
Abstract

This paper presents a tool based on a new approach for
analyzing the locality exhibited by data memory references.
The tool is very fast because it is based on a static locality
analysis enhanced with very simple profiling information,
which results in a negligible slowdown. This feature allows
the tool to be used for highly time-consuming applications
and to include it as a step in a typical iterative analysis-
optimization process. The tool can provide a detailed
evaluation of the reuse exhibited by a program, quantifying
and qualifying the different types of misses either globally
or detailed by program sections, data structures, memory
instructions, etc. The accuracy of the tool is validated by
comparing its results with those provided by a simulator.

1. Introduction

Memory performance is becoming an important bottleneck
in current microprocessors. A huge research effort has been
devoted to propose novel techniques to improve its
performance. Some of these techniques are just hardware-
oriented but there are many of them that require some
support of the programmer/compiler. This type of
techniques usually require some knowledge of the behavior
of the program.

For instance, prefetching is useful if it is only
performed for instructions that produce cache misses.
Adding a prefetch instruction to every memory instruction
may result in significant performance degradation. These
techniques may also require the quantification of the
different types of cache misses, traditionally noted as
compulsory, capacity and conflict misses. For instance,
compulsory misses can be avoided through prefetching,
both hardware [2] and software [6]. Blocking or tiling is
used to avoid capacity misses [3], whereas some examples
of techniques to reduce the effect of conflict misses are
copying [11] and padding [7].

There are many processors that provide some type of
hints in their memory instructions that the compiler can use

to optimize the memory performance. Examples of such
hints are thespatial locality onlyhint in the PA7200 [4], the
cache bypass facility provided by the PowerPC [10] and
the Dual Data Cache [8]. An effective use of such hints
requires again information about the program locality
behavior.

The process of obtaining information of the locality
characteristics of a given program is known asdata locality
analysis. This analysis has been performed traditionally
either at compile-time or at run-time. The former approach
has a low overhead but it is relatively inaccurate since there
is much information that the compiler does not know. The
latter usually takes the form of a memory hierarchy
simulator, which is quite accurate but very slow.

In this paper we propose a novel data locality analysis
mechanism that consists of a static locality analysis
enhanced with very simple profiling data. The overhead of
this mechanism is very low since most of the analysis is
performed at compile-time and the required profiling
support is just a basic block execution count. This profiling
option is currently supported by many commercial
compilers. Besides, we show in this paper that the proposed
mechanism is highly accurate for numeric codes by
comparing it with techniques based on simulation.

This tool is useful not only for the compiler but also for
programmers. In order to tune a program, a programmer
may be interested in first knowing its performance, locating
those critical parts where most of the memory penalties are
produced, identifying which data structures are responsible
for most of the cache misses, etc. The tool presented here
provides these functionalities, but due to paper length
constrains we do not show any of them in this work. We
refer the interested reader to [9] for detailed examples of its
functionality. This information can be used to optimize the
performance by means of different techniques such as
padding, bypassing, blocking, prefetching, etc.

The rest of this paper is organized as follows. Section 2
presents the locality analysis tool. The accuracy of the tool
is validated in section 3. Finally, the main conclusions are
summarized in section 4.
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2. The SPLAT locality analysis tool

This section describes the proposed tool for data locality
analysis, which is called SPLAT (Static-Profiled data
Locality Analysis Tool).

The locality analysis is performed through some static
information computed by the compiler and some dynamic
information obtained by a simple profiling (see Figure 1).

The static information is aimed at computing the
different types of misses that will happen during the
execution. Compulsory misses require to compute the
intrinsic reuse of data. Capacity misses require in addition
to compute the volume of data referenced by each loop
iteration. Finally, conflict misses are identified by
computing interferences among data references. All this
information is summarized in three files:

• Reuse file: for each memory instruction and each loop
in which it is enclosed, it stores its type of reuse
(unknown, none, self-temporal, self-spatial, group-
temporal or group-spatial). If the reuse is spatial it also
stores the stride (i.e., the difference between the
effective address of two consecutive executions). If the
reuse is group (both temporal and spatial) it also
contains thedistance, which is defined as the number
of iterations before the reuse takes place.

• Nest loop file: this file is intended to represent the loop
structure of the program. For each loop it stores its
parent, which is defined as the loop that encloses it.

• Interference file: for each pair of memory instructions
(with the same nesting level and without any other loop
in between) that have the same reference pattern, it
contains their initial addresses if they are known at
compile-time1. Two instructions have the same

1. In the SPECfp95 benchmark suite, about 75% of all memory
references have their initial address and dimension sizes known at
compile-time
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reference pattern if their corresponding variables have
the same dimensions, and the expressions that
represent the indexing functions for each dimension
differ only in a constant value.

The profiling consists of just the number of executions
of each basic block, which is a facility provided by many
current compilers (e.g. the Sun f77 compiler). We have
measured that the slowdown of this step in the execution of
a program is negligible (less than 2%). From the
information obtained by the profiler, the number of
executions of each memory instruction and the average
number of iterations of each loop can be derived (we have
measured that for the programs analyzed in this work - see
section 3.1. - at least one bound of every loop is unknown
at compile time). These data are stored in thereference file
and the iteration file respectively. Notice that for a
particular input data the profile step has to be executed just
once. However, a new execution of the profiler is needed if
the input data is changed.

This static and dynamic information is used as an input
to the locality analyzer. The locality analysis is divided into
three phases: (i) reuse phase, (ii) volume phase, and (iii)
interference phase. The first phase identifies all the reuse
exhibited by the program. This information is the basis for
computing misses. In particular, compulsory misses do not
require any additional analysis: they consist of all
references without any reuse. The volume phase is targeted
to identify capacity misses. Finally, the interference phase
computes the conflict misses.

2.1. Reuse phase

Reuse is a measure that is inherent in a given program and
depends on neither the order in which instructions are later
executed nor the cache capacity. In this phase, the different
types of reuse exhibited by each reference are quantified.

The input to this phase is thereuse file that is computed
at compile-time following the methodology described by
Wolf and Lam in [12].

The quantification of the reuse is performed basically
through the functionqreuse(i)  showed in Figure 2,
which is applied to each memory instruction except for
those with unknown reuse2 (they correspond to references
outside loops, or inside loops but with non-linear
expressions, or expressions with variables that are not loop
indices). The i  parameter represents the instruction
identifier. The analysis starts from the innermost loop and
finishes with the outermost loop that includes the
instructioni , which are denoted byN-1 and 0 respectively.

2. References with unknown reuse are assumed to always miss in
cache. They represent a 15% of the total number of memory
references in the SPECfp95.



The function computes for each particular memory
instruction in a particular loopj the following values:

• GIt j : number of iterations with group reuse in loop j.

• NGIt j : number of iterations without group reuse in
loop j.

• TIt j : total number of iterations of loop j.

• ATIt j : number of executions per iteration of loopj. It
is computed as .

The quantification of each type of reuse for each loop
in which the reference is enclosed is stored in the vectors
NN (no reuse),ST (self-temporal),SS (self-spatial),GT

(group-temporal) andGS (group-spatial). For instance,
STi [j]  represents the number of executions of instruction
i  that exhibit self-temporal reuse considering all the
iterations of loopj. Each type of intrinsic reuse identified
by the compiler is quantified as follows (see Figure 2),

• Section A: the instruction does not have any kind of self
reuse in loop j. In this case, for each iteration of j
without group reuse, the number of executions without
any reuse is the number of executions without reuse in
the loopj+1  (i.e., NNi [j]=NGIt j *NNi [j+1] ). For each
iteration of loopj, the number of executions with self-

Figure 2. Algorithm to quantify intrinsic reuse

function  qreuse (int i) {
NNi [N] = 1;
STi [N] = SS i [N] = GT i [N] = GS i [N] = 0;
for j=N-1 to 0 do {

switch  ( SELFReuse[j]) {
case NONE:

NNi [j] = NGIt j  * NN i [j+1];
STi [j] = TIt j  * ST i [j+1];
SSi [j] = TIt j  * SS i [j+1];

break ;
case TEMPORAL:

NNi [j] = NN i [j+1];
STi [j] = (TIt j  - 1)* ATIt j  + ST i [j+1];
SSi [j] = TIt j  * SS i [j+1];

break ;
case SPATIAL :

factor = stride / blocksize;
NNi [j] = (factor * NGIt j ) * NN i [j+1];
STi [j] = TIt j  * ST i [j+1];
SSi [j] =(factor * TIt j ) * SS i [j+1] +

((1-factor) * TIt j ) * ATIt j ;
break ;

}
GTi [j] = NGIt j  * GT i [j+1];
GSi [j] = NGIt j  * GS i [j+1];
switch  ( GROUPReuse[j]) {

case NONE:
break ;
case TEMPORAL:

GTi [j] += GIt j  * ATIt j ;
break ;
case SPATIAL :

GSi [j] += GIt j  * ATIt j ;
break ;

}
}

}
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temporal or self-spatial reuse is the number of
executions with such reuse in loopj+1 (i.e.,
STi [j]=TIt j *ST i [j+1] ).

• Section B: the instruction has self-temporal reuse in
loop j. In this case, the first iteration of loopj has the
same number of no-reuses as the whole execution of
loop j+1  and the executions corresponding to the
remaining iterations reuse the data of the first iteration.
Therefore NNi [j]=NN i [j+1] . Self-temporal reuse is
exploited by all executions except for the first iteration.
For this iteration, the number of self-temporal reuses
corresponds to that exhibited by the next inner loop.
Finally, self-spatial reuse is computed as in section A.

• Section C: the instruction has self-spatial reuse in loop
j. In this case, a value calledfactor that represents the
percentage of references that access a new cache block
is computed. Then, for each iteration of j without group
reuse that references a new cache line, the number of
executions without any reuse is the number of
executions without reuse in the loopj+1. Self-temporal
reuse is computed as in section A. Finally, self-spatial
reuse is computed as follows. For those iterations ofj
such thati references a new block, the number of self-
spatial reuses are the same as those in the next inner
loop; and for the remaining iterations, all the
executions exhibit self-spatial reuse.

• Section D: group reuse is computed as follows (spatial
and temporal are treated in the same way). First, for
those iterations ofj such thati does not exhibit group
reuse, the number of executions with group reuse is the
same as that of the next inner loop. For the remaining
iterations, all executions exhibit group reuse.

After computing the functionqreuse(i), NN i [0]

contains the number ofcompulsory misses of instructioni .

2.2. Volume phase

A factor that may inhibit the exploitation of reuse is the
limited storage of cache memory. In other words, if the
amount of different data blocks that are referenced between
two consecutive reuses of the same block is higher than the
cache capacity (in block units), this reuse cannot be
exploited by an LRU fully-associative cache. The resulting
cache miss is called acapacity miss.

In this phase, the volume (in cache blocks) that each
memory instruction contributes to the total volume of the
loops that enclose it is computed. This can be obtained
directly from the data computed in the previous phase. For
a given loopj each execution of instructioni that does not
exhibit any type of reuse will bring a new block into cache.
On the other hand, if a particular execution of an instruction
has any type of reuse, it does not bring any additional data



into cache. Therefore, the value ofNNi [j]  expresses the
volume contributed by the instructioni to the loopj.
Once the volume of every loop has been computed, some
reuses are marked as non-exploitable:

• If an instruction has self reuse in loopj (either temporal
or spatial), but the volume of loop j is greater than the
total number of cache blocks, this reuse will likely not
be exploited by a conventional cache.

• If an instruction has group reuse (either temporal or
spatial) and the volume corresponding todistance(see
beginning of section 2) iterations of the loop is greater
than the total number of cache blocks, this reuse will
likely not be exploited either.

Then, the functionqreuse  is computed again but
without considering the reuses marked as non-exploitable.
The new computedNNi [0] , as in the previous phase,
represents the cache misses of instructioni and the
difference with its previous value is the number ofcapacity
misses of instructioni.

2.3. Interference phase

Another factor that influences the locality is the effect of
interferences. Typically, interferences orconflict misses are
defined as those misses that occur in a direct-mapped orn-
way set-associative cache but not in a fully-associative
cache. This kind of misses may have a high impact for
cache memories with a low degree of associativity,
specially for direct-mapped caches.

The behavior of conflict misses is hard to predict
because it depends on various dynamic factors such as
memory addresses, instruction order, etc. Interferences
may be of two different types:self-interferences andcross-
interferences. Self-interferences occur when different data
blocks referenced by the same instruction are mapped onto
the same cache location, whereas cross-interferences occur
among different memory instructions. The analysis
proposed in this paper detects a subset of these
interferences. The interference analysis is currently
implemented for direct-mapped caches. Its extension to
set-associative caches is an ongoing task.

For every array reference and every loop for which it
does not exhibit temporal locality, self-interferences are
assumed to occur if the following condition is met:

cache_size_in_blocks < N * 2 stride_family_in_blocks

whereN represents the number of iterations of the loop.
The stride_family_in_blocks is related to the stride of the
reference in the analyzed loop, expressed in cache block
units. If the stride is not an integral number of blocks, the
stride is rounded up to the next integer. Thestride_family
defined byx is the set of stridesσ•2 x with σ odd [5]. All

the strides belonging to the same family (e.g.,12=3•2 2 and
20=5•2 2 belong to family 2) have the same behavior from
the point of view of self-interference.

For each reference and each loop, aself-conflict ratiois
computed, which denotes the percentage of theN iterations
of the loop that produce self-interferences. The amount of
reuses in outer loops is reduced by this factor due to self-
interferences.

Regarding cross-interferences, we focus on what is
usually called ping-pong interferences, that is, a pair of
instructions that reference different data blocks that map
onto the same cache block for every execution. These
interferences will inhibit completely the exploitation of any
reuse exhibited by the interfering instructions. This type of
conflicts is analyzed for each pair of memory instructions
that meet the following conditions:

a) Variables whose base address and size of every
dimension is statically known (75% of all references
as previously reported).

b) The difference or “hole” between the addresses
(modulo the cache size) of the first element referenced
by both instructions is less than the cache block size.

holeAB= | RA modcache_size - RB modcache_size |

c) Both references follow the same pattern (see the
above description of theinterference file for a
definition of reference pattern).

For each instruction, a real value between 0 and 1 that
represents thepercentage of interference (PI) is defined. If
PI is 0, this instruction is free of interferences whereas ifPI
is 1, it means that this instruction conflicts with some other
instruction for every iteration of the loop. Values in
between represent different percentages of interference,
that is, the percentage of total iterations in which an
instruction misses due to interferences. For two
instructions A and B that interfere, this factor is computed
as:

PIAB = (block_size - holeAB) / block_size

If an instruction conflicts with various other
instructions, the maximumPI is considered.

The reuse of an instructioni in a loop that is not marked
as non-exploitable in the volume phase will be exploited
only by the percentage of references that are free of
interferences, that is, for (1-PIi) * nrefsi, where nrefsi is the
number of executions of instructioni. The rest of
references will produce a cache miss.

Then, the functionqreuse  is computed again but
considering just the reuses that are free of interferences.
The new computedNNi [0] , as in previous phases,
represents the number of cache misses of instructioni and
the difference with its previous value is the number of
conflict misses.



3. Validation

The SPLAT tool estimates the data locality exhibited by a
program through some information computed at compile-
time and some simple dynamic information obtained by a
profiler. The aim of this tool is a fast study of the memory
behavior without the necessity of a costly memory
simulator. However, this tool would be useless if the
obtained results were far from the reality. In this section,
we validate the accuracy of the proposed tool by comparing
the estimated miss ratios with those obtained through a
cache simulator.

3.1. Framework

The static analysis used by the SPLAT tool has been
implemented using the ICTINEO compiling platform [1].
Currently, ICTINEO assumes an infinite number of
registers and thus, the references produced by spill code are
not considered in this work. Optimizations usually applied
by current compilers (such as common subexpression
elimination, deadcode removal, invariants, etc.) are
implemented and are applied to the resulting code. In this

way, the resulting code is very similar to the code generated
by a production compiler.

For the tool validation we have used some programs
from the SPECfp95 benchmarks suite. These programs are:
tomcatv, swim,and hydro2d.

A direct-mapped cache has always been considered.
The results presented in this paper correspond to the
profiling/execution of the whole execution of each
benchmark using the test input data.

3.2. Error in the estimation

In order to validate the tool, the results obtained by
simulation and the results produced by the SPLAT tool
have been compared. With this goal, we have simulated a
direct-mapped cache memory of different capacities (1KB,
8KB and 64KBytes) and various block sizes (16, 32 and 64
bytes). Figure 3 shows the results for the analyzed
programs, two of them showing a high variability in the
miss ratio (tomcatv andswim), whereas the other one has a
miss ratio that is much less affected by the cache
parameters (hydro2d). Besides,tomcatv and swim are
programs with a high conflict miss ratio whereashydro2d
has a very low conflict miss ratio.
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Figure 3. Comparison of the tool results against simulation results



The first row of graphs shows both the simulated and
estimated cache miss ratios for the various configurations
of cache. We can see in these graphs that the results
obtained by the SPLAT tool are very close to the simulation
results. That shows that the tool is accurate for a typical
range of cache parameters.

Another way to measure the accuracy of the estimation
is to compute the average absolute error per instruction.
This error indicates how far from the reality the estimation
is for each single instruction. These results are depicted in
the second and third rows of graphs.

The second row shows the dynamic average error per
instruction, which is computed as:

avg_derror =

Black bars represent the error for instructions with
reuse known at compile time for different cache and line
sizes, whereas white bars correspond to the error
considering all the instructions. We can see in these graphs
that the impact of references with unknown reuse is very
low, since normally these instructions are out of loops and
rarely executed. The average error per dynamic instruction
is around or less than 10% for all programs and all the
cache configurations.

Finally, on the third row of graphs the estimated error
for a particular configuration (in this case, a 8Kb cache with
32 bytes blocks) is more detailed. These graphs display the
distribution function of the dynamic error per instruction. It
can be seen that a very large percentage of dynamic
instructions have a very low error. The accuracy of the tool
is extremely high for thehydro2d program: about 90% of
the instructions have no error at all.

4. Conclusions

We have presented a new data locality analysis
methodology. So far this type of analysis has been
performed by means of: a) simulators, which have a high
slowdown and thus, they are unfeasible for some large
commercial applications; b) hardware-counters, whose
scope is quite limited to the actual processor architecture
and the provided counters; and c) just a static analysis,
which may be inaccurate because of the limited knowledge
of the compiler. The proposed tool uses a static locality
analysis combined with very simple profiling information,
which results in a very fast tool and very accurate at the
same time, as shown in the paper.

The tool is flexible in the sense that it provides many
useful utilities to the programmer/compiler: cache miss
ratio, quantification of the reuse, identifying critical parts

missratioesti
missratiosimi

– nrefsi⋅
i

NINSTR

∑

nrefsi
i

NINSTR

∑
---------------------------------------------------------------------------------------------------------------

of the program, determining the data structures that
produce most conflict misses, etc. (see [9]).

Tools like the one proposed in this paper will be very
useful to take advantage of the hints that some current
microprocessors are offering to the programmer/compiler
for an efficient use of the memory hierarchy.
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