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Abstract

Nowadays, the integration of biometrics in security systems is a prominent research
and application field. Also, it is clear that speech is the most common form of
communication, which makes a swell candidate. While using speech as a biometric,
one could say there are two types of systems that should be analyzed: those systems
which do know what the speaker is going to say upon verification and those that
do not. This degree thesis offers an overview of both systems, focusing on those
that do not know what the speaker is going to say beforehand, also known as text-
independent systems. To be able to determine which would be the best approach
to integrate speech biometrics into a security system, both types of systems are
compared; and two methodologies are also analyzed for the text-independent system.
To conclude, one of those methodologies is implemented in a software library which
allows the creation a text-independent speaker verification system.

1



Resum

En l’actualitat, la integració de biometries en els sistemes de seguretat és una branca
d’investigació i aplicacions prominent. A més a més, la veu és un dels mitjans més
comuns de comunicació, cosa que fa que sigui una bona candidata per a aquests
sistemes. Si prenem la parla com a biometria, es pot dir que hi ha dos tipus de
sistemes bastant diferenciats a analitzar: aquells sistemes els quals saben el que dirà
la persona que s’intenta verificar i aquells que no saben el que dirà. Aquest treball
ofereix una visió amplia dels dos tipus de sistemes, centrant-se en els sistemes on no
es sap el que es dirà, també coneguts com sistemes de text independent. Per decidir
quin seria la millor manera d’integrar la parla com a biometria en un sistema de
seguretat, es comparen ambdós sistemes i, en el cas del sistema de text independent,
es comparen també dues metodologies diferents. Per acabar, s’implementa una
d’aquestes metodologies a unes llibreries de software per dur a terme un sistema de
verificació de locutor amb text independent.
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Resumen

En la actualidad, la integración de biometŕıas en los sistemas de seguridad es una
rama de investigación y de aplicaciones prominente. Además, está claro que la voz
es el medio más común de comunicación y es por eso que es una buena candidata.
Usando el habla como biometŕıa, se podŕıa decir que hay dos tipos de sistemas
diferentes a analizar: aquellos sistemas que saben de antemano aquello que va a
decir el locutor que intenta verificarse y aquellos que no lo saben. Este trabajo
ofrece una visión amplia de los dos tipos de sistemas, centrándose en los sistemas
donde aquello que se va a decir no se sabe, también conocidos como sistemas de
texto independiente. Para decir cuál seŕıa la mejor manera de integrar el habla
como biometŕıa en un sistema de seguridad se comparan ambos sistemas y, en el
caso del sistema de texto independiente, se comparan también dos metodoloǵıas
diferentes. Para finalizar, se implementa una de estas últimas en unas libreŕıas de
software para poder llevar a cabo un sistema de verificación de locutor de texto
independiente.

3



4



Acknowledgements

First of all, I would like to express my sincere gratitude to my tutor Javier Hernando
for always providing insightful answers and expertise, and for pushing me to do
better during these past 8 months. I would also like to praise Miquel, whose help
was essential to conclude this thesis.

I would like to thank my family and friends for encouraging me all these years,
and dedicate this to Tivy and Marc, to whom I wanted to prove you can go through
anything and come out victorious in the end. And to Irina, whose courage and
determination are rightfully contagious.

And last but not least, I would like to wholeheartedly thank Noe for her uncon-
ditional support and love, and for being by my side every step of the way.

5



Revision history and approval
record

Revision Date Purpose
0 18/07/2016 Document creation
1 19/07/2016 Document revision
2 14/09/2016 Document revision
3 23/09/2016 Final version

DOCUMENT DISTRIBUTION LIST

Name e-mail
Anna Barón Garcia anna.baron.garcia@alu-etsetb.upc.edu
Javier Hernando javier.hernando@upc.edu
Miquel Angel India miquelindia90@gmail.com

Written by: Reviewed and approved by:
Date 23/09/2016 Date 24/09/2016
Name Anna Barón Name Javier Hernando
Position Project Author Position Project Supervisor

6



Contents

Abstract 1

Resum 2

Resumen 3

Acknowledgements 5

Revision history and approval record 6

Table of Contents 8

List of Figures 9

List of Tables 10

1 Introduction 11
1.1 Project background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 State of the art 13
2.1 Speech Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Speaker Verification Systems . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Text-Independent Speaker Verification . . . . . . . . . . . . . . . . . 14

2.3.1 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Joint Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Total Variability Space . . . . . . . . . . . . . . . . . . . . . . 15
2.3.5 Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Text-Dependent Speaker Verification . . . . . . . . . . . . . . . . . . 16

3 Methodology 18
3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Gaussian Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Universal Background Model . . . . . . . . . . . . . . . . . . . 20
3.2.2 MAP Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Extraction of i-vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.1 Total Variability Matrix and i-vectors . . . . . . . . . . . . . . 22

3.4 Scoring and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7



3.4.1 Speaker-dependent Threshold . . . . . . . . . . . . . . . . . . 23
3.4.2 Fixed Score Pruning . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 Cosine Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.4 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.1 Spro 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.2 ALIZE / LIA RAL . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.3 SpkIdAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Experiments and Results 28
4.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Text-Dependent Speaker Verification . . . . . . . . . . . . . . 29
4.3.2 Text-Independent Speaker Verification using GMMs . . . . . . 32
4.3.3 Text-Independent Speaker Verification using i-vectors . . . . . 33

5 Budget 35
5.1 Implementation Costs . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Software costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Development costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusions and Future Development 36
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Future Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography 37

Appendices 37

A Work Plan Packages, Milestones and Gantt diagram 38
A.1 Work Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
A.2 Milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.3 Gantt diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B ALIZE Configuration Files 42

C BioTech Database Speaker Session Form 45

Glossary 46

8



List of Figures

2.1 Training phase and modeling. [1] . . . . . . . . . . . . . . . . . . . . 14
2.2 Testing phase and scoring. [1] . . . . . . . . . . . . . . . . . . . . . . 14
2.3 HMMs (3 states) [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Mel-Frequency Cepstral Coefficients extraction system . . . . . . . . 18
3.2 MAP adaptation. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Fixed Score Pruning method. [6] . . . . . . . . . . . . . . . . . . . . 24
3.4 ALIZE toolkit system. [15] . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Text Dependent α = 6.5 FAR-FRR with 4-digit utterances . . . . . . 30
4.2 Text Dependent α = 6.5 FAR-FRR with 8-digit utterances. . . . . . . 31
4.3 Text-Dependent DET Curve. . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Text-Independent α = 0.3 FAR-FRR . . . . . . . . . . . . . . . . . . 32
4.5 Text-independent Results Summary DET Curve. . . . . . . . . . . . 34

A.1 Gantt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B.1 Train World configuration file, for UBM creation . . . . . . . . . . . . 42
B.2 Total Variability Matrix configuration file, for T-Matrix creation . . . 43
B.3 i-vectors extractor configuration file, for i-vector extraction . . . . . . 44

C.1 BioTech Database Speaker Session . . . . . . . . . . . . . . . . . . . 45

9



List of Tables

4.1 FAR-FRR 4 digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 FAR-FRR 8 digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Text-Independent methods using GMMs . . . . . . . . . . . . . . . . 32
4.4 Text-Independent i-vectors method using different software. . . . . . . 33
4.5 Text-independent Results Summary. . . . . . . . . . . . . . . . . . . 33

5.1 Development costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10



Chapter 1

Introduction

1.1 Project background

There has been a lot of proposals to which biometric measurements should be used
for recognition and verification systems –e.g. fingerprints, face recognition, voice-
and all of them have their pros and cons according to their accuracy and implemen-
tation costs. It is believed that speech biometrics have stood out as a compelling
biometric due to two factors. Firstly, speech is a natural signal to produce and users
do not consider providing a speech sample for authentication as an intrusive step,
in contrast to providing fingerprint recognition where studies have shown that users
feel slightly threatened by. Also, telephone systems provide a network of sensors for
obtaining and delivering speech signal, so there is no need for special signal trans-
ducers or to implement a new network for the system access points.

Specifically, verification systems based on speech have made a greater impact in
the commercial sector rather than identification systems. The main difference be-
tween the two is that a verification system determines whether or not an unknown
voice is from a particular enrolled speaker –a claimed identity is confirmed- and an
identification system associates an unknown voice with one of the enrolled speakers
–there is no claim nor confirmation, just association-.

As a general overview, speech verification systems can be text-constrained –i.e.
the user says a password the system is programmed specifically for- or text-independent
with any spoken utterances. Regarding security issues, text-dependent verification
systems offer better results, but are less socially secure. For example, someone could
be repeating a ‘PIN number’ (the text constrained) through the phone and be over-
heard, which could lead to someone else recording said number. Even though both
of systems are fit for some applications or others, this degree thesis will focus on the
study of both systems’ performance and the implementation of a text-independent
speaker verification system.

11



1.2 Goals

The purpose of this thesis is to study and implement a proper system that treats
speech biometrics in a way that can be used for a security application. It presents
a general approach to the methodology used in both the text-constrained and text-
independent analysis of speech verification systems, and explains the integration of
said biometrics into an application. There are two clear goals: study the method-
ology that is used for applying speech biometrics in security applications, and the
implementation of methods that allow such applications.

In detail, the main goals are:

• To study the historical perspectives and current research in the field of speaker
verification systems: text-dependent and text-independent.

• To analyze the structure of a text-dependent speaker verification system soft-
ware, the SpkIdAPI.

• To analyze the structure of a text-independent speaker verification system
software: the ALIZE / LIA RAL software.

• To integrate text-independent methods for speaker verification into the SpkI-
dAPI software.

• To analyze the results on different methodology and software and determine
the best implementation for a text-independent speaker verification system.

1.3 Overview

This degree thesis is organized as follows:

• Chapter 1: offers a brief introduction on the subject at hand.

• Chapter 2: is an overview of the state-of-the-art methodology for the speaker
verification process: the general system, the GMMs, the i-vector and scoring.

• Chapter 3: describes the methodology and principal steps of the speaker ver-
ification process, along with the software used to apply said methodology.

• Chapter 4: is a description of the experiments that have been carried out and
the results obtained.

• Chapter 5: is the estimated budget for the project.

• Chapter 6: concludes the bachelor’s thesis and presents some future lines of
work.

12



Chapter 2

State of the art

Speech biometrics and speaker verification systems have been a prominent field of
study in the past few decades. With the ever-growing computation capability of
computerized machines, the complexity of the methodology proposed in research
has been also increasing and expanding its limits. This chapter presents a humble
review of the research currents and the definition of speaker verification systems.

2.1 Speech Biometrics

As mentioned in the introduction, voice is the most natural way of communication
and, consequently, it has a high user and social acceptance. As stated, speaker recog-
nition can use different channels such as the telephone or the microphone, making
speech biometrics very attractive from the point of view of security systems, given
the fact that telephones and microphones are very accessible technologies.

In commercial applications, speaker verification is generally used in combina-
tion with voice identification. Even though combining both biometric systems is a
powerful approach for a security application, it should be noted that speaker identi-
fication normally requires more training than other biometrics and can suffer from
reverberation, illnesses or background noises.

2.2 Speaker Verification Systems

A speaker verification system is composed of two distinct phases: the training phase
and the testing phase. In Fig. 2.1 there is a modular representation of the train-
ing phase: extract the parameters from the signal and then use them for statistical
modeling to obtain a representation of the speaker (speaker model). In 2.2 there
is a modular scheme of the test phase, in which a signal with a claimed identity is
introduced, it has its speech parameters extracted and they are compared with the
aforementioned speaker model of the claimed identity. The system obtains scores
from that comparison and decides to accept or reject the claim.

13



Figure 2.1: Training phase and modeling. [1]

Figure 2.2: Testing phase and scoring. [1]

2.3 Text-Independent Speaker Verification

A text-independent speaker verification system would be a one where the text is not
constrained –i.e. the text that the speaker is about to say is not known beforehand-.
During the last decade, several approaches to text-independent speaker verification
have been studied and developed, due to its attractive nature, both from a method-
ology perspective and a market perspective.

As seen in Fig. 2.1, after the speech parametrization is done, several techniques
are used to estimate speaker models. Most common ones are: Gaussian Mixture
Models (GMM), Support Vectors Machines (SVM) and i-vector Estimation.

2.3.1 Gaussian Mixture Models

Gaussian Mixture Model (GMM) are models where a sum of Gaussian probability
distributions are used to model each speaker. GMM can be viewed as a representa-
tion of the various acoustic classes that make up the sounds of the speaker. Each
class represents possibly one speech sound or a set of speech sounds [2].

Therefore, GMMs are a linear combination of Gaussian probability distribution
functions (pdfs). They have the capability to form an approximation to an arbitrary
pdf for a large number of mixture components. It is proven that a finite number of
Gaussians is sufficient to form a smooth approximation to the pdf and each speech
cluster is represented by a Gaussian. To estimate GMM parameters the maximum
likelihood estimation (MLE) can be used, and for a large set of training feature
vectors, it is also proven that the model estimated converges.
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To solve this, the EM algorithm is performed, which iteratively refines the GMM
parameters to increase the likelihood of the estimated model for the feature vectors.

The GMM-based speaker verification has a particular problem: session vari-
ability. The term session variability refers to all the phenomena which cause two
recording of a given speaker to sound different from each other, and thus affecting
the verification.

2.3.2 Joint Factor Analysis

It is due to the problem of session variability in GMMs that several approaches to
solve the issue were presented. A model referred to as Joint Factor Analysis (JFA)
of speaker and channel variability was introduced [3]. It treats channel effects as
continuous rather than discrete and it exploits correlations between Gaussians in
modeling the speaker variability.

It also has a main drawback: it is mathematically and computationally demand-
ing.

2.3.3 Support Vector Machines

Support vector machines (SVM) are supervised binary classifiers [4], based on the
idea of finding, from a set of supervised learning examples, the best linear separator
for distinguishing between the positive examples and negative examples.

In the past few years of research, the application of SVM in the GMM supervector
space has yield interesting results. The combination between the JFA and the
SVMs for speaker verification has also been a common approach. It consists in
directly using the speaker factors estimated with JFA as input of the Support Vector
Machines.

2.3.4 Total Variability Space

In recent experiments [4] it has been proved that channel factors estimated using
JFA, which are supposed to model only channel effects, also contain information
about speakers. Based on this, there is a proposed a speaker verification system
based on factor analysis as a feature extractor. The factor analysis is used to define
a new low-dimensional space named Total Variability Space. In this new space, a
given speech utterance is represented by a new vector named total factor or identity
vector.

In this approach, the identity vectors or ’i-vectors’ are super-vector represen-
tations on a different plane (the Total Variability plane) that are unique for each
speaker-utterance.
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2.3.5 Scoring

• Cosine Distance [4]: It is a scoring technique which directly uses the value of
the Cosine Kernel between the target speaker i-vector and the test i-vector as
a decision score.

One of the advantages of this scoring technique is that no target speaker en-
rollment is required, unlike for Support Vector Machines, where the target
speaker-dependent supervector needs to be estimated in an enrollment step.

The use of the Cosine Kernel as a decision score for speaker verification makes
the process faster.

• Probabilistic Linear Discriminant Analysis [5]: The current PLDA methodol-
ogy for speaker verification is a two-step process: Firstly, given a development
database of labelled data, make an ML point estimate of the PLDA model.
After that, given the unlabelled data of a detection trial, plug in the above
point estimate to compute the posterior for the target vs non-target trial.

The PLDA model assumes statistical independence among enrollment i-vectors,
which may be difficult to achieve in practice. It should be noted that enroll-
ment i-vectors from a given target speaker might share common attributes
like acoustic content, transmission channel etc., thus invalidating the inde-
pendence assumption. Multiple i-vectors can be integrated directly into the
PLDA model.

2.4 Text-Dependent Speaker Verification

A text-dependent speaker verification system is the one in which the text said upon
verification is known beforehand. The Hidden Markov Model is the oldest approach
in research and models each speaker as a Markov Model [6].

The Hidden Markov Model (HMM) is a popular stochastic model for modeling
both the stationary and transient properties of a signal.

The Hidden Markov Model approach is often used on the phoneme level, where
one HMM is used to model a single phoneme with a fixed set of states, since HMMs
capture well the short periods of rapid change in pronouncing sounds.

The structure of a HMM is composed by a set of states with transitions between
each state. For each transition from a state, a probability of taking that transition
is assigned. These probabilities sum one.

They are essentially stochastic finite state machines which output a symbol each
time they depart from a state. The symbol is probabilistically determined; each
state contains a probability distribution of the possible output states.
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The sequence of states is not directly observable, therefore they are called hidden.
Generally speaking, the HMM is a state machine using the input audio frames to
determine the next state.

Figure 2.3: HMMs (3 states) [6]
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Chapter 3

Methodology

Having established the research context, this chapter contains a description of the
methods studied and used in the experiments of this thesis.

3.1 Feature Extraction

The first part of the system consists in transforming the speech signal waveform
into a representation that is less redundant and more compact: a vector of acoustic
features. For this, cepstral features are ones most commonly used in speaker recog-
nition systems. In Fig. 3.1 a scheme of how to obtain the Mel-Frequency Cepstral
Coefficients is shown.

Figure 3.1: Mel-Frequency Cepstral Coefficients extraction system

At first, the speech signal analysis is done locally by applying a window whose
duration is shorter than the signal, and it is moved along to signal until the end is
reached. This is done as so the speech signal (in its nature, rapidly changing) can
be assumed stationary if divided in segments. The length and type of the window
may vary in different experiments, but 20 to 30 ms and Hamming or Hanning win-
dows are often used. For every windowed signal, the modulus of FFT is applied is
extracted, and a power spectrum is obtained.

Even though it is the spectrum that is computed, the interest lays in the envelope
of the spectrum. This is why it is multiplied by a filterbank; a series of band pass
filters that are multiplied one by one with the spectrum to get an average value
in a particular frequency band. Mel-Scale Filters are used in speech recognition,

18



due to their accuracy to mimic the perceptive pitch, modeling the actual non-linear
perception of frequencies in the human auditory system. The conversion between
the Mel scale and the Frequency scale is given by the equations 3.1 and 3.2.

Mel(f) = 2595 log10

(
1 +

f

700

)
(3.1)

F (mel) = 700
(

10
mel
2595 − 1

)
(3.2)

After that, the logarithm of the energy from each filter is computed and the
Discrete Cosine Transform is applied 3.3, and the cepstral vectors for each analysis
window are obtained.

Cn =
K∑
k=1

Sk · cos[n
(
k − 1

2

)
π

K
] n=1,2,...,L. (3.3)

3.2 Gaussian Mixture Models

Given a segment of speech (an observation O), and a hypothesized person P, the
task of a verification system is to determine if O was from the speaker P [2]. This
is restated as a hypothesis test (3.4). Using statistical pattern recognition, the
optimum test to decide between the two hypothesis is a likelihood ratio test (LLR).
The probability density functions of both hypothesis evaluated for the observation
O are referred to the likelihood of the hypothesis, and the decision threshold for
accepting or rejecting the hypothesis is given by θ.

H0 : O is frompersonP
H1 : O is not frompersonP

p (O | H0)

p (O | H1)

{
≥ θ Accept H0

< θ Reject H1
(3.4)

In a verification system the aim is to determine a technique to compute this
likelihood ration function, usually by finding a method to represent and model the
two likelihoods of the two hypothesis.

In some experiments of this thesis it is assumed that a Gaussian Mixture Model
(GMM) distribution is representing the distribution of the feature vectors of the
hypothesis. For a D-dimensional feature vector, the mixture density used for the
likelihood function is defined as 3.5. The density is a weighted linear combination
of M unimodal Gaussian densities pi, each parametrized by a mean vector and a
covariance matrix.Given a collection of training vectors, maximum likelihood model
parameters are estimated using the iterative expectation-maximization (EM) algo-
rithm, generally 5 to 10 iterations are sufficient for parameter convergence.

p(x̄|λ) =
M∑
i=1

wipi(x̄) (3.5)
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The advantage of GMM as the likelihood function for text-independent speaker
verification is that it is a well understood statistical model, and it offers a solid
starting point for comparison of other methodologies.

3.2.1 Universal Background Model

A Universal Background Model (UBM) is a large GMM (usually 2048 mixtures)
trained to represent the speaker-independent distribution of features. This is done
to model alternative hypothesis in the likelihood ration test.

Specifically, speech that is reflective of the expected alternative speech encoun-
tered during recognition is selected [7].

The main advantage of this approach is that a single speaker-independent model
can be trained and then used for all hypothesized speakers, but it is also possible to
tailor specific sets of background models for specific tasks. It should be noted that
the data has to be balanced if gender-independent UBM is wanted (same number of
male speech and female speech samples), otherwise the UBM will be biased towards
the dominant sub-population.

3.2.2 MAP Criterion

Even though the speaker-specific model can be procured with the same method ex-
plained before (GMM-EM), the approach to obtain the speaker model in this thesis
is slightly different. The speaker model is derived by adapting the parameters of the
background model UBM using the speaker’s training speech and a form of Bayesian
adaptation or maximum a posteriori (MAP) estimation.

The basic idea of this approach is to derive the speaker’s model by updating the
well-trained parameters in the background model via adaptation. This provides a
better coupling between the speaker’s model and the UBM.

Figure 3.2: MAP adaptation. [2]
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The first step of the adaptation model is the same as to the ‘expectation’ step in
the Expectation Maximization, where the sufficient statistics of the speaker’s train-
ing data area estimated and computed for each mixture in the UBM. In the second
step, the new sufficient statistics are combined with the sufficient statistics from the
background model mixture parameters, using a data-dependent mixing coefficient.

Given a UBM and training vectors from a speaker, the probabilistic alignment of
the training vectors into the background model mixture components is determined
with 3.6 for each mixture. Then, the sufficient statistics for the weight, mean and
variance are computed: 3.7, 3.8 and 3.9.

Pr(i|x̄t) =
wipi(x̄t)∑M
j=1wjpj(x̄t)

(3.6)

ni =
T∑
t=1

Pr(i|x̄t) (3.7)

Ei(x̄) =
1

ni

T∑
t=1

Pr(i|x̄t)x̄t (3.8)

Ei(x̄2) =
1

ni

T∑
t=1

Pr(i|x̄t)x̄t2 (3.9)

And lastly, the new sufficient statistics from the training data are used to update
the old UBM sufficient statistics for each mixture to create the adapted parameters
with 3.10, 3.11 and 3.12.

ŵi = [αw
i ni/T + (1− αw

i )wi] γ (3.10)

µ̂i = αm
i Ei(x) + (1− αm

i )µi (3.11)

σ̂i
2 = αv

iEi(x
2) + (1− αv

i )(α
2
i + µ2

i )− µ̂i
2 (3.12)

where {αw
i α

m
i α

v
i } are the adaptation coefficients that control the balance between

the old and new estimates. The parameter updating can be derived from the general
MAP estimation equations for a GMM using constrains on the prior distributions
[2].

3.3 Extraction of i-vectors

A speaker utterance is represented by a supervector that consists of additive com-
ponents from a speaker and a channel/session subspace [4]. Said speaker GMM
supervector (M) can be defined as:

M = m+ V y + Ux+Dz (3.13)
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where there is a speaker- and a session-independent supervector m, generally
from a universal background model (UBM) and V and D define a speaker subspace
(eigenvoice matrix and diagonal residual, respectively), and U defines a session sub-
space (eigenchannel matrix).

The speaker- and session-dependent factors in the subspaces are the vectors
{xyz}, each assumed to be a random variable with a normal distribution. To be
able to apply JFA to speaker verification, a first step of estimating the subspaces
from appropriately labelled development data and then a second estimation of the
speaker and session factors (the vectors) for a given new target utterance. The
speaker-dependent supervector is given by:

s = m+ Vy +Dz (3.14)

3.3.1 Total Variability Matrix and i-vectors

The Total Variability Matrix approach uses factor analysis as a feature extractor;
and is based on defining only a single space, instead of two separate spaces, which
are the classical JFA modeling (speaker space and the channel space). This single
space, which is referred to the “Total Variability Space”, contains the speaker and
channel variabilities simultaneously. It is defined by the Total Variability Matrix
that contains the eigenvectors with the largest eigenvalues of the total variability
covariance matrix.

In this model, there is no distinction between the speaker effects and the channel
effects in GMM supervector space. This new approach is motivated by the experi-
ments that showed that the channel factors of the JFA which normally model only
channel effects also contain information about the speaker.

Given an utterance, the new speaker- and channel-dependent GMM supervector
is rewritten as 3.15.

M = m+ Tw (3.15)

In this case, the speaker- and channel-independent supervector (which could be
the UBM supervector), is a low rank rectangular matrix and w is a random vector
having a standard normal distribution. The components said vector are the total
factors. These new vectors are referred to as identity vectors or i-vectors.

In this modeling, the speaker-dependent supervector is assumed to be normally
distributed with mean vector and covariance matrix. As for training the Total Vari-
ability Matrix T, the process is exactly the same as learning the eigenvoice matrix
V, except for one important difference: in eigenvoice training, all the recordings of a
given speaker are considered to belong to the same speaker; in the case of the total
variability matrix however, a speaker’s set of utterances is regarded as having been
produced by several speakers -i.e. it is pretended that every utterance from a given
speaker is produced by different speakers-.
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The model can be seen as a simple factor analysis that allows us to project a
speech utterance onto the low-dimensional total variability space.

The total factor w is a hidden variable, which can be defined by its posterior
distribution conditioned to the Baum–Welch statistics for a given utterance. This
posterior distribution is a Gaussian distribution and the mean of this distribution
corresponds exactly to the i-vector. The Baum–Welch statistics needed to estimate
the i-vector for a given speech utterance are obtained by 3.16 and 3.17.

Nc =
L∑

t=1

P (c|yt,Ω) (3.16)

Fc =
L∑

t=1

P (c|yt,Ω)yt (3.17)

where c corresponds to the Gaussian index and P to the posterior probability
of mixture component generating the vector y. In order to estimate the i-vector,
we also need to compute the centralized first-order Baum–Welch statistics based on
the UBM mean mixture components 3.18. To fully ensure that the inverse of the
equation matrix follows all the needed properties, a Cholesky Decomposition for
matrix inversion is computed. [8]

F̃c =
L∑

t=1

P (c|yt,Ω)(yt −mc) (3.18)

The i-vector for a given utterance can be obtained using 3.19.

w = (I + T t

−1∑
N(u)T )−1.T t

−1∑
F̃ (u) (3.19)

3.4 Scoring and Evaluation

As previously explained, the testing phase of a verification system requires a scoring
method. After the system obtains such scores, a comparison between those and the
threshold is made and the system decides to accept or reject the identity claim.

Some general scoring techniques of biometric systems offer a simple threshold
that is applied to the entire system; but there are some approaches where a model-
dependent threshold is estimated. Also, techniques such as Score Pruning –in which
some non-representative scores are excluded- can be applied to the testing scores.
For i-vector computation, the Cosine Distance is an accurate scoring method.

3.4.1 Speaker-dependent Threshold

As shown in Fig 2.2, there is a need for a threshold to determine if the speaker is
accepted or rejected into the overall system.
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A priori speaker-dependent (SD) threshold [9] [10] is estimated using only on
data from the clients, employing standard deviation and client mean from LLR
scores estimations. It uses only client scores from the enrolling phase due to the
difficulties in selective impostor-feature samples, since in a real biometric system
application, said impostors could become clients in the future.
The client mean estimation is adjusted by means of the client standard deviation
estimation as 3.20.

Θ = µ− α · σ (3.20)

where α is a constant empirically determined.

3.4.2 Fixed Score Pruning

A problem presented when there are only a few utterances available is that some of
them could produce non-representative scores. This is common when an utterance
contains background noises or is recorded with different handsets, or simply when
the speaker is sick. The presence of outliers can induce to wrong estimations of
mean and variance of client scores, leading to wrong speaker-dependent thresholds.

Score Pruning methods [6] for speaker-dependent (SD) threshold estimation cal-
culate the maximum deviation and remove scores out of that interval.

Iterative Score Pruning methods iterate within an algorithm to find the maxi-
mum deviation allowed and remove the scores one by one out of an interval while
changing the previously estimated mean in each iteration.

Non-iterative or Fixed Score Pruning methods for speaker-dependent threshold
are those that employ the most typical scores discards a percentage of α most distant
scores with respect to the mean, which is later re-estimated. That mean is used to
estimate the speaker-dependent threshold.

Figure 3.3: Fixed Score Pruning method. [6]
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3.4.3 Cosine Distance

As explained in the previous chapter, the Cosine Distance is a scoring technique
which uses the value of the cosine kernel between the target speaker i-vector and
the test i-vector as a decision score:

score(wtarget, wtest) =
< wtarget, wtest >

‖wtarget‖ ‖wtest‖
' θ (3.21)

This value is then compared to the threshold θ in order to make the final decision.
It should be noted that both target and test i-vectors are estimated exactly in the
same manner –i.e. there is no extra process between estimating target and test
i-vectors- so the i-vectors can be seen as new speaker recognition features.

3.4.4 Evaluation Measures

In order to evaluate the performance of the verification systems, some measures are
defined [11]:

• False Acceptance Rate (FAR): measures the number of impostor attempts that
have been granted access into the verification system with regard to the total
number of impostors attempts. (3.22)

FAR =
impostor scores exceeding threshold

all impostor scores
(3.22)

• False Rejection Rate (FRR): measures the number of clients attempts that
have not been granted access into the system with regard to the total number
of client attempts. (3.23)

FRR =
genuine scores falling below threshold

all genuine scores
(3.23)

• Detection Error Trade-off (DET) Curve: represents FAR and FRR in both
axes to fully represent the error trade-off of the system performance.

3.5 Software

3.5.1 Spro 4.0

SPro4 [12] is an open-source speech signal processing toolkit which provides run-time
commands implementing standard feature extraction algorithms for speech applica-
tions and a C library to implement new algorithms.

This software has feature extraction techniques used in speech applications, such
as: filter-bank energies, cepstral coefficients, linear prediction derived representa-
tion, etc. Even though the toolkit has been designed as a front-end for speech
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applications, the library provides possibilities to implement other feature extraction
algorithms. The library, written in ANSI C, provides functions for the following:
waveform signal input, low-level signal processing, low-level feature processing and
feature I/O.

Basically, the SPro4.0 toolkit [13] can read in an input audio file, process it
and extract the feature vector. The most common SPro4.0 parameters that can be
set are: Format (input format), Buffer size, Samples, Normalization and Derivatives.

Because the ALIZE / LIA RAL software does not allow audio feature extraction,
Spro4 has to be used to extract feature vectors. The Spro4.0 output feature vector
will be the starting point for the LIA RAL system.

3.5.2 ALIZE / LIA RAL

ALIZE / LIA RAL [14] is an open-source platform for biometric authentication with
an LPGL license used specifically for speaker recognition. This software was devel-
oped by the LIA in the framework of the French Research Ministry Technolangue
program at the University of Avignon REF:ALIZE/LIA RAL, France. It is di-
vided into the ALIZE library and the high-level LIA RAL toolkit; both of them are
implemented in C++, and ALIZE uses GNU Autotools1 for platform independence.

LIA RAL is the package containing all code specific to speaker recognition. The
code in the LIA RAL package can be divided into two categories: the generic library
(referred to as Spk-Tools) which contains the training algorithms and some special-
ization of the statistical functions found in ALIZE, applied on feature vectors; and
many small programs, designed to work in a pipeline methodology –i.e. there is one
program for each step of a speaker verification system (3.4).

Figure 3.4: ALIZE toolkit system. [15]

On one hand, because the LIA RAL toolkit is built on top of ALIZE, it is not
possible to use only the LIA RAL. On the other hand, since ALIZE in itself is too
generic to be a speaker verification toolkit, the LIA RAL is needed in order to eval-
uate the inner workings of ALIZE. The interesting speaker verifications algorithms
are located in the LIA RAL.

Furthermore, as the LIA RAL package consists of small programs rather than
a library for use in another C++ application, the user interaction with ALIZE is
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small. In fact, nearly all user actions are wrapped in LIA RAL structures, the only
exception being the configuration file parser, which is found in ALIZE.

The overall software is developed following an object oriented UML method. Its
general architecture is based on a split of the functionalities between several software
servers. The main servers are the feature server, which manages acoustic data, the
mixture server which deals with models (storage and modification) and the statistics
server which implements all the statistical computations (such as Viterbi alignment
and EM estimations).

Connecting all programs and servers of the pipeline requires reading the docu-
mentation, the example configuration files and the various unit-tests that exist for
each program. Refer to Annex B to see the configuration files.

3.5.3 SpkIdAPI

The SpkIdAPI is a text-dependent speaker biometrics security software. It was
developed by the Center for Language and Speech Technologies and Applications
(TALP) [16] at the Universitat Politècnica of Catalunya (BarcelonaTECH), in Spain.
It is a software designed for a text-constrained speaker verification system in which
the known texts are number series.

The SpkIdAPI software is implemented in C++ and it uses libraries character-
istics form C++98. Its structure is based on a library that can be combined into
executable programs/binaries that result into the different steps for a speaker veri-
fication system. In contrast with the ALIZE/LIA RAL software, SpkIdAPI has its
own feature extractor to obtain the feature vectors.

In this thesis, one of the main goals is to create new methods in the SpkIdAPI
software library so it implements text-independent speaker verification methods;
more specifically, Total Variability Space methods (T-matrix and i-vector extrac-
tion).
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Chapter 4

Experiments and Results

For the study of the speaker verification systems and methods, a total of three types
of experiments have been carried out. Even though the methodology of each exper-
iment may differ greatly, there are some points in common that ensure a coherent
comparison between the methods.

4.1 Database

The database used for all experiments is the BioTech database, a multi-session
database in Spanish especially designed for speaker recognition and owned by Bio-
metric Technologies, S.L. It has a total of 184 speakers recorded by phone 106 male
speakers and 78 female speakers. The BioTech database was recorded with 520
land-line calls from the Public Switched Telephone Network (PSTN) and 328 from
cellphones.

The average number of sessions per speaker is 4.55 while the average time be-
tween each session is 11.48 days. In each session, there are several recordings used
in the experiments: two utterances of a 4-digit number, six utterances of 8-digit
numbers (three numbers repeated twice), and one-minute long utterance of sponta-
neous speech. The instructions given to the speakers while recording the sessions
are included in Annex C.

For the experiments, a client/impostor classification of the BioTech database
has been made. It has been established that clients are those speakers who have
a total of 5 or more sessions, while impostors have between 2 or 4 sessions. This
classification leaves the experiments with a database of 96 clients (57 male clients
and 39 female clients).

4.2 Experimental Setup

The feature extraction of all experiments is the same: utterances are processed in
25 ms frames, Hamming windowed and pre-emphasized. The feature vector for each
frame is formed by 12th order Mel-Frequency Cepstral Coefficients (MFCC), the
normalize energy log, the Delta and the delta-delta parameters (acceleration).
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All these features form a 39-dimensional vector for each frame, where Ceptral
Mean Substraction (CMS) is also applied.

In all experiments, the male and female speaker results have been computed and
compared separately.

4.3 Experiments and Results

4.3.1 Text-Dependent Speaker Verification

The speaker modeling is done with left-to-right HMM models with 2 states per
phoneme and 1 mixture component per state for each digit and the silence model
is a GMM with 128 Gaussians. It should be noted that world model (UBM) and
the client model have the same topology. The UBM and silence models have been
estimated from a subset of the respective database.

The speaker verification includes a speech recognizer for connected-digits recog-
nition that during enrolment discards those utterances labeled as ‘no voice’.

For the Text-Dependent Speaker Verification two experiments using number se-
ries have been carried out: a 4-digit utterances and an 8-digit utterances exper-
iments. The speaker clients use 4 sessions for training – the number of training
utterances can vary from 8 to 48- and the rest are for testing. This leaves with
a total of 509 client tests and 66418 impostor tests, and 1025 clients and 133122
impostor tests for 8 digits.

Experiments with 4-digit utterances

To obtain a threshold that would accept or decline the identity claim, there
has been two approaches: a general threshold for the entire system and a speaker-
dependent threshold.

Methodology
MALE FEMALE TOTAL

FAR FRR FAR FRR FAR FRR

General 0.11 0.03 0.11 0.09 0.11 0.05

SD Threshold 0.04 0.05 0.04 0.08 0.04 0.06

Table 4.1: FAR-FRR 4 digits

It is seen that a general threshold for the system does not offer as good results
as a speaker-dependent threshold.
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Figure 4.1: Text Dependent α = 6.5 FAR-FRR with 4-digit utterances

As explained in Chapter 3, when applying the speaker-dependent (SD) threshold
method for threshold estimation, it is required to empirically find the alpha param-
eter for equation 3.20.

Experiments with 8-digit utterances

The same methodology applied to the 4-digit utterances experiments is applied
with the 8-digit utterances. A general threshold is computed for the entire system,
and it is compared with the speaker-dependent threshold method.

Methodology
MALE FEMALE TOTAL

FAR FRR FAR FRR FAR FRR

General 0.10 0.02 0.09 0.07 0.09 0.04

SD Threshold 0.04 0.01 0.05 0.05 0.04 0.02

Table 4.2: FAR-FRR 8 digits

The table shows the same conclusion: a speaker-dependent threshold has a bet-
ter performance than a general threshold for all speakers in the system.

The same α parameter as before is tested to see if it is still optimal when applying
the speaker-dependent (SD) threshold method for threshold estimation in 8-digit
utterances.
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Figure 4.2: Text Dependent α = 6.5 FAR-FRR with 8-digit utterances.

Text-Dependent Speaker Verification Results Summary

Figure 4.3: Text-Dependent DET Curve.

In the DET Curve above there is a comparison between both experiments. The
experiments with 8-digit utterances have a lower FAR/FRR; and therefore offer a
better performance. The main difference is in that using 8-digit utterances instead
of 4-digit utterances, the system has been considerably more trained.

The overall performance of a text-dependent speaker verification system is very
optimal.
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4.3.2 Text-Independent Speaker Verification using GMMs

Text-independent verification experiments using GMMs have been carried out using
unknown 1-minute non-text-constrained speech utterances. The main goals of this
experiment were to prove that a speaker-dependent threshold is still better than a
general threshold for the system, and to empirically find the alpha appropriate for
the speaker verification system.

A total of 6 UBMs (3 all-male UBMs, 3 all-female UBMs) were created, 40
speakers each, but increasing the number of sessions and utterances for each UBM.
It was proven that the results improved as the amount of data of the UBM increased.

Figure 4.4: Text-Independent α = 0.3 FAR-FRR

Since the results are far from optimal, a Fixed Score Pruning technique was
applied, and the non-representative scores were removed.

Methodology
MALE FEMALE TOTAL

FAR FRR FAR FRR FAR FRR

General 0.14 0.72 0.55 0.25 0.43 0.44

SD Threshold 0.38 0.36 0.37 0.36 0.38 0.37

Score Pruning 0.22 0.20 0.22 0.16 0.22 0.19

Table 4.3: Text-Independent methods using GMMs

If taken into comparison the text-dependent speaker verification system pre-
viously analyzed, the results are worse. It is proven once again that a speaker-
dependent threshold is better than a general threshold for the entire system. It is
also expected some worsen in the text-independent verification, since the system
does not know a priori what the speaker is going to say.
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4.3.3 Text-Independent Speaker Verification using i-vectors

Text-independent verification experiments using i-vectors have been carried out us-
ing two softwares: ALIZE/LIA RAL and the integration of i-vector extraction into
the SpkIdAPI library.

The i-vector dimension established is 400 and the number of GMMs used for the
UBM is 256. It should be noted that most state-of-art experiments with i-vectors
use at least 1028 GMMs for the world model. In this experiments, the number of
GMMs was constrained by the technology, given that it takes about 5 full days to
compute the UBMs and T-matrix with the aforementioned dimensions.

Much like in the text-independent speaker verification using GMM, a total of
6 UBMs (3 all-male UBMs, 3 all-female UBMs) were created, and consequently 6
T-matrix, to determine the optimal quantity of data to be trained.

Methodology
MALE FEMALE TOTAL

FAR FRR FAR FRR FAR FRR

ALIZE/LIA RAL i-vectors 0.13 0.13 0.12 0.12 0.13 0.13

SpkIdAPI i-vectors 0.14 0.14 0.13 0.13 0.14 0.14

Table 4.4: Text-Independent i-vectors method using different software.

Text-Independent Speaker Verification Results Summary

Methodology
MALE FEMALE TOTAL

FAR FRR FAR FRR FAR FRR

GMMs 0.38 0.36 0.37 0.36 0.38 0.37

GMMs + SP 0.22 0.20 0.22 0.16 0.22 0.19

ALIZE/LIA RAL i-vectors 0.13 0.13 0.12 0.12 0.13 0.13

SpkIdAPI i-vectors 0.14 0.14 0.13 0.13 0.14 0.14

Table 4.5: Text-independent Results Summary.

The i-vector approach offers unmistakeably better results in comparison with
the Gaussian Mixture Model approach. The Score Pruning technique applied at the
GMMs scores sets a considerably higher quality for the system, but its performance
is still not as good as the i-vector method.
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Figure 4.5: Text-independent Results Summary DET Curve.

In Fig. 4.5 it can be seen the different performance DET Curves of the text-
independent systems.

It can be stated that the performance between the ALIZE software and the
SpkIdAPI i-vector implementation is very similar, but ALIZE shows slightly superior
results.
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Chapter 5

Budget

5.1 Implementation Costs

In this chapter the project costs are detailed.

5.2 Software costs

The ALIZE / LIA RAL and the Spro4 software are open-source on a LPGL licence,
therefore they do not represent an additional cost. The SpkIdAPI software and the
BioTech database have been provided by the thesis tutor J. Hernando Pericas at no
additional cost nor have intellectual property fees.

The results have been computed with MATLAB, which has a Academinc-Use
licence cost of 500 e

5.3 Development costs

In table 5.1 are separated the development costs in the different phases of the project.

Concept
Hour by

ECTS Credit
Credits Hours Price/hour Cost (e)

SpkIdAPI text-dependent 196 1568

SpkIdAPI adaptation

for independent-speaker experiments (GMMs)
30 24 128 8 e 1024

ALIZE/LIA RAL i-vectors

study
124 992

Integration of i-vectos

in SpkIdAPI
272 2176

Total 720 5760

Table 5.1: Development costs.

The approximately cost of the overall project is 6260 e
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Chapter 6

Conclusions and Future
Development

6.1 Conclusions

This thesis premise was the study of the intricacies of speaker verification systems
and the implementation of a text-independent speaker verification system. It cen-
ters mostly on the mathematics behind the speaker verification techniques and their
implementation in a verification system, followed by a series of tests the systems’
performance.

The study of the state-of-the-art techniques and the methodologies for text-
constrained and text-independent speaker verification systems have been studied
thoroughly. The structure of both systems has been analyzed, as well as the SpkI-
dAPI and ALIZE/LIA RAL software.

Furthermore, different methodologies have been tested and compared in the ex-
periments carried out in this thesis, given a broad overview of the different ap-
proaches for a text-independent verification system implementation. In addition, an
actual implementation of i-vector extraction has been integrated into the SpkIdAPI
library.

In this conclusion, one could firmly state that the goals of the thesis have been
successfully achieved.

6.2 Future Development

As a future approach, an optimization of the SpkIdAPI library code and an inte-
gration of other text-independent methods could be useful to further the study of
speaker verification systems and improve biometric security systems.

Another direction that could be followed after this thesis would be the study
PLDA training and scoring for i-vectors and determine whether or not it could be
implemented into the SpkIdAPI library, since they are also an actual state-of-the-art
technique.
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Appendix A

Work Plan Packages, Milestones
and Gantt diagram

A.1 Work Packages

Project: Background Learning and Specifi-
cations

WP ref: 1

Major constituent: Research Sheet 1 of 6

Short description: Research on the project
topic (background knowledge) and the
specifications to accomplish the goals.

Planned start date: 15/02/2016
Planned end date: 01/03/2016
Start event: 15/02/2016
End event: 01/03/2016

Internal task T1: Study of text-independent
and text-dependent speaker verification
theory.
Internal task T2: Study of GMM for
text-independent speaker verification theory.
Internal task T3: Study of i-vectors
methodology for speaker verification theory.

Deliverables:
D1.1 Project
proposal and
workplan

Dates:
01/03/2016

Project: Prototype WP ref: 2
Major constituent: Simulation/Integration Sheet 2 of 6

Short description: Design the prototype
text-dependent verification system, integrate
it with libraries and debug. An analysis of
the obtained results must be made.

Planned start date: 02/03/2016
Planned end date: 29/03/2016
Start event: 02/03/2016
End event: 29/04/2016

Internal task T1: Design the prototype
Internal task T2: Integration with the
libraries and development
Internal task T3: Text-dependent speaker
verification results analysis

Deliverables: Dates:
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Project: Second Prototype WP ref: 3
Major constituent: Simulation/Integration Sheet 3 of 6

Short description: Design the prototype
text-independent verification system,
integrate it with ALIZE software. Perform
an analysis of the obtained results.

Planned start date: 30/03/2016
Planned end date: 27/05/2016
Start event: 25/04/2016
End event: 12/06/2016

Internal task T1: Design a second prototype.
Internal task T2: Integration with the
software and development.
Internal task T3: Text-independent speaker
verification results analysis

Deliverables:
D3.1 Critical
Review

Dates:
09/05/2016

Project: Integration WP ref: 4
Major constituent: Simulation/Integration Sheet 4 of 6

Short description: Integrate with the
software libraries, develop and debug
the code.

Planned start date: 30/05/2016
Planned end date: 13/06/2016
Start event: 13/06/2016
End event: 31/08/2016

Internal task T1: design the implementation
structure.
Internal task T2: develop the code.

Deliverables: Dates:

Project: Final Prototype WP ref: 5
Major constituent: Testing Sheet 5 of 6

Short description: test the final prototype.
Planned start date: 14/06/2016
Planned end date: 27/06/2016
Start event: 20/08/2016
End event: 05/09/2016

Internal task T1: Tests Deliverables:
D5.1 Bachelor’s
Degree Thesis

Dates:
22/09/2016

Project: Documentation WP ref: 6
Major constituent: Documentation Sheet 5 of 6

Short description: document the
specifications, planning, decisions made and
results obtained in each step of the project.

Planned start date: 15/02/2016
Planned end date: 27/06/2016
Start event: 15/02/2016
End event: 22/09/2016

Internal task T1: Document Deliverables: Dates:
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A.2 Milestones

WP# Task# Short title Milestone / deliverable Date (week)
6 1 Background Research 3
6 2 Project Proposal and Work Plan PPW 3
6 3 Critical Review CR 13
6 1 Bachelor’s Degree Thesis BDT 19
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Appendix B

ALIZE Configuration Files

The main configuration files for the i-vector extraction using the ALIZE/LIA RAL
functions are detailed.

Figure B.1: Train World configuration file, for UBM creation
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Figure B.2: Total Variability Matrix configuration file, for T-Matrix creation
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Figure B.3: i-vectors extractor configuration file, for i-vector extraction
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Appendix C

BioTech Database Speaker Session
Form

The speaker session form for the BioTech Database is shown below:

Figure C.1: BioTech Database Speaker Session

45



Glossary

A
ANSI: American National Standards

Institute
C

CMS: Cepstral Mean Substraction
D

DET: Detection Error Trade-off
E

EM: Expectation Maximization
F

FAR: False Acceptance Rate
FFT: Fast Fourier Transform
FRR: False Rejection Rate

G
GMM: Gaussian Mixture Model

H
HMM: Hidden Markov Model

J
JFA: Joint Factor Analysis

L
LLR: Likelihood Ratio
LPGL: Lesser General Public Licence

M
MAP: Maximum A Posteriori
MFCCs: Mel-Frequency Cepstral Co-

efficients
MLE: Maximum Likelihood Estimation

P
PIN: Personal Identification Number
PLDA: Probabilistic Linear Discrimi-

nant Analysis
PSTN: Public Switched Telephone Net-

work
S

SD: Speaker Dependent
SP: Score Pruning
SVM: Support Vector Machines

T
TALP: Language and Speech Technolo-

gies and Applications
U

UBM: Universal Background Model
UML: Unified Modeling Language
UPC: Universitat Politècnica de

Catalunya
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