
	
	 	

Design and development of
a social jukebox service
for iOS

· Final thesis ·

Wai Ling Tam
October 2016
Software Engineering
Director: María José Casany

	 2	

Abstract	
	
This	project	aims	to	give	customers	a	say	regarding	the	music	that	is	being	played	in	an	
establishment	besides	encouraging	social	interaction	among	people	staying	at	the	same	
spot.	A	system	that	allows	users	to	vote	for	the	tracks	on	the	current	song	playlist	as	
well	as	submit	their	own	song	requests	is	created.	As	a	result,	users	are	able	to	see	the	
ones	who	have	contributed,	therefore	 look	 into	their	profiles	and	have	the	option	to	
contact	them	via	social	media	because	of	the	common	music	taste	or	shared	hang	out	
spots.	 	

	 3	

Resum	
	
Aquest	projecte	té	com	a	objectiu	donar	als	clients	la	oportunitat	de	donar	la	seva	opinió	
respecte	 la	 música	 que	 està	 escoltant	 i	 per	 fomentar	 la	 interacció	 social	 entre	 les	
persones	que	estan	en	un	mateix	espai.	Un	sistema	que	permet	als	usuaris	votar	per	les	
cançons	de	la	llista	de	cançons	i	també	fer	peticions	de	cançons	és	creada.	Com	a	resultat,	
els	usuaris	poden	veure	els	que	han	contribuït	i	així,	visitar	els	seus	perfils	i	tenir	la	opció	
contactar	amb	ells	via	les	xarxes	socials	pel	gust	musical	similar	o	els	llocs	en	comú	on	
han	anat.	
	
	 	

	 4	

Index	

Abstract	..	2	

Resum	..	3	

1.	 Introduction	...	8	
1.1	 Formulation	of	the	problem	..	8	
1.2	 Objectives	..	9	
1.3	 Context	..	9	
1.4	 State	of	art	..	10	

2.	 Scope	...	14	
2.1.	 In	scope	...	14	
2.2.	 Out	of	scope	..	15	
2.3.	 Possible	obstacles	and	solutions	...	15	

2.3.1.	 Business	risks	..	15	
2.3.2.	 Technical	risks	...	15	
2.3.3.	 Development	risks	..	16	

2.4.	 Methodology	and	rigor	...	16	
2.4.1.	 Short	development	cycles	...	16	
2.4.2.	 Constant	feedback	..	16	

2.5.	 Monitoring	Tools	...	17	
2.6.	 Validation	methods	...	17	

3.	 Time	planning	..	18	
3.1.	 Phases	...	18	

Phase	I:	Project	management	..	18	
Phase	II:	Analysis	and	design	...	18	
Phase	III:	Project	iterations	and	task	specification	...	19	
Phase	IV:	Final	documentation	and	delivery	..	21	

3.2.	 Estimated	duration	..	22	
3.3.	 Time	deviation	...	22	
3.4.	 Resources	..	23	

3.4.1.	 Human	..	23	
3.4.2.	 Hardware	..	23	
3.4.3.	 Software	...	23	

4.	 Budget	..	24	
4.1.	 Budget	on	human	resources	...	24	
4.2.	 Budget	on	material	resources	...	25	

4.2.1.	 Budget	on	hardware	...	25	
4.2.2.	 Budget	on	software	..	25	
4.2.3.	 Indirect	costs	...	26	

4.3.	 Total	cost	...	26	

5.	 Sustainability	..	27	
5.1	 Economic	impact	...	27	

	 5	

5.2	 Social	impact	...	27	
5.3	 Environmental	impact	...	27	
5.4	 Sustainability	matrix	..	27	

6.	 Analysis	of	requirements	...	28	

7.	 Specification	..	29	
7.1.	 Conceptual	model	...	29	

7.1.1.	 Conceptual	scheme	...	29	
7.1.2.	 Textual	integrity	restrictions	...	30	
7.1.3.	 Description	of	classes,	attributes	and	relations	..	30	

7.2.	 Use	cases	...	33	
7.2.1.	 #UC1	Login	..	33	
7.2.2.	 #UC2	Sign	up	...	33	
7.2.3.	 #UC3	Log	out	..	34	
7.2.4.	 #UC4	Edit	user’s	own	profile	...	34	
7.2.5.	 #UC5	Select	an	establishment	from	map	..	34	
7.2.6.	 #UC6	Search	establishment	by	name	or	address	..	35	
7.2.7.	 #UC7	Check	in	to	an	establishment	..	35	
7.2.8.	 #UC8	Vote	for	a	song	..	36	
7.2.9.	 #UC9	Request	a	song	..	36	
7.2.10.	 #UC10	View	a	song’s	voters	..	37	
7.2.11.	 #UC11	View	a	song’s	voter	profile	..	37	
7.2.12.	 #UC12	View	profile	of	the	user	who	requested	a	song	...	37	
7.2.13.	 #UC13	View	user’s	check-ins	...	37	
7.2.14.	 #UC14	View	user’s	voted	songs	..	37	
7.2.15.	 #UC15	View	user’s	requested	songs	...	38	
7.2.16.	 #UC16	Register	an	establishment	...	38	
7.2.17.	 #UC17	Edit	owned	establishment	profile	..	39	
7.2.18.	 #UC18	Remove	an	establishment	...	39	
7.2.19.	 #UC19	View	owned	establishment	current	playlist	..	40	
7.2.20.	 #UC20	Set	establishment	playlist	..	40	
7.2.21.	 #UC21	Reset	establishment	playlist	..	41	
7.2.22.	 #UC22	Clear	playlist’s	votes	..	41	
7.2.23.	 #UC23	Remove	establishment’s	current	playlist	...	41	
7.2.24.	 #UC24	Set	song	with	explicit	lyrics	allowance	..	42	

8.	 Design	..	43	
8.1.	 Design	models	...	43	

8.1.1.	 #UC1	Login	..	43	
8.1.2.	 #UC2	Sign	up	...	44	
8.1.3.	 #UC3	Log	out	..	44	
8.1.4.	 #UC4	Edit	user’s	own	profile	...	45	
8.1.5.	 #UC5	Select	an	establishment	from	map	..	45	
8.1.6.	 #UC6	Search	establishment	by	name	or	address	..	46	
8.1.7.	 #UC7	Check	in	to	an	establishment	..	46	

	 6	

8.1.8.	 #UC8	Vote	for	a	song	..	47	
8.1.9.	 #UC9	Request	a	song	..	47	
8.1.10.	 #UC10	View	a	song’s	voters	..	48	
8.1.11.	 #UC11	View	a	song’s	voter	profile,	#UC12	View	profile	of	the	use	who	requested	a	
song,	#UC13	View	user’s	check-ins,	#UC14	View	user’s	voted	songs,	#UC15	View	user’s	
requested	songs	...	48	
8.1.12.	 #UC16	Register	an	establishment	...	49	
8.1.13.	 #UC17	Edit	owned	establishment	profile	..	49	
8.1.14.	 #UC18	Remove	an	establishment	...	50	
8.1.15.	 #UC19	View	owned	establishment	current	playlist	..	50	
8.1.16.	 #UC20	Set	establishment	playlist	..	51	
8.1.17.	 #UC21	Reset	establishment	playlist	..	51	
8.1.18.	 #UC22	Clear	playlist’s	votes	..	52	
8.1.19.	 #UC23	Remove	establishment’s	current	playlist	...	52	
8.1.20.	 #UC24	Set	song	with	explicit	lyrics	allowance	..	53	

8.2.	 Patterns	...	53	
8.2.1.	 Singleton	pattern	..	53	
8.2.2.	 Model	view	controller	pattern	..	53	

8.3.	 Deployment	model	..	54	
8.4.	 Data	model	..	55	
8.5.	 Navigational	model	...	56	

9.	 Development	and	implementation	...	57	
9.1.	 Description	and	justification	of	the	selected	technologies	...	57	

9.1.1.	 Main	frameworks,	tools,	services	...	57	
iOS	is	chosen	because	firstly,	it	is	one	of	the	most	popular	mobile	OS	in	the	market	and	
secondly,	its	development	environment	is	simple	and	innovative	and	has	a	great	variety	and	
very	well	done	system	libraries/APIs.	...	57	
9.1.2.	 API’s	and	libraries	from	third	parties	..	57	
9.1.3.	 Package	and	library	managers	...	58	

9.2.	 API	...	58	

10.	 Testing	...	59	
10.1.	 Manual	tests	..	59	
10.2.	 Automated	tests	..	59	

11.	 Results	and	conclusion	..	60	
11.1.	 Future	enhancements	...	60	

12.	 Glossary	...	61	

13.	 Sources	..	62	
Font	..	62	
Icons	...	62	
Swift	libraries	...	62	
Python	libraries	..	62	

14.	 Bibliography	...	63	

	 7	

15.	 Annex	...	64	
15.1.	 API	Documentation	...	64	
15.2.	 Backend	code	repository	...	64	
15.3.	 App	code	repository	..	64	
15.4.	 Application	screens	...	65	
	
	
	 	

	 8	

1. Introduction	
	

1.1 Formulation	of	the	problem	

Music	has	always	been	part	of	human’s	life.	Since	the	beginning	of	ancient	history,	music	
has	been	performed	for	many	purposes,	ranging	from	aesthetic	pleasure,	religious	or	
ceremonial	purposes,	or	as	an	entertainment	product	for	the	marketplace.	After	all,	its	
main	goal	is	to	gather	people	at	the	same	place	and	enjoy	the	art	of	sound.	
	
The	arrival	of	the	Internet	and	widespread	high-speed	broadband	has	turn	music	into	a	
whole	new	experience.	The	increased	ease	of	access	to	music	via	streaming	videos	and	
music	streaming	services	has	made	the	choice	and	discovery	of	music	unlimited.	
	
Nowadays	 music	 is	 being	 played	 in	 almost	 any	 establishment	 that	 doesn’t	 require	
silence	in	order	to	make	customers	feel	welcomed	and	entertained.	However,	there	are	
other	visitors	who	prefer	to	listen	to	their	own	music	and	be	disconnected	from	their	
surroundings.	 On	 the	 one	 hand,	 they	 might	 simply	 want	 to	 keep	 themselves	
concentrated	in	their	tasks,	on	the	other	hand,	assuming	the	less	desirable	cause,	they	
are	not	fond	of	the	music	that	is	being	played	in	their	current	location.	
	
From	the	 facts	stated	above,	 this	project	aims	 to	 take	 into	account	 the	 initial	end	of	
music	and	 its	present	 situation	 in	public	 spaces.	 The	 target	 is	 to	give	 customers	and	
visitors	 a	 say	 regarding	 the	 music	 they	 are	 listening	 to	 and	 to	 encourage	 social	
interaction	among	people	staying	at	the	same	spot.	A	system	that	will	allow	users	vote	
for	 the	 tracks	 on	 a	 currently	 playing	 song	 playlist	 as	 well	 as	 submit	 their	 own	 song	
requests	will	be	created.	As	a	result,	users	will	most	likely	enjoy	more	their	stay	in	an	
establishment	and	will	be	able	to	see	the	ones	who	have	contributed,	 look	into	their	
profiles	and	have	the	option	to	contact	them	via	social	media	because	of	the	common	
music	taste	or	shared	hang	out	spots.	
	 	

	 9	

1.2 Objectives	

Now	that	the	problem	has	been	set,	the	next	step	is	to	analyze	the	different	objectives	
intended	to	achieve	with	this	project.	
	

 Help	users	discover	new	sounds	and	expand	their	music	horizon.	
 Encourage	people	reach	out	and	meet	other	users	of	the	product.		
 Help	visitors	discover	new	places	taking	into	account	their	music	taste	and	hang	
out	spots.	

 Make	customers’	stay	in	a	locale	more	enjoyable.	
 Help	 establishments	 promote	 themselves	 thanks	 to	 the	 contributive	 music	
system.		

 Create	a	simple	and	intuitive	user	interface	which	will	allow	a	seamless	usage	of	
the	product.	

 Build	a	software	that	manages	a	locale’s	current	song	playlist	which	is	in	constant	
change	because	of	the	voting	and	the	song	requests.	

 Build	a	system	that	handles	user	and	establishment	profiles.	
	
	

1.3 Context	

The	main	product	of	this	project	is	a	mobile	application,	most	commonly	referred	as	an	
app,	it	is	a	type	of	application	software	designed	to	run	on	a	mobile	device,	such	as	a	
smartphone	or	a	tablet.	Apps	are	generally	small,	individual	software	units	with	limited	
and	isolated	functionality	such	as	a	game	or	a	calculator.	Nowadays,	mobile	phones	so	
as	mobile	apps	are	so	 integrated	 into	our	 lives	that	many	people	 feel	uncomfortable	
without	them.	It	makes	sense	that	the	product	of	this	project	is	a	mobile	app	because	
the	main	point	is	that	users	will	be	able	to	use	it	wherever	they	go.	
	
The	 mobile	 app	 will	 run	 on	 iOS,	 which	 is	 a	 mobile	 operating	 system	 created	 and	
developed	by	Apple	Inc.	and	distributed	exclusively	for	Apple	hardware.	It	is	the	second	
most	popular	mobile	operating	system	 in	 the	world	by	sales.	 iOS	apps	are	written	 in	
Swift	 or	 Objective-C	 (with	 some	 elements	 optionally	 in	 C	 or	 C++)	 and	 compiled	
specifically	for	iOS	and	the	64-bit	ARM	architecture	or	previous	32-bit	one	[1].	
	

	 10	

Regarding	the	music	catalog	and	management,	these	will	be	provided	by	Spotify.	Spotify	
is	a	Swedish	commercial	music	streaming,	podcast	and	video	service	that	provides	digital	
rights	management–protected	content	from	record	labels	and	media	companies.	 It	 is	
the	biggest	name	in	music	streaming	services	currently	and	has	more	than	100	million	
users	worldwide	[2]	[3].	
The	Spotify	API	is	based	on	simple	REST	principles,	their	API	endpoints	return	metadata	
in	JSON	format	about	artists,	albums,	and	tracks	directly	from	the	Spotify	catalog.	The	
API	also	provides	access	to	user-related	data	such	as	playlists	and	music	saved	in	users’	
music	library,	subject	to	their	authorization	[4].	
	

1.4 State	of	art	

At	this	moment,	there	are	already	a	few	social	jukebox	applications	in	the	market.	All	of	
them	have	the	common	features	of	a	social	music	player	and	other	aspects	that	make	
them	more	distinctive.	
Up	next,	a	 series	of	apps	are	going	 to	be	presented	with	a	 list	of	 characteristics	and	
functionalities.	The	purpose	is	to	study	what	is	already	out	in	the	market	and	which	are	
the	factors	that	differentiate	them	from	each	other.	As	a	result,	a	unique	application	can	
be	build	and	it	will	have	the	chance	to	stand	out	from	its	competitors.	
	

 Rockbot	[5]	
o Technology:	 iOS	 and	Android	 app,	webapp	 for	 hosts	 (people	 in	 charge	 of	 the	

playlist)	
o Music	provider:	They	have	their	own	selection	of	licensed	commercial	free	music	

(14	million	songs)	
o Common:	make	requests,	vote	
o Regular:	

§ Import	your	own	playlists	from	Spotify	or	iTunes.	
§ Download	songs	that	are	currently	playing.	

o Unique:	
§ Learn	the	preferences	of	managers	and	guests	over	time	and	continually	

improve	the	quality	of	the	background	music.	
§ Rockbot's	 algorithms	 create	 balance	 in	 the	 soundtrack	 and	 guarantee	

that	songs	are	never	overplayed.	
§ Rockbot	automatically	plays	different	music	at	different	times	of	the	day	

to	match	the	mood	of	the	business.	

	 11	

§ Disable	explicit	lyrics	or	disable	it	based	on	time	of	day.	
§ Ban	any	artist	or	song.	
§ Pick	 from	 hundreds	 of	 stations	 tailored	 to	 a	 specific		

industry	or	design	new	playlists.	
§ A	centralized	online	dashboard	and	instant	remote	control	via	mobile.	
§ A	remote	control	for	the	store	managers.	The	Rockbot	Manager	App	

enables	 them	 to	 easily	 skip	 a	 song,	 change	 playlists,	 or	 adjust	 the	
volume	on	the	fly.	

§ Set	permissions	at	any	level.	Give	every	location,	franchisee,	manager	
and	employee	as	much	or	little	control.	

§ Users	need	credits	to	request	songs.	
§ Share	song	plays	on	social	media	with	photos	and	'tagged'	friends.	
§ Sync	music	from	a	device,	Facebook,	Spotify	and	Last.fm.	
§ Link	social	networks	to	connect	with	users	and	businesses.	
§ Unlock	 rewards,	 enter	 giveaways,	 and	 view	 current	 specials	 at	 the	

venue.	
	

 OutLoud	[6]	
o Technology:	iOS	app	and	webapp	
o Music	provider:	Spotify	
o Common:	make	requests,	vote	and	downvote	
o Regular:	

§ Mix	the	user’s	Spotify	and	iTunes	playlists	with	the	ones	from	friends.	
§ Add	songs	from	your	own	Spotify,	Apple	Music	and	OutLoud	playlists	or	

from	Spotify's	and	OutLoud's	top	charts.	
o Unique:	

§ Display	 the	OutLoud	playlist	onto	 the	TV	via	Google	Chromecast	or	 the	
web-based	TV	app	through	a	laptop.	

§ Every	playlist	has	a	customizable	web	link	making	it	very	easy	to	join.	
§ Party	social	network.	Chat	and	share	pictures	with	everyone	on	the	playlist.	

They're	only	visible	 to	 those	at	 the	party	and	when	the	host	closes	 the	
playlist,	they	all	disappear.	

§ See	what	songs	friends	added	and	voted	for.	
	

	
	

	 12	

 Jukestar	[7]	
o Technology:	Android	app	and	webapp	
o Music	provider:	Spotify	
o Common:	make	requests,	vote	and	downvote	
o Regular:	

§ Hosts	can	overrule	any	song	and	force	any	song	to	play	next.	
o Unique:	

§ The	upcoming	queue	is	distributed	and	updated	automatically	based	on	
who	requested	it,	when	they	requested	it	and	what	other	guests	think	of	
the	songs.	

§ Guest	requests	will	be	spread	out	in	the	queue	so	everyone’s	music	gets	
played.	

§ If	 enough	 guests	 veto	 a	 song	 it	 disappears	 from	 the	 playlist,	 even	 the	
currently	playing	song.	

§ Jukestar	will	make	sure	the	same	song	isn't	repeated	on	the	night.		
§ Share	playlist	with	guests	via	social	media	

	
 SecretDJ	[8]	
o Technology:	iOS	and	Android	apps	
o Music	provider:	local	music	catalog	
o Common:	make	requests	
o Regular:	

§ Option	to	preview	a	song,	download	from	iTunes	or	save	to	Spotify.	
o Unique:	

§ Location	savvy:	Secret	DJ	shows	nearby	venues	that	are	part	of	the	Secret	
DJ	network	and	what	music	is	on.	

§ Check-in	at	the	venues	and	let	friends	know	where	you	are.		
§ In	order	to	request	songs,	users	have	to	buy	credits.	
§ Secret	DJ	rewards	the	venue’s	loyal	customers	with	extra	songs.	If	a	user	

selects	enough	tunes	and	he	might	become	the	DJ	of	the	bar	and	always	
jump	the	queue.		

§ Allows	the	user	share	all	the	songs,	people	and	places	he	likes	via	Twitter	
and	Facebook.	

§ It	has	a	music	related	news	feed.	
§ Establishment	 profile:	 address,	 likes,	 current	music,	 Facebook	 account,	

Twitter	account,	webpage,	photo,	future	events	

	 13	

§ Users	profile:	 venues	 visited,	 tunes	 requested,	 favorite	 tunes,	 last	 seen	
venue,	profile	picture	

	
	
After	reviewing	the	features	from	the	applications	above,	the	following	conclusions	are	
extracted:	

- None	of	the	applications	addresses	the	objectives	of	this	project	in	the	entirety.	
- SecretDJ	is	the	one	that	comes	closer	to	the	app	to	be	built.	It	has	establishment	

and	user	profiles	but	it	doesn’t	allow	voting	neither	has	a	way	to	contact	other	
users.	

- OutLoud	and	Jukestar	have	Spotify	as	their	music	provider,	however,	these	apps	
have	their	focus	on	private	parties,	not	public	places.	

- Rockbot	has	plenty	of	interesting	and	useful	features.	But	it	seems	to	be	more	
centered	 on	 the	 host	 side,	 on	 the	 management	 of	 the	 music	 and	 not	 the	
exploration	of	new	music	and	places.		

- The	app	of	this	project	will	gather	characteristics	from	each	of	them	and	others	
that	haven’t	appeared	yet.	

	
	 	

	 14	

2. Scope	
	
First	of	all,	 there	are	two	types	of	users	 in	the	main	audience	of	 the	application:	 the	
hosts	of	establishments	and	the	customers.	An	iOS	application	will	be	developed,	which	
is	the	way	users	will	interact	with	the	whole	system.	The	application	must	be	install	
	
On	the	backend,	a	REST	API	implemented	with	the	Django	framework	will	give	access	to	
a	database	where	information	in	relation	to	users,	establishments	and	the	song	playlist	
management	will	be	 located.	There	will	be	an	admin	site	 for	people	 in	charge	of	 the	
administration	 of	 the	 application,	which	 the	 Django	 framework	 provides	 by	 default.	
Everything	 stated	 (admin	 site,	 API	 and	 database)	 is	 deployed	 on	 Heroku,	 a	 cloud	
Platform-as-a-Service	(PaaS).	
	
As	to	the	music	player,	the	establishment	owners	must	use	Spotify	as	its	music	streaming	
service	since	the	application	will	fetch	data	from	the	Spotify	music	catalog	and	manage	
the	user’s	current	song	playlist.	
	

2.1. 				In	scope	

• The	audience	of	the	app	are	establishment	owners	and	customers.	

• A	 user	 can	 vote	 and	 request	 songs	 of	 a	 playlist	 currently	 playing	 in	 an	
establishment.	

• A	user	has	a	profile	with	his	establishment	check-ins,	 favorite	artists,	 favorite	
genres,	requested	songs,	voted	songs	and	social	media	links.	

• A	user	can	visit	other	users’	profile.	

• A	user	can	see	the	voters	of	a	song	and	the	user	who	requested	the	song	if	given	
the	case.	

• An	 establishment	 has	 a	 profile	 with	 its	 address,	 currently	 playing	 song	 and	
current	song	playlist.	

• A	same	user	can	perform	as	a	host	and	a	guest.	

• A	user	has	to	sign	up	and	log	in	in	order	to	use	the	app.	

• A	host	can	set	if	songs	with	explicit	lyrics	are	allowed.	

• The	app	uses	geolocation	in	order	to	display	user’s	current	location.	

• The	app	uses	Spotify	as	its	music	provider.	

• The	app	has	an	admin	site.	

	 15	

• It	is	a	mobile	application	with	iOS	as	its	operating	system.	

• Worldwide	availability.	
	

2.2. 				Out	of	scope	

• Down	voting	of	songs	is	not	available.	

• The	app	doesn’t	have	a	chat.	

• The	app	is	not	addressed	to	private	events.	

• The	app	is	not	multilingual.	

• There	won’t	be	a	user	report	system.	

• The	host	can’t	ban	artists	or	songs.	

• The	user	doesn’t	need	credits	in	order	to	vote	or	make	a	request.		
	

2.3. 				Possible	obstacles	and	solutions	

2.3.1. Business	risks	

• Obstacle:	 Lack	 of	 users	 in	 some	 establishments,	 therefore	 the	 social	
interaction	factor	is	lessened.	

o Solution:	Promote	the	app	and	the	establishments	which	are	involved	
with	it.		

• Obstacle:	Users	abundance	in	some	establishments,	to	the	point	that	affects	
the	efficiency	of	the	servers	and	the	user	experience.	

o Solution:	 Upgrade	 and/or	 acquire	 more	 servers	 and	 improve	 the	
client-side	of	the	app.	

• Obstacle:	Users	who	don’t	use	the	app	correctly	and	vote	and	make	requests	
carelessly.	

o Solution:	Limit	the	number	of	votes	and	requests	per	hour.	

	

2.3.2. Technical	risks	

• Obstacle:	The	Heroku	platform	 in	under	maintenance,	as	a	 result,	developers	
won’t	be	able	to	work	properly.	

o Solution:	Execute	tasks	that	don’t	require	Heroku.	

• Obstacle:	 Lack	 of	 knowledge	 regarding	 the	 development	 tools,	 programming	
language	and	APIs.	

o Solution:	look	for	help	in	the	available	documentation	or	on	the	Internet.	

	 16	

• Obstacle:	Unauthorized	access	to	the	database.	
o Solution:	Implement	an	authentication	method	to	the	admin	site.	All	user	

passwords	must	be	encrypted.	
	

2.3.3. Development	risks	

• Obstacle:	Requirement	changes.	
o Solution:	Application	of	an	agile	methodology.	

• Obstacle:	Insufficient	risks	management	
o Solution:	Revise	and	improve	the	risks	list.		

	

2.4. Methodology	and	rigor	

Because	of	 the	 amount	of	 time	available	 to	 carry	out	 the	project,	 following	 an	 agile	
approach,	specifically	the	SCRUM	methodology,	will	be	the	best	choice.		
Although	agile	methodologies	 are	 very	 team-oriented,	 there	 are	many	 concepts	 and	
ideas	from	which	an	individual	project	can	take	advantage	of.	
	

2.4.1. Short	development	cycles	

Brief	iterations	provide	flexibility	to	changes,	fast	development	and	results	in	less	time	
than	 any	 other	 ordinary	 methodology.	 Plus,	 it	 facilitates	 the	 prediction	 of	 a	 more	
accurate	time	and	reduces	some	specific	risks.	
	

2.4.2. Constant	feedback	

From	the	project	management	to	the	implementation	of	the	project,	a	very	important	
part	of	the	process	is	receiving	constant	information	and	responses	of	the	client.	In	this	
case,	the	GEP	tutor	and	the	project	director,	who	give	support	on	how	to	improve	the	
project	 and	 mention	 the	 mistakes	 that	 must	 be	 fixed.	 As	 a	 result,	 chances	 of	
misunderstandings	 are	 greatly	 reduced	 and,	 given	 the	 case	 they	 occur,	 they	 are	
corrected	much	sooner.	To	sum	up,	any	kind	of	feedback	has	a	positive	impact	on	the	
project.	
	

	 17	

2.5. Monitoring	Tools	

As	this	project	is	about	implementing	a	software,	a	suitable	monitoring	tool	would	be	
an	online	repository,	so	an	easy	access	to	the	code	from	any	platform	and	work	station	
is	guaranteed.	
	
On	the	one	hand,	Git	will	be	used	to	store	the	code	and	document	it,	due	to	the	fact	that	
every	time	a	commit	is	done	a	message	has	to	be	left.	Besides	this	toughens	the	idea	of	
short	iterations.	Github,	a	web-based	Git	repository	hosting	service	is	used,	which	also	
offers	a	ticket	system,	ideal	for	setting	milestones	and	tracking	the	project’s	progress.	

	

2.6. Validation	methods		

Thanks	to	the	agile	methodology,	there	is	going	to	be	periodic	and	constant	validations	
for	a	correct	evolution	of	the	project.	There	will	be	scheduled	meetings	at	the	end	of	
each	 work	 iteration	 with	 the	 project	 director,	 which	 will	 assure	 that	 the	 project	 is	
following	the	right	path	and	methods.	
	 	

	 18	

3. Time	planning	
	
Firstly,	the	development	of	this	project	had	an	estimated	duration	of	5	months	at	the	
beginning,	although	due	to	various	reasons	(explained	in	a	following	section),	it	ended	
up	 having	 a	 duration	 of	 approximately	 8	 months,	 starting	 from	 February	 15th	 until	
October	17th	2016.	Therefore,	the	schedule	has	been	shaped	and	modified	given	these	
time	constraints.	The	planning	of	the	project	is	divided	in	different	phases,	thus	in	the	
upcoming	sections,	details	of	each	phase	as	well	as	the	duration	and	the	human	and	
material	resources	required	are	specified.	
	

3.1. Phases	

Phase	I:	Project	management	

This	 is	 the	 stage	 of	 the	 project	 where	 the	 elaboration	 of	 documents	 related	 to	 the	
project	management	takes	place.	
	
Its	parts	are:	

• Scope	definition	
• Time	planning	
• Economic	management	and	sustainability	
• State	of	art	and	references	

	
Resources	needed:	

• Human	
o Project	manager	

• Material	
o Hardware:	MacBook	Pro	Retina	15”	
o Software:	OSX	El	Capitan,	Microsoft	Office	2016	

	
Phase	II:	Analysis	and	design	

The	goal	of	this	section	is	to	do	an	in-depth	analysis	of	the	project	and	specify	the	final	
design.	
As	for	the	analysis,	the	objectives	that	this	project	aims	to	complete	are	set	during	this	
process,	together	with	the	requirements,	the	features	and	the	use	cases.	Furthermore,	
the	 market	 research	 done	 beforehand	 comes	 in	 handy	 during	 the	 analysis	 of	 the	
competitors’	app	features.	
Lastly,	a	software	architecture	and	a	graphical	user	interface	are	created	in	relation	to	
the	design	of	the	project.	
	

	 19	

	
	
Previous	requirements:	Project	management	
Resources	needed:	

• Human	
o Designer,	Analyst	

• Material	
o Hardware:	MacBook	Pro	Retina	15”	
o Software:	OSX	El	Capitan,	Microsoft	Office	2016	

	
Phase	III:	Project	iterations	and	task	specification	

Due	to	the	fact	that	the	methodology	followed	in	this	project	is	agile,	a	strict	list	of	tasks	
for	the	different	iterations	cannot	be	listed	at	once.	Whereas	a	set	of	objectives	are	set	
each	week	adjusting	the	process	to	possible	deviations	that	could	surface.	Nevertheless,	
a	set	of	general	tasks	with	a	strict	sequence	can	be	defined.	
		
1. Task	specification	

Throughout	 the	 different	 iterations,	 a	 list	 of	 tasks	 is	 set	 before	 the	 execution	 of	
development	tasks.	The	previous	iteration	is	reviewed,	which	involves	the	amount	
of	tasks	completed,	then	the	work	to	be	done,	time	left	and	the	available	budget	is	
considered	in	order	to	arrange	the	new	tasks.	

	
Previous	requirements:	Project	management,	Analysis	and	design	
Resources	needed:	
• Human	

o Analyst	
• Material	

o Hardware:	MacBook	Pro	Retina	15”	
o Software:	OSX	El	Capitan,	Microsoft	Office	2016,	Github	

	
	

2. Working	environment	configuration		
This	 iteration	 is	 oriented	 to	 prepare	 the	 environment,	 install	 and	 configure	 the	
necessary	frameworks	and	programs	to	develop	correctly	the	application.	
	
Previous	requirements:	Task	specification	
Resources	needed:	
• Human	

o Programmer	
• Material	

	 20	

o Hardware:	MacBook	Pro	Retina	15”,	iPhone	5c,	iPad	mini	
o Software:	OSX	El	Capitan,	iOS	9,	Xcode	7,	PyCharm,	pgAdmin,	Github,	

Heroku	
	

3. Development	of	the	data	access	layer	(the	back	end)	
This	is	the	main	stage	of	the	project.	It	covers	all	tasks	related	to	the	implementation	
and	the	testing	of	the	application.	The	development	begins	with	the	back	end,	more	
specifically	tasks	related	to	the	creation	of	users	and	establishments	(registration,	
log	in,	profile).	
Next,	tasks	related	to	the	Spotify	API	and	music	management	are	completed,	such	
as	 obtaining	 the	 establishment’s	 current	 song	playlist	 and	more	 importantly,	 the	
entire	voting	system	and	the	addition	of	songs	from	user	requests.	
	
Previous	requirements:	Task	specification,	Working	environment	configuration	
Resources	needed:	

§ Human	
o Programmer	

§ Material	
o Hardware:	MacBook	Pro	Retina	15”	
o Software:	OSX	El	Capitan,	PyCharm,	pgAdmin,	Github,	Heroku	

	
4. Development	of	the	presentation	layer	(the	front	end)	

Following	up	is	the	creation	of	the	application’s	user	interface	and	connecting	it	to	
the	back	end.	
	
Previous	requirements:	Task	specification,	Working	environment	configuration,	
Back	end	development	
Resources	needed:	
• Human	

o Programmer	
	

• Material	
o Hardware:	MacBook	Pro	Retina	15”,	iPhone	5c,	iPad	mini	
o Software:	OSX	El	Capitan,	iOS	9,	Xcode	7,	Github	

	
5. Final	tests	and	debugging		

Lastly,	the	final	testing	and	debugging	is	carried	out.	Although	during	the	execution	
of	the	implementation	both	tasks	are	done	whenever	necessary.	
	
Previous	requirements:	Task	specification,	Working	environment	configuration,	
Back	end	development,	Front	end	development	

	 21	

Resources	needed:	
• Human	

o Programmer,	Tester	
	

• Material	
o Hardware:	MacBook	Pro	Retina	15”,	iPhone	5c,	iPad	mini	
o Software:	OSX	El	Capitan,	iOS	9,	Xcode	7,	PyCharm,	pgAdmin,	Github,	

Heroku	
	
Phase	IV:	Final	documentation	and	delivery	

In	 the	 last	 phase,	 parts	 missing	 in	 the	 report	 are	 completed,	 then	 it	 is	 presented	
alongside	 the	 appendix,	 where	 the	 code,	 the	 manual	 of	 the	 application,	 plus	 other	
relevant	documents	are	included.	
It	is	important	to	note	that	the	documentation	is	updated	throughout	the	completion	of	
the	different	phases.	
	
From	beginning	 to	end	of	 the	execution	of	 the	project,	 learning	 is	 a	big	part	of	 it.	 It	
consists	of	getting	to	know	the	technology	used	as	well	as	the	design	and	parts	of	the	
documentation.	
	
Previous	 requirements:	 Task	 specification,	Working	environment	 configuration,	Back	
end	development,	Front	end	development,	Final	tests	and	debugging		
Resources	needed:	

• Human	
o Project	manager	

• Material	
o Hardware:	MacBook	Pro	Retina	15”	
o Software:	OSX	El	Capitan,	Microsoft	Office	2016	

	 	

	 22	

3.2. Estimated	duration	

	
Task	 Estimated	time	(hours)	 Time	invested	(hours)	

Project	management	 90	 90	
Analysis	and	design	 60	 60	
Task	specification	 20	 20	

Environment	configuration	 20	 20	
Back	end	development	 100	 130	
Front	end	development	 80	 110	
Testing	and	debugging	 30	 30	

Learning	 50	 100	
Documentation	 50	 50	

Total	 500	 	 610	 	

Table	1:	Summary	of	the	time	spent	in	each	task.	
	
Seeing	the	time	estimation	(Table	1)	and	the	total	number	of	hours	needed	is	500,	the	
chance	of	finishing	the	project	in	19	weeks	seemed	high	if	no	major	deviation	appears	
unexpectedly.	
	

3.3. Time	deviation	

Taking	 into	account	that	 the	estimated	time	was	calculated	 in	a	 temporary	planning,	
task	 durations,	 order	 and	 other	 attributes	 have	 varied	 during	 the	 execution	 of	 the	
project.	
The	main	 reason	why	 the	project	duration	has	differed	 is	due	 to	 the	 increased	 time	
invested	 in	 learning	 and	 a	 constant	 search	 of	 solutions	 to	 doubts	 during	 the	
development	stage	of	the	app.	The	small	amount	of	knowledge	regarding	the	selected	
technologies	 has	 been	 the	 cause	 of	 the	 time	 deviation.	 The	 expense	 on	 time	 to	 get	
familiar	with	them	has	surpassed	the	initial	estimation.	
Although	 the	 time	 available	 to	 develop	 the	 project	 has	 increased	 because	 of	 the	
extension	of	a	total	of	three	months,	the	list	of	goals	to	achieve	has	not	been	altered	
because	the	additional	time	wasn’t	spent	on	adding	features	to	the	product.	To	sum	up,	
the	cost	on	time	has	been	increased	considerably.	
	
	 	

	 23	

3.4. Resources	

In	order	 to	carry	out	 the	project	proposed,	different	human,	hardware	and	software	
resources	are	used.	Here	are	the	lists	along	with	the	tasks	that	each	resource	is	in	charge	
of.	
	
3.4.1. Human	

 Project	director:	involved	in	every	phase	of	the	project	
 Project	manager:	Phase	I	–	Project	management,	Phase	IV	–	Final	
documentation	and	delivery	

 Analyst:	Phase	II	–	Analysis	and	design,	Phase	III	–	Project	iterations	and	task	
specification	

 Designer:	Phase	II	–	Analysis	and	design	
 Programmer:	Phase	III	–	Project	iterations	and	task	specification	
 Tester:	Phase	III	–	Project	iterations	and	task	specification	

	
3.4.2. Hardware	

 MacBook	Pro	Retina	15”:	used	in	every	stage	of	the	project.	
 iPhone	5c:	used	during	app	testing.	
 iPad	mini:	used	during	app	testing.	

	
3.4.3. Software	

 OSX	El	Capitan:	used	in	every	task	of	the	project.	
 iOS	9:	used	during	app	development	and	testing.	
 Xcode	7:	used	during	the	project	user	interface	development.	
 PyCharm:	used	during	back	end	development.	
 Microsoft	Office	2016:	used	during	the	elaboration	of	the	report.	
 pgAdmin:	used	during	back	end	development.	
 Github:	used	during	task	specification	and	main	development.	
 Heroku:	used	during	back	end	development.	

	

	 	

	 24	

4. Budget	

This	part	of	the	document	is	going	to	provide	the	estimated	cost	of	the	project	taking	
into	consideration	the	human	and	material	resources	and	the	indirect	costs.	
	
In	order	to	not	surpass	the	estimated	budget,	the	figures	has	been	updated	after	each	
iteration.	Therefore,	 the	 final	budget	will	 include	the	genuine	working	hours	and	the	
final	cost.	
	

4.1. Budget	on	human	resources	

This	project	 is	carried	out	by	one	person	taking	responsibility	 for	 five	different	 roles,	
which	 are	 project	 manager,	 analyst,	 designer,	 programmer	 and	 tester.	 In	 the	 table	
below,	the	amount	of	hours	of	work	needed	in	order	to	complete	the	project’s	tasks	and	
the	hourly	rate	for	each	role	are	shown.	

	
Role	 Hours	 Hourly	rate	 Total	cost	

Project	manager	 170	 45€	 7650€	

Designer	 30	 35€	 1050€	
Analyst	 54	 35€	 1890€	

Programmer	 320	 35€	 11200€	
Tester	 36	 25€	 900€	
TOTAL	 500	 	 22690€	

Table	2:	Budget	on	human	resources.	
	 	

	 25	

4.2. Budget	on	material	resources	

4.2.1. Budget	on	hardware	

A	 series	 of	 hardware	 are	 required	 to	 complete	 tasks	 like	 documentation,	
implementation	and	tests.	
Take	into	account	that	the	reparation	costs	might	vary	but	they	should	be	around	the	
values	displayed.	
	

Product	 Price	 Units	 Lifespan	 Amortization	

MacBook	Pro	retina	15”	 2799€	 1	 5	years	 100€	

iPhone	5c	 450€	 1	 3	years	 70€	
iPad	mini	 329€	 1	 3	years	 60€	
TOTAL	 3578€	 3	 	 230€	

Table	3:	Budget	on	hardware	resources.	
	
4.2.2. Budget	on	software	

Software	 is	going	to	be	a	significant	part	too.	These	are	needed	on	every	task	of	the	
project.	Notice	 that	 if	 the	 lifespan	 is	not	 specified,	 it	means	 that	 the	product	has	no	
expiration	date.	Plus,	the	updates	are	all	free	of	charge.	
	

Product	 Price	 Units	 Lifespan	 Amortization	

OSX	El	Capitan	 0€	 1	 -	 0€	

iOS	9	 0€	 1	 -	 0€	
Xcode	7	 0€	 1	 -	 0€	
PyCharm	 199€	 1	 1	year	 159€	
Heroku	 0€	 1	 -	 0€	

Microsoft	Office	2016	 149€	 1	 -	 0€	
pgAdmin	 0€	 1	 -	 0€	
Github	 0€	 1	 -	 0€	
TOTAL	 348€	 6	 	 159€	

Table	4:	Budget	on	software	resources.	
	 	

	 26	

4.2.3. Indirect	costs	

Every	 computer	 related	project	 involves	 indirect	 expenses	 of	 power	 and	 an	 Internet	
connection	among	other	irrelevant	expenses.	
	

Product	 Price	 Units	 Estimated	cost	

Power	 0.3€/kWh	
2	kW/day	and	5	days/week	
(180	days	in	36	weeks)	

108€	

Internet	 36.20€/month	 8	months	 289.60€	
TOTAL	 	 	 397.60€	

Table	5:	Indirect	costs	of	the	project.	
	

4.3. Total	cost	

Lastly,	all	the	budgets	are	added	up	and	as	a	result	the	total	expected	cost	of	the	project	
is	obtained.	

Subject	 Estimated	cost	
Human	resources	 22690€	

Hardware	 230€	
Software	 159€	

Indirect	costs	 397.60€	
TOTAL	 23476.60€	

Table	6:	Total	estimated	cost	of	the	project.	

	

	 	

	 27	

5. Sustainability	
	

5.1 Economic	impact	

An	assessment	of	 the	project	budget	has	been	done.	Material	 and	human	 resources	
were	taken	into	consideration,	as	well	as	amortizations	and	deviations.		
Even	though	it	is	not	sure	its	cost	could	make	it	competitive	in	the	market,	yet	it	might	
mainly	depend	on	how	it	is	going	to	be	distributed.	Selling	it	as	a	free	application	would	
make	it	very	competitive,	but	then	a	way	to	get	an	income	would	have	to	be	defined.	
On	the	other	hand,	it	could	be	a	paid	application,	however	its	price	should	not	be	too	
high.	
	

5.2 Social	impact	

This	 project	 has	 its	 place	 in	 the	 software	 area,	 specifically,	 the	 world	 of	 mobile	
applications.	 The	 mobile	 apps	 market	 in	 Spain	 is	 not	 huge	 but	 it	 has	 been	 gaining	
relevance	more	and	more	lately.	
The	final	product	of	this	project	is	addressed	to	a	large	audience,	in	fact,	anyone	who	
cares	about	the	music	in	his	surroundings	besides	being	eager	to	meet	new	people.	And	
of	course,	has	a	compatible	device	to	install	the	app.		
This	app	can	improve	the	experience	of	customers	in	their	frequented	establishments	
making	them	enjoy	more	their	stay	and	giving	them	a	chance	to	connect	with	others.	
Furthermore,	they	can	discover	new	music	thanks	to	the	contributions	from	others.	
	

5.3 Environmental	impact	

In	 this	 case,	 being	 a	 software	 project,	 it	 only	 affects	 the	 environment	 indirectly.	
Electricity	is	normally	generated	at	power	plants	that	convert	some	other	kind	of	energy	
into	electrical	power.	There	are	different	systems	and	each	of	them	has	advantages	and	
disadvantages,	but	many	of	them	pose	environmental	concerns.	
	

5.4 Sustainability	matrix	

Sustainability	 Economic	 Social	 Environmental	
Analysis	at	 5.1	 5.2	 5.3	
Rating	 7	 8	 6	

Table	7:	Sustainability	matrix	following	the	UPC	sustainability	guidelines.	
	
	 	

	 28	

6. Analysis	of	requirements	
	
Here	is	a	set	of	relevant	requirements	which	have	been	rated	by	difficulty	and	relevance.	
These	requirements	have	been	listed	with	the	idea	of	pushing	the	app	to	the	market	in	
mind.	
The	completion	of	the	requirements	increases	the	probability	of	success	among	users.		
	

#	 Description	 Difficulty	 Relevance	

1	 Simple,	attractive	and	user-friendly	design	 Medium	 High	

2	 Multilingual	 Medium	 Low	

3	 Product	available	24/7	 Low	 High	

4	 Product	compatible	with	old	iOS	versions	 Medium	 Medium	

5	 Availability	in	the	App	store	 Medium	 High	

6	 Release	at	least	an	update	every	three	months	 Medium	 High	

7	 The	application	manual	will	be	available	online	 Low	 High	

8	 Users	will	have	a	contact	mail	to	solve	doubts	and	
ask	for	help	 Low	 High	

9	 The	development	team	won’t	take	more	than	a	
week	to	fix	an	important	bug	 High	 High	

10	 The	product	will	have	a	two-step	authentication	 High	 High	

11	 User	will	be	able	to	reset	his	password	 Medium	 High	

12	
The	system	will	protect	user	data	taking	into	
account	the	laws	regarding	privacy	and	will	
inform	the	user	on	sign	up.	

Medium	 High	

	
Table	8:	Requirements	of	product	with	their	respective	difficulty	and	relevance	 	

	 29	

7. Specification	
	
On	 the	 following	 sections	 the	 conceptual	model	 and	 the	 application’s	 use	 cases	 are	
presented.	
		

7.1. Conceptual	model	

The	conceptual	model	has	the	goal	of	identifying	the	knowledge	(the	most	significant	
concepts	of	the	domain)	and	the	behavior	that	system	must	have.
	
7.1.1. Conceptual	scheme	

In	 the	 conceptual	 scheme,	 the	 classes	 of	 objects	 that	 compose	 the	 system,	 the	
associations	 between	 them,	 their	 attributes	 and	 graphical	 and	 textual	 integrity	
restrictions	are	shown.	

Figure	1.	Conceptual	scheme	
	
	
	
	
	
	

	 30	

7.1.2. Textual	integrity	restrictions	

Primary	keys	
• User	(id)	
• Profile	(id)	
• Establishment	(id)	
• Playlist	(id)	
• Track	(id)	

	
Alternative	keys	

• User	(email)	
• User	(username)	
• Establishment	(name)	
• Establishment	(address,	postcode,	city,	country)	

		
Textual	restrictions	
RT1		 A	 playlist	 cannot	 have	 more	 than	 one	 track	 with	 the	 same	 spotifyUri	 and	
inPlaylist	as	true.	

	
	

7.1.3. Description	of	classes,	attributes	and	relations	

 User	
Represents	a	registered	user	of	the	app.	

o id:	Identifier	of	a	user	
o username:	Username	of	a	user.	It	is	the	user’s	identifier	to	other	users.	
o email:	Email	of	the	user’s	account	
o password:	Password	of	the	user’s	account	

	
 Profile	
Represents	the	information	that	is	shown	in	the	user’s	profile	

o id:	Identifier	of	the	profile	
o spotifyUsername:	User’s	Spotify	username	
o facebookUsername:	User’s	Facebook	username	
o twitterUsername:	User’s	Twitter	username	
o favArtists:	User’s	favorite	artists	
o favGenres:	User’s	favorite	music	genres	

	
	
	
	
	

	 31	

 Establishment	
Represents	 an	 establishment	 that	 has	 registered	 to	 the	 service	 and	 has	 it	
available	in	their	establishment.	

o id:	Identifier	of	the	establishment	
o name:	Name	of	the	establishment	
o address:	Address	of	the	establishment	location	
o postcode:	Postcode	of	the	establishment	location	
o city:	City	where	the	establishment	is	located	
o country:	Country	where	the	establishment	is	located	
o latitude:	 Latitude	 of	 the	 establishment’s	 location,	 calculated	 from	 the	

given	address	
o longitude:	Longitude	of	the	establishment’s	location,	calculated	from	the	

given	address	
o spotifyUsername:	Spotify	account	from	which	the	music	 is	going	to	be	

played	
o lastfmUsername:	Lastfm	account	is	needed	to	get	the	currently	playing	

song	
	

 Playlist	
Represents	an	establishment	playlist.	It	is	related	to	the	tracks	that	are	currently	
playing	in	the	establishment	and	the	ones	that	were	in	the	playlist	in	the	past.	

o id:	Identifier	of	the	playlist	
o spotifyUrl:	Spotify	link	to	the	currently	set	playlist.	Its	content	is	a	copy	

of	the	original	playlist	
o originalCreator:	Creator	of	the	currently	set	playlist	
o originalSpotifyUrl:	Original	Spotify	link	to	the	currently	set	playlist	
o explicitLyrics:	Allowance	of	tracks	with	explicit	lyrics	in	the	establishment	

	
 Track	
Represents	tracks	which	can	be	currently	playlist	or	not		

o id:	Identifier	of	the	track	
o title:	Title	of	the	track	
o artist:	Artist	of	the	track	
o spotifyUri:	Identifier	of	track	in	Spotify	
o coverImageUrl:	Link	to	the	cover	image	of	the	track	
o votes:	Number	of	votes	from	users	
o order:	Track’s	order	in	the	current	playlist	
o inPlaylist:	Presence	of	the	track	in	the	currently	playing	playlist	

	 	

	 32	

 IsFrom	(Profile	–	User)	
Every	user	owns	a	profile	which	is	public	to	other	users.	
	

 VotedFor	(User	–	Track)	
A	user	votes	for	songs	that	are	being	played	in	an	establishment.	
	

 Requested	(User	–	Track)	
A	user	submits	song	requests	to	get	them	added	to	a	playlist.	
	

 Owns	(User	–	Establishment)	
A	user	is	the	owner	of	an	establishment.	
	

 CheckedIn	(User	–	Establishment)	
A	user	can	check-in	to	establishments	they	have	been.	
	

 Sets	(Establishment	–	Playlist)	
A	playlist	is	set	to	an	establishment	by	the	owner.	
	

 ContainedIn	(Track	–	Playlist)	
Tracks	are	part	of	a	playlist.	

	 	

	 33	

7.2. Use	cases	

7.2.1. #UC1	Login	

Primary	actor:		 User	
Precondition:			 User	has	signed	up	to	the	app	
Trigger:		 	 User	wants	to	log	in	to	his	account	
Main	success	scenario:		 	

1. User	inputs	his	username	and	password	in	the	corresponding	fields.	
2. User	presses	the	Log	in	button.	
3. The	system	validates	the	input	data	and	logs	in	to	the	user	account.	

Extensions:		
	 3a.	The	input	credentials	are	incorrect.	

3a1.	The	system	displays	an	alert	saying	that	the	credentials	are	wrong.	
3a2.	Back	to	step	1.	
	

7.2.2. #UC2	Sign	up	

Primary	actor:		 User	
Precondition:			 -	
Trigger:		 	 User	wants	to	sign	up	for	an	account	in	the	app	
Main	success	scenario:		 	

1. User	inputs	his	username,	email	and	password	twice	in	the	corresponding	
fields	

2. User	presses	the	Sign	up	button.	
3. The	system	validates	the	 input	data	and	creates	a	new	user	account	with	

them.	
4. The	system	displays	a	form	to	enter	the	social	media	information.	
5. User	 inputs	 his	 Spotify	 username,	 Facebook	 username	 and/or	 Twitter	

username.	
6. User	presses	the	Save	button.	
7. The	system	saves	the	social	media	information	to	his	user	account.	
8. The	system	navigates	to	the	Login	screen.	

Extensions:		
	 3a.	The	username	or	email	is	already	taken.	

3a1.			The	system	displays	an	alert	saying	that	the	username	or	email	are	already	
taken.	

3a2.	Back	to	step	1.	
	
3b.	The	introduced	passwords	don’t	match.	
3b1.	The	system	displays	an	alert	saying	that	the	passwords	don’t	match.	
3b2.	Back	to	step	1.	

	 34	

5a.	User	presses	the	Skip	button.	
5a1.	Go	to	step	8.	
	

7.2.3. #UC3	Log	out	

Primary	actor:		 User	
Precondition:			 User	is	logged	in.	
Trigger:		 	 User	wants	to	log	out	of	his	account.	
Main	success	scenario:		 	

1. User	clicks	on	the	Profile	tab	item.	
2. The	system	displays	the	user’s	own	profile.	
3. User	presses	the	Log	out	button.	
4. The	system	displays	the	Login	screen.		

	
7.2.4. #UC4	Edit	user’s	own	profile	

Primary	actor:		 User	
Precondition:			 User	is	logged	in.	
Trigger:		 	 User	wants	to	change	his	account	data.	
Main	success	scenario:		 	

1. User	clicks	on	the	Profile	tab	item.	
2. The	system	displays	the	user’s	own	profile.	
3. User	presses	the	Edit	profile	button.	
4. The	system	displays	the	user’s	current	profile	data.	
5. User	modifies	any	field	he	desires.	
6. User	presses	the	Save	button.	
7. The	system	saves	the	new	profile	data	to	the	user’s	account.	

Extensions:		
	 5a.					User	presses	the	cancel	or	back	button.	

5a2.			The	system	displays	the	user	profile	view.	
	

7.2.5. #UC5	Select	an	establishment	from	map	

Primary	actor:		 User	
Precondition:			 User	is	logged	in.	
Trigger:		 	 User	wants	to	select	an	establishment	from	map.	
Main	success	scenario:		 	

1. User	clicks	on	the	Map	tab	item.	
2. The	system	displays	the	map	centered	on	the	user’s	current	location	along	

with	the	establishments	in	the	displayed	map	area.	
3. User	finds	the	desired	establishment	in	map	and	click	on	the	establishment’s	

pin.	
4. The	system	displays	a	bubble	with	the	establishment’s	name	and	address.	

	 35	

5. User	presses	the	information	bubble.	
6. System	navigates	to	the	selected	establishment	profile.	

Extensions:		
5a.					User	presses	the	map.	
5a2.			The	system	hides	the	displayed	information	bubble.	
5a3.			Back	to	step	3.	

	
7.2.6. #UC6	Search	establishment	by	name	or	address	

Primary	actor:		 User	
Precondition:			 User	is	logged	in.	
Trigger:		 	 User	wants	to	search	an	establishment	by	name	or	address.	
Main	success	scenario:		 	

1. User	clicks	on	the	Search	tab	item.	
2. The	system	displays	the	search	view.	
3. User	inputs	the	desired	establishment	name	or	address.	
4. The	 system	 displays	 a	 list	 of	 possible	 establishments	 with	 their	

corresponding	name	and	address.	
5. User	selects	an	establishment	from	the	list	of	search	results.	
6. System	navigates	to	the	selected	establishment	profile.	

Extensions:		
4a.					User	presses	the	cancel	button	at	the	search	bar.	
4a2.			The	system	hides	the	previous	search	results.	
4a3.			Back	to	step	3.	

	
7.2.7. #UC7	Check	in	to	an	establishment	

Primary	actor:		 User	
Precondition:		 	 User	is	logged	in,	viewing	an	establishment	profile	and	hasn’t		

checked	in	to	this	establishment	yet	
Trigger:		 	 User	wants	to	check	in	to	the	establishment	displayed	
Main	success	scenario:		 	

1. User	clicks	on	the	button	with	a	checkmark	icon.	
2. The	system	adds	the	establishment	as	a	checked-in	of	the	user	and	changes	

the	button	to	a	green	check	mark.	
	 	

	 36	

7.2.8. #UC8	Vote	for	a	song	

Primary	actor:		 User	
Precondition:		 	User	is	logged	in,	a	playlist	is	currently	playing	in	the	establishment	

he’s	viewing,	user	hasn’t	voted	for	the	desired	song	yet	
Trigger:		 	 User	wants	to	vote	for	a	song	
Main	success	scenario:		 	

1. User	clicks	on	the	like	button	next	to	the	song	he	wants	to	vote	for.	
2. The	system	adds	a	vote	to	the	selected	song,	adds	the	user	as	a	voter	of	the	

song,	 reorders	 the	 playlist	 taking	 into	 account	 the	 number	 of	 votes	 and	
updates	it.	
	

7.2.9. #UC9	Request	a	song	

Primary	actor:		 User	
Precondition:			 User	is	logged	in	and	a	playlist	is	currently	playing	in	the		

establishment	he’s	viewing	
Trigger:		 	 User	wants	to	request	a	song	for	the	establishment’s	playlist.	
Main	success	scenario:		 	

1. User	clicks	on	the	Request	button.	
2. The	system	navigates	to	the	song	search	view.	
3. User	inputs	the	song	title	or	artist	in	the	search	bar.	
4. The	system	displays	a	list	of	tracks	given	the	search	parameters.	
5. User	selects	a	song	from	the	list	of	search	results.	
6. The	system	displays	an	alert	asking	the	user’s	confirmation	of	the	selected	

song.	
7. User	confirms	the	selection	by	clicking	the	Yes	button.	
8. The	system	adds	the	requested	song	to	the	current	playlist	with	a	vote	from	

the	user	and	displays	a	successfully	added	song	message	to	the	user.	
9. User	clicks	on	the	Ok	button	
10. The	system	navigates	back	to	the	establishment	profile.	

Extensions:		
6a.					User	presses	the	No	button.	
6a2.			The	system	dismisses	the	alert.	
6a3.			Back	to	step	4.	
	
8a.			 The	system	displays	an	alert	with	a	message	saying	that	the	requested	song	

has	explicit	lyrics	and	it	isn’t	allowed	at	the	establishment.	
8a2.			User	clicks	on	the	Ok	button.	
8a2.			Back	to	step	4.	
	

	

	 37	

7.2.10. #UC10	View	a	song’s	voters	

Primary	actor:		 User	
Precondition:			 User	is	logged	in	and	is	viewing	an	establishment	that	has	a	playlist		
	 	 	 set	
Trigger:		 	 User	wants	to	see	the	voters	of	a	song.	
Main	success	scenario:		 	

1. User	clicks	on	the	button	that	displays	the	number	of	voters	of	the	song.	
2. The	system	navigates	to	a	view	displaying	the	list	of	voters.	

	
7.2.11. #UC11	View	a	song’s	voter	profile	

Primary	actor:		 User	
Precondition:			 User	is	logged	in	and	is	viewing	the	list	of	voters	of	a	song	
Trigger:		 	 User	wants	to	see	a	voter’s	profile	
Main	success	scenario:		 	

1. User	clicks	on	the	user	he’s	interested	to	view	the	profile	of.	
2. The	system	navigates	to	the	selected	voter	profile.	

	
7.2.12. #UC12	View	profile	of	the	user	who	requested	a	song		

Primary	actor:		 User	
Precondition:			 User	is	logged	in	and	is	viewing	an	establishment	that	has	a	playlist		
	 	 	 set	
Trigger:		 	 User	wants	to	see	the	user	that	has	requested	a	certain	song.	
Main	success	scenario:		 	

1. User	clicks	on	the	R	button	that	displays	the	number	of	voters	of	the	song.	
2. The	system	navigates	to	a	view	displaying	the	list	of	voters.		

	
7.2.13. #UC13	View	user’s	check-ins	

Primary	actor:		 User	
Precondition:			 User	is	logged	in	and	is	viewing	a	user	profile	
Trigger:		 	 User	wants	to	see	the	check-in	places	of	the	profile	owner	
Main	success	scenario:		 	

1. User	clicks	on	the	number	of	check-ins	of	the	profile	owner.	
2. The	system	displays	a	list	of	establishment	names.	

	
7.2.14. #UC14	View	user’s	voted	songs	

Primary	actor:		 User	
Precondition:			 User	is	logged	in	and	is	viewing	a	user	profile	
Trigger:		 	 User	wants	to	see	the	profile	owner	has	voted	for	
Main	success	scenario:		 	

	 38	

1. User	clicks	on	the	number	of	voted	songs	of	the	profile	owner.	
2. The	system	displays	a	list	of	song	titles	and	artists.	

	
7.2.15. #UC15	View	user’s	requested	songs	

Primary	actor:		 User	
Precondition:			 User	is	logged	in	and	is	viewing	a	user	profile	
Trigger:		 	 User	wants	to	see	the	profile	owner	has	voted	for	
Main	success	scenario:		 	

1. User	clicks	on	the	number	of	voted	songs	of	the	profile	owner.	
2. The	system	displays	a	list	of	song	titles	and	artists.	

	
7.2.16. #UC16	Register	an	establishment	

Primary	actor:		 User	
Precondition:			 User	is	logged	in.	
Trigger:		 	 User	wants	to	register	an	establishment.	
Main	success	scenario:		 	

1. User	clicks	on	the	My	joogpoints	tab	item.	
2. The	system	displays	a	list	of	establishments	the	user	is	owner	of.	
3. User	clicks	on	the	Plus	icon	button.	
4. The	system	displays	an	establishment	registration	form.	
5. User	completes	the	registration	form	and	clicks	on	the	Register	button.	
6. The	system	adds	the	new	establishment.	
7. System	navigates	back	to	the	list	of	establishments	the	user	owns.	

Extensions:		
5a.					User	presses	the	cross	icon	button	or	the	Cancel	button.	
5a2.			The	system	displays	an	alert	asking	if	the	user	is	sure	about	the	decision.	
5a3a.	User	presses	the	No	button.	
5a3a2.	The	system	dismisses	the	alert.	
5a3a3.	Back	to	step	5.	
	
5a3b.				User	presses	the	Yes	button.		
5a3a2	 The	 system	 dismisses	 the	 alert	 and	 navigates	 back	 to	 the	 list	 of	

establishments.	
	
6a.	 The	system	displays	a	message	saying	that	all	fields	have	to	be	filled	in.	
6a2.	 User	clicks	on	the	Ok	button.	
6a3.	 The	system	dismisses	the	alert.	
6a4.	 Back	to	step	5.	

	 	

	 39	

7.2.17. #UC17	Edit	owned	establishment	profile	

Primary	actor:		 User	and	owner	of	the	establishment	
Precondition:			 User	is	logged	in	and	is	owner	of	the	establishment.	
Trigger:		 	 User	wants	to	edit	the	profile	of	an	establishment	he	owns.	
Main	success	scenario:		 	

1. User	clicks	on	the	My	joogpoints	tab	item.	
2. The	system	displays	a	list	of	establishments	the	user	is	owner	of.	
3. User	clicks	on	the	establishment	he’s	interested	to	modify	the	profile	of.	
4. The	system	displays	the	management	view	of	the	selected	establishment.	
5. The	user	clicks	on	the	Edit	profile	button.	
6. The	 system	 displays	 an	 establishment	 data	 form	 with	 the	 current	

establishment	info.	
7. User	modifies	the	fields	he	desires	and	clicks	on	the	Save	button.	
8. The	system	saves	any	changes	on	the	establishment	profile	info.	
9. System	navigates	back	to	the	establishment	management	view.	

Extensions:		
7a.					User	presses	the	cross	icon	button	or	the	Cancel	button.	
7a2.			The	system	navigates	back	to	the	establishment	management	view.	
	
8a.	 The	system	displays	a	message	saying	that	all	fields	have	to	be	filled	in.	
8a2.	 User	clicks	on	the	Ok	button.	
8a3.	 The	system	dismisses	the	alert.	
8a4.	 Back	to	step	7.	

	
7.2.18. #UC18	Remove	an	establishment	

Primary	actor:		 User	and	owner	of	the	establishment	
Precondition:			 User	is	logged	in	and	is	owner	of	the	establishment.	
Trigger:		 	 User	wants	to	remove	an	establishment	he	owns.	
Main	success	scenario:		 	

1. User	clicks	on	the	My	joogpoints	tab	item.	
2. The	system	displays	a	list	of	establishments	the	user	is	owner	of.	
3. User	clicks	on	the	establishment	he	wants	to	remove.	
4. The	system	displays	the	management	view	of	the	selected	establishment.	
5. The	user	clicks	on	the	Edit	profile	button.	
6. The	 system	 displays	 an	 establishment	 data	 form	 with	 the	 current	

establishment	info.	
7. User	clicks	on	the	Remove	establishment	button.	
8. The	 system	 displays	 an	 alert	 asking	 for	 the	 user’s	 confirmation	 of	 the	

removal.	
9. User	clicks	on	the	Yes	button.	

	 40	

10. The	system	dismisses	the	alert	and	removes	the	establishment.	
11. System	navigates	back	to	the	My	joogpoints	view.	

Extensions:		
9a.					User	presses	the	No	button.	
9a2.			The	system	dismisses	the	alert.	
9a3.			Back	to	step	6.	

	
7.2.19. #UC19	View	owned	establishment	current	playlist	

Primary	actor:		 User	and	owner	of	the	establishment	
Precondition:		 	User	 is	 logged	 in,	 is	 owner	 of	 the	 establishment	 and	 has	 set	 a	

playlist	for	the	establishment	
Trigger:		 	User	wants	 to	 view	 the	 current	 playlist	 of	 an	 establishment	 he	

owns.	
Main	success	scenario:		 	

1. User	clicks	on	the	My	joogpoints	tab	item.	
2. The	system	displays	a	list	of	establishments	the	user	is	owner	of.	
3. User	clicks	on	the	establishment	he’s	interested	to	view	the	current	playlist	

of.	
4. The	system	displays	the	management	view	of	the	selected	establishment.	
5. The	user	clicks	on	the	Current	playlist	button.	
6. The	system	displays	the	current	playlist	of	the	establishment.	

		
7.2.20. #UC20	Set	establishment	playlist	

Primary	actor:		 User	and	owner	of	the	establishment	
Precondition:			 User	is	logged	in	and	is	owner	of	the	one	establishment.	
Trigger:		 	User	wants	to	set	the	playlist	of	an	establishment	he	owns.	
Main	success	scenario:		 	

1. User	clicks	on	the	My	joogpoints	tab	item.	
2. The	system	displays	a	list	of	establishments	the	user	is	owner	of.	
3. User	clicks	on	the	establishment	he’s	interested	to	set	playlist	of.	
4. The	system	displays	the	management	view	of	the	selected	establishment.	
5. User	clicks	on	the	Set	playlist	button.	
6. The	system	displays	a	pop-up	with	two	fields	for	a	Spotify	playlist	link	and	

the	creator	of	the	playlist.	
7. User	fills	in	the	playlist	info	and	presses	the	Confirm	button.	
8. The	system	sets	the	input	Spotify	playlist	as	the	establishment’s	playlist	and	

dismisses	the	pop-up.		
Extensions:		

6a.			User	presses	the	Cancel	button.	
6a2.	The	system	dismisses	the	pop-up.	

	 41	

	
8a.			The	system	displays	an	alert	saying	that	the	same	playlist	is	already	set.	
8a2.	User	clicks	on	the	Ok	button.	
8a3.	The	system	dismisses	the	alert.	

	
7.2.21. #UC21	Reset	establishment	playlist	

Primary	actor:		 User	and	owner	of	the	establishment	
Precondition:		 	User	 is	 logged	 in,	 is	 owner	 of	 the	 establishment	 and	 has	 set	 a	

playlist	for	the	establishment	
Trigger:		 	User	wants	to	reset	the	establishment’s	current	playlist.	
Main	success	scenario:		 	

1. User	clicks	on	the	My	joogpoints	tab	item.	
2. The	system	displays	a	list	of	establishments	the	user	is	owner	of.	
3. User	clicks	on	the	establishment	he’s	interested	to	reset	the	playlist	of.	
4. The	system	displays	the	management	view	of	the	selected	establishment.	
5. User	clicks	on	the	Reset	playlist	button.	
6. The	system	resets	the	playlist	to	its	original	set	of	songs	and	clears	the	votes	

and	displays	a	message	informing	that	the	reset	was	done	successfully.	
		

7.2.22. #UC22	Clear	playlist’s	votes	

Primary	actor:		 User	and	owner	of	establishments	
Precondition:		 	User	 is	 logged	 in,	 is	 owner	 of	 the	 establishment	 and	 has	 set	 a	

playlist	for	the	establishment	
Trigger:		 	User	 wants	 to	 clear	 the	 votes	 of	 the	 establishment’s	 current	

playlist.	
Main	success	scenario:		 	

1. User	clicks	on	the	My	joogpoints	tab	item.	
2. The	system	displays	a	list	of	establishments	the	user	is	owner	of.	
3. User	clicks	on	the	establishment	he’s	interested	to.	
4. The	system	displays	the	management	view	of	the	selected	establishment.	
5. User	clicks	on	the	Clear	votes	button.	
6. The	system	clears	the	votes	of	all	tracks	in	the	playlist	and	displays	a	message	

informing	that	the	process	was	done	successfully.	
	
7.2.23. #UC23	Remove	establishment’s	current	playlist	

Primary	actor:		 User	and	owner	of	the	establishment	
Precondition:		 	User	 is	 logged	 in,	 is	 owner	 of	 the	 establishment	 and	 has	 set	 a	

playlist	for	the	establishment	
Trigger:		 	User	wants	to	remove	the	establishment’s	current	playlist.	
Main	success	scenario:		 	

	 42	

1. User	clicks	on	the	My	joogpoints	tab	item.	
2. The	system	displays	a	list	of	establishments	the	user	is	owner	of.	
3. User	clicks	on	the	establishment	he’s	interested	to	remove	the	playlist	of.	
4. The	system	displays	the	management	view	of	the	selected	establishment.	
5. User	clicks	on	the	Remove	playlist	button.	
6. The	system	shows	a	pop-up	asking	for	the	user’s	confirmation.	
7. User	clicks	on	the	Yes	button.	
8. The	system	removes	the	playlist	 from	establishment	and	displays	an	alert	

with	a	message	saying	that	the	removal	was	done	successfully.	
Extensions:	

7a.			User	presses	the	No	button.	
7a2.	The	system	dismisses	the	pop-up.	

	
7.2.24. #UC24	Set	song	with	explicit	lyrics	allowance	

Primary	actor:		 User	and	owner	of	establishments	
Precondition:		 	User	is	logged	in	and	is	owner	of	the	establishment	
Trigger:		 	User	 wants	 to	 modify	 the	 explicit	 lyrics	 allowance	 of	 the	

establishment	
Main	success	scenario:		 	

1. User	clicks	on	the	My	joogpoints	tab	item.	
2. The	system	displays	a	list	of	establishments	the	user	is	owner	of.	
3. User	clicks	on	the	establishment	he’s	interested	to.	
4. The	system	displays	the	management	view	of	the	selected	establishment.	
5. User	clicks	on	the	Explicit	lyrics	button.	
6. The	system	sets	explicit	lyrics	to	allowed	if	it	wasn’t,	otherwise	the	contrary.	

	

	 	

	 43	

8. Design	
	

8.1. Design	models	

In	 this	 section,	 the	 design	 of	 each	 use	 case	 is	 detailed.	 The	Model	 View	 Controller	
pattern	has	been	applied	in	the	process.	
	
There	are	three	levels	of	permissions	that	are	checked	before	each	action:	

- None:	the	process	of	login	and	sign	up	don’t	need	any	permission.	
- IsAuthenticated:	the	user	only	needs	to	have	an	account	in	the	app.	
- IsOwner:	the	user	must	be	the	owner	of	such	element	(profile	or	establishment	

in	this	case)	in	order	to	make	certain	modifications.	
	

There	is	a	permissionController	that	has	the	responsibility	of	checking	if	a	user	has	the	
right	to	make	an	action.	Its	usage	is	shown	at	#UC3.	Its	application	is	assumed	from	#UC3	
and	forward.	
	
8.1.1. #UC1	Login	

	
Figure	2.	#UC1	Login	design	model	

	

	 44	

8.1.2. #UC2	Sign	up	

	
Figure	3.	#UC2	Sign	up	design	model	

	
8.1.3. #UC3	Log	out	

	
Figure	4.	#UC3	Log	out	design	model	

	 	

	 45	

8.1.4. #UC4	Edit	user’s	own	profile	

	
Figure	5.	#UC4	Edit	user’s	own	profile	design	model	

	
8.1.5. #UC5	Select	an	establishment	from	map		

	
Figure	6.	#UC5	Select	an	establishment	from	map	design	model	

	

	 46	

8.1.6. #UC6	Search	establishment	by	name	or	address	

	
Figure	7.	#UC6	Search	establishment	by	name	or	address	design	model	

	
8.1.7. #UC7	Check	in	to	an	establishment	

	
Figure	8.	#UC7	Check	in	to	an	establishment	design	model	

	

	 47	

8.1.8. #UC8	Vote	for	a	song	

	
Figure	9.	#UC8	Vote	for	a	song	design	model	

	

8.1.9. #UC9	Request	a	song	

	
Figure	10.	#UC9	Request	a	song	design	model	

	

	 48	

8.1.10. #UC10	View	a	song’s	voters	

	
Figure	11.	#UC10	View	a	song’s	voters	design	model	

	
8.1.11. #UC11	 View	 a	 song’s	 voter	 profile,	 #UC12	 View	 profile	 of	 the	 use	 who	

requested	a	song,	#UC13	View	user’s	check-ins,	#UC14	View	user’s	voted	songs,	
#UC15	View	user’s	requested	songs	

All	data	needed	on	the	use	cases	listed	in	this	section	are	part	of	user	profile,	that’s	the	
reason	why	they	are	all	group	together.	The	task	to	do	after	getting	the	user	profile	info	
is	to	extract	the	requested	info.	
	

	
Figure	12.	#UC11,	#UC12,	#UC13,	#UC14,	#UC15	design	model	

	

	 49	

8.1.12. #UC16	Register	an	establishment	

	
Figure	13.	#UC16	Register	an	establishment	design	model	

	
8.1.13. #UC17	Edit	owned	establishment	profile		

	
Figure	14.	#UC17	Edit	owned	establishment	profile	design	model	

	

	 50	

8.1.14. #UC18	Remove	an	establishment	

	
Figure	15.	#UC18	Remove	an	establishment	design	model	

	
8.1.15. #UC19	View	owned	establishment	current	playlist	

	
Figure	16.	#UC19	View	owned	establishment	current	playlist	design	model	

	

	 51	

8.1.16. #UC20	Set	establishment	playlist	

	
Figure	17.	#UC20	Set	establishment	playlist	design	model	

	
8.1.17. #UC21	Reset	establishment	playlist	

	
Figure	18.	#UC21	Reset	establishment	playlist	design	model	

	

	 52	

8.1.18. #UC22	Clear	playlist’s	votes	

	
Figure	19.	#UC22	Clear	playlist’s	votes	design	model	

	
8.1.19. #UC23	Remove	establishment’s	current	playlist	

	
Figure	20.	#UC23	Remove	establishment’s	current	playlist	design	model	

	

	 53	

8.1.20. #UC24	Set	song	with	explicit	lyrics	allowance	

	
Figure	21.	#UC24	Set	song	with	explicit	lyrics	allowance	design	model	

	
	

8.2. Patterns	

The	following	patterns	have	been	used	to	develop	the	application.	
	
8.2.1. Singleton	pattern	

The	 singleton	 pattern	 is	 applied	 to	 the	 classes	 in	 charge	 of	making	 requests	 to	 the	
database.	Therefore,	only	a	single	instance	of	each	class	will	be	created	and	a	unique	
access	to	it	is	guaranteed.	
	
8.2.2. Model	view	controller	pattern	

The	application	has	been	developed	using	a	three-tier	architecture	which	is	composed	
by	a	presentation	tier,	a	logic	tier	and	a	data	tier.	The	mobile	app	is	responsible	of	the	
interaction	with	the	user	(presentation)	and	all	data	is	fetched	through	API	requests	to	
the	server,	where	the	database	is	located.	In	this	way,	a	clear	separation	of	the	different	
components	 is	 achieved,	 which	 eases	 the	 reuse	 of	 code	 and	 the	 development	 and	
maintenance	of	the	app.

	
	
	
	

	 54	

8.3. Deployment	model	

	
Figure	22.	Deployment	model	

	
The	relation	between	the	client	and	the	server	is	shown	in	the	image	above:	the	user	
has	to	be	connected	to	the	 Internet	 in	order	to	receive	current	data	from	the	server	
deployed	 on	 Heroku.	 This	 one	 has	 the	 responsibility	 of	 retrieving	 and	 sending	 the	
requested	 data	 from	 the	 PostgreSQL	 database	 and	 storing	 the	 received	 data	 in	 the	
database.	
On	the	other	hand,	the	application	must	have	access	to	the	device’s	geolocation	in	order	
to	display	the	current	location	of	the	user	in	the	map,	where	establishments	registered	
to	the	service	are	displayed.	
	 	

	 55	

8.4. Data	model	

In	 the	 following	data	model,	 a	 clear	 view	of	 the	 relationships	between	 the	different	
tables	of	the	database	is	displayed.	
	

	

Figure	23.	Data	model	
	

As	it	can	be	observed,	the	data	model	of	this	project	is	quite	simple.	There	are	only	one	to	one,	
one	to	many	and	many	to	many	relationships.	The	attributes	and	their	respective	type	are	stated	
in	 red	 in	 each	 model.	 Below	 them,	 the	 foreign	 keys	 of	 each	 relationship	 are	 located.	 All	
relationships	between	models	are	through	their	id’s	as	seen	in	figure	23.	
	 	

	 56	

8.5. Navigational	model	

	

Figure	24.	Navigation	model	
	
Navigation	throughout	the	mobile	app	is	controlled	by	the	navigation	controller	of	iOS.	
The	standard	create,	modify	and	delete	actions	can	be	performed	to	each	model.	Only	a	
few	of	them	are	restricted	to	the	administrator	of	the	product,	which	are:	

• Delete	of	all	models.	The	data	are	kept	after	the	apparent	removal	performed	by	
the	user.	They	are	set	to	disabled	in	reality.	

• Modify:	tracks.	Tracks	are	created	when	a	new	playlist	is	set	or	a	submission	of	a	
song	request	is	done,	and	from	that	moment	on,	the	only	interaction	available	
with	tracks	are	through	votes.	

• Create:	profiles.	A	unique	profile	is	created	for	the	user	in	the	moment	of	sign	
up.	

• Modify:	user.	A	user	cannot	replace	the	email	used	on	registration.	Modification	
of	the	password	is	not	a	feature	of	the	product	at	this	moment.	

	
Images	of	the	mobile	application	can	be	found	 in	the	appendix	 in	order	to	get	a	real	
impression	of	the	final	product.	
	 	

	 57	

9. Development	and	implementation	
	

9.1. Description	and	justification	of	the	selected	technologies	

9.1.1. Main	frameworks,	tools,	services	

Django	is	a	high-level	Python	Web	framework	that	encourages	rapid	development	and	
clean	and	pragmatic	design.	Besides	that,	it	has	an	excellent	documentation	and	a	very	
supportive	community.		
Django	 REST	 Framework	 is	 a	 powerful	 and	 flexible	 toolkit	 for	 building	Web	 APIs.	 It	
comes	with	a	browsable	API	by	default	and		
Heroku	 is	 a	 cloud	 Platform-as-a-Service	 (PaaS)	 being	 used	 as	 a	 Web	 Application	
Deployment	model	which	allows	building,	running	and	scaling	applications	easily	and	it	
is	exactly	what	this	project	needed.		
Postgres	is	a	powerful,	open	source	object-relational	database	system.	The	great	side	is	
that	 it	 is	 very	well	 integrated	with	 Heroku,	 called	Heroku	 Postgres,	 which	 is	 an	 SQL	
database	as	a	service	with	operational	expertise	built	in,	security	by	default,	database	
forking,	etc.	
iOS	is	chosen	because	firstly,	it	is	one	of	the	most	popular	mobile	OS	in	the	market	and	
secondly,	its	development	environment	is	simple	and	innovative	and	has	a	great	variety	
and	very	well	done	system	libraries/APIs.	

	
9.1.2. API’s	and	libraries	from	third	parties	

Spotipy	is	a	lightweight	Python	library	for	the	Spotify	Web	API.	It	allows	a	full	access	to	
all	of	the	music	data	provided	by	the	Spotify	platform	and	supports	all	of	the	features	of	
the	Spotify	Web	API	including	access	to	all	end	points,	and	support	for	user	authorization.	

pygeocoder	 is	a	Python	 library	 that	was	used	 to	get	 the	establishment’s	geolocation	
(latitude	and	longitude)	from	the	input	address	so	they	can	be	displayed	in	the	map.	

Lastfm	API	 is	 used	 to	 get	 the	 currently	 playing	 song	 from	 a	 Spotify	 account.	 At	 this	
moment	the	Spotify	API	does	not	provide	this	functionality.	Users	must	have	a	lastfm	
account	in	order	to	use	the	app	as	an	establishment	owner.	

Alamofire	is	a	Swift-based	HTTP	networking	library	for	iOS	and	Mac	OS	X.	It	provides	an	
elegant	 interface	 on	 top	 of	 Apple’s	 Foundation	 networking	 stack	 that	 simplifies	 a	
number	of	common	networking	tasks.	

SwiftyJSON	 library	makes	dealing	with	JSON	data	with	swift	easier.	 It	was	specifically	
used	for	data	received	at	the	Alamofire	responses.	

	 58	

Locksmith	is	a	powerful,	protocol-oriented	library	for	working	with	the	keychain	in	Swift.	
In	this	project	it	is	used	to	store	the	token	of	the	user	which	is	provided	after	the	user	
successfully	logs	in	to	his	account.	

	
9.1.3. Package	and	library	managers	

virtualenv	 is	 a	 tool	 to	 create	 isolated	 Python	 environments.	 The	 basic	 problem	 it	
addresses	to	is	are	dependencies	and	versions,	and	indirectly	permissions.	

Cocoapods	 is	a	dependency	manager	for	Swift	and	Objective-C	Cocoa	projects.	 It	has	
over	 24	 thousand	 libraries	 and	 provides	 a	 standard	 format	 for	 managing	 external	
libraries.	
	

9.2. API	

An	 API	 (Application	 Programming	 Interface)	 has	 been	 built	 to	 allow	 communication	
between	the	mobile	app	and	the	server.	
The	browsable	API	can	be	found	at	http://joogpoint.herokuapp.com/	and	the	admin	site	
is	 located	at	http://joogpoint.herokuapp.com/admin/	(I	will	gladly	provide	temporary	
credentials	to	access	them.	Please	contact	me	by	mail).	
	
The	whole	API	has	been	documented,	the	format	of	requests	and	examples	responses	
and	errors	can	be	seen	at	http://docs.joogpointrestapi.apiary.io/.	
		
	 	

	 59	

10. Testing	
	

10.1. Manual	tests	

Manual	testing	has	been	done	mostly	on	the	mobile	app	part	(front	end).	Since	it	is	the	
visible	part	of	the	product,	it	made	sense	to	try	out	the	features	by	hand.	Furthermore,	
the	design	and	user	experience	cannot	be	tested	automatically	and	has	to	be	tested	by	
a	human	in	order	to	obtain	a	valuable	review.	
	

10.2. Automated	tests	

The	unittest	module	 built	 in	 to	 the	 Python	 standard	 library	 is	 used	 to	write	 tests	 in	
Django,	which	is	their	recommended	way	to	test	code.		
These	 tests	 have	 been	 done	 to	 validate	 that	 the	 code	 works	 as	 expected.	 When	
refactoring	or	modifying	code	after	a	significant	period	of	time,	using	tests	has	ensured	
that	the	changes	haven’t	affected	the	application’s	behavior	unexpectedly.	
With	Django’s	test-execution	framework	and	assorted	utilities,	requests	simulation,	test	
data	 insertion	and	 inspection	of	 the	application’s	output	and	verification	of	 the	code	
have	been	done	successfully.	 	

	 60	

11. Results	and	conclusion	
	
The	overall	results	of	the	project	have	been	a	success.	The	application	has	been	designed	
and	developed	after	a	good	amount	of	 constant	 research	and	 learning	but	 it	was	all	
worth	the	time.	This	project	has	allowed	me	have	a	full	vision	of	all	the	aspects	involved	
in	 the	 development	 of	 a	 software	 project.	 From	 the	 necessary	 but	 tedious	 project	
management	 to	 design,	 development,	 implementation	 and	 testing	 of	 a	 complete	
product.	
Often	when	a	feature	has	been	implemented,	I	can	get	to	see	that	it	could	be	improved,	
here	and	there,	at	what	stage	I	should	have	seen	that	mistake	or	found	a	better	way	to	
execute	and	reach	the	goal.	Practice	is	indeed	the	way	you	get	to	learn	and	improve	on	
what	you	do.	 I	am	very	pleased	with	the	final	product.	Being	able	to	choose	what	to	
build	and	what	tools	to	use	on	every	aspect	has	made	the	project	a	valuable	experience.	
	

11.1. Future	enhancements	

The	 design	 and	 style	 can	 be	 refined	 without	 doubts.	 Currently	 the	 majority	 of	
components	of	the	app	are	the	ones	provided	by	Xcode	by	default.	Also,	requirements	
appeared	during	 the	analysis	 such	as	making	 the	app	multilingual,	having	a	 two-step	
authentication	or	being	able	to	recover	the	password	would	be	some	basic	but	great	
features	to	be	added.	
The	option	of	pushing	it	to	the	market	can	also	be	considered,	although	some	strict	rules	
and	design	principles	have	to	be	followed	in	order	to	have	it	published	on	the	App	Store.	
But	it	is	a	possibility	to	be	considered	surely.		
	 	

	 61	

12. Glossary	
	
ARM:	 originally	 Acorn	 RISC	 Machine,	 later	 Advanced	 RISC	 Machine,	 is	 a	 family	 of	
reduced	 instruction	 set	 computing	 (RISC)	 architectures	 for	 computer	 processors,	
configured	for	various	environments.	

API:	Application	program	interface	is	a	set	of	routines,	protocols,	and	tools	for	building	
software	applications.	An	API	specifies	how	software	components	should	interact	and	
APIs	are	used	when	programming	graphical	user	interface	(GUI)	components.	

REST:	Representational	 state	 transfer	 (REST)	or	RESTful	web	services	are	one	way	of	
providing	interoperability	between	computer	systems	on	the	internet.	REST-compliant	
web	services	allow	requesting	systems	to	access	and	manipulate	textual	representations	
of	web	resources	using	a	uniform	and	predefined	set	of	stateless	operations.	

PaaS:	Platform	as	a	Service	is	a	category	of	cloud	computing	that	provides	a	platform	
and	environment	to	allow	developers	to	build	applications	and	services	over	the	internet.	
PaaS	services	are	hosted	in	the	cloud	and	accessed	by	users	simply	via	their	web	browser.	

SCRUM:	Scrum	is	a	management	and	control	process	that	cuts	through	complexity	to	
focus	on	building	software	that	meets	business	needs.	Management	and	teams	are	able	
to	 get	 their	 hands	 around	 the	 requirements	 and	 technologies	 and	 deliver	 working	
software,	incrementally	and	empirically.			

Git:	Git	 is	a	version	control	 system	that	 is	used	 for	 software	development	and	other	
version	control	tasks.	As	a	distributed	revision	control	system	it	is	aimed	at	speed,	data	
integrity,	and	support	for	distributed,	non-linear	workflows.		 	

	 62	

13. Sources	

Font	

Quicksand	Light	(used	in	the	mobile	app)	
http://www.dafont.com/quicksand.font	
	
Icons	

www.icons8.com	
	
Swift	libraries	

Alamofire	
https://github.com/Alamofire/Alamofire	
	
SwiftyJSON	
https://github.com/SwiftyJSON/SwiftyJSON	
	
Locksmith	
https://github.com/matthewpalmer/Locksmith	
	
	
Python	libraries	

spotipy	
http://spotipy.readthedocs.io/en/latest/	
	
pygeocoder	
https://pypi.python.org/pypi/pygeocoder	
	
	 	

	 63	

14. Bibliography	
	

[1]		 Wikipedia	 Contributors,	 "iOS,"	 Wikipedia,	 27	 Feb	 2016.	 [Online].	 Available:	
https://en.wikipedia.org/wiki/IOS.	

[2]		 "Mobile	Music	Streaming:	Driving	the	Next	Digital	Revolution,"	App	Annie,	1	Dec	
2015.	 [Online].	 Available:	 http://blog.appannie.com/mobile-music-streaming-
driving-the-next-digital-revolution/.	

[3]		 A.	 Allsopp,	 "Deezer	 vs	 Spotify	 vs	 Tidal	 vs	 Amazon	 Prime	Music	 vs	 Apple	Music	
comparison:	What	 is	 the	 best	music	 streaming	 service?,"	 Tech	 Advisor,	 11	 Feb	
2016.	 [Online].	 Available:	 http://www.pcadvisor.co.uk/review/audio/deezer-vs-
spotify-tidal-apple-music-amazon-prime-music-comparison-review-3523953/.	

[4]		 Spotify	 AB,	 "Spotify	 Web	 API,"	 Spotify,	 Feb	 2016.	 [Online].	 Available:	
https://developer.spotify.com/web-api/.	

[5]		 Rockbot,	"Rockbot,"	2016.	[Online].	Available:	https://rockbot.com/.	

[6]		 OutLoud	Inc.,	"OutLoud,"	2014.	[Online].	Available:	https://outloud.dj.	

[7]		 James	Litjens,	"Jukestar,"	2015.	[Online].	Available:	http://jukestar.mobi/.	

[8]		 c-burn	 systems	 Ltd,	 "SecretDJ,"	 2012.	 [Online].	 Available:	
http://www.secretdj.com/.	

[9]		 "Geocoding	 and	 reverse	 geocoding,"	 1	 5	 2016.	 [Online].	 Available:	
http://chrisalbon.com/python/geocoding_and_reverse_geocoding.html.	

[10]		J.	Pradel,	Software	Projects	Management	Course	Slides,	Departament	d'Enginyeria	
de	Serveis	i	Sistemes	d'Informació.	ESSI,	2014.		

[11]		GEP	Professors,	"Notes	and	resources	on	Project	Management,,"	2016.	[Online].	
Available:	http://atenea.upc.edu/moodle/.	

[12]		PES	 Professors,	 Software	 Engineering	 Project	 Course	 Slides,	 Departament	
d'Enginyeria	de	Serveis	i	Sistemes	d'Informació.	ESSI,	2015.		

[13]		ER	Professors,	Requirements	Engineering	Course	Slides,	Departament	d'Enginyeria	
de	Serveis	i	Sistemes	d'Informació.	ESSI,	2015.		

[14]		"Django	 REST	 Framework	 documentation,"	 2016.	 [Online].	 Available:	
http://www.django-rest-framework.org.	

[15]		"Spotify	 Web	 API	 Endpoint	 Reference,"	 2016.	 [Online].	 Available:	
https://developer.spotify.com/web-api/endpoint-reference/.	

[16]		"Heroku	Postgres,"	2016.	[Online].	Available:	https://www.heroku.com/postgres	.	

[17]		"Django,"	2016.	[Online].	Available:	https://docs.djangoproject.com/en/1.10/.	

[18]		"MapKit	 Tutorial,"	 [Online].	 Available:	
https://www.raywenderlich.com/90971/introduction-mapkit-swift-tutorial.	

	 64	

[19]		"Legal	guidelines	 for	 the	use	of	 location	data	on	the	web,"	10	3	2016.	 [Online].	
Available:	 https://www.smashingmagazine.com/2016/03/location-data-web-
development-and-the-law/.	

[20]		"Spotify	 Privacy	 Information,"	 [Online].	 Available:	
https://support.spotify.com/us/article/spotify-privacy-info/.	

[21]		"Heroku	 documentation,"	 2016.	 [Online].	 Available:	
https://devcenter.heroku.com/categories/reference.	

	
	

15. Annex	
	

15.1. API	Documentation	

It	is	attached	as	an	additional	material.	
	

15.2. Backend	code	repository	

https://github.com/wailingtam/joogpoint	
	

15.3. App	code	repository	

https://github.com/wailingtam/joogpointApp	
	
	

	 65	

15.4. Application	screens	

	 66	

	 67	

	 68	

	

