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Abstract. Convolutional Neural Networks (CNN) are the most popular of deep
network models due to their applicability and success in image processing. Al-
though plenty of effort has been made in designing and training better discrimina-
tive CNNs, little is yet known about the internal features these models learn. Ques-
tions like, what specific knowledge is coded within CNN layers, and how can it
be used for other purposes besides discrimination, remain to be answered. To ad-
vance in the resolution of these questions, in this work we extract features from
CNN layers, building vector representations from CNN activations. The resultant
vector embedding is used to represent first images and then known image classes.
On those representations we perform an unsupervised clustering process, with the
goal of studying the hidden semantics captured in the embedding space. Several
abstract entities untaught to the network emerge in this process, effectively defin-
ing a taxonomy of knowledge as perceived by the CNN. We evaluate and interpret
these sets using WordNet, while studying the different behaviours exhibited by the
layers of a CNN model according to their depth. Our results indicate that, while top
(i.e., deeper) layers provide the most representative space, low layers also define
descriptive dimensions.
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1. Introduction

Deep learning (DL) networks are representation learning techniques [6], which build a
very rich descriptive language by processing high-dimensional data. In the context of im-
age data, Convolutional Neural networks (CNN) have shown remarkable performance,
approaching human-level on object detection, segmentation and classification. Neverthe-
less, little is yet known about the nature of the models learnt by CNN, or how to exploit
them. In this paper we seek to provide insight into this topic, by exploring the vector
embedding space that originates from internal CNN activations. Building vector repre-
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sentations of images and then classes (as defined in §3), we evaluate clusters that can be
found unsupervisedly in that space (shown in §4), considering both their interpretability
(through WordNet mappings and visual representation) and the relevance of CNN layers
given their depth.

2. Related Work

Some previous works have explored the properties of CNN models through the extrac-
tion of activations. [2] were among the first to do so, using features extracted from var-
ious layers to identify classes from different data sets. Significantly for the work here
presented, authors briefly explore the clustering capability of various layers, noticing that
top layers can discriminate outdoor from indoor classes. Nevertheless, no thorough eval-
uation on this behaviour is performed. In [9], authors use the first fully connected layer of
a model, for attribute detection. By applying a support vector machine on the 4096 com-
posing features, certain abstract classes can be identified, such as is male, has glasses.
Since only a top, fully connected layer is used, the number of descriptive features is rel-
atively small. Middle convolutional layers of a CNN provide millions of features, which
may also help in the process. These middle layers, as shown by [7] are relevant enough
as to be reusable across data sets.

3. Methodology

Given an input image, each layer of a trained CNN model is filled with activation values
as the image is processed forward within the network. Each of those activations corre-
sponds to the occurrence (or lack of) of a pre-trained pattern (i.e., a filter) in a specific
location. The combined activations obtained within a given layer is therefore a represen-
tation of the input image at that specific CNN layer, capturing what the CNN perceives
at that layer’s depth, and can be explored separately.

Our methodology (first introduced in [1]) starts with the definition of a CNN model
and the identification of a subset of layers of interest. Using those, we process a labelled
data set of images, producing a vector representation for each image. Once all image
vectors are computed, we obtain high-level abstractions by aggregating all vectors shar-
ing the same label. The result of this process are class vectors, each corresponding to
a well defined concept as labelled in the original dataset. To study the relations among
those class vectors we compute their vector distances, and build the corresponding dis-
tance matrix. This whole process is detailed in the remaining of this section. The resul-
tant distance matrix is then used to explore the representativeness of the approach, and
the semantics hidden in the model, as described in §4.

3.1. Image Vectors

An image processed through a CNN produces activations on each of its layers. By cap-
turing and extracting those activations we build vector representations of images (i.e., a
vector embedding). The number of activations per layer on typical CNN architectures
may range between a few thousands (highest, deepest layers) to a few millions (lower



layers). As a result, the image vector representations obtained from the consideration of
several layers can easily be composed by millions of values.

For a given data set of labelled images, we process each of those images indepen-
dently through a pre-trained CNN model to generate their image vectors. Since image
data sets typically contain thousands of images, in our experiments we will work with
thousands of vectors (one for each image) composed by millions of values (one for each
CNN feature captured). We explore these structures by considering each of those val-
ues as a distinct and independent data descriptor, only keeping track of which values
correspond to which layers in the model. Formally,

Given a set of layers L, an image vector IV = (act1, ..., actn),

where ∀acti ∈ IV, acti ≥ 0 and layer(acti) ∈ L
(1)

3.2. Class Vectors

The capability of a single image to be representative of a class is limited by varying as-
pects such as perspective, illumination, scale, context, and many others. Indeed, a single
two dimensional image only constitutes an incomplete description of an abstract entity
(i.e., a class). To extend such incomplete description, trying to consider as many visual
aspects of an entity as possible, we consider the aggregation of the evidence provided
by several different images. In the context of the vector embeddings we use here, we
combine several image vectors belonging to the same class to generate what we call
class vectors. Since we consider vector values as independent descriptors, we generate
the class vector by independently aggregating each of the vector values through an arith-
metic mean. Formally, given a set of n image vectors IV = {IV1, ..., IVn} of a shared
class C, all of equal length m (∀ IVi ∈ IV, |IVi| = m), the corresponding class vector
CV is defined as follows:

CV = (act1, ..., actm), where ∀ acti ∈ CV, acti =

∑n
x=1 IVx[acti]

n
(2)

Notice the resultant class vector have the same size than the aggregated image vec-
tors. After aggregation, class vector values are normalized to unit by layer to balance the
evidence provided by each layer on a single class vector. The activations of each layer are
normalized using the corresponding euclidean norm of that layer. Qualitatively, a class
vector represents a list of the visual features commonly found in an abstract class (e.g.,
an elephant), as perceived by the deep learning network.

3.3. Distance Matrices

Depending on how many and how big are the layers extracted from the CNN, an ag-
gregated and normalized class vector may contain millions of values. To compare any
given pair of class vectors, we compute the similarity between their activations using the
cosine measure. Formally:



Given two class vectors CV1 and CV2, composed by layers of equal number

and size, the similarity between both is :

sim(CV1, CV2) =
CV1 · CV2

||CV1|| ||CV2||
(3)

Using this similarity measure, for our experiments we will build a triangular distance
matrix of size MxM given a set of M class vectors. This matrix will be used to compute
clusters and correlations with WordNet distances.

4. Evaluation

Next we study the representativeness of the computed class vectors and distance matri-
ces, obtained as described in §3. For that purpose we use the ILSVRC 2012 validation
data set, containing 50,000 images labelled into 1,000 categories. Since the images of
this data set are mapped to WordNet labels (e.g., synsets) we can use WordNet as a vali-
dation tool. WordNet is a lexical database with no inherent information on the visual as-
pect of concepts (i.e., synsets). However previous research showed a correlation between
the space its taxonomy defines and the space defined by traditional bag of visual word
models [12].

First, we perform an unsupervised clustering process on the class vectors, evaluating
the quality of the clusters according to WordNet as described in §4.2. Then we analyze
the correlation between class vectors distances and WordNet similarity metrics. This will
give us insight into the semantics of the embedding space defined by the class vectors.
Finally, to illustrate the contents of the embedding space, we will generate visualizations
of selected class vectors through a deconvolution process.

4.1. CNN Models and Data

Our goal is to build vector representations of images which are as rich in features as
possible, with the goal in mind of enabling machine learning applications on top of those
representations. Accordingly, we choose a CNN network capable of identifying many
complex visual features from images. In most experiments shown in this section we use
the GoogLeNet [11] architecture, a 22 layers CNN that won the ILSVRC 2014 visual

Table 1. For the GoogLeNet architecture, layers extracted and their size

Layer inception_3a/output inception_3b/output inception_4a/output inception_4b/output

Size 200,704 376,320 100,352 100,352

Layer inception_4c/output inception_4d/output inception_4e/output inception_5a/output

Size 100,352 103,488 163,072 40,768

Layer inception_5a/output
Size 50,176

Table 2. For the VGG19 architecture, layers extracted and their size

Layer conv2_2 conv3_4 conv4_4 conv5_4

Size 1,605,632 802,816 401,408 401,408



recognition challenge [10] for classifying images. We used the pre-trained model avail-
able in the Caffe deep learning framework [5], trained with 1.2M images of the ImageNet
test set for the task of discriminating the 1,000 ImageNet hierarchy categories. Addition-
ally, for the inter-architecture comparison of §4.2.1, we also use the VGG19 architecture.
This architecture won the second place in the classification challenge at ILSVRC 2014.

For each of the 50,000 images obtained from the ImageNet 2012 validation set we
extract a vector representation. Then we aggregate these image vectors to obtain the
class vectors corresponding to the 1,000 labelled classes (i.e., 1,000 class vectors) of the
ImageNet hierarchy. For the GoogLeNet architecture, image vector are built from the
output layers of the inception modules (see Table 1), having 1,235,584 features in total.
For VGG we use a similar approach, extracting the output of all convolutional layers
except the first one (see Table 2), resulting in 3,211,264 total features. In both cases we
skip the first convolutional layer because the patterns found at that level are too simple
(e.g., straight lines [11]) to be of use for the representation of abstract classes.

4.2. Clustering of Class Vectors

To study the semantics captured in the embedding vector space defined in §3, we compute
the clusters that can be found unsupervisedly in that space. For that purpose we use
distance matrices built as previously defined, obtained from a set of 1,000 class vectors.
Our goal is also to explore the different characterizations provided by the different layers
found in a CNN, which is why we built different distance matrices corresponding to the
extraction of different layers of the CNN.

Since we initially ignore the nature of the embedding space, we consider the ex-
istence of a variable number of clusters. Using spectral clustering [13], we identify k
clusters, between 2 and 19, for each distance matrix. Each k-clustering provides an ab-
straction of image classes, but given the sub-symbolic nature of the features defining
those classes (feature activations of a CNN) little can be said about their nature in sym-

Table 3. Distance matrix among 1,000 class vectors, considering nine different GoogLeNet layers (from in-
ception/3a_output to inception/5b_output). Compute from 2 to 8 clusters through spectral clustering. For each
clustering process and cluster identified, Table shows the WordNet synset with the best F1 measure. When
relevant, second best synset by F1 measure is shown in parenthesis. Clustering experiments are independent
and their relation has not been explored.

2
Living
thing

Artifact

3
Living
thing

Artifact Conveyance

4 Mammal
Living
thing

Artifact Conveyance

5 Mammal
Living
thing

Artifact Conveyance
Artifact
(clothing)

6 Bird Mammal
Matter
(reptile)

Artifact Conveyance
Artifact
(clothing)

7 Bird Mammal
Matter
(reptile)

Instrumentality
Wheeled
vehicle

Clothing Craft

8 Bird Mammal
Matter
(reptile)

Instrumentality
Wheeled
vehicle

Clothing Craft Structure



bolic terms. To try to characterize those clusters symbolically we use the WordNet hy-
pernym/hyponym lexical taxonomy to identify the WordNet synset that better describes
each cluster. In detail, since every image class is mapped to a WordNet synset, we can
compute a F1 score for every pair of WordNet synset and cluster, considering that a
synset S applies to an image class IC if the synset associated with IC is S or a hyponym
of S. For example, given a 2-clustering, if 90% of image classes which are hyponyms of
the dog synset can be found within cluster A, and 85% of image classes of cluster A are
hyponyms of dog, the F1 measure of dog for cluster A will be 0.87. We use the synset
obtaining the best F1 measure for each cluster as that cluster label. Notice two clusters
may share the same label.

To illustrate the type of cluster labelling that we obtain, Table 3 shows the results
when using all available layers from the GoogLeNet architecture. Briefly, the first 2-
clustering separates between living things and non-living things. Significantly, the same
first-level categorization found by more traditional visual models in [12]. Means of trans-
portation (i.e., conveyance) are separated next, at 3-clustering. Later on, these are further
separated between crafts (i.e., ships and aircrafts) and wheeled vehicles. A cluster for
birds and clothes is also reliably found. On the other hand, there is a cluster of mixed ar-
tifacts and instruments on all k-clusterings, likely due to the less coherent visual features
of objects, and to the lack of specificity of WordNet synsets for characterizing items.

We evaluate the quality of the discovered sets numerically, using this labelling pro-
cess. For each k-clustering, we compute its quality as the mean F1 score obtained on all
its clusters. Results indicate that clustering quality decreases as the number of clusters
increases, as shown in Figure 1. The best results are obtained for the 2-clustering, with an
F1 score close to 0.9. To study the relevance of the various layers found in a CNN model,
we separately consider the case of using all nine layers shown in Table 1, using only the

Figure 1. Given the distance matrix among class vectors built using all layers, layers 3a and 3b, layers 4a to 4e
and layers 5a and 5b of the GoogLeNet architecture, chart shows the mean F1 score for WordNet on a variable
number of clusters (from 2 to 19) PR curve of a LP score on two different graphs. Grey area shows the CAUC.



3a and 3b layers (layers found near the bottom of the CNN), using the 4a to 4e layers
(layers found at the middle of the CNN), and a using the 5a and 5b layers (those with
maximum discriminative power). Results indicate that top layers (5a and 5b) provide the
best clusters, although similar results are obtained when using all layers. Since top layers
capture the most complex visual patterns these also provide the most descriptive power.
Nevertheless, as shown in Figure 1, middle and low layers also convey a relevant amount
of visual semantics, since one can also find high quality clusters using them.

4.2.1. Comparison Between Architectures

A question that may arise is how dependant are these results on the specific CNN ar-
chitecture being used. To investigate that point we apply the same methodology to the
VGG19 network, using the layers defined in Table 2. After building the image vectors,
class vectors and its corresponding distance matrix, we compute the same k-clustering
and F1 scores. The comparison between the results of the VGG19 and the GoogLeNet
architectures can be seen in Figure 2

Figure 2. Given the distance matrix among class vectors built using all layers, layers 3a and 3b, layers 4a to 4e
and layers 5a and 5b of the GoogLeNet architecture, chart shows the mean F1 score for WordNet on a variable
number of clusters (from 2 to 19).

4.3. Visualization of Class Vectors by Layer

The unsupervised clustering process shown here can be understood as a methodology to
automatically learn high-level concepts through CNN. In our experiments we are able
to interpret clusters thanks to the WordNet mappings of classes. However on a fully
automatic process that information may not be available. In other words, the CNN may
be able to identify new entities, but a human user may be unable to understand the nature
of those entities, since their representations are just vectors.

To enable a fully independent learning process, we explore the generation of images
from class vectors. Inspired by the process described in [3], we adapt their implemen-



Figure 3. Visual reconstruction of various class vectors. From top to bottom, left to right,
classes shown correspond to the WordNet synsets: n02793495_barn, n07697313_cheeseburger,
n03642806_laptop,_laptop_computer, n03777568_Model_T, n04584207_wig, n09472597_volcano,
n04505470_typewriter_keyboard and n07753275_pineapple,_ananas. Best seen in color.

tation to reconstruct content instead of texture. To do so we compute the loss function
on the activations instead of on the Gram matrix. The resultant process generates visual
representations (i.e., full images) corresponding to the contents of the class vectors. A
sample of those visualizations are shown in Figure 3. For these visualizations only top
layers were used (layers 5a and 5b) since these maximize visual interpretability.

5. Discussion

Table 3 shows how a hierarchy of concepts emerges from our methodology making in-
tuitive sense (i.e., finer grained concepts are separated as the number of clusters are in-
creased) with close correspondence to WordNet’s concept ontology as implied by its
hypernym/hyponym relationship. Although our validation methodology is flawed (e.g.,
WordNet measures linguistic similarities, while we compute visual similarities) results
indicate that certain abstractions can be made almost perfectly (living things vs non-
living thing).

The partitioning of image vectors into subsets obtained from different CNN layers
shows coherent behaviour as seen in Figure 1, providing evidence that layers holding
more abstract information might be more useful for representing concepts. Nevertheless,
all layers show descriptive power. Fine tuning this aspect might help reduce the compu-
tational resources for storing image vector and producing and clustering class vectors.

Rather surprisingly, results are very similar for the two CNN architectures tested, as
shown in Figure 2. Even though both architectures have significantly different topologies,
their embedding spaces seem to be consistent. Since both networks were trained with the
same data set, our hypothesis is that the features needed to optimally discriminate the
training data acts as a centroid during training, causing both network vector embeddings
to be correlated. This is further supported by the fact that for the VGG19 network one
obtains a hierarchy of clusters very similar to the one shown in Table 3.



5.1. Conclusions and Future Work

This work set forth to extract semantically meaningful representations from images using
the activations of pre-trained CNNs. We hereby show that these image vectors hold cor-
related semantics to those of WordNet’s hypernym/hyponym relations, and consider this
as a first cornerstone piece of evidence for their potential utility for further tasks ranging
from machine learning to image understanding. The methodology described here may
accept many variations including the usage of different CNNs to extract image vectors,
distance metrics, weighting schemes for activations extracted from different layers, clus-
tering options, etc.Whereas it is yet to be understood how these variations behave under
different contexts, we believe this fact fuels the potential applicability of the work here
presented. It also defines our priority lines of future work.

Even though the data used for evaluation (validation data of ImageNet 2012) was
not used to trained the network models, we are aware that the classes of objects are
common. To explore the limits of this approach, we intend to evaluate the clustering of
data completely disjoint from the training data. In this context we believe that explicit
ontologies might provide more robust validation (WordNet is not available for all data
sets, and regardless it is not a perfect baseline) and would like to see our method tested
against other semantic structures or ontologies, even specialized ones, such as SNOMED
[4] for medical image datasets. Finally, we expect image vectors to be used in specific
machine learning or image processing tasks providing end to end validation of our work.
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