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Abstract: The signal to noise ratio in atomic magnetometry is fundamentally limited by the 

optical depth of the atomic ensemble. During the last decade, different technics for optical depth 

enhancement has been developed by several groups, some of them involving the implementation 

of an optical cavity.  This thesis evaluates the performance of such an implementation by the 

polarization read out noise analysis of an optical cavity with similar characteristics as the already 

implemented by other groups. We obtained an estimated value for the signal to noise ratio 

enhancement with a cavity of 171 Finesse, and we studied the behaviour of the different sources 

of polarization noise in this system. 

Keywords: Atomic magnetometry, Cavity enhancement Faraday rotation, Cavity enhancement 

spin squeezing 

1.Introduction: 

This thesis was developed at the Morgan Mitchell group of Quantum Information with cold atoms, 

at ICFO. Through the generation of particle entanglement in form of a squeezed spin state in an 

atomic cloud of 87Rb atoms, via Quantum Non demolition Measurements, their current quantum 

limited atomic magnetometer is able to measure magnetic fields over several millimetres with a 

resolution of micrometres, and sensitivities down to the order of pT/√𝐻𝑧.  They achieve a 

quantum noise reduction by 3dB, and metrological sensitivity is improved by 2dB beyond the 

standard quantum limit of a coherent spin state [3]. 

A schematic picture of the basics of their experiment set-up is normally introduced by the 

following way: 

 

Figure 1: Schematic of the Atomic magnetometer set-up [6]. 

The Probe input beam projected in Sx polarization, experiment a Faraday rotation after crossing 

the atomic ensemble, through an homogeneous coupling with the collective pseudospin degree of 

freedom F of the atomic cloud. This rotation tilt ∅, relates with Fz by the following expression [4]: 

                                                   ∅ = 𝑔𝐹𝑧   ;     𝑔 =  
𝜎0

𝐴
∙ (

Γ

∆
)                                                       (1) 

Where g is the coupling constant from the interaction Hamiltonian of the coupling between atom 

spins and light polarization observables[1], 𝜎0 the resonant cross section , A the cross sectional 

area,  Γ the linewidth of the atomic state, and ∆ the detuning . At the output we measure the 

rotation angle ∅  with a shot noise limited balanced polarimeter. The variance of the outcome ∅ 

is given by: 
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                                                         𝑣𝑎𝑟(∅) = 𝑔2𝑣𝑎𝑟(𝐹𝑧) + 𝑉𝑅𝑂                                               (2) 

VRO is the readout noise from the measurement, which basically involves the electronic noise 

from the detector electronics, quantum noise (shot noise) from measuring the optical 

polarisation, and technical noise introduced into the polarization. Technical noise may come 

from various sources, such as intensity or frequency noise of the laser, or mechanical instabilities 

from the optical elements. As a signal to noise, we can take the ratio between the two terms in 

equation (2), and since for an input coherent spin state 𝑣𝑎𝑟(𝐹𝑧) =  
𝑁𝐴

2
  (NA number of atoms): 

                                                                    𝑆𝑁𝑅 =  
𝑔∙

𝑁𝐴
2

𝑉𝑅𝑂
  4                                                          (3) 

With SNR∙
2

𝑁𝐴
 the signal to noise ratio for a single atom. In their current experiment they achieve 

a SNR~1 loading around 500 atoms; having a g~10−7𝑟𝑎𝑑/𝑎𝑡𝑜𝑚. 

The fundamental limitation for the SNR is related with the effective resonant optical depth “𝑂𝐷0” 

of the atomic ensemble: 

                              𝑆𝑁𝑅2 = 𝑂𝐷0 ∙ 𝛾    ;     𝑂𝐷0~ =  
𝜎0

𝐴
 𝑁𝐴    ;          𝑆𝑁𝑅 = 𝑔2𝑁𝐴𝑁𝐿               (4)                  

Where 𝛾 =  
𝜎0

𝐴
 (

Γ

∆
)2𝑁𝐿 is the fraction of atoms that scatter a photon, and A effective interaction 

cross section between light and atomic ensemble, and NL number of photons. Increasing the 

optical depth, imply a reduction of the cross sectional area. On the other hand, reduction of cross 

section area brings an inhomogeneous coupling with light along the atomic ensemble. This latter 

effect introduces then a limit in the performance of our apparatus, which at this time achieve the 

mentioned resolution for a found optimal value of the optical depth about 𝑂𝐷0~50 − 100. 

Over the last 10 years, different strategies for increasing the effective optical depth avoiding this 

issues, has been proposed. One of them, elaborated by Ian Daniel Leroux at the MIT (2011) and 

Monika Hellen Schleier-Smith also at MIT (2011), involves the use of an optical cavity. 

To understand the benefits of such an implementation, recall first that our light-induced squeezing 

methods rely on probing the collective spin variable Fz of the ensemble. Knowing this quantity 

beyond the standard quantum limit, imply either knowing the states of the individual atoms, or he 

anti-correlations between them. Revealing individual states collapses the superposition, and 

reduce the signal |<Fx>|, so we are only interested in the latter, obtaining collective information 

avoiding revealing individual states [2]. This can only be achieved by ensuring that the dominant 

scattering process is collective scattering into a single mode (forward scattering into the cavity 

mode). Detrimental free-space scattering (non-forward-scattering in to the cavity mode), reveal 

the individual states causing decoherence and introducing spin noise. This is a fundamental 

limitation to light-induced squeezing, which depends on the ratio of photons scattered into the 

cavity, and photons scattered into free space: the cooperativity “𝛾”, our figure of merit in the 

cavity enhanced atomic magnetometer [1]. The enhancement of the g constant by the atomic 

cooperativity can be expressed as: 

                                                             𝑔𝑐𝑎𝑣 =  
2ℱ

𝜋
𝑔                                                                (5) 

Where ℱ is the Finesse of the cavity. Effective Optical depths enhanced by this cooperativity can 

reach values about 𝑂𝐷0~104. In this conditions, previously mentioned MIT projects has achieved 

metrological squeezing about 1.5dB, and Allan variance decrements of 2.3. 



Despite the evident benefits of such an implementation in the amount of signal of the outcome of 

our experiment, the implementation of any optical device able to have impact in the polarization 

state of the probe beam, will have consequences in the signal to noise ratio of our outcomes. 

The challenge of this thesis is to determine if such an implementation would have net benefits in 

the signal to noise ratio of the outcome in our current set-up. This was achieved by measuring the 

polarization technical noise introduced by a spherical symmetric Fabry-Perot cavity with Finesse 

1000, into the probe beam. By comparing the noise added by the cavity, with the expected 

theoretical increase of the enhanced signal, we can in principle determine if the implementation 

of this cavity in our set-up will bring or not an improvement in the signal to noise ratio. 

With this purpose, the project involved the following main aims: (1) Calculations for the design 

of the cavity. (2) Build up the cavity. (3) Characterize the cavity. (4) Lock the laser to the cavity. 

(5) Polarization read-out noise measurement with balance detection. (6) Measurement of the 

birefringence of the cavity. We first used a “test cavity” already built in the lab, for learning about 

the characterization procedure, and after we built up our own cavity for the mentioned 

measurements. 

2. Results: 

2.1 “Test cavity” characterization: 

We scanned the frequency of the emission of our Toptica DL100 ECDL over a range of 3.8GHz 

at a frequency of 100 kHz. This range allowed us to observe the whole free spectral range. Also 

for this frequency the peaks had a reasonable good fit to a Lorentzian.  

We used a saturated absorption spectroscopy signal, as an atomic reference for the frequency 

calibration of the transmission signal from the cavity. Triggering both cavity transmission and 

spectroscopy signals with the scanning of the Toptica we obtained the following traces for cavity 

transmission: 

 

                   

                                                                                             

  

 

 

 

                         Figure 4: (a) Transmission (23%) Peak zoomed. (b) Transmission peaks over a FSR 

Figure (4b) Shows cavity transmission peaks corresponding to the excitation of the TEMoo modes 

sequence over one free spectral range, with y-axis in arbitrary units. Figure (4a) show the zooming 

of a single peak. We used two hyperfine components of the 87Rb D1 line: F=1 -> F=1; and F=2-

>F=1, for the calibration of the x-axis in frequency units. For the estimation of the width of the 

peak, we performed a Lorentzian fit of the experimental points, and we took the FWHM value.  

Free spectral range 𝜔𝐹𝑆𝑅, Finesse F, and Quality Factor Q of the cavity, can be obtained by: 

                                          𝜔𝐹𝑆𝑅 =  
𝑐

2𝐿
    ;    𝐹 =  

𝜔𝐹𝑆𝑅

∆𝜔
    ;   𝑄 =  

𝜔

∆𝜔
                                           (6) 



Where L is the separation between mirrors and c the speed of propagation of light inside the 

cavity. From here we could estimate the results for the characterization parameters, which are 

presented in the following table:  

Finesse 171 

Free Spectral Range (GHz) 2.4 

Linewidth  (MHz) 14 

Distance L (cm) 6.2 

Beam waist (µm) 87 

       Table 1: Test cavity parameters 

2.2 Laser-Cavity Lock in: 

We filtered the cavity reflection signal with a 1KHz low pass filter in order to remove some 

acoustic noise coming from vibrations of the mirrors, and we mixed it with the local oscillator 

signal in the Pound Drever Hall detector unit from our Toptica. We found the optimal value for 

the relative phase between this two signals tuning the phase shifter to the right position. At this 

configuration, the error signal proportionated by the PDH detector was the following: 

 

 

 

 

                                                                                      

 

 

              Figure 5: (a) Error signal from the Pound Drever Hall. (b) Error signal with lock in. 

We found the right PID values in the PID regulator unit from our Toptica, for having an optimal 

lock in signal, following the next procedure: 1: Set P,I and D gains to 0. 2: Start adding P gain 

until you are able to see oscillations. 3: Reduce that value to the half, and start adding I gain until 

you see oscillations again. We didn´t had to concern about the differential gain in order to obtain 

a reasonable good lock in signal. We used as a metric of the quality of the signal the ratio of the 

rms value: 15 mV, of the error signal once we activate the lock (Figure 2), and the size of the 

error signal: 200 mV (Figure 1). 

3.3 Balanced detector characterization: 

Gain (G): By sending light to just one of the two photodiodes, we measured the output voltage 

signal of the detector against the input optical power in order to calculate the overall gain of the 

internal circuit plus the photodiodes. We obtained a value of 7.036 ∙ 106 V/W, which is on the 

order of magnitude we expected. 

Bandwidth: Analysing the signal from the detector in frequency domain with the spectrum 

analyser, we estimated form our measurements a cut-off frequency at 200KHz. 

Noise: Now here we report the noise analysis of the detector without the cavity contribution. In a 

linear detection system, noise power N on the electronic output will depend on the optical input 

power P as: 

                                                            𝑁 = 𝐶 + 𝐵𝑃 + 𝐴𝑃2    [5]                                                  (7) 



Where the terms C represent the electronic noise from the electronics of the detection, BP the 

Shot Noise, and AP2 the technical noise contribution. Determining this noise scaling with input 

power we can establish the dominating noise contribution in each range of input optical powers. 

Particularly, in the region where the linear term dominates: B/C < P < A/B, we say that the 

detector is shot noise limited (SNL), meaning that the mean source of noise arises in quantum 

fluctuations of the system. Range with technical noise the dominant term, noise contributions 

from polarization imbalance of the detector, or mechanical instability of the optical elements, are 

the most important.  

Again with the Spectrum Analyser we collected the noise spectral density at each frequency, for 

input powers from 0.3 µW to 3209 µW. We scanned over a range of frequencies inside the 

bandwidth of the detector (0 Hz to 200KHz), with a resolution bandwidth of 300 Hz and a video 

bandwidth of 3 KHz: 
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Figure 6: (a) Power Noise Spectral Density of the signal from the detector. The one on the bottom 

corresponds to the noise of the spectrum analyser, The second one on the bottom is the electronic noise of 

the detector.The rest of the plots corresponds to the nosie coming from thedifferent optical powers input 

signals. (b) Power Noise against optical input power for 300KHz frequency. Red lines corresponds to the 

limits (C/B),(B/A) of  

Here the power noise spectral density is given in dBm/Hz. You can convert this quantity in to 

Watts/Hz through the transformation: 

                                                               𝑃 =  10
𝑃𝑑𝐵𝑚

10 /1000                                                       (8) 

And obtaining the total power just multiplying this quantity by the bandwidth of the detector. For 

a given frequency of 300KHz, we fitted the polynomial of equation (7), (first converting from log 

scale in to linear scale using (8)) in order to determine the extension of the shot noise limited 

range (Figure 6b): 

Electronic noise C (W) 3.958e-10 ± 1.22 e-11 

Shot Noise B (W) 4.11e-12 ± 4.2e-13 

Technical noise A(W) 9.8141-15± 5.2e-16 



                   Table 2: Characterization of the detector 

We can clearly identify in figure (6b) the three different regions where each of the contributions 

is dominant. By the fitting parameter we could determine that the SNL range of the detector at 

the frequency of 300KHz is confined around [96 µW, 419.97 µW].   

2.3 Technical Noise added by cavity: 

In this section we will again analyse the noise in the detection system but this time with the cavity 

contribution. We don´t expect to observe in principle differences in electrical noise ground level 

and linear scaling in SNL region, since we maintain the same configuration of all elements in our 

set-up. The PNSD curves from powers going from 0.3 W to 500 W are showed below: 
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 Figure 7: Power Noise Spectral Density of the signal from the detector, and Power noise for               

300KHz against optical power. 

By the same procedure as in the previous subsections, in order to perform the fit we have to first 

convert dBm in to W, and pick up a frequency to analyse the polynomial noise behaviour. The 

results are quite different in this case: We used equation (7) with B and C fixed to the values 

without the cavity, and fitted to find Acav.=2.197e-11± 4.1e-11, fits the curve. This means that 

the addition of the cavity increases technical noise in such a way that noise dependence with the 

input power is mostly quadratic, and there is not shot noise limited range. 

Most important source of technical noise in this measurement was the bad quality of the error 

signal for the lock in of the laser to the cavity. For cavity locks with relatively high finesse, a good 

mechanical stability of the system is required. A high finesse cavity, with pretty narrow 

transmission peaks, and with not particularly good stability, leads to an extremely noisy error 

signal, since vibrations change constantly the shape and position of the peak.  A high rms value 

in the error signal once the laser is locked, translates directly to high intensity fluctuations at the 

output of the cavity, which in our case, contribute with a great impact in the technical noise of the 

in-put light in the detection. 

 

 



 

 

 

 

 

 

 

 

 

Figure 8: Blue trace corresponds to the noise of the laser without lock in. Orange trace is the noise once 

the laser is locked 

 

In Figure (8), we can compare the spectral noise power from the laser with the noise introduced 

by the error signal. Data clearly confirm that the error signal we are using to lock is introducing 

probably the dominant contribution to the technical noise. 

2.4 Figures of merit discussion: 

We are now interested in calculating the resulting change in signal to noise ratio after 

implementing the cavity in our system. First we need to estimate the beam waist of the TEMoo 

Gaussian beam inside the cavity, in order to introduce this value in the cross section area A of 

equation (3). The beam waist 𝑤 in a symmetric Fabry-Perot resonator relates with length between 

the mirrors by the following expression: 

                                                                 𝑤 =  √
𝐿λ

2𝜋
                                                                   (8) 

Which with the values measured in the characterization of our test cavity, gives a value of 

w=1.88e-4 m. We can estimate now from equation (1) the value of the g parameter, which give 

us g=8.3e-8 rad/atom.  

Without the cavity, for a power of P= 280 µW , at frequency w=300KHz , the standard of the 

signal is 2.4e-9  W/Hz. To obtain the VRO for this quantity we just have to convert this standard 

deviation of the signal in electronic Watts in the detector, to the optical power standard deviation. 

This is achieved by converting first from electronic W to V. (just multiplying by a 50 ohms 

resistance and taking the square root) and multiplying by the gain of the detector G. So for this 

case VRO= 3.4e-16 W. We can now compute the signal to noise with (3), which gives SNR=33.2. 

With the cavity, we have at that optical power and frequency, we have a value of VRO=3.1e-13 W 

The value of gcav using eq. (5) for this Finesse is gcav = 9.04e-6rad/atom. Which leads to a 

SNRcav=2.6. Which leads to a SNRCAV/SNR=0.07. 

3. Second cavity design: 

We would like now to extract similar conclusions from a cavity with predefined parameters, 

whose TEMoo matches the spatial distribution of our atomic ensemble, and with bigger Finesse 

to increase the enhancement of the cooperativity g.  



In our current set-up we have g = 10-7 at ∆ = 600 MHz with A = 3 x 10-9 m2. The atomic cloud 

has a gaussian width about 20um, and the probe beam has a beam waist matched to this width. 

Ideally our cavity would have the same beam waist. However, achieving this requires a confocal 

cavity with a radius of curvature (and separation between the mirrors) of about 0.5cm. This is too 

small – we cannot fit a MOT to make a cold atomic cloud inside this cavity. Instead, we follow 

the parameters of the Vuletic group, with a beam waist of ~50um. 

The resonator implemented in our set-up, will be glued in a fixed position inside the vacuum 

chamber. Realignment of the mirrors won´t be possible once the cavity is set-up in place. For this 

reason, we are looking for a resonator as less sensible to misalignment as possible. Confocal Fabry 

Perot resonators have the minimum waist at the position of the mirrors. This minimize the angular 

divergence of the beam inside the resonator, which reduce the sensitivity to misalignment, and 

the effect of aberrations, making the confocal configuration the most stable. 

On the other hand, we are interested in a homogeneous coupling between the beam and the atomic 

ensemble, so we need to excite exclusively the TEMoo mode of the resonator. In confocal 

configuration, transversal modes are degenerated in the same frequency, so once we lock the 

cavity, we will excite a superposition of all transversal modes instead of having a homogeneous 

Gaussian beam inside the cavity. To solve this compromise, we will work in a configuration as 

close to the confocality as possible, but far enough to distinguish between the TEMml family. 

The TEMoo mode of the cavity, must match the spatial geometry of the atomic ensemble. With 

this aim. We choose two 2.5 cm radius of curvature mirrors of half inch, which gives a TEMoo 

mode of 57 micrometres of beam waist, and a Rayleigh range of 1.25 mm. To achieve confocal 

configuration, the distance between the mirrors must be then 2.5 cm.  

The cavity parameters we expect for this configuration are: 

Finesse 1000 

Width (MHz) 6 

Free Spectral range (GHz) 6 

Beam waist (µm) 54 

Expected g (rad/atom) 0.636∙ 10−4 

Table 3: Expected cavity parameters 

 3.1 Set-up: 

Beam profiling: We first made calculations for the lenses of the telescope necessary to match the 

beam spatial characteristics of the TEMoo mode. We used GaussianBeam simulator to calculate 

this values. In order to have the most possible stable system, we also calculated the focal values 

which lead to a configuration with minimum sensibility to relative displacement between the 

lenses. After setting up the telescope we performed a beam profiling of our input beam with a 

CCD camera. We measured a 67 micrometers beam waist beam placed at 500mm from the 

telescope, meaning a 98% coincidence with the GaussianBeam simulator. 

Alignment: We first set-up the cavity at 500mm from the telescope making sure that the reflected 

beam retraces the input beam. In this cavity configurations we have spherical symmetry, so the 

alignment procedure reduces to just find the centre of the spherical cavity, without taking special 

care to the angle of incidence. This was achieved by looking at the transmission detection: When 

the input beam doesn´t match the centre of the cavity, ray roundtrips are twice larger than when 

everything is well centred. This has a proportional impact in the free spectral range in 

transmission. So the task consists in finding the proper alignment to reduce the free spectral range 

to the half we have at the starting point. 



Mode matching: Both absolute position of the telescope, and relative position between the lenses 

has an impact in the overlap between the input beam and the cavity TEMoo mode. Iteration 

between this two positions allows to find a maximum in transmission for the Gaussian mode. 

Once this is achieved, reflected beam must be collimated after passing back through the telescope. 

3.2 Characterization: 

Following a similar procedure as in previous sections we obtained the traces of the transmission 

peaks over several free spectral ranges with the atomic reference: 

 

 

(a)                                                                                (b) 

Figure 8: (a) Transmission Peak zoomed. (b) Transmission (19%) peaks over a FSR 

 

Finesse 413 

Width (MHz) 15 

Free Spectral range (GHz) 6.2 

Table 4: Cavity Characterization 

A difference in intensity between the two peaks can clearly be observed. This is because for this 

cavity, to be able to scan over the whole free spectral range, we had to open the scan much more 

than for the previous cavity. Several processes that can lead to changes in the output power of the 

laser can take place during the expansion of the piezo during the scanning (the laser cavity changes 

its length, the current implemented to the diode is self-correcting, etc…). So this difference can 

be explained in terms of different in put lights intensities arriving to the cavity at two different 

points of the scan. 

Another important appreciation is that, despite we achieved a good mode matching and alignment, 

the transmission is quite low.  As already have been mentioned in the previous sections, due to 

the spherical symmetry of the problem, the set-up of a symmetric spherical confocal Fabry Perot 

cavity relies in just two main issues: The mode matching, and finding the centre of the cavity. 

From Figure 1, it´s clear that centre of the cavity has been found successfully, since no other 

modes appears at different frequencies, and the free spectral range is inversely proportional to 

twice the length of the cavity. We performed a beam profiling of our input beam, and we observed 

that it matches the theoretical TEMoo of the cavity with a 97% of overlap, so the mode matching 

wasn´t the problem neither. The time of integration of our detection system is about 1 ns, so since 

the expected cavity width is about 6MHz, there is not possibility that we are filtering the 



transmission signal. It neither has to do with the frequency of our scanning, since we observed 

that changing this variable didn´t had any effect on the transmission signal.  

The only factor that could explain such a decrement of the transmission signal are diffraction 

losses. Could be that mirrors wasn´t clean enough, or that could be some important aberrations in 

their surfaces. 

The system presented a huge mechanical instability. As a consequence the, the error signal 

coming from the PDH detector was too noisy. The combination between the fact that this 

transmission peaks were too more narrow than in the test cavity, with the mechanical instability 

of the system, made impossible to create a stable error signal for the lock in of the laser. Also the 

bad coupling to the cavity mode plays a crucial role in the stability of the reflected signal.  

4. Conclusions: 

We studied the polarization readout noise of a signal coming from the output of a test cavity, and 

we characterized its Power Noise Spectral Density against optical power. We observed an 

enhancement of the technical noise of about 3 orders of magnitude, and we concluded the absence 

of a shot noise limited range. Main sources of technical noise arises in vibrations of the mirrors 

of the cavity, which in one hand, introduces fluctuations on the phase shifts induced to the 

resonating light, that leads to polarization fluctuations at the output of the cavity, and in the other 

hand, perturbs the geometry of the ray paths inside the cavity, leading to an unstable reflected and 

error signal for the lock in of the laser. 

We haven´t observed an enhancement in our signal to noise ratio, by comparing the ratio between 

the calculated increment on the amount of signal, and the measured augmentation of noise, 

obtaining a decrement of SNR about 93%. 

We have acquired quantitative knowledge about the different ways which mechanical instability 

of the system introduces noise to our measurement. We identified the bad quality of the lock as 

the main source of technical noise for the case of our test cavity, and we were not able to lock our 

laser in to the 1000 Finesse cavity due to the instability of the signal because of this vibrations. 

We consider that looking for solutions to this mechanical instabilities, and improving the coupling 

to the cavity mode we can in principle obtain a better lock signal which hopefully leads to a less 

noisy cavity transmission. 
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