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Preface

P2P systems became an interesting area since early 2000. Researchers con-

ducted a large amount of research in some challenging areas and, to check

their experiments, several implementations and simulators were created.

Over time, Internet has evolved and P2P has been widely used for �le shar-

ing, but the main structured P2P overlays were progressively abandoned.

However, these overlays are still taught in network engineering courses. The

aim of this master thesis is to �nd and implement a p2p overlay over the

simctl platform, used both for teaching and research in the network engi-

neering department. First, it is tried to locate and test the original struc-

tured P2P overlays source codes developed by the authors of the original

publications. Then, several available P2P implementations developed by

researchers and users have been tested. Once the software was selected,

di�erent scenarios for simctl were developed. Finally, a lab session was

created by using the previous scenarios.
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Chapter 1

General Introduction

Contents

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Context

Most of our daily activities are carried out over the Internet, from home-banking and

on-line teaching to watching on-line content, social networking, and �le sharing. Con-

sidering �le sharing as one of the Internet top activities, di�erent generations of P2P

networks have been proposed, designed and implemented. Over the last years, these

networks have evolved from centralized approaches to fully decentralized and structured

systems. Today, structured P2P networks, also known as P2P overlays, are considered

the best way to share and distribute large amounts of data, regardless of the involved

devices and underlying networks used below them. This is mainly due to they are

mostly based on Distributed Hash Tables (DHT).

In the last few years, P2P networks have mainly been used for �le sharing or multi-

media streaming. But P2P based content distribution systems have emerged as a form

for content distribution on the Internet, which can greatly reduce the distribution cost

of content providers and improve the overall system scalability. Moreover, with the

growth of Internet of Things (IoT) and the expected appearance of 5G technology in

1



1. GENERAL INTRODUCTION

2020, millions of devices will be used and P2P could take an interesting role to pro-

vide communication between them in device-to-device (D2D) and machine-to-machine

(M2M) communication networks.

1.2 Objectives

This master project aims to �nd and implement a P2P overlay over the simctl plat-

form, used both for teaching and research in the network engineering department.

Therefore, the objectives of this project are as follows:

• To examine the evolution of P2P overlays from its origin to today, watching the

current state of P2P development and research.

• To �nd implementations of the main P2P overlays. If possible, to �nd the original

implementations developed by the authors of the reference paper publications.

• To install and test each implementation code on a virtual local network with four

virtual machines. This virtual network is composed by four Ubuntu 14.04 virtual

machines, each one with 1024MB of RAM memory, and it is created by using

Oracle VM Virtual Box.

• To create a scenario for simctl with several machines. Then, to install and test

over simctl those working P2P implementations that can run by console and

that let the user interact with the software.

• To create a lab session for the Network Engineering department where the stu-

dents can run the scenario with the implementation installed, and then analyse

its behaviour and the tra�c sent between nodes.

The di�erent virtual machines in simctl are executed by console and have no

graphical interface. Moreover, most simctl scenarios simulate a local network with

no Internet connection, so the main requirements for an implementation to be used in

simctl are:

• To run in console mode, it is, with no graphical user interface (GUI).

• To be able to run in a real network between di�erent machines. Those imple-

mentations that run a virtual network with hundreds of nodes on a single host

(physical machine) are not valid.

2



1.3 Organization

• To be able to run on Debian 6 Squeeze or Debian 5 Lenny, since they are the

typical �le systems used by simctl.

1.3 Organization

This master project is organized in 6 Chapters. Chapter 2 begins by explaining brie�y

what simctl is, and some concepts related to its operation. Then, it introduces the

evolution of the P2P networks over the years and explains in detail the operation of the

most representative DHT-based structured P2P networks.

Chapter 3 collects some of the codes that have been tested. Several projects and

source codes have been installed and tested, but only the most relevant ones are ex-

plained in this chapter. Many of the projects located on code repositories were un�n-

ished or abandoned, or simply they were not able to run on a local network between

di�erent machines. Others were projects developed by students for Distributed Courses

that were not faithfully to the original algorithm. Most of these unuseful codes were

tested but not listed here.

Chapter 4 describes the selected peer-to-peer implementations that meet all the

required characteristics. In this section it is explained how to install them on simctl,

and some examples are tested.

Chapter 5 presents the lab session developed by using simctl and the selected working

P2P implementations.

Finally, Chapter 6 concludes this thesis summarizing the main �ndings and making

suggestions for the future research.
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Chapter 2

Background

Contents

2.1 Simctl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 VNUML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Simctl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Peer-to-Peer (P2P) Networks . . . . . . . . . . . . . . . . . . 7

2.2.1 Three Generations of P2P Networks . . . . . . . . . . . . . . 9

2.2.2 Identity Management in Existing P2P Overlays . . . . . . . . 11

2.1 Simctl

2.1.1 UML

User Mode Linux (UML) [54] was created as a kernel development tool to be able to

boot a kernel in the user space of another kernel. It enables the creation of Linux virtual

machines (guest) on Linux machines (host). The guests are created and managed as a

process rather the system. Virtualization is made from a binary �le of a Linux kernel

and a �le containing the �le system, and the changes that can be made in both the

kernel and the �le system do not a�ect the host. So, if a developer messes with the code

and the kernel is unstable, it is not necessary to reboot the host, just kill the kernel

process.

5



2. BACKGROUND

2.1.2 VNUML

Virtual Network User Mode Linux (VNUML) [58] is an open-source general purpose

virtualization tool designed to quickly de�ne and test complex network simulation sce-

narios based on the User Mode Linux (UML) virtualization software. It can simulate

general Linux based network scenarios using UML. VNUML was developed at the end

of 2002 at the Department of Telematic Systems Engineering (DIT) of the Polytechnic

University of Madrid (UPM).

VNUML tool is made of two main components:

• The VNUML language used for describing simulations in XML (Extensible Markup

Language).

• The interpreter of the language (vnuml command), that builds and manages the

scenario hiding all UML complex details to the user.

Using the VNUML language the user can write a simple text �le describing the

elements of the VNUML scenario such as virtual machines, virtual switches and the

inter-connection topology. Then, the user can use the VNUML interpreter called vnuml-

parser.pl to read the VNUML �le and to run/manage the virtual network scenario.

2.1.3 Simctl

simctl is a virtualization tool based on VNUML, and developed with the aim of

simplifying and extending the management capabilities of VNUML. It was developed

at the Network Engineering department (ENTEL) of the Universitat Politècnica de

Catalunya (UPC) by José Luis Muñoz, Gustau Pérez and Juanjo Alins. simctl is

a VNUML wrapper written for Bash. The commands used throughout simctl are

adapted so that the interpreter VNUML can deliver them correctly to UML to do the

processing. It is, although the tool used by the user is simctl, basically what is being

used is UML. Therefore, simctl makes use of VNUML, which in turn is using UML.

The script simctl allows the user to search for the di�erent scenarios that he can

run, start and stop a simulation, list the virtual machines that are part of a simulation,

list the �labels� de�ned on each machine of a simulation, run de�ned labels, manage

the consoles to access the virtual machines, view the network structure, and some more

things.

6



2.2 Peer-to-Peer (P2P) Networks

Figure 2.1: simctl operation.

2.2 Peer-to-Peer (P2P) Networks

Peer-to-Peer (P2P) networks are worldwide distributed systems where each node can

be used both as a client and a server simultaneously. These networks emerged as

an incipient paradigm of communications to share resources and services in a highly

decentralized way. They have had to evolve over time giving rise to three di�erent

generations.

Among others, some factors which have contributed to the success of these networks

are the availability of increasingly cheap bandwidth and the growing number of com-

puters sharing services and resources over the years. P2P networks are being massively

used and will remain so in the coming years since their performance is being improved

over time and their application is increasingly widespread.

According to the annual Cisco Visual Networking Index (VNI) Complete Forecast

for 2015 to 2020 [64], the P2P �le sharing will decrease at a compound annual growth

rate (CAGR) of 5 percent from 2015 to 2020. The growing use of smartphones and

other devices makes that users migrate to other �le transfer systems. And streaming

systems are the responsible of a decrease in �le transfer, since an important part of the

P2P �le sharing users was focused on downloading videos and music.

Although the use of P2P will decrease in �le sharing, these systems will continue to

play an important role in the future Internet for sure. Many types of services may be

built based on P2P protocols such as:

• File sharing applications (BitTorrent [3]).

• Voice-over-IP (VoIP) services and instant messaging clients (Skype [53]).

7



2. BACKGROUND

• Video streaming applications (CoolStreaming [8]).

• Music sharing portals (Jamendo [21]).

• File synchronization tools (BitTorrent Sync [4]).

• Payment methods and digital currencies (Bitcoin [2]).

• Massively Multiplayer Online Games (MMOG) platforms (Badumna [72]).

But above all, video streaming applications are the ones that are experiencing a

special growth. With video growth, Internet tra�c is evolving from a relatively steady

stream of tra�c (characteristic of P2P tra�c) to a more dynamic tra�c pattern. The

sum of all forms of IP video, which include Internet video, IP VoD, video �les exchanged

through �le sharing, video-streamed gaming, and video conferencing, will continue to

be in the range of 80 to 90 percent of total IP tra�c [65]. Globally, IP video tra�c will

account for 82 percent of tra�c by 2020 (Figure 2.2).

Figure 2.2: Global tra�c by application category.

P2P is a low-cost content delivery system but unfortunately until now most con-

tent providers and distributors have opted for direct distribution, with the exception

of applications such as PPStream [50] and PPLive [51] in China, which o�er live video

streaming through P2P and have had great success. Another application that is ex-

pected to succeed is BitTorrent Live, presented by BitTorrent Inc on May 17, 2016.

BitTorrent Live is a streaming video platform that will opperate on TVs, smartphones

and computers. Part of the reason that BitTorrent can o�er free streaming is that it is

8



2.2 Peer-to-Peer (P2P) Networks

using P2P technology similar to the one used by its �le sharing client to distribute its

streams. That way, the company does not have to pay for content delivery networks,

and live streams are also less likely to fail under high demand. So it is expected that

more content providers and distributors will adopt P2P as a distribution mechanism in

a near future.

2.2.1 Three Generations of P2P Networks

The operation of the P2P networks has changed over the years, trying to adapt (and

survive) to several di�erent problems (even legal), generating up to three di�erent gen-

erations.

First generation

First generation of P2P networks are known as centralized P2P networks because they

depend on centralized servers to perform some functions, typically a centralized direc-

tory to �nd resources. This type of P2P networks su�er from a single point of failure,

since the network may stop working if the central server goes down. The most widely

known example of this kind of networks is the initial music sharing service Napster [36].

Users asked to a central server where to �nd one �le. The server answered with some

addresses of nodes that had the �le. Finally, the user downloaded the �le directly from

the given node. The court ordered to close it for legal issues.

Second generation

The second generation of P2P networks appeared to avoid the above vulnerability, but

they needed two phases to achieve the expected success. The �rst attempt was to de-

sign pure decentralized P2P networks, which use a P2P scheme in all their processes,

and there is no central server at all. They are characterized by the arbitrariness of the

links between nodes, and by the use of �ooding of messages to search resources. Un-

fortunately, the use of broadcasting techniques limits their scalability, mainly because

they generate congestion or in�nite loops. Moreover, searching processes are not deter-

ministic, and they do not guarantee that an unpopular �le will be found. The typical

example of such networks is Gnutella [18]. The second attempt to improve the P2P

9



2. BACKGROUND

networks was to introduce some degree of centralization leading to the hybrid P2P net-

works, where some nodes (supernodes) manage certain extra functions. These networks

do not su�er from a single point of failure, and searches perform better because they

are partially centralized. However, they are still partially vulnerable if some of these

supernodes are attacked (or closed), like happened some years ago with the �le sharing

network eDonkey2000 [12].

Third generation

Finally, the third generation of P2P networks emerged. They are totally decentralized

networks, so there is not a point of failure, but with a certain structuring of resources.

For this reason they are called structured P2P networks or also structured P2P overlays,

as they create an overlay. An overlay is a logic high-level layer built over an existent

network, which is used to structure nodes and connections between them. The ob-

jective of this structure is to speed up searches to obtain positive results in a limited

number of hops independently of the popularity of the searched resource. Structured

P2P networks, or P2P overlays from here on, can provide properties as scalability, fault-

tolerance, self-organization, and low-latency. Unlike pure P2P networks, P2P overlays

do not allow random connections between nodes. Instead, overlay nodes are connected

via virtual links, which are known as paths. These paths can be constructed by using

di�erent physical links in the lower networks and the way that packets are routed on

those underlying networks is not controlled by the overlay. A P2P overlay routing pro-

tocol uses the logical identi�ers of the nodes (nodeIDs) to decide the routing, instead

of using directly their IP addresses.

The most typical P2P overlay protocols (CAN [78], Chord [83], Pastry [80], Tapestry

[86], Kademlia [75] or BitTorrent [66, 73], among others) are implemented using a DHT

[77], which stores {key, value} pairs together with the nodeIDs creating a virtual space.
A value can be a certain resource (for instance, a �le), or the way to reach this resource

within the overlay (a pointer), and keys are used to locate these resources into the

network (for instance, the hash of the �le name). Moreover, DHTs are divided in

subtables, which correspond to a zone of the virtual space, and these subtables are

assigned to di�erent overlay nodes. So each node is responsible for a zone, and hence

it is responsible for the {key, value} pairs contained in that zone (storing contents, or

pointers to them, and routing messages). Usually, a zone is assigned to the node whose

10
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nodeID is numerically close to the keys stored in the corresponding subtable of the

DHT. So if a node wants to download certain content from the overlay, it will send a

query message towards the key in the hope that some node with information about that

content will receive the message by proximity between the key and its nodeID. If so,

the receiver will answer to this query by sending the corresponding �le or the pointer

to this �le if resources are stored in the owner nodes. Therefore, it is obvious that the

location of the nodes in the virtual space is directly related to their nodeIDs, and this

deserves special attention.

The most widespread P2P overlay is the Kad network [82], a non-commercial �le

sharing service based on the Kademlia DHT routing protocol and implemented by the

popular eMule [13] and aMule [1] clients (among others), and BitTorrent, another non-

commercial �le sharing service implemented by tens of open-source, freeware, adware

or shareware applications [70].

2.2.2 Identity Management in Existing P2P Overlays

When learning P2P, it is typical to start by classifying the networks according to its

architecture, distinguishing between centralized, pure (totally decentralized) and hybrid

architectures. And then to deepen the study of P2P overlays, the structured pure P2P

networks. In this Section we summarize the working of some typical P2P overlays:

CAN, Chord, Pastry, Tapestry, Kademlia and BitTorrent. We analyze how these P2P

overlays work, emphasizing in the aspects related to the identity management, access

control and bootstrapping. In a P2P overlay, bootstrapping refers to the process by

which one or more internal nodes (bootstrapping nodes) provide initial con�guration

information to newly joining nodes so that they may successfully join the network.

2.2.2.1 CAN (Content-Addressable Network)

CAN [78] uses a virtual d -dimensional Cartesian coordinate space on a d-torus to store

{key, value} pairs. To do so, a key is deterministically mapped onto a point p in the

coordinate space using a uniform hash function. The corresponding {key, value} pair is
stored in the node that owns the zone within which the point p lies. Each node inside

the overlay is responsible for a zone and keeps information on its immediate neighbors.

Nodes in the CAN network do not have a nodeID. Instead, they are directly identi�ed

by their assigned zone within the virtual space.

11
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Figure 2.3 shows the bootstrapping phase in CAN1. Let us consider that a newcomer

node N wants to join the CAN network. To do so, it must contact with an internal

node (bootstrapping node) B which will guide it until the bootstrapping phase �nishes.

Then, N randomly chooses a point p in the CAN virtual space, and sends a �join�

request towards that point p using the node B as relay. Since B is an internal node,

it can use the CAN routing mechanism to forward this �join� message until it reaches

the node that manages the zone in which p lays (manager node M). Then, M splits

its zone and assigns a half to N , transferring all the {key, value} pairs located in that

half to N . N also learns from M the IP addresses of its close neighbors, and with that

information N can now generate its own routing and neighbor tables.

Figure 2.3: CAN bootstrapping phase.

Finally, we must mention that the authors of CAN do not de�ne any mechanism to

control who joins the network, so bootstrapping nodes allow any newcomer to join the

network.

2.2.2.2 Chord

The virtual space of Chord [83] is circular. NodeIDs and resources (keys) are ordered

according to a circular identi�er that uses a modulo 2m operation. Each {key, value}
pair is stored in the successor node of the key k (denoted as successor(k)), i.e., in the �rst

node whose nodeID is equal to or follows the corresponding key. Values can be directly

1For simplicity, in this �gure we draw the virtual space as a �at plane, but remember that the real

space is a d-torus.
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resources, like a �le, and the keys of the resources are generated using a hash function

over their names. NodeIDs are also constructed using a hash function, speci�cally over

the users' IP addresses. The goal is to balance the load of the overlay between all the

nodes. To ensure this, hash functions used must have the property that their outputs

are equidistant between them with high probability.

In Figure 2.4 we can see an example of an identi�er circle modulo 23 in which

there are three nodes (nodeIDs 0, 1 and 3) and three resources (keys 1, 2 and 6). In this

particular example, node 1 stores the {key, value} pair corresponding to the key 1, node
3 stores the pair corresponding to the key 2, and node 0 stores the pair corresponding

to the key 6.

Figure 2.4: Example of a Chord identi�er circle modulo 23.

A bootstrapping node B helps the newcomer N during the joining process, mainly to

initialize its state and add itself to the existing Chord identi�er circle. N contacts with

the node that currently manages the zone that should be transferred to it (manager node

M). This is possible since B is an internal node and it can use the routing mechanisms

of the overlay to lookup M . Then, M transfers the corresponding {key, value} pairs
to N and also shares its routing information to help N to construct its routing table.

Neighbors are also informed about the presence of N to properly re-establish the overall

routing of the overlay.

Regarding the access control during the bootstrapping phase, the authors mention

that this task could be delegated to an external server or even to an internal node, but
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they do not explicitly de�ne any mechanism.

2.2.2.3 Pastry

In CAN or Chord, the overlay is responsible for storing resources, i.e., a creator node (a

node that wants to introduce a resource) delivers resources to the overlay (in particular

to a manager node) which is responsible for its storage and management in a structured

way. Instead, Pastry [80] is only responsible for publishing the location of resources

(in a structured way), but this resources continue being stored in the creator node.

The virtual space of Pastry is also circular, i.e., an identi�er circle modulo 2m with

m = 128 bits, and keys are computed as the digest of the name and the owner of the

resources concatenated. The location of a resource is stored in a node if its nodeID is

the numerically closest to the key. To lookup resources and route messages, each node

not only manages a routing table, but also a neighborhood set and a leaf set. All these

state tables are used to route messages in a small number of hops taking into account

the geographic location of the nodes, unlike CAN or Chord.

The bootstrapping phase of Pastry is quite similar to that of Chord, and nodeIDs can

be computed in two ways, using a hash function over the node's public key or the node's

IP address. In most cases, this last option is the one used. Like in Chord, the use of a

hash function assures that the computed nodeIDs will be uniformly distributed in the

identi�er circle, and with high probability, diverse in geography, ownership, jurisdiction,

etc.

Regarding the user access control at bootstrapping phase, the authors do not also

describe any mechanism to do that.

2.2.2.4 Tapestry

Tapestry [86] uses routing and location schemes similar to the ones presented by Plaxton

et al. in [77]. When a creator node wants to publish a certain resource (for instance,

a �le) in the overlay, it sends a message towards the key of that resource, in the hope

of reaching the responsible node of that key. Speci�cally, this node is responsible for

storing the {key, value} pair of that resource, and it is chosen because its nodeID is

the numerically closest to the key. As Pastry does, Tapestry publishes the location

of resources instead of storing the resources themselves, and the routing scheme also

takes into account the location within the network to route messages. In Tapestry,
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multiple replicas of each {key, value} pair are also created and stored in replica, or

surrogate nodes. So, if a replica node is found prior to reach the original responsible

node, this node will provide the location of the desired resource. This mechanism not

only increases �exibility and saves bandwidth, but also alleviates the problem of a single

point of failure.

Regarding bootstrapping phase, a newcomer N also contacts with a bootstrapping

node B, which will start routing the �join� message towards the nodeID of N . Then,

N informs the relevant nodes of its presence to update their neighbor maps. Once all

potential neighbors are located, the relevant {key, value} pairs are copied to N .

NodeIDs and keys may be distributed in the virtual space randomly using a hash

function, but authors do not state which information should be used. The same happens

with the user access control system; authors do not de�ne any mechanism to carry on

this task.

2.2.2.5 Kademlia

Kademlia [75] is similar to the other P2P overlays in the sense that {key, value} pairs
are stored in nodes with nodeIDs �close� to the keys. However, this closeness relies on a

di�erent notion of distance. Authors de�ne the distance between two points in the key

space as their bitwise exclusive-or (XOR) interpreted as an integer. NodeIDs and keys

(generated using a hash function) have a length of B = 160 bits and values are pointers

to the �les. The {key, value} pairs are replicated in several nodes.

Kademlia treats nodes as leaves in a binary tree, in which the position of each node

is determined by the shortest unique pre�x of its nodeID. For any given node, the binary

tree is divided into a series of successively lower subtrees that do not contain the node

itself. To organize this knowledge, nodes use K-buckets, which represent subtrees with a

group of a maximum of K contacts, and divide them into more subtrees in the case that

the buckets already contain K contacts. The K-buckets are organized by the distance

between the node and its contacts. Speci�cally, for bucket j, where 0 <= j < B, it is

guaranteed that

2j <= distance(node, contact) < 2j+1.

This means that the bucket zero has only one possible member, the key which

di�ers from the nodeID only in the low order bit. And on the other hand, if nodeIDs
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are uniformly distributed, it is very likely that half of all nodes will lie in the range of

bucket B − 1 = 159.

An example of this distribution can be seen in Figure 2.5. This example shows the

three smallest subtrees (buckets) constructed by the node with nodeID 111...110 (red

point). These buckets have the pre�xes 111...111, 111...10 and 111...0 respectively. The

Kademlia protocol establishes that every node should know at least one node in each of

these subtrees to locate any other node in a pre�x basis. Otherwise, its location would

not be guaranteed.

Figure 2.5: Generation of buckets in the node 111...110.

In Kademlia, every message transmitted by a node includes its nodeID, permitting

the receiver to record the sender's existence if necessary. In this way, this topology has

the property that every message exchanged conveys useful contact information. Using

this information, a node can send parallel asynchronous query messages which toler-

ate node failures without imposing timeout delays on users. A nodeID-based routing

algorithm lets anyone locate servers near a destination key.

Regarding the bootstrapping phase, �rst of all, a newcomer N must calculate its own

nodeID in the 160-bit key space, generated by hashing its IP address as in Chord, and

insert the nodeID of the bootstrapping node B into the appropriate K-bucket. Then, N

must perform a node lookup for its own nodeID and refresh all K-buckets further away
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than its closest neighbor. During this last process, N populates its own K-buckets and

inserts itself into other nodes' K-buckets as necessary. Unfortunately, authors neither

include any mechanism for controlling the user access.

2.2.2.6 BitTorrent

BitTorrent [66] is a second generation P2P protocol for distributing �les, where resource

lookup is performed on a web server and resource dissemination is managed by a tracker.

A tracker is a special type of server that assists in the communication between peers

using the BitTorrent protocol Trackers neither store resources nor participate in their

exchange, they only coordinate the set of peers that participate in the resource exchange

(swarm) and keep track of the active peers of the set. Web servers index metadata �les

(.torrent) which describe the resource exchanged by a swarm. This includes information

such as the address of its tracker and the names, sizes and checksums of all chunks in

which the resource is split.

In the traditional BitTorrent network, whenever a user wants to download a resource,

it contacts to a tracker to obtain the list of peers that make up the swarm. And then,

it contacts to some peers of the list to download all chunks that make up the resource

using the peer wire protocol, implemented over TCP. A peer communicates with the

tracker regularly while it is part of the swarm to inform about the volume of bytes it

has downloaded or uploaded, and the tracker responds with the list of active peers at

each time.

Additionally, few years ago, Loewenstern and Norberg proposed to introduce a de-

centralized tracking system [73] to avoid single points of failure and improve the perfor-

mance of the tracking process, where any peer can act as a tracker (trackerless torrent).

This new tracking system was implemented using a DHT based on Kademlia (Mainline

DHT, MDHT) to store and locate information about which peers hold what resources.

Other DHT, also based on Kademlia, was also proposed but it is only implemented

by one client software (Vuze [59], previously Azureus) and is not compatible with the

MDHT, as they have non-trivial di�erences. For these reasons we only take into account

the solution that uses the MDHT.

In the past, a BitTorrent client only included a peer, instance of the program to

which other clients connect and transfer data. But now, most clients also include a

MDHT node, another instance used to �nd peers in a decentralized way.
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As Kademlia does, MDHT stores nodeIDs and keys (infohashes from here on) as

leaves in a binary tree. Whenever a user wants to download a resource in DHT Bit-

Torrent, �rstly it must decide which nodes to contact to get the peers list to download

from using her peer instance. For that, the node instance uses the XOR distance metric

between the infohash of the resource and the nodeIDs of the nodes in her own routing

table. Note that a node knows many nodes with nodeIDs �close� to its own, but it has

few contacts with nodeIDs that are �far�. Then, the original node contacts some nodes

with nodeIDs closest to the infohash1 and obtains information about peers currently

uploading that resource. Obviously, if some contacted node does not know about peers

for that resource it must respond with information of the nodes in its routing table that

are closest to that infohash. This process �nishes when the original node cannot �nd

any closer nodes. Finally, the node stores in appropriate buckets the peers' information

for a small number of the responding nodes with nodeIDs closest to the infohash of the

resource. The protocol which allows peers within the same swarm to share their peer

lists is the peer exchange (PEX) protocol, implemented over UDP.

Regarding the nodeID assignment and the user access control, unfortunately, at

�rst, little attention was paid to security. In the BitTorrent context, nodeIDs were

generated at random from the same 160-bit virtual space as infohashes and no access

control mechanism was proposed.

The Bootstrapping phase is similar to that performed in Kademlia, with the di�er-

ence that the nodeIDs are randomly selected. In addition, unlike Kademlia, the MDHT

only stores each infohash on one node, resulting in no easy way to unambiguously de-

termine which peers are responsible for a certain resource, complicating any replication

or migration strategy.

2.2.2.7 JXTA

Juxtapose [25] is a set of open protocols that enable the creation and deployment of P2P

networks. JXTA protocols enable users to discover and observe other nodes, to commu-

nicate among them, or to o�er and localize resources within the network. In order to

access those resources, JXTA completely relies in the usage of advertisements published

by the resource owner. JXTA-Overlay [85] extends such protocols in a framework which

increases the reliability of JXTA-based applications and supports group management

1An infohash is calculated as the hash of the �info� section of the original .torrent �le.
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and �le sharing. This framework di�ers from above P2P protocols because it introduces

the concept of peer group, one of its main features. The overlay network is divided into

hierarchical groups of nodes, which o�er a context for accessing services. Users are

organized into di�erent overlapping groups, so only members of the same group may

interact between them. Peers must join the group that o�ers the services in which they

are interested.

Brokers are special nodes which control access to the network, taking care of user

authentication as well as helping client nodes interact between them by propagating

their related information. Brokers are very important since they exchange information

about all client nodes, maintaining a global index of available resources, which allows

all nodes to �nd network services. Brokers also act as beacons used by client nodes

which have recently gone on-line to join the network.

Unfortunately, the design focus on JXTA-Overlay was completely concerned with

system performance, with the only exception of the user authentication. Users are

authenticated using pairs username and password before they join the network, which

are issued without any control.
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Since the main objective of this project is to run a P2P overlay over simctl for

future work and lab sessions, I will look for the maximum available implementations

that accomplish the requirements. I will try to �nd projects or ended software that are

faithful to the real algorithms, being able to run in a local network between di�erent

computers and that can be executed by console, that is, with no graphical user interface

(GUI).

In this chapter I will list some of the tested codes and software, explaining its

advantages and issues, and checking if they meet all the requirements.

3.1 CAN

CAN is one of the original four distributed hash table proposals, introduced concurrently

with Chord, Pastry and Tapestry. It was �rst proposed in 2001 at the University of

California by Sylvia Ratnasamy, Paul Francis, Mark Handley,Richard Karp and Scott

Shenker. But, although having a number of interesting properties, CAN is remarkably

unpopular compared to Chord and Pastry, with respect to implementations.

Googling an existing implementation of CAN will most likely yield nothing. All

few implementations are codes from Github and were developed by university students

as projects for Distributed Systems courses. Therefore, they are not faithful to the

original paper [78], since most of them are incomplete and limited to 3 or 4 peers.

Moreover, these codes are designed to run di�erent codes on di�erent computers, it is,

one machine creates the network and all the others work as clients. Therefore, if the

bootstrap node dies the network breaks, and this is not the behaviour of the original
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CAN. After testing most of those implementations, none of them meet the requirements

to be used on simctl.

CAN was used in large scale storage management system such as Farsite, Publius

or PIER project, but nowadays these projects are abandoned and their codes are not

free source.
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3.2 Chord

The Chord protocol dynamically constructs robust and scalable overlay networks that

map a given key to an active node. The MIT PDOS Chord implementation [83] has

served as a reference implementation of Chord, and over the years has accumulated

many tweaks and improvements.

When looking for a Chord implementation, several codes appear on GitHub and

other repositories, but since the original MIT PDOS Chord implementation code is

available, it was the �rst option to test. In this section only some of the tested im-

plementations are listed. I spent a long time trying to compile and test many other

implementations from GitHub. They are not listed here since they were toy projects,

not faithful to the Chord algorithm or were un�nished. Other implementations only

simulated the ring on a single PC, or were projects from university students for some

Distributed Systems courses that used some tricks to make its implementation easier.

For example, some implementations made use of a common list where all the nodes reg-

istered before joining the ring, so that all nodes consulted which nodes were available.

Most of the implementations were not documented and it was hard to test them.

Moreover, some of them were written in Erlang, Python or Golang programming lan-

guage. As I have no knowledge of these languages, I tried to take a look at their codes

and to install them, but I �nally gave up and kept looking for another implementation

that met the main requirements and work exactly as it is explained in the original paper.

3.2.1 MIT PDOS Chord implementation

This software [35] was developed at the MIT Laboratory for Computer Science in the

Parallel and Distributed Operating Systems Group, and the authors may be contacted

at chord@pdos.lcs.mit.edu. MIT PDOS Chord is implemented in C++ and works as

described in the original publication [83]. MIT Chord is completely decentralized and

symmetric, and can �nd data using only log(N) messages, where N is the number of

nodes in the system. The source code provides a �lestore tool called Cooperative File

System (CFS) that can be used to store �les in the Chord ring. The software breaks a

�le into blocks, names each block with di�erent key and then distributes them.

The code was written in 2001 and was under active development until 2008. Shortly

after it was abandoned. It was originally located at http://pdos.lcs.mit.edu/
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chord/ but later in 2012 it migrated to Github. In 2013 the authors communicated

that at that point no o�cial release of Chord was available, although the complete

development history could be found at the source repository.

There is a Chord HowTo [34] (last edited in 2012) that describes how to down-

load and compile the software. At that time the HowTo was complemented by some

snapshots, but nowadays all links are dead. To run the software some tools are required:

• SFSlite 0.8.16pre1 or newer.

• A recent GCC (4.0ish works well).

• Autoconf, automake, GNU make, etc.

• Berkeley DB v4.x.

As the source code was developed some years ago, it is strictly necessary to use the

recommended versions. Some tools that are installed in Ubuntu 14.04 have to be down-

graded, and some deprecated versions have to be manually installed from scratch. After

testing di�erent versions and getting lots of errors, the following tools are supported

and installed without errors:

• Gmp-4.1.4/gmp-4.2.3.

• Flex and Bison.

• g++4.1.2 and gcc-4.1.2.

• Berkeley DB 4.5.20.

• SFSLite-0.8.16/SFSLite 0.8.17.

Once we have installed the prerequisites, we should proceed to install the Chord

source code. It is available via Git [35] by running:

% g i t c l one g i t : // github . com/ s i t /dht chord−0.1

Once we have cloned the entire history we can select any version. In GitHub there is

only the code of the master branch, so I try the proposed version in the HowTo section

by using the command:

% g i t checkout 9 ab9b473afd75ea254a9671df9dd38ee61a95262

When trying to run the software, the compilation breaks and shows some errors.After

a long time looking for it on the Internet, I did not �nd anyone with the same problem
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using this code. The few webs that show their issues and errors related to the MIT

Chord were dated on 2010 or fewer.

While searching the error, I found a project [61] from the Computer Engineering

Department in Santa Clara University that tried to improve the code on August 2013.

In the annex, they mention which tools they used to run the MIT Chord, and the

version of the code, which is di�erent from the GitHub's:

% g i t checkout ea40c6690b

After reinstalling all the tools that they used and selecting their MIT Chord version,

another error appears. Although trying all the solutions proposed on Internet forums,

the code does not compile.

During my research I found an email repository [60] with conversations between

users and Dr. Emil Sit, one of the authors of the software. In one mail [81] from the

author written in 2012, he says: �I last developed this in 2008, so if you install Ubuntu

8.04, you may have some success compiling and linking. There is no active development

on this software and it is not supported in any way.�(sit@mit.edu). Then I found one

mail [74] from the user Tri Nguyen Phi Minh where he mentioned that he could

compile the software successfully using Ubuntu 8.02.

Probably all that errors are due to the operating system, since I tried to install it

on Ubuntu 14.04 (launched on 2014) and Ubuntu 12.04 (launched on 2012). I did not

try Ubuntu 8.04 since it de�nitely died on 2013 and it has no support [57].

In a last attempt I contacted by mail with a user who had sent emails to the author

in 2012, and with one GitHub user that contacted the author in GitHub in 2015. None

of them could install the software and �nally left. Therefore, this option is not feasible.

3.2.2 Open Chord

Open Chord [40] is an open source implementation of the Chord distributed hash table.

It is available for free under GNU General Public License (GPL) and was developed by

the Distributed and Mobile Systems Group of Bamberg University.

Open Chord provides the possibility to use the Chord distributed hash table within

Java applications by providing an API to store all serializable Java objects within the

distributed hash table. On the other hand, it provides a console-based experimentation
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environment to explore the functionality of a Chord network, allowing to create a Chord

ring between di�erent nodes and storing data between them.

The Open Chord console is intended for testing purposes in order to interact with

the Chord network. Using the console, one peer can create a Chord network. Then,

the other peers can join the network indicating the address and the port of a bootstrap

node (any peer of the ring). Once the ring is running, any peer connected to it can

store a key-value pair, where the key and the value are strings. The console provides

other functions to each node such as to consult all the data stored in itself, to obtain

the value corresponding to a speci�c key or to delete one pair of the network. Moreover,

each node can consult its �nger table to see its successors and predecessor peers, and

can leave the network when it wants.

In the con�guration �les several parameters can be con�gured such as the length in

bytes of displayed IDs or the number of successors of each node, it is, the number of

replicas that are created from a data value. By default, this value is set to 2, which

means that if one peer inserts some data it should be stored in 3 nodes (the responsible

node and its two successors). If one of them fail, during the next stabilization interval

the new responsible node that contains this data will replicate it, so that there are again

3 nodes that store the data.

There are two possibilities to create/join an Open Chord network:

• Local implementation (oclocal): the network is created in one Java Virtual Ma-

chine (JVM) using a single computer. Many local peers can be created with help

of the console.

• Socked-based implementation (ocsocket): each peer is located on a di�erent com-

puter or runs a di�erent console in the same computer. This implementation

facilitates reliable communication between Open Chord peers based on TCP/IP

sockets.

After viewing the Open Chord facilities, it looks interesting for the project. The

socked-based implementation could be used in order to create a Chord ring between

nodes located on di�erent virtual machines connected by a virtual local area network.

The source code is located at [41]. In the webpage we can �nd 6 di�erent releases,

being the most current one Open Chord 1.0.5 (updated in 2008). The downloaded �le
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provides a pdf document with a user's manual [67] that describes what is required to

and how to install and run Open Chord.

After installing the prerequisites, building and compiling the software, I �rst test

the local implementation which works in a single computer running in a JVM. All the

options and functions work well, so then I move to the socked-based implementation.

From one node I create the Open Chord ring and try to connect to it from a peer

located on another virtual machine of the same virtual LAN. When the second node

tries to connect to the ring remotely, several errors appear telling that it is not possible

to create the connection. After many frustrated tests, I decide to install the previous

release Open Chord 1.0.4. The same happens, nodes located in other computers can

not connect remotely to the ring.

After several tests, I execute two nodes on the main computer, but in di�erent

terminals. One node creates the ring and the other one can connect to it with no errors.

After that, I execute another peer on the other machine and it can connect remotely to

the ring without problems. It seems that one remote node needs at least two peers in the

ring to connect successfully. Then, I execute more peers in di�erent virtual computers

to test the Open Chord network.

Figure 3.1: OpenChord interface with available commands.

Open Chord 1.0.5 has some problems when one of the remote peers try to store data

in the ring, so during the rest of the tests I work with Open Chord 1.0.4. I test all the

options and the software works correctly. Each node can insert, remove or consult the

data stored on the network. Finger tables in each node are useful to understand the
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behaviour of the ring when a search is done. Each node can also consult its predecessor

and successors, as well as its NodeID. It is also interesting to see how the data is

replicated when one node is disconnected from the ring.

Despite these problems, the software can work with several nodes and is quite stable.

Looking at the web, it seems that this software was also abandoned, since there is no

activity since 2009, so no new release will be launched.

This software meets the main requirements proposed in my objectives: it can work

with no GUI, implements the Chord algorithm faithfully to the original paper and works

over a local network with several computers. Then, I will try to install and use it over

simctl (Section 4.1).

3.2.3 Chordial

Chordial [6] is an open source implementation of MIT's Chord DHT algorithm in

the Erlang programming language. It was last updated on 2009 by the GitHub user

mattwilliamson but it is still under pre-alpha development, so it looks that this

software was also abandoned.

Chordial allows key lookups over real networks of computers, which makes it inter-

esting to test. The maximum number of nodes in a chord ring is 2m where m is the

number of bits in the hashing algorithm used. As Chordial uses sha1, which is 160 bits

in length, it allows for 2160 nodes. The maximum number of keys is also 2m. It seems

that Chordial is quite faithful to the original Chord algorithm, watching for unrespon-

sive/dead and new peers, rebalancing �nger tables in an e�cient way and replicating

keys to predecessors when needed.

After downloading and compiling the code I try to execute some commands in the

Erlang shell to stablish a Chord network between 3 nodes, each one running in a di�erent

machine. The software creates the network and it immediately shows the successor and

predecessor in each node. It shows too much information and is not quite intuitive.

Moreover, it only allows to look up keys, so it does not allow to insert data such as

�les or strings in a key-value mode. It is possibly due to the fact that the software was

still under pre-alpha development, so it is un�nished. Then, it is not a good option to

implement over simctl, since it is unuseful to study the behavior of Chord algorithm.
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3.2.4 JChord

JChord [22]is a simple implementation of Chord protocol written in Java by the GitHub

user Scorpiovn in 2008. JChord was developed for the purpose of understanding,

teaching, simulating, and developing new algorithms over Chord.

This implementation is able to simulate a Chord ring with thousands of peers and

draw an image of the ring with all peers, showing with lines in which nodes the infor-

mation is stored. The drawback is that the original lookup and stabilization operations

are implemented in a single VM and a single thread in a single PC, so it cannot run

over several machines in a real network. Therefore, this implementation does not meet

the main requirements to implement it over simctl.

3.2.5 Chordjerl

Chordjel [7] is an Erlang implementation of the Chord distributed hash lookup protocol.

It was written in Erlang programming language by the GitHub user jashmenn and,

despite being in Pre-Alpha status, it was last updated in 2009, so this project has been

also abandoned. The goal of Chordjerl is to be a reusable Erlang implementation of the

Chord distributed key lookup protocol.

This code has no documentation or explanation about how to use it, so I spent a

long time trying to test it without success. Chordjerl provides support for just one

operation: given a key, it maps the key onto a node. It seems that it does not have any

function or console to interact with the Chord network, but it is a library that allows

to reuse its functions to create other projects.

As I have no knowledge of Erlang programming language, I preferred to keep looking

for another implementation instead of reusing or modifying this project.

3.2.6 jDHTUQ

jDHTUQ [23] is a peer-to-peer DHT system based in Chord algorithm, but built to

generalize the implementation of P2P DHT system. Its two fundamental services are

to put and get resources. The software of the project is available on SourceForge, and

was last updated in 2014.

After downloading and decompressing the �le, several directories are created. They

provide all the libraries needed for well function of jDHTUQ, as well as some con�gu-
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ration �les in XML format. jDHTUQ is also in JAR format, so the source code is not

available. It is also provided an un�nished pdf document with some documentation of

jDHTUQ. After taking a look at the documentation I download and run the software.

DHTUQ makes use of a GUI and cannot be used from a console, so it cannot be

used in simctl. However, it could be a useful tool for learning, so I will test it.

Figure 3.2: jDHTUQ in Structure mode.

Before executing the application, some parametres must be set in the con�guration

�les. When running jDHTUQ, a window with two options is shown: Structure and

Network. These are the two modes of executing the application, and they depend on

which classes handle the communication.

• Data structure. Several nodes can be executed on a single host. The GUI is used

to plot a circle and to represent each peer on the ring. It allows to insert (put) or

retrieve (get) �les from di�erent nodes.

• Network. Using this mode, only one node can be executed in a host. It works over

a real network using the UDP protocol for lookup services and TCP for storage

services.

First I try the Structure mode. When clicking "Structure", a new window appears

with an empty circle and some buttons. It allows the user to add nodes to the network

one by one by giving a name for each one, to create a determinate number of nodes, or

to create several nodes by reading them from an existing �le. Once a name is given (a
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name, an IP address, etc) it obtains the hash of the name to create its identi�er. So I

add 10 nodes to the network, giving as a name an IP address. It immediately orders

the nodes by its identi�er. Then, from one node, I test the put option. It allows to

upload �les to the network, which will be later stored in its corresponding node. The

hash of the �le is calculated and then it is stored in the node which nodeID is equal or

immediately greater than the hash of the �le. The hash of any �le can be generated by

the user, so that he can see the identi�er of each �le and compare it with the nodeID of

the node that is storing the �le. When a �le is uploaded, a new folder with the name

of the storing node is created in jDHTUQ directory. All the uploaded �les are stored

in the folder of their responsible node. When the put or get options are used, some

coloured lines are depicted to represent which nodes are consulted (�nger tables) and

which node will store the �le.

After that, I try the Network node. Before running jDHTUQ, I edit the con�guration

�les again to change the execution mode. I execute it in two di�erent machines but they

cannot �ns each other. It seems that this second option does not work. Moreover, the

documentation is very poor, and it is not explained what this function does. Therefore,

this software is only useful to simulate several nodes on a single machine and observe

how the Chord algorithm stores and retrieves data.
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3.3 Pastry

Pastry, along with Chord, was one of the most popular routing technique for distributed

hash tables among academics, since it appeared in a large amount of published papers.

But if we mean popular among implementers, the picture changes. When P2P evolved

to �le sharing, other overlays such as Kademlia came out on top due to its much less

complex design. Then, most of P2P applications where based on Kademlia, while Pastry

was forgotten in the academic �eld. For this reason, there are a very few implementa-

tions of Pastry.

The most cited and used Pastry implementation is FreePastry, which is a free Pastry

implementation developed by many members of di�erent Universities and institutions,

including the original Pastry's designers. This free Pastry implementation is placed

on www.freepastry.org. Pastry's authors also designed di�erent projects based on

Pastry, such as SCRIBE, PAST, SQUIRREL, SplitStream, POST or Scrivener. Other

universities also developed some projects based on Pastry such as PASTA, Herald,

Pastiche or DPSR. But all the previous projects were developed in the early 2000,

and most of them were abandoned and retired from their corresponding websites, so

their source code and documentation is no more available. However, FreePastry is still

available and well documented, and a free software release from 2009 can be downloaded.

Apart from FreePastry, there are very few Pastry implementations available on the

network. Searching in GitHub and other repositories, some projects use FreePastry

facilities to develop chat applications, and other implementations are un�nished or are

not faithful to the real algoritm. Other projects are based on FreePastry and add some

enhancements, or others such as BTPastry are a torrent search engine based on Pastry.

And �nally, there are a few Pastry implementations that look interesting but they are

not documented at all and do not have any �le with a description or a small explanation

about how to use it.

What I am looking for is an implementation capable to run in a network between

di�erent machines and able to publish some data in the Pastry network, in order to

analyse the sent packets and to learn about Pastry.
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3.3.1 FreePastry

Pastry [80] is a generic, scalable and e�cient substrate for peer-to-peer applications.

Pastry nodes form a decentralized, self-organizing and fault-tolerant overlay network

within Internet. This project [47] was developed in 2001 by several members from

di�erent institutions, such as MPI-SWS, Rice University, Purdue University, University

of Washington and Microsoft Research. Then, from that project, two implementations

of Pastry were born and are currently available for download: FreePastry from Rice

University and SimPastry/VisPastry from Microsoft Research.

FreePastry [15] is an open-source implementation of Pastry intended for deployment

in the Internet, and a generic, scalable and e�cient substrate for peer-to-peer applica-

tions. Initially, it was intended as a tool that allows interested parties to evaluate Pastry,

to perform further research and development in P2P substrates and as a platform for

the development of applications. Later, it evolved to provide a robust and fully secure

implementation that is suitable for a full-scale deployment in the Internet.

FreePastry is the most popular and used Pastry implementation, and it has been

used for the development of several projects. FreePastry is really well documented,

providing several tutorials [17] and some lessons to write the minimal code to create

a pastry ring and start learning how to use it. The most important capability of

FreePastry is that after compiling the code, we can either run multiple nodes on a

single computer (but in separate processes) or if we have multiple computers, we can

launch them on di�erent machines as long as the computers can communicate with each

other via IP. So it could be used in simctl to create a network between the di�erent

virtual machines.

After taking a look at the documentation, I download the latest available release

FreePastry 2.1 that is dated on March 2009. When downloading FreePastry, two �les

are provided: the binary distribution and the source distribution. Since I do not need to

modify the library, the binary distribution will be enough to test it. So I take a look at

the tutorials to test the FreePastry-2.1.jar binary version. First of all, I follow a provided

tutorial that shows how to create and run multiple FreePastry nodes within the same

JVM. I run the given example code and it successfully creates a Pastry network with

10 nodes. FreePastry also provides a Discrete Event Simulator, and some tutorials that

show the user how to simulate an application on a medium sized network (<100.000
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nodes) with a minimum of complications in the code. It also can use a latency matrix

to more accurately simulate applications. But I am interested in running FreePastry in

a local network between di�erent machines, so I run another code in an Ubuntu 14.04

virtual machine. The code is provided in a tutorial that shows the user how to create

and run a FreePastry application. It allows to send and receive messages through the

network. When it is started, the node tries to connect to an existing network, but as it

is the �rst peer, it creates the network.

Figure 3.3: FreePastry capture. First node.

Then, from another Ubuntu 14.04 virtual machine I try to connect to the existing

FreePastry network by using the �rst node as the bootstrap node. A new node is created

in this second virtual machine and it sends some messages to the node created before.

Figure 3.4: FreePastry capture. Second node.

Finally, from a third virtual machine, I create another node using the previous peer

as the bootstrap node. This new node sends some messages to the two existing nodes

of the FreePastry network.

So, after this simple test, it seems that FreePastry works right in a local network be-

tween three di�erent virtual machines, and it runs in console-mode with no GUI. Then,
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Figure 3.5: FreePastry capture. Third node.

it can be a good implementation to use on simctl. As FreePastry is the most used

Pastry implementation, there are some big projects or applications that use FreePastry

libraries such as https://las2peer.org/, but they make us of a GUI and cannot

be tested on simctl. However, it could be possible to create a simple code using the

FreePastry library to create a network between di�erent machines, and allowing each

node to store data in the network.

3.3.2 PAST

PAST [68] is a large-scale peer-to-peer archival storage utility that provides scalability,

availability, security and cooperative resource sharing. Files in PAST are immutable

and can be shared at the discretion of their owner. PAST is built on top of Pastry, a

generic, scalable and e�cient substrate for peer-to-peer applications. It was designed

by Peter Druschel (Rice University) and Antont Rowstron (Microsoft Research), the

authors of the original Pastry paper [80].

The PAST system is composed of nodes connected to the Internet, where each node is

capable of initiating routing client requests to insert or retrieve �les. Optionally, nodes

may also contribute storage to the system. The PAST nodes form a self-organizing

overlay network. Inserted �les are replicated on multiple nodes to ensure persistence

and availability.

A free implementation of PAST was also developed at Rice University in the FreeP-
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astry project, which is called Past [45]. Past is a FreePastry's Distributed Hash Table

(DHT), and it provides a tutorial [46] that shows the user how to get it up and running.

To use Past, two additional jars binary �les have to be included: xmlpull_1_1_3_4a.jar

and xpp3-1.1.3.4d_b2.jar. These �les are provided in the lib directory in the FreePastry

source distribution. After getting these binary �les, I take a look at the tutorial and

run the example code. It creates 5 nodes on a single machine and each one stores and

retrieves one string.

Figure 3.6: Past capture. FreePastry's DHT with 5 nodes on a single machine.

Although the example executes various nodes on a single machine, it can also be

used to store data between nodes located on di�erent machines.

FreePastry Demo

FreePastry Demo [16] is a simple FreePastry-based application. It was developed at

University of Zurich for a lecture on Distributed Hash Tables in a Communications and

Distributed Systems course. The application uses the FreePastry 2.0 library and uses

Past to store data in the network. It implements a GUI to interact with the network,

allowing each node to insert data and see which data it stores. The application can run

either with real TCP/UDP sockets or over an emulated network, and both source code

and binary �le are available to download.
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Figure 3.7: FreePastry Demo capture. Network with 6 nodes running on a single ma-

chine.

This is an example of how we can create a simple application with few lines of code

using a good implementation of Pasty. However, due to its GUI, this application is not

useful for simctl.
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3.4 Tapestry

Along with Chord, Pastry and CAN, Tapestry was one of the �rst structured overlay

networks proposed in 2001. Since then, several structured protocols have been pro-

posed, including Kademlia. On top of these overlays, researchers have proposed numer-

ous distributed applications, including storage and backup systems, multicast systems,

distributed spam �lters, resilient routing networks, mobility support and anonymous

routing networks. Although Tapestry had some advantages, it was not easy to imple-

ment, so developers preferred to implement other structured overlays. Apart from the

original Tapestry project, there are no Tapestry implementations on GitHub or other

repositories. If we look for Tapestry implementations in GitHub, we �nd hundreds of

projects related to Apache Tapestry, which is an open-source framework to develop Java

web applications, but not the Tapestry overlay.

Tapestry provides an overlay routing network that is stable under a variety of net-

work conditions. This provides an ideal infrastructure for distributed applications and

services. There are some applications based on Tapestry such as OceanStore (distributed

storage utility on PlanetLab), Mnemosyne (steganographic �le system), Bayeux (self-

organizing multicasting application) and Spamwatch (decentralized spam �lter).

3.4.1 Tapestry project

Tapestry [86] is an overlay network infrastructure designed to provide fault-resilient

delivery of messages between overlay nodes and e�cient location of objects given their

IDs. The Tapestry project started in March 2000 and was developed at University

of California at Berkeley Computer Science Division. In 2004 the Tapestry project

was abandoned, and it was replaced by Chimera, the successor of Tapestry. However,

Tapestry source code is available on Chimera project website [5]. There is an old message

from the authors that says that the active development on the Tapestry protocol has

stopped, and they are no longer supporting the software, since it was written for Java

JDK 1.3. The latest release is Tapestry 2.0.1, released July 2004.

Although the project was abandoned twelve years ago, I download the compressed

�le with the last Tapestry version in order to try to run it. The �le contains some folders

with the source code, as well as some html �les from the original Tapestry website. It
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provides some documentation and a basic guide with the installation steps. It also lists

the requirements to run the code:

• Sun JDK 1.3 or a compatible Java Development and Runtime environment. The

IBM Linux JDK runtime environment and the Jikes compiler are recommended.

• A version of the UNIX make program, used in compilation.

• The Cryptix JCE library.

• The Java interface libraries for the BerkeleyDB database.

After a few days trying to install the requirements and the Tapestry code on Ubuntu

14.04 and Ubuntu 12.04 without success, I give up. As it was abandoned a long time

ago, it may be better to try to run Chimera project, the Tapestry's successor.

3.4.2 Chimera

Chimera [5] is a light-weight C implementation of a "next-generation" structured P2P

overlay network that provides similar functionality as pre�x-routing protocols Tapestry

and Pastry. Chimera gains simplicity and robustness from its use of Pastry's leaf sets,

and e�cient routing from Tapestry's locality algorithms. Chimera also provides e�cient

detection of node and network failures, and reroutes messages around them to maintain

connectivity and throughput. This project was developed at the CURRENT Lab at

University of California at Santa Barbara.

The last release of Chimera is v1.20, last updated on February 2006, and it is

available as a C library suitable for bundling with user applications. The compressed

�le provides some �les with an extended documentation about Chimera, as well as

Javadoc and a user's guide for developers. After taking a look at the documentation,

the only requirements to install the library is autoconf tool and gcc. Although Chimera

is quite old, the compilation was straightforward. Once the library has been successfully

installed, I proceed to run the provided tests.

Chimera provides a folder with several tests ready to run, but any documentation

about what they do or how to use them is provided. One of the provided tests is a

chat based on Chimera, but it only works between several consoles on a single machine,

not on a real network. After some time of testing, it is not possible to run Chimera

tests between di�erent machines, but it is supposed that Chimera can do it. Although

it seems a good library to develop applications, it is not worth to write a code to use
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Chimera between several machines on simctl. It is better to use a newer library with

current support and that implements some of the main P2P overlays that are usually

studied.

3.4.3 OceanStore

OceanStore [71] is a global persistent data store designed to scale to billions of users.

It provides a consistent, highly-available, and durable storage utility above an infras-

tructure comprised of untrusted servers. The OceanStore project was developed at

University of California at Berkeley Computer Science Division by the developers of the

original Tapestry, and it uses the original Tapestry library. Tapestry provides the object

location and routing functionality that OceanStore requires while meeting its demands

for consistency and performance.

It exists an o�cial website [38] which contains an overview and some information

about the project. An OceanStore prototype called Pond [79] is available on Source-

Forge, and both the source code and binary releases are available. Pond prototype is a

working subset of the vision presented in the original OceanStore paper [71]. Although

many important challenges remain, it is su�ciently complete to support applications.

The latest release was last modi�ed on 2003, so it seems that this project was also

abandoned. As it says on the website, Pond should run on any Linux operating system

with a Java 1.4.1 jdk, so I download the �le to try to install and run it on Ubuntu 14.04.

Some documentation and tutorials are provided in the SourceForge website [39].

After taking a look at the documentation, I proceed to test Pond. The main script

used to start up OceanStore nodes is run-experiment, and it can be executed without

a previous installation. This script reads a con�guration �le which describes what type

of OceanStore nodes have to be created and where to run them. run-experiment can

con�gure and run hundreds of virtual OceanStore nodes on dozens of remote machines.

It coordinates sharing information across con�g �les, pushing data to remote sites,

monitoring remote processes, and cleaning up all sites afterward.

After some time working with the scripts any result is obtained. There is no option

to execute each node in a di�erent machine and to create a network between them. I

thought that Pond would be like a client software that allows the user to join the network

and share �les between several machines using Tapestry as the routing algorithm. But,

as it is a prototype, it was in a development status and developers were interested in
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evaluating its performance against a variety of benchmarks in order to validate the

OceanStore design and compare its performance with more traditional approaches. So

this option is ruled out to be used in simctl.
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3.5 Kademlia

Kademlia is a good example of a basic DHT, because unlike Pastry or Chord algorithms,

it is extremely simple. There are no explicit routing update messages, and the internal

state it maintains is fairly straightforward and easy to understand. Lookups are also

accomplished in a very e�cient manner.

Kademlia has been used in many household software applications such as LimeWire,

BitTorrent, Overnet, EDonkey2000, eMule and uTorrent, to name a few. Nowadays,

most of the popular DHT networks are based on Kademlia, such as Mainline DHT

(Bitorrent), and they are used for peer to peer �le sharing. On these networks the key

is the identi�er of the torrent �le and the values are the IP address of the clients sharing

the torrent.

Due to its useful applications, most of the free implementations that are available

on the Internet are libraries to facilitate the creation of new projects or clients for

�le sharing applications. It is di�cult to �nd some implementation that provides a

console-based demo to interact with the algorithm and made for learning and research

purposes.

3.5.1 OpenDHT

OpenDHT [69] is a C++11 Kademlia distributed hash table implementation written

by Savoir-faire Linux Inc., a Free Software consultant company based in Montreal.

OpenDHT is a free and open library implementing a distributed hash table and incor-

porating several innovations. This software is actually under constant development and

maintenance.

OpenDHT is simple to use, reducing the cost and di�culty of developing applications

that bene�t from it. With a few lines of code, it allows to start a new node and connect

it to the network through a known bootstrap node. It also allows to store key-value

data on the network, and then to retrieve the value of a given key.

OpenDHT also provides a tool to interact with the node without having to write a

new code. dhtnode is a command-line utility included with OpenDHT to run, control

and monitor an OpenDHT node:

dhtnode [−p loca l_port ] [−b bootstrap_host : port ] [− i ] [−v ]

Where:
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• -b allows to specify a bootstrap node address.

• -p allows to specify the local UDP port to bind.

• -i will generate a DHT "identity" with the node (RSA key pair, and certi�cate

published on the DHT). Required to perform cryptographic operations (encryp-

t/sign values).

• -v will enable debug logs for OpenDHT to standard output.

It also provides some commands to put or get values for a key, and to listen for

value changes at a given key. This tool looks interesting for testing the software and

the kademlia network. At this point, I try to test OpenDHT in one Ubuntu 14.04

virtual machine before implementing it on simctl. OpenDHT GitHub webpage pro-

vides a well-documented tutorial about how to build and use the library. It lists some

requirements that have to be installed before OpenDHT:

• GnuTLS 3.1+, used for cryptographic operations.

• Nettle 2.4+, a GnuTLS dependency for crypto.

• Readline, an optional dependency for the DHT tools.

• Cython, an optional dependency for the Python bindings.

• msgpack-c 1.0+, used for data serialization.

After installing some requirements, I try to build and install msgpack-c 1.3. At �rst,

when trying to compile, an error appears: Could NOT �nd GnuTLS: Found unsuitable

version "3.2.11", but required is at least "3.3" while the tutorial said that GnuTLS 3.1+

was required. In the Ubuntu 14.04 repository, the last available version is GnuTLS

3.2.11, and GnuTLS 3.3.8 is not available until Ubuntu 15.04 [19]. So, instead of

downloading a new Ubuntu 15.04 virtual image, I decide to edit the �les con�gure.ac and

CMakeLists.txt changing the requirements from GnuTLS 3.3 to GnuTLS 3.1. After that,

the software compiles successfully and all the requirements have been installed. But

then, when trying to compile OpenDHT, it breaks due to allocation memory problems.

The virtual machine I was using had 1800MB of memory, so I stop it and expand the

RAM to 3072MB. The same problem occurs. Then, I expand the memory to 4096MB

of RAM, but the compilation breaks again. Since OpenDHT is in current development,

maybe it is an internal problem of the software.

After that and before looking for another solution, I go deeper in the documentation

and the code, and it seems that OpenDHT only acts as a client, connecting to an
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existing Kademlia network through a bootstrap node on the Internet. So OpenDHT

cannot create a Kademlia network. Therefore, it is not possible to use it to create a

local Kademlia network between several machines in a local area network, so it will not

be useful for simctl.

3.5.2 Pydht

Pydht [52] is a python implementation of the Kademlia DHT data store written by the

GitHub user isaaczafuta, and it was last updated on 2012. This implementation

allows a node to create a kademlia network. Then the other peers can connect to the

network by entering the address of one bootstrap node already connected.

After downloading the software, �rst I test it on a single PC and it works. It allows

the nodes to insert data in the network in key-value mode. Once the data is stored

on the network, the console returns the value of a given key. But nothing else, it does

not allow the user to know which node is storing the data, or who the predecessor and

successors of a peer are. Moreover, it does not work on a local network running each

node in a di�erent machine. Therefore, this software will not be useful for the project.

3.5.3 TomP2P

TomP2P is a Kademlia-based DHT implementation written in Java. The �rst TomP2P

version was created in 2004 by Thomas Bocek and it has been improved since then.

The code of this library is located at GitHub [56] and was last updated on May 2016,

so it seems that it is in current development. At the o�cial webpage [55] we can �nd

all the documentation and releases of TomP2P.

TomP2P is a P2P library and a distributed hash table implementation which pro-

vides a decentralized key-value infrastructure for distributed applications. TomP2P

stores key-value pairs in a distributed manner. To �nd the peers to store the data in

the distributed hash table, TomP2P uses an evolved Kademlia iterative routing to �nd

the closest peers. The documentation provides some code examples that show how to

use the library in order to create a network and join di�erent peers.

After taking a look at the documentation, it seems that TomP2P is a good imple-

mentation, used in several projects and can work on the Internet. Therefore, it can

work on a local network between di�erent computers.
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I download the code from GitHub, which was modi�ed some months ago, instead

of the last release in the o�cial webpage, TomP2P 5.0-Beta8, that was published on

May 27, 2015. The TomP2P source code in the Git repository contains eclipse speci�c

con�guration �les to test it on eclipse, but it can also be built by using Apache Maven

Project. So I install Apache Maven Project and then I try to build the library on

Ubuntu 14.04. The library compiles without problems but some of the example codes

show some errors. Instead of writing some code to test the library, I decide to look if

there is any project that uses the library to interact with the network.

After a long research I �nd Hive2Hive, an open-source library built on top of

TomP2P, that provides a console-based tool for testing.

3.5.4 Hive2Hive

The Hive2Hive [20] library project is an open-source library written in Java that arose

from a course challenge task project at the Communication Systems Group at the

University of Zurich, Switzerland. It is built on top of TomP2P and is focused on

secure, distributed P2P-based �le synchronization and sharing.

Hive2Hive allows the users to store or share �les on the network, so that these �les

are distributed among the other nodes. Hive2Hive o�ers the same basic functionality

known from popular synchronization services such as Dropbox or Google Drive. In

addition to providing the library, Hive2Hive provides a console-based tool to test the

project. This looks very interesting to use in simctl, so I download the last release

1.2.2 updated on March 2015. The console-based tool is provided on a Java ARchive

(JAR) �le, so it can be executed by the command:

java −j a r org . h ive2h ive . c l i e n t −1 . 2 . 2 . j a r

After running the previous command, the console starts with some intuitive menus.

It allows the user to create a new network or to connect to an existing network by

introducing the IP address of the bootstrap node. Once the network is running, the

user has to log in, since the central element of the user management in Hive2Hive is

the user pro�le. This user pro�le contains all relevant information about a user in the

network: the User ID, the User Encryption Key Pair, the User Authentication Key Pair

and the File Tree. When the user has logged in, several options are showed. The user
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can add, update, download, move or delete a �le stored at the network. It can also

share a folder with another user by indicating its User ID.

I execute the command-based tool in 2 di�erent Ubuntu 14.04 virtual machines.

One of them creates the network and logs in with a User ID. The other one connects

to the same network by using the IP address of the �rst virtual machine as a bootstrap

node. After a successfully connection, it logs in with a di�erent User ID. After that, I

try to upload �les to the network and it works well, but it is not able to share a folder

with other users. There is a problem when giving reading and writing permissions to

the other user in a shared folder. Then, I restart both consoles and try to use the same

User ID in both peers. When one peer adds a �le, the other peer with the same User

ID downloads the �le instantly. So it seems that the distributed storage, the network

and the Kademlia iterative routing to �nd peers work well, although there is a problem

in sharing �les between users with a di�erent User ID. So it can be useful for a user

that stores �les on the network and is able to get them in any computer by joining the

network and login in with its User ID.

Figure 3.8: Hive2Hive demo main menu.

Therefore, it could be an option to implement on simctl. For example, in order to

observe the Kademlia behaviour, a network with several nodes could be created. Then,

from one peer, the user could log in and upload some �les into the network. After
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that, from another node, the user logs in with the same User ID and all the �les are

downloaded. While this is done, the network can be analysed to observe which packets

are send and which peers store the �les.

3.5.5 MaidSafe

MaidSafe-DHT [30] is a Kademlia-like Distributed Hash Table (DHT) library written

in C++ that utilizes Kademlia-like routing tables for scalability. This library was

deprecated and replaced by MaidSafe-Routing, another library focused on routing. But,

despite being deprecated, its source code is still available on GitHub.

All the MaidSafe libraries are part of a super-project called MaidSafe [32]. Maid-

Safe is a company that is designing and implementing what they call the SAFE (Securre

Access For Everyone) Network. This network is a secure and decentralized data man-

agement service that is built by sharing the unused computer resources of the individual

network participants.

This SAFE Network is built from the MaidSafe project and its libraries. The Maid-

Safe project provides some APIs and several libraries for routing, encrypting, etc. that

can be used in any project, but I am only interested on the deprecated MaidSafe-DHT

library, since it is based on Kademlia. The MaidSafe-DHT project also provides a

KademliaDemo executable that allows to create a network with several nodes and share

�les between them using the kademlia algorithm. So I will try to install the library and

test its KademliaDemo.

Figure 3.9: Kademlia demo main menu (screenshot from MaidSafe-DHT documenta-

tion).
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This kademlia demo looks interesting to implement over simctl in order to create a

kademlia network between several nodes and analyze its behavior. To build and install

MaidSafe-DHT some tools are required:

• gcc-4.8 or newer.

• CMake (minimum version 2.8.4) to build the project.

• MaidSafe-Common library [29].

• MaidSafe-Transport transport library [33].

After installing gcc and CMake, now we must download the source code of MaidSafe-

Common, MaidSafe-Transport and MaidSafe-DHT libraries. Maidsafe-Common library

provides many components that are widely used by other MaidSafe libraries, so it must

be built and installed before anything else.

In the documentation of MaidSafe-Common it says that currently, this library should

only be built as part of the MaidSafe super-project. The source code has been modi�ed

to use it with the super-project, so it cannot work with MaidSafe-DHT. The current

source code dates on 2015, so I try to download a previous version of the code last

edited on 2012 (v0.11.00), despite of being un�nished. Several errors appear during

the compilation of MaidSafe-Common. Without this library it is not possible to install

MaidSafe-DHT and, therefore, it is not possible to test the KademliaDemo.

As MaidSafe is based on Kademlia, it can be interesting to test the full project. In

the o�cial website [31] there is an alpha release of SAFE launcher. It is a gateway to the

SAFE Network that enables users to connect to the network, authorize third party apps

to connect on their behalf, and also provides access to SAFE websites. So I download

and install it. When executing SAFE launcher, a new window with a graphical user

interface starts. It is the client graphical application for joining the SAFE Network,

and there is no version that can run in console mode with no GUI. Therefore, it cannot

be used in simctl.
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Figure 3.10: SAFE launcher capture.
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3.6 JXTA

JXTA [25] is a programming language and platform independent Open Source protocol

started by Sun Microsystems for peer-to-peer networking in 2001. The JXTA tech-

nology is a set of open protocols that enable any connected device on the network to

communicate and collaborate in a P2P manner. This JXTA technology can be used

to create P2P applications based on Java, although C and C++ versions are currently

available. As it is an open community, developers can contribute to create extensions

of JXTA protocols.

JXTA peers create a virtual network where any peer can interact with other peers

and resources directly, even when some of the peers and resources are behind �rewalls

and network address translations (NATs) or on di�erent network transports. For the

communication between peers is used a group of asynchronous protocols based in the

model request/reply. The di�erent JXTA protocols standardize the manner in which

peers:

• Discover each other.

• Communicate with each other.

• Cooperate with each other to form secure peer groups.

• Advertise network resources.

3.6.1 JXTA/JXSE

JXSE [24] is the name of the Java programming language implementation of JXTA.

The JXSE website o�ers programmer's guides and tutorial codes. The last available

release is JXSE 2.7 and was launched on 2011. It seems that the JXTA project has been

progressively abandoned. In November 2010, Oracle o�cially announced its withdrawal

from the JXTA projects, and the JXTA community forum has no activity since March

2014. Even so, I download the last JXSE version to test it.

The documentation of JXSE 2.7 contains some tutorials that provide links to down-

load binary �les and source codes for testing, but all links are dead. So any provided

tutorial can be tested. The link of Javadoc provided in the o�cial website is also dead.

So, instead of writing some code to test JXTA, I will try to download any application

developed with JXTA available on SourceForge or GitHub in order to see what type of

applications can be built.
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In SourceForge there are some applications developed with JXTA such as chat appli-

cations, frameworks to develop P2P applications or �le sharing systems. After testing

some un�nished projects, I �nd one working project.

Distributed Storage Leasing (DSL)

DSL [11] is a simple application built based on the JXTA project. Its purpose is to back

up/replicate �les from one machine to others, and later on retrieve those �les. When

a user uploads a �le, he can select to which nodes he will send the �le, so the �les are

stored on other nodes of the network. By this way, if one user uploads a �le from one

node and then switches o� the machine, the �les still remain on the network and can

be downloaded from any machine by joining the network and logging in with the User

ID and password. A node will not be able to read the �les that it is storing if they are

not from its property, since �les can be encrypted before sending. So it can be seen

as a distributed storage system such as Dropbox, but where the �les are stored in the

selected nodes instead of in Dropbox servers.

To test the application, at least two machines should be running within a local

network. So I run the application in two Ubuntu 14.04 virtual machines. When we

�rst run the application, a JXTA con�guration window pops up. In this con�guration

window we must register each node with a username and a password, and then we must

provide a port number. We can also decide if we want to be a rendezvous node or

not, and we can add other rendezvous nodes by inserting its IP address and TCP port.

JXTA applications usually connect to the Internet to download rendezvous lists, but if

we work with an isolated local area network, we should add them manually.

Once the con�guration has been done, the DSL GUI starts. The main tabs allow the

user to send and to search and retrieve �les. DSL is implemented as a Group Service,

so when a user sends a �le, DSL sends out a sending request to the group. After that,

all the available nodes respond and are listed. The user can select the peers to which it

wants to send the �le. To retrieve a �le, the user has to enter the �le name and all the

peers that have it will respond. The progress tab displays receiving and transferring

progress, and the user can cancel any in-progress transfer. The con�guration tab allows

the user to specify the Maximum disk space storage for public �le, the maximum time

to live, and a few other options.
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Figure 3.11: Distributed Storage Leasing capture. Two peers in a local network.

The application works pretty well, and it is a secure way of storing �les, being sure

that any peer of the network that stores them will be able to open these �les. But it is

only an example of an application that can be built with JXTA. It is not very useful to

understand how JXTA works. Moreover, as most of the JXTA applications, it makes

use of a GUI, so it cannot be used in simctl.

After this experience, JXTA is ruled out to develop an application for a later use

over simctl. Firstly, it is quite complex even for setting up simple P2P sockets. Then,

documentation is really poor and none of the tutorials can be followed to learn how

to use JXTA, since all links are dead and testing codes are not available. And �nally,

there is no more development on it and the JXTA project is abandoned.
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3.7 Edonkey

The eDonkey Network, also known as the eDonkey2000 network or eD2k is a "semi-

decentralized", mostly server-based, peer-to-peer �le sharing network built to share big

�les among users, and to provide long term availability of �les. It was developed in

2000 by US company MetaMachine.

eD2k is a semi-centralized network, as there is not any central hub for the network

but hundreds of servers, and �les are not stored on a central server but are exchanged

directly between users based on the P2P principle. Unlike earlier P2P �le-sharing

programs such as Napster, eDonkey2000 featured "swarming" downloads, it is, clients

could download di�erent pieces of a single �le from di�erent peers utilizing the combined

bandwidth of all of the peers instead of being limited to the bandwidth of a single peer.

The server part of the network is proprietary freeware. There are two families of

server software for the eD2k network:

• The original one from MetaMachine, written in C++, closed-source and propri-

etary, and no longer maintained.

• eserver, written from scratch by a person Lugdunum [28] in pure C, also closed-

source and proprietary. However, it was available free of charge and for several

operating systems and computer architectures. Almost all existing eD2k servers

ran this server software.

On September 2005 eDonkey o�cially closed its doors, but the eD2k network sur-

vived, since it was still used by other clients such as eMule [1] or Lphant [26] (o�cially

dead). Currently, the eD2k network is not supported by any organization (in the past

it was supported by the MetaMachine Inc.) and development and maintenance is being

fully provided by its community and client developers. Although BitTorrent has over-

come eDonkey network as the most widely used �le sharing network on the Internet,

eD2k is still used by some clients that have survived the passage of time such as eMule.

3.7.1 aMule

aMule [1] is a free peer-to-peer �le sharing application that works with the eDonkey and

Kad networks, o�ering similar features to eMule but supporting multiple platforms. It
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appeared in 2003 and comes from IMule, the �rst attempt to bring the eMule client to

Linux.

aMule can be installed as a monolithic client, with the complete GUI and full options,

or can be run in a modular way, where the core functionalities of the program are started

using the aMule daemon and the software behaviour is controlled through one of the

three di�erent interfaces:

• aMuleCMD, the command-line modular client.

• aMuleGUI, the regular GUI of the software.

• aMuleWEB, the web interface provided by the aMule core built-in Webserver.

It can work with the eD2k and Kad networks on the Internet. Kad is a Kademlia

network developed by the eMule Project in order to overcome the reliance on central

servers. To connect to the semi centralized eDonkey network, aMule has a �le called

server.met that contains a list of servers. Each server provides information about �les to

the users connected to it. To connect the Kad serverless network, aMule has a �le called

nodes.dat which stores details about known Kad nodes, and this is used to bootstrap

the Kad network when aMule starts. These �les have to be uploaded periodically, since

these nodes change with the time.

The problem is that aMule is rarely used nowadays, since a large amount of the eD2k

servers closed due to legal problems and most of the clients migrated to BitTorrent-based

networks. However, in May 2016 the o�cial web [1] announced that after a long time,

a new aMule release will be launched in June, 2016.

This software accomplishes the main requirements for this project, since it can run on

Ubuntu 14.04 and can work without GUI by using the command-line client aMuleCMD.

Moreover, it has a well-documented wiki in http://wiki.amule.org where the user

can �nd manuals about how to download, install and use it.

For implementing this software over simctl, aMule should work in a local virtual

network. As the simctl scenario does not have Internet acces, the Kad network cannot

be accessed. So the solution should be to create a local eD2k server in one node and

connect the other nodes to it. Then con�gure the server list of the clients with the

address of the node that acts as a server.

Sources that contain IP addresses of private classes A (10.0.0.0 - 10.255.255.255), B

(172.16.0.0 � 172.31.255.255), C (192.168.0.0 � 192.168.255.255), localhost (127.0.0.0 �
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127.255.255.254) and all IPs beginning by 0 (0.x.x.x) are not valid on the Internet so, by

default, aMule discards them. To run aMule on the local network this option must be

changed in the con�guration �le amule.conf of all clients (FilterLanIPs=0). Otherwise,

it would not work.

After installing aMule daemon in some virtual machines and modifying the IP LAN

�lter, the next step is to create a local eD2k server. At mid-2000s, when eDon-

key2000 and Emule were popular, it was easy to �nd a software (Donkey Control

and dserver) to build eD2k servers in the o�cial web www.edonkey2000.com and

www.donkey-series.com, but they dead long time ago. Fortunately, it exists an

old web from Lugdunum [28] (the eserver developer) last updated in 2006 that was

dedicated to Edonkey and eMule and has a repository [27] with some versions of eserver

for di�erent platforms. Eserver was a software that lets the user to create a local eD2k

server, allowing to con�gure some basic parameters such as the maximum number of

clients, address and default port of the server. It also allows to �lter unwanted IPs.

Figure 3.12: aMuleCMD client console.

I downloaded the latest available version eserver 17.14 for a high end linux ix86

machine with a �recent� 2.6 kernel and con�gured the required �les. After that, I ran

the eserver in one of the nodes. On the remaining nodes I ran aMule and added the

address of the server node as a new server. After some tests, the remaining nodes

connected successfully to the local server. aMule allows the clients to search some �les
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in the local network and it �nds those �les that are located in the Incoming directory

of other clients.

Therefore, this software can be a solution for the project. It is a P2P �le sharing

network that can be executed by console, with no GUI, and it runs on Ubuntu 14.04.

Therefore, I will try to implement it on simctl (Section 4.2).
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3.8 Routing algorithm simulators

So far, some algorithm implementations have been tested using a local network with a

few peers. Due to the extremely large scale of P2P overlay networks, complexity has

become a major issue. With the number of connected nodes reaching into the millions,

a platform which can accurately simulate an overlay network is important. Many freely

available network simulators exist, being able to simulate di�erent algorithms ranging

from modelling networks at the packet level to concentrating purely on the overlay

network. In this section some of these simulators have been tested.

Most of these simulators must work with a graphical interface, so it is not possible

to use them in simctl. But it is interesting to test them, since if any of the previous

implementations can not be adapted to simctl, these graphical simulators could be

an alternative for P2P studying.

3.8.1 Overlay Weaver

Overlay Weaver [42] was developed in 2007 in the Grid Technology Research Center

of the National Institute of Advanced Industrial Science and Technology (AIST) in

Tsukuba, Japan. It is an overlay construction toolkit that enables the user to imple-

ment a structured overlay algorithm only in hundreds of lines of code. For application

developers, the toolkit provides a common API for higher-level services such as a dis-

tributed hash table (DHT) and multicast.

The toolkit provides multiple routing algorithms: Chord, Kademlia, Koorde, Pastry,

Tapestry and FRT-Chord, but it also allows the implementation of a new algorithm,

test it and compare it with other algorithms. Implemented algorithms can work on

a real network in addition to the emulator, which can host hundreds of thousands of

virtual nodes.

The toolkit provides several tools, and each of them is used for a di�erent goal:

• Distributed Environment Emulator (owemu): There are two modes in which this

option runs. In the normal mode, the whole emulator runs on a single computer,

being able to host tens of thousands of nodes virtually. In the other mode, multiple

computers from a real network form a single emulator in cooperation. The user

starts a master Emulator and it invokes workers on remote computers via SSH.
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The emulator reads the same scenario �le in both cases and invokes and controls

application instances according to the scenario. The scenario �le is written by

the user and contains the number of nodes, algorithm and some options and

commands that will be simulated.

• Emulation Scenario Generator (owscenariogen): The toolkit provides a simple

Emulation Scenario Generator, a tool that the user can use to generate the scenario

�le more easily.

• Overlay Visualizer (owviz): Overlay visualizer is a graphic tool which visualizes

communication between nodes just in time. It collects communication statistics

and represent it drawing the di�erent nodes and linking them with lines, giving an

intuitive understanding of the algorithm behaviour. It works both on an emulator

and a real network.

In the project's website we can �nd barely documented information about Overlay

Weaver and download the latest version of the software from November 2015. The web

also contains a tutorial that explains how to build Overlay Weaver and how to use the

di�erent tools and shells. Moreover, there is a Developer's Guide that shows starting

points to develop applications and routing algorithms which work with the toolkit.

Since we are looking for an implementation able to run over a local network between

several machines and with no GUI, the Distributed Environment Emulator (owemu) tool

in remote mode could be useful to run on simctl. But �rst I will try it on the four

Ubuntu 14.04 virtual machines. Overlay Weaver requires the following software:

• Java Platform, standard Edition (Java SE) 5 or later.

• Apache Ant.

After installing the prerequisites, I download the newest version of Overlay Weaver,

launched on November 2015. First of all, I try to emulate multiple nodes on a single

computer in order to test if Overlay Weaver works �ne. I create a simple scenario that

invokes a node that waits a connection at one TCP port to read DHT shell commands.

Then, the scenario invokes 3 nodes that contact the �rst node to join the Chord ring.

From one terminal I start the emulator that creates the network and waits on the TCP

port. Then, from another terminal, I telnet to the shell on the corresponding port.

In this second terminal we can interact with the network putting and getting data
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or viewing status information such as the �nger tables or all the value stored on the

network. It is also possible to suspend and then resume any node.

Figure 3.13: Simple test of Chord running in a single host.

After testing other scenarios using di�erent routing algorithms and larger number

of nodes, I try to use the emulator mode in which multiple computers form a single

emulator in cooperation. In this Distributed Emulator, a user starts a master Emulator

and it invokes workers on remote computers via SSH. But it also needs to read the

scenario from a con�guration �le where the nodes are speci�ed, so this is not what I

expected. The idea was to run a network with any routing algorithm (Chord, Kademlia,

Pastry, etc.) and create nodes in other computers that could join or leave the network.

But using this emulator, if the master node falls all the network breaks, so it is not

fault-tolerant like the real routing algorithms. So this software is not an option to

implement on simctl.

Although being ruled out to implement it on simctl, Overlay Weaver is an in-

teresting tool to learn and understand how several routing algorithms works. It can

simulate a network with hundreds of nodes and represent the messages between nodes

graphically. The messaging visualizer shows the communication between nodes and also

draws spanning trees for multicasting with coloured lines.
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Figure 3.14: Messaging visualizer showing a Chord ring (extracted from the project's

website).

3.8.2 Entangled

Entangled [14] is a distributed hash table (DHT) based on Kademlia, as well as a peer-

to-peer tuple space implementation. It is written in Python, and makes use of the

Twisted framework. Entangled can be used as a base for creating peer-to-peer network

applications that require synchronization and event handling (such as distributed re-

source provisioning systems) as well as applications that do not (such as �le sharing

applications).

Entangled provides some examples to test the library and a basic interface to show

graphically all the peers on the network and its behaviour when a node introduces some

key-value pairs.

After downloading and installing Entangled, from one terminal I create a network

with 15 virtual nodes on a single machine. From another terminal, I execute the graphi-

cal user interface to interact with the network. When the graphical user interface starts,

a ring with several nodes appears. At the bottom there is a panel that allows to store

key-value pairs, or to get or remove a value paired to a given a key. When some of these

actions are run, several lines are drawn interconnecting the nodes that participate in

each action. But this is too simple, and does not show anything to help to understand

Kademlia.
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Figure 3.15: Entangled GUI.

NGI-Lab: Kademlia-based DHT

Looking for an application that uses Entangled, I found a Kademlia demo [37] for

lab assignment, written in 2011 by Dr. Denis Martin, Institute of Telematics, KIT,

Germanywritten. It is a demo application that visualizes some of Kademlia's interior

for a simple DHT. It provides a simple put/get/delete interface of a key-value pair to

the user, using Entangled as Kademlia implementation.

Unlike the Entangled GUI, this demo is quite complete and very interesting to

understand Kademlia. First of all, it allows to choose an IP address and the port of our

simulated node, and immediately it calculates the node ID. After that, we must choose

the number of additional virtual nodes to be in the network and its ports. When these

nodes are added to the network, the ring is updated and the binary tree of the routing

table is represented.

It also allows to store, obtain or delete key-value pairs on the network. When writing

a key, its ID is calculated on real time and it is represented on the ring, so the user can

visualize where the data would be stored and which nodes are closer. Moreover, when

an operation is made (put, get or delete), the corresponding nodes are interconnected

by lines. Finally, k-buckets can be consulted in order to understand better how it works.
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Figure 3.16: Kademlia demo GUI.

3.8.3 OverSim

OverSim [62] is an open-source overlay and peer-to-peer network simulation framework

for the OMNeT++ simulation environment [84]. It was developed at the Institute of

Telematics (research group Prof. Zitterbart), Karlsruhe Institute of Technology (KIT)

within the scope of the ScaleNet project funded by the German Federal Ministry of

Education and Research.

OverSim includes several structured P2P overlay protocols such as Chord, Kademlia

and Pastry, and some unstructured protocols like GIA [63]. It also o�ers functions and

tools to facilitate the implementation of new protocols. These protocol implementations

can be used for both simulation as well as real networks. This framework allows to

simulate complex heterogeneous underlay networks as well as simpli�ed networks for

largescale simulations with up to 100.000 nodes.

OverSim uses the GUI and visualization features from OMNeT++ to display net-

works topologies, nodes and messages. However, the GUI can be disabled for faster

simulation, so it can run over console.

OverSim supports three di�erent kinds of underlying models:

• Simple underlay: in this model data packets are sent directly from one overlay

node to another by using a global routing table. It allows to simulate networks

with a large number of nodes with a high level of accuracy.
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• SingleHost underlay model: it allows to reuse protocol implementations in real

networks. Each OverSim instance only emulates a single host, which can be

connected to other instances over existing networks like the Internet.

• INET underlay model: it includes simulation models of all network layers from the

MAC layer onwards. It is useful for simulations of complete backbone structures.

I will try to use it in order to test several routing algorithms running on a local

network and disabling the GUI. In the o�cial website [43] we can �nd well documented

information about OverSim, as well as some tutorials about how to install and use it.

The last OverSim release that can be downloaded at the website is dated on 2012 so,

in order to avoid any problem, it is important to install OMNeT++4.2.2 and not the

latest version.

After installing some of the requirements, several errors appear when trying to install

OMNeT++4.2.2. After a long time looking for a solution, I decide to install it on Ubuntu

12.04, since Ubuntu 14.04 was not launched until 2014 and it may not be compatible

with the old OMNeT version. Moreover, as the framework is outdated, it requires an

old version of the INET framework that is also not supported in Ubuntu 14.04. Then,

in the Ubuntu 12.04 virtual machine, all the requirements and OverSim can be installed

without problems.

First of all, I try to simulate a Chord ring with several nodes in a single computer

without GUI to test the simulator in console mode. This simulation mode only shows

and collects various statistical data about the network such as sent, received, or for-

warded network tra�c per node, successful or unsuccessful packet delivery, and packet

hop count. But it does not allow to interact with the network by storing data on the

ring or using any node. Then, I try to use the simulator in SingleHost underlay mode

in order to simulate one node per machine. But, every time this type of network is

selected, the framework exits due to internal errors. Therefore, I cannot test it. But,

anyway, this option seems to simulate the same parameters than in Simple Underlay

mode, so it would not be useful for simctl.

Finally, although not using OverSim in simctl, I test the �rmware with its GUI.

The GUI is useful to visualize networks topologies, messages and node state variables

like the routing tables. After selecting one routing protocol and con�guring the number

of nodes and other parameters of the network, OverSim shows step by step how the
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network is formed, drawing the nodes and all the messages that travel between them.

This graphical simulator is very useful to understand the inner working of the routing

algorithm.

Figure 3.17: Chord ring in OverSim.

3.8.4 P2PSim

P2PSim [44] is a free, multi-thread, discrete event simulator to evaluate, investigate and

explore P2P protocols, and is focussed on the underlying network simulation. P2PSim

was developed at the MIT Computer Science and Arti�cial Intelligence Laboratory in

the Parallel and Distributed Operating Systems Group in 2004.

P2PSim is written in C++ and because of using threads, implementations look like

algorithm pseudo-code, which makes them easy to comprehend and allows developers

to extend the simulator classes to implement new peer-to-peer protocols. Nevertheless,

it provides multiple structured algorithm implementations such as Chord, Accordion,

Koorde, Kelips, Tapestry and Kademlia. It also allows to make comparisons between

di�erent protocols.

P2PSim developers have been able to test the simulator with up to 3.000 nodes, but

algorithm implementations do not work on a real network. P2PSim does not provide

any simulation visualizations or a GUI but, however, P2PSim can be used in conjunction

with a third party GTK (GIMP Toolkit, a cross-platform widget toolkit for creating
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graphical user interfaces) application to provide a GUI. Perl scripts are provided for the

generation of graphs. The scalability of the simulator is in the order of 1000's of nodes.

The C++ documentation is very poor but it exists a How to with some instructions

to install P2PSim. Event scripts can be used to control the simulation. The last version

of the software is P2PSim 0.3, which was updated on April, 2005. So it is very important

to use the version tools listed on the requirements:

• GCC 2.95.3.

• Openssl header �les.

• libcrypto.

• libgmp.

As P2PSim does not work on a real network between several machines, I cannot use

it on simctl, so I am interested on running P2PSim with the GTK GUI to represent

the networks graphically. But the Ubuntu 14.04 image given in the Lab is too new and

not compatible with P2PSim. So, if it is not possible to run it in Ubuntu 14.04, I will

try to install it on Ubuntu 12.04, but not older Linux versions. Before trying to install

the requirements, I take a few time googling to know which Linux versions used P2PSim

developers. Most of them used Debian 3.0, Debian 5.0, etc. and the newest one was

Ubuntu 10.04. But all the websites talking about P2PSim are dated several years ago,

and none of these Linux versions have support.

After looking at the documentation it seems that this simulator only prints out some

statistics such as the total number of bytes sent in the system, success/failure rates of

key lookups, average latency, and average number of hops to locate keys. And any

screenshot of the graphical simulation exists. So, as this simulator does not meet any

of the requirements for the Lab session, I decide to not to test it and look for a better

simulator.

3.8.5 PeerSim

Peersim [76] is a peer-to-peer simulator written in Java. It has been designed to be

scalable and dynamic for simulating large P2P networks, and it can simulate both

structured and unstructured overlays. PeerSim supports two models of simulation which

can be attained by using two of its di�erent simulation engines:
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• Cycle-based models: nodes communicate with each other directly, and the nodes

are given the control periodically in some sequential order when they can perform

arbitrary actions. The cycle-based simulations can scale further with the number

of nodes, but does not provide accurate results with larger models.

• Event-based models: based on scheduling set of messages in time and each node

protocol is called upon according to the time message delivery order. The event-

based engine provides results that are more accurate.

In the o�cial website [49] there is some documentation with examples and tutorials

provided in the form of Javadocs and online manuals. The cycle-based mode is well

documented with examples, tutorials and class level documentation, while the event-

driven mode is only documented at class level. The website contains additional packages

developed by Peersim users for their research, and some of them are structured overlays

such as Chord, Pastry and Kademlia.

PeerSim does not support distributed simulation, so it cannot be used on a real

local network. Moreover, it does not allow to interact with the network by storing data

or to manipulate any node. PeerSim provides neither a graphical user interface nor

any debugging facilities, so it is not a useful simulator for learning about the simulated

overlays.

PeerSim can simulate networks with millions of nodes that join and leave contin-

uously, providing many statistical data. It o�ers class packages to perform common

statistics calculation as well as additional user-de�ned data collection coding. Other

packages perform statistical computation, lattice, random graphs, etc. This simulator

can be interesting for investigation, but not for learning about a structured overlay.

The goal of this TFM is to create a Lab session to learn about some P2P overlay.

We are interested on the overlay and its routing protocol, but not on the behavior of a

network with millions of nodes. So I mention PeerSim because is a well-known simulator

for P2P investigation, since it can simulate accurate statistics that can be similar to a

real huge network.

3.8.6 PeerFactSim.KOM

PeerfactSim.KOM [48] is a simulator for large scale distributed/p2p systems, aiming at

the thoroughly evaluation of interdependencies in multi-layered p2p systems. The main
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development of PeerfactSim.KOM started in 2005 at the Multimedia Communication

Lab (KOM) at the Technische Universtät Darmstadt. It has been further extended

and maintained at the University of Paderborn (UPB) and the University of Düsseldorf

(HHU).

PeerfactSim.KOM is very well documented. In its website we can �nd several doc-

uments and video tutorials about how to install and use the simulator. The HowTos

are intended for users that want to use the simulator just for simulations, while the

common documentation highlights the general aspects of the complete architecture and

gives some details about the implementation and the development of existing or fur-

ther components. Moreover, every developer can contribute a documentation for the

component that he implemented.

The simulator is written in java and the code can be found for free at the download

section of its web. The p2p overlay layer covers structured p2p overlays such as Chord,

Re-Chord, Kademlia, Pastry and Globase, and unstructured p2p overlays such as GIA,

Gnutella and Napster. The simulator uses an XML-based con�guration �le where the

user can specify which implementations and con�gurations on which layers are to be

used. It also speci�es an action �le that contains operations that are to be started

by speci�c peers at speci�c time intervals. Once the con�guration is done, the user

may start a GUI to choose the con�guration �le and to observe the simulation status.

The simulator plots the network with its peers and also shows the tra�c through the

network and some statistical data. Each time PeerfactSim runs a simulation, it creates

an output folder with more than 300 �les with statistical data and plots.

The last available version of PeerfactSim.KOM is dated on June 2016, so this soft-

ware is in continuous development. The source code is provided as an Eclipse project

so that developers can modify or add new functionalities. But to use only the simulator

with its GUI, an executable is provided and it is not necessary to install the Eclipse

IDE. Moreover, it is also possible to run the simulator from the console.

I download the last version of the simulator updated on 2016 and test it on Ubuntu

14.04. The only requirement for running the executable is Java JDK 1.8. As Ubuntu

14.04 is earlier than Java 8, we must add webupd8team Java PPA repository in our

system to install Oracle Java 8. Then, we can run the simulator successfully.

First of all, I test a Chord ring with the given con�guration �le from the console. This

simulation mode does not show any type of data about the simulation, but it creates
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an output folder with all the plots and statistics. After that, I test the GUI of the

simulator. When starting the visualization environment, the user must choose which

P2P overlay want to run, and also has to choose the con�guration �le that speci�es

information about the nodes in the network. Once the simulation starts, the nodes

begin to appear and di�erent coloured lines are drawn between the peers representing

messages sent between them and the connection between successors and predecessors.

The distance between nodes also re�ect the delay between them. The user can adjust

the speed of the visualization and decide which information of the nodes is shown.

Figure 3.18: Visualization environment of PeerfactSim.

PeerfactSim.KOM is a user-friendly simulator both for users and developers. This

simulator is a good tool for any researcher aiming at the simulation of multi-layered

p2p systems in combination with realistic network models. It is also very interesting

for learning about P2P overlays and to understand how they work.
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Chapter 4

Implementation

4.1 OpenChord

Updating the �le system

To install Open Chord and its requirements for a later use in simctl, we have to install

it directly to the debian �le system from which simctl runs the virtual machines. In

the �lesystems folder we can choose between debian5 and debian6. The debian5.fs image

is a Debian 5 Lenny [9], that was abandoned in 2012. The debian6.fs image is a Debian

6 Squeeze [10], which had support until February 2016. First I updated the repositories

of debian5 but, when trying to install Java, an internal error appeared:

E: Internal Error, Could not perform immediate configuration (2)

on initscripts

After some time looking for a solution, I decided to use debain6.fs instead of de-

bian5.fs, since it is a newer version and have had support until some months ago. First

of all, we have to open a new terminal and go to the �lesystems directory. After that,

with the simtools-fsupdate command we access to the Debian 6 �lesystem:

cd / usr / share /vnuml/ f i l e s y s t em s

sudo s imtoo l s−f supdate debian6 . f s

Once we are in the debian6 �lesystem, we must update the repositories by adding

some new links at the end of the �le /etc/apt/sources.list. So we edit this �le

with any text editor such as VI:

v i / e t c /apt/ sourc e s . l i s t
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and add the following lines:

deb http://archive.debian.org/debian/ squeeze main non-free contrib

deb-src http://archive.debian.org/debian/ squeeze main non-free

contrib

deb http://archive.debian.org/debian-security/ squeeze/updates

main non-free contrib

deb-src http://archive.debian.org/debian-security/ squeeze/updates

main non-free contrib

Once the repository has been modi�ed, we can update debian 6 successfully.

apt−get update

Requirements

In order to be compiled, Open Chord requires:

• Java 2 Platform Standard Edition Development Kit 5.0.

• The Apache Ant3 build tool.

• A library of Apache log4j logging framework, that must be placed in the lib

directory.

In order to be executed Open Chord just requires a Java 2 Platform Standard Edition

Runtime Environment 5.0. The library Log4j is only required to compile Open Chord

and does not need to be available at runtime. So we install versions of JRE and JDK

coresponding to Debian 6 Squeeze by running the commands:

apt−get i n s t a l l de fau l t−j r e

apt−get i n s t a l l de fau l t−jdk

After a successfully installation, now we must create the JAVA_HOME variable for

all users, setting the path of JDK. We must edit /etc/profile with some text editor

such as VI:

v i / e t c / p r o f i l e

and add the variables:

export JAVA_HOME=/usr/lib/jvm/java-6-openjdk

export PATH=$JAVA_HOME/bin:$PATH
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Then we install Apache Ant by running:

apt−get i n s t a l l ant

Finally, we download the log4j library to place it in the /lib folder of Open Chord.

Installation

In order to install Open Chord 1.0.4, it has to be downloaded from https://sourceforge.

net/projects/open-chord/files/Open%20Chord%201.0/1.0.4/. There, the

sources and any other required �les can be found in zip archive. When compiling, some

errors appear since a few �les contain non UTF-8 characters in the comments. Moreover,

the log4j library must be placed to the /lib folder. So, before compiling the project on

Debian 6, I edit the previous �les and add the library to the required folder on Ubuntu

14.04. Then, I compress the full project so that I can download it in Debian 6 and

compile it without problems. After that, in debian 6, we go to the /home directory,

download and decompress the �le with the modi�ed OpenChord ready to compile:

cd home

wget https : // d l . dropboxusercontent . com/u/48303732/open−chord_1 . 0 . 4 . ta r

ta r −xvf open−chord_1 . 0 . 4 . ta r

At this point, the code is located at /home/open-chord_1.0.4.tar.

Compilation

Open Chord can be compiled with help of the Apache Ant build tool, that can be

obtained from the Apache Software Foundation for free. For this purpose, Open Chord

is distributed with an Ant build �le (build.xml). To compile Open Chord we must

go to the directory where the Open Chord build �le is located. Then we use the ant

command to compile the project successfully.

cd open−chord_1 . 0 . 4

ant −f bu i ld . xml

ant

exit

Once the compilation has �nished, the code and the requirements are installed in

the �lesystem debian6.fs. We exit from Debian 6 OS with the exit command and go

back to the Ubuntu 14.04 environment.
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To start Open Chord, a long java instruction has to be typed. It contains the paths

of the classes and libraries that have to be used. To make it easier, I copy it in a bash

�le that later will be copied in the Open Chord directory in simctl. By this way, users

can run Open Chord in each node with a simpler command.

cd / usr / share /vnuml/ s c ena r i o s / f i l e s

sudo mkdir /openchord

cd openchord

sudo v i openchord

The bash �le looks like:

#!/bin/bash

# This file contains the command needed to execute Open Chord

# in simctl.

java -cp /home/open-chord_1.0.4/build/classes:/home/open-chord_1.0.4/config:

/home/open-chord_1.0.4/lib/log4j.jar de.uniba.wiai.lspi.chord.console.Main

Finally, we must give permissions to the �le so that it can be executed in simctl.

sudo chmod 755 openchord

Running a test scenario

The software is installed and ready to run, so now we must create a scenario with several

machines to use OpenChord in a network. Before creating the lab session, I create a

scenario with 5 nodes to test OpenChord in simctl and make sure everything works.

Figure 4.1: OpenChord test scenario.
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Now, from a terminal, I start the test scenario and wait until it is created. Once it

is running I access to the di�erent nodes of the network to run OpenChord.

s imc t l test−OpenChord s t a r t

s imc t l test−OpenChord get host1

s imc t l test−OpenChord get host2

s imc t l test−OpenChord get host3

s imc t l test−OpenChord get host5

s imc t l test−OpenChord get host15

From any host console, to start the OpenChord software we must run the following

command:

java −cp /home/open−chord_1 . 0 . 4 / bu i ld / c l a s s e s : / home/open−chord_1 . 0 . 4 / c on f i g :

/home/open−chord_1 . 0 . 4 / l i b / l o g 4 j . j a r de . uniba . w ia i . l s p i . chord . con so l e . Main

Or simply we can run the bash �le created before starting the scenario:

. / openchord

First of all, I try to create a Chord ring from host1 by:

@host1 :# joinN

The Chord ring has been successfully created. To add a new node to the ring, a

bootstrap node address and port have to be indicated, as well as the TCP port which

the new node will use to send messages. When a node creates a ring, 4242 is set as its

default TCP port. Any other node that joins the network will be able to choose any

available TCP port. So I add host2 to the Chord ring by using host1 as the bootstrap

node. It is done by running:

@host2 :# joinN −por t 8080 −boo t s t r ap 172 .16 .1 . 5 : 4242

Then we can join the resting nodes to the network by adding the port that they will

use and the address and port of any bootstrap node:

@host15 :# joinN −por t 8015 −boo t s t r ap 172 .16 .1 .10 :8082

@host5 :# joinN −por t 8085 −boo t s t r ap 172 .16 .1 . 5 : 4242

@host3 :# joinN −por t 8083 −boo t s t r ap 192 .168 .3 .15 :8015

Now the Chord ring is composed by 5 nodes. We can observe that any node can

be used as a bootstrap node. From all the nodes we can test the main actions: insert

or remove data from the network, get values of a given key, consult the �nger table
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(refsN) with successors and predecessors, see all data stored in a node (entriesN),

etc.

in se r tN −key key −value value

r e t r i eveN −key key

removeN −key key

ent r i e sN

re f sN

The refsN command lets the user consult the �nger table of each node. If we check

the �nger tables every time we add a node to the network, it is possible to see how the

predecessor and successors of each node vary. Comparing �nger tables with Figure 4.1

it is possible to see how the network evolves and which position is occupied by each

node.

Figure 4.2: Chord ring evolution.

Figure 4.2 represents the position of the nodes in the ring, and the number in red is

the order in which nodes joined the network. It is easy to observe that the ring changes

dynamically when nodes are added or deleted. OpenChord works �ne on simctl, so

now we can create a new scenario and prepare the Lab session.

In section 3.2.2 some problems appeared when I tested Open Chord on Ubuntu 14.04.

When one node created the network, a node from another machine was not able to join

the ring, since several errors appeared. It was necessary to add one node in the same

host from which the �rst node created the network, but from another terminal. But in

simctl this problem does not occur. Another problem that appeared in Ubuntu 14.04

is that Open Chord detected 127.0.1.1 as the IP address of the host. Then, when ob-

taining the nodeID, it was calculated by sha1(ocsocket://127.0.1.1:port/).
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So all nodes obtained their NodeID using the localhost IP address, so they were di�er-

entiated only by its TCP port. But again, this problem is not present in simctl.
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4.2 aMule

Installation

To install aMule for a later use in SIMCTL, as before, we have to install it directly to the

Debian �le system from which SIMCTL runs the virtual machines. We will install it on

debian6.fs, since we have installed OpenChord there, and the repositories are updated.

First of all, we have to open a new terminal and go to the �lesystems directory. After

that, with the simtools-fsupdate command we access to the debian 6 �lesystem.

cd / usr / share /vnuml/ f i l e s y s t em s

sudo s imtoo l s−f supdate debian6 . f s

As I have said in 3.7.1, aMule can be installed as a monolithic client or as a daemon

(without GUI). Once we are inside Debian 6, we only must install aMule-daemon. When

the installation �nishes we can exit from Debian 6 and go back to the Ubuntu 14.04

environment, since it does not require any additional tool.

apt−get i n s t a l l amule−daemon

exit

Con�guration

aMule client

When amule-daemon is installed, a con�guration �le amule.conf is created. But

instead of modifying this �le in Debian 6, it is easier to install aMule on Ubuntu 14.04

and modify the con�guration �le there. Then this �le will be copied to the aMule

directories in Debian 6. By this way, any user will be able to modify the con�guration

in the graphical environment of Ubuntu 14.04 at any time before running simctl, so

that users do not have to enter the Debian 6 �le system with the risk of damaging it.

So, in the Ubuntu 14.04 environment, we open a terminal and install aMule-daemon.

When the installation �nished, we run the aMule-daemon.

sudo apt−get i n s t a l l amule−daemon

amuled

The �rst time that the aMule-daemon runs, an aMule folder with all the required

�les is created. This directory is located at ˜/.aMule. And in this directory we can
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�nd the con�guration �le that we will modify and copy: ˜/.aMule/amule.conf. We

must edit this �le and modify two important parameters:

• AcceptExternalConnections=1 (in order to accept connections from other ma-

chines).

• IPLAN�lter=0 (this enables the communication between machines from a local

area network with private IP addresses).

The other parameters can be set as default. The aMule con�guration �le is done

and ready to copy to the simctl scenario directory. So we create a new folder in

/usr/share/vnuml/scenarios/files for aMule and copy the con�guration �le:

cd / usr / share /vnuml/ s c ena r i o s / f i l e s

sudo mkdir /amule

cd amule

sudo mkdir c on f i g

cd c on f i g

sudo cp ~/. aMule/amule . conf . /

To run aMuleCMD (the aMule console client), �rst it is needed to start the daemon.

To make it easier, I create a bash �le that runs the daemon, waits some time until the

daemon is completely running, and �nally executes the aMule console. By this way, the

user only has to run the bash �le so that aMule is ready to use.

#!/bin/bash

# Executes amule-daemon and starts aMule console (amulecmd)

amuled $

sleep 2

amulecmd

Finally, I create one folder for each host. All the �les stored in these �les will be

copied to the /Incoming folder in Debian 6 so that users can share them. By this

way, before running the scenario, users can copy to these directories any �le they want

to share.

cd / usr / share /vnuml/ s c ena r i o s / f i l e s /amule

mkdir host1

mkdir host2

mkdir host5

mkdir host15
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eD2k server

Now we have to download and con�gure the �les that will be used to create the eD2k

server. We create a folder for storing server �les in the /amule directory. Then, from

the Lugdunum eserver repository [28], we download the last eserver version for Debian

6.

cd / usr / share /vnuml/ s c ena r i o s / f i l e s /amule

sudo mkdir s e r v e r

wget http :// lugdunum . shortypower . org / f i l e s / e se rve r −17.14. x86_64−l i nux . nptl_up . gz

The previous compressed �le has to be decompressed and then we have to give

execution permissions to it. For running eserver, a con�guration �le donkey.ini with

some parameters has to be created. To make it easier, I create a bash �le that creates a

basic con�guration �le, decompresses eserver, gives permission and executes it. By this

way, the user only has to execute the bash �le and eserver starts.

#!/bin/bash

# Donkey.ini is the configuration file of the server. In this

# webpage http://mldonkey.sourceforge.net/Donkey.ini are listed

# all possible options. For our scenario, these few options

# are enough: Name, description, IP address and port of the

# server.

echo "[server]" >> donkey.ini

echo "name=aMule server 1" >> donkey.ini

echo "desc=aMule eD2k server test" >> donkey.ini

echo "thisIP=172.16.1.2 # The IP of my server" >> donkey.ini

echo "port=4232 # the TCP port (default is 4661, but it is wise

to choose another value)" >> donkey.ini

# Eserver17.15 is the last available version of eserver for i686

# linux in http://lugdunum.shortypower.org/files/

# This software let the user to create an eD2k server.

# These instructions unzip eserver, give execute permission and

# run it.

gzip -d eserver-17.15.i686-linux.nptl.gz

chmod 755 eserver-17.15.i686-linux.nptl

./eserver-17.15.i686-linux.nptl
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Running a test scenario

The software is installed and ready to run, so now we must create a scenario with several

machines to use aMule in a network. Before creating the lab session, I create a scenario

with 1 server and 4 clients to test aMule in simctl and make sure everything works.

Figure 4.3: aMule test scenario.

Now, from a terminal, I start the test scenario and wait until it is created. Once it

is running I access to the di�erent nodes of the network to run aMule and eserver.

s imc t l test−aMule s t a r t

s imc t l test−aMule get host1

s imc t l test−aMule get host2

s imc t l test−aMule get host5

s imc t l test−aMule get host15

s imc t l test−aMule get s e r v e r

From all the clients (host1, host2, host5 and host15), we run the aMule client console

by running the bash �le previously created:

. / amule

From the server node, we run the eD2k server by executing the bash �le:

. / e s e r v e r

eserver provides some commands (Figure 4.4) that can be showed by typing ?. The

most interesting command is vc, since it allows us to check who is connected to the

server.

Now the server is running, but we have to connect all the clients to it. In each client,

we can execute the status command to check if we are connected to any server or to
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Figure 4.4: eserver commands.

the Kad network. But as we have no Internet connection, it cannot be connected to

any network. So �rst of all we have to add the server to the server list in all the clients

by:

add ed2k : / / | s e r v e r | 1 7 2 . 1 6 . 1 . 2 | 4 2 3 2 |

After that, when using the connect command, as it is the only server available,

clients will connect to it. If we had several servers available, we could force the connec-

tion to one selected server by:

connect 1 7 2 . 1 6 . 1 . 2 : 4 2 3 2

Figure 4.5: aMule client connection to eD2k server.

At this point all clients have connected to the server. From the server console, we
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can check it by using the vc command (Figure 4.6). It shows the IP address of all peers

connected to it, and the total number of �les ready to share.

Figure 4.6: eserver console showing clients connected to it.

Once all the clients are connected to the same server, we can search any �le and

download it. To search a �le in the local network we must run:

search local f i l ename

After that, an error will be shown:

> Request failed with the following error: Search in progress.

Refetch results in a moment!

But this is not important. The search has been successfully done and the results

can be obtained by typing:

r e s u l t s

Then, a list with all results will be shown. It shows the di�erent found �les with the

same name, specifying its size and how many nodes have the �le. To download a �le,

it has to be used the command "download #" where "#" is the number of the �le

in the list. After that, the download starts automatically. By executing the status

command, we can observe the progress of the download.

The network works �ne. Now I must create a simpler scenario for the Lab session.

The network of this test scenario is based on other scenarios focused on tunneling and

multicast, so the network is a bit complex, with several subnetworks and routers. This

makes that the scenario takes more than 2 minutes to start. As here the network is not

important, a simpler scenario will reduce the execution time.
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Figure 4.7: Search and download process.
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0.1 Introduction

Peer-to-Peer (P2P) networks are worldwide distributed systems where each node can be used both as a client and a
server simultaneously. These networks emerged as an incipient paradigm of communications to share resources and
services in a highly decentralized way. The operation of the P2P networks has changed over the years, trying to adapt
(and survive) to several different problems, generating up to three different generations.

First generation of P2P networks are known as centralized P2P networks because they depend on centralized
servers to perform some functions, typically a centralized directory to find resources. This type of P2P networks
suffers from a single point of failure, since the network may stop working if the central server goes down.

The second generation of P2P networks appeared to avoid the above vulnerability, but they needed two phases
to achieve the expected success. The first attempt was to design pure decentralized P2P networks, which use a P2P
scheme in all their processes, and there is no central server at all. The second attempt to improve the P2P networks
was to introduce some degree of centralization leading to the hybrid P2P networks, where some nodes (supernodes)
manage certain extra functions.

Finally, the third generation of P2P networks emerged. They are totally decentralized networks, so there is not a
point of failure, but with a certain structuring of resources. For this reason they are called structured P2P networks or
also structured P2P overlays, as they create an overlay.

The aim of this lab session is to get in touch with some peer-to-peer network applications. We pretend to show
a practical application of peer-to-peer networks, being able to interact with them by storing some data and observing
its behaviour when a node joins or leaves the network. First we will run aMule, a P2P file sharing application that



works with the eD2k network. eD2k can be considered from the second generation of P2P networks, since it is semi-
centralized and there is not a single point of failure. Then we will run Open Chord, an implementation of the Chord
P2P overlay. Chord is one of the four original structured networks (3rd generation) created in early 2000.

0.2 aMule
aMule is a free peer-to-peer file sharing application that works with the eDonkey and Kad networks, offering similar
features to eMule but supporting multiple platforms. The eDonkey Network (eDonkey2000 network or eD2k) is a
"semi-decentralized", mostly server-based, peer-to-peer file sharing network built to share big files among users, and
to provide long term availability of files. It was developed in 2000 by US company MetaMachine in order to use the
client eDonkey2000. In September 2006 eDonkey2000 closed its doors due to legal issues, but the eD2k network
survived, since it was being used by other clients such as eMule or Lphant. As eD2k is server-based, the network
would be affected if servers went down, so eMule Project developed a global Kademlia network (Kad) in order to
overcome the reliance on central servers.

0.2.1 The scenario of the lab session
The aim of this exercise is to get in touch with the eD2k network. To do so, we are going to use two eD2k servers and
four nodes that will run the aMule client. The scenario of this laboratory session is depicted in Figure 1.

Internet
host1

eth1 
198.51.100.11

eth2 
198.51.100.1

SimNet2  
198.51.100.0/24

SimNet1  
192.0.1.0/24

eth1 
192.0.1.1

server2

eth1 
192.0.1.10

RC

server1

eth1 
192.0.1.5

host2

eth1 
198.51.100.12

host4

eth1 
198.51.100.14

host3

eth1 
198.51.100.13

Figure 1: aMule scenario.

0.2.2 The branches
We will assign the following IP addresses to the different branches:

Branch IP Network Public or private
SimNet1 192.0.1.0/24 public addressing
SimNet2 198.51.100.0/24 public addressing

This network is not a real scenario, but our goal is to run P2P networks, so we are not focused on the architecture
of the network. SimNet2 contains four hosts that will run the aMule client, while in SimNet1 there are two machines
that will run an eD2k server.
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0.2.3 Starting the scenario using simctl
First of all, we will start the virtual scenario with the command:

h o s t $ s i m c t l amule s t a r t

When starting this scenario, IP addresses in network interfaces and routing tables should be properly configured.
If not, maybe there is a problem in the scenario or in simctl, so contact the professor.

0.2.4 Creating the eD2k network
Once the scenario is running we must run the aMule client in each host (host1, host2, host3 and host4). The aMule
software can be installed as a monolithic client, which has a graphical user interface (GUI) to search and download
the files, and a console-based version that runs without GUI. This second version is what we will use. First we have
to run a daemon called amule-daemon, and then we will be able to run amulecmd, that executes the aMule client
environment. To make it easier, each host contains a bash file that executes the daemon, waits some time so that the
daemon is ready, and finally executes amulecmd. So, from each host we must run:

h o s t $ . / aMule

After that, the aMule console (amulecmd) will start. Now from any host with the aMule client running, we run
the help command and all the available commands are shown. Then, run it on host1 to see the main options provided
by the aMule client.

h o s t 1 : aMulecmd$ h e l p

By typing the status command some information about the client is shown.

h o s t 1 : aMulecmd$ s t a t u s

To share and download files we must be connected to a network. In the shown information, we can observe that the
client is not connected to any network. To connect to the eD2k network, aMule uses a file called server.met that
contains a list of eD2k servers. To connect the Kad serverless network, aMule has a file called nodes.dat which
stores details about known Kad nodes, and this is used to bootstrap the Kad network when aMule starts. Both files
have to be uploaded periodically, since these nodes change with the time. But in this scenario we do not have Internet
access, so we must create our own eD2k servers.

There are two families of server software for the eD2k network:

• The original one from MetaMachine, developed by eDonkey creators.

• eserver, written from scratch by a person (Lugdunum). Used by almost all eD2k servers.

We will use the eserver software to create eD2k servers on server1 and server2. To run the software we must
execute a bash file. This file creates the configuration file (donkey.ini) of the server and executes the software.
Run the following command in server1 and server2.

s e r v e r 1 $ . / e s e r v e r

Now we have two eD2k servers running. Type ? in the eserver console to see a list of the commands that it
supports. With the vc command we can see all the clients connected to the server. At this point no client is connected,
so now we go back to the hosts to connect them to the servers.

aMule client allows us to add an eD2k server manually by typing its address and port. The TCP port of the server
is written in the configuration file of the server (donkey.ini). So now we will add server1 and server2 to the server
list of host1.

h o s t 1 : aMulecmd$ add ed2k : / / | s e r v e r | 1 9 2 . 0 . 1 . 5 | 4 0 0 5 |
h o s t 1 : aMulecmd$ add ed2k : / / | s e r v e r | 1 9 2 . 0 . 1 . 1 0 | 4 0 1 0 |
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After that, both servers have been added to the host1’s server list. Now, if we try to connect the client to any
network, it will choose the first available server of the server list.

1. Open the wireshark network analyzers in the PHYSICAL HOST and capture traffic in SimNet1.

2. Use the connect command in host1 to connect to a server.

h o s t 1 : aMulecmd$ c o n n e c t

(a) What type of messages do you see in wireshark?

(b) Which nodes of the network are involved?

Now add server1 and server2 to the server list of the resting hosts. If we execute the connect command, all the
hosts would connect to server1, since it has been added before server2. But we can also force the connection to a
particular server. So we will connect host2 and host3 to server1, and host4 to server2.

h o s t 2 : aMulecmd$ c o n n e c t
h o s t 3 : aMulecmd$ c o n n e c t
h o s t 4 : aMulecmd$ c o n n e c t 1 9 2 . 0 . 1 . 1 0 : 4 0 1 0

From any host, we can verify that we are connected to the corresponding server by:

h o s t 4 : aMulecmd$ s t a t u s

And from each server, we can check which nodes are connected to it:

s e r v e r 1 $ vc

0.2.5 Sharing files
At this point the eD2k network has been created. There are three aMule clients connected to one server and another
host connected to the second server. Now we will make use of the file sharing system. To look for a file, we have to
use the search command specifying the type of search: it can be global, local or kad. In our case the search can be
local or global.

From host1 we will try to search the file host_2, that is stored in the Incoming directory from host2.

h o s t 1 : aMulecmd$ s e a r c h l o c a l h o s t _ 2

After that, an error will be shown:

> Request failed with the following error: Search in progress.
Refetch results in a moment!

But this is not important. The search has been successfully done and the results can be obtained by typing:

h o s t 1 : aMulecmd$ r e s u l t s

Then, a list with all the results is shown. It also informs about the size of the file and the number of nodes that
have the file (sources). In our case, as this file is only located in host2, there is only one result. To download the file,
we must run:

h o s t 1 : aMulecmd$ download 0

where 0 is the identifier of the file in the results list. After that, we can run status and observe that the download
speed is not 0 bytes/sec, since the file is being downloaded.

1. Open wireshark in the HOST and capture traffic in SimNet1.
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2. Search the file host_2 in host3 and observe the results list:

h o s t 3 : aMulecmd$ s e a r c h l o c a l h o s t _ 2
h o s t 3 : aMulecmd$ r e s u l t s

(a) Looking at the results list, which is the difference with the previous search?

(b) Looking at wireshark, which nodes of the network are involved?

3. Restart the running live capture in wireshark. Now download the file:

h o s t 3 : aMulecmd$ download 0

(a) Looking at wireshark, which nodes of the network are involved? Why?

Now we will see the difference between a local and a global search. From host1 we will try to search the file
host_10.

1. Open the wireshark network analyzers in the PHYSICAL HOST and capture traffic in SimNet1.

2. Make a local search of the file host_10 in host1 and observe the results list:

h o s t 1 : aMulecmd$ s e a r c h l o c a l h o s t _ 1 0
h o s t 1 : aMulecmd$ r e s u l t s

(a) Looking at the results list, is there any coincidence?

(b) Looking at wireshark, which nodes of the network are involved?

3. Restart the running live capture in wireshark. Now we will make a global search:

h o s t 1 : aMulecmd$ s e a r c h g l o b a l h o s t _ 1 0
h o s t 1 : aMulecmd$ r e s u l t s

(a) Looking at the results list, is there any coincidence? Why it is different than before?

(b) Looking at wireshark, which nodes of the network are involved? Why?

(c) What is the difference between a local and a global search in the eD2k network?

As we are going to continue this lab session with another scenario, close this one:

h o s t $ s i m c t l amule s t o p
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0.3 Open Chord
Open Chord is an open source implementation of the Chord P2P overlay. It is available for free under GNU General
Public License (GPL) and was developed by the Distributed and Mobile Systems Group of Bamberg University.

Open Chord provides the possibility to use the Chord distributed hash table within Java applications by providing
an API to store all serializable Java objects within the distributed hash table. On the other hand, it provides a console-
based experimentation environment to explore the functionality of a Chord network, allowing to create a Chord ring
between different nodes and storing data between them. So this tool is what we are going to use.

The console-based environment allows to create a virtual Chord network with several virtual nodes on a single
host. But we are going to use it by creating a ring between several hosts on the same local network.

0.3.1 The scenario of the lab session
The aim of this exercise is to get in touch with the Chord network. To do so, we are going to use Open Chord to create
a Chord ring with six nodes. The scenario of this laboratory session is depicted in Figure 2.

host1

eth1 
192.168.1.11

eth1 
192.168.1.1

SimNet1  
192.168.1.0/24

RC

host2

eth1 
192.168.1.12

host5

eth1 
192.168.1.15

host4

eth1 
192.168.1.14

host3

eth1 
192.168.1.13

host6

eth1 
192.168.1.16

Figure 2: Open Chord scenario.

0.3.2 The branches
In this scenario we only have a branch. We will assign the following IP addresses to SimNet1:

Branch IP Network Public or private
SimNet1 192.168.1.0/24 private addressing

We have a single local network with one router and six hosts. The network is simplified since we are interested in
working with Open Chord, and this exercise is not focused on the architecture of the network.

0.3.3 Starting the scenario using simctl
First of all, we will start the virtual scenario with the command:

h o s t $ s i m c t l openchord s t a r t

When starting this scenario, IP addresses in network interfaces and routing tables should be properly configured.
If not, maybe there is a problem in the scenario or in simctl, so contact the professor.
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0.3.4 Creating the Chord network
Once the scenario is running we must run Open Chord in all the hosts (host1, host2, host3, host4, host5 and host6).
To run Open Chord, a long java instruction has to be executed. It contains the paths of the classes and libraries in the
project that have to be run. To make it easier, this instruction has been written in a bash file. So we execute the bash
file in all the hosts.

h o s t 1 $ . / openchord
h o s t 2 $ . / openchord
h o s t 3 $ . / openchord
h o s t 4 $ . / openchord
h o s t 5 $ . / openchord
h o s t 6 $ . / openchord

When the console starts, we consult the available commands by using the help command. Then, a list with
several commands is shown. We should realize that some commands end in N. This is because Open Chord provides
two types of execution. The commands ending in N are used to create a ring in a real network between nodes in
different machines, and the other commands are used to simulate several nodes on a single machine. Therefore, we
will use commands ending in N.

At this point, Open Chord is running in all the hosts, but the network has not been created yet. We will create a
Chord ring from host1.

h o s t 1 : oc > jo inN

Then, from host2, we add the node to the network by using host1 as the bootstrap node. When joining the network,
we have to indicate the TCP port that we will use for sending and receiving data, and then the IP address and the port
of the bootstrap node. The TCP port of host1 is 4242, since it is the default port of the node that creates the ring. So
now we add host2 to the network:

1. Open the wireshark network analyzer in the PHYSICAL HOST and capture traffic in SimNet1.

2. Add host2 to the network:

h o s t 2 : oc > jo inN −p o r t 4202 −b o o t s t r a p 1 9 2 . 1 6 8 . 1 . 1 1 : 4 2 4 2

(a) Look at wireshark. What has happened?

3. Execute the following command in host1 and host2:

h o s t 1 : oc > r e f s N
h o s t 2 : oc > r e f s N

(a) What does this command show?

A Chord ring with only two nodes is not very useful, so now we are going to add three more nodes to the network.
We will add host3 by using host1 as the bootstrap node, host4 by using host3 as the bootstrap node, and host5 by
using host2 as the bootstrap node.

h o s t 3 : oc > jo inN −p o r t 4203 −b o o t s t r a p 1 9 2 . 1 6 8 . 1 . 1 1 : 4 2 4 2
h o s t 4 : oc > jo inN −p o r t 4204 −b o o t s t r a p 1 9 2 . 1 6 8 . 1 . 1 3 : 4 2 0 3
h o s t 5 : oc > jo inN −p o r t 4205 −b o o t s t r a p 1 9 2 . 1 6 8 . 1 . 1 2 : 4 2 0 2

1. Open the wireshark network analyzer in the PHYSICAL HOST and capture traffic in SimNet1. You can
see hundreds of packets sent between all hosts. Open Chord establishes a TCP connection between nodes and
lots of messages are sent periodically to inform about the status of each host. If you try to "follow TCP stream"
you will see that no valuable information can be extracted. So from now, we will focus on the behaviour of the
Chord ring, and will not enter in details in the sent packets.
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2. Execute the refsN command in host1, host2, host3, host4 and host5:

h o s t 1 : oc > r e f s N
h o s t 2 : oc > r e f s N
h o s t 3 : oc > r e f s N
h o s t 4 : oc > r e f s N
h o s t 5 : oc > r e f s N

(a) Do you observe any changes in host1 and host2?

(b) Using the information provided in the obtained tables, and looking at Figure 2, you will be able to fill the
following figure:

Host:
IP:
Port:
NodeID:

Host:
IP:
Port:
NodeID:

Host:
IP:
Port:
NodeID:

Host:
IP:
Port:
NodeID:

Host:
IP:
Port:
NodeID:

Figure 3: Chord ring with 5 nodes.

(c) After filling the Figure 3, look at the first 2 bytes of the nodeID of each node. How are the nodes ordered?
(Translate the first 2 bytes from hexadecimal to decimal and you will see it clearer).

0.3.5 Storing data
Chord is a distributed hash table that stores key-value pairs by assigning keys to different nodes; a node will store the
values for all the keys for which it is responsible. Nodes and keys are assigned an m-bit identifier using consistent
hashing. The SHA-1 algorithm is the base hashing function for consistent hashing.

Open Chord also uses the SHA-1 algorithm. When a key is inserted, it applies the hash function to the key and then
stores the 2 first bytes to set the key identifier (keyID). For example, if we insert the pair key=key and value=value,
Open Chord will calculate sha1(key)=a62f2225bf70bfaccbc7f1ef2a397836717377de, and the keyID
of key will be A6. This identifier will be later compared with the nodeIDs of the successors list to select where to
store the value. We can check it manually by typing the following command in an Ubuntu terminal:

echo −n " key " | sha1sum

When a node joins the network, its identifier has to be calculated. To obtain the identifier of a node (nodeID),
Chord calculates the hash function of the IP address and port of the node to ensure that there will not be two nodes
with the same nodeID. Open Chord calculates the hash of the entire string ocsocket://ipaddress:port/.
After that, to set the nodeID, it selects only the first 8 bytes of the result. For example, for host3, Open Chord will
calculate:

8



sha1(ocsocket://192.168.1.13:4203/)=85eedc1d74391a29f4650312a197d3e2541a4a71
and its identifier will be 85 EE DC 1D. We can check it manually by typing the following command in an Ubuntu
terminal:

echo −n " o c s o c k e t : / / 1 9 2 . 1 6 8 . 1 . 1 3 : 4 2 0 3 / " | sha1sum

In a Chord ring, nodes are ordered numerically depending on their nodeID. When a key-value pair is inserted into
the network, the identifier of the key is obtained. Then, the value is stored at its key’s successor node. The successor
node of a key k is the first node whose ID equals to k or follows k in the identifier circle. Open Chord compares the
first 2 bytes of the keyID and the nodeID to determine which is the key’s immediate successor. Since the successor (or
predecessor) of a node may disappear from the network (because of failure or departure), each node records a whole
segment of the circle adjacent to it (its successors and predecessor).

At this point we know how values are stored in the corresponding nodes. So now we will insert some key-value
pairs into the network to see a practical example.

1. From host3, insert the pair key=key0 value=value0.

h o s t 3 : oc > i n s e r t N −key key0 −v a l u e v a l u e 0

2. In an Ubuntu terminal (NOT in the Open Chord console of any host), obtain the identifier of the key by:

echo −n " key0 " | sha1sum

The obtained hash is sha1(key0)=adb1ef332d1f6e99e809fb9b00a08efcad930e82, so the key
will be AD.

3. Now we want to know where this data is stored. From host3, consult the data that it is storing by typing:

h o s t 3 : oc > e n t r i e s N

We can realize that host3 is not storing the data that it has just inserted. Consult the stored data in the resting
nodes:

h o s t 1 : oc > e n t r i e s N
h o s t 2 : oc > e n t r i e s N
h o s t 4 : oc > e n t r i e s N
h o s t 5 : oc > e n t r i e s N

(a) Which nodes are storing the data?

4. From host3, insert another key-value pair: key=key1 value=value1.

h o s t 3 : oc > i n s e r t N −key key1 −v a l u e v a l u e 1

5. Obtain the identifier of key1 and use the refsN command in all nodes.

(a) Which nodes are storing the new data? Do you imagine why?

The previous values are stored in different nodes since the key identifiers are different. When a node inserts a
key-value pair, it obtains the identifier of the key. Then, the value is stored in the key’s immediate successor. Once
it has been stored, the storing node replicates the value to its successors (the 2 following nodes). By this way, if the
storing node dies, data will remain in the network.

As we have seen, the values will be stored in the key’s successor node. So it does not matter from which node we
insert the key-value pairs, since they will be stored in the same node.

1. Insert the following key-value pairs from any node. For example:
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h o s t 1 : oc > i n s e r t N −key key2 −v a l u e v a l u e 2
h o s t 4 : oc > i n s e r t N −key key3 −v a l u e v a l u e 3
h o s t 3 : oc > i n s e r t N −key key1 −v a l u e t e l e m
h o s t 2 : oc > i n s e r t N −key key1 −v a l u e UPC

2. Use the refsN command in all nodes.

(a) What does it happen if different values have the same key?

0.3.6 New node
Now we will add a host6 to the network and see what happens when it joins the ring.

1. From an Ubuntu terminal (NOT in the Open Chord console of any host) obtain the nodeID that will be assigned
to host6.

echo −n " o c s o c k e t : / / 1 9 2 . 1 6 8 . 1 . 1 6 : 4 2 0 6 / " | sha1sum

(a) Which will be its nodeID?

(b) Where is it going to be located in the Chord ring? Fill Figure 4 with the new look it will have. Compare
the 2 first bytes of all nodeIDs to know their position in the ring.

Host:
IP:
Port:
NodeID:

Host:
IP:
Port:
NodeID:

Host:
IP:
Port:
NodeID:

Host:
IP:
Port:
NodeID:

Host:
IP:
Port:
NodeID:

Host:
IP:
Port:
NodeID:

Figure 4: Chord ring with 6 nodes.

The following tasks are done for a newly joined node n:

• Initialize node n (the predecessor and the finger table).

• Notify other nodes to update their predecessors and finger tables.

• The new node takes over its responsible keys from its successor.

The predecessor of n can be easily obtained from the predecessor of successor(n) (in the previous circle). Then,
it initializes the finger table from its immediate neighbours and make some updates. Finally, its successor transfers to
node n all the data of which the n node will be the new responsible.
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1. Before adding host6 to the ring, execute the entriesN command in all the existing hosts (host1, ..., host5) to
see which files values they are storing.

2. Join host6 to the network by using host4 as the bootstrap node.

h o s t 6 : oc > jo inN −p o r t 4206 −b o o t s t r a p 1 9 2 . 1 6 8 . 1 . 1 4 : 4 2 0 4

3. Use the refsN command and verify that Figure 4 is correctly filled. If the predecessor appears as null in host6,
wait some time and execute the command again. It takes some time to initialize a new node completely.

4. Use the entriesN command in host6.

(a) Which data is host6 storing?

5. Execute the entriesN command again in all the resting hosts (host1, ..., host5) to see which values they are
storing.

(a) Has any node lost some data? Why?

0.3.7 Retrieving data
To get a value, the command retrieveN has to be used. We will ask for the key key1. The values associated to
this key are stored on host1, host6 and host5, it is, the three nodes located before host4.

1. Retrieve the values of key1 from host4.

h o s t 4 : oc > r e t r i e v e N −key key1

(a) Which data are returned?

2. Execute refsN in host4 to see its finger table. We obtain:

Finger table:
85 ocsocket://192.168.1.13:4203/(0-155) (host3)
0F ocsocket://192.168.1.12:4202/ (156-159) (host2)

The keyID of key1 is 10. Then, looking at the finger table, we realize that:

0F < 10 < 85 (hexadecimal)
15 < 16 < 133 (decimal)

NodeID(Host2) < keyID < NodeID(Host3)

Between these two nodes, the host with nodeID=85 would be the responsible of the key. Therefore, host4 asks
host3 for retrieving the associated values. As host3 is not storing these values, it looks at its finger table:

Finger table:
0F ocsocket://192.168.1.12:4202/ (0-159) (host2)

As host3 has only one node in its finger table, it asks to host2 if it has the values associated to key1. As host2
is not storing these values, it looks at its finger table:
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Finger table:
2E ocsocket://192.168.1.11:4242/(0-156) (host1)
4A ocsocket://192.168.1.16:4206/(157) (host6)
55 , ocsocket://192.168.1.15:4205/ (158) (host5)

Looking at the finger table we realize that:

10 < 2E < 4A < 55 (hexadecimal)
16 < 46 < 74 < 85 (decimal)
keyID < NodeID(Host1) < NodeID(Host6) < NodeID(Host5)

Between these three nodes, the host with nodeID=2E would be the responsible of the key. Therefore, host2 asks
host1 for retrieving the associated values. As host1 is storing the values associated to key1, it sends the data
to host4.

(a) Retrieve the values of key0 from host5 and explain the followed process.

0.3.8 Removing data
To remove a key-value pair, the command removeN has to be used. The key and the value have to be specified, since
there can be several values assigned to a single key.

1. From any node, remove one pair. For example:

h o s t 4 : oc > removeN −key key1 −v a l u e v a l u e 1

2. Execute the entriesN in all the hosts to ensure that it has been removed.

0.3.9 Node failure
Finally, we will check the fault tolerance skill of a Chord network. We will try to leave the network by killing the node
without informing the other nodes, and then we will leave correctly.

1. Go to host2 and abort the application by pressing Ctrl + c

h o s t 2 : oc > ^C

The Open Chord console stops immediately.

2. Execute the refsN command in the resting nodes.

(a) What has happened?

(b) Which nodes have been affected?

3. Execute the entriesN command in the resting nodes.

(a) What has happened?

4. Now execute the leaveN command in host5

h o s t 5 : oc > leaveN

The node leaves the network informing to the other nodes of the ring. Then it returns to the Open Chord main
menu, ready for creating or joining a new ring.
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5. Execute the refsN and entriesN commands in the resting nodes.

(a) What has happened?

(b) Has any data been lost?

Realize that all the data has been redistributed between the surviving nodes, and all the finger tables and succes-
sors/predecessors have been updated. It does not matter if the nodes leave the network correctly, informing the resting
nodes, or it stops suddenly because of a failure. The nodes are periodically sending messages to their predecessors/-
successors to inform about their status. When a node shows no sign of life, the resting nodes understands that it has
fallen, so they update the network.

Remember to close the scenario:

h o s t $ s i m c t l openchord s t o p
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Chapter 6

Conclusions and Further Work

P2P systems became an interesting area since early 2000. Researchers conducted a large

amount of research in some challenging areas such as security, reliability, �exibility, load

balancing, etc. To validate their theories, they had to check the experiments of their

research and reproduce their results. For that purpose, simulators and implementations

of their networks appeared. As those initial systems are still taught in universities,

some student's implementations exist on opensource repositories, as well as free imple-

mentations that were used for research and teaching. Other implementations that were

available some years ago became a part of a commercial software, so they disappeared.

Other type of P2P networks became popular with the appearance of �le sharing

systems, and they have survived through the time. But the availability of increasingly

cheap bandwidth and the appearance of streaming solutions have make that P2P net-

works passed into the background. It is possible that P2P networks resurface with the

appearance of 5G technology, which is expected to be launched on 2020. The increase

of the IoT (Internet of Things) and the use of M2M (machine to machine) networks

could need the use of P2P technology.

The objective of this project was to search and �nd any P2P implementation able

to run in a real network between di�erent machines, and able to run in a console envi-

ronment with no GUI. If possible, the idea was to �nd the original codes of structured

P2P overlays developed by the authors of the original publications. After an extensive

research, I realized that the original projects were abandoned several years ago. So

I continued looking for other implementations available on the Internet. Most of the

found implementations were un�nished or were abandoned several years ago. Moreover,
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most of them were rarely documented or were not faithful to the original publications.

Other implementations that were important in their time are currently dead and all the

�les and documentation have been removed from the Internet. Nevertheless, I tested

almost every code I found.

To test all the found implementations, I created a virtual network with four Ubuntu

14.04 virtual machines, making use of the Oracle VM VirtualBox software. The used

virtual image is the one used in the lab of some subjects of network engineering. There-

fore, this image contains the simctl platform. Before testing codes and applications

on simctl, I tested them in the virtual network to see if they met the requirements.

By this way, I could test if they were able to run between nodes located in di�erent ma-

chines. When a software seemed interesting and useful for the objective of this master

thesis, I installed it in the �lesystem used by simctl so that I could run it on a simple

scenario.

Two software were �nally selected: aMule, a �le sharing client that runs over the

eD2k network, and Open Chord, a Chord implementation that provides a console-based

mode to interact with the Chord network. Once the software was selected, I installed

them in the �lesystem used by simctl and developed di�erent scenarios. For aMule,

I modelled an existent scenario by adding some hosts that would run the aMule client,

and another node that would run an eD2k server software. I tested all the available

options and shared di�erent �les, and everything worked �ne. Then I created an Open

Chord scenario by modifying the aMule �le. I ran the Open Chord console in several

hosts and tested all the available actions: to create a Chord ring, to add or delete some

nodes, to insert data, etc. And it also worked perfectly.

Finally, I created from scratch two di�erent scenarios in order to reduce the execution

time. As the lab session should be focused in peer-to-peer studying, a simple network

would be enough. These new scenarios have more nodes than the previous tests, in

order to simulate a more realistic scenario. After that, a lab session guide was created

so that the student must test all the possible actions and must answer some questions

that will help him to understand the behaviour of the network.

The created lab session is a �rst version, so it has to be revised or modi�ed before

creating a �nal lab session to be used in a network engineering subject. The professor

could adapt it in relation to the topics explained in class. For a future work, as Open

Chord is an open source software, and its source code is provided, it could be modi�ed
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and expanded to apply security options to the software. It could be used for security

research, trying to corrupt data or to add malicious nodes. And then, it could be used

to teach some topics about security in peer-to-peer networks.
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