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Abstract. System verification in the broadest sense deals with those
semantic properties that can be decided or deduced by analyzing a syn-
tactical description of the system. Hence, one may consider the notions
of redundancy and subsumption in this context as they are known from
the area of rule-based systems. A rule is redundant if it can be removed
without affecting the semantics of the system; it is subsumed by another
rule if each application of the former one can be replaced by an appli-
cation of the latter one with the same effect. In this paper, redundancy
and subsumption are carried over from rule-based systems to high-level
replacement systems, which in turn generalize graph and hypergraph
grammars. The main results presented in this paper are a characteri-
zation of subsumption and a sufficient condition for redundancy, which
involves composite productions.

1 Introduction

High-level replacement systems [6] generalize the algebraic approach to graph
transformation, both the double-pushout approach [3] and the single-pushout
approach [5], to other classes of replacement systems. They provide a common
categorical framework for different classes of replacement systems, such as gram-
mars on graphs, relational structures, and algebraic specifications, based on ca-
tegories and pushouts.

This paper deals with aspects of verification of both double-pushout (DPO)
and single-pushout (SPO) high-level replacement systems. System verification
in the broadest sense is concerned with those semantic properties that can be
decided or deduced by analyzing a syntactical description of the system. The
properties studied in this paper are redundancy and subsumption, as they are
known from the area of rule-based systems (see, for instance, [2], [8], [9]).

Consider a high-level replacement system, that is, a set of productions, an
initial object, and a class of terminal objects. A production is subsumed by anot-
her if any application of the former is mimicked by the latter. As a first result,
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we present a sufficient condition for subsumption. If a production p′ is covered
by a production p, that is, p′ is directly derived by p, then p′ is also subsumed by
p. This is interesting because covering is easier to check than subsumption, since
it is defined by a single direct derivation. It turns out that covering is not only
sufficient, but also necessary for subsumption in the case of single-pushout high-
level replacement systems, whereas this is not true in the double-pushout case.
Moreover, we consider subsumption of a production by composite productions.
Even in this case, one can show that the subsumed production is redundant, that
is, the semantics of the given system does not change if the production is remo-
ved. Altogether, one obtains a procedure that removes some redundancy from a
given system: Enumerate composite productions, check them for covering, and
remove every covered production.

2 High-Level Replacement Systems

In this section, we recall the basic notions and notations of high-level replacement
systems the rewriting of which is based on both double-pushout (DPO) and
single-pushout (SPO) constructions.

Starting with the DPO case, let C be a category, whose objects will be regar-
ded as high-level structures and whose morphisms will be regarded as structure-
preserving mappings between these objects. The morphisms in a distinguished
class M will be used in productions, while general morphisms in C will be used
to define application of productions to high-level structures.

Definition 1 (DPO HLR system). Let C be a category with a distinguished
class M of morphisms.

1. A DPO production p = (L ← K → R) in C consists of a pair of objects
(L, R), called left-hand side object and right-hand side object respectively,
an object K, called interface object, and two morphisms K → L and K → R
belonging to M.

2. An object G can be directly derived into an object H using a DPO production
p = (L ← K → R), denoted by G ⇒ H via p if there are pushout squares

L

��

K

��

oo �� R

��
G Doo �� H

in C.
3. Let P be a set of DPO productions. A derivation G ⇒∗ H from G to H in
P is a sequence of n � 0 direct derivations G = G0 ⇒ G1 ⇒ · · · ⇒ Gn = H
via (p1, . . . , pn) provided that p1, . . . , pn ∈ P.

4. A high-level replacement system H = (S,P,T) in C consists of a start object
S in C, a set P of DPO productions, and a class T of terminal objects in C.



5. The language L(H) of a high-level replacement system H = (S,P,T), also
denoted by L(S,P,T), is given by the set of all terminal objects in C derivable
from S by P, that is, L(H) = {G ∈ T | S ⇒∗ G}. ��
The following example presents high-level replacement system (which is ac-

tually a graph grammar) that allows the generation and recognition of all Eule-
rian graphs, based on [10, Sect. 3.2]. Recall that a graph is Eulerian if it has an
Euler circuit, that is, a circuit that contains every edge of the graph exactly once.
Eulerian graphs are characterized by being connected and having only nodes of
even degree [1].

Example 2. Let C be the category of undirected graphs and M be the class of
all injective graph morphisms. Consider the following double-pushout high-level
replacement system (S, P, T) for generating and recognizing all Eulerian graphs,
where S is a graph with a single node and no arc, P = {p1, . . . , p9}, and T is
the class of all graphs.

L K R

p1

L K R

p2

L K R

p3

L K R

p4

L K R

p5

L K R

p6

L K R

p7

L K R

p8

L K R

p9

The dotted lines indicate the morphisms from the interface object to the left-
hand side object and to the right-hand side object, respectively. ��

The SPO case differs from the DPO case in two aspects: A production consists
of a single morphism and a direct derivation of a single pushout. In typical
examples like graphs, the morphism of a production may be a partial mapping
(where nodes and edges outside the domain of definition specify the items to be
removed) while the occurrence of the left-hand side in the host graph should be
a total mapping. To formalize such situations, a category and a subcategory are
assumed.

Definition 3 (SPO HLR system). Let C be a category and let O be a subca-
tegory of C such that O coincides with C on objects.



1. An SPO production p = (L → R) in C consists of a pair of objects (L, R),
called left-hand side object and right-hand side object respectively, and a
morphism L → R in C.

2. An object G can be directly derived into an object H using an SPO production
p = (L → R), denoted by G ⇒ H via p if there is a pushout square

L

��

�� R

��
G �� H

in C such that L → G is in O.
3. Let P be a set of SPO productions. A derivation G ⇒∗ H from G to H in
P is a sequence of n � 0 direct derivations G = G0 ⇒ G1 ⇒ · · · ⇒ Gn = H
via (p1, . . . , pn) provided that p1, . . . , pn ∈ P.

4. A high-level replacement system H = (S,P,T) in C consists of a start object
S in C, a set P of SPO productions, and a class T of terminal objects in C.

5. The language L(H) of a high-level replacement system H = (S,P,T), also
denoted by L(S,P,T), is given by the set of all terminal objects in C derivable
from S by P, that is, L(H) = {G ∈ T | S ⇒∗ G}. ��

Example 4. If one ignores the interface graphs in the productions of Example 2
and interprets the dotted lines as inclusions of the left-hand side nodes into the
right-hand side nodes, one obtains SPO productions in the category of graphs
with partial graph morphisms. Choosing the category of graphs with total graph
morphisms as subcategory, the application of an SPO production has the same
effect as the application of the corresponding DPO production, that is, the edges
of the left-hand side are removed and the right-hand side is added by merging
the related nodes. ��

3 Redundancy and subsumption

Verification of high-level replacement systems is concerned with formal proper-
ties of the systems. Some of the formal properties to be verified arise from the
rule-based paradigm itself; cf. [10]. In particular, redundancy and subsumption
are generalized in this section from rule-based systems to high-level replacement
systems.

A high-level replacement system is redundant if it contains a production that
can be removed without affecting the semantics of the system. In particular, such
productions may be subsumed by other productions. A production subsumes (or
is more general than) another production if the subsuming production can be
applied and it yields the same result whenever the subsumed production can be
applied.

Definition 5 (Redundancy and Subsumption). Let P be a set of produc-
tions (either of the DPO or SPO type).



1. A production q ∈ P is redundant if there is a derivation G ⇒∗ H in P−{q}
whenever there is a derivation G ⇒∗ H in P.

2. A production p ∈ P subsumes a production q ∈ P, denoted by p � q, if there
is a direct derivation G ⇒ H via p whenever there is a direct derivation
G ⇒ H via q. ��
Obviously, a production q is redundant if it is subsumed by a production p.

Moreover, a high-level replacement system H = (S, P, T) for some start object
S and class of terminal objects T generates the same language as H − q =
(S, P− {q}, T) if q is redundant or, in particular, if q is subsumed by some p ∈
P−{q}. The other way round, a production q ∈ P is redundant if L(S, P, T) =
L(S, P − {q}, T) for any start object S and any class T of terminal objects.

Example 6. Productions p6 to p9 in Example 2 are redundant. Production p6

is subsumed by production p5, and productions p7 and p8 are subsumed by
production p4. Production p9 is discussed in Example 16. ��

Redundancy and subsumption may be undesirable for several reasons. First,
the presence of redundant and subsumed productions may degrade execution
efficiency. Second, and most important, it may make system validation more
difficult.

4 A characterization of subsumption

Subsumption can be regarded as a local form of redundancy, since it only invol-
ves two productions: the subsuming production and the subsumed production.
Nevertheless, subsumption is difficult to check because the definiton involves ar-
bitrary objects to be derived by the involved productions. To avoid this obstacle,
we introduce the notion of a covering, which relates two productions by means
of a single direct derivation and is, therefore, much easier to check. Using the
sequential composition of pushouts, covering can be shown to imply subsump-
tion. Moreover, it turns out that covering and subsuption are equivalent notions
in the SPO case, but not in the DPO case.

Definition 7 (Covering in DPO HLR systems). Production p = (L ← K →
R) covers production p′ = (L′ ← K′ → R′) if there exist morphisms L → L′,
K → K′ and R → R′ such that L → L′ ← K′ is a pushout of L ← K → K′ and
K′ → R′ ← R is a pushout of K′ ← K → R.

L

��
(PO)

K

��

oo ��

(PO)

R

��
L′ K′oo �� R′

��
Theorem 8. Let p = (L ← K → R) and p′ = (L′ ← K′ → R′) be two
productions. Then p � p′ if p covers p′. ��



Proof. Consider a direct derivation G ⇒ H via p′ of the form

L′

��

K′

��

oo �� R′

��
G Doo �� H

By hypothesis, there exist pushout squares (1) and (2), and by (vertical) com-
position of pushout squares, there also exist pushout squares (3) and (4), that
is, there exists a direct derivation G ⇒ H via p.

L

��
(1)

K

��

oo ��

(2)

R

��
L′ K′oo �� R′

L

��
(3)

K

��

oo ��

(4)

R

��
G Doo �� H

��
Observation 9. There are DPO productions p and p′ such that p � p′, but p
does not cover p′. ��
Proof. Consider the following counter-example in the category Gra of graphs
and graph morphisms. Let p = (• ← • → •) and p′ = (• ← ∅ → •) be two
productions given by identities and by empty morphisms, respectively.

There exists a derivation G ⇒ H via p′ if and only if the left-hand side node is
mapped to an isolated node of G. Moreover, in this case, we have H = G because
the isolated node is removed and added again. Using the same occurrence, we
obtain a derivation G ⇒ G via p. In other words, p � p′. However, p does not
cover p′ because there is no morphism • → ∅ in Gra, and, therefore, no double
pushout of the form

•

��

•

��

oo �� •

��• ∅oo �� •
��

In the case of single-pushout high-level replacement systems, however, sub-
sumption is characterized by covering.

Definition 10 (Covering in SPO HLR systems). Production p = (L → R)
covers production p′ = (L′ → R′) if there exist morphisms L → L′ in O and
R → R′ such that L′ → R′ ← R is a pushout of L′ ← L → R.

L

��

��

(PO)

R

��
L′ �� R′

��



Theorem 11. Let p = (L → R) and p′ = (L′ → R′) be two productions. Then
p � p′ if and only if p covers p′. ��

Proof. (If part) Consider a direct derivation G ⇒ H via p′ of the form

L′

��

�� R′

��
G �� H

By hypothesis, there exists pushout square (1), and by (vertical) composition of
pushout squares, there also exists pushout square (2), since the composition of
morphism L → L′ with morphism L′ → G is also in O. That is, there exists a
direct derivation G ⇒ H via p.

L

��

��

(1)

R

��
L′ �� R′

L

��

��

(2)

R

��
G �� H

(Only-if part) Since the hypothesis holds for any direct derivation through
production p′, in particular it holds for the direct derivation L′ ⇒ R′ via p′,
that is, for the direct derivation given by pushout square (1) where the vertical
morphisms are the identities. Then, there also exists a direct derivation L′ ⇒ R′

via p, that is, there exist morphisms L → L′ and R → R′ such that square (2)
is a pushout square. Then p covers p′.

L′

��

��

(1)

R′

��
L′ �� R′

L

��

��

(2)

R

��
L′ �� R′

��

Contrary to the case of (linear) rule-based systems, however, mutual sub-
sumption does not mean isomorphic productions.

Observation 12. p � p′ and p′ � p does not imply p = p′. ��

Proof. Consider the following counter-example in the category Set of sets and
functions. Let A = {a} and B = {b, c} be two sets, and let p = (A, A, A) and



p′ = (B, B, B) be two double-pushout productions given by identities.

L K R

p = ( a

��
(1)

a

��

oo ��

(2)

a

��

)

p′ = ( b

��

b

��

oo �� b

��

c

��
(3)

c

��

oo ��

(4)

c

��

)

p = ( a aoo �� a )

There exist morphisms L → L′, K → K′ and R → R′ given by a 	→ b such
that (1) and (2) become pushout squares, and there exist morphisms L′ → L,
K′ → K and R′ → R given by b 	→ a, c 	→ a such that (3) and (4) also become
pushout squares. However, p and p′ are not isomorphic productions.

A similar counter-example applies to single-pushout productions. ��

5 A sufficient condition for redundancy

While subsumption between productions of a high-level replacement system can
be regarded as a local form of redundancy, one obtains more global forms of re-
dundancy by the combination and composition of several production to subsume
other productions.

Actually, the most general notion of composition is given by the construction
of concurrent productions, which consists of the composition of two productions
over a dependency relation D between the right-hand side object of the first
production and the left-hand side object of the second production. The resulting
composite production is called D-concurrent production. We recall the notion for
double-pushout high-level replacement systems as given in [4]. To guarantee that
all necessary constructions exist, we assume so-called HLR2 categories, which are
defined in the Appendix (according to [6]).

Definition 13 (Concurrent DPO production).

1. Let p = (L ← K → R) and p′ = (L′ ← K′ → R′) be two productions and let
D be an object together with two morphisms D → R and D → L′. The pair
(D → R, D → L′), or short D, is called a dependency relation for (p, p′)
if the pushout object H∗ of D → R and D → L′ exists and if there are
unique pushout complements of K → R → H∗ and K′ → L′ → H∗ up to
isomorphism.

2. Given a dependency relation (D → R, D → L′) for (p, p′), the D-concurrent
production p ∗D p′ = (L∗ ← K∗ → R∗) of p and p′ is given by the construc-



tion in the following diagram, where:

D

����
��
��
��

��B
BB

BB
BB

B

(1)L

��
(3)

Koo ��

��
(2)

R

��A
AA

AA
AA

A L′

����
��
��
��

(2′)

K′oo ��

��
(3′)

R′

��
L∗ C∗oo ��

(=)

H∗

(4)

C ′∗oo ��

(=)

R∗

K∗

dd hhPPPPPPPPPPPPPP

��mmmmmmmmmmmmmm

		

(a) H∗ is the pushout object in diagram (1);
(b) C∗ and C ′∗ are the pushout complements in diagrams (2) and (2′), res-

pectively;
(c) L∗ and R∗ are the pushout objects in diagrams (3) and (3′), respectively;

and
(d) K∗ is the pullback object in diagram (4) with K∗ → L∗ = K∗ → C∗ →

L∗ and K∗ → R∗ = K∗ → C ′∗ → R∗.
3. Two productions p = (L ← K → R) and p′ = (L′ ← K′ → R′) are com-

posable if there exists a dependency relation D for (p, p′), and in such a
case their composite production is given by the D-concurrent production
p ∗D p′ = (L∗ ← K∗ → R∗). If D is not needed explicitly, the composite
production is denoted by p ∗ p′. ��
Notice that two productions are always composable if C has an initial object,

which is the case of a HLR2 category; see the Appendix. The D-concurrent
production p ∗D p′ becomes the parallel composition p + p′ when D is the initial
object in C.

A special case of composition, namely via a dependency relation D = L′,
is particularly interesting from a verification point of view, since the matching
algorithm of the high-level replacement system can then be used to test for
redundant productions, namely by finding a match of L′ in R.

L′

��
(PO)

K′

��

oo ��

(PO)

R′

��
L Koo �� R

(PB)

K′′oo �� R′′

K′′′

aaCCCCCCCC
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Using the following fact, which is proved for double-pushout high-level re-
placement systems in [4] as analysis step of the so-called Concurrency Theorem,
we can show that a production q is redundant if it is subsumed by a composite
production.



Fact 14. Given a direct derivation G ⇒ H via a composite production p ∗ q
there is a derivation sequence G ⇒ X ⇒ H via (p, q). ��

Theorem 15. A production q is redundant if there is a composite production
p0 ∗ · · · ∗ pn in P− {q} (n � 0) such that p0 ∗ · · · ∗ pn � q. ��

Proof. Let p0 ∗ · · · ∗ pn be a composite production in P − {q} (n � 0) such
that p0 ∗ · · · ∗ pn � q, and assume G ⇒∗ H in P. If q does not belong to this
derivation, then G ⇒∗ H in P − {q} as well. Otherwise, let G ⇒∗ H in P be
given by G ⇒ · · · ⇒ Gi ⇒ Gj ⇒ · · · ⇒ H with Gi ⇒ Gj via q. By Definition 5,
there is also a direct derivation Gi ⇒ Gj via p0 ∗ · · · ∗ pn, which by Fact 14 can
be decomposed into a derivation Gi ⇒∗ Gj via (p0, . . . , pn). Therefore, there is
a derivation G ⇒∗ H in P− {q}. ��

Example 16. Production p9 of Example 2 is redundant because it is subsumed
by the composite production which is obtained by applying production p4 to one
of the edges of the right-hand side of production p4. ��

6 Conclusion

The notions of redundancy and subsumption are generalized in this paper from
rule-based systems to high-level replacement systems. In particular, a charac-
terization of subsumption in single-pushout high-level replacement systems and
a sufficient condition for redundancy in double-pushout high-level replacement
systems are presented in this paper.

The sufficient condition for redundancy can be understood as a first step
towards the minimization of high-level replacement systems, aiming at minimal
high-level replacement systems free of redundant productions. It remains an open
problem to find a more general form of redundancy than direct subsumption and
subsumption by a composite production.

The notions of redundancy and subsumption can be extended by taking into
account not only the set of productions but also the start object and the class
of terminal objects of the high-level replacement systems.

Finally, it also remains open to find an efficient verification procedure based
on the sufficient condition for redundancy presented in this paper.

It should be noted that similar techniques are used in [7] to study temporal
refinements of graph transformation systems. It may be interesting to investigate
the relationship between both approaches.
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Appendix: HLR2 categories

Let C be a category and let M be a class of morphisms of C. The pair (C,M) is
said to satisfy condition HLR2 when it satisfies the following properties:

– Existence of semi-M-pushouts. There exists a pushout of any pair of co-
initial morphisms when at least one of them is in M.

– Inheritance of M-morphisms under pushouts. For any pushout square

A
f ��

g

��

B

g′

��
C

f ′
�� D

if f ∈ M then f ′ ∈ M.
– Existence of binary coproducts. C has all binary coproducts, and if f : A → A′

and g : B → B′ are two homomorphisms in M then the coproduct morphism
f + g : A + B → A′ + B′ is also in M.

– Existence of M-pullbacks. There exists a pullback of any pair of co-final
M-morphisms.

– Inheritance of M-morphisms under pullbacks. For any pullback square

A
f ��

g

��

B

g′

��
C

f ′
�� D

if f ′, g′ ∈ M then f, g ∈ M.
– M-pushout-pullback decomposition. In each diagram of the form

A
f ��

g

��
(1)

B
h ��

g′

��
(2)

E

g′′

��
C

f ′
�� D

h′
�� F

if (1)+(2) is a pushout square, (2) is a pullback square and g, g′, g′′, h, h′ ∈ M
then (1) is a pushout square.

– Closure of M. The class M is closed under composition.
– Cube-pushout-pullback property. Given any commutative cube such that all

morphisms in the top and bottom squares are in M, the top diagram is
a pullback square and the front and right-hand side diagrams are pushout
squares, then the bottom diagram is a pullback square if and only if the back
and left-hand side diagrams are pushout squares.


