
Degree Final Project

Uncovering obfuscated web

tracking

Computing Specialty

Alvaro Espuña Buxó

Director

Pere Barlet Ros

Facultat d’Informàtica de Barcelona

Universitat Politècnica de Catalunya

October 16, 2016

Abstract

Several studies showed the prevalence and pervasiveness of user tracking

and fingerprinting on the Internet. Since most tracking methods rely on

JavaScript, some recent works proposed HTML/JavaScript code analysis

as the most effective way to reliably detect user tracking and fingerprinting.

The research hypothesis of this project is that web tracking is becoming ob-

fuscated, and previous detection methods based on static code analysis are

becoming ineffective and very easy to evade. The objective of this project is

to develop a framework based on dynamic code analysis to track the actual

calls made to the browser JavaScript API and compare them to the original

HTML/JavaScript code in order to detect obfuscated fingerprinting. We

will perform a broad analysis of the actual deployment of obfuscated web

tracking on the Internet, and release the resulting framework and datasets

to the web research community under an Open Source license.1

1The source code and the gathered data can be found at https://bitbucket.org/
aespuna/canvas-tfg

https://bitbucket.org/aespuna/canvas-tfg
https://bitbucket.org/aespuna/canvas-tfg

Contents

1 Introduction 6

1.1 Context . 6

1.1.1 Web tracking . 6

1.1.2 Code obfuscation . 8

1.2 State of the art . 10

1.2.1 Static analysis . 10

1.2.2 Dynamic analysis . 11

1.3 Personal motivation . 12

1.4 Report structure . 13

2

CONTENTS

2 Scope of the project 14

2.1 Objectives . 14

2.1.1 Main objective . 14

2.1.2 Secondary objectives 15

2.2 Scope . 15

2.3 Useful courses . 16

2.4 Competences . 16

2.5 Stakeholders . 18

3 Planning 19

3.1 Tasks . 20

3.1.1 Project preparation 20

3.1.2 Project management (GEP) course 20

3.1.3 Topic research . 21

3.1.4 Approach decision 21

3.1.5 Software developement 22

3.1.6 Results and validation 22

3.1.7 Public release . 23

3.1.8 Memory writing . 23

3

CONTENTS

3.1.9 Oral defense preparation 23

3.2 Gantt diagram . 24

3.3 Risks and alternatives . 24

3.4 Budget estimation . 25

3.4.1 Hardware resources 26

3.4.2 Software resources 26

3.4.3 Human resources . 27

3.4.4 Total budget . 27

3.5 Budget control . 28

3.6 Sustainability . 28

3.6.1 Economic sustainability 28

3.6.2 Social sustainability 29

3.6.3 Environmental sustainability 29

4 Methodology 31

4.1 Browser plugin . 32

4.2 Logger server . 34

4.3 Scraper . 36

4.4 Web service . 39

4.4.1 Security considerations 40

4

CONTENTS

5 Results and validation 42

6 Conclusion 46

6.1 Summary . 46

6.2 Future work . 47

6.3 Personal thoughts . 48

5

1 Introduction

This chapter contextualizes the project reviewing the current state of web

tracking and some JavaScript obfuscation techniques. It also explains the

motivation of the work and presents the structure used on the whole doc-

ument.

1.1 Context

1.1.1 Web tracking

The prevalence of user tracking on the internet is widely known[1]. There

are different techniques, but most of them rely on the use of JavaScript

because it can be executed in the browser and can be easily deployed. The

principal method consists in generating some kind of digital fingerprint [2]

on the client side to uniquely identify the user, allowing the service to track

their movements on the web.

The current JavaScript API[3], implemented by most modern browsers,

allows to programatically obtain a lot of information about the client ma-

chine. Parameters such as operative system, platform, installed fonts, or

6

1. Introduction 1.1. Context

screen dimensions among others can be easily extracted executing simple

function calls.

One notable technique is called canvas fingerprinting. The idea is to

use a hidden HTML5 canvas element [4], draw some elements using specific

fonts, text and shapes, and then produce a raw image using the toDataURL

method[5]. The corresponding rendered value depends heavily on the client

hardware and software and can generate a digital fingerprint (hence the

name) that can be used to almost uniquely identify the user.

Figure 1.1: This webpage has correctly guessed our user-agent using canvas
fingerprinting, even after spoofing our User-Agent HTTP header

Because of how HTTP works, most of the time this data is gathered

without the user noticing or without giving explicit consent.

Tracking can also happen when automatically requesting resources from

other domains (such as images, scripts or frames) using the HTTP Referer

Header and already set cookies.

7

1. Introduction 1.1. Context

To allow inter-domain tracking, that heavily reduces the users’ privacy,

there are services offered by third party companies that work by deliber-

ately including some HTML element (most of the time a JavaScript snip-

pet) to the first party server response [6].

The gathered information constitutes the core business of several in-

ternet advertising companies. They can use it for targeting ads, price dis-

crimination [7] [8] [9], assessing health conditions or even assessing financial

credibility[10] [11].

This kind of tracking is not only considered a threat to users’ privacy,

in some cases it can generate performance issues on the visited website,

degrading user experience.

1.1.2 Code obfuscation

Code obfuscation is the process of modifying the source code so it is very

difficult to read by a human and consequently reason about it. Since

JavaScript must be delivered in its source code form, not in binary form,

some content providers obfuscate it to protect it from being understood by

others. This way it is more difficult to reuse it, modify it, and sometimes

it even helps to prevent copyright violations[12].

Obfuscation must not be confused with minification. Minification tries

to reduce the code size (e.g. mangling variable names, avoiding new lines,

removing unnecessary spaces), while obfuscation tries to hide the inten-

tion of the code. Sometimes obfuscation can lead to code minification or

viceversa, but technically they are different concepts.

There are a lot of both free and non-free online tools for obfuscating

JavaScript source code[13][14][15][16][17].

8

1. Introduction 1.1. Context

function divide_by_two(value) {

var y = value/2;

return y;

};

divide_by_two(2);

// minified

function f(a){return a/2};f(2)

// obfuscated 1: we can still see the function name

// but it's not near the actual call

eval(function(p,a,c,k,e,d){while(c--){if(k[c]){p=p.replace(new

RegExp('\\b'+c+'\\b','g'),k[c])}}return p}('4 3(0){5

1=0/2;6

1};3(2);',7,7,'value|y||divide_by_two|function|var|return'.split('|')))

↪→

↪→

↪→

// obfuscated 2: divide_by_two doesn't appear

// but the function exists with the same name after

execution↪→

var a={}, b

=["\x64\x69\x76\x69\x64\x65\x5f\x62\x79\x5f\x74\x77\x6f"];a[b[0]]

= function(c){return c/2;};a[b[0]](2);

↪→

↪→

Figure 1.2: Simple example of code minification and obfuscation

The dynamic nature of JavaScript allows to fuse strings with code very

easily. Using the eval function on a XORed string with a key, is one of

the most used techniques.

One can even hide the eval call using the Function constructor like

[18]

[]["sort"]["constructor"](CODE)()

Other simpler options include writing the strings simply as hex encoded

strings (as the last example in Figure 1.2).

As we can see in Figure 1.2 static code analysis would be useless on

obfuscated code.

9

1. Introduction 1.2. State of the art

Our line in differentiating both minification and obfuscation will be

JavaScript API name mangling. Minification will not rename public func-

tion and variable names, because otherwise the browser would not recognise

them. So, if a public function call is being executed without the name being

present, it will be considered obfuscation. Otherwise it is just minification.

1.2 State of the art

There are multiple studies and tools around web tracking. Both to perform

it, and to protect against it.

In this section we will describe some previous work around web tracking

detection and analysis.

There have been some efforts to use software solutions to protect users’

privacy on the internet. Most of them take the form of web browser plugins.

Notable examples are NoScript [19] (a JavaScript blocker), AdBlock [20]

and uBlock [21] (block requests to known domains used for tracking and

advertising), and RequestPolicy [22] and Ghostery [23] (block requests to

external non-trusted domains). These plugins do not try to detect tracking

on the fly, they just basically read user preferences to blacklist some of the

content.

1.2.1 Static analysis

There have also been some studies to find malware using static analysis

of JavaScript code [24] [25]. It works by analyzing the code and trying to

find fragments of it that are used to track web users. Using heuristics and

10

1. Introduction 1.2. State of the art

other classification techniques it determines with only static patterns if it

is malware or not.

Detecting malware is a different problem than detecting canvas finger-

printing, but some of this techniques would be applicable.

Some previous research tried to detect code obfuscation automatically

statically analyzing the source code [26]. They found that there exists only

a weak correlation between malware and JavaScript code obfuscation or

minification.

An static analysis approach to search canvas fingerprinting JavaScript

function calls would not work if the code is obfuscated, so we will have to

execute the JavaScript to really know which are the side effects.

The research hypothesis of this project is that web tracking is becoming

obfuscated using tools such as the ones used in Figure 1.2. Because this

code transformations happen during execution, previous work using static

analysis to detect web tracking are becoming ineffective and very easy to

evade.

1.2.2 Dynamic analysis

We have to differentiate between dynamic analysis of obfuscation and dy-

namic analysis of tracking.

We don’t consider dynamic analysis of obfuscation because it is mostly

trivial. Once the code has been evaluated, there is no obfuscation. We

would only need to compare gobal table symbols after parsing and after

evaluating.

11

1. Introduction 1.3. Personal motivation

On the other hand, dynamic analysis of tracking has not been widely

used. After this project started, a mass scale online tracking measurement

was done[27].

They didn’t take into account obfuscation, but they analyzed a lot of the

currently used techniques for tracking, with a framework they opensourced[28].

Those techniques go from different forms of fingerprinting (canvas, Web-

RTC, fonts, etc) to analyzing third party and cookie usage.

We will try to validate their work using our own implementation of a

canvas fingerprinting detection framework, but we will take into account

obfuscation deployment.

1.3 Personal motivation

As a internet user I’m worried about the state of tracking on the internet.

Not only the reasons behind it but also how most users are completely

unaware of it. Learning how the main tracking techniques work, how are

they being implemented and how to prevent them it’s a reason good enough

to take the project.

I am also worried about an obfuscated web. With WebAssembly, al-

though it will increase performance and it will allow developers to program

in different languages than JavaScript, users won’t be able too look at the

guts of what’s being executed on their own browser. I personally believe

in the open web so people can tinker and come up with different solutions

and approaches to an already solved problem.

I was interested also in undertanding better how a browser works in

a more fundamental basis. The JavaScript engine of a modern browser

12

1. Introduction 1.4. Report structure

is really a feat of engineering, composed of a lot of complex parts. The

interpreter, the JIT compiler, the optimizer, . . . I expect to learn a lot

about them during this project.

1.4 Report structure

This document is separated in multiple chapters, each of them answering

a different set of questions:

Scope of the project Presentation of the objectives and explanation of

the required knowledge and competences. What are we expecting to

do and what not?

Planning How will we distribute the required tasks and budget to obtain

our objectives? Will it be sustainable?

Methodology Implementation details of how are we going to achieve our

goals. Description of every software element developed during the

project.

Results and validation After applying our methodology what are the

results? Did we accomplish all the objectives? Can these be consid-

ered correct?

Conclusions Why did we obtain what we obtained? What can be changed

or added on the future so we can improve our results?

13

2 Scope of the project

We want to answer if there is obfuscated web tracking on the internet. To

achieve this, there are smaller objectives that need to be completed first.

2.1 Objectives

To reduce the complexity of the project we will only focus on canvas fin-

gerprinting as a tracking method. This is the easiest one to instrument,

and since it uses the toDataURL JavaScript API call, detecting obfuscation

will be also doable.

2.1.1 Main objective

The principal objective of this project is to develop a proof-of-concept

framework for discovering canvas fingerprinting by analizing the actual

calls made to the JavaScript API and comparing them with the original

HTML/JavaScript code. This will unveil the obfuscated uses of canvas

fingerprinting.

14

2. Scope of the project 2.2. Scope

2.1.2 Secondary objectives

Data collection We will create a software tool that will be able to auto-

matically navigate a set of urls and store the results to analize later.

Web service We will create a web service where the user will be able to

input an url and our software will visit that webpage and will provide

information to the user about the tracking and obfuscation detected

on that page. This will help to raise awareness.

Open data We want to be as open as possible. That’s why all the data

and source code will be released to the public using an Open Source

License, so the research community will be able to use it.

2.2 Scope

This project tries to achieve the objectives presented in the section 2.1, but

this project is purely research driven. Our work hypothesis is that there is

obfuscation of tracking on the internet.

If the answer happens to be false, we will still answer the question and

we will try to explain the reasons, so it wouldn’t be cosidered a failure.

In any case the tooling required to determine if a certain website uses

tracking, and if the tracking is obfuscated will be developed, and will be

possible to upgrade it in the future.

15

2. Scope of the project 2.3. Useful courses

2.3 Useful courses

Some useful courses that I took on my specialization are:

Machine Learning (APA)

The knowledge needed in statistics and probability helped to create

a correct model to classify the websites

Programming Languages (LP) and Compilers (CL)

Knowledge about lexers, parsers and grammars will be very useful

when dealing with the JavaScript and HTML parsing, and finally

Algorithms (A) and Cryptography (C)

Knowledge about hash functions and their implementations helped

in finding alternative solutions to consider unique pages.

Some parts of the project, such as the web service or even programming

the tooling can be considered transversal competences, and probably would

fit better in another specialty. But given that almost all of my optative

credits come from the IT specialization it didn’t come as a problem.

2.4 Competences

As explained in previous sections, this project uses competences associated

to the Computing specialty.

CCO1.2 To demonstrate knowledge about the theoretical fundamentals of

programming languages and the associated lexical, syntactical and se-

mantic processing techniques and be able to apply them to create,

design and process languages.

16

2. Scope of the project 2.4. Competences

We won’t write a javascript engine. But we need to instrument one

to record every call and track the stacktrace, and understanding how

it works is important, so this competence can be considered.

CCO1.3 To define, evaluate and select platforms to develop and produce

hardware and software for developing computer applications and ser-

vices of different complexities.

We have to deal with the browser, which is a complex piece of soft-

ware. We will develop a framework that will use a lot of different

technologies. It will run locally but also in a dedicated server. These

systems are very heterogeneus on platforms and have different re-

quirements.

CCO2.3 To develop and evaluate interactive systems and systems that

show complex information, and its application to solve person-computer

interaction problems.

The cloud service will offer a nice interface for our users. The infor-

mation we will be giving is critical for them, since they want to know

if a certain website is using tracking techniques and moreover if they

are being obfuscated. The way we will present this information is

important.

CCO2.5 To implement information retrieval software.

The core of our system will scrap an important part of the internet

just to answer our initial hypothesis. Our whole framework will be

an automatic information retrieval software.

17

2. Scope of the project 2.5. Stakeholders

2.5 Stakeholders

There are several stakeholders involved in the development of this project,

either directly or indirectly.

Developer Is the same person writing this document. His function is

to develop the choosen methodology, to find or develop the required

tools to achieve the objectives and to validate the obtained results.

Project director The project director is Pere Barlet Ros. His function is

to help the developer giving directions on critical points.

Open source community They provide documentation and tools that

help on the implementation of the framework. They receive the re-

sulting framework as it will be licensed under the MIT License.

Target audience Is both the research community and the average inter-

net user. One objective of this project is to raise awareness about

the ubiquity of internet tracking, and if obfuscation is found, to alert

them.

18

3 Planning

The purpose of this section is to describe the division of the project in

smaller tasks. Each task consists of a name, a description, an expected

duration, a set of risks and possible complications, task dependencies, and

nedeed resources.

All this information will be used to construct a viable action plan that

will allow us to finish the project in time, reducing the possibility of failure.

The time planning has been conceived under the assumption that the

project was started on September 10th, 2015 and its original deadline was

January 25th, 2016.

Due to an unexpected oportunity to grow professionally, I had to decide

to park the project for a time. It was this summer that I had enough time

to work the hours that this project required.

At the end, it only added a time shift of about 7 months. So Software

developement and Results and validation phases took the expected time,

but were done 7 months later.

This was a big problem at the begining, but one advantage is that

allowed us to evaluate the work of others[27].

19

3. Planning 3.1. Tasks

3.1 Tasks

3.1.1 Project preparation

This task consists of choosing the topic and the director to make the project

suitable for the Computation specialty. It also includes doing all the pa-

perwork required by FIB, to enroll the TFG.

It took some email exchanging with the director during summer and

was already finished at September 14th, 2015.

3.1.2 Project management (GEP) course

This tasks includes a series of smaller tasks that aim to lead the project in

the correct direction. It consists of various deliverables and reading some

provided documentation.

The expected duration was of 120 hours. The risk level was very low

given that the direction was very specific and the schedule was rigid enough.

The only task dependency is the project preparation.

The resources used are primarily software: Atenea virtual campus, Li-

breOffice Writer to complete the auto-evaluation rubrics, and LATEX and

emacs text editor to compose the deliverables.

20

3. Planning 3.1. Tasks

3.1.3 Topic research

This task is the first project-specific one. It can be divided in two different

parts:

1. Read code documentation and bibliography to create a JavaScript

tracing framework.

2. Research on various techniques to improve the framework.

This division allowed us to work in a cyclic manner between the software

developement of the first part and the topic research of the second.

The expected duration was 90 hours. The first part was completed in

parallel with GEP. The only risk was not understanding the papers and

spending more time researching for new bibliography.

The resources used were time and internet access.

3.1.4 Approach decision

After researching about different methods to instrument a web browser

or different techniques to classify obfuscated and unobfuscated code, we

need to decide which ones are the best options for us to implement both in

correctness and considering time constraints. This tasks includes meetings

with the director.

The expected duration is 25 hours. The risk is being unable to decide

a clear winner, or choosing the wrong option so it must be corrected later.

No special resources are needed for this task.

21

3. Planning 3.1. Tasks

3.1.5 Software developement

This is one of the most important and riskiest tasks. This task will be

an iteration over the framework we aim to develop, improving it iteration

over iteration. The resources used will be two computers (one to develop

software, the other to run the public web server) and a text editor to code.

This task has a dependency on the approach.

The first step would be to make the JavaScript tracing framework, prob-

ably with the aid of a modern web browser Javascript engine. The expected

duration is 40 hours. The risk is being unable to work with the complex-

ity of the code of a modern browser (state of the art JIT compiler, micro

optimizations, etc).

The second step would be to write a program that uses the data col-

lected by the tracing framework so it can determine if there is code obfus-

cation or it is being used for tracking. The more sofisticated we want this

software to be, more time it will take. The expected duration is 60 hours.

This part has a dependency on the approach decision.

A third step would be to create a web service to use the obfuscation

and tracking system remotely. This should be the less riskier part, and the

expected duration is 20 hours.

3.1.6 Results and validation

This task consists of analyzing the data obtained by the framework to

check its correctness manually. This will be used to improve it in future

iterations. This composes a cycle with software development task, but can

be represented linearly. The expected duration is 80 hours.

22

3. Planning 3.1. Tasks

3.1.7 Public release

This task consists of releasing the data and results collected and the source

code developed during the project (browser modifications, tools and server)

to the public domain. Some formatting and cleaning up may be needed, to

make it easier to read and use for the community.

The expected duration is of 10 hours. This task has as a dependency

the results and validation task and has low risk.

The resource used will be some code sharing tool such as github.com

or bitbucket.org.

3.1.8 Memory writing

A memory must be written explaining the whole project. Although after

the GEP course, almost a 70% of the memory will be already drafted, there

are some time consuming things remaining such as the final polishment of

already written parts, writing of the technical sections or proof-reading the

whole document multiple times.

The expected duration is of 30 hours. This a very important part of

the project. This task has as prerequisite the results and validation task.

The used resources will be emacs and LATEX.

3.1.9 Oral defense preparation

After the project memory has been delivered, ther is one week before the

oral defense. This task includes preparing sides and practicing the defence.

The expected duration is of 15 hours.

23

3. Planning 3.2. Gantt diagram

3.2 Gantt diagram

Figure 3.1: Original Gantt diagram representing all tasks and its depen-
dencies

Figure 3.2: Final adjusted Gantt diagram

3.3 Risks and alternatives

During the project, short after the GEP task finished we experienced an

unexpected major delay. I was offered an opportunity that I wasn’t able

to refuse. This experience helped me to grow both personally and profes-

sionally, but at the cost of having to park the project until this summer.

24

3. Planning 3.4. Budget estimation

At the end it only concurred a general time shift, and both taskwise

duration and total budget were unaffected. The total time of the project

obviously expanded.

However, taskwise, the previous planification still worked. And we had

a plan for every task if a delay was detected, we considered diferent levels

of correction according to the severity:

less than 3 days There is no need to apply correctional measures, as

there is a margin of 2-3 days.

3 to 10 days We increase the daily dedication hours by 10% - 25% until

the deviation for that task is compensated.

more than 10 days We have to rethink and weight how important this

task is. If there are a lot of dependencies we will have to finish this

task no matter what, and then select the most important subsequent

tasks. This could dramatically decrease the quality of the final prod-

uct.

3.4 Budget estimation

We classify resources according to their nature: hardware, software, hu-

man, and utilities. We will see that hardware and software resources have

negligible cost for various reasons, and that the largest part of the budget

falls in the human category.

25

3. Planning 3.4. Budget estimation

3.4.1 Hardware resources

The hardware resources used for this project consist of a laptop for the

developement of the needed code, and a computer that will be used as a

server to run the cloud solution to detect obfuscation.

I will be using my laptop, which I bought for 275e a year ago. This

cost can be excluded from the project as any other computer could serve

the same purpose.

The web service will be hosted in a Virtual Private Server provided by

ovh.es. The economic cost is around 6e per month. We don’t expect to

use a lot of cpu, and since it’s a virtual server, the electrical consumption

will not effectively increase.

The electricity cost might amount to a total of 15e for the duration of

the project, which can be considered negligible.

3.4.2 Software resources

All software used will be free, including but not limited to: Operating

System, text editor, browser, and pdf reader. These programs, are not

only free in price, but also in its licensing.

If developing a browser plugin is required, there’s no need to test it in

other Operative Systems, since the browser provides the required abstrac-

tion.

26

ovh.es

3. Planning 3.4. Budget estimation

For releasing the code to the public, a free cloud platform such as

Github1 or Bitbucket2 will be used. These platforms allow free hosting

for open source projects.

In conclusion there are no software costs.

3.4.3 Human resources

These, as explained earlier, compromise the bigest part of the budget. Table

3.1 shows the cost for every role that this project needs.

Role Payment (e/h) Hours Total (e)
Project manager 50 70 3500
Software designer 35 80 2800

Software programmer 25 145 3625
Software tester 20 120 2400

Total 415 12325

Table 3.1: Human resources costs per role

3.4.4 Total budget

Using the estimation of costs for every resource we obtain a required budget

no greater than 12400e.

1https://github.com
2https://bitbucket.org

27

https://github.com
https://bitbucket.org

3. Planning 3.5. Budget control

3.5 Budget control

As we have seen in the previous section, the budget is mainly for the

human resources. Modifications are very improbable because the project is

expected to be doable with very limited hardware specifications and with

free software. Variations could be introduced by increasing the time needed

to finish the project.

Another factor could be an unexpected success of the unobfuscator ser-

vice, which would increase the cost of the server or, more importantly the

maintenance cost of the product.

In conclusion, the budget is low and very stable.

3.6 Sustainability

In this section we are going to evaluate the sustainability of our project in

three different areas: economic area, social area and environmental area.

3.6.1 Economic sustainability

Since we are relying on free and open source libraries and utilities that

depend on foundations and self maintained institutions, the economic sus-

tainability of the project can be guaranteed.

This project is relevant because as we will see can be provide a huge

social impact and it is innovative in the way to process tracking on the

web. This justifies the project.

28

3. Planning 3.6. Sustainability

The project receives an 7 in the economical viability area because its

costs cannot be further optimized, but given that the success of it relies on

that there is enough obfuscation of tracking on the web, there is a certain

degree of risk.

3.6.2 Social sustainability

Although an important part of the public knows that there is tracking on

the web going on, proving that a given service is obfuscating it might create

a huge impact. Also, we expect some impact inside the computer security

research community.

This project receives a 8 in the social sustainability area, since its im-

portance can be huge for the general public, and can affect people’s point

of view.

3.6.3 Environmental sustainability

The project requires minimal resources. We estimate a monthly average

energy consumption of 20kWh, which is equivalent to approximately 15kg

of CO2.

This could increase if the cloud service is a huge success, but a priori

the electricity consumption of the server will not be increased significantly

just by running our instrumented browser.

When possible, we will avoid to print documents on paper and use

digital versions instead.

29

3. Planning 3.6. Sustainability

This project is awarded a 9 in the environmental sustainability area be-

cause it does not use unnecessary resources, and the required ones are used

in a responsible and efficient manner. Its footprint for the environtment is

very low.

30

4 Methodology

The methodology we agreed upon with the director consists on a Firefox

plugin that will connect to a running local server, logging every JavaScript

call to the toDataURL function of the HTML5 Canvas element. It will log

information such as display dimensions of the canvas, the full stacktrace to

that call and the current url. We try to detect only canvas fingerprinting

since it’s the easiest of the tracking methods to instrument.

The logger server will process this information and store it in a struc-

tured database, so it can be queried and analyzed later.

The scraper will run an stock version of Firefox with our plugin ins-

talled. It will use the Alexa’s1 list of the top 1 million most visited pages2,

although we will only care about the first 10000. This sample size should be

enough to find if there’s obfuscation in mainstream websites. The scraper

should be implemented in a modular and flexible fashion, so future students

and researchers can add more interactivity with the visited webpages such

as filling forms or clicking certain buttons. We will be using the Selenium

WebDriver 3.

1http://www.alexa.com/topsites
2http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
3http://www.seleniumhq.org/projects/webdriver/

31

http://www.alexa.com/topsites
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://www.seleniumhq.org/projects/webdriver/

4. Methodology 4.1. Browser plugin

1

2

3

4

controls notify

Browser
instances

Scrapper
Logging
server

Figure 4.1: Architecture schema

We will also implement a web service so a visitor can introduce an

URL in a simple form and using this same methodology we will be able to

tell the user if that webpage implements canvas fingerprinting and if it’s

obfuscated.

If we ran the logger in a public server, and made the plugin send its

request to that server, we could distribute the plugin through the Mozilla

addon store and crowdsource the collection of the data more easily. We

won’t do this because of time and budget limitations. We wouldn’t be able

to achieve enough diffusion to make it relevant enough for this project.

4.1 Browser plugin

The plugin basically injects a modified version of the toDataURL method to

every webpage the browser visits. It tries too reduce its footprint removing

itself from the DOM after the injection. This will give us more accurate

stacktrace positions.

There have been some modifications on the original idea. We now

collect the canvas visible size (scrollHeight and scrollWidth) so we

32

4. Methodology 4.1. Browser plugin

can filter out false positives. We have to take into account that not all

canvas elements are used for tracking, it has its legit purposes. If the

canvas is smaller than a square with side 16px, we can consider it is being

hidden from the user[27].

Also, we send a snapshot of the whole document to the server in the

moment of the execution. This way we can filter out unobfuscated calls

that are injected to the DOM by third parties. If we analyzed the HTML

document before any J avaScript execution (using a proxy such as mitmdump4

for example) we could potentially have a very high false positive rate. This

presents a major advantage over the original idea.

Our modified toDataURL does the same thing as the original function

(to keep compatibility), but also raises and captures an exception, so we

can get a stacktrace. Then, the information about the canvas and the call

is POSTed to our logging server (normally listening on localhost).

The main gist of the plugin is:

var scriptNode = document.createElement('script');

function instrument() {

var old = HTMLCanvasElement.prototype.toDataURL;

HTMLCanvasElement.prototype.toDataURL = function(c) {

var trace = (new Error).stack;

var xhr = new XMLHttpRequest();

xhr.open("POST", our_server_address, true);

xhr.setRequestHeader("Content-Type", "application/json");

var params = {

w: this.scrollWidth,

4http://docs.mitmproxy.org/en/latest/mitmdump.html

33

http://docs.mitmproxy.org/en/latest/mitmdump.html

4. Methodology 4.2. Logger server

h: this.scrollHeight,

referrer: document.referrer,

src: window.location.href,

stack: trace,

doc: new XMLSerializer().serializeToString(document),

}

xhr.send(JSON.stringify(params));

return old.apply(this, arguments);

}

var self = document.currentScript;

self.parentNode.removeChild(self);

}

scriptNode.innerHTML = '('+instrument.toString()+')();';

where = document.head || document.body;

if (where) {

where.insertBefore(scriptNode, where.firstChild);

}

We have to note, that if there is no document (where is null and thus

evaluates to false), we are visiting a script that was loaded by an HTML

snippet, and our modified version of toDataURL will already be set up.

4.2 Logger server

The logger is basically a server that binds to an arbitrary address and port

(normally it will be localhost, but this decoupling gives us more flexibility

and reusability) and writes it to an SQLite database. We are using this

database engine so the collected data can be shared simply distributing one

34

4. Methodology 4.2. Logger server

binary file. Also, since the server is implemented in Python5, that includes

a module for SQLite in the standard library, the setup time was very low

compared to Postgres or MySQL. Basically it is good enough. The server

accesses to the database using an ORM so migrating it to another RDBM

should be doable in the future without many modifications in the server

code if it is required.

Also, since most of the times we are dealing with third parties, we want

to detect if different pages using the same third party, are really using the

same files/code. Ideally we would hash the contents and then we would be

able to compare hashes instead of storing the whole file multiple times.

Figure 4.2: These two files only differ in the timestamp

This is not really feasible. Sometimes, there are slight modifications

such as timestamps or user agent information, that are included dynami-

cally in the response. These modifications don’t change the overall identity

of the file, but a typical hashing function, like any of the SHA family for

example, would not work here, because these small changes produce com-

pletely different hashes (in fact, that’s their purpose). This is why we are

using a locality sensitive hashing algorithm (like the one implemented in

5https://python.org

35

https://python.org

4. Methodology 4.3. Scraper

tlsh6[29] to better detect file equality.

We decided to use Python for the HTTP server because it is very flexible,

it has a lot of useful libraries and it is very simple yet powerful.

It is important that we implement a valid response with the OPTIONS

method, because since we are connecting to another domain (from the

visited page to ourselves) we want to be CORS7 compliant[30].

As it can be seen in Figure 4.3 the database schema is very simple. We

are just interested in aggregating and storing the data in a structured way.

We want to remark that we are differentiating between the caller (where

the stacktrace ends) and the initiator (where the stacktrace starts). Storing

these makes it easier to detect third parties and who is really responsible

of the call. This information could be extracted later from the also stored

full stacktrace.

4.3 Scraper

The scraper is also a Python script that orchestrates multiple Firefox ins-

tances. It uses the Selenium WebDriver module for python, and runs Fire-

fox with our plugin installed.

It then loads a file containing a list of urls and navigates them one after

the other.

Because it is already using the Selenium WebDriver, in a future it would

be possible to add more functionality such as clicking buttons or filling

forms.

6https://github.com/trendmicro/tlsh
7https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS

36

https://github.com/trendmicro/tlsh
https://developer.mozilla.org/en/docs/Web/HTTP/Access_control_CORS

4. Methodology 4.3. Scraper

CREATE TABLE domain (

id INTEGER NOT NULL,

domain VARCHAR NOT NULL,

alexa_rank INTEGER NOT NULL,

PRIMARY KEY (id),

UNIQUE (domain)

);

CREATE INDEX ix_domain_alexa_rank ON domain (alexa_rank);

CREATE TABLE log (

id INTEGER NOT NULL,

domain_id INTEGER NOT NULL,

measured_at DATETIME,

canvas_width INTEGER,

canvas_height INTEGER,

referrer VARCHAR,

source_url VARCHAR,

source_html VARCHAR,

source_tlsh VARCHAR,

stacktrace VARCHAR,

st_caller_file VARCHAR,

st_caller_line INTEGER,

st_caller_char INTEGER,

st_caller_tlsh VARCHAR,

st_init_file VARCHAR,

st_init_line INTEGER,

st_init_char INTEGER,

st_init_tlsh VARCHAR,

is_obfuscated BOOLEAN,

PRIMARY KEY (id),

FOREIGN KEY(domain_id) REFERENCES domain (id),

CHECK (is_obfuscated IN (0, 1))

);

Figure 4.3: Database schema

37

4. Methodology 4.3. Scraper

def build_driver():

fp = webdriver.FirefoxProfile()

fp.add_extension(config.PLUGIN_FILE_PATH)

To allow connections from https to our localhost

fp.set_preference("security.mixed_content.block_active_content", False)

caps = DesiredCapabilities.FIREFOX

return webdriver.Firefox(firefox_profile=fp, capabilities=caps)

Figure 4.4: This function returns a webdriver that will run Firefox with
our plugin already installed

A page visit is considered complete 15 seconds after the browser fully

loaded the content. This way we will also catch delayed calls or time

triggered events.

The scraper is prepared to be highly parallelizable, but it is not recom-

mended to run a lot of Firefox in a computer with reduced resources.

Figure 4.5: Scraper working on my personal computer

38

4. Methodology 4.4. Web service

4.4 Web service

The web service basically runs on a Virtual Private Server everything we

have already described. The only difference is that the scraping process

receives urls remotely on demand. Then the result is displayed to the user

in an informative and readable format.

Figure 4.6: Webservice result display

To make it work on a virtual private server, without a graphical card

and without graphical user interface, some adjustments had to be done.

• The scraper is now a service, listening to what urls to visit.

• The scraper notifies the web service when a certain visit has already

finished.

• The scraper will run the Selenium WebDriver as a server to reduce

browser launching time.

• The web service caches results up to a day, so frequently requested

webpages can have their answer quickly.

39

4. Methodology 4.4. Web service

• Firefox runs now on the X virtual framebuffer (xfvb).

Here we can see how implementing the logging server as another service,

helped with the modularity. We didn’t have to modify it at all, only the

behaviour of the client (the scraper).

Although the virtual framebuffer should use more memory than a head-

less version of Firefox, we chose this solution because we don’t expect to

have too many traffic, and it is much simpler to implement.

4.4.1 Security considerations

This service is just a proof of concept of how the developed tools could be

used in different ways. Allowing our users to make our server visit arbitrary

webpages can be a security problem.

Some measures were taken into account, such as:

• The browser is being run by an unpriviliged user.

• This user has very limited resources assigned such as memory, disk

space, and cpu.

• We will clear cookies after the visit has finished

• We will kill the browser instance after certain time automatically

• Only 4 instances of firefox will be running at maximum at any given

time.

• We will cache the results to avoid accessing the same webpage too

many times (although very improbable, we don’t want to be respon-

sible of a DoS attack)

40

4. Methodology 4.4. Web service

With this webservice, pages that require a login, will still be inaccessible

for us, since we are only receiving an url as input (not the credentials). This

would be solved if we distributed the plugin and made the logging server

public, but the problem with this approach then would be that we would

have to redact all personal information from the logged HTML, making it

difficult to know what to redact and what not.

41

5 Results and validation

After browsing with our framework the landing page of the 10000 most

visited webpages according to Alexa, these are the obtained results:

A total of 644 (6.4%) diferent pages use canvas fingerprinting as detected

by our methodology. There were 1424 calls detected. Some pages use more

than one tracking service, or a single service sometimes needs more than

one call to create a full fingerprint.

Comparing the tlsh hashes with a threshold of 75 (out of 400, meaning

they are very similar) we get that there are only 90 different files. This is

important to stregthen the fact that most of the tracking is controlled by

a small fraction of third parties.

The most used tracking services that perform a canvas fingerprint are

bktrx.com, doubleverify.com, yandex.ru, alicdn.com, and adnium.

com.

Our results are only slightly different compared to the ones obtained in

previous studies[27].

We can also see the trend of how less popular pages use less tracking.

In the 0-10K range the percentage is about a 5.5%

42

bktrx.com
doubleverify.com
yandex.ru
alicdn.com
adnium.com
adnium.com

5. Results and validation

Figure 5.1: Tracking bucketed by Alexa rank position

We also observed that the prevalence of lijit.com has gone down in

favor of bktrx.com, used by Microsoft and some of his affiliates.

There was a total of 542 calls that have been excluded since the can-

vas have non-zero width and height (in fact it is 16x16 px) and after fur-

ther manual inspection, it is clear it’s only used to test if the device sup-

ports emojis provided by the wordpress plugin https://wordpress.org/

plugins/wp-emoji-one/.

There are only 97 detected obfuscated calls that originated from 33

different pages. Almost all of them are from third parties (the tracking

code comes from only 21 domains, the most used being js.ad-score.com,

cdn.inaudium.com, and fraudmetrix.cn). The distribution of the rank

of the pages that originated the call can be seen in Figure 5.2

It’s interesting to see that most of the calls come from external scripts,

loaded by the webpage. This being totally dynamic allows much more

43

lijit.com
bktrx.com
https://wordpress.org/plugins/wp-emoji-one/
https://wordpress.org/plugins/wp-emoji-one/
js.ad-score.com
cdn.inaudium.com
fraudmetrix.cn

5. Results and validation

Figure 5.2: Obfuscation bucketed by Alexa rank position

injection control to the advertising provider, making it more dangerous for

the final user.

It is also interesting to note that, the most used tracking providers,

Google Analytics and doubleclick.net1 don’t use canvas fingerprinting, as it

is considered a more intrusive method, and as explained in Online Tracking:

A 1-million-site Measurement and Analysis [27] recent awareness produced

that major advertisers moved away from it.

The whole process of data gathering took almost 20 hours spanning the

17th and 18th of September.

We can conclude that there is obfuscation on only very specific cases.

This can be understood taking into account that most users don’t really

analyze the code, and there exist dynamic tools to avoid it, so the effort

spent on obfuscating is probably not rewarding enough.

1Also owned by Google

44

5. Results and validation

__pm_glbl = {cfg: {server_token:

"6a186ba29d36faad-GkvfPcVjdVPqKDwT3HHJEE0=-E07GOstkbVbnMg==",

host: "js.ad-score.com"}};(function(){function

ea(){for(var

b=a[0],c=0;24>c;c++)b+=a[2][a[1]](Math[a[3]](62*Math[a[4]]()));return

b}function ba(){return Date[a[26]]?Date[a[26]]():(new

Date)[a[27]]()}

↪→

↪→

↪→

↪→

↪→

↪→

...

a=["",b("kpizIb",18),

b("OPQRSTUVWXYZABCDEFGHIJKLMNopqrstuvwxyzabcdefghijklmn0123456789",12),

b("qwzzc",15),b("mviyjh",5),

b("__ax_rwmw_",15),b("_",24),b("j",17),b("__tq_kpfp",22),b("jmn",19),

b("iuhluh_jeaud",10),b("EQDHQD_FAWQZ",14),b("mtxy",21),

b("ox.fi-xhtwj.htr",21),b("jlini",6),b("eqqmp",3),b("AFPXYIBA_JLARIBP",3),

b("__he_kwjnwj_lgcwf",8),b("eqdhqd_bmdmye",14),b("buklmpulk",19),

b("tds_iti",25),b("chxyrIz",6),b("gifkfkpgv",9),b("tmvobp",18),

...

Figure 5.3: Excerpt of https://js.ad-score.com/score.min.js, that is
obfuscated

Most webpages delegate the tracking to third parties, and there will be

obfuscation only when they care enough and think that it’s effective.

The whole database can be downloaded at https://bitbucket.org/

aespuna/canvas-tfg/downloads/stats.db.

The number of results and more importantly, the rate is very manage-

able. At first we validated some of the results by hand. This allowed us to

iterate the plugin development, fixing some corner cases, and reducing the

number of false positives, without having to repeat the whole process from

the begining.

The obtained results are somewhat expected and they overlap with

the interpretation of Online Tracking: A 1-million-site Measurement and

Analysis [27].

45

https://js.ad-score.com/score.min.js
https://bitbucket.org/aespuna/canvas-tfg/downloads/stats.db
https://bitbucket.org/aespuna/canvas-tfg/downloads/stats.db

6 Conclusion

6.1 Summary

With this project we proved that tracking is very prevalent today on the

internet. We looked only for a particular technique, and the relative usage

was high enough. Also, even though we discovered some obfuscation, it

cannot be considered that it is being used extensively.

Our opinion is that probably it takes too much work and effort to ob-

fuscate something that nobody will look at. Most of the time minification

is enough to make it unreadable by a human (but preserving the public

calls). The users that don’t want to be tracked are probably already using

a plugin or a set of browser configurations that allow to detect and avoid

being tracked dynamically. That’s why probably distributors don’t care

enough to obfuscate their code. We need to raise awareness, so internet

users can know these tools and protect against tracking using them.

So the best option is to use plugins that find these threats in real time,

and simply avoid executing certain paths on the client browser. A very

good option to protect our privacy is the Tor browser1, that bundles a lot

of privacy protecting plugins.

1https://www.torproject.org/projects/torbrowser.html.en

46

https://www.torproject.org/projects/torbrowser.html.en

6. Conclusion 6.2. Future work

6.2 Future work

We created an extensible framework that can be used by future students.

A non-extensive list of possible extensions could be:

• Detect obfuscation even if there’s no tracking.

• Add more browsing capabilities such as form filling and button click-

ing, because maybe we lost a big part of the tracking visiting only

the landing page.

• Try detect other tracking techniques (such as evercookies, WebRTC

fingerprinting...) and potentially find obfuscation.

• Distribute the plugin so it can be used by everybody and collect the

data in a public server.

• Write more documentation about some of the parts to make it more

easy to use.

There are still possible performance updgrades for the web service. But

they should be irrelevant once the plugin is publicly distributed.

We could also use our obtained data to make pressure using entities

such as the EFF 2 to show that canvas fingerprinting is still being used,

and help educate the average internet user.

2Electronic Frontier Foundation https://eff.org

47

https://eff.org

6. Conclusion 6.3. Personal thoughts

6.3 Personal thoughts

This project was instructive in multiple ways.

It started as a continuation of a master’s final project from another

student, but we quickly changed the approach since a big part of the code

was already outdated. This new approach simplified every piece of the

toolchain, and allowed us get results faster. I had to develop little pieces

that were glued together at the end, and that is always satisfying.

Getting to know more about the internals of the web and its ecosystem

was something I had interest on, and this project allowed me to work on

it.

The only thing I regret is not finishing it earlier due to my professional

needs. The 7-months delay was the worst part of the project. I had to adapt

and work hard during this summer to be able to finish it. It was mentally

exhausting to not be able to spend all the required time at the begining

and knowing it would be delayed, but I didn’t want to lose the opportunity

and the advisor was very understanding about the whole situation.

At the end I can say I’m proud of the result. I hope it will be useful for

a future student or researcher.

48

Bibliography

[1] Tomasz Bujlow, Valent́ın Carela-Español, Josep Solé-Pareta, and Pere

Barlet-Ros. Web tracking: Mechanisms, implications, and defenses.

http://arxiv.org/pdf/1507.07872.pdf, 2015. [Online; accessed

October 10, 2016; Submitted to IEEE Communications Surveys and

Tutorials].

[2] Electronic Fredoom Frontier. Panopticlick: How unique and trackable

is your browser? https://panopticlick.eff.org/, 2010.

[3] Ecma International. Ecmascript c© 2016 language specifica-

tion. http://www.ecma-international.org/publications/files/

ECMA-ST/Ecma-262.pdf, 2016.

[4] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez,

Arvind Narayanan, and Claudia Diaz. The web never forgets: Per-

sistent tracking mechanisms in the wild. in proceedings of the 21st

acm conference on computer and communications security (ccs 2014),

2014.

[5] Canvas fingerprinting. https://www.browserleaks.com/canvas.

[6] Google. Set up the web tracking code. https://support.google.

com/analytics/answer/1008080?hl=en, 2015.

49

http://arxiv.org/pdf/1507.07872.pdf
https://panopticlick.eff.org/
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://www.browserleaks.com/canvas
https://support.google.com/analytics/answer/1008080?hl=en
https://support.google.com/analytics/answer/1008080?hl=en

BIBLIOGRAPHY

[7] Jakub Mikians, László Gyarmati, Vijay Erramilli, and Nikolaos

Laoutaris. Detecting price and search discrimination on the internet,

2012.

[8] Jakub Mikians, László Gyarmati, Vijay Erramilli, and Nikolaos

Laoutaris. Crowd-assisted search for price discrimination in e-

commerce: First results, 2013.

[9] Aniko Hannak, Gary Soeller, David Lazer, Alan Mislove, and Christo

Wilson. Measuring price discrimination and steering on e-commerce

web sites, 2014.

[10] Facebook friends could change your credit score. http:

//money.cnn.com/2013/08/26/technology/social/facebook-

credit-score/index.html?hpt=hp_t2, 2013.

[11] Insurance data: Very personal finance. http://www.economist.com/

node/21556263, 2012.

[12] Pedro Fortuna. Protecting javascript source code using obfuscation.

http://www.slideshare.net/auditmark/owasp-eu-tour-2013-

lisbon-pedro-fortuna-protecting-java-script-source-code-

using-obfuscation, 2013.

[13] Online javascript obfuscator. http://www.javascriptobfuscator.

com/JavaScript-Obfuscator.aspx, 2015.

[14] Protect javascript code – semanticdesigns.com. http:

//www.semanticdesigns.com/Products/Obfuscators/

ECMAScriptObfuscator.html, 2015.

[15] Javascript obfuscate and encoder. http://www.jsobfuscate.com,

2015.

50

http://money.cnn.com/2013/08/26/technology/social/facebook- credit-score/index.html?hpt=hp_t2
http://money.cnn.com/2013/08/26/technology/social/facebook- credit-score/index.html?hpt=hp_t2
http://money.cnn.com/2013/08/26/technology/social/facebook- credit-score/index.html?hpt=hp_t2
http://www.economist.com/node/21556263
http://www.economist.com/node/21556263
http://www.slideshare.net/auditmark/owasp-eu-tour-2013-lisbon-pedro-fortuna-protecting-java-script-source-code-using-obfuscation
http://www.slideshare.net/auditmark/owasp-eu-tour-2013-lisbon-pedro-fortuna-protecting-java-script-source-code-using-obfuscation
http://www.slideshare.net/auditmark/owasp-eu-tour-2013-lisbon-pedro-fortuna-protecting-java-script-source-code-using-obfuscation
http://www.javascriptobfuscator.com/JavaScript-Obfuscator.aspx
http://www.javascriptobfuscator.com/JavaScript-Obfuscator.aspx
http://www.semanticdesigns.com/Products/Obfuscators/ECMAScriptObfuscator.html
http://www.semanticdesigns.com/Products/Obfuscators/ECMAScriptObfuscator.html
http://www.semanticdesigns.com/Products/Obfuscators/ECMAScriptObfuscator.html
http://www.jsobfuscate.com

BIBLIOGRAPHY

[16] Jscrambler: Protect your javascript. https://jscrambler.com/en/,

2015.

[17] Javascript obfuscator – free online javascript packer. http://packer.

50x.eu, 2015.

[18] Martin Kleppe. Jsfuck. http://www.jsfuck.com/.

[19] Noscript - javascript/java/flash blocker for a safer firefox experience!

https://noscript.net/, 2015.

[20] Adblock plus - surf the web without annoying ads! https://

adblockplus.org/, 2015.

[21] ublock - a fast efficient web ad blocker. https://ublock.org/, 2015.

[22] Firefox addon for privacy and security - requestpolicy. https://

requestpolicy.com/, 2015.

[23] Ghostery. take control of your digital experience. https://www.

ghostery.com/en/, 2015.

[24] Eunjin (EJ) Jung Peter Likarish. Obfuscated malicious javascript

detection using classification techniques, conference: Malicious and

unwanted software. http://www.researchgate.net/publication/

224110475_Obfuscated_malicious_JavaScript_detection_

using_classification_techniques, 2009.

[25] Fangfang Zhang Wei Xu and Sencun ZhuJ. Still: Mostly static detec-

tion of obfuscated malicious javascript code. http://www.cse.psu.

edu/~sxz16/papers/JStill.pdf, 2010.

[26] Scott Kaplan, Benjamin Livshits, Ben Zorn, Christian Siefert,

and Charlie Cursinger. ”nofus: Automatically detecting” +

string.fromcharcode(32) + ”obfuscated”.tolowercase() + ”javascript

51

https://jscrambler.com/en/
http://packer.50x.eu
http://packer.50x.eu
http://www.jsfuck.com/
https://noscript.net/
https://adblockplus.org/
https://adblockplus.org/
https://ublock.org/
https://requestpolicy.com/
https://requestpolicy.com/
https://www.ghostery.com/en/
https://www.ghostery.com/en/
http://www.researchgate.net/publication/224110475_Obfuscated_malicious_JavaScript_detection_using_classification_techniques
http://www.researchgate.net/publication/224110475_Obfuscated_malicious_JavaScript_detection_using_classification_techniques
http://www.researchgate.net/publication/224110475_Obfuscated_malicious_JavaScript_detection_using_classification_techniques
http://www.cse.psu.edu/~sxz16/papers/JStill.pdf
http://www.cse.psu.edu/~sxz16/papers/JStill.pdf

BIBLIOGRAPHY

code”. http://research.microsoft.com/apps/pubs/default.

aspx?id=148514, May 2011.

[27] Steven Englehardt and Arvind Narayanan. Online track-

ing: A 1-million-site measurement and analysis. http:

//randomwalker.info/publications/OpenWPM_1_million_site_

tracking_measurement.pdf, May 2016.

[28] Steven Englehardt and Arvind Narayanan. A web privacy measure-

ment framework. https://github.com/citp/OpenWPM/, May 2016.

[29] Jonathan Oliver, Chun Cheng, and Yanggui Chen. Tlsh – a locality

sensitive hash. http://ieeexplore.ieee.org/document/6754635/,

2013.

[30] WWW Consortium. Cross-origin resource sharing. https://www.w3.

org/TR/cors/, January 2014.

52

http://research.microsoft.com/apps/pubs/default.aspx?id=148514
http://research.microsoft.com/apps/pubs/default.aspx?id=148514
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf
https://github.com/citp/OpenWPM/
http://ieeexplore.ieee.org/document/6754635/
https://www.w3.org/TR/cors/
https://www.w3.org/TR/cors/

	Introduction
	Context
	Web tracking
	Code obfuscation

	State of the art
	Static analysis
	Dynamic analysis

	Personal motivation
	Report structure

	Scope of the project
	Objectives
	Main objective
	Secondary objectives

	Scope
	Useful courses
	Competences
	Stakeholders

	Planning
	Tasks
	Project preparation
	Project management (GEP) course
	Topic research
	Approach decision
	Software developement
	Results and validation
	Public release
	Memory writing
	Oral defense preparation

	Gantt diagram
	Risks and alternatives
	Budget estimation
	Hardware resources
	Software resources
	Human resources
	Total budget

	Budget control
	Sustainability
	Economic sustainability
	Social sustainability
	Environmental sustainability

	Methodology
	Browser plugin
	Logger server
	Scraper
	Web service
	Security considerations

	Results and validation
	Conclusion
	Summary
	Future work
	Personal thoughts

