: type

of device, function, connexions between the different parts of the converter, etc. Ac-

cording to the last pattern there are the switched converters: they have switches that,

adequately commanded (at higher frequencies compared with the line), produce DC

or AC output voltage with line-close frequency.

Nowadays, DC-to-AC conversion has an important practical application in the field

of uninterruptible power systems, currently known as UPS. Basic DC-to-DC switch

mode power converters possess a very simple structure. During the last fifteen years,

considerable research effort has been addressed to study the possibility of using them

in DC-to-AC conversion schemes.

There are many commercially available DC-to-DC switch mode power converters,

but only two topologies can be considered basic. These are the (step down) buck

converter, which produces an output voltage lower than the input, and the (step-up)

boost converter, provider of an output greater than the input. Both are mainly used

in DC power supplies and DC motors velocity control. Variations of the two basic

topologies constitute the rest of the set.

1



Asymptotic Tracking with DC-to-DC Bilinear Power Converters 2

However, attention should be paid to another important structure despite being de-

rived from the buck and the boost. The (up-down) buck-boost results after a cascade

connection of the buck and the boost; it may provide an output voltage lower or

greater than the input and it is used in power supplies.

It is worth mentioning that the space state model of the buck converter is linear, while

the boost and buck-boost converter show nonlinear representations that increase the

difficulty of the study.

The aim of this thesis is to achieve that the output voltage of the DC-to-DC buck,

boost and buck-boost power converters can track periodic references. Robust schemes

to eliminate disturbance effects in the tracking task will also be developed. Sliding

modes will be used as control technique, and the obtained results will be validated

by numeric simulation.

Distribution of the Contents

The thesis is organized in chapters according to the following distribution:

Chapter 2 reviews the results reported in specialized literature that have a direct

impact on the topics of the thesis. Chapter 3 deals with the exact and asymptotic

tracking of a time varying reference by the load voltage of a step-down DC-to-DC

power converter, indirectly controlled through the input current. Restrictions on

reference signals, due to the fixed control gains of the device, are obtained. It also

contains a brief survey of sliding mode control. Chapter 4 is devoted to achieve exact

tracking of a periodic reference in a nonminimum phase, nonlinear control system

by means of an inversion-based procedure. Restrictions on the signals to be followed

are also derived. The plant parameters are assumed to be known. Chapter 5 studies
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the use of the Galerkin method to approximately solve the inverse problem which

appeared in the previous chapter, as well as the effect of its use in the tracking

control of the system. Convergence and error analysis of the Galerkin sequences are

performed. Chapter 6 considers the robustness of the nonlinear boost and buck-

boost converters in the presence of load perturbations, and introduces an adaptive

scheme that identifies the disturbed parameter and allows the asymptotic tracking of

periodic signals at the output resistances. Chapter 7 proposes the use of bidirectional

boost and buck-boost converters to perform a direct control of the output voltage,

thus taking advantage of the insensitiveness to external disturbances offered by this

type of control actuation. Finally, the main contributions of this thesis and a set

of suggestions for further research are listed in chapter 8. Appendix A provides a

summary of results in module theory related to linear control systems.



Chapter 2

Literature Review

This chapter contains a commented list of the relevant studies which have appeared

in the specialized literature and are closely related to the thesis.

2.1 Introduction

The literature is organized into sections. Section 2.2 considers noteworthy texts de-

veloping variable structure theory. Section 2.3 quotes important contributions in the

field of regulation of switched converters, which precedes a discussion of the asymp-

totic tracking problem in section 2.4. The studies carried on under the hypothesis of

a locally constant reference hypothesis may be found in section 2.5. In section 2.6

attention is paid to the presence of the Galerkin method and the mapping degree

theory in control literature.

2.2 Variable structure systems

Among the excellent books and tutorials on Variable Structure Systems (VSS), [Utk77]

and [Utk92] are of particular interest; both of them are usually referenced in studies

4
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that develop and apply such theory. The tutorial [DZM88] is also an outstanding

piece of material. An interesting differential geometric exposition of certain aspects

of sliding mode control may be found in [Sir88]. Finally, [HGH89] gathers a complete

state of the art in VSS till 1989, with near 200 references.

Special attention will be given to Filippov’s paper [Fil64], which furnishes a definition

of the solution for differential equations with discontinuous right hand side. Other

proposals also exist, but none is so related to the intuitive idea of the operation of

switched systems.

2.3 Regulation of switching converters with sliding

mode control

Switched mode DC-to-DC power converters [MUR89], [SB85], constitute a natural

field of application of VSS techniques due to the abrupt topological changes that

occur during operation. The first reports trying sliding mode control date from the

beginning of the eighties. The different strategies used in the sliding mode regulation

of switched converters have two common aspects. Firstly, a sliding surface that pro-

vides the desired asymptotic behavior when the converter dynamics are constrained

to evolve on it. Secondly, the feedback control circuit that takes the system to the

mentioned surface is designed.

The first device to be regulated with such technique is the buck converter [BMS83a],

and an application to nonlinear converters is described in [VSC̆85]. The sliding sur-

faces are straight lines in the state space.

According to the mathematical model of [Bro72], a general treatment of the problem
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for bilinear networks is in [Sir87], where the use of xj − k-type sliding surfaces is

reported to offer good robustness results. However, the basic DC-to-DC power con-

verter structures are shown to need indirect control. Since the control action does

not appear explicitly in the equation of the output voltage, the buck must be indi-

rectly controlled through the input current (affine combinations of input current and

output voltage are also allowed, whenever the input current has nonzero component).

The nonlinear boost and buck-boost show nonminimum phase characteristics (i.e.,

unbounded internal dynamics) when the capacitor voltage is taken as the system’s

output. The drawback of indirect control is that system parameters appear in the

switching surface equations, entailing undesirable sensitivity to disturbances.

A sliding mode control design based on the Lyapunov function approach was designed

in [NFC95] for the regulation of a buck converter with input filter. The control

strategy takes into account the filter oscillations and results in stable system behavior

and good dynamic performance.

Sliding modes plus other control methods have also been used to regulate switched

converters. State feedback linearization [Isi89], [NS90] is a good example. In [SVC86],

[San89] and [SI89], linearizing transformations and posterior sliding control are per-

formed in buck, boost and buck-boost systems. Rapid transients and robustness to

certain parameters are observed.

A combination of dynamical input-output linearization and a backstepping controller

design method results in an adaptive regulation of PWM1 controlled nonlinear power

supplies [SGZ96]. The devices demonstrate robustness to bounded and external dis-

turbances.

1A geometric equivalence between PWM and sliding mode control is proven in [Sir89].
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Passivity based control techniques have been successfully tested for robust control

of switched converters. In [SOE96a], the energy dissipation and passivity properties

of the boost converter are incorporated into a sliding mode controller design for

regulation tasks. Having in mind a dynamical model of the converters obtained with

the Euler-Lagrange formulation [SOE96b], [Gar00] proposes a piecewise unstable,

dynamical, adaptive feedback regulation combined with a suitable controller resetting

strategy. The resetting is performed on the unstable duty ratio function, used as

stabilizing controller, when a certain threshold is exceeded. Therefore, the duty ratio

is constrained in a small vicinity of the required constant equilibrium value, evolving

into a pseudo-sliding regime. Robust regulation of the capacitor voltage is reported.

The Ph. D. Thesis [Esc99] uses port controlled hamiltonian modelling in the regu-

lation of DC-to-DC converters and proposes several passivity based techniques, one

of them combined with sliding mode control. This last strategy was experimentally

proved to be very robust to source disturbances, but was highly sensitive to parameter

uncertainties. However, using the energy-balancing method proposed in [OSME02],

regulation of the output voltage and insensitivity to load resistance uncertainty with

partial state measurement is achieved in [ROE00].

In [UGS99], an observer-based sliding mode control incorporates an ideal model sim-

ulated in the controller in parallel with the real plant. For the sliding mode control

itself, real state measures are substituted by observer states which may converge to

the real state. Reduction in the number of plant measurements is a proven fact, but

high complexity in the controller design is a handicap.

Regulation of an uncertain boost converter is achieved in [SFRF03] by means of an

algebraic, on-line parameter estimation algorithm, together with a particular certainty
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equivalent linearizing state feedback controller.

2.4 Asymptotic tracking in DC-to-DC power con-

verters

Time varying sliding surfaces were used twenty years ago in path control of robotic

manipulators [Utk92]. The dynamic stabilization problem was reduced to a static

one by means of an error variable that had to be taken to zero [SL91]. Sliding

surfaces were defined using the error and its derivative in such a way that, when

the system reaches it, the dynamics takes the error to zero exponentially. Following

this idea, a sliding mode control scheme for both power conditioning or UPS systems

was proposed in [CMOP88] and [CM96]. The equivalent circuit was modelled as a

switched, linear, bidimensional system with state variables proportional to capacitor

current and voltage. The sliding surface, built as an affine relation between state

variables, allows tracking of a sinusoidal wave with the output voltage to be achieved.

Insensitivity to parameter variations and robustness to disturbances were reported.

Similar sliding surfaces have been successfully employed in [CFT93] and [JRM93] with

a three phase inverter and a step-up converter. In the latter, the nonlinear character

of the boost device results in the control action appearing inside the sliding surface

equation.

Full bridge buck converters were used to track sinusoidal references by means of sliding

mode and PWM control schemes in [BBBMVA89], via full state feedback and pole

assignment.
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A dynamical PWM feedback control scheme accomplishing indirect asymptotic out-

put tracking, again in a full bridge power converter, is proposed in [SP93]. The

approach uses Fliess’ generalized observer canonical form (GOCF) [Fli90b] and par-

tial inversion techniques. GOCF is also at the heart of a dynamic feedback strategy

of sliding mode type for a chattering free, robust asymptotic output tracking suitable

for some electromechanical systems [Sir93].

The study of a single phase inverter working under sliding mode control is performed

in [PMP94]. The dynamic behavior of the inverter is governed by a linear system

for which a Carpita-type [CMOP88] sliding surface is tested. The system shows

overload and short circuit protection, while the use of a reduced observer eliminates

load current measurements and improves noise insensitivity.

Constant switching frequency is required in [NL95] for the tracking control of a buck

converter. Restrictions on the time varying output reference coincide with the ones

obtained in [FO94a].

An interesting idea for robust generation is the concept of equivalent perturbations

[FB96], [Bie99]. The authors prove that load disturbances may be considered equiv-

alent to input voltage perturbations, being thus counteracted with external voltage

injections. Knowledge of the load perturbations is assumed.

AC signal tracking task is achieved with a sliding feedback control scheme for a

boost-buck converter [Bie99], [BFGR99]. Different sliding surfaces are proposed for

the boost and buck stages. Experimental results validate the design for both linear

and nonlinear loads.

The necessity of indirect control of the output voltage through the input current

changes from regulation to tracking tasks. The obtention of the necessary current
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for a given output voltage reference is easy in the step-down converter, but not so

much for the nonlinear ones: a highly unstable nonlinear differential relation with

no analytic solution appears. Different approaches have been proposed to solve the

problem.

In [Sir99a], [Sir99b] and from a differential flatness [FLMR94] point of view, an ap-

proximate solution is obtained with a rapidly convergent iterative procedure. This

line of research has produced no other results.

Other contributions [OFB96], [Bie99], [ZFSB98a], [ZFSB98b] suggest the calculation

of an approximation to a periodic solution through the Harmonic Balance method.

The robustness of the procedure is later studied in [FZ01], where an adaptation

scheme for the identification of unknown parameters using FFT is suggested. Also, a

transient optimization algorithm is provided.

In the communication [ACA00], the current indirect reference is obtained with a time

reversal in the differential equation that describes the internal dynamics. However,

the method is not applicable in the presence of perturbations, because a time inversion

may produce a system response before the arrival of the disturbance. Extreme sen-

sitivity to perturbations is expected. It also contains alternative proofs of analogous

results to theorem 4.4.2 and corollary 4.4.3 of this thesis.

An extension of the algebraic on-line parameter identification approach, proposed

in [SFRF03] for the regulation of a step-up converter, based on input and output

measurements as commented at the end of section 2.3, is performed in [SFF02] for

trajectory tracking in an uncertain double bridge buck converter. A controller of

the generalized proportional integral type is proposed for the stabilization of the

minimum phase output to the desired reference. Good performance is shown, even in



Asymptotic Tracking with DC-to-DC Bilinear Power Converters 11

the presence of unmodelled stochastic disturbance inputs.

A discrete time sliding mode controller is suggested in [MVLLC00] for output voltage

tracking in a boost converter. The switching surface is obtained by imposing a desired

dynamic behavior to the system. The use of an adaptive law for the estimation of

perturbed parameters results in fast transient response, absence of steady state errors

and robust performance to input voltage and load disturbances.

We may finish the section with an overall vision of general results about tracking in

nonminimum phase systems. As an introduction, we should say that the problem of

asymptotic tracking in minimum phase SISO systems is solvable under the assump-

tions of relative degree r for the system, and boundedness for the reference and its first

r derivatives [Isi89], [Sas99]. A sliding mode control law that also achieves asymp-

totic tracking in the presence of perturbation vector fields satisfying a (generalized)

matching condition may be found in [Sas99].

Exact tracking of a known output reference for nonminimum phase systems is devel-

oped in [DCP96] and [DP98] both for the time invariant and time varying cases. The

method tries to determine a bounded input-state trajectory that achieves a desired

output behavior with an inversion-based procedure. If this is possible, a composite

control law is used in such a way that its first component produces exact tracking

and the second one stabilizes the overall system once linearized about the nominal

trajectory. An interesting modified version of this work is contained in [Sas99].

However, plant uncertainties may negatively impact on output tracking performance

in inversion based controllers. [Dev00] contains acceptance bounds on the size of

the uncertainties under which is advantageous to use inverse feedforward for linear,

time-invariant systems.
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The robust asymptotic tracking problem, reduced to output regulation when working

with tracking error variables, is considered in [IB90], [Sas99] for nonlinear systems.

The trajectory to be followed and disturbances to be rejected are not known, but may

range over the set of all possible trajectories of a given autonomous system, so-called

exosystem. With a controller that incorporates an internal model of the exosystem,

robust asymptotic stabilization to zero is guaranteed for every possible exogenous

input in the class of signals generated by the exosystem. The main result states that

if we stabilize the closed loop system, there will exists a center manifold that can

be chosen so as to have zero output error on it. Such a manifold may be obtained

solving a partial differential equation. In the paper [BI00] one may find an excellent

overview of the output regulation problem for nonlinear systems, with comments on

further improvements of the method and current research lines.

Recent results in [SS01] and [SS02] report both approximate and asymptotic output

tracking in sliding modes for certain classes of nonminimum phase and uncertain

nonlinear systems. The key is in the definition of a proper output reference profile

to be followed by the system that avoids unstable internal states. It is known as the

stable system center design because it is based on the center manifold theory [Isi89],

[Sas99]. Application to boost and buck-boost converters [SZS02a] and to systems

with output delay [SZS02b] has already been developed.

A dynamical sliding manifold is used in [SZS02c] to address asymptotic tracking in

nonlinear boost and buck-boost devices. The classical sliding mode robustness to

matched disturbances is enhanced with the accommodation to unmatched distur-

bances inherent to conventional dynamic compensators.
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2.5 Locally constant reference hypothesis

An approximate treatment of the tracking problem in the fourth order C̆uk converter

is given in the series of articles [FMO92a], [FM93] and [FMO92b].

Assume that to regulate the state variable xj of the single input system

x′ = f(x) + g(x)u

to a level kd, a sliding regime over the surface s(x, kd) is created such that the ideal

sliding dynamics possesses an asymptotically stable equilibrium point x∗ = x∗(kd),

being x∗
j = kd. Hence, in case that the control target consists of the tracking of a time

dependent but hypothetic locally constant reference kd(t) by xj, the new time varying

sliding surface s[x, kd(t)] may induce a sliding regime with approximately bounded

stationary dynamics x∗(t) ≈ x∗(kd(t)), being also x∗
j ≈ kd(t).

The technique shows good results and a considerable attenuating effect of load and

input voltage perturbations. In practical applications, however, particular analysis

is needed for each system in order to determine the validity of the approximation.

Some restrictions to be satisfied by kd(t) may be taken into account [OFB96].

Studies on the boost converter have been reported in [CB99] and [CFA01], where

bounds on the steady state error are obtained.

2.6 Galerkin method and mapping degree in con-

trol systems

The Harmonic Balance [Kha92a], [Sas99] is a general method of prediction and ap-

proximation of limit cycles in nonlinear control systems. Essentially, the idea is to



Asymptotic Tracking with DC-to-DC Bilinear Power Converters 14

represent the supposed periodic solution by a Fourier series, truncated at the n-th

harmonic, and to look for a frequency and a set of Fourier coefficients which satisfy

the system’s dynamic equations. This search results in an overdetermined, infinite

nonlinear system of equations involving frequency and Fourier coefficients which is

hardly solvable. A simplification consists of reducing the problem to a finite di-

mensional one just by considering the first 2n + 1 equations, which are termed the

determining equations of the nonlinear system.

For large n, the finite system may still be difficult to solve. A further simplification

is performed if n = 1 is taken, giving raise to the well known (first order) harmonic

balance equation. Conditions under which the existence or inexistence of solution for

the determining equations guarantee the existence or inexistence of a limit cycle in

our system can be derived. This identifies the classical Describing Function method.

In Functional Analysis, with a more general setting of operators in Hilbert spaces

and complete orthonormal systems, the Harmonic Balance is a special case of the

Galerkin method. The discussion about the conditions to be satisfied by the vector

field f(x, t) to ensure the existence of a periodic solution for an x′ = f(x, t)-type

ODE if there is solution for the determining equations is presented in [Ces63], [Kno63]

and [Ces64]. Success in that task, however, left two questions not completely solved:

restrictions for the existence of solution for the determining equations and the validity

of the approximation of the initial periodic solution given by them. In fact, this is a

generalization of the describing function problem.

Later, the use of the mapping degree theory allowed an elegant mathematical jus-

tification for the describing function method [BF71] (a summary may be found in

[Sas99]). Moreover, it gave the key to answer in [Maw71] and [GM77] the above
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mentioned questions. The excellent textbooks [Zei93], [Zei90a], [Zei90b] and [Zei97]

supply a complete idea of the importance of the Galerkin method and the mapping

degree theory in Functional Analysis, with updated results.

Apart from that, the mapping degree theory is included as mathematical background

material for the analysis of control systems in [Sas99].

In [Tad02], a Functional Analysis approach to approximate dynamic phasor models in

bilinear dissipative systems with nonlinear lossless dynamics is performed. It studies

the existence of periodic steady states, as well as the existence and convergence of

approximate stationary solutions. Although the problem is not the same, the struc-

ture of the paper and the tools therein used are close to the posing and development

of chapter 5 of the thesis.



Chapter 3

Tracking Control of the Buck
Converter

In this chapter we will deal with the tracking of a time varying reference by the output

voltage of a buck converter.

3.1 Introduction

The tracking problem in single input controllable linear systems was early faced by

Slotine and Sastry in [SS83]. They derived a generalized, linear, time varying sliding

surface and a control law such that the first component of the vector state of an

n-dimensional system in Brunovsky canonical form could asymptotically track any

signal with bounded n-th derivative, stated in advance.

However, when fixed gain systems are considered, as the buck converter, the restric-

tions to be satisfied by the desired output harden. The reason being that the sliding

domain of the switching surface cannot be fitted to every reference. In other words,

the fixed gains define a region in the phase plane out of which the control saturates.

The ideal buck converter can be mathematically modelled as a linear, single input,

16
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variable structure system, thus allowing it to be controlled by means of sliding mode

control. A Carpita-type [CMOP88] time dependent sliding surface, obtained from an

autonomous one that behaves appropriately in regulation tasks, is the key to make

the output voltage of the converter follow a certain periodic signal. Restrictions

for candidate references are derived. Also, a full bridge buck converter is used to

track non offset signals. The results we are presenting here were partially reported in

[FO94a], [FO94b] and [Olm94], with a slight difference: we are performing a change

of state variable following again [CMOP88] to enhance the robustness of the device.

The chapter is organized as follows. Section 3.2 contains a short survey on sliding

mode control. Section 3.3 studies the ideal dynamic response of a general, variable

structure control system with fixed gains, to a certain non autonomous switching

surface. The description and solution of our problem in a class of linear systems that

includes the buck converter is performed in section 3.4. As one of the main results of

that section is expressed from a module theoretic approach, the reader is referred to

appendix A for a brief review of its basic concepts. The buck converter is presented

in section 3.5, where it is also studied as a regulator. The general methodology

for tracking purposes developed in the former sections is applied to the converter

in section 3.6; a sinusoidal signal is taken to exemplify the technique. Section 3.7

contains a robustness study and simulations are found in section 3.8.

3.2 Sliding regimes in switched systems

Essentially, a variable structure control uses a switching control law to direct the

system trajectories towards a certain manifold of the phase plane, called the sliding

or switching surface and, once there, maintains the evolution of the system constrained
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to the manifold, giving raise to what is known as sliding mode or sliding regime.

This section contains a summary of the main results in the theory of variable structure

systems and its associated sliding modes. The reader is referred to the excellent book

of Utkin [Utk92] and the tutorials [DZM88], [Sir88], for background material.

3.2.1 Definitions

Consider the single-input, nonlinear dynamical system

x′ = f(x) + g(x)u (3.2.1)

where the state vector x belongs to an open subset D of R
n. Moreover, f, g : D ⊆

R
n −→ R

n are smooth vector fields with g(x) �= 0, ∀x ∈ D. The switched control

u : D −→ R acts as

u =

{
u+(x) if s(x, t) > 0

u−(x) if s(x, t) < 0,
(3.2.2)

with u+, u− smooth, real scalar fields in D; without loss of generality we let them

satisfy u+(x) > u−(x) locally in D. The also scalar field s : D × R −→ R stands for

a smooth function with non zero gradient on D. The set

S = {(x, t) ∈ D × R, s(x, t) = 0}

defines a n − 1 dimensional manifold in D × R called the switching surface. The

switching surfaces are designed in such a way that the motion of the system restricted

to S exhibits a desired behavior, as regulation or tracking.

3.2.2 Existence of sliding modes

Suppose that, in a neighbourhood of the switching surface, the tangent vectors of the

state trajectory always point towards S, thus resulting in the system evolving in an
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immediate vicinity of S. This ensures the crossing of the surface from each side of it.

Definition 3.2.1. It is said that a sliding mode or a sliding regime locally exists on

S iff there exists an open neighbourhood N of S, N ∩ S �= ∅, such that

d

dt
s2(x, t) < 0, ∀(x, t) ∈ N \ S,

where the derivative is evaluated along the trajectories of f + gu+ when s > 0 and

f + gu− when s < 0. S is then called a sliding surface.

Ideal sliding modes appear only when x ∈ S, ∀t ≥ t0, which demands an infinitely fast

switching frequency not attainable in real systems. This results in a motion within a

neighbourhood of the switching surface, the so-called chattering phenomenon. A first

approach, however, neglects the chattering effects and considers the dynamics ideally

restricted to the sliding surface.

Remark 3.2.1. The definition of sliding modes in SISO systems given by definition

3.2.1 is quite intuitive and actually useful. However, its extension to the multi-

input case must be carefully performed; see, for example, chapter 4 of [Utk92], which

contains clarifying examples. An alternative definition may be found in [DZM88].

3.2.3 Dynamics on a sliding surface

The Filippov’s [Fil64] method to determine the ideal dynamics of system (3.2.1) in

sliding regime, i.e., over the surface s(x, t) = 0, known as ideal sliding dynamics (ISD),

is computed as an average of the system’s dynamics on both sides of the surface.

Let

h±(x, u) = f(x) + g(x)u±
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denote the velocity vectors where s > 0 and s < 0, respectively. Assume that a

sliding regime has been created for system (3.2.1) with the control policy (3.2.2).

The average field on the sliding surface h0(x, u) is proposed to be found as a convex

combination of the field values on each side:

h0(x, u) = αh+(x, u) + (1 − α)h−(x, u).

The parameter α is easily obtainable, because we may require the system trajectories

to be tangent to the surface s(x, t) = 0. Therefore, solving the equation

∂xs · h0 + ∂ts = 0

for α yields:

α =
∂xs · h− + ∂ts

(u− − u+)∂xs · g .

The dynamics x′ = h0(x, u) over the sliding surface then becomes

x′ = f(x) − g(x)
∂xs · f + ∂ts

∂xs · g . (3.2.3)

Remark 3.2.2. An elegant introduction to discontinuous differential equations and

sliding mode control using the notion of differential inclusion is provided in [Zol99].

3.2.4 The equivalent control method

The equivalent control method constitutes an alternative to Filippov’s technique,

easily applicable to the multi input case and with coincident results for single input

systems.

The ideal dynamics of a system in sliding mode implies the existence of a continuous

control ueq, called the equivalent control, that maintains the system on the sliding
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surface once it has been reached. Formally, the demands may be s(x, t) = 0 and

s′(x, t) = 0. From the last,

0 = ∂xs · x′ + ∂ts = ∂xs · (f + gueq) + ∂ts,

which gives

ueq = −∂xs · f + ∂ts

∂xs · g , ∀(x, t) ∈ S. (3.2.4)

The dynamical system

x′ = f(x) + g(x)ueq, (x, t) ∈ S, (3.2.5)

describes the ISD, and the substitution of ueq by its expression (3.2.4) leads straight-

forwardly to Filippov’s motion model over the sliding surface (3.2.3). This last may

be written

x′ = F (f) − g(∂xs · g)−1∂ts,

with

F =
[
I − g(∂xs · g)−1∂xs

]
. (3.2.6)

It is trivially verifiable that F is a projection operator [Sir88] that maps R
n vectors

into the tangent space to the switching surface S in the direction of span{g(x)},
denoted TxS. Therefore, the component of the vector field f(x) on such a direction

has no influence on the ISD.

Theorem 3.2.1. Let system (3.2.1) be controlled with the variable structure control

law (3.2.2), S being the switching surface. Then,

(i) The equivalent control is well defined iff the transversality condition

∂xs · g �= 0
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is satisfied locally on S.

(ii) If the control gains u+, u− may possess arbitrary value, it is a sufficient condition

for the existence of sliding regime in S that

∂xs · g < 0.

(iii) If the control gains u+, u− cannot take arbitrary values, it is sufficient for the

local existence of a sliding motion on S that the transversality condition is verified

and

u−(x) < ueq(x, t) < u+(x), (3.2.7)

locally ∀(x, t) ∈ S.

Remark 3.2.3. Notice from theorem 3.2.1 that:

(i) Statement (i) requires the vector field g is not tangential to the sliding manifold

S.

(ii) The sign of the transversality condition, taken as negative in statement (ii), is

quite arbitrary and depends on the orientation given to S and on the sign of u+−u−.

(iii) If the assumption u+ < u− had been made in the definition of the control policy,

the inequalities of (3.2.7) may exhibit opposite orientation. This is the reason why

such a condition is generally expressed as [Utk92]

inf{u+, u−} < ueq < sup{u+, u−}.

(iv) In the case that (3.2.7) does not hold ∀(x, t) ∈ S but in a certain Sd ⊂ S, a

sliding regime in a subset, known as sliding domain or sliding zone.

The following result establishes that, if a sliding regime exists on S, it is always

possible to design particular control gain values and a control policy that drives the

system to S.
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Corollary 3.2.2. If a sliding regime locally exists on S, the switching logic

u = k|ueq(x, t)|sign [s(x, t)] , k > 1,

allows the system to achieve the sliding regime.

Remark 3.2.4. The former corollary is not always applicable when the system has

fixed gain values.

3.2.5 The switching frequency

As it has been previously mentioned in subsection 3.2.2, the infinitely fast velocity

of the switch that is necessary for the sliding modes to exist is not attainable in

real physical systems, inducing the appearance of the chattering phenomenon. The

modelling of such effect is commonly done through the use of a comparator with a

hysteresis band of amplitude 2∆sh.

[NFC95] provides a calculation of the maximum switching frequency that can be

achieved in a (3.2.1)-type system commanded with a control law as (3.2.2), assuming

the existence of a hysteresis band in the comparator and supposing for the sliding

surface a linear behavior around switching states, as depicted in figure 3.1.

Notice that

s′(x, t; u) = ∂xs · x′ + ∂ts = ∂xs · f + ∂ts + u∂xs · g;

when the system evolutions in sliding mode, with infinite switching frequency, it

happens that s′(x, t; ueq) = 0 (see subsection 3.2.4). Then, from equality (3.2.4),

∂xs · f + ∂ts = −ueq∂xs · g.
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Figure 3.1: Switching surface hysteresis

This allows to write

s′(x, t; u) = (u − ueq)∂xs · g.

Assuming for the sliding surface a linear evolution around s(x, t) = 0, it results

s′(x, t; u+) = −2∆sh

t+
, s′(x, t; u−) =

2∆sh

t−
.

Then, the switching frequency νs is

νs =
1

t+ + t−
=

(u+ − ueq)(ueq − u−)|∂xs · g|
2∆sh(u+ − u−)

,

where the usual hypothesis about the negativity of ∂xs · g and u− − u+ has been

assumed.

[Bie99] contains a detailed study of the maximum and minimum values of νs, particu-

larized for the tracking of a sinusoidal wave by the output voltage of a buck converter.

A simpler analysis, however, assuming fixed gains and |∂xs · g| = 1, reduces the prob-

lem to the optimization of

νs = νs(ueq) =
(u+ − ueq)(ueq − u−)

2∆sh(u+ − u−)
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for νs ∈ [0, +∞). It is straightforward that νs(ueq) is an inverted parabola with

νs(u
+) = νs(u

−) = 0, having its maximum at the vertex

ueq =
u+ + u−

2
,

where it reaches the value

νsM =
u+ − u−

8∆sh

. (3.2.8)

3.2.6 Rejection of disturbances

F governs the ISD of a sliding mode controlled system, acts as a projection operator

and is responsible of its invariance to additive disturbances p(x, t) that are in the

control vector direction.

Let system (3.2.1) suffer a field perturbation p(x, t) such that its dynamics become

x′ = f(x) + g(x)u + p(x, t).

Definition 3.2.2. The ideal sliding mode is said to show a strong invariance property

with respect to p(x, t) iff the ISD is independent of p(x, t).

Theorem 3.2.3. The ISD satisfies a strong invariance property with respect to p(x, t)

iff

p(x, t) ∈ span {g(x)} ,

which is known as the matching condition.

Definition 3.2.3. When a disturbance p(x, t) does not verify the matching condition,

the respective ISD is said to exhibit a weak invariance property.
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The analysis of the effect produced by a disturbance that does not verify the match-

ing condition, also known as Drazenovic’s condition, is straightforwardly performed.

Consider the unique decomposition of p(x, t) in two vectors permitted by the operator

F : one along the direction of g(x) and another along the tangent space to the sliding

manifold S, namely,

p(x, t) = α(x, t)g(x) + n(x, t),

where α(x, t) is a scalar field and n(x, t) is a vector field.

Notice now that, from (3.2.6),

F [p(x, t)] = F [n(x, t)] = n(x, t).

Moreover, denoting ueq and up
eq the equivalent controls of the unperturbed and the

perturbed system, respectively, it results from (3.2.4) that

up
eq = ueq − ∂xs · p(x, t)

∂xs · g = ueq − α(x, t). (3.2.9)

This entails the following statement:

Proposition 3.2.4. α(x, t) does not affect the ISD and affects the existence of sliding

regime. In its turn, n(x, t) affects the ISD and does not affect the existence of sliding

regime.

Remark 3.2.5. In case of additive disturbances gp(x, t) in the system’s input channel,

i.e., such that g(x) → g(x) + gp(x, t), definition 3.2.2 and theorem 3.2.3 are entirely

applicable; to apply this last result, we may consider p(x, t) = gp(x, t)u. About the

ISD and the existence of sliding regime, departing from the decomposition provided

by F , that is,

gp(x, t) = β(x, t)g(x) + q(x, t),
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with β(x, t) and q(x, t) scalar and vector fields, respectively, straightforward calcula-

tions leads to

up
eq =

1

1 + β(x, t)
ueq,

x′ = f(x) + g(x)ueq +
q(x, t)

1 + β(x, t)
ueq.

This allows to conclude that β(x, t) affects both the existence of sliding regime and,

also, the ISD when q(x, t) �= 0, while q(x, t) just affects the ISD.

Remark 3.2.6. Different strategies to achieve a robust performance in sliding mode

controlled systems have been developed for situations where the matching condition

is not satisfied. Some of them have already been commented in chapter 2.

3.3 Time dependent sliding surfaces and tracking

control in systems with fixed gains

This section is devoted to a generic study of the ideal dynamic response of a system

on a certain time dependent sliding surface, derived from an autonomous one that

provides good performance in regulation tasks.

Let system (3.2.1) be commanded by a control law as (3.2.2), the control gains being

fixed: u+, u− ∈ R, u− < u+. Consider also that s stands for the autonomous switching

surface

s(x) := v(x) − w∗,

being w∗ a constant real value and v(x) a smooth real function of the state such that

∂xv · g < 0. Assume that a sliding regime exists for system (3.2.1), and that its ISD

shows an asymptotically stable equilibrium point.
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The behavior of the ISD on a time-dependent switching surface

ŝ(x, t) := v(x) − w(t),

obtained by substitution of the constant term w∗ of s for a smooth real scalar function

w = w(t) is studied below.

Proposition 3.3.1. The transversality condition is satisfied on ŝ.

Proof. Notice that ∂xŝ · g = ∂x(v − w) · g = ∂xv · g �= 0, because the transversality

condition is satisfied on s by hypothesis.

Proposition 3.3.2. The control law

u =

 u+ if ŝ > 0

u− if ŝ < 0

directs system (3.2.1) towards the switching surface ŝ(x, t) = 0.

Proof. V (x, t) = 1
2
ŝ2(x, t) satisfies the first and second Lyapunov conditions. More-

over,

V ′ = ŝŝ′ = ŝ(∂xv · x′ − w′) = −|∂xv · g|ŝ(u − ueq) < 0, ∀(x, t), ŝ(x, t) �= 0,

with the proposed control law, aided by the hypothesis ∂xv · g < 0.

Proposition 3.3.3. A necessary and sufficient condition for system (3.2.1) to exhibit

sliding mode on ŝ is

u− <
∂xv · f − w′

|∂xv · g| < u+.
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Proof. Let ûeq be the equivalent control that governs the ISD of system (3.2.1) over

ŝ. From equation (3.2.7) in theorem 3.2.1 (iii), the fulfillment of u− < ûeq < u+ is a

necessary and sufficient condition for system (3.2.1) to exhibit sliding regime on ŝ.

Trivially, ∂xŝ = ∂xv and ∂tŝ = −w′. Therefore,

ûeq = −∂xv · f − w′

∂xv · g =
∂xv · f − w′

|∂xv · g| ,

and the result follows immediately.

We have already seen that the ISD of a system on a sliding surface describes the

motions that take place about the sliding surface assuming an infinitely fast switching

velocity. This, of course, forces the system to be always on the surface. The differential

equation that satisfies the ISD of a system when it slides on a surface comes from the

substitution of the discontinuous control u for the corresponding equivalent control.

Proposition 3.3.4. The ISD derived for system (3.2.1) when it slides over s and ŝ

are, respectively,

x′ = f(x) +
∂xv · f
|∂xv · g|g(x), (3.3.1)

x′ = f(x) +
∂xv · f − w′

|∂xv · g| g(x). (3.3.2)

Proof. Follows straightforward by simple calculation of the respective ISD equations

according to (3.2.5).

3.4 Linear systems with fixed gains

Consider a controllable, time invariant, single input linear system, commanded by a

function u with fixed control gains u+, u−:

x′ = Ax + bu, (3.4.1)
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where x, b ∈ R
n, u+, u− ∈ R with u− < u+ and A ∈ Mn(R). We are interested in

the tracking of a certain time varying reference f(t) by a state vector component,

i.e. xi, and the question is how to design a switching surface and a control law in

order to asymptotically reach a steady state ISD where our control purpose may be

accomplished. It will also be taken into account that, the gains being fix, they cannot

be tuned attending to the new target (see remark 3.2.4).

The following result shows that the imposition of a reference for a single state com-

ponent determines the behavior of all the vector state:

Proposition 3.4.1. Consider system (3.4.1); if we fix xi = f(t), then it exist a vector

Φ(t) = (Φ1(t), . . . , Φn(t)) and a scalar function ū(t) such that (x, u) = (Φ(t), ū(t)) is

a solution of (3.4.1), with Φi(t) = f(t).

Proof. Let system (3.4.1) be considered as the finitely generated left R
[

d
dt

]
-module

Λ =
R
[

d
dt

]
< x, u >

R
[

d
dt

]
< x′ − Ax − bu >

.

The controllability assumption implies that the module is free. As the system is single

input, it allows one generator, say y. Thus, the state variables and the control input

can be expressed in terms of y by:

xj(y) =

(
aj

0I + aj
1

d

dt
+ . . . + aj

nj

dnj

dtnj

)
y,

u(y) =

(
u0I + u1

d

dt
+ . . . + ur

dr

dtr

)
y,

with aj
i , uk ∈ R. Hence, the demand

xi(y) = f(t)

defines an ODE in y. Let Y (t) be a solution; then,

Φj(t) = xj(Y (t)) and ū(t) = u(Y (t)),
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(Φ, ū) being a solution of system (3.4.1).

Remark 3.4.1. y − Y (t) could very well be used as switching surface. However, this

surface does not necessarily satisfy the transversality condition as happens with the

buck converter.

Assume that the generator of system (3.4.1), formerly denoted by y, is such that the

sliding surface y − Y (t) does not satisfy the transversality condition. Assume that

for the regulation purpose f(t) = x∗
i a sliding motion is created for system (3.4.1) on

the switching surface

s = c� · (x − Φ∗) = 0, (3.4.2)

where c ∈ R
n and Φ∗

j = xj(Y
∗) with xi(Y

∗) = x∗
i , the control law being

u =

{
u+ if s > 0

u− if s < 0.

Without loss of generality assume that c�b < 0. Finally suppose that the behavior

on s is such that Φ∗ is an asymptotically stable equilibrium point. Proposition 3.4.1

and section 3.3 suggest how to modify the switching surface s of (3.4.2) in order to

ideally obtain xi = f(t) in steady state.

Let the new switching surface be

ŝ = c� · (x − Φ(t)), (3.4.3)

with Φ(t) = (Φ1(t), . . . , Φi−1(t), f(t), Φi+1(t), . . . , Φn(t))�. Next proposition describes

the sliding mode properties of ŝ related to those of the original autonomous s and,

at the same time, guarantees for the ISD the asymptotic stability of the solution

Φ = Φ(t).
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Proposition 3.4.2. Let us take ŝ as the time dependent hyperplane over which system

(3.4.1) switches. Therefore,

(i) ŝ satisfies the transversality condition.

(ii) The control law

u =

 u+ if ŝ > 0

u− if ŝ < 0

locates system (3.4.1) on the switching surface ŝ(x, t) = 0.

(iii) The sliding domain for ŝ is given by

u− <
c�Ax − c�Φ′

|c�b| < u+. (3.4.4)

(iv) The restrictions to be satisfied by the reference signal f(t) in order to have the

system inside the sliding domain when it reaches the stationary state are:

|c�b|u− < inf
t

{
c� [AΦ − Φ′]

}
< sup

t

{
c� [AΦ − Φ′]

}
< |c�b|u+. (3.4.5)

(v) The ISD of (3.4.1) restricted to ŝ possesses x = Φ(t) as an asymptotically stable

steady state solution.

Proof. (i), (ii) and (iii) follow directly from propositions 3.3.1, 3.3.2 and 3.3.3,

respectively. About (iv), the inequalities of (3.4.5) are due to the substitution x = Φ

in (3.4.4).

(v) The ISD of the system over the surfaces s and ŝ are calculated in proposition

3.3.4. Since x = Φ∗ and x = Φ(t) are solutions of both systems (3.3.1) and (3.3.2),

the changes of variable e = x − Φ∗ and e = x − Φ reduce both of them to

e′ = Ae +
c� · Ae

|c� · b| b.

Hence, the asymptotic stability of the equilibrium point Φ∗ over s forces the same

behavior for x = Φ(t) over its corresponding ŝ.
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Figure 3.2: Buck converter circuit

Remark 3.4.2. Notice from the former proposition that:

(ii) The restrictions (3.4.5) should be taken into account when designing the plant

parameters, thus starting from the reference to be tracked.

(ii) Instability of Φ∗ produces equal effect for Φ(t). Therefore, linear, autonomous

sliding surfaces that induce unstable ISD in regulation tasks are unuseful when re-

converted in the time dependent (3.4.3) for tracking purposes.

3.5 The buck converter

The Kirchhoff equations of the ideal buck converter, depicted in figure 3.2, are

iL = iR + iC

Vgν = L
diL
dτ

+ vC,

where

iR =
vC

R
, iC = C

dvC

dτ
.

iL, iR and iC stand for input, capacitor and load currents, respectively. The communi-

cations [FO94a], [FO94b] and [Olm94], as in [Sir87], use iL and vC as state variables.
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However, this formalism leaves load current disturbances as unmatched perturba-

tions. To counteract these perturbations it is necessary to use an appropriate time

varying sliding surface that incorporates on-line updating of the perturbed parameter

through indirect observation.

In the series of papers [CMOP88], [CFT93] and [CM96], the use of the capacitor

voltage vC and its derivative v̇C for the state space representation of a certain switched

network results in load perturbations being matched disturbances. The same state

variable choice has identical effect in the buck system.

Hence, consider the phase space dynamic behavior of the ideal buck converter de-

scribed by

LC
d

dτ

(
dvC

dτ

)
= −L

d

dτ

(vC

R

)
− vC + Vgν, (3.5.1)

d

dτ
(vC) =

dvC

dτ
. (3.5.2)

The control gain ν takes values in the discrete set {0, 1}. The change of variables

x1 =
dx2

dt
, x2 =

1

|Vg|vC, t =
1√
LC

τ,

and the introduction of λ = R−1
√

LC−1 and u = νsign(Vg), adimensionalizes the

model and minimizes the number of parameters, leaving it as(
x′

1

x′
2

)
=

(
−λ −1

1 0

)(
x1

x2

)
+

(
1

0

)
u +

(
−λ′x2

0

)
, (3.5.3)

where the possibility of appearance of a load disturbance R = R(t) has been taken

into account. The value of the control gains u−, u+ depends on the sense of the

voltage source Vg. Thus, if its position coincides with that of figure 3.2, they take

values in {0, 1}; if the source has opposite sense, the set is {−1, 0}. Furthermore,
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the full bridge buck converter also answers to the dynamical model (3.5.3), but with

gains in {−1, 0, 1} or {−1, +1}, depending on the switching logic. From now on we

will refer to them as {u−, u+} when we have no interest in distinguishing between

them.

The basic reductor, non perturbed (R = RN ∈ R
+) converter is a variable structure

system described by (3.4.1), with controllability guaranteed by its Kalman matrix

(b, Ab) =

(
1 −λ

0 1

)

having maximum rank. Notice also that, as the ideal buck model is controllable and

single input, the module

Λ =
R
[

d
dt

]
< x1, x2, u >

R
[

d
dt

]
< x′

1 + λx1 + x2 − u, x′
2 − x1 >

possesses x2 as an unique generator, because it is straightforward from (3.5.3) that

x1 = x′
2, (3.5.4)

u = x′′
2 + λx′

2 + x2. (3.5.5)

We are interested in the regulation of the state variable x2 (proportional to the out-

put voltage) to a reference level x∗
2, via the creation of sliding modes over a certain

switching surface. Taking advantage of the fact that x2 is the generator of the mod-

ule, remark 3.4.1 suggests to exert a direct control over the state variable x2 by using

the hyperplane s = x2 − x∗
2 as the switching surface. However, as the quoted remark

points out as a possibility and is later assumed in section 3.4, this natural surface

does not satisfy the transversality condition:

∂xs · g = (0, 1) · (1, 0)� = 0.
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Therefore, no sliding motion can be induced over it. An alternative surface will be

used in such a way that the ISD forces indirectly the control goal.

Consider an autonomous linear surface as proposed in section 3.4. Then,

Proposition 3.5.1. The buck converter system (3.5.3), forced to switch over

s = −(1, k) · (x1, x2 − x∗
2)

�, k > 0, (3.5.6)

according to the control law

u =

 u+ if s > 0

u− if s < 0,

shows sliding motion on s with its ISD exhibiting Φ∗ = (0, x∗
2)

� as an asymptotically

stable equilibrium point.

Proof. Firstly, we will observe that the control law locates the system over s; in a

second stage we will verify the asymptotic stability of the equilibrium point.

(i) The scalar function V (x) = 1
2
s2(x) is such that its time derivative along the system

trajectories is

V ′(x) = ss′ = −s(u − ueq),

with

ueq = (λ − k)x1 + x2.

The proposed control law guarantees V ′(x) < 0 for every point situated in a neigh-

bourhood of the sliding domain of s.

(ii) The ISD satisfies

0 = x1 + k(x2 − x∗
2),

x′
2 = x1;
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its solutions are

x1 = −k [x2(0) − x∗
2] exp{−kt},

x2 = [x2(0) − x∗
2] exp{−kt} + x∗

2.

Notice that the steady state is given by Φ∗ = (0, x∗
2)

� iff k > 0.

Remark 3.5.1. The sliding domain, i.e., the phase plane region where the equivalent

control remains between the values of the control gains, is

u− < (λ − k)x1 + x2 < u+.

If the system is wanted to be regulated at x2 = x∗
2, the conditions to be satisfied by

such reference are

u− < x∗
2 < u+, (3.5.7)

and they do not depend on the parameter k. Notice that, for Vg > 0, (3.5.7) may be

written

0 < vC < Vg,

thus explaining the reductor character of the basic buck converter (the behavior is

analogous in case that Vg < 0).

3.6 Tracking signals with the buck converter

The preceding section has shown the buck converter fits the model (3.2.1) and, par-

ticularly, (3.4.1), for the sliding mode regulation of a system with an autonomous

switching surface as (3.5.6). Hence, the theory developed in sections 3.3 and 3.4 is

ready to be used in the solution of the tracking problem x2 = f(t).
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Equations (3.5.4) and (3.5.5) indicate that x2 is a generator of the module defined by

the buck system. Therefore, the function Φ(t) introduced in proposition 3.4.1 is now

Φ(t) = (f ′, f)�,

and the switching surface candidate (3.4.3) takes the form:

ŝ(x, t) = −(1, k) · (x1 − f ′, x2 − f)�, k > 0. (3.6.1)

Hence, proposition 3.4.2 shows that:

(i) ŝ(x, t) satisfies the transversality condition.

(ii) The control law

u =

{
u+ if ŝ > 0

u− if ŝ < 0
(3.6.2)

puts the system on the hyperplane ŝ.

(iii) The sliding domain associated with ŝ becomes

u− < f ′′ + λx1 + x2 − k(x1 − f ′) < u+.

(iv) Denoting

M(t) = f ′′(t) + λf ′(t) + f(t), (3.6.3)

the restrictions to be fulfilled by the reference signal are

u− < M(t) < u+, or, equivalently, u− < inf
t
{M(t)} < sup

t
{M(t)} < u+. (3.6.4)

Notice that f ∈ C2, at least.

(v) In such a situation, the ideal equilibrium solution is

(x1, x2) = (f ′, f),

with asymptotic stability guaranteed by the fact that k > 0.
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Remark 3.6.1. (i) Notice that the sliding surface ŝ in (3.6.1) may be written as

ŝ(x, t) := −(1, k) · (x′
2 − f ′, x2 − f)�;

defining e2 = x2 − f , in ISD one has

e′2 + ke2 = 0,

being thus guaranteed the asymptotic tendency of x2 to f . An analogous reasoning

is applicable to the autonomous surface s of (3.5.6).

(ii) It was mentioned in section 3.5 that the basic buck converter, depicted in figure

3.2, is such that the cases Vg < 0 and Vg > 0 define different sliding regions for the

corresponding device and, therefore, different restrictions for the reference f(t) are

obtainable from (3.6.4). These are

−1 < M(t) < 0, 0 < M(t) < 1.

A simple glance at them allows us to notice that they have 0 as common border

and, therefore, the possibility of weaken the restrictions for f exists by using the two

sliding domains. The system should be controlled by a control law appropriate to its

situation in the phase plane, changing it when necessary. Physically, it entails the

device being capable of inverting the polarity of the voltage source at will. This is

possible with the bidirectional buck converter, which performs this task by means

of a full bridge of switches. The mathematical model may then consider the control

action u taking values in the three level control set {−1, 0, 1}, the new restrictions

for the references being

−1 < M(t) < 1 or |M(t)| < 1.
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The full bridge of switches, however, also allows the two level switch u ∈ {−1, 1}
([Bie99] contains the switching logics that define the three level and the two level

buck converters) and, consequently, it also leads to |M(t)| < 1.

One of the advantages of the three level buck is the possibility of halving the fre-

quency of the switches (and, indirectly, the switching losses) while the output voltage

frequency remains constant [CFT93]. Nevertheless, it has two main disadvantages:

a more complex control law, and a lack of robustness in front of load disturbances

[Bie99], because the change of polarity of the source is driven by the sign of M(t)

which, in turn, depends on the load resistance value (3.6.3).

3.6.1 Offsetted sinusoidal waves

Consider at this point the problem of tracking the reference

f(t) = A + B sin ωt

by the state variable x2, proportional to the output voltage of the buck converter.

According to the previously developed theory, the control policy that allows the

achievement of the target is based on the switching surface (3.6.1), particularized

now as

ŝ(x, t) := −(x1 − Bω cos ωt) − k(x2 − A − B sin ωt),

and the control law (3.6.2). The restrictions to be satisfied by the reference f(t) are

obtained from (3.6.4): denoting as (3.6.3)

M(t) = A + B
√

λ2ω2 + (1 − ω2)2 sin

(
ωt + arctan

λω

1 − ω2

)
,

they become

u− < M(t) < u+, (3.6.5)
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and its concretion comes through the calculation of the extreme values of the function

M(t). These are

A ± B
√

λ2ω2 + (1 − ω2)2, (3.6.6)

where the signs +, − will be taken considering the signs of A and B.

Remark 3.6.2. [Bie99] contains a featuring of the reference signals using Bode plots.

3.6.2 Pure sinusoidal waves

From (3.6.5) we observe that a necessary condition for a certain f to be tracked by

x2 with a basic buck converter (u ∈ {0, 1}) is that the corresponding M(t) conserves

its sign. This is not possible for non offset sinusoidal references as

f(t) = B sin ωt.

However, a solution may be found in remark 3.6.1 (ii), which referred to the possibility

of enhancing the sliding domain offered by the three level and the two level buck

devices.

A three level control strategy for non offset tracking is provided in [FO94a]. The

problem is solved here by using the two level buck converter.

Hence, the restrictions become

|B|
√

λ2ω2 + (1 − ω2)2 < 1, (3.6.7)

while the control law is that of (3.6.2), with u− = −1, u+ = 1.
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3.7 Robustness

In system (3.5.1, 3.5.2) disturbances of the voltage source constitute a perturbation

of the input channel that satisfies the matching condition of theorem 3.2.3, thus

exhibiting the strong invariance property of the corresponding ISD. Then, following

remark 3.2.5 we can explore its effect on the sliding domain and calculate the new

zone.

Let us now consider a buck converter that suffers a load perturbation, changing from

its nominal value RN to RN + Rp(t); the parameter λN of the dimensionless system

changes to

λ(t) = λN + λp(t) = λN − λNRp(t)

RN + Rp(t)
. (3.7.1)

The perturbed (3.5.3) is, therefore(
x′

1

x′
2

)
=

(
−λN −1

1 0

)(
x1

x2

)
+

(
1

0

)
u +

(
−λp(t)x1 − λ′

p(t)x2

0

)
. (3.7.2)

The field perturbation vector, denoted p(x, t), is such that p(x, t) ∈ span {(1, 0)},
i.e., the corresponding ISD satisfies a strong invariance property. Hence, its effect is

limited to the domain where sliding regime exists (see proposition 3.2.4), because the

new equivalent control up
eq (3.2.9) for the system sliding over the surface ŝ defined in

(3.6.1) must satisfy

u− < f ′′ + λ(t)x1 + [1 + λ′(t)] x2 − k(x1 − f ′) < u+.

The restrictions for the references are now

u− < f ′′ + λ(t)f ′ + [1 + λ′(t)] f < u+.
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3.8 Simulation results

Figure 3.3 contains a SIMULINK model of an ideal buck converter that allows the

introduction of a load perturbation. The converter parameters are set to Vg = 200V ,

RN = 30Ω, L = 0.007H and C = 0.00033F , providing a nominal λN = 0.1535. The

load variations are introduced as a train of pulses when necessary. The sliding surface

is (3.6.1)

ŝ(x, t) = −(x1 − f ′) − k(x2 − f),

with k = 1.2. Non-ideal effects due to finite switching velocity can be modelled

through a relay with hysteresis band of amplitude ∆Sh following section 3.2.5. A

fixed step fifth order Runge-Kutta algorithm is used to integrate the differential sys-

tem, with an integration step of 0.000658 units in the dimensionless time variable,

corresponding to 10−6s. It is worth mentioning that the integration step has been

chosen so that its reduction does not affect the relative output error (erx2) values

(except for the ideal, non-perturbed case). The simulations are carried on during 50

new time units, corresponding to 0.076s.

The output voltage reference signal

vCr = 100 + 20 sin 2πντV

turns out to be

x2r = f(t) = 0.5 + 0.1 sin ωt (3.8.1)

in our state-space formalism. Setting ν = 50Hz, corresponding to ω = 0.4775, ideal

(∆Sh = 0), unperturbed (Rp = 0) response details are further discussed. It is worth

mentioning that the fulfillment of (3.6.5) is guaranteed, because the calculation of

(3.6.6) provides {0.42, 0.58}. The system, with initial condition (x1ic, x2ic)
� = (0, 0),
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Figure 3.3: Buck converter model.

reaches asymptotically the reference and exhibits the expected behavior, as shown in

figures 3.4 and 3.5, which depict details of the state variables x1, x2 and the output

relative error erx2.

The following set of simulation results have been obtained under the presence of an

additive load resistance disturbance that causes a 100% variation of its nominal value

(Rp = 30Ω), with a frequency of 200Hz (corresponding to ωp = 1.9099 in the new

variables), represented in figure 3.6. See (3.7.1) to observe its effect on λ. Figures

3.7 and 3.8 depict the behavior of x1, x2 and erx2. Notice that the error amount is

similar to the non perturbed situation, that is, close to the 0.01%.

The simulation results obtained with a non ideal buck converter operating under a
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Figure 3.4: Details of x1 and x2 in the ideal, non-perturbed case.

maximum switching frequency of 20 kHz are portrayed in figures 3.9 and 3.10. The

effect is modelled through a relay with a hysteresis amplitude of ∆Sh = 0.00411,

calculated using (3.2.8). The chattering phenomenon inherent to real sliding modes

is seen in the x1 behavior. The relative error erx2 is around the 0.015%.

Non offset signals have been obtained with a non ideal, perturbed, two level, full

bridge buck converter. The hysteresis amplitude that is necessary to maintain a

maximum switching frequency of 20 kHz is ∆Sh = 0.00822, because the control

gains are now ±1. The load variation is still a 100% jump of the nominal value with

frequency 200Hz. The output reference is the same as (3.8.1), but with null offset:

x2r = f(t) = 0.1 sin ωt.

Restriction (3.6.7) is fulfilled, because it leads to 0.08 < 1. The SIMULINK model

for this purpose coincides exactly with that of figure 3.3 except for the fact that the

relative error is now calculated dividing by the amplitude B of the reference, instead of

using the reference itself, because it takes null values periodically. The corresponding

figures are 3.11 and 3.12. The relative error of the output is again around the 0.015%.
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Figure 3.5: Details of erx2 in the ideal, non-perturbed case.
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Figure 3.7: Details of x1 and x2 in the ideal, perturbed case.

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

er
x 2

A=0.5     B=0.1     ω=0.4775     R
p
=R

N
     ω

p
=4ω     ∆ S

h
=0

20 25 30 35 40 45 50
−2

−1

0

1

2
x 10

−4

t

er
x 2

A=0.5     B=0.1     ω=0.4775     R
p
=R

N
     ω

p
=4ω     ∆ S

h
=0

Figure 3.8: Details of erx2 in the ideal, perturbed case.
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Figure 3.9: Details of x1 and x2 in the non ideal, perturbed case.
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Figure 3.10: Details of erx2 in the non ideal, perturbed case.
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Figure 3.11: Details of x1 and x2 in the non offset, non ideal, perturbed case
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Figure 3.12: Detail of erx2 in the non offset, non ideal, perturbed case.



Chapter 4

The Tracking Problem in
Nonlinear Converters

The aim of this chapter is to solve a tracking problem in a particular nonminimum

phase, second order, nonlinear control system by means of indirect control. A com-

plete knowledge of the plant parameters is assumed.

4.1 Introduction

In the design of controllers for a real physical problem, it is not rare to find sys-

tems with internal dynamics that become unstable when the output tracks a given

reference; it is then said that they have unstable tracking dynamics and they are

referred to as nonminimum phase systems [MT95]. The technique known as indirect

control changes the output to obtain an asymptotically stable tracking dynamics,

which forces the initial output to track the desired reference. At a certain stage of

the procedure an inverse problem arises from the computation of the target for the

new output as a function of the initial target and needs to be solved. This scenario

is often found in the field of nonlinear power converters.

50
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Roughly speaking, a power converter is supposed to be able to regulate and/or mod-

ulate an input voltage. This would suggest output voltage control; however, a direct

action taking into account just this variable is not appropriate. Although the target

may be asymptotically reached, the internal dynamics results in an unstable behavior

for the inductor current. Nevertheless, when a current mode control is implemented

the internal dynamics is not only bounded input - bounded state but also forces the

output voltage to perform asymptotically stable tracking. The problem then needs

an indirect treatment and focuses on finding the appropriate signal, i.e. bounded and

preferable periodic, to be followed by such a current in order to produce, in steady

state, an output coincident with the desired reference.

In the case under study, the solution of the inverse problem is given by an ordinary

differential equation. Under certain restrictions it is shown here that this equation

has a bounded, unstable periodic solution for a given periodic target. Unfortunately,

such a solution may not be analytically obtained; thus, a numerical technique will be

used to manage it when the control is implemented. The procedure is similar to the

method in [DCP96] (see also section 2.4) for inversion based exact output tracking.

The communication [FO94b] contains a first approach to the indirect tracking control

of nonlinear converters. A complete study including the results obtained in this

chapter is reported in [FO02].

The chapter is structured as follows. Section 4.2 establishes the mathematical model

of the ideal nonlinear converters boost and buck-boost and the equation that governs

the dynamic behavior of the inductor current. Section 4.3 introduces the return

map, a key tool used in section 4.4 to prove the existence of a periodic solution for

the ODE. Section 4.5 deals with the questions inherent to the tracking control and
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justifies the need for current mode regulation. Section 4.6 exemplifies the technique

through the tracking of a sinusoidal reference. Section 4.7 is devoted to generalize

the methodology to a certain class of bilinear systems, taking advantage of a change

of variables that converts the ODE in one of Abel type. Finally, simulation results

are found in section 4.8.

4.2 Mathematical model

Basic nonlinear switched boost and buck-boost devices, ideally represented in figures

4.1 and 4.2, admit a general state-space representation in terms of a two dimensional

bilinear system with the inductor current and the capacitor voltage as state variables

and a control action ν taking its values in the discrete set {0, 1}. Namely,

L
diL
dτ

= −vC + νvC + Vg [1 + k(ν − 1)] (4.2.1)

C
dvC

dτ
= iL − vC

R
− ν iL, (4.2.2)

where k = 0 for the boost converter and k = 1 for the buck-boost converter.

�

�
��

�� �� �� �

Vg

ν = 0

ν = 1

L

iL→

C

+
vC

−
R

Figure 4.1: Boost converter
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C

−
vC

+
R

Figure 4.2: Buck-Boost converter

For a systematic study it is advisable to consider a dimensionless model obtained

by a change of variables similar to that already used in section 3.5 with the buck

converter, namely

x1 =
1

Vg

√
L

C
iL, x2 =

1

Vg

vC, t =
1√
LC

τ,

and the introduction of λ = R−1
√

LC−1 and u = 1 − ν. The equations then become

x′
1 = 1 − u(k + x2) (4.2.3)

x′
2 = −λx2 + ux1. (4.2.4)

Since L, R and C are positive constants, λ is positive. L and C are usually considered

well known parameters, while perturbations may affect R and Vg. The chapter is

devoted to the non perturbed case.

Remark 4.2.1. The coupled-inductor C̆uk converter, depicted in figure 4.3, can also

be described by (4.2.3, 4.2.4). In fact the system’s dynamical model, expressed with

the current state variables, is

x′
1 = 1 − ux2,

x′
2 = −λ(x2 − 1) + ux1.
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The additional assignment x̂2 = x2 − 1 leads directly to the buck-boost case in

equations (4.2.3, 4.2.4).

The equation resulting after the elimination of the control action u in equations

(4.2.3, 4.2.4) contains a differential relation between the state variables which does

not depend on any input, as it can be directly verified

x1(1 − x′
1) = (k + x2)(x

′
2 + λx2). (4.2.5)

This last ODE plays a key role in the inverse problem that will be later solved.

Remark 4.2.2. In the case of regulation, x′
1 = x′

2 = 0, (4.2.5) provides the parabola

of equilibrium points

x1 = λx2(k + x2).

4.3 The return map

Consider the Cauchy problem

x′ = S(x, t), x(0) = z, (4.3.1)

Vg

�
i1

�
�

�
�

�
�L �iL �

�

�
�

�
�

�
�

�
�

�
�

�
i2

R

�
�

+vC−

C �

Figure 4.3: Coupled-inductor C̆uk converter
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with S(x, t + T ) = S(x, t), ∀t, and let x(t, z) be a solution. The map defined as

h : I ⊆ R −→ R

z �−→ h(z) = x(T, z),

is known as the return map (see [Llo79] and [GL90]). Notice that any T -periodic

solution of the equation produces a fixed point of h and, conversely, every fixed point

of h is the initial value of a periodic solution (see [Ver90] for a proof). Hence, it is

useful to consider the map H(z) = h(z)−z and relate the periodic solutions of (4.3.1)

to the zeros of H(z).

The expression of h(z) is difficult to obtain because it implies the analytic solution

of the ODE. Nevertheless, information related to the graph of h(z) will be provided

through the behavior of its derivatives, available by means of implicit derivation.

Actually, when S(x, t) is smooth, standard results on the dependence of solutions on

initial conditions [Sot82] guarantee that h is continuously differentiable.

Proposition 4.3.1. (See [GL90], and [Llo79])

Let h(z) be the return map associated to equation (4.3.1). Then,

h′(z) = exp

{∫ T

0

∂S

∂x
(x(t, z), t)dt

}
.

4.4 Periodic solutions for the internal dynamics

The following lemma will be used in the proof of the main result of this section:

Lemma 4.4.1. Let x(t, x0) be the solution of the Cauchy problem

x(1 − x′) = c, x(0) = x0, (4.4.1)
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with c > 0. Then,

(i) x = c is an equilibrium solution.

(ii) For any initial condition x0, 0 < c < x0, x(t, x0) is increasing and it is defined

∀t ≥ 0.

(iii) For any initial condition x0, 0 < x0 < c, x(t, x0) is decreasing and it is defined

in the set [0, t∗), where

t∗ = c log
c

c − x0

− x0

Proof. The first statement is trivial. It is also obvious that x(t, x0) never takes null

values, because this would mean 0 = c. Hence, (4.4.1) can be written as

x′ = 1 − c

x
.

Notice that x′ > 0 for every x such that x > c > 0, and x′ < 0 for every x such that

c > x > 0, thus indicating the increasing and decreasing character of the solutions in

the corresponding domains. Moreover, the general solution of the ODE is implicitly

given by

x − x0 + c log
x − c

x0 − c
= t(x, x0);

then item (ii) comes from

lim
x→+∞

t(x, x0) = +∞, ∀x0 > c.

As for item (iii), if 0 < x0 < c,

lim
x→0

t(x, x0) = c log
c

c − x0

− x0,

which yields the result.
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Let us consider again system (4.2.3, 4.2.4) and the differential relation (4.2.5). When

x2 tracks a T -periodic reference f(t), the internal dynamics is given by

x1(1 − x′
1) = (k + f)(f ′ + λf), x1(0) = x10. (4.4.2)

Setting x = x1, equation (4.4.2) can be rewritten as

x(1 − x′) = g(t), x(0) = x0, (4.4.3)

where

g(t) = (k + f)(f ′ + λf).

Assume from now on the smoothness and T -periodicity of f , and therefore of g.

Theorem 4.4.2. If g(t) > 0, then equation (4.4.3) has one and only one periodic

solution in R
+, which is hyperbolic1 and unstable.

Proof. Existence. The solutions of (4.4.3) are different from 0 everywhere because,

otherwise, this would imply 0 = g(t). Hence, the ODE can be written as

x′ = S(x, t) = 1 − g(t)

x
, x(0) = x0. (4.4.4)

Let h : I ⊆ R −→ R be the return map of (4.4.4), with its associated function H.

The smoothness, T -periodicity and positivity of g(t) ensure the existence of a, b ∈ R
+

such that a ≤ g(t) ≤ b.

Consider then the differential equations

x′ = Sa(x) = 1 − a

x
, (4.4.5)

x′ = Sb(x) = 1 − b

x
, (4.4.6)

1Let Φ(t, z0) be such a periodic solution; it is hyperbolic iff H ′(z0) �= 0, H := h−I being associated
to the return map h of (4.4.3).
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with return maps ha : Ia ⊆ R −→ R, hb : Ib ⊆ R −→ R, and associated functions

Ha, Hb. It is straightforward that

Sb(x) ≤ S(x, t) ≤ Sa(x), ∀x > 0, ∀t ≥ 0. (4.4.7)

Now let x(t, z), xa(t, z), xb(t, z) be the solutions of (4.4.4, 4.4.5, 4.4.6), respectively,

with initial conditions x(0, z) = xa(0, z) = xb(0, z) = z. Taking into account (4.4.7)

and the mean value theorem it turns out that

xb(t, z) ≤ x(t, z) ≤ xa(t, z), ∀z ∈ R
+ (4.4.8)

and for all t in the common domain. Then Hb(z) ≤ H(z) ≤ Ha(z) ∀z > 0, z ∈
I ∩ Ia ∩ Ib. Moreover, Sa(a) = Sb(b) = 0 which, in case that a, b ∈ I, leads to

H(a) ≤ Ha(a) = 0 and 0 = Hb(b) ≤ H(b). Thus, the existence of z0 ∈ [a, b] with

H(z0) = 0 is ensured, which results in a periodic solution of equation (4.4.3).

Lemma 4.4.1 and equation (4.4.8) allow us to state that, while it is true that b ∈ I,

a does not necessarily belong to I. When it happens, the continuous dependence of

the solutions of (4.4.3) on initial conditions and the impossibility of having crossing

trajectories in the (x, t) plane guarantee the existence of ξ > a such that

lim
t→T

x(t, ξ) = 0.

Therefore, ∃ε, 0 < ε < a, and ∃ξ′, ξ′ > ξ > a, such that h(ξ′) = ε, then H(ξ′) < 0.

Since H(b) is null or positive, a zero of H may be found in (ξ, b].

Instability. As

∂

∂x
S(x, t) =

g(t)

x2
> 0, ∀x �= 0, (4.4.9)

proposition 4.3.1 yields H ′(z) > 0, ∀z ∈ I. Hence, any periodic solution of (4.4.3) is

unstable.
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Uniqueness. Again from H ′(z) > 0, ∀z ∈ I, H has at most one zero in each

connected component of I = (−∞, µ−) ∪ (µ+, +∞). Moreover, ∀z ∈ (−∞, µ−),

x′(t, z) = 1 − g(t)

x(t, z)
= 1 +

∣∣∣∣ g(t)

x(t, z)

∣∣∣∣ > 0,

which indicates the strictly increasing character of these solutions. Therefore, H(z) >

0, ∀z ∈ (−∞, µ−).

Corollary 4.4.3. If 0 > g(t), equation (4.4.3) has one and only one asymptotically

stable, periodic solution in R
−.

Proof. The change of variables (x, t) −→ (−x,−t) in (4.4.3) gives

dx

dt
= 1 − |g(t)|

x
.

Then, the proof of the preceding theorem yields the result. Concerning asymptotic

stability, note that instability in backward time means stability in forward time.

Alternative proofs of theorem 4.4.2 and corollary 4.5.2 are provided in [ACA00].

4.5 Tracking control

This section deals with the output voltage tracking problem for elementary nonlinear

converters modelled by equations (4.2.3, 4.2.4). The need for indirect control through

the inductor current will be substantiated.

The signals f(t) to be tracked are supposed to be T−periodic, smooth and such that

g(t) = [k + f(t)] [f ′(t) + λf(t)] �= 0, ∀t. (4.5.1)

Lemma 4.5.1. ∀t, g(t) �= 0 ⇒ ∀t, f(t) �= 0.
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Proof. Two situations can be distinguished:

(i) In the case k = 0, if t̄ exists such that f(t̄) = 0, then g(t̄) = 0.

(i) In the case k = 1, let tn, tn+1 be two consecutive simple zeros of f . Then it is

possible to find two different neighbourhoods for them where, while 1 + f(t) remains

positive, f ′ + λf changes sign. The continuity of g and Bolzano theorem ensure the

existence of t̄ ∈ [tn, tn+1] with g(t̄) = 0. For a higher order zero of f , say t̃, g(t̃) = 0

trivially.

It is also worth mentioning that the study of the regulation problem for basic DC-to-

DC power converters is also included when (4.5.1) is taken as hypothesis. Then, the

following results are applicable to the case f(t) = c ∈ R except for c = −k, k = 0, 1

because, otherwise, g(t) = 0, ∀t.

Assume now an ideal steady state where x1 and x2 track φ(t) and f(t), respectively,

φ(t) being a T -periodic solution of (4.4.2) and ū(t) being the ideal continuous control

that allows it. From equations (4.2.3, 4.2.4) we have

φ′ = 1 − ū(k + f)

f ′ = −λf + ūφ.

Furthermore, the characteristic restrictions on switched converters result in the input

satisfying

0 ≤ ū(t) ≤ 1,

so

0 ≤ 1 − φ′

k + f
≤ 1 or, equivalently, 0 ≤ f ′ + λf

φ
≤ 1,

thus entailing constrains on f(t). These inequalities can also be written as

0 < f ′ + λf ≤ φ or φ ≤ f ′ + λf < 0, (4.5.2)
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where g(t) �= 0 has been taken into account. At this stage, the attempt to reconcile

the restrictions over g(t) and ū(t) leads to the following results: proposition 4.5.2,

where a necessary condition over f(t) for the satisfaction of (4.5.2) is stated, and

proposition 4.5.3, which contains a sufficient condition for the same target.

Proposition 4.5.2. The fulfillment of (4.5.2) demands g(t) > 0, ∀t.

Proof. By corollary 4.4.3, g(t) < 0 entails φ(t) < 0; then, from (4.5.1) and (4.5.2),

g < 0 ⇒ f ′ + λf < 0 and k + f > 0

and, from lemma 4.5.1, f(t) �= 0. But

1. f ′ +λf < 0 and f > 0, then 0 < f(t) ≤ f(0)e−λt ∀t, which is incompatible with

the periodicity of f .

2. f ′ + λf < 0 and f < 0, then k = 1 and −1 < f(t) ≤ f(0)e−λt < 0, ∀t. In

addition, φ is periodic and smooth; hence, from Rolle theorem, ∃t0 such that

φ′(t0) = 0. Then, taking into account equations (4.4.2) and (4.5.2)

(1 + f(t0))(f
′(t0) + λf(t0)) = φ(t0) ≤ f ′(t0) + λf(t0).

Therefore 1 + f(t0) ≥ 1, which is in contradiction to f < 0.

Proposition 4.5.3. If inf{g(t)} ≥ sup{f ′(t) + λf(t)}, ∀t ∈ [0, +∞), then

φ(t) ≥ f ′(t) + λf(t), ∀t and [f > 0 ⇔ f ′ + λf > 0].

Proof. Let tm be the minimum of φ in [0, T ]. Since φ satisfies the equation

φ(t)(1 − φ′(t)) = (k + f(t))(f ′(t) + λf(t)) = g(t)
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and is periodic, φ(tm) = g(tm) as φ′(tm) = 0. Finally,

φ(t) ≥ φ(tm) = g(tm) ≥ sup{f ′(t) + λf(t)}, ∀t ∈ [0, +∞).

Let us consider the equivalence. Assume f > 0; then f ′ + λf > 0 since f ′ + λf is

continuous, different from zero everywhere and in t = t0, where f reaches a minimum,

one has f ′(t0) + λf(t0) = λf(t0) > 0.

Moreover, since f �= 0 everywhere, f > 0 or f < 0. But both f ′ + λf > 0 and f < 0

result in

0 > f(t) > f(0)e−λt,

which is not possible for a periodic f . Thus,

f ′ + λf > 0 ⇒ f > 0.

The next step is to consider the tracking problem x2 = f(t) for the system described

in equations (4.2.3, 4.2.4). The internal dynamics are given by

x′
1 = 1 − u1(k + f) (4.5.3)

u1 = (f ′ + λf)x−1
1 . (4.5.4)

This control policy would be implementable if the internal dynamics were stable,

i.e., the behavior of (x1, u1) were bounded. Nevertheless, (4.5.3, 4.5.4) yield equation

(4.4.3). As it has been proven in the previous section, it has one and only one unstable

periodic solution. The other solutions are unbounded.

Proposition 4.5.4. System (4.2.3, 4.2.4) has unstable tracking dynamics when the

x2 state variable is taken as the output.
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Once direct control has been discarded, the alternative is a current mode indirect

control action. [BMS83a], [Sir87] and [VSC̆85] used this methodology in regulation

tasks. In [FO94b] and [OFB96] the authors expanded it to the tracking problem.

The internal dynamics are now defined by

x′
2 = −λx2 + φu2

u2 = (1 − φ′)(k + x2)
−1,

which yield

(k + x2) (x′
2 + λx2) = φ(1 − φ′). (4.5.5)

Proposition 4.5.5. System (4.2.3, 4.2.4) has asymptotically stable tracking dynam-

ics when x1 is taken as the output and the restrictions stated in proposition 4.5.3 are

fulfilled.

Proof. Since φ(t, x10) is a T -periodic solution of (4.4.2),

φ(1 − φ′) = (k + f)(f ′ + λf);

then (4.5.5) can be written as

x′
2 = N(x2, t) = −λx2 +

(k + f)(f ′ + λf)

k + x2

. (4.5.6)

Take now H2(z) = h2(z) − z, h2(z) being the return map associated to equation

(4.5.6). As x2 = f(t) is a T -periodic solution of (4.5.6), H2(f(0)) = 0. Moreover,

following proposition 4.3.1 it is straightforward that

H ′
2(f(0)) = exp

{
−
∫ T

0

(
λ +

f ′ + λf

k + f

)
dt

}
− 1 < 0,

because λ > 0 and g(t) = (f ′ + λf)(k + f) > 0. The asymptotic stability of f(t) is

then ensured.
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Although the periodic solution of (4.4.3) is not analytically obtainable, it could be

numerically approximated by the integration of the ODE with the appropriate initial

condition which, in turn, may be numerically computed solving the equation H(z) =

0. However, highly unstable solutions demand a high precision calculation of the zero,

which may imply great computational effort.

Another possibility is to consider the integration of (4.4.3) in backward time, which

allows the obtention of the periodic solution with the desired error due to its asymp-

totic stability in reverse time. Less computational effort is then needed, because we

just need to let the simulation run enough (backward) time.

In both cases the idea is to obtain one period of the solution and use its periodic

extension throughout time. Nevertheless, as the control technique is clearly sensitive

to external perturbations, alternative methodologies will be explored in the next

chapter, searching for an easier handling of such a solution and the possibility of

introducing a robust scheme.

The section will close with the establishment of a sliding control law that satisfies the

control goal, that is, the tracking of φ(t) by x1, which will induce internal dynamics

that lead x2 to track the output voltage reference f(t). It is worth mentioning that

other control techniques may be also applicable in this case to achieve x1 = φ(t).

In fact, the observer based methodology developed in [UGS99] and commented in

section 2.3 for regulation purposes can be easily extended to the tracking situation.

Proposition 4.5.6. Let s(x1, t) = x1−φ(t) be the switching surface. The control law

u =

 0 if (k + x2)s < 0

1 if (k + x2)s > 0,

produces in system (4.2.3, 4.2.4) an asymptotic tendency to s(x1, t) = 0.



Asymptotic Tracking with DC-to-DC Bilinear Power Converters 65

Proof. Let ueq be the continuous control that ideally maintains the system on the

switching surface in the case it initially starts there. Therefore, s′(x1(t, ueq), t) = 0

defines the equivalent control, which in our case satisfies

x′
1 − φ′(t) = 0 =⇒ φ′(t) = 1 − ueq(k + x2).

The system trajectories will be directed towards the switching surface when ss′ < 0.

Then,

ss′ = s(x′
1 − φ′) = s[1 − u(k + x2) − 1 + ueq(k + x2)] = −s(k + x2)(u − ueq) < 0

if the control switches according to the law proposed in the hypothesis.

The sliding domain is trivially given by

0 <
1 − φ′

k + x2

< 1.

4.6 Tracking a sinusoidal reference

The general process described at the end of the last section can be directly applied

to the tracking control of a sinusoidal wave without further detail. However, it might

be interesting to obtain the analytic restrictions for these type of references.

Hence, let

f(t) = A + B sin ωt

be a candidate to be tracked by the state variable x2 of system (4.2.3, 4.2.4), where

A > 0, B > 0 is supposed. Therefore,

A > B =⇒ f > 0 =⇒ k + f > 0.
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In turn,

f ′ + λf = Aλ + Bω cos ωt + Bλ sin ωt =

= Aλ + B
√

λ2 + ω2 sin
(
ωt + arctan

ω

λ

)
;

then, the hypothesis on the signs of A and B make that

A > B

√
1 +
(ω

λ

)2

=⇒ f ′ + λf > 0,

which ensures g(t) > 0.

On the other hand, proposition 4.5.3 asks for

inf {g} ≥ sup {f ′ + λf} ,

which may be written

inf {(k + f)(f ′ + λf)} ≥ sup {f ′ + λf)} . (4.6.1)

Trivially, the satisfaction of

inf {k + f} ≥ sup {f ′ + λf}
inf {f ′ + λf} (4.6.2)

is sufficient to guarantee (4.6.1). Taking into account the expression for f ′ + λf

derived above, equation (4.6.2) becomes

k + A − B ≥ Aλ + B
√

λ2 + ω2

Aλ − B
√

λ2 + ω2
.

In short, the restrictions to be fulfilled by f(t) are:

A > B

√
1 +
(ω

λ

)2

> 0, (4.6.3)

k + A ≥ B +
A + B

√
1 +
(

ω
λ

)2
A − B

√
1 +
(

ω
λ

)2 . (4.6.4)
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4.7 Abel equations in bilinear systems

The differential equation (4.4.3) for which theorem 4.4.2 has proven the existence of

an unstable, periodic solution in R
+ takes the form of an Abel ODE [Zwi93] under

the change of variable x = y−1. In fact, these type of ODE’s arise naturally in two

dimensional bilinear systems when indirect control, derived from an inverse problem,

is performed. Let

x′ = (Ax + δ) + (Bx + γ)u (4.7.1)

be a two dimensional bilinear system. x, δ, γ are vectors in R
2, A and B are square

matrices and u is a single input. u can be eliminated from equation (4.7.1) by a scalar

product, this leading to

(x′ − Ax − δ) · (Bx + γ)⊥ = 0, (4.7.2)

where w⊥ = (−w2, w1) for any given vector w = (w1, w2)
� ∈ R

2. Equation (4.7.2)

results in

x′
1p1(x1, x2) + p2(x1, x2) = x′

2q1(x1, x2) + q2(x1, x2),

where pi, qi are polynomials of degree i in the variables x1, x2.

Let us assume x2 to be a nonminimum phase output which should track a certain

periodic reference f(t), and let x1 be a minimum phase output indirectly used to

achieve the tracking purpose. For x2 = f(t) to hold, the variable x1 must be forced

to be a solution of the ordinary differential equation

x′
1p1(x1, f(t)) + p2(x1, f(t)) = f ′(t)q1(x1, f(t)) + q2(x1, f(t)). (4.7.3)

As in the problem we have solved, the interest is in finding bounded or, rather,

periodic solutions for (4.7.3), which would allow a physical implementation of the
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control. Equation (4.7.3) is of the Abel type provided that

∂p1(x1, f(t))

∂x1

�= 0;

then, the change of variable

1

y
= p1(x1, f(t))

allows the standard polynomial description

y′ = M(t)y + N(t)y2 + P (t)y3.

At this point, general results on the maximum number of limit cycles for this type of

equations reported in [GL90] may be used in the investigation.

In order to illustrate the above exposed discussion, notice that the Abel ODE that

appears after performing the change of variable mentioned at the beginning of the

section to (4.4.3) is

y′ = −y2 + g(t)y3. (4.7.4)

It is worth saying that an equivalent result to theorem 4.4.2 is readily obtainable for

(4.7.4) with the same tools.

4.8 Simulation results

A buck-boost converter with parameters Vg = 50V , R = 10Ω, L = 0.018H and

C = 0.00022F has been used in the simulations. These values make λ = 0.9045. The

output voltage reference is

vCr = 135 + 15 sin 2πντ V,
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which becomes

x2r = f(t) = 2.7 + 0.3 sin ωt

in the dimensionless variables. Fixing ν = 50Hz results in w = 0.6252. With these

settings, the fulfillment of (4.6.3) and (4.6.4) is guaranteed:

2.7 > sup

B

√
1 +
(ω

λ

)2

, B +
A + B

√
1 +
(

ω
λ

)2
A − B

√
1 +
(

ω
λ

)2 − k

 = sup {0.36, 0.61} .

Figure 4.4 depicts function H(z) with its unique zero. If the change of variables

x = y−1 proposed in section 4.7 is performed, the function H(z) associated to the

ODE (4.4.3) in polynomial form may be seen in figure 4.5.

A=2.7     B=0.3     w=0.6252

–2

0

2

4

6

H

10 12 14 16

z

Figure 4.4: Detail of H(z) associated to (4.4.3).

The periodic solution φ(t, z0) of (4.4.3), z0 = 9.3941719902, located between other

two solutions y(t, z1) and y(t, z2), with initial conditions above and below z0, that is,

z1 = 9.39 and z2 = 9.40, is portrayed in figure 4.6. The instability is evident.

Figure 4.7 contains the SIMULINK model of the buck-boost converter described at the

beginning of the section and used to simulate the tracking of the previously mentioned
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Figure 4.5: Detail of H(z) associated to (4.4.3) in polynomial form.
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Figure 4.6: The periodic solution φ(t, z0) between neighbouring solutions.
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sinusoidal signal by state variable x2. The numerical integration algorithm coincides

with that used in the preceding chapter. It can be noticed that the current reference

φ(t, z0), z0 = 9.3941719902, is obtained integrating (4.4.3) in forward time during

the four periods that the simulation lasts, instead of extending the first period as

suggested at the end of section 4.5 or using a backward time scheme. This is allowed

by the fact that the relative error z−1
0 (φ(4T, z0) − z0) is around 0.0001%.

x2r

erx2

erx1

x2

t

x1

x1r

1
s

1
s

1
s

−K−

−K−

k

1

1

A

k

f

f’

u

Figure 4.7: Buck-Boost converter model.

Ideal behavior results, corresponding to a non hysteretic (∆Sh = 0) relay, are imme-

diately shown. Figures 4.8 and 4.9 depict x1, x2 and relative error responses. The

system is asymptotically driven to the reference from the initial situation with an

error that decreases as the integration step (0.000658 new time units, corresponding
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to 10−6s) is lowered.
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Figure 4.8: Details of x1 and x2 in the ideal case.
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Figure 4.9: Details of x1 and x2 relative errors in the ideal case.

A more realistic simulation, achieved by means of a hysteresis amplitude band of

∆Sh = 0.00314, associated to a maximum switching frequency of 20 kHz, is presented

in figures 4.10 and 4.11. Good performance is again a fact, with relative output errors

that do not reach the 0.5% in steady state.
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Figure 4.10: Details of x1 and x2 in the non ideal case.
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Chapter 5

Galerkin Method and Approximate
Tracking

In this chapter we study the tracking problem solved in the previous chapter with an

approximate technique, improving the results of [FO02].

5.1 Introduction

Chapter 4 developed the tracking of signals with the output voltage in basic, nonlinear

DC-to-DC power converters. The problem is proved to be solvable via indirect control

of such a voltage through the input current. That is, when the current is forced to

follow a certain signal, the internal dynamics leads the output to track the desired

reference. The signal to be followed by the input current is a periodic and unstable

solution of an ordinary differential equation that depends on the output reference.

Despite the numerical solution, it is often interesting to consider an analytical ap-

proximation. The paper [FO02] proposes the Harmonic Balance method to obtain an

approximate periodic solution of the ODE. When the current followed by the system

is an approximation of the current actually needed, the output voltage is indirectly

74
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affected and an output error appears. The quoted article gives the ODE satisfied

by the output voltage, analyzes the boost converter and concludes that the obtained

signal tends to the desired one when the input error tends to zero; for the buck-boost

converter, the paper refers to simulation results to state that it exhibits the same

behavior. This approximate methodology has been used by one of the authors of

[FO02] in [ZFSB98a] and [ZFSB98b]. In [Sir99a], the same problem is treated using

an iterative process instead of the harmonic balance method. Both techniques receive

here a theoretical basis.

The Harmonic Balance method will be identified as a particular case of the Galerkin

method [Zei90a], [Zei90b], widely used in Functional Analysis. The Galerkin method

provides an algorithm that finds sets of equations whose solutions are used to build

a sequence of approximate periodic solutions to the periodic input current reference.

However, several questions not completely answered in [FO02] arise naturally:

(QA) Do all the Galerkin equations have a solution; that is, does such a sequence

really exist?

(QB) Does the Galerkin sequence exhibit any type of convergence to the input current

reference?

(QC) Which type of response can be expected from the output voltage when approx-

imate inputs are used?

(QD) What can be stated about the influence of intrinsic system restrictions on the

signals to be followed when approximate tracking is performed?

(QE) Is it possible to evaluate the input and output errors?

The chapter begins with four sections of mathematical background. The Galerkin

method and the Leray-Schauder fixed point index, the main tools to answer QA,
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are introduced in sections 5.2 and 5.3. Section 5.4 contains the basic ideas about

weak convergence. The definition and main properties of Sobolev spaces are found in

section 5.5. The statement of the problem is contained in section 5.6. In section 5.7,

question QA is affirmatively answered, while the input error evaluation demanded

in QE is in section 5.8. QB is treated in section 5.9. Section 5.10 develops QC,

rebuilding section 6 of [FO02] and introducing a result that guarantees the existence

of a periodic output even though an approximate current is used in the indirect

control. Restrictions on the signals to be tracked are contained in section 5.11, and

the evaluation of the output error is in section 5.12, answering questions QD and QE,

respectively. In section 5.13, the convergence of the output to the desired reference

is studied. A sliding mode control strategy for the devices is shown in section 5.14.

Sections 5.15 and 5.16 end the chapter exemplifying the technique with the tracking

of a sinusoidal wave and providing simulation results.

5.2 Galerkin method

The material of this section has been mainly extracted from [Zei90a], with some ideas

from [Zei90b] and [Die76]. Elementary properties of Banach and Hilbert spaces have

been reproduced to help to introduce some concepts.

Definition 5.2.1. Let X be a linear space over K, K = R, C.

(i) The mapping ‖ · ‖ : X −→ [0,∞) is called a norm iff, ∀x, y ∈ X, ∀λ ∈ K,

(a) ‖λx‖ = |λ| ‖x‖ , (b) ‖x + y‖ ≤ ‖x‖ + ‖y‖ and (c) ‖x‖ = 0 ⇐⇒ x = 0.

(ii) (X, ‖·‖) is a normed space over K.

(iii) The distance d(x, y) := ‖x − y‖ makes (X, ‖·‖) a metric space.
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Definition 5.2.2. A normed space (X, ‖·‖) which is complete1 as a metric space is

called a Banach space (B-space).

Definition 5.2.3. Let X be a B-space. Then,

(i) A subset M of X is called dense in X iff for every x ∈ X, there exists a sequence

(xn) ∈ M such that xn → x as n → ∞. This is equivalent to the condition that

∀x ∈ X, ∀ε > 0, ∃y ∈ M such that ‖x − y‖ < ε.

(ii) X is separable iff it contains a numerable, dense subset.

(iii) A basis of the B-space X is a numerable sequence {wn}n of elements wn ∈ X,

∀n, such that a finite collection w1, . . . , wn is always linearly independent and

X = ∪nXn,

with Xn = span{w1, . . . , wn}.

Definition 5.2.4. Let X be a B-space, and {Yn}n a sequence of subspaces of X, with

Yn �= ∅ and dimYn < ∞, ∀n. The sequence {Yn}n is a Galerkin scheme in X iff

lim
n→∞

distX(u, Yn) = lim
n→∞

inf
v∈Yn

‖u − v‖X = 0, ∀u ∈ X,

‖ · ‖X being the norm defined in the B-space X.

Proposition 5.2.1. Let X be a separable B-space. Then,

(i) X has a basis.

(ii) If {wn}n is a basis of X, the sequence of subspaces {Xn}n, Xn = {w1, . . . , wn},
is a Galerkin scheme in X.

(iii) If {Yn}n is a Galerkin scheme in X, a basis in X can be obtained with {Yn}n.

1Every Cauchy sequence converges.
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Definition 5.2.5. Let X be a linear space over K. A scalar product (·|·) : X×X −→
K is a mapping such that ∀x, y, z ∈ X, ∀λ, µ ∈ K,

(a) (x|λy + µz) = λ(x|y) + µ(x|z), (b) (x|y) = (y|x) and (c) (x|x) > 0 iff x �= 0,

where the bar denotes complex conjugation.

Definition 5.2.6. Let X be a linear space over K, and let (·|·) be a scalar product

in X. X becomes a normed space through ‖x‖ :=
√

(x|x). If this normed space is a

B-space, then X is called a Hilbert space (H-space).

Definition 5.2.7. Let X be an H-space over R with scalar product (·|·), and let

{wn}n be a numerable, orthonormal system in X. The numerable system {wn}n is

said to be complete in X iff we can write

x =
∞∑

n=1

(x|wn)wn, ∀x ∈ X. (5.2.1)

Proposition 5.2.2. Let X be a real H-space and {wn}n a numerable, orthonormal

system in X. Then, the following statements are equivalent:

(i) {wn}n is complete.

(ii) The set span{wn} is dense in X.

(iii) The Parseval relation

‖x‖2 =
∑

n

|(x|wn)|2, ∀x ∈ X

is satisfied.

Proposition 5.2.3. Let {wn}n be a complete, orthonormal system in the separable

H-space X. Then,

(i) {wn}n is a basis in X.
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(ii) Given x ∈ X, we assign

Pnx =
n∑

j=1

(x|wj)wj.

The mapping Pn : X −→ Xn is an orthogonal projection operator in the set Xn =

span{w1, . . . , wn}.

Let now F : X −→ X be an operator in the B-space X, and consider the problem

Fx = 0. (5.2.2)

Being {w1, w2, . . .} a basis in X, the Galerkin method propounds to approximate the

solution of (5.2.2) replacing x ∈ X by xn ∈ Xn:

xn =
n∑

j=1

cnjwj,

and searching for the coefficients {cnj}j that satisfy the system

Fxn = 0

restricted to Xn, which is known as the Galerkin equations.

The Galerkin method may also be seen as a projection method. This is possible when

we consider X an H-space, because the Galerkin equations can then be written (see

proposition 5.2.3 (ii))

PnFxn = 0

or, equivalently,

(Fxn|wj) = 0, j = 1, . . . , n.

This may be better understood with the following commutative diagram:

X
F−→ X

inj ↑ ↓ Pn

Xn −→ Xn
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In our case, solutions of the Galerkin equations will be guaranteed via the fixed point

index theory.

Remark 5.2.1. When a Galerkin approximation is used instead of the exact solu-

tion, an error appears due to the fact that, in general, Fxn �= 0. The properties of

projection operators lead to

Fxn = PnFxn + (I − Pn)Fxn = (I − Pn)Fxn. (5.2.3)

Consider now the set of square integrable functions in (0, T ), denoted L2(0, T ), pro-

vided with the scalar product

(x|y) =

∫ T

0

xy. (5.2.4)

We may find in it the so called trigonometric system {wn}n, wn ∈ L2 ∀n ≥ 0, with

w0 =
1√
T

, w2k−1 =

√
2

T
cos

2πkt

T
, w2k =

√
2

T
sin

2πkt

T
, k ≥ 1. (5.2.5)

Proposition 5.2.4. Let {wn}n stand for the trigonometric system. Then,

(i) L2(0, T ), together with the scalar product defined in (5.2.4), is a real, separable

H-space for which the trigonometric system is a complete, orthonormal system.

(ii) {wn}n is a basis of L2(0, T ).

(iii) The sequence of subspaces {Xn}n, with

X0 = {w0} , X1 = {w0, w1, w2} , . . . , Xn = {w0, w1, w2, . . . , w2n−1, w2n} , . . .

is a Galerkin scheme in L2, each of the Xn being a Banach subspace.

Remark 5.2.2. Equality (5.2.1) must be understood in the sense of the norm defined

in X; for example, in L2(0, T ) and for a complete, orthonormal system {wn}n, it

means that

lim
n→∞

∫ T

0

[
x −

n∑
j=1

(x|wj)wj

]2

= 0.
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Furthermore, for the trigonometric system, the convergence becomes uniform when x

belongs to the subset of continuous, T -periodic functions with piecewise continuous

derivative.

For a better identification of the Galerkin method and the Harmonic Balance method,

we redefine the projection operator Pn for the Hilbert space L2(0, T ) and the trigono-

metric system {wn}n as

Pnx =
2n∑

j=0

(x|wj)wj. (5.2.6)

Hence, the n-th Galerkin approximation xn contains harmonics up to n-th order and

may be written as

xn =
2n∑

j=0

cnjwj.

Finally, the Galerkin equations PnFxn = 0 become

(Fxn|wj) = 0, j = 0, . . . , 2n.

5.3 Fixed point index and mapping degree

The fixed point index and the mapping degree give an answer to a generalization of

the so called index theory, which allows the existence of equilibrium points in planar,

real systems to be predicted with few calculations. The material has been borrowed

from [Zei93].

We first of all introduce the concept of compact operator. These kinds of operators

play a main role in nonlinear functional analysis. Their importance derives from the

fact that many results on continuous operators in R
n remain valid in Banach spaces

for compact operators. Afterwards, we define the mapping degree via the fixed point



Asymptotic Tracking with DC-to-DC Bilinear Power Converters 82

index, because in Banach spaces it is possible to work with either, depending on the

particular problem.

Definition 5.3.1. Let X be a B-space. A subset M ⊆ X is relatively compact (resp.

compact) iff every sequence in M contains a convergent subsequence (resp. the limit

of which also belongs to M).

Definition 5.3.2. Let X and Y be two B-spaces, D(T ) ⊆ X a subset of X and

T : D(T ) −→ Y an operator. Then,

(i) T is bounded iff it maps bounded sets into bounded sets.

(ii) T is continuous iff xn → x when n → ∞ implies T (xn) → T (x).

(iii) T is compact iff it is continuous and it maps bounded sets into relatively compact

sets.

The next property identifies continuous operators with compact operators in finite

dimensional situations.

Proposition 5.3.1. In finite dimensional B-spaces, continuous mappings and com-

pact mappings are the same whenever the domain D(T ) is closed.

Definition 5.3.3. Let X be a B-space and G ⊂ X an open, bounded subset of X,

and denote V (G,X) the set of compact mappings f : G −→ X with no fixed points

in ∂G. Then, two mappings f, g ∈ V (G,X) are said to be homotopically compact in

∂G iff there exists a mapping H with the following properties:

(P1) H : G × [0, 1] −→ X is compact;

(P2) H(x, λ) �= x, ∀(x, λ) ∈ ∂G × [0, 1];

(P3) H(x, 0) = f(x) and H(x, 1) = g(x) in G.
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In this case, we write ∂G : f ∼= g. The mapping H is called compact homotopy or,

simply, homotopy.

Proposition 5.3.2. The homotopy ∂G : f ∼= g holds true iff there is a compact

mapping H : G × [0, 1] −→ X, with

H(x, λ) �= x, ∀(x, λ) ∈ ∂G × [0, 1], and H(x, 0) = f(x), H(x, 1) = g(x) on ∂G.

Remark 5.3.1. The characterization of homotopies given by proposition 5.3.2 consti-

tutes a condition weaker than the one established in definition 5.3.3: notice that to

obtain ∂G : f ∼= g it suffices to know the value of f and g on ∂G; namely,

∂G : f = g always implies ∂G : f ∼= g.

The system of axioms that define the fixed point index is:

Definition 5.3.4. To every f ∈ V (G,X) let there be assigned an integer i(f,G)

called the fixed point index of f on G so that it satisfies the axioms:

(A1) (Normalization). If f(x) = x0, ∀x ∈ G and some fixed x0 ∈ G, then i(f,G) = 1.

(A2) (Kronecker existence principle). If i(f,G) �= 0,∃x ∈ G such that f(x) = x.

(A3) (Additivity). We have

i(f,G) =
n∑

j=1

i(f,Gj)

whenever f ∈ V (G,X) and f ∈ V (Gj, X) ∀j, where {Gj}j is a partition of G.

(A4) (Homotopy invariance). If ∂G : f ∼= g, then i(f,G) = i(g,G).

This is completed with the following uniqueness principle:
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Proposition 5.3.3. (Leray-Schauder). For every mapping f ∈ V (G,X) and every

V (G,X), X being an arbitrary B-space, there is exactly one fixed point index that

satisfies axioms (A1)-(A4) of definition 5.3.4.

Remark 5.3.2. With this tool, the strategy of proving the existence of a fixed point

for a certain mapping f consists in relating it by homotopy with a simpler mapping

g for which it happens i(g,G) �= 0. Hence, (A4) and (A2) entail the desired result.

Let us finally introduce an alternative way of calculating the fixed point index in R
n:

Definition 5.3.5. Let f : G ⊆ R
n −→ R

n be a C1-mapping. The point x ∈ G is

called a regular value of f iff det(f ′(x)) �= 0.

Definition 5.3.6. Let G be an open bounded set in R
n. Then V0(G, Rn) denotes the

set of all maps f with the following properties:

(i) The map f : G −→ R
n is continuous and C1 in G.

(ii) The map f has finitely many fixed points, if any, all of which are regular and

none of which lies on the boundary ∂G.

Proposition 5.3.4. For every f ∈ V0(G, Rn),

i(f,G) =
m∑

j=1

sgn{det[F ′(xj)]},

where F (x) = x − f(x) and x1, . . . , xm are all the fixed points of f in G. If f has no

fixed points in G, then we set i(f,G) = 0.

Consider now the equation

F (x) = y;

its equivalence with the fixed point problem

x − F (x) + y = x
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is evident. This leads us to the mapping degree.

Definition 5.3.7. Let F : G ⊂ X −→ X be a compact perturbation of the identity;

that is, it can be written as the identity plus a compact mapping, and let G be an

open bounded subset of the B-space X. Let also y ∈ X be such that y /∈ F (∂G). The

mapping degree is defined as

deg(F,G, y) = i(I − F + y,G).

Notice that the mapping degree is well defined: if F is a compact perturbation of the

identity, g = I− F + y is also compact; furthermore, as y /∈ F (∂G), g cannot possess

any fixed point on ∂G.

Notice also that

deg(F,G, y) = deg(F − y,G, 0),

and, by convention, we write

deg(F,G, 0) = deg(F,G).

The first properties of the mapping degree gather the equivalent to axioms (A1)-(A4)

of the fixed point index:

Proposition 5.3.5. Let X be a B-space, G ⊂ X an open, bounded subset of X and

y ∈ X an element of X. Then,

(i) For the identity mapping I it results that

deg(I, G, y) =

 1 if y ∈ G

0 if y /∈ G.

(ii) If deg(F,G, y) �= 0, ∃x ∈ G such that F (x) = y.
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(iii) Let H(x, λ) = x − h(x, λ), with h : G × [0, 1] −→ X compact and with y /∈
H(∂G × [0, 1]). Then, deg[H(·, λ), G, y] is constant ∀λ ∈ [0, 1].

Remark 5.3.3. An important consequence of proposition 5.3.2 and remark 5.3.1 is

that the fixed point index and the mapping degree depend on boundary values only.

Remark 5.3.4. The relation between the index theory and the mapping degree may be

clarified as follows. Let U(0, R) ⊂ R
2 be the closed disk of radius R centered at the

origin, and let F : U −→ R
2 be a continuous mapping. As a point x travels around

the border of the disk ∂U in a positive sense, the vector field F (x) traverses a closed,

oriented contour J . Assume that 0 /∈ J . The index of U with respect to F , iF (U),

is defined as the net change in the direction of F (x) as x completes a traverse along

∂U , divided by 2π (also called rotation of the vector field F ). Hence, denoting w+,

w− the number of windings of J about the origin in a positive and negative sense,

respectively, we have that

iF (U) = w+ − w−.

Finally, it is evident that this definition satisfies the following well known properties:

(i) If iF (U) �= 0, there is a point x0 ∈ U , such that F (x0) = 0 (Kronecker existence

principle).

(ii) If F is continuously deformed in such a way that the corresponding contours J

do not touch the origin, iF (U) remains constant (homotopy invariance).

5.4 Reflexivity and weak convergence

The main use of the reflexivity concept comes down specifically to the following fact.

In infinite dimensional B-spaces it is not necessarily true that a bounded sequence
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contains a convergent subsequence. However, this becomes true in reflexive B-spaces

when weak convergence is used.

5.4.1 Duality in Banach spaces and reflexivity

Definition 5.4.1. Let X be a B-space over K. A continuous linear functional in X

is a continuous linear mapping f : X −→ K.

Proposition 5.4.1. The set of all linear continuous functionals in X, denoted X∗

and called dual space of X, exhibits a B-space structure over K with the norm

‖f‖ = sup
‖x‖≤1

|〈f, x〉|,

where 〈f, x〉 := f(x), ∀x ∈ X.

Proposition 5.4.2. For K = R and X �= {0},
(i) |〈f, x〉| ≤ ‖f‖‖x‖.
(ii) ‖f‖ = sup‖x‖=1 |〈f, x〉|.
(iii) ‖x‖ = sup‖f‖=1 |〈f, x〉|.

Let us now denote X∗∗ = (X∗)∗ and consider x ∈ X; we define the continuous linear

functional Ux : X∗ −→ K, assigning to each f ∈ X∗

Ux(f) = 〈f, x〉.

Hence, Ux ∈ X∗∗ and

‖Ux‖ = sup
‖f‖=1

|〈Ux, f〉| = sup
‖f‖=1

|〈f, x〉| = ‖x‖.

We the see the existence of a natural injection

a : X −→ X∗∗ such that a(x) = Ux,
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which allows us to write X ⊆ X∗∗.

Definition 5.4.2. The B-space X is said to be reflexive iff the mapping a is surjective.

Therefore, if X is reflexive, the mapping a is a norm isomorphism2 between X and

X∗∗. It is in this sense that we can identify X = X∗∗ and x with Ux; hence,

〈f, x〉 = 〈x, f〉, ∀x ∈ X, ∀f ∈ X∗.

Remark 5.4.1. The following are examples of reflexive B-spaces:

(i) Every finite dimensional B-space.

(ii) The B-space Lp(G), ∀p ∈ N, G being an open, bounded set.

5.4.2 Duality in Hilbert spaces

We will see here the existence of a close relation between X and X∗, X being a real

H-space. Hence, let J : X −→ X∗, denote Jx ∈ X∗ the image of x ∈ X by J , that is,

Jx = J(x), and establish

〈Jx, y〉 = (x|y), ∀x, y ∈ X. (5.4.1)

In fact, the Riesz representation theorem states that for every bounded, linear func-

tional f over the H-space X, there exists a unique y ∈ X such that f(x) = (x|y),

∀x ∈ X. Thus,

X∗ = {fy; fy(x) = (x|y), ∀x, y ∈ X} .

Proposition 5.4.3. Let X be a real H-space. Then,

2Also known as isometry, it entails the existence of a linear bijection f : X −→ X∗∗ such that
‖f(x)‖ = ‖x‖, ∀x ∈ X.
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(i) For every x ∈ X there exists a single linear continuous functional Jx ∈ X∗ that

satisfies (5.4.1). The operator J : X −→ X∗, called dual map of X, is linear, bijective

and such that ‖Jx‖ = ‖x‖, ∀x ∈ X.

(ii) As the dual map J : X −→ X∗ is a norm isomorphism, we can identify Jx with

x, and it is in this sense that we have X∗ = X. Hence,

〈x, y〉 = (x|y), ∀x, y ∈ X.

(iii) Every H-space is reflexive.

Remark 5.4.2. Remember that Lp(0, T )∗ = Lq(0, T ), with p−1 + q−1 = 1.

5.4.3 Weak convergence

Definition 5.4.3. Let X be a B-space and (xn) a sequence in X. Then,

(i) (xn) is said to converge strongly to x ∈ X when the norm of the difference xn − x

tends to zero. We write this as

xn → x ⇐⇒ ‖xn − x‖ → 0.

Strong convergence is also designed as norm convergence.

(ii) (xn) is said to converge weakly to x ∈ X when 〈f, xn〉 → 〈f, x〉, ∀f ∈ X∗. We

write this as

xn ⇀ x ⇐⇒ 〈f, xn〉 → 〈f, x〉, ∀f ∈ X∗.

(iii) If X is an H-space,

xn ⇀ x ⇐⇒ (xn|y) → (x|y), ∀y ∈ X.
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Theorem 5.4.4. Every bounded sequence in a reflexive B-space has a weakly conver-

gent subsequence.

Definition 5.4.4. Let X be a B-space. Then,

(i) X is strictly convex iff

‖λx + (1 − λ)y‖ < 1,

∀x, y ∈ X satisfying ‖x‖ = ‖y‖ = 1, x �= y and 0 < λ < 1.

(ii) X is locally uniformly convex iff ∀ε, 0 < ε ≤ 2, and ∀x ∈ X, ‖x‖ = 1, ∃δ(ε, x) > 0

such that ∀x, y ∈ X,

‖x − y‖ ≥ ε, ‖x‖ = ‖y‖ = 1, =⇒ 1

2
‖x − y‖ ≤ 1 − δ(ε, x).

(iii) X is uniformly convex iff it is locally uniformly convex and δ can be chosen

independently of x.

Geometrically, the uniform convexity for X means that the unit sphere is round; that

is, for every two points of its border, the midpoint of the rectilinear segment that

connects them is inside the sphere.

Proposition 5.4.5. Every H-space is uniformly convex.

The most important properties related to the weak convergence are:

Proposition 5.4.6. Let (xn) be a sequence in a B-space X, real or complex. Then,

(i) The strong convergence implies the weak convergence:

xn → x =⇒ xn ⇀ x.

(ii) If dimX < ∞, the weak convergence implies the strong convergence.
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(iii) If xn ⇀ x, (xn) is bounded and

‖x‖ ≤ lim inf
n→∞

‖xn‖.

(iv) If X is locally uniformly convex, xn ⇀ x and ‖xn‖ → ‖x‖ =⇒ xn → x.

(v) Let (xn) be bounded. If every convergent subsequence of (xn) has limit x, then

xn ⇀ x.

(vi) If (xn) is bounded in X and there exist x ∈ X and a subset D ⊂ X∗, dense in

X∗ and such that

〈f, xn〉 → 〈f, x〉, ∀f ∈ D,

then xn ⇀ x.

5.5 Sobolev spaces

Let I = (a, b) be an open interval in R.

Definition 5.5.1. C∞
0 (I) is the space of all real functions x ∈ C∞(I) with compact

support in I, i.e. such that they take null value everywhere except in a compact

subset K ⊂ I that depends on x.

Definition 5.5.2. Let x, y ∈ L1(I); y is said to be the n-th generalized derivative of

x in I iff ∫
I

ϕ(n)(t)x(t)dt = (−1)n

∫
I

ϕ(t)y(t)dt, ∀ϕ ∈ C∞
0 (I).

Therefore, we write y = Dnx.
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Remark 5.5.1. (i) Let x ∈ Cn(I). Then, the continuous n-th derivative x(n) : I −→ R

is also the generalized n-th derivative of x in I. This follows immediately from the

classical integration by parts formula.

(ii) The generalized derivative of x is unique in L1(I). In fact, from Dnx = y1 = y2

we obtain y1 = y2 almost everywhere in I.

Definition 5.5.3. The Sobolev space W 1
2 (I) is the set of all functions x ∈ L2(I) which

have first generalized derivative in L2(I).

The norm in W 1
2 is set to

‖x‖W 1
2

= ‖x‖L2
+ ‖Dx‖L2

.

Let us now define a scalar product in W 1
2 :

(x|y)W 1
2

= (x|y)L2 + (Dx|Dy)L2 . (5.5.1)

Proposition 5.5.1. The Sobolev space W 1
2 (I) is a reflexive, separable B-space. More-

over, W 1
2 (I) is a separable H-space with the scalar product defined in (5.5.1). In the

latter case we denote H1(I) = W 1
2 (I).

Definition 5.5.4. Let X, Y be B-spaces over K, K = R, C, with X ⊆ Y . The

embedding operator j : X −→ Y is defined by j(x) = x, ∀x ∈ X.

(i) The embedding X ⊆ Y is called continuous iff j is continuous, i.e.,

‖x‖Y ≤ ‖x‖X , ∀x ∈ X. (5.5.2)

(ii) The embedding X ⊆ Y is called compact iff j is compact, i.e., (5.5.2) holds and

each bounded sequence {xn}n in X has a subsequence {xn′}n′ which is convergent in

Y .
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Proposition 5.5.2. Let X, Y , Z be B-spaces over K.

(i) If the embeddings X ⊆ Y and Y ⊆ Z are continuous, then so is X ⊆ Z. If, in

addition, one of the embeddings X ⊆ Y or Y ⊆ Z is compact, then so is X ⊆ Z.

(ii) If the embedding X ⊆ Y is continuous, then, as n → ∞,

xn → x in X =⇒ xn → x in Y

and

xn ⇀ x in X =⇒ xn ⇀ x in Y.

(iii) If the embedding X ⊆ Y is compact, then, as n → ∞,

xn ⇀ x in X =⇒ xn → x in Y.

Theorem 5.5.3. (Rellich-Kondratjev, [Bre83]) Let I be a bounded open interval in

R. Then, the following embeddings are compact:

W 1
2 (I) ⊆ L2(I), W 1

2 ⊆ C(I).

Remark 5.5.2. C(I) stands for the space of continuous functions from I into R, with

norm

‖x‖C(I) = ‖x‖L∞ = sup
t∈I

{|x(t)|} .

Proposition 5.5.4. Let {xnyn} be a bounded sequence in W 1
2 (I), and suppose that

xn → x in C(I), yn ⇀ y in L2(I).
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Then,

xnyn ⇀ xy in W 1
2 (I).

5.6 Statement of the problem

We have already seen in chapter 4 that the state variables proportional to the input

current and the output voltage, respectively x and y, of the nonlinear converters

which have been studied, are related by the ODE

x(1 − x′) = (y′ + λy)(k + y).

If we succeed in forcing the current to follow a T -periodic reference x = φ(t) such

that

φ(1 − φ′) = (f ′ + λ)(k + f), (5.6.1)

f(t) being a certain T -periodic output reference, the internal dynamics of the system

will lead the output to asymptotically track f(t).The reason lies in the fact that

(y′ + λy)(k + y) = (f ′ + λ)(k + f) (5.6.2)

admits y = f(t) as an asymptotically stable solution provided that (see proposition

4.5.5)

g = (f ′ + λ)(k + f) > 0. (5.6.3)

However, the high instability of φ(t) makes us look for an analytical approximation

via the Galerkin method. We therefore consider the equation

x(1 − x′) = g(t), (5.6.4)
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also written Fx = 0 following (5.2.2), with g(t) ∈ C∞ defined in (5.6.3), positive

and T -periodic. We known from theorem 4.4.2 that (5.6.4) has a positive, T -periodic,

unstable solution x(t, x0), with x(0, x0) = x0, denoted x(t, x0) = φ(t) from now on. At

this point we wonder whether a sequence {φn}n of solutions of the Galerkin equations

associated to (5.6.4) exists and converges.

Additionally, it is obvious that the use of an n-th Galerkin approximation φn(t)

instead of φ will affect the output y, converting it into a yn that satisfies

(y′
n + λyn)(k + yn) = φn(1 − φ′

n).

According to section 5.2, the right hand side of this equation can be written as

φn(1 − φ′
n) = (f ′ + λ)(k + f) + Fφn, (5.6.5)

which is the equivalent to (5.6.1). The error term Fφn is given by (5.2.3) and is,

trivially, also T -periodic. Equation (5.6.2) therefore becomes

(y′
n + λyn)(k + yn) = g + Fφn, (5.6.6)

or using Gn(t) = g(t) + Fφn(t),

(y′
n + λyn)(k + yn) = Gn. (5.6.7)

The questions that arise at this point are very evident. The first one is wether there

still exists an asymptotically stable, T -periodic solution for (5.6.7); that is, wether

we can obtain a sequence {yn}n with such a feature. This is very important, because

a negative answer would imply much difficulty or even impossibility of using this

technique. The second one is about the convergence of {yn}n to y = f(t), which,

if true, definitively validates the method from a mathematical viewpoint. Comple-

mentary subjects are a study of the restrictions to avoid saturation problems and an

evaluation of input and output errors.
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5.7 Solution of the Galerkin equations

Let us take up problem (5.6.4), which we now write as

Fx = 0, (5.7.1)

with F : CP1([0, T ]) ⊂ L2(0, T ) −→ L2(0, T ), where CP1([0, T ]) stands for the set of

continuous, T -periodic functions with continuous first derivative. F is defined as

Fx = x − xx′ − g,

with g(·) ∈ C∞, positive and T -periodic.

Notice that it is F (CP1([0, T ])) ⊂ L2(0, T ) because any function continuous almost

everywhere and bounded is in L2(0, T ), which is fulfilled by Fx when x ∈ CP1([0, T ])

and g belongs to the above mentioned set.

It can be deduced from section 5.6 that the mapping F has a zero in CP1([0, T ])

because the solution φ(t) of (5.6.4) is positive, T -periodic and satisfies

φ′ = 1 − g

φ
,

the continuity of φ and φ′ being thus guaranteed.

Given the trigonometric3 system {wn}n and an element xn from the subspace Xn =

span{w0, . . . , w2n}, the Galerkin equations associated to (5.6.4) or (5.7.1) in Xn are

(Fxn|wj) = 0, j = 0, . . . , 2n. (5.7.2)

Moreover, letting Pn : L2(0, T ) −→ Xn be a projection operator defined as in (5.2.6),

its equivalent form

PnFxn = 0, (5.7.3)

3Its choice is justified by remark 5.2.2.
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can also be written, recalling that Pnxn = xn, ∀xn ∈ Xn, as

xn − Pn(xnx
′
n + g) = 0. (5.7.4)

Let us denote by X̃n the Banach subspace of the functions with zero mean value:

X̃n = span {w1, w2, . . . , w2n−1, w2n} .

Then, the decomposition

Xn = X0 ⊕ X̃n (5.7.5)

allows us to write

xn = xn0 + xn, g = g0 + g,

xn0, xn, g0 and g being unique and such that xn0, g0 ∈ X0, xn ∈ X̃n and g ∈ ∪n≥1X̃n.

Using these expressions in (5.7.4) and observing that

(i) x′
n = x′

n,

(ii) Pn(xnx′
n), Png ∈ X̃n,

the system can be decomposed into

xn0 = g0, (5.7.6)

xn = xn0x
′
n + Pn(xnx′

n + g), (5.7.7)

which are problems in X0 and X̃n, respectively. Then, for n = 0 there is a single

solution x00 = g0, while for n ≥ 1 the 0-th component is xn0 = g0. In this case,

equation (5.7.7) may be read as the fixed point problem

g0x
′
n + Pn(xnx

′
n + g) = xn. (5.7.8)

The proof of the existence of a solution of (5.7.8) is based on the strategy already

mentioned in remark 5.3.2.
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Let us set R > 0 and define Un ⊂ X̃n as

Un = {xn ∈ X̃n; ‖x′
n‖ < R}.

Notice that Un is bounded because

xn =
2n∑

j=1

cnjwj, and x′
n = ω

n∑
k=1

k(−cn,2k−1w2k + cn,2kw2k−1),

where ω = 2πT−1. Hence,

‖x′
n‖ = ω

√√√√ n∑
k=1

k2(c2
n,2k−1 + c2

n,2k) ≥ ω

√√√√ 2n∑
j=1

c2
nj = ω ‖xn‖ .

This immediately leads to

‖xn‖ ≤ R

ω
, ∀xn ∈ Un. (5.7.9)

With g(t) ∈ C∞([0, T ]) also fixed, consider the restrictions

g0ω > 1, (g0ω − 1)2 ≥ 4ω ‖g‖ . (5.7.10)

Then, we construct the mapping Hn : Un × [0, 1] −→ X̃n with

Hn(xn, λ) = g0x
′
n + λPn(xnx′

n + g).

Proposition 5.7.1. The mapping Hn(xn, λ) is such that:

(i) It is compact in Un × [0, 1], ∀n ≥ 1.

(ii) If (5.7.10) are fulfilled, there exists R > 0 such that Hn(xn, λ) has no fixed points

on ∂Un, ∀n ≥ 1 and ∀λ ∈ [0, 1].

Proof. (i) By proposition 5.3.1, the compacity of Hn is ensured by its continuity.

(ii) The second statement follows because

‖Hn(xn, λ) − xn‖ �= 0, ∀xn ∈ ∂Un,∀λ ∈ [0, 1],∀n ≥ 1.
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First note that

‖Pnx‖ ≤ ‖x‖ , ∀n ≥ 0, ∀x ∈ L2(0, T ).

Therefore, using this relation, the Schwarz inequality, the positivity of g0 (arising

from g > 0) and (5.7.9), we have that

‖Hn(xn, λ) − xn‖ = ‖g0x
′
n + λPn(xnx

′
n + g) − xn‖ ≥

≥ g0 ‖x′
n‖ − λ ‖Pn(xnx

′
n + g)‖ − ‖xn‖ ≥

≥ g0 ‖x′
n‖ − ‖xnx

′
n + g‖ − ‖xn‖ ≥

≥ g0 ‖x′
n‖ − ‖xn‖ ‖x′

n‖ − ‖g‖ − ‖xn‖ ≥

≥ g0R − R2

ω
− ‖g‖ − R

ω
= −R2

ω
+

(
g0 − 1

ω

)
R − ‖g‖ = p(R)

The vertex of the inverted parabola p(R) has coordinates (Rv, p(Rv))
�:

Rv = −g0 − 1
ω

− 2
ω

=
g0ω − 1

2
,

p(Rv) = −
(
g0 − 1

ω

)2
− 4

ω

− ‖g‖ =
(g0ω − 1)2

4ω
− ‖g‖ .

Consequently, it is easy to check that the fulfillment of (5.7.10) ensures the location

of (Rv, p(Rv))
� in the first quadrant of R

2. The existence of R > 0 is therefore

guaranteed:

R ∈ (Rm, RM), with RM,m =
g0ω − 1 ±√(g0ω − 1)2 − 4ω ‖g‖

2

and such that Hn has no fixed points on ∂Un, ∀n ≥ 1, ∀λ ∈ [0, 1].

Proposition 5.7.2. If (5.7.10) are fulfilled,

i(Hn(xn, 0), Un) = i(Hn(xn, 1), Un) = 1.
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Proof. When such conditions are satisfied, proposition 5.7.1 ensures that Hn(xn, 0)

and Hn(xn, 1) are homotopically compact (see definition 5.3.3). Therefore, axiom

(A4) of definition 5.3.4 guarantees the equality of their fixed point index. It remains

to prove that

i(Hn(xn, 0), Un) = i(g0x
′
n, Un) = 1.

The fixed point problem

g0x
′
n = xn, xn ∈ Un,

is equivalent to the following problem in R
2n: let R,ω ∈ R

+ and let Wn ⊂ R
2n be

defined as

Wn =

zn = (cn,1, . . . , cn,2n)� ∈ R
2n;

√√√√ n∑
k=1

k2(c2
n,2k−1 + c2

n,2k) <
R

w

 .

Notice that Wn is open and bounded because the euclidean norm ‖·‖ of its elements

is bounded:

∀zn ∈ Wn,
R

ω
>

√√√√ n∑
k=1

k2(c2
n,2k−1 + c2

n,2k) >

√√√√ 2n∑
j=1

c2
nj = ‖zn‖ .

Let f : Wn −→ R
2n be the mapping such that

f(zn) = g0ω(cn2,−cn1, 2cn4,−2cn3, . . . , ncn,2n,−ncn,2n−1)
�,

which is trivially continuous and C1 in R
2n. The fixed points of f are the solutions

of f(zn) = zn, which can be written as{
cn,2k−1 = kωg0cn,2k

cn,2k = −kωg0cn,2k−1,
k = 1, . . . , n,

leading to

cnj = −j2ω2g2
0cnj =⇒ (1 + j2ω2g2

0)cnj = 0 =⇒ cnj = 0, ∀j, j = 1, . . . , 2n.
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Hence, zn = 0 is the only fixed point of f , with 0 ∈ Wn and regular:

f ′(zn) =

diag

(
0 kωg0

−kωg0 0

)
k=1,...,n

 ,

and

det [f ′(0)] =
n∏

k=1

det

(
0 kωg0

−kωg0 0

)
= (ωg0)

2n

n∏
k=1

k2 = (n!ωngn
0 )2 �= 0.

Let now be F : R
2n −→ R

2n, with

F (zn) = zn − f(zn) = (cn,2k−1 − kωg0cn,2k, cn,2k + kωg0cn,2k−1)
�
k=1,...,n.

We have that

F ′(zn) =

diag

(
1 −kωg0

kωg0 1

)
k=1,...,n

 ,

and

det [F ′(0)] =
n∏

k=1

det

(
1 −kωg0

kωg0 1

)
=

n∏
k=1

(1 + k2w2g2
0) > 0.

According to proposition 5.3.4, i(f,Wn) = 1, ∀n ≥ 1, which immediately implies

i(Hn(xn, 0), Un) = 1, ∀n ≥ 1.

We are now ready to state and prove the main result of the section.

Theorem 5.7.3. Let us assume that (5.7.10) are satisfied. Then, the Galerkin equa-

tions (5.7.4) associated with the ODE defined in (5.6.4) have solution φn, ∀n ≥ 0.

Proof. For the case n = 0, equation (5.7.6) leads to φ0 = g0. For n ≥ 1, proposition

5.7.2 and axiom (A2) of definition 5.3.4 ensure the existence of a solution φn ∈ Un for

the fixed point problem (5.7.8). Therefore, φn = g0 + φn is a solution of the Galerkin

equations (5.7.4).
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5.8 Input error evaluation

We will evaluate the error with the L∞ norm.

Let enx(t) = φn(t) − φ(t) be the error between an n-th Galerkin approximation and

the exact input, with φ and φn satisfying (5.6.1) and (5.6.5), respectively. Denote

δ =
‖g‖∞

inft∈[0,T ]{g(t)} . (5.8.1)

We know that g > 0; then, its periodicity ensures it possesses a non zero infimum

which, in turn, guarantees δ ∈ R
+.

Theorem 5.8.1. The error enx satisfies the following inequality:

‖enx‖∞ ≤ δ ‖Fφn‖∞ . (5.8.2)

Proof. From the definition, enx is continuous, T -periodic and has continuous first

derivative, thus exhibiting maximum and minimum values in each closed interval.

Then, when we replace φn by enx + φ in (5.6.5), we obtain

−(φ + enx)e
′
nx + (1 − φ′)enx = Fφn.

Therefore, at any instant t̂ where enx has an extreme, e′nx(t̂) = 0, and the use of

(5.6.1) yields

inf{φ} inf{Fφn}
sup{g} ≤ enx ≤ sup{φ} sup{Fφn}

inf{g} ,

where the infimums and supremes are searched on [0, T ]. With analogous reasoning

using again (5.6.1) we arrive at inf {g} ≤ φ ≤ sup {g}, which leads the previous

relation to

inf{g} inf{Fφn}
sup{g} ≤ enx ≤ sup{g} sup{Fφn}

inf{g} .
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Hence,

|enx| ≤ sup
{
δ−1| inf {Fφn} |, δ| sup {Fφn} |

}
=⇒ ‖enx‖∞ ≤ δ ‖Fφn‖∞ ,

where δ ≥ 1 has been used.

5.9 Convergence of the Galerkin approximation

In this section we will see that the sequence of solutions of the Galerkin equations

(5.7.2), or their equivalent forms (5.7.3) and (5.7.4), denoted from now on as {φn}n,

exhibits uniform convergence to the periodic solution of the ODE defined in (5.6.4).

Lemma 5.9.1. The error sequence {Fφn}n converges weakly to 0 in L2(0, T ).

Proof. From decomposition (5.7.5) and equation (5.7.6) it follows that

φn = g0 + φn, φn ∈ X̃n.

Then, taking into account the periodicity of g and the fact that φn ∈ Un,

‖Fφn‖ = ‖φn − φnφ
′
n − g‖ =

∥∥∥φn − g0φ
′
n − φnφ

′
n − g

∥∥∥ ≤
≤ ∥∥φn

∥∥+ g0

∥∥∥φ′
n

∥∥∥+
∥∥φn

∥∥∥∥∥φ′
n

∥∥∥+ ‖g‖ <

<
R

ω
+ g0R +

R2

ω
+ ‖g‖ =

R2

ω
+

(
g0 +

1

ω

)
R + ‖g‖ < ∞ ∀n ≥ 0,

which indicates that the sequence {Fφn}n is bounded. Moreover, (5.7.2) yields

lim
n→∞

(Fφn|wj) = 0, ∀wj ∈ {wn}n .

As the trigonometric system {wn}n is dense in L2(0, T ), proposition 5.4.6 (vi) entails

the result.
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Lemma 5.9.2. The sequence {φn}n is such that:

(i) {φn}n belongs to the Sobolev space H1(0, T ).

(ii) {φn}n possesses a weakly convergent subsequence in H1(0, T ).

Proof. (i) As φn is trivially a C1(0, T ) function ∀n ≥ 0, remark 5.5.1 ensures that

its first generalized derivative coincides with the first classical derivative. Moreover,

the L2-norms of φn and φ′
n are bounded ∀n ≥ 0:

‖φn‖ =
∥∥g0 + φn

∥∥ ≤ ‖g0‖ +
∥∥φn

∥∥ < ‖g0‖ +
R

ω
, (5.9.1)

‖φ′
n‖ =

∥∥(g0 + φn)′
∥∥ =
∥∥∥φ′

n

∥∥∥ < R (5.9.2)

because φn ∈ Un, ∀n ≥ 0.

(ii) We have just observed the bounded character of the L2-norms of {φn}n and {φ′
n}.

Therefore, the result is a direct consequence of proposition 5.4.3 (iii) and theorem

5.4.4.

Lemma 5.9.3. Let
{

φ̂n

}
n

be a weakly convergent subsequence of {φn}n, and let φ̂ be

its weak limit. Then,

(i)
{

φ̂n

}
n

converges uniformly to φ̂ in C([0, T ]).

(ii) φ̂2
n ⇀ φ̂2 in H1(0, T ).

Proof. (i) Starting from lemma 5.9.2, the result follows from the Rellich-Kondratjev

theorem 5.5.3 and from proposition 5.5.2 (iii).

(ii) Immediate from proposition 5.5.4 once the boundedness of
{

φ̂2
n

}
n

in H1(0, T ) is

observed. Due to the trivial fact that φ2
n ∈ C1(0, T ), ∀n ≥ 0, remark 5.5.1 reminds

us of the equivalence of the first generalized derivative and the classical derivative of
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φn. Hence,∥∥∥φ̂2
n

∥∥∥
H1

=
∥∥∥φ̂2

n

∥∥∥
L2

+
∥∥∥(φ̂2

n)′
∥∥∥

L2

≤
∥∥∥φ̂n

∥∥∥2
L2

+ 2
∥∥∥φ̂n

∥∥∥
L2

∥∥∥φ̂′
n

∥∥∥
L2

<

<

(
‖g0‖L2

+
R

ω

)(
‖g0‖L2

+ 2R +
R

ω

)
,

where (5.9.1) and (5.9.2) have been used.

Let us now establish the weak problem associated to the periodic solutions of the

ODE (5.6.4) in L2(0, T ). Performing a scalar product on both sides of the equation

with any function ϕ ∈ CP1([0, T ]),

(x(1 − x′)|ϕ) = (g|ϕ) ⇐⇒ (x|ϕ) − 1

2
((x2)′|ϕ) = (g|ϕ).

Integrating by parts while taking into account the T -periodicity of x and ϕ yields

(x|ϕ) +
1

2
(x2|ϕ′) = (g|ϕ), ∀ϕ ∈ CP1([0, T ]). (5.9.3)

Lemma 5.9.4. The classical, positive and T -periodic solution φ of (5.6.4) and the

weak limit of every weakly convergent subsequence of {φn} are weak T -periodic solu-

tions of (5.6.2).

Proof. The statement is obvious for φ. Then, denote
{

φ̂n

}
n

a subsequence of

{φn}n, weakly convergent to a certain φ̂ by lemma 5.9.2 (ii). Every element of the

subsequence satisfies the ODE (5.6.5), now written

φ̂n(1 − φ̂′
n) = g + Fφ̂n.

Therefore,

(φ̂n(1 − φ̂′
n)|ϕ) = (g|ϕ) + (Fφ̂n|ϕ), ∀ϕ ∈ CP1([0, T ]).

The scalar product may be expressed as

(φ̂n|ϕ) − 1

2
((φ̂2

n)′|ϕ) = (g|ϕ) + (Fφ̂n|ϕ)
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and, integrating by parts, we easily arrive at

(φ̂n|ϕ) +
1

2
(φ̂2

n|ϕ′) = (g|ϕ) + (Fφ̂n|ϕ).

Moreover, for n → ∞, the weak convergences Fφ̂n ⇀ 0, φ̂n ⇀ φ̂ and φ̂2
n ⇀ φ̂2,

ensured by lemmas 5.9.1 and 5.9.2 (i) and (ii), lead to

(φ̂|ϕ) +
1

2
(φ̂2|ϕ′) = (g|ϕ).

Lemma 5.9.5. Let p(t), q(t) ∈ C([0, T ]) be nonsingular and T -periodic. Then, the

set of functions Vp,q ⊂ L2 defined as

Vp,q = {vp,q ∈ L2(0, T )/ vp,q = p(t)ϕ′ + q(t)ϕ, ∀ϕ ∈ CP1([0, T ])} ,

is dense in L2(0, T ).

Proof. We will prove the lemma by observing that the trigonometric system belongs

to Vpq, i.e., for every element wn of the trigonometric system, there exists ϕn in

CP1([0, T ]) such that

p(t)ϕ′
n + q(t)ϕn = wn.

Therefore, let us write the preceding ODE as

ϕ′
n = −q(t)

p(t)
ϕn +

wn

p(t)
. (5.9.4)

The terms in the equation are dominated by the linear part when t → ∞. Even more,

the ODE

z′ = −q(t)

p(t)
z
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has no T -periodic solutions except z = 0: its general solution is

z(t) = K exp

{
−
∫ t

0

q(s)

p(s)
ds

}
and, as q(t)p−1(t) has definite sign, z(t) has also a definite sign and is strictly de-

creasing or strictly increasing ∀K �= 0. Following [Ver90], we can state that equation

(5.9.4) has at least one T -periodic solution.

Assume now that the following hypothesis is satisfied for the rest of the section:

H0. Gn = g + Fφn > 0, ∀n ≥ 0.

Lemma 5.9.6. The sequence {φn}n is such that φn > 0, ∀n ≥ 0.

Proof. As g = g0 + g > 0 and g ∈ ∪n≥1X̃n, g0 > 0. We also know that φn = g0 + φn,

φn ∈ X̃n; then, φn > 0 at least in an open interval I ⊂ (0, T ). Suppose that φn

takes negative values. As it is continuous and T -periodic, Rolle’s theorem ensure

the existence of a minimum (at t = t̄, for example) where it happens φ(t̄) < 0 and

φ′
n(t̄) = 0; therefore, from (5.6.5) we find that

Gn(t̄) = φn(t̄) [1 − φ′
n(t̄)] = φn(t̄) < 0,

contradicting the hypothesis.

Lemma 5.9.7. Every weakly convergent subsequence of {φn}n has a weak limit φ,

the classical, positive and T -periodic solution of (5.6.4).

Proof. Consider
{

φ̂n

}
n

a subsequence of {φn}n weakly convergent to a certain φ̂.

Lemma 5.9.4 ensures that both φ and φ̂ satisfy (5.9.3). We may then write

(φ̂|ϕ) +
1

2
(φ̂2|ϕ′) = (φ|ϕ) +

1

2
(φ2|ϕ′).



Asymptotic Tracking with DC-to-DC Bilinear Power Converters 108

The previous equation can be re-written as

(φ̂ − φ|
[
1

2
(φ̂ + φ)ϕ′ + ϕ)

]
) = 0, ∀ϕ ∈ CP1([0, T ])

or, alternatively

(φ̂ − φ|vpx,qx) = 0, ∀vpx,qx ∈ Vpx,qx ,

where now

px(t) =
φ̂(t) + φ(t)

2
, qx(t) = 1.

The positivity of px(t) is guaranteed by the fact that φ is positive and φ̂ is, at least,

non negative by lemma 5.9.6. Therefore, as Vpx,qx is dense in L2 by lemma 5.9.5,

φ̂ = φ almost for all t in [0, T ]. The continuity of both φ̂ and φ entails

φ̂(t) = φ(t), ∀t ∈ [0, T ].

Theorem 5.9.8. The sequence {φn}n of solutions of the Galerkin equations (5.7.2)

converges uniformly to the periodic solution φ of the ODE (5.6.4).

Proof. Lemma 5.9.7 guarantees that every weakly convergent subsequence of {φn}n

has weak a limit φ. Item (v) of proposition 5.4.6 leads to φn ⇀ φ and, finally, theorem

5.5.3 and proposition 5.5.2 (iii) yield the result.

5.10 System output

In this section we will try to answer the questions stated in section 5.6 about the

type of output we can expect when an approximate indirect control is induced in

the system. Specifically, theorem 5.10.2 gives sufficient conditions to guarantee the

desired output behavior. Such a result is supported by the following lemma.
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Lemma 5.10.1. Consider the Cauchy problem

(y′ + λy)(k + y) = c, y(0) = y0, (5.10.1)

with c ∈ R
+ and y0 �= −k, and denote y(t, y0) its solution. Then,

(i) Asymptotically stable equilibrium solutions of (5.10.1) are

y+ = −k

2
+

√(
k

2

)2

+
c

λ
, y− = −k

2
−
√(

k

2

)2

+
c

λ
.

(ii) ∀y0, −k < y0 < y+ and, ∀y0, y0 < y−, y(t, y0) is C∞, increasing and defined

∀t ≥ 0.

(iii) ∀y0, y+ < y0 and, ∀y0, y− < y0 < −k, y(t, y0) is C∞, decreasing and defined

∀t ≥ 0.

Proof. (i) It can be tested by simple calculations that y+, y− are the two solutions

of λy(k + y) = c, with y− < −k ≤ 0 < y+. Moreover, y(t, y0) �= −k ∀t because the

opposite entails 0 = c. Therefore, (5.10.1) can be written

y′ = Ωc(y) = −λy +
c

k + y
(5.10.2)

and, as the derivative of the field Ωc(y) over the system trajectories is

∂Ωc(y)

∂y
= −λ − c

(k + y)2
< 0, ∀y �= −k,

the asymptotic stability of y+ and y− follows.

(ii) It is obvious that the solutions with y0 �= −k are C∞. The increasing and

decreasing character according to the situation of y0, established in statements (ii)

and (iii), can be seen studying the sign of Ωc(y). Thus, denoting

Ωc(y) =
−λy2 − kλy + c

k + y
=

−λ(y − y−)(y − y+)

k + y
,
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it follows immediately that

y′ = Ωc(y) < 0 ⇐⇒ (y+ < y) ∨ (y− < y < −k),

y′ = Ωc(y) > 0 ⇐⇒ (y < y−) ∨ (−k < y < y+).

(iii) Finally, the existence of y(t, y0), ∀t ≥ 0, is observed: when (5.10.2) is integrated

we obtain

t(y, y0) =
1

2λ

[
log

(y0 − y+)(y0 − y−)

(y − y+)(y − y−)
+

k

∆y+

log
(y − y−)(y0 − y+)

(y − y+)(y0 − y−)

]
,

with

∆y+ =

√
k2 +

4c

λ
> 0.

In this way,

lim
y→y+

+

t(y, y0) = +∞ ∀y0, y+ < y0,

lim
y→y−

+

t(y, y0) = +∞ ∀y0, −k < y0 < y+.

Analogously,

lim
y→y+

−
t(y, y0) = +∞ ∀y0, y− < y0 < −k,

lim
y→y−

−
t(y, y0) = +∞ ∀y0, y0 < y−

because for these two last cases we have

k

∆y+

=

 0 k = 0

1√
1+ 4c

λ

< 1 k = 1.

Let us now return to our problem and consider the following hypothesis:

H1. The output reference f(t) is C∞ and T -periodic; f(t) > 0, g(t) > 0, ∀t ≥ 0;

and there exists an n-th Galerkin approximation {φn}n such that we can construct a

sequence {Gn}n that satisfies hypothesis H0.
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Theorem 5.10.2. Consider equation (5.6.7) as a Cauchy problem with yn(0) = y0

and Gn being any function of the sequence {Gn}n. If H1 is verified, equation (5.6.7)

has one and only one periodic solution in R
+, hyperbolic and asymptotically stable.

Proof. Existence. The solutions of (5.6.7) do not take the value −k anywhere

because, otherwise, we would have 0 = Gn(t). Therefore, the ODE can be written

y′
n = Ωn(t, yn) = −λyn +

Gn(t)

k + yn

, yn(0) = y0. (5.10.3)

Denote as yn(t, z) the solution of (5.10.3) such that yn(0, z) = z, trivially it is C∞

for z �= −k. Let hn(z) = yn(T, z) be the return map associated to (5.10.3), with

associated function Hn = hn − I. It is clear that z0 is a zero of Hn iff yn(t, z0) is

T-periodic (see section 4.3).

The smoothness, T -periodicity and positivity of Gn ensure the existence of A,B ∈ R
+

such that A ≤ Gn(t) ≤ B. Consider then the ODE’s

y′
n = ΩA(yn) = −λyn +

A

k + yn

, (5.10.4)

y′
n = ΩB(yn) = −λyn +

B

k + yn

, (5.10.5)

with return maps hA, hB and associated functions HA, HB. It is clear that

ΩA(yn) ≤ Ωn(t, yn) ≤ ΩB(yn), ∀yn > −k, ∀t ≥ 0. (5.10.6)

Let now yn(t, z), yA(t, z), yB(t, z) be solutions of (5.10.3), (5.10.4), (5.10.5), respec-

tively, with initial conditions yn(0, z) = yA(0, z) = yB(0, z) = z. Taking into account

(5.10.6) and the mean value theorem,

yA(t, z) ≤ yn(t, z) ≤ yB(t, z), ∀z > −k, ∀t ≥ 0. (5.10.7)
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Therefore, HA(z) ≤ Hn(z) ≤ HB(z), ∀z > −k because, in fact, lemma 5.10.1 and

(5.10.7) guarantee that HA, Hn and HB are defined in R \ {−k}. Furthermore, if

yA+ = −k

2
+

√(
k

2

)2

+
A

λ
, yB+ = −k

2
+

√(
k

2

)2

+
B

λ
,

from lemma 5.10.1, HA(yA+) = HB(yB+) = 0. Therefore,

0 = HA(yA+) ≤ Hn(yA+) ∧ Hn(yB+) ≤ HB(yB+) = 0.

The existence of zn0 ∈ [yA+, yB+] with Hn(zn0) = 0 is then ensured and, consequently,

of a solution yn(t, zn0) ∈ S for (5.10.3) with initial value zn0 ∈ R
+.

Positivity. Let t− < T be such that −k < yn(t−, zn0) < 0; then, the periodicity

and smooth character of the solution should also demand the existence of a mini-

mum (tm, yn(tm, zn0)) with −k < yn(tm, zn0) < 0 and y′
n(tm, zn0) = 0. This, taken

with (5.10.3), means 0 > λyn(tm, zn0)(k + yn(tm, zn0)) = Gn(tm), contradicting the

hypothesis. Thus, yn(t, zn0) > 0, ∀t ≥ 0.

Asymptotic stability. Notice that

∂Ωn(yn, t)

∂yn

= −λ − Gn(t)

(k + y)2
> 0, ∀yn �= −k.

From proposition 4.3.1

h′(z) = exp

{
−
∫ T

0

[
λ +

Gn(t)

(k + y(t, z))2

]
dt

}
,

and since all the elements in the integral are positive, it follows that 0 < h′(z) < 1,

∀z �= −k. This implies H ′(z) = h′(z)−1 < 0, ∀z �= −k, which leads to the asymptotic

stability of any periodic solution of (5.10.3).

Uniqueness. As we have just observed, H ′(z) < 0 ∀z �= −k; then, H(z) is strictly

decreasing in (−k, +∞) and, therefore, it can only possess one zero. As H(zn0) = 0,

there can be no other zero.
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Let us recall now that lemma 5.10.1 proved the existence of two asymptotically stable

solutions of the ODE (5.10.1), one in R
+ and another in R

−. Theorem 5.10.2 has just

worked in R
+, but a corollary can be established with a parallel result in R

−.

Corollary 5.10.3. If H1 is satisfied, equation (5.6.7) has yn(t) = ȳn(t) as a single

periodic solution in (−∞,−k), hyperbolic and asymptotically stable. Moreover, in the

exact problem (Gn(t) = g(t)) and for k = 0 it is ȳ(t) = −f(t).

Proof. (i) It just suffices to follow step by step the proof of theorem 5.10.2. The

changes to keep in mind are

(5.10.6) −→ ΩB(yn) ≤ Ωn(t, yn) ≤ ΩA(yn), ∀yn < −k, ∀t ≥ 0,

(5.10.7) −→ yB(t, z) ≤ yn(t, z) ≤ yA(t, z), ∀z < −k, ∀t ≥ 0.

With this and lemma 5.10.1 we deduce that HB(z) ≤ Hn(z) ≤ HA(z), ∀z < −k. If

we denote

yA− = −
√(

k

2

)2

+
A

λ
− k

2
, yB− = −

√(
k

2

)2

+
B

λ
− k

2
,

with yA−, yB− < −k, again by lemma 5.10.1, HA(yA−) = HB(yB−) = 0. Therefore,

0 = HB(yB−) ≤ Hn(yB−) ∧ Hn(yA−) ≤ HA(yA−) = 0.

The existence of z̄n0 ∈ [yB−, yA−] ∈ (−∞,−k) is then guaranteed with Hn(zn0) = 0

and, consequently, a periodic solution ȳn(t, z̄n0) of the ODE (5.6.7) with ȳn(t, z̄n0) <

−k, ∀t ≥ 0.

(ii) It is straightforward that ȳ(t) = −f(t) is a solution of (5.6.7) for the case Gn = g,

k = 0. Its unicity, periodicity, hyperbolicity and asymptotic stability follow from the

above general proof.
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Remark 5.10.1. Proposition 4.5.5 is a particular case of theorem 5.10.2 if we consider

Gn = g. In this situation, y(t) = f(t) is a solution of the ODE with the same features

as the functions yn.

5.11 Restrictions on the signals to be tracked

As seen in chapter 4, the basic restriction suffered by our DC-to-DC switched con-

verters is due to the fact that their performance is located in a certain region of the

phase plane, the so called insaturation zone. This means that two inequalities where

we can find inputs and outputs must be satisfied, which will lead to conditions on

the output reference. In section 4.5 of chapter 4 we studied the situation for an exact

input current. Here we will try to establish parallel results for the approximate case.

In steady state, with x and y tracking φn(t) and yn, system (4.2.3, 4.2.4) becomes

φ′
n = 1 − ūn(k + yn)

y′
n = −λyn + ūnφn,

where ūn is the control action. The insaturation region, defined by 0 ≤ ūn ≤ 1, is

0 ≤ 1 − φ′
n

k + yn

≤ 1 or, equivalently, 0 ≤ y′
n + λyn

φn

≤ 1.

Let us state the following hypothesis:

H2. H1 is verified and f(t) is such that the system is in the insaturation zone with

exact approach; that is, the conditions of proposition 4.5.3 are satisfied.

Proposition 5.11.1. If H2 is fulfilled, the insaturation region is defined by

0 < 1 − φ′
n ≤ k + yn or, equivalently, 0 < y′

n + λyn ≤ φn. (5.11.1)
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Proof. Gn(t) > 0 demands φn > 0 by lemma 5.9.6. In turn, from (5.6.7) it is

straightforward to show that

Gn > 0 =⇒ sign(y′
n + λyn) = sign(k + yn).

It is then necessary to use the region

0 < y′
n + λyn ≤ φn.

A sufficient condition for insaturation is:

Proposition 5.11.2. If H2 is fulfilled and inft∈[0,T ]{Gn(t)} ≥ ‖y′
n + λyn‖∞, the sys-

tem is in insaturation zone.

Proof. Immediate following the proof of proposition 4.5.3.

5.12 Output error evaluation

We will again evaluate with the L∞ norm. Therefore, denote eny(t) = yn(t) − f(t)

the error between an n-th approximation and the exact output, with yn satisfying

(5.6.7). Suppose also that the system is in the insaturation region if it works with an

exact input current as well as if it does so with an approximate one, that is, H2 and

(5.11.1) hold.

Theorem 5.12.1. The error eny is such that

‖eny‖∞ ≤
√‖Fφn‖∞

λ
. (5.12.1)
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Proof. Since eny is continuous, T -periodic and with continuous first derivative, the

same process as that in section 5.8 for enx will be used to compute bounds. When we

substitute yn by eny + f in (5.6.7), we obtain

(k + f + eny)e
′
ny + λe2

y + (f ′ + 2λf + λk)eny = Fφn.

At any instant t̄ where eny exhibits an extreme, we will have e′ny(t̄) = 0, and this

makes

eny(t̄) =
−p(t̄) ±√p2(t̄) + 4Fφn(t̄)

2λ
, (5.12.2)

with

p(t) = f ′(t) + 2λf(t) + λk = [f ′(t) + λf(t)] + [k + f(t)] ≥ 0

by hypothesis. The negative option in (5.12.2) is incompatible with the fact that we

work with yn > 0, because when we consider it, we find that

yn(t̄) − f(t̄) =
−p(t̄) −√p2(t̄) + 4Fφn(t̄)

2λ
,

which yields

yn(t̄) =
2λf(t̄) − p(t̄) −√p2(t̄) + 4Fφn(t̄)

2λ

= −f ′(t̄)
2λ

− λk +
√

p2(t̄) + 4Fφn(t̄)

2λ
.

But as we are in an extreme, we may deduct from e′ny(t̄) = 0 that y′
n(t̄) = f ′(t̄). Using

(5.6.7) and (5.6.5) it is possible to find an expression for y′
n(t̄) that, once taken to the

above equality, results in

yn(t̄) =
yn(t̄)

2
− 1

2λ
· φn(t̄) [1 − φn(t̄)]

k + yn(t̄)
− λk +

√
p2(t̄) + 4Fφn(t̄)

2λ
.

Assigning

q =
φn(t̄) [1 − φn(t̄)]

λ
, r = k +

√
p2(t̄) + 4Fφn(t̄)

λ
,
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where q > 0 by (5.11.1) and r ≥ 0, k ∈ {0, 1}, the second order equation that gives

yn(t̄) is

y2
n(t̄) + (k + r)yn(t̄) + (q + kr) = 0.

The fact that the coefficient of the first order term is positive or null and the inde-

pendent term is strictly positive prevents the possibility of a positive solution. We

must therefore take the positive solution of (5.12.2), which leads to

−p(t̄) +
√

p2(t̄) − 4|Fφn(t̄)|
2λ

≤ eny(t̄) ≤ −p(t̄) +
√

p2(t̄) + 4|Fφn(t̄)|
2λ

. (5.12.3)

As

a −
√
|b| ≤

√
a2 + b ≤ a +

√
|b|, a ≥

√
|b| ≥ 0,

(5.12.3) becomes

−
√

|Fφn(t̄)| ≤ λeny(t̄) ≤
√
|Fφn(t̄)|,

and the result follows immediately.

5.13 Convergence of the system output

Theorem 5.10.2, and a glance at equation (5.6.7), allow an output sequence {yn}n of

continuous, T -periodic, positive solutions of such an ODE to be constructed. Uniform

convergence of the output sequence is now studied. The structure of this section is

very close to that of section 5.9.

Suppose the next hypothesis is fulfilled:

H3. Consider that the following conditions are verified:

(i) Hypothesis H2 is satisfied. Let {yn}n be the sequence of positive and periodic

solutions of equation (5.6.7), with their existence guaranteed by theorem 5.10.2.
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(ii) The system is in an insaturation zone when it undergoes approximate indirect

control, i.e., (5.11.1) is fulfilled ∀n ≥ 0.

Also take into account that ‖·‖ = ‖·‖L2
will be used throughout the present section.

Notice, moreover, that yn, y′
n and y′′

n are continuous. Then, the Fourier series of both

yn and y′
n are

yn = y0nw0 +
∑
k≥1

y2k−1,nw2k−1 + y2k,nw2k, (5.13.1)

y′
n = ω

∑
k≥1

k(−y2k−1,nw2k + y2k,nw2k−1), (5.13.2)

where {wj}j again stands for the trigonometric system (5.2.5). From (5.13.2),

‖y′
n‖2

= ω2
∑
k≥1

k2
(
y2

2k−1,n + y2
2k,n

)
= ω2(

∥∥y2
n

∥∥− y2
0n),

and this leads to

‖yn‖2 ≤ y2
0n +

‖y′
n‖2

ω2
,

which means

‖yn‖ ≤ y0n +
‖y′

n‖
ω

, (5.13.3)

with y0n > 0 from hypothesis H3 (i).

Lemma 5.13.1. Consider the projection operator P0 (see proposition 5.2.3 (ii)).

Then,

(i) P0y
′
n = P0(yny

′
n) = 0,

(ii) P0y
2
n = T− 1

2 ‖yn‖2 .

Proof. (i) The first relation, P0y
′
n = 0, is obvious. For the second one,

P0(yny
′
n) =

1

2
P0(y

2
n)′ = 0,
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because the derivative operation eliminates the w0-component.

(ii) Notice that

y2
n =

(∑
j≥0

yjnwj

)2

=
∑
j≥0

y2
jnw

2
j + 2

∑
i�=j

yinyjnwiwj.

The product of two different elements of the trigonometric system is proportional to

the product of two different trigonometric functions, which has no component in the

w0 direction. Let us now look at the quadratic terms:

w0 =
1√
T

=⇒ w2
0 =

1√
T

w0,

w2k−1 =

√
2

T
cos

2πkt

T
,

w2
2k−1 =

2

T
cos2 2πkt

T
=

2

T
· 1

2

(
1 + cos

4πkt

T

)
=

1√
T

w0 +
1√
2T

w4k−1,

w2k =

√
2

T
sin

2πkt

T
,

w2
2k =

2

T
sin2 2πkt

T
=

2

T

(
1 − cos2 2πkt

T

)
=

1√
T

w0 − 1√
2T

w4k−1.

The result follows immediately.

Lemma 5.13.2. The sequence {yn}n is such that:

(i) {yn}n belongs to the Sobolev space H1(0, T ).

(ii) {yn}n possesses a weakly convergent subsequence in H1(0, T ).

Proof. (i) yn is a periodic and C1(0, T ) function ∀n ≥ 0. Hence, remark 5.5.1 guar-

antees that its first generalized derivative coincides with the first classical derivative.

As the system is in an insaturation zone by hypothesis H3 (ii), it follows that

0 < y′
n + λyn ≤ φn;
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therefore,

‖φn‖ ≥ ‖y′
n + λyn‖ ≥ ‖y′

n‖ − λ ‖yn‖ ,

which yields

‖y′
n‖ ≤ ‖φn‖ + λ ‖yn‖ . (5.13.4)

Hence, as ‖φn‖ < ∞ by (5.9.1), it suffices to prove the boundedness of ‖yn‖.
Let us now rewrite the ODE (5.6.7) as:

(y′
n + λyn)(k + yn) = Gn.

Since Gn ∈ L2(0, T ), so is the left hand term. Then, projecting over the first element

of the trigonometric system we have that

P0(y
′
n + λyn)(k + yn) = P0Gn;

using (5.13.1) and the properties of P0, it follows that

kP0y
′
n + P0yny

′
n + λkP0yn + λP0y

2
n = P0Gn,

and with the aid of lemma 5.13.1, we have

λky0n + λT− 1
2 ‖yn‖2 = P0Gn ≤ ‖Gn‖ (5.13.5)

by hypothesis H1.

For the case k = 0, (5.13.5) shows that

‖yn‖ ≤
√

T
1
2

λ
‖Gn‖. (5.13.6)

In case that k = 1, (5.13.5) reads as

y0n ≤ ‖Gn‖
λ

− ‖yn‖2

√
T

.
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Using this inequality and (5.13.4) in (5.13.3) it follows that

‖yn‖ ≤ ‖φn‖
ω

+
λ

ω
‖yn‖ +

‖Gn‖
λ

− ‖yn‖2

√
T

,

which becomes

‖yn‖2 +
√

T

(
1 − λ

ω

)
‖yn‖ ≤

√
T

(‖φn‖
ω

+
‖Gn‖

λ

)
.

Then,

‖yn‖ ≤
√

T

4

(
1 − λ

ω

)2

+ T
1
2

(‖φn‖
ω

+
‖Gn‖

λ

)
−

√
T

2

(
1 − λ

ω

)
. (5.13.7)

Since

‖Gn‖ = ‖g + Fφn‖ ≤ ‖g‖ + ‖Fφn‖ ,

the bounded characters of g and of the sequences {φn} and {Fφn} detailed in (5.9.1)

and in lemma 5.9.1 ensure ‖yn‖ < ∞ in both (5.13.6) and (5.13.7).

(ii) The result is a direct consequence of ‖yn‖ < ∞ and ‖y′
n‖ < ∞, ∀n ≥ 0, proposition

5.4.3 (iii) and theorem 5.4.4.

Lemma 5.13.3. Let {ŷn}n be a weakly convergent subsequence of {yn}n, and let f̂

be its weak limit. Then,

(i) {ŷn}n converges uniformly to f̂ in C([0, T ]).

(ii) ŷ2
n ⇀ f̂ 2 in H1(0, T ).

Proof. (i) The result follows taking into account lemma 5.13.2, theorem 5.5.3 and

proposition 5.5.2 (iii).

(ii) Immediate from proposition 5.5.4 once the boundedness of {ŷ2
n}n in H1(0, T ) is

observed. Due to the trivial fact that y2
n ∈ C1(0, T ), ∀n ≥ 0, remark 5.5.1 reminds
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us of the equivalence of the first generalized derivative and the classical derivative of

yn. Hence,

∥∥ŷ2
n

∥∥
H1 =

∥∥ŷ2
n

∥∥
L2

+
∥∥(ŷ2

n)′
∥∥

L2
≤ ‖ŷn‖2

L2
+ 2 ‖ŷn‖L2

‖ŷ′
n‖L2

< ∞

by lemma 5.13.2 (i).

Let us consider the weak problem associated with the periodic solutions of the ODE

(5.6.2) in L2(0, T ). Performing a scalar product on both sides of the equation with

any function ϕ ∈ CP1([0, T ]) and denoting the right hand side as g we have that

((y′ + λy)(k + y)|ϕ) = (g|ϕ) ⇐⇒ k(y′|ϕ) + λk(y|ϕ) + λ(y2|ϕ) +
1

2
((y2)′|ϕ) = (g|ϕ).

Integrating by parts while taking into account the T -periodicity of y and ϕ entails

−k(y|ϕ′) + λk(y|ϕ) + λ(y2|ϕ) − 1

2
(y2|ϕ′) = (g|ϕ), ∀ϕ ∈ CP1([0, T ]). (5.13.8)

Lemma 5.13.4. The classical, positive and T -periodic solution f of (5.6.2) and the

weak limit of every weakly convergent subsequence of {yn} are weak T -periodic solu-

tions of (5.6.4).

Proof. The statement is trivial for f . Then, denote {ŷn}n as a subsequence of

{yn}n, weakly convergent to a certain f̂ by lemma 5.13.2 (ii). Every element of the

subsequence satisfies the ODE (5.6.6), written as

(ŷ′
n + λŷn)(k + ŷn) = g + Fφ̂n.

Therefore,

((ŷ′
n + λŷn)(k + ŷn)|ϕ) = (g + Fφ̂n|ϕ), ∀ϕ ∈ CP1([0, T ]).
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The scalar product may be expressed as

k(ŷ′
n|ϕ) + λk(ŷn|ϕ) + λ(ŷ2

n|ϕ) +
1

2
((ŷ2)′|ϕ) = (g|ϕ) + (Fφ̂n|ϕ)

and, integrating by parts,

−k(ŷn|ϕ′) + λk(ŷn|ϕ) + λ(ŷ2
n|ϕ) − 1

2
(ŷ2

n|ϕ′) = (g|ϕ) + (Fφ̂n|ϕ).

For n → ∞, the weak convergences Fφ̂n ⇀ 0, ŷn ⇀ f̂ and ŷ2
n ⇀ f̂ 2, ensured by

lemmas 5.9.1 and 5.13.3 (i) and (ii), leads to

−k(f̂ |ϕ′) + λk(f̂ |ϕ) + λ(f̂ 2|ϕ) − 1

2
(f̂ 2|ϕ′) = (g|ϕ).

Lemma 5.13.5. Every weakly convergent subsequence of {yn}n possesses f as a weak

limit.

Proof. Let {ŷn}n be a subsequence of {yn}n weakly convergent to a certain f̂ . Lemma

5.13.4 guarantees that both f and f̂ fulfill (5.13.8). We then write

−k(f̂ |ϕ′)+λk(f̂ |ϕ)+λ(f̂ 2|ϕ)− 1

2
(f̂ 2|ϕ′) = −k(f |ϕ′)+λk(f |ϕ)+λ(f 2|ϕ)− 1

2
(f 2|ϕ′).

After some algebraic manipulation we arrive at

(f̂ − f |
[(

k +
f̂ + f

2

)
ϕ′ − λ(k + f̂ + f)ϕ

]
) = 0, ∀ϕ ∈ CP1([0, T ]),

which can be alternatively written as

(f̂ − f |vpy ,qy) = 0, ∀vpy ,qy ∈ Vpy ,qy ,

with

py(t) = k +
f̂(t) + f(t)

2
, qy(t) = −λ

[
k + f̂(t) + f(t)

]
.
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As f is positive and f̂ is, at least, nonnegative by lemma hypothesis H3 (i), py(t) and

qy(t) have definite sign. Hence, the density of Vpy ,qy in L2 is ensured by lemma 5.9.5

and f̂ = f almost for all t in [0, T ]. The continuity of both f̂ and f entails

f̂(t) = f(t), ∀t ∈ [0, T ].

Theorem 5.13.6. The sequence {yn}n of solutions of the ODE (5.6.7) converges

uniformly to the periodic reference f .

Proof. Lemma 5.13.5 guarantees the weak limit of every weakly convergent subse-

quence of {yn}n coincides with f . Item (v) of proposition 5.4.6 leads to yn ⇀ f , while

theorem 5.5.3 and proposition 5.5.2 (iii) yield the result.

5.14 Sliding control of the device

The control law that produces x = φn(t) through the creation of a sliding regime in

the phase plane is analogous to that developed at the end of section 4.5. Hence, let

sn(x, t) = x − φn(t) be the switching surface.

Proposition 5.14.1. The control law

u =

 0 if (k + y)sn < 0

1 if (k + y)sn > 0

induces a sliding motion of system (4.2.3, 4.2.4) over the surface sn(y, t) = 0.

Proof. Firstly, take into account that we continue denoting the state variables with

x and y, instead of the notation x1, x2 used in (4.2.3, 4.2.4). The equivalent control
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uneq, defined via s′n(x, t) = 0, leads to

x′ − φ′
n(t) = 0 =⇒ φ′

n(t) = 1 − uneq(k + y).

The system trajectories will be directed towards the switching surface when sns
′
n < 0.

Then,

sns
′
n = sn(x′ − φ′

n) = sn[1 − u(k + y) − 1 + uneq(k + y)] = −sn(k + y)(u − uneq),

and the result follows.

The sliding domain is given by

0 <
1 − φ′

n

k + y
< 1 or its equivalent 0 <

y′ + λy

φn

< 1.

5.15 Approximate tracking of a sinusoidal wave

The target deals with the approximate indirect achievement of

y ≈ f(t) = A + B sin ωt

in steady state. We will work with the first Galerkin approximation φ1 of φ(t), the

periodic solution of (5.6.4). The procedure follows section 5.6 and uses the general

results obtained in the foregoing ones.

Thus, φ1(t) is a solution of

P1Fx1 = 0, (5.15.1)

where

Fx1 = x1 − x1x
′
1 − g,
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with x1 of type

x1(t) = λα0 + α1 cos ωt + β1 sin ωt.

The function g(t), calculated with (5.6.3), is

g(t) = λ

(
A2 + kA +

B2

2

)
+ (k + A)Bw cos ωt + (k + 2A)Bλ sin ωt +

−λB2

2
cos 2ωt +

B2ω

2
sin 2ωt.

Therefore,

Fx1 =

[
λα0 − λ

(
A2 + kA +

B2

2

)]
+ [α1 − λωα0β1 − ωB(k + A)] cos ωt +

+ [λωα0α1 + β1 − λB(k + 2A)] sin ωt +

(
λB2

2
− ωα1β1

)
cos 2ωt +

+
ω

2

(
α2

1 − β2
1 − B2

)
sin 2ωt.

The Galerkin equations (5.15.1), written as (5.7.2), result in

α0 −
(

A2 + kA +
B2

2

)
= 0

α1 − λωα0β1 − ωB(k + A) = 0

λωα0α1 + β1 − λB(k + 2A) = 0,

and their only solution is

α0 = A2 + kA +
B2

2

α1 =
λ2α0(k + 2A) + k + A

1 + λ2ω2α2
0

Bω

β1 =
k + 2A − ω2α0(k + A)

1 + λ2ω2α2
0

Bλ,

where α1, β1 are rational functions of λ. Then, φ1(t) takes the form

φ1(t) = λα0 +
λ2(k + 2A)α0 + k + A

1 + λ2ω2α2
0

Bω cos ωt +
k + 2A − ω2α0(k + A)

1 + λ2ω2α2
0

Bλ sin ωt =
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= λα0+B

√
λ2(k + 2A)2 + ω2(k + A)2

1 + λ2ω2α2
0

sin

[
ωt + arctan

λ2ωα0(k + 2A) + ω(k + A)

λ(k + 2A) − λω2α0(k + A)

]
.

(5.15.2)

The error term is

Fφ1(t) = (I − P1) Fφ1 =

(
λB2

2
− α1β1ω

)
cos 2ωt +

ω

2

(
α2

1 − β2
1 − B2

)
sin 2ωt =

=

√(
λB2

2
− α1β1ω

)2

+
ω2

4
(α2

1 − β2
1 − B2)

2
sin (2ωt + arctan γ) ,

γ being

γ =
λB2 − 2α1β1ω

ω(α2
1 − β2

1 − B2)
.

Care must be taken with the tangent inversions since the corresponding arguments

may not belong to [−π/2, π/2].

The evaluation of the error, performed through proposition 5.8.1, is

‖e1x‖∞ = ‖φ1 − φ‖∞ ≤ δ

√(
λB2

2
− α1β1ω

)2

+
ω2

4
(α2

1 − β2
1 − B2)

2
;

the parameter δ can be obtained from (5.8.1).

Remark 5.15.1. It is important to realize that φ1(t) always exists for our system

whatever the function f(t) may be, its analytical expression being easily obtainable

and reasonably manageable. Namely, writing g(t) as

g(t) = (k + f)f ′ + λf(k + f),

we see that its Fourier development

g(t) = C0 + C1 cos ωt + D1 sin ωt +
∑
n≥2

Cn cos nωt + Dn sin nωt
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is such that the coefficients Ci, Di, are affine functions of λ. Therefore,

φ1(t) = E0 + E1 cos ωt + F1 sin ωt =

= C0 +
C1 + C0D1ω

1 + C2
0ω

2
cos ωt +

D1 − C0C1ω

1 + C2
0ω

2
sin ωt =

= C0 +

√
C2

1 + D2
1

1 + C2
0ω

2
sin

(
ωt + arctan

C1 + C0D1ω

D1 − C0C1ω

)
,

and

Fφ1(t) = (−E1F1ω − C2) cos 2ωt +

(
E2

1 − F 2
1

2
ω − D2

)
sin 2ωt +

−
∑
n≥3

Cn cos nωt + Dn sin nωt.

Once more, the tangent inversion must be carefully performed.

According to theorem 5.10.2, it is sufficient to satisfy hypothesis H1 for the existence of

a positive output y1(t) that approximates the tracking target f(t). As the restrictions

corresponding to f and g have been considered at the beginning of the section, it

remains to check that

G1(t) = g(t) + Fφ1(t) = λ

(
A2 + kA +

B2

2

)
+ (k + A)Bw cos ωt +

+(k + 2A)Bλ sin ωt − α1β1ω cos 2ωt +
ω(α2

1 − β1)
2

2
sin ωt > 0;

a sufficient condition for G1 > 0 to be fulfilled may be

inf {g} > ‖Fφ1‖∞ . (5.15.3)

Theorem 5.12.1 allows an easy evaluation of the output error: with (5.12.1) we obtain

‖e1y‖∞ = ‖y1 − f‖∞ ≤ 1

λ

√
‖Fφ1‖∞ =

1

λ

√(
λB2

2
− α1β1ω

)2

+
ω2

4
(α2

1 − β2
1 − B2)

2
.
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Finally, the location of the indirectly controlled approximate system in a non satu-

rated region of the state space may be accomplished following section 5.11, which also

allows the corresponding restrictions over the output reference signal parameters to

be derived. Hence, according to proposition 5.11.2, hypothesis H2 and

inf
t∈[0,T ]

{G1(t)} ≥ ‖y′
1 + λy1‖∞ (5.15.4)

are to be fulfilled. A further approximation to (5.15.4) may be given by the substi-

tution of f(t) instead of y1(t). Even more, a first Galerkin approximation of y1 may

be obtained and its analytic expression also used in (5.15.4).

Finally, the procedure suggests the use of the sliding control law given in section 5.14

to achieve the control target.

5.16 Simulation results

The technique developed through the chapter is applied to the buck-boost converter

already used in the simulations of chapter 4. The Galerkin approximations are ob-

tained for an output reference equal to the one considered there.

Thus, let us recall that the converter parameters are Vg = 50V , R = 10Ω, L = 0.018H

and C = 0.00022F , which make λ = 0.9045. The output voltage reference is

vCr = 135 + 15 sin 2πντ V,

becoming

yr = f(t) = 2.7 + 0.3 sin ωt

in the dimensionless variables. A frequency of ν = 50Hz results in w = 0.6252.

These settings guarantee the fulfillment of (4.6.3) and (4.6.4), as seen in section 4.8.
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Moreover, they allow the satisfaction of (5.7.10), which may be written

g0ω = 5.67 > 4.24 = 1 + 2
√

ω ‖g‖.

The Galerkin equations (5.7.2) have been solved with MAPLE for the cases n = 1,

n = 2, n = 3, n = 4 and n = 5; that is, Galerkin approximations to the periodic

solution of (5.6.4) with one, two, three, four and five harmonics have been obtained.

A=2.7     B=0.3     w=0.6252

8.8

8.9

9

9.1

9.2

9.3

9.4

x

0 5 10 15 20
t

φ
φ1

Figure 5.1: φ(t) and φ1(t).

Figure 5.1 depicts the periodic solution φ(t) of (5.6.4), already portrayed in figure 4.6,

together with φ1. When φ2, φ3, φ4 or φ5 are plotted with φ, they are indistinguishable

from it. Table 5.1 indicates the closeness of the approximations to the exact solution

providing the absolute and relative errors of enx = φn −φ, measured with the L2 and

L∞ norms.

The errors Fφn, n = 1, . . . , 5 exhibit a clear tendency to decrease to 0 in table 5.2,

which contains their L2 and L∞ norms. This table also allows the fulfillment of the

input error bound (5.8.2) to be verified:

‖enx‖∞ < δ ‖Fφn‖∞ ,
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Table 5.1: Absolute and relative errors of the Galerkin approximations measured with
the L2 and the L∞ norms.

φ1 φ2 φ3 φ4 φ5

‖enx‖L2
1.06 · 10−2 1.90 · 10−4 4.21 · 10−6 1.25 · 10−7 7.43 · 10−9

‖enx‖L2

‖φ‖L2

· 100 (%) 3.69 · 10−4 6.59 · 10−6 1.46 · 10−7 4.36 · 10−9 2.58 · 10−10

‖enx‖∞ 4.89 · 10−3 8.80 · 10−5 1.97 · 10−6 5.61 · 10−8 4.30 · 10−9

‖enx‖∞
‖φ‖∞ · 100 (%) 5.20 · 10−4 9.36 · 10−6 2.09 · 10−7 5.98 · 10−9 4.58 · 10−10

because δ ≥ 1 for every admissible4 function g(t), and a straightforward comparison

with the row ‖enx‖∞ of table 5.1 shows ‖enx‖∞ < ‖Fφn‖∞.

Table 5.2: L2 and L∞ norms of the Galerkin errors Fφn.
φ1 φ2 φ3 φ4 φ5

‖Fφn‖L2
1.21 · 10−1 3.23 · 10−3 9.56 · 10−5 3.28 · 10−6 1.16 · 10−7

‖Fφn‖∞ 5.39 · 10−2 1.45 · 10−3 4.32 · 10−5 1.49 · 10−6 5.70 · 10−8

The existence of positive, asymptotically stable periodic output when a Galerkin

approximation is used in equation (5.6.6) is guaranteed by theorem 5.10.2. The

positivity of Gn, n = 1, . . . , 5, demanded by hypothesis H1, follows from the fulfillment

of the sufficient condition (5.15.3):

7.26 = inf {g} > ‖Fφ1‖∞ = 0.05,

and table 5.2 shows that ‖Fφ1‖∞ > ‖Fφn‖∞, n = 2, . . . , 5.

Figure 5.2 depicts a detail of the functions Hn(z), n = 1, 2, 3 (H4 and H5 are visually

indistinguishable from H3). All of them, including H4 and H5, are shown to have

4Consider g > 0 in (5.8.1).
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Figure 5.2: Detail of Hn(z), n = 1, 2, 3, crossing the z-axis.

a positive, decreasing solution close to f(0) = 2.7. Table 5.3 contains the solution

points, which show a tendency to f(0).

Table 5.3: L2 and L∞ norms of the Galerkin errors Fφn.
H−1

n (0)

n = 1 2.705492596
n = 2 2.699889915
n = 3 2.700003399
n = 4 2.699999889
n = 5 2.700000003
f(0) 2.7

The ideal output behavior, also studied with the aid of MAPLE software, is observable

in figure 5.3, where y1, corresponding to the use of φ1 in equation (5.6.6), is plotted

together with the reference f(t). Functions y2, y3, y4 and y5 cannot be distinguished

from f in a plot. Table 5.4 contains the L2 and L∞ norms of the output error

eny = yn − f(t) in absolute and relative form. Again, the tendency of yn to f is
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Figure 5.3: The output reference f(t) and the approximation y1.

evident.

Table 5.4: Absolute and relative errors of the output measured with the L2 and L∞
norms.

y1 y2 y3 y4 y5

‖eny‖L2
1.55 · 10−2 3.45 · 10−4 8.56 · 10−6 3.51 · 10−7 1.14 · 10−8

‖eny‖L2

‖f‖L2

· 100 (%) 1.81 · 10−3 4.02 · 10−5 9.96 · 10−7 4.09 · 10−8 1.33 · 10−9

‖eny‖∞ 7.95 · 10−3 1.73 · 10−4 4.22 · 10−6 1.29 · 10−7 4.60 · 10−9

‖eny‖∞
‖f‖∞ · 100 (%) 2.65 · 10−3 5.77 · 10−5 1.41 · 10−6 4.31 · 10−8 1.53 · 10−9

The fulfillment of the output error bound determined in equation (5.12.1), that is

‖eny‖∞ ≤
√‖Fφn‖∞

λ
,

can be observed in table 5.5 with the positivity of the differences√‖Fφn‖∞
λ

− ‖eny‖∞ .
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Table 5.5: Fulfillment of the output error bound.
n = 1 n = 2 n = 3 n = 4 n = 5

‖Fφn‖
1
2∞

λ
− ‖eny‖∞ 2.49 · 10−1 4.20 · 10−2 7.27 · 10−3 1.35 · 10−3 2.64 · 10−4

The presence of the approximately controlled systems in the insaturation zone is

verifiable in figure 5.4, where the plot of

1 − φ′
n

k + yn

, n = 1, . . . , 5

is shown to lie between 0 and 1, as required in section 5.11.

n=1
n=2
n=3
n=4
n=5
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Figure 5.4: Verification of the insaturation condition in cases n = 1, . . . , 5.

The following pictures consider the non ideal case, here treated with SIMULINK (see

section 3.8 for details about the numerical integration procedure). As has been done

in the preceding chapters, the non ideal system is modelled with an hysteretic control

of bandwidth ∆Sh = 0.00314, which limits the switching frequency to a maximum of

20 kHz (see section 3.2.5).
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Notice that the chattering is the reason why the use of higher order Galerkin approx-

imations does not improve the response of the system. The lowest possible values

of the errors, which equal those resulting from an exact treatment of the problem in

section 4.8, are reached with the 2nd approximation.

Figure 5.5 contains the input currents x1 and x2, obtained by the Galerkin approxima-

tions φ1 and φ2 in the switching surfaces, plotted against xr = φ. Figure 5.6 portrays

the corresponding outputs y1 and y2 tracking the voltage reference yr = f(t).

The relative errors of such input currents and output voltages are depicted in figure

5.7. A simple comparison with figure 4.11 shows the coincidence of error values for

the exact treatment and for the situation corresponding to the use of a 2nd Galerkin

approximation. Naturally, no improvement can be expected with higher harmonics.
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Figure 5.5: Details of xr, x1 and x2 in the non ideal case.

Finally, a SIMULINK model of a buck-boost converter controlled with a 1st Galerkin

approximation is shown in figure 5.8. An extension of it, consisting in the introduction

of equivalent systems controlled with 2nd, 3rd, 4th and 5th Galerkin approximations,

has been used to obtain the non ideal case plots.
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Figure 5.6: Details of yr, y1 and y2 in the non ideal case.
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Figure 5.8: Buck-boost converter controlled with a 1st Galerkin approximation.



Chapter 6

Robust Tracking Control of
Nonlinear Converters

Output voltage control of boost and buck-boost converters must be performed indi-

rectly, through the input current, due to the non minimum phase character shown by

the systems. The devices then have sensitivity to load perturbations, which can be

removed with the introduction of an observer that identifies the disturbed parameter

and allows the tracking of periodic signals at the output resistances.

6.1 Introduction

The need for indirect control for the output voltage of the nonlinear switched convert-

ers that have been dealt with has been shown in chapter 4. Exact and approximate

control techniques that allow the tracking of periodic references have been developed

in that chapter and in the previous one. However, perfect tracking control schemes are

usually very sensitive to external perturbations and parameter uncertainties [BI00],

[Dev00], and even more in inversion-based control schemes.

The next goal is to design robust control strategies to prevent undesirable effects

138
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of load perturbations. We propose the introduction of a disturbance observer with

dynamics proportional to the tracking error of the output voltage which shows a

reasonably rapid speed of identification and good simulation results. A similar law

has been used in [Esc99] for regulation tasks. Its design complexity is considerably

lower than the proposal in [FZ01], as already commented in section 2.4. The on-line

updating of the input current is performed, as in [FZ01], through a first harmonic

Galerkin approximation of the solution of the ordinary differential equation (5.6.4).

This chapter is structured as follows. In sections 6.2 and 6.3 we develop a control

strategy that furnishes the performance of boost and buck-boost converters with load

perturbation robustness. Section 6.4 exemplifies the robust tracking of a sinusoidal

signal with both converters. Finally, the simulation results are presented in section

6.5.

6.2 Adaptive control of the boost converter

The devices that work under indirect control are especially sensitive to disturbances.

This is an easily observable fact in our system because the input-output differential

relation (5.6.1) depends on the system parameter λ, which is a strong candidate to

suffer perturbations. Here we will try to eliminate the undesirable effects that load

change induces on the converter dynamics by means of adaptive control.

We may assume an unknown value R for the load resistance, due to the addition of a

constant disturbance term Rp to its nominal value RN ; that is, R = RN + Rp, where

R > 0. Consequently, the parameter λ may be written as λ = λN + λp with

λp = − λNRp

RN + Rp

, (6.2.1)
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where λ > 0. Therefore, system (4.2.3, 4.2.4) can de described as

x′ = 1 − uy (6.2.2)

y′ = −(λN + λp)y + ux, (6.2.3)

where the notation x, y, instead of x1, x2 introduced in section 5.6, is already used.

Let f(t) > 0, ∀t, be the C∞ and T -periodic reference to be tracked by y, while

λ̂p represents an estimation of the additive disturbance λp detailed below. Assume

likewise that a certain control forces the state variable x to follow a certain signal

φ(t; λN + λ̂p) such that

φ(t; λN + λ̂p)
[
1 − φ′(t; λN + λ̂p)

]
= f(t)

[
f ′(t) + (λN + λ̂p)f(t)

]
; (6.2.4)

its existence is guaranteed by standard results of ODE theory. The quoted law can

be, for example,

ū =
1

y
(1 − φ′)

which, when taken to (6.2.2), produces x(t) = φ(t, λN + λ̂p) in steady state with

appropriated initial conditions, and the behavior of the state variable y is given by

(5.6.2):

y [y′ + (λN + λp)y] = φ(t; λN + λ̂p)
[
1 − φ′(t; λN + λ̂p)

]
which, using (6.2.4), will be expressed as

y [y′ + (λN + λp)y] = f(t)
[
f ′(t) + (λN + λ̂p)f(t)

]
.

With the change of variable

ey =
1

2
(y2 − f 2)

the former relation becomes

e′y = −2(λN + λp)ey + f 2(t)(λ̂p − λp).
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The estimator dynamics is defined as

λ̂′
p = −βf 2(t)ey,

where β stands for a positive gain. Note that the observation error may be written

eλ = λ̂p − λp and, the perturbation being constant, it yields e′λ = λ̂′
p. Then, the

adaptive system allows the description

e′y = −2λey + f 2(t)eλ (6.2.5)

e′λ = −βf 2(t)ey, (6.2.6)

which admits (ey, eλ)
� = (0, 0) as an equilibrium point. Its asymptotic stability must

now be demonstrated.

Let us take

V (ey, eλ) =
1

2

(
e2

y +
e2

λ

β

)
;

it is easy to check that this is a positive definite, radially unbounded, decrescent

function. The derivative of V over the system trajectories is

V ′(ey, eλ) = −2λe2
y,

and is negative semidefinite. Moreover, the subset S of the phase plane points where

the former derivative vanishes is S = {(0, eλ)}, and the greatest invariant set inside

S is {(0, 0)}:

ey = 0 =⇒ e′λ = −β · f 2(t) · 0 =⇒ eλ = K, K ∈ R,

and, as e′y = 0 (otherwise, the system would abandon S immediately), it entails

e′y = 0 = −2 · λ · 0 + f 2(t) · K =⇒ 0 = f 2(t) · K.
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Furthermore, by hypothesis it is f(t) �= 0, ∀t, this leading to K = 0. Taking into

account the invariance principle of LaSalle [Sas99], it can be established that:

Proposition 6.2.1. The origin (0, 0) of system (6.2.5, 6.2.6) is globally uniformly

asymptotically stable.

Notice that when such an equilibrium point is reached, the output y coincides with

the desired reference f and, moreover, the signal φ(t, λN + λ̂p) tracked by the state

variable x can be periodic. This follows from the application of theorem 4.4.2 to

equation (6.2.4), where λ̂p is now constant.

The on-line updating of the current reference φ(t; λN + λ̂p) according to the instant

variations suffered by λ̂p is almost impossible in real problems. In fact, we have

already commented the difficulties that arise if we intend to work with φ(t; λN), λN

being constant, which has justified the introduction of the Galerkin method in chapter

5. Our proposal considers the use of the first harmonic Galerkin approximation of φ,

rapidly obtainable for our system from the study in section 5.15.

Let then

φ1(t; λN) = α0(λN) + α1(λN) cos(ωt) + β1(λN) sin(ωt)

be the first Galerkin approximation of φ(t; λN). Notice that its coefficients are λN -

dependent (see remark 5.15.1). To work the perturbed case we may consider the

expression of φ1(t; λN) and substitute λN by λN + λ̂p(t). We will therefore make use

of

φ1(t; λN + λ̂p) ≈ φ(t; λN + λ̂p).

Remark 6.2.1. (i) The sliding control laws proposed in sections 4.5 and 5.14 for the ex-

act and approximate treatment will induce the desired behavior for the state variable
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x. Notice that in such a context the load perturbations of the ideal boost converter

are additive field disturbances that do not satisfy the matching condition (see theorem

3.2.3), as is the case of the buck converter:

(0,−λpy)� /∈ span
{
(−y, x)�

}
.

Hence, the theory for perturbations that hold a weak invariance property developed

in subsection 3.2.6 is applicable to this situation.

(ii) The observer-based control purpose developed in [UGS99] and quoted in section

4.5 loses its advantage of eliminating the need to sense the output variable when a

perturbation observer is introduced.

(iii) When the system is physically implemented, the fulfillment of the restrictions

established in sections 4.5 for the exact case and in section 5.11 and 5.14 for the

approximate case must be guaranteed. If they do not hold for the whole state space,

the global character of proposition 6.2.1 would become local.

6.3 Adaptive control of the buck-boost converter

The objectives and structure of the present section are those of the preceding one.

It must be noticed, however, that the buck-boost system appears to be slightly more

complicated than the boost system. Hence, small differences may be observed in some

proofs.

Consider the description of system (4.2.3, 4.2.4) for the buck-boost converter under

the effect of a constant load resistance disturbance:

x′ = 1 − u(1 + y) (6.3.1)

y′ = −(λN + λp)y + ux. (6.3.2)
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Assume that there exists a certain control strategy that induces x to follow a signal

φ(t; λN + λ̂p) such that

φ(t; λN + λ̂p)
[
1 − φ′(t; λN + λ̂p)

]
= [1 + f(t)]

[
f ′(t) + (λN + λ̂p)f(t)

]
, (6.3.3)

where f(t) > 0, ∀t, is the C∞ and T -periodic reference for y, and λ̂p stands for an

estimation of the disturbance λp. Basic results on ODE solutions ensure the existence

of φ. Such a control law can be

ū =
1

1 + y
(1 − φ′)

because, taking into account (6.3.1), it determines x = φ(t, λN + λ̂p) with well chosen

initial conditions. The dynamic behavior of the state variable y will be given by

(5.6.2):

(1 + y) [y′ + (λN + λp)y] = φ(t; λN + λ̂p)
[
1 − φ′(t; λN + λ̂p)

]
which, using (6.3.3), can be expressed as

(1 + y) [y′ + (λN + λp)y] = [1 + f(t)]
[
f ′(t) + (λN + λ̂p)f(t)

]
.

Introducing the error ey = y − f , the former equation becomes

e′y = −
(

λ +
f ′ + λf

1 + f + ey

)
ey +

f(1 + f)

1 + f + ey

(λ̂p − λp).

The estimator dynamics is defined as

λ̂′
p = −βf(t)ey,

where β is a positive gain. The observation error can be written eλ = λ̂p − λp and,

since the perturbation is constant, e′λ = λ̂′
p. Thus, the adaptive system is

e′y = −
(

λ +
f ′ + λf

1 + f + ey

)
ey +

f(1 + f)

1 + f + ey

eλ (6.3.4)

e′λ = −βf(t)ey, (6.3.5)
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showing (ey, eλ)
� = (0, 0) to be an equilibrium point.

Let us now prove its asymptotic stability. Assigning ξ = (ey, eλ)
� and

Ψ(ξ, t) =

(
−
[
λ +

f ′ + λf

1 + f + ey

]
ey +

f(1 + f)

1 + f + ey

eλ,−βf(t)ey

)�
,

(6.3.4, 6.3.5) can be written as the T -periodic differential system

ξ′ = Ψ(ξ, t). (6.3.6)

The matrix

A(t) =

(
∂Ψ

∂ξ

)
ξ=0

=

(
−λ − f ′(t)+λf(t)

1+f(t)
f(t)

−βf(t) 0

)
is bounded if the hypotheses about f(t) stated at the beginning of the subsection are

fulfilled; moreover, let

Ψ1(ξ, t) = Ψ(ξ, t) − A(t)ξ =

(
f ′ + λf

(1 + f)(1 + f + ey)
e2

y −
f

1 + f + ey

eyeλ, 0

)�
.

Thus, one may write (6.3.6) detailing its linear part in a neighbourhood of the origin:

ξ̇ = A(t)ξ + Ψ1(ξ, t). (6.3.7)

Notice that Ψ1(0, t) = 0 and that

lim
‖ξ‖→0

‖Ψ1(ξ, t)‖
‖ξ‖ = lim

‖ξ‖→0

1√
e2

y + e2
λ

∣∣∣∣(f ′ + λf)e2
y − f(1 + f)eyeλ

(1 + f)(1 + f + ey)

∣∣∣∣ = 0

uniformly in t, because the two terms of the numerator of the limit have degree two,

while the smallest degree of the denominator is 1.

Take also

V (ξ) =
1

2

(
e2

y +
e2

λ

β

)
;
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it is straightforward that this is a positive definite, radially unbounded, decrescent

function. The derivative of V calculated over the linearized system (6.3.7) trajectories,

that is, over ξ′ = A(t)ξ, is

V ′(ξ) = −
[
λ +

f ′(t) + λf(t)

1 + f(t)

]
e2

y.

Reasons identical to the ones that allow the boundedness of A(t) to be established,

together with the additional restriction (1 + f)−1(f ′ + λf) > 0 (equivalent to the

demand g(t) > 0 in section 4.5), entail the existence of ρ ∈ R such that (1+f)−1(f ′+

λf) ≥ ρ > 0. Therefore,

V ′(ξ) ≤ −(λ + ρ)e2
y,

thus being negative semidefinite. It is straightforward to notice that the subset of the

phase plane where the former derivative vanishes is S = {(0, eλ)}, and the greatest

invariant set inside S is {(0, 0)} since

ey = 0 =⇒ e′λ = −β · f(t) · 0 =⇒ eλ = K, K ∈ R

and, as e′y = 0 (otherwise, the system would abandon S immediately), we have

e′y = 0 = −
[
λ +

f ′(t) + λf(t)

1 + f(t)

]
· 0 + f(t) · K =⇒ 0 = f(t) · K.

By hypothesis it is f(t) �= 0, ∀t, which leads to K = 0. Hence, applying the invariance

principle of LaSalle and the indirect method of Lyapunov for non autonomous systems

[SL91], we can establish the next result:

Proposition 6.3.1. The origin (0, 0) of system (6.3.4, 6.3.5) is locally uniformly

asymptotically stable.



Asymptotic Tracking with DC-to-DC Bilinear Power Converters 147

As happened with the boost converter, when the system is at the equilibrium point,

the output y tracks f(t), while φ(t, λN + λ̂p) may be chosen periodic.

Analogously to the boost case developed in the preceding section, the first harmonic

Galerkin approximation of the input current reference is used to update its value

according to the instant variation of the perturbation observer.

Remark 6.3.1. The notes of remark 6.2.1 for the boost converter are also valid for the

present situation.

6.4 Robust tracking of a sinusoidal reference

The interest is focused on obtaining

y = A + B sin ωt, A,B > 0

at the output resistance of a nonlinear boost or buck-boost converter under load

disturbances. The restrictions established in sections 6.2 and 6.3 act on the signal

parameters as follows:

(i) The existence of a periodic indirect current reference φ for the non perturbed exact

problem, studied in chapter 4, is conditioned to (4.6.3, 4.6.4).

(ii) The approximate approach needs the Galerkin approximation φ1(t; λN), which

always exists (see remark 5.15.1). Hence, no additional suficient conditions for the

existence of the whole Galerkin sequence {φn(t; λN)}n are needed. The expression of

φ1(t; λN) may be found in (5.15.2).

(iii) Under the current indirect control achieved through φ1(t; λN), theorem 5.10.2

ensures the existence of a periodic output y ≈ f(t) if

G1(t; λN) = g(t; λN) + Fφ1(t; λN) > 0.
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A sufficient condition for the former relation to be fulfilled, involving the signal pa-

rameters, is

inf {g} > ‖Fφ1‖∞ .

The expressions of G1(t; λN), Fφ1(t; λN) and the former sufficient condition are cal-

culated in section 5.15.

(iv) Equation (5.11.1) in proposition 5.11.1 provides the restrictions that guarantee

the presence of the system in an insaturation region at steady state. A sufficient

condition for the fulfillment of (5.11.1) may be found in proposition 5.11.2.

(v) The construction of φ1(; λN + λ̂p) must be made from φ1(t; λN) in (ii). Care must

be taken in the verification of (5.11.1), ∀t.

(vi) Once the system is (approximately) stabilized at λ̂p = λp, (iii) must be observed.

(vii) The sliding surface is

s(x, t) = x − φ1(t; λN + λ̂p),

while the control law is given in proposition 5.14.1.

6.5 Simulation results

The robust procedure is tested in a boost converter and a buck-boost converter with

parameters Vg = 50V , RN = 10Ω, L = 0.018H and C = 0.00022F . The output

voltage reference is

vCr = 135 + 15 sin 2πντ V,

with ν = 50Hz. In dimensionless variables this corresponds to λN = 0.9045, w =

0.6252 and

yr = f(t) = 2.7 + 0.3 sin ωt.
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The existence of a periodic current reference φ is ensured for both converters in the

non perturbed case as well as their location in an insaturated phase plane zone for

that situation -(4.6.3), (4.6.4)- and the fulfillment of (5.7.10) and (5.15.3). This has

been observed for the buck-boost converter in the simulation section of the preceding

chapters. For the boost system the calculations are, respectively:

2.7 = A > sup

B

√
1 +
(ω

λ

)2

, B +
A + B

√
1 +
(

ω
λ

)2
A − B

√
1 +
(

ω
λ

)2
 = sup {0.365, 1.612} ;

4.15 = g0ω > 1 + 2
√

ω ‖g‖ = 3.95; 5.1 = inf {g} > ‖Fφ1‖∞ = 0.50.

Figure 6.1 contains the SIMULINK model used in the simulations (see section 3.8

for details about the numerical integration algorithm). The control actuator switches

at a maximum frequency of 20 kHz, resulting in a relay hysteresis bandwidth of

∆Sh = 0.00314 (see relation (3.2.8) with νsM in the dimensionless variables). The

initial conditions of the state variables are close to the non perturbed current reference

for x1 and to the output reference for y1.

The results show good identification of the perturbations, with values up to 100% of

the load resistance level. The optimal gains of the observer dynamics are around β =

0.007 for the boost converter and β = 0.0125 for the buck-boost, and obviously depend

on the disturbance. For these gain values, figure 6.2 plots the observer behavior in the

presence of initial perturbations such as Rp = 2Ω, Rp = 5Ω and Rp = 10Ω, that is,

20%, 50% and 100% of the nominal value. The overshoot increases as the disturbance

does.

Figure 6.3 portrays the input current and the output voltage tracking their respective

references. It can be seen that, while the input current never loses its reference, the

output voltage needs two periods to correct the disturbance. This phenomenon is
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Figure 6.1: Robust boost and buck-boost converters model.

due to the indirect control that this variable undergoes. For a certain value of λ a

concrete current reference is needed so that the internal dynamics make the output

track the desired reference. If λ changes, a new current reference is needed to maintain

the output tracking. Although the system is always under control, the unavoidable

transition of the current from one reference to another is responsible for the transient

tracking error at the output. This is more clearly observed in figure 6.4, where the

perturbation occurs at instant t = 10. Notice that x1 never leaves its own reference,

from which it is not distinguishable.

It may also be pointed out that greater gain values of the observer dynamics result

in faster identification velocities and greater overshoots which, in turn, increase the
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Figure 6.2: Boost and buck-boost: estimation of several disturbances.

duration of the transient. Hence, a compromise between these two features is to

be taken into account when choosing β. The boost estimation algorithm seems to

show a better relationship between velocity and overshoot. Moreover, from a certain

threshold for β the observer does not identify the disturbance and the system unsta-

bilizes. Such aspects can be observed in figures 6.5 and 6.6, where the behavior of

the observer and of the state variables are plotted for several values of β.

Finally, the observer performance and behavior in steady state are detailed in figure

6.7. The steady state relative errors in the input and output tracking are depicted in

figures 6.8 and 6.9. Notice that the output relative error does not exceed the 0.7%

for both converters. For the buck-boost, this amount is almost equal to the reported

in figure 5.7, where no adaptive control is implemented.
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Figure 6.3: Buck-boost: state variables behavior for several disturbances, the gain β
being constant.
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Figure 6.5: Boost and buck-boost: estimation of λ for several gain values of the
observer.
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Figure 6.6: Buck-boost: details of x1 and y1 for several gain values of the observer.
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Figure 6.7: Buck-boost: details of the observer behavior.
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Chapter 7

Direct control of the output
voltage in nonlinear converters

In this chapter we propose a control scheme to exert direct control of the output

voltage in bidirectional boost and buck-boost converters.

7.1 Introduction

Direct control of the output voltage was shown in chapter 4 (see proposition 4.5.4)

to induce unstable tracking dynamics for our converters; that is, the state variable

proportional to the input current exhibited unstable behavior while the output volt-

age tracked the reference. A physical implementation of such a control policy is

impossible.

However, direct control is especially attractive in the sense that the robustness of

the devices would be enhanced. We suggest here the use of bidirectional boost and

buck-boost, as in the case of the buck system in section 3.6 for the tracking of a pure

sinusoidal signal, to overcome the above mentioned difficulties.

Following an idea suggested by professor H. Sira-Ramı́rez, a direct tracking control

156
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of the output voltage was performed in a bidirectional nonlinear converter [OFB96]

while the input current was kept within a tolerance bandwidth through appropriate

inversions of the source polarity. A similar structure has been used in [Gar00] to

regulate boost and buck-boost converters (see section 2.3).

This scheme may be improved by allowing the new actuator to maintain the input

current not within an interval but following a convenient signal. Meanwhile, the

output voltage would be tracking the desired reference owing to the action of the

original switch.

Section 7.2 establishes the theoretical basis that supports section 7.3, which contains

the features associated with the robust tracking of an offset signal. The example

with a sinusoidal reference and the corresponding simulation results are presented in

sections 7.4 and 7.5.

7.2 Mathematical model

The dynamical system (4.2.1, 4.2.2) governs the behavior of the ideal, nonlinear boost

and buck-boost converters. As pointed out in section 7.1, we use a bidirectional source

that provides Vg = −|Vg| or Vg = |Vg| at will. This is equivalent to performing a

substitution of Vg by |Vg|u1, u1 being a control action that takes values in the discrete

set {−1, 1}. With the change of variables

x1 =
1

|Vg|

√
L

C
iL x2 =

1

|Vg|vC t =
1√
LC

τ

and the introduction of λ = 1
R

√
L
C

and u2 = 1−ν, the system becomes dimensionless:

x′
1 = u1 − (ku1 + x2)u2 (7.2.1)

x′
2 = −λx2 + x1u2. (7.2.2)
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Consider the ideal steady state situation in which the state variable x = (x1, x2)
�

tracks the T -periodic reference xr(t) = (f1(t), f2(t))
�. The evolution of the system is

given by

f ′
1 = ū1 − (kū1 + f2)ū2

f ′
2 = −λf2 + ū2f1,

ū = (ū1, ū2)
� being the also ideal, continuous control that allows the above situation:

ū1 =
f1f

′
1 + f2(f

′
2 + λf2)

f1 − k(f ′
2 + λf2)

(7.2.3)

ū2 =
f ′

2 + λf2

f1

. (7.2.4)

Notice that (7.2.3, 7.2.4) expressions make sense under the hypothesis f1(t) �= 0 and,

at the same time, f1(t) �= k [f ′
2(t) + λf2(t)], ∀t. Additional conditions for the reference

to allow the physical implementation of the device are f1(t), f2(t) bounded and C1.

The reference xr(t) must also satisfy the control insaturation restrictions that require

it to be within the area (−1, 1) × (0, 1). Explicitly,

−1 <
f1f

′
1 + f2(f

′
2 + λf2)

f1 − k(f ′
2 + λf2)

< 1, 0 <
f ′

2 + λf2

f1

< 1. (7.2.5)

The development of appropriate control laws implies the design of a switching logic

for u1 and u2 in such a way that their mean behavior is that of ū1 and ū2. In the

case of the converters we deal with, their intrinsically variable nature makes us choose

again sliding modes to achieve the control goal.

Let us define the switching surface s(x, t) = x(t) − xr(t), whose components are the

errors associated to each state variable, that is, x1 − f1 = e1 and x2 − f2 = e2.
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Proposition 7.2.1. The control law

u1 =

 −1 if e1 > 0

1 if e1 < 0
, u2 =

 0 if e2x1 − e1(x2 + ku1) > 0

1 if e2x1 − e1(x2 + ku1) < 0
,

makes the system (7.2.1, 7.2.2) tend asymptotically to s(x, t) = 0.

Proof. Consider the positive definite and continuously differentiable function

V (s) =
1

2
s�s.

Let us denote system (7.2.1, 7.2.2) as

x′ = F (x, u),

and let u�
eq = (u1eq, u2eq) be the equivalent control, which fulfills

x′ − x′
r = 0 =⇒ x′

r = F (x, ueq).

Keeping in mind that

s′ = x′ − x′
r = F (x, u) − F (x, ueq),

a slight manipulation allows

V̇ = s�s′ = (1 − ku2eq)(u1 − u1eq)e1 + [e2x1 − e1(x2 + ku1)](u2 − u2eq),

which is maintained negative everywhere except on the switching surface by the pro-

posed control law. Then, a stable sliding mode motion along the intersection of the

discontinuity surfaces s(x, t) = 0 occurs [Utk92].

Remark 7.2.1. The requirement of continuous differentiability for the Lyapunov func-

tion is essential for the existence of sliding mode (see remark 3.2.1).
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7.3 Robust tracking

A glance at the second inequation of (7.2.5) tells us that the reference xr(t) must

satisfy

sign {f ′
2 + λf2} = sign {f1}

to be a tracking candidate. Thus, in accordance with the hypothesis on the output

reference which we worked with in section 4.5, we will now ask as a hypothesis:

H. f2(t) > 0, f(t + T ) = f(t) and g2(t) = (k + f2)(f
′
2 + λf2) > 0, ∀t ≥ 0.

In this situation, the intention is to force the state variable x1 to follow a constant,

positive reference f1(t) = c1. Then, restrictions (7.2.5) become

−1 <
f2(f

′
2 + λf2)

c1 − k(f ′
2 + λf2)

< 1, 0 <
f ′

2 + λf2

c1

< 1.

The following result gives sufficient conditions over c1 and f2 to have the system in

the insaturation zone.

Proposition 7.3.1. If hypothesis H is satisfied, c1 > ‖g2‖∞ and f2 > 1− k, ∀t ≥ 0,

then the system is in insaturation zone.

Proof. First notice that f ′
2+λf2 > 0 follows from hypothesis H, as seen in proposition

4.5.3. Moreover, c1 > ‖g2‖∞ entails, together with H, c1 > (k + f2)(f
′
2 + λf2) > 0 ;

as k + f2 > 1, the second inequality is fulfilled. Furthermore,

c1 − k(f ′
2 + λf2) > f2(f

′
2 + λf2),

and the first restriction also holds.

When the possibility of having a load disturbance is considered, the robustness is

guaranteed as parameter λ does not appear in the sliding surface equation and in the
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control law. This makes the system trajectories continue pointing towards the sliding

variety. However, λ is contained in the control insaturation conditions, which will

naturally be affected. Thus, it is advisable to consider choosing a value for c1 such

that these restrictions may be fulfilled in case that the load varies within an expected

interval.

7.4 Tracking a sinusoidal reference

Let us assume that we are interested in the tracking of the sinusoidal signal

f2(t) = A + B sin ωt, A,B > 0,

by the state variable x2.

From section 4.6,

A > B

√
1 +
(ω

λ

)2

=⇒
{

f ′
2 + λf2 > 0

A > B =⇒ f2 > 0 =⇒ k + f2 > 0

}
=⇒ g2(t) > 0,

thus guaranteeing the fulfillment of hypothesis H. A constant reference c1 to be

tracked by x1 is also needed. Proposition 7.3.1 requires:

(i) c1 > ‖g2‖∞. This may be accomplished with

c1 >

[
A + B

√
1 +
(ω

λ

)2
]

(k + A + B) = ‖f ′
2 + λf2‖∞ ‖k + f2‖∞ > ‖g2‖∞ .

(ii) f2 > 1 − k =⇒ A > 1 + B − k.

In summary, the restrictions over A, B and c1 are

A > sup

{
1 + B − k,B

√
1 +
(ω

λ

)2
}

, c1 >

[
A + B

√
1 +
(ω

λ

)2
]

(k + A + B).

(7.4.1)

In the presence of perturbations, the system is guaranteed to work in the insaturation

zone if (7.4.1) is fulfilled for all λ within an expected interval of variation [λmin, λmax].
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7.5 Simulation results

Boost and buck-boost converters with parameters Vg = 50V , RN = 10Ω, L = 0.018H

and C = 0.00022F have been chosen to test the theory developed above. The output

voltage reference for our tracking purpose is

vCr = 135 + 15 sin 2πντ V,

with ν = 50Hz. The values of the corresponding dimensionless variables are λN =

0.9045, ω = 0.6252 and

x2r = f(t) = 2.7 + 0.3 sin ωt.

Choosing c1 = 12 for the boost converter (k = 0) and c1 = 15 for the buck-boost case

(k = 1), both systems satisfy the restrictions of (7.4.1):

2.7 > sup {1.3, 0.36} = 1.3, c1(k = 0) = 12 > 9.19, c1(k = 1) = 15 > 12.26.

The SIMULINK model depicted in figure 7.1 has been used in the simulations. Section

3.8 details the numerical integration algorithm parameters. The control actuators u1

and u2 switch at a maximum frequency of νsM = 20 kHz, resulting in relay hysteresis

bandwidths of ∆Sh1 = 0.00628 and ∆Sh2 = 0.00314. These values follow from (3.2.8),

once νsM is converted into the new variables.

The simulation results show the systems to quickly reach the reference and exhibit

robust performance under load perturbations up to 200% of the nominal value RN ,

that is, Rp = 20Ω, and a frequency of ωp = 4ω. Figure 7.2 portrays the effect of

the disturbance on the parameter λ. Take into account that λ = λN + λp, λp being

provided by (6.2.1).

Figures 7.3 and 7.4 contain the response of the input and output state variables. No

perturbation effect is observed in their behavior.
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Figure 7.1: Robust full bridge boost and buck-boost converters model.

The relative errors in steady state are plotted in figures 7.5 and 7.6. Their values

oscillate between 0.05% of the input variable and 0.4% of the output variable. In

figure 7.7 it can be noted that when the input reference c1 is lowered the x1 relative

error shows a small growth, while erx2 seems to correct slightly the steady state error

observed in figure 7.6.
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Figure 7.2: The perturbed parameter λ.
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Figure 7.3: Robust full bridge boost and buck-boost: the state variable x1.
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Figure 7.4: Robust full bridge boost and buck-boost: the state variable x2.
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Figure 7.5: Robust full bridge boost and buck-boost: detail of the relative error erx1.
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Figure 7.6: Robust full bridge boost and buck-boost: detail of the relative error erx2.
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Figure 7.7: Robust full bridge buck-boost: detail of the relative errors erx1 and erx2.



Chapter 8

Contributions of this Thesis and
Suggestions for Further Research

This chapter summarizes the main contributions of the thesis and outlines some ideas

for future research.

8.1 Contributions of this thesis

The objectives of the thesis have been successfully fulfilled, and the following contri-

butions may be pointed out.

1. The tracking problem in single input, linear systems with fixed gains has been

studied in detailwith the aid of module theory. Restrictions on the signals to

be followed have been derived. A sliding mode strategy to achieve the control

target, consisting of a procedure to modify a switching surface initially good for

regulation tasks and a control law, is provided.

2. The aforementioned theory has been applied to the asymptotic tracking of sig-

nals by the output resistance of the buck converter under load disturbances.
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This has been achieved by means of an appropriate choice of state variables

that allows the perturbation to satisfy the matching condition.

3. Inversion-based indirect control is used to obtain exact tracking of periodic

references by the load resistance of nonminimum phase, nonlinear boost and

buck-boost converters. The return map allows the existence of a continuous

and periodic (thus bounded) solution for the internal dynamics equation to be

proved. Sufficient conditions for candidate references have also been obtained.

A sliding mode control scheme has been chosen to implement the technique.

4. A general framework for an inversion-based treatment of the perfect tracking

problem in a certain class of nonminimum phase, second order bilinear systems

is proposed. The approach may be applicable to the situations in which the

inverse problem gives rise to a differential equation of the Abel type.

5. The Harmonic Balance method has been identified as a particular case of the

Galerkin method, widely used in Functional Analysis. Leray-Schauder fixed

point index theory has been used to prove the existence of a sequence of ap-

proximate solutions for the internal dynamics equation. This sequence is proved

to converge uniformly to the periodic solution of the ODE, and an error bound

has been derived.

6. The system output exhibits a periodic and asymptotically stable behavior when

indirect control using the sequence of Galerkin approximations is performed. In

turn, the sequence of periodic outputs is shown to exhibit uniform convergence

to the original target function under a reasonable hypothesis. Error bounds

have also been obtained.
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7. Approximate tracking of periodic references using a Galerkin approximation of

the inverse problem solution has been successfully applied to nonlinear boost

and buck-boost converters. Plant parameters are assumed to be known. A

sliding mode methodology has been used as the control strategy.

8. Approximate asymptotic tracking has been achieved for load perturbed, basic,

nonlinear power converters by means of an adaptive control that estimates the

perturbation parameter and a first order Galerkin approximation that incorpo-

rates the on-line update into an appropriate sliding surface.

9. Sliding mode direct control of the output voltage has been performed in bidirec-

tional boost and buck-boost converters. Periodic references have been followed,

while the unstable inductor current has been independently regulated at a pre-

scribed level. Robustness to external disturbances is a fact.

10. Simulation results validate the proposals.

8.2 Suggestions for further research

The knowledge about the tracking possibilities of DC-to-DC switched power convert-

ers may advance in the following directions:

• The hypothesis under which the uniform convergence of {φn} and {yn} has been

established may be weakened.

• Efforts may also be directed to studying in depth the restrictions for the signals

to be followed when a Galerkin approximation method is employed. This should

help to clarify the possibilities of the technique.
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• Further analysis of the strategy proposed in chapter 7 is necessary to achieve

robust tracking results of non offset periodic signals with nonlinear converters.

• The methodologies developed in chapters 6 and 7 should be applied to other

nonlinear networks such as the fourth order C̆uk converter.

• Also in the field of signal generation (see [Bie99]), advantage may be taken of

the contributions here presented.

• Optimization of the transient response for the asymptotic tracking control pro-

posed in chapter 6, following the idea developed in [FZ01], is also left for further

research.

• The finiteness of the switching frequency is responsible for the appearance of a

steady state tracking error. Integral control has been proved to reduce its effect

[BGFR00] (and before [VD90]). Its use in our tracking schemes remains to be

tested.

• A universal output feedback integral controller that asymptotically regulates the

output of a minimum phase, nonlinear system to a bounded time-varying ref-

erence signal with constant limit is reported in [Kha92b], using only knowledge

of the relative degree and the sign of the high frequency gain. Moreover, the

introduction of the integral of the output in a linear switching surface ensures

robust regulation in a (non minimum phase) boost converter [BFGMR99]. The

extension to non minimum phase tracking problems is currently under study.

• Passivity-based control, at the moment used for regulation tasks, might be

investigated as a control tool for tracking purposes [OSME02].
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• Extension to the nonlinear case of the algebraic approach to the identification

of uncertain linear systems developed in [FS03] and further application to DC-

to-DC power converters according to [SFF02] is our last advice.



Appendix A

Basic results in linear control
systems from module theory

We present here an outline of the main results in linear systems from a module

theoretic point of view. The material follows [Fli90a], [Fli92] and [FS93].

A.1 Introduction

The use of module theory tools in the field of linear systems, introduced by Fliess

in [Fli90a], [Fli92], provides a general algebraic setting that allows the improvement

of their description and study. Moreover, it is the key to the understanding of the

differentially flat systems concept and its use in the treatment of nonlinear control

problems [FLMR94]. Background material may be found in [Fra99].

A.2 Preliminaries

Definition A.2.1. Let R be a ring with identity and M an abelian group. Let also

(·) be an external product · : R × M −→ M satisfying, ∀a, b ∈ R, ∀m,n ∈ M , the
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properties:

(i) a · (m + n) = a · m + a · n,

(ii) (a + b) · m = a · m + b · m,

(iii) (ab) · m = a · (b · m),

(iv) 1 · m = m.

Then, M is a left R-module.

Definition A.2.2. Any subgroup N ⊂ M is a submodule of M iff N is a left R-

module.

Proposition A.2.1. The intersection of submodules is also a submodule.

Definition A.2.3. Let S ⊂ M and denote {Si}i the family of all submodules of M

containing S. Then,

(i) [S] is the submodule of M generated by S.

(ii) M is finitely generated iff S is finite and M = [S]. The elements of S are the

generators of M .

A.3 k
[

d
dt

]
-modules

Let k be a commutative field with a derivation d
dt

=′ such that (a + b)′ = a′ + b′ and

(ab)′ = a′b + ab′, ∀a, b ∈ k. Consider then the ring of linear differential operators of

the form

k

[
d

dt

]
=

{∑
finite

ai
di

dti
, ai ∈ k

}
.

Proposition A.3.1. k
[

d
dt

]
is commutative iff k is a field of constants.
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Let M be a left k
[

d
dt

]
-module.

Definition A.3.1. (i) A finite set of elements in M is a basis iff every element in M

may be uniquely expressed as a k
[

d
dt

]
linear combination of such elements.

(ii) M is said to be free iff it has a basis.

Definition A.3.2. (i) m ∈ M is said to be a torsion iff ∃p ∈ k
[

d
dt

]
such that

p(m) = 0.

(ii) T is a torsion module iff all its elements are torsions.

(iii) The subset T ⊂ M such that T = {t ∈ M, t is a torsion} is a submodule called

torsion submodule of M .

Notice that a torsion element satisfies a linear ODE with coefficients in k.

Proposition A.3.2. Let M be finitely generated. Then, the following conditions are

equivalent:

(i) M is a torsion.

(ii) The dimension of M as a k-vector space is finite.

Proposition A.3.3. M is free iff its torsion submodule is trivial.

Theorem A.3.4. Any finitely generated left k
[

d
dt

]
-module can be decomposed into a

direct sum of its torsion submodule T and a free module F , i.e., M = T ⊕ F .

A.4 Quotient modules

Let M be an R-module and N ⊂ M a submodule of M . As N is, therefore, a

subgroup, we can construct the quotient group

M/N = {m + N, m ∈ M}
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and endow it with an R-module structure as we did with M :

a · (m + N) = a · m + N, m ∈ M.

Then,

Proposition A.4.1. The quotient group M/N is an R-module.

Definition A.4.1. Let M be an R-module and N ⊂ M a submodule.

(i) The elements m′ = m( mod N) are the residues of M in M/N .

(ii) The mapping M −→ M/N that assigns m −→ m′ = m + N is the canonical

projection.

A.5 Linear systems and left k
[

d
dt

]
-modules

From now on, all modules will be left k
[

d
dt

]
-modules.

Definition A.5.1. (i) A linear system is defined by a finitely generated left k
[

d
dt

]
-

module Λ.

(ii) A linear dynamics is a linear system Λ with a finite set of inputs u = (u1, . . . , um)

and such that the module Λ/[u] is a torsion.

(iii) The set of inputs u are said to be independent iff [u] is a free module.

(iv) An output y = (y1, . . . , yp) is a finite set of elements of the system.

Definition A.5.2. (i) A linear system Λ is controllable iff it is a free module.

(ii) A linear dynamics Λ with input u is controllable iff its associated linear system is

controllable.
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Let Λ be a linear dynamics with control input u = (u1, . . . , um), such that the mod-

ule [u] is free. Consider also that Λ is affected by a perturbation p = (p1, . . . , pq)

accomplishing [u] ∩ [p] = {0}.

Definition A.5.3. Let Λ/[u, p] be a torsion. Then, Λ is a linear perturbed dynamics.

Let Λ = Λ/[p], and consider the canonical epimorphism i : Λ −→ Λ. As [u]∩[p] = {0}
by hypothesis, the restriction of i to [u], denoted i[u], is an isomorphism between [u]

and [u] = [i[u]] = [iu1 , . . . , ium ]. As Λ/[u] is a torsion, Λ is known as the unperturbed

linear dynamics, u being the unperturbed control.
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[FLMR94] M. Fliess, J. Lévine, P. Martin and P. Rouchon. Flatness and Defect of

Nonlinear Systems: Introductory Theory and Examples. Int. J. Control, vol. 61

no. 6, pp. 1327-1361, 1995.

[FM93] E. Fossas and L. Mart́ınez. On the Use of Sliding Mode Control in Bidirec-

tional Converters. Proc. of the ISCAS, pp. 2355-2358, 1993.

[FMO92a] E. Fossas, L. Mart́ınez and J. Ordinas. Analysis of the C̆uk Converter via

Sliding Mode. Proc. of the CIEP, pp. 167-177, 1992.



Asymptotic Tracking with DC-to-DC Bilinear Power Converters 181

[FMO92b] E. Fossas, L. Mart́ınez and J. Ordinas. Sliding Mode Control Reduces

Audiosusceptibility and Load Perturbations in the C̆uk Converter. IEEE Trans.

Circ. and Syst. - I, vol. 39, no. 10, pp. 847-849, October 1992.

[FO94a] E. Fossas and J.M. Olm. Generation of Signals in a Buck Converter With

sliding Mode Control. Proc. of the ISCAS, vol. 6, pp. 157-160, 1994.

[FO94b] E. Fossas and J.M. Olm. Tracking Signals in Basic Coverters. A Sliding

Approach. Proc. of the VSLT, pp. 342-348, 1994.

[FO02] E. Fossas and J.M. Olm. Asymptotic Tracking in DC-to-DC Nonlinear Power

Converters. Discrete and Continuous Dynamical Systems - Series B, vol. 2, no.

2, pp. 295-307, May 2002.

[Fra99] J. Franch. Flatness, tangent systems and flat outputs. Ph. D. Thesis, Univer-
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[SGZ96] H. Sira-Ramı́rez, M. Garćıa-Esteban and A.S.I. Zinober. Dynamical Adap-

tive Pulse-Width-Modulation Control of DC-to-DC Power Converters: A Back-

stepping Approach. Int. J. Control, vol. 65, no. 2, pp. 205-222, 1996.



Asymptotic Tracking with DC-to-DC Bilinear Power Converters 185

[SI89] H. Sira-Ramı́rez and M. Ilic’-Spong. Exact Linearization in Switched Mode

DC-to-DC Power Converters. Int. J. Control, vol. 50, no. 2, pp. 511-524, 1989.

[Sir87] H. Sira- Ramı́rez. Sliding Motions in Bilinear Switched Networks. IEEE Trans.

Circ. and Syst., vol. CAS-34, no. 8, pp. 919-933, August 1987.

[Sir88] H. Sira-Ramı́rez. Differential Geometric Methods in Variable Structure Con-

trol. Int. J. Control, vol. 48, no. 4, pp. 1359-1390, 1988.

[Sir89] H. Sira-Ramı́rez. A Geometric Approach to Pulse-Width-Modulated Control

in Nonlinear Dynamical Systems. IEEE Trans. Autom. Control, vol. 34, no. 2,

pp. 185-187, February 1989.

[Sir93] H. Sira-Ramı́rez. A Dynamical Variable Structure Control Strategy in Asymp-

totic Output Tracking Problems. IEEE Trans. Autom. Control, vol. 38, no. 4, pp.

615-620, April 1993.

[Sir99a] H. Sira-Ramı́rez. On DC to AC Power Conversion: A Differential Flatness

Approach. Proc. of the ISIE, pp. 362-365, 1999.

[Sir99b] H. Sira-Ramı́rez. Flatness and trajectory tracking in sliding mode regulation

of DC-to-AC conversion schemes. Proc. of the CDC, pp. 4268-4273, 1999.

[SL91] J.J.E. Slotine and W. Li. Applied Nonlinear Control. Prentice-Hall Int. Ed.,

1991.

[SOE96a] H. Sira-Ramı́rez, R. Ortega and G. Escobar. Lagrangian Modeling of Switch

Regulated DC-to-DC Power Conversion. Proc. of the CDC, pp. 2525-2526, 1996.



Asymptotic Tracking with DC-to-DC Bilinear Power Converters 186

[SOE96b] H. Sira-Ramı́rez, R. Ortega and G. Escobar. Lagrangian Modeling of Switch

Regulated DC-to-DC Power Conversion. Proc. of the CDC, pp. 4492-4495, 1996.
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