ANALYZING DATA LOCALITY IN
NUMERIC APPLICATIONS

SPLAT PROVIDES PROGRAMMERS A FAST AND ACCURATE STUDY OF MEMORY

Jesiis Sanchez
Antonio Gonzalez

Polytechnic University of

Catalonia, Barcelona

BEHAVIOR WITHOUT THE NECESSITY OF A COSTLY MEMORY SIMULATOR. THE

TOOL IS SUITABLE FOR USE AS A STEP IN AN ITERATIVE OPTIMIZATION

PROCESS IN TIME-CONSUMING NUMERIC APPLICATIONS.

e e o0 0o Memory performance is becoming
a major bottleneck in current microproces-
sors. A great deal of research has aimed at
developing techniques for improving memo-
ry performance. Some of these techniques rely
on hardware alone, but many require pro-
grammer or compiler support. Examples of
the latter are software prefetching, blocking,
and copying. To use these techniques effec-
tively, the programmer must have some
knowledge of the program’s behavior. For
instance, prefetching is useful only if it is lim-
ited to instructions that frequently produce
cache misses. Adding a prefetch instruction
to every memory instruction could result in
significant performance degradation.

These techniques might also require quan-
tification of the different types of cache miss-
es (see sidebar, page 60). For instance,
microprocessors can avoid compulsory miss-
es through both hardware and software
prefetching.1 Blocking, or tiling, is a method
of avoiding capacity misses; copying and
padding are techniques for reducing the effect
of conflict misses.!

Many processors provide hints in their
memory instructions that the compiler can
use for optimizing memory performance.
Examples of such hints are the PowerPC’s
cache bypass facility and the hints incorpo-

rated by the IA-64 instruction set. Effective
use of these hints requires information about
the program’s locality behavior.

The process of obtaining information about
a program’s locality characteristics is data local-
ity analysis. Traditionally, this analysis takes
place either at compile time or at runtime.*?
The former approach incurs low overhead but
is relatively inaccurate because the compiler
lacks some information. The runtime
approach usually takes the form of a memory
hierarchy simulation, which is quite accurate
but very slow.

In this article, we introduce SPLAT (Static
and Profiled Data Locality Analysis Tool). The
tool’s purpose is to provide a fast study of
memory behavior without the necessity of a
costly memory simulator. SPLAT consists of
a static locality analysis enhanced by simple
profiling data. Its overhead is low because it
performs most of the analysis at compile time,
and because the required profiling support is
just a basic-block-execution count. Many
commercial compilers support this profiling
option. Compared with simulation tech-
niques, SPLAT s estimation technique is high-
ly accurate for numeric codes.

The tool is useful not only for compilers but
also for programmers. To tune a program, pro-
grammers should know its performance, the

0272-1732/00/$10.00 © 2000 IEEE

Reuse file
Compiler Nest loop file m
Interference file -
Locality | n Results
Program analyzer
Reference file .
Profiler Modify
cache
Iteration file parameters
Once N times
Figure 1. SPLAT's global analysis scheme.
critical parts that produce most memory penal- Wolf and Lam.?

ties, the sources of these penalties, and the data
structures responsible for most cache misses.
SPLAT provides this type of information.*

Overview

SPLAT performs locality analysis using sta-
tic information computed by the compiler
and dynamic data obtained through simple
profiling. Figure 1 diagrams SPLAT’s global
analysis scheme.

The locality analyzer uses static information
to identify the types of misses that will occur
during execution of the program. To identify
compulsory misses, the compiler must com-
pute the intrinsic reuse of data. For capacity
misses, it must also compute the volume of data
referenced by each loop iteration. Finally, to
identify conflict misses, the compiler computes
interferences among data references. The com-
piler reports all this information to three files:

* Reuse file. For each memory instruction
and each loop in which it is enclosed, this
file stores the type of reuse (unknown,
none, self-temporal, self-spatial, group-
temporal, or group-spatial). If the reuse
is spatial, the file also stores the stride (the
difference between the effective address
of two dynamic memory references that
result in spatial reuse). If the reuse is
group-temporal or group-spatial, the file
also contains the distance (the number
of iterations before the reuse takes place).
The compiler derives this reuse informa-
tion from the reuse vectors proposed by

* Nest loop file. This file represents the pro-
gram’s loop structure. The file stores each
loop’s parent loop.

o Interference file. This file contains the ini-
tial addresses of each pair of static memo-
ry instructions (with the same nesting level
and with no other loop between them)
that have the same reference pattern, if the
addresses are known at compile time. (In
the seven SPECfp95 benchmarks stud-
ied in this article, the initial addresses and
dimension sizes are known at compile
time for about 75% of all dynamic mem-
ory instructions.) Two instructions have
the same reference pattern if 1) their cor-
responding variables have the same num-
ber of dimensions, 2) each dimension’s size
is the same in both references, and 3) the
expressions representing the indexing
functions for each dimension differ only
in a constant value.

In the programs studied in this article (a
subset of the SPEC{p95 benchmark suite),
most of the loops have unknown bounds since
they depend on the data input set. Moreover,
each memory instruction’s number of execu-
tions depends not only on the number of iter-
ations of the loops enclosing it, but also on
conditional statements, which are difficult to
analyze at compile time. In SPLAT, therefore,
we use a profiler to quantify loop bounds and
instruction count.

The profiling consists of the number of exe-
cutions of each basic block, a facility provid-

JULY—AUGUST 2000

[EEE MICRO

ANALYZING DATA LOCALITY

Key concepts

The following memory-related terms are important
in this article:

Reuse and locality

A reuse occurs whenever a memory instruction ref-
erences the same data as another instruction (either
the same static instruction or another one). However,
when a processor executes these instructions, some
factors may inhibit the exploitation of this reuse in a
given memory hierarchy level (for instance, the cache
memory's limited storage). Reuse (also called intrinsic
reuse) is a measure inherent in a program, and it
depends on neither the instruction execution order nor
the cache configuration. We call the amount of reuse
actually exploited by a memory hierarchy level the local-
ity of the program with respect to that memory level.

Wolf and Lam define the types of reuse and locali-
ty we talk about in this article." Temporal reuse occurs
when one or more instructions access the same mem-
ory location several times. It is self-temporal or group-
temporal depending on whether the same static
instruction or different instructions access the mem-
ory location. On the other hand, spatial reuse occurs
when different nearby memory locations are accessed.
Itis self-spatial if the same static instruction access-
es the locations and group-spatial if different instruc-
tions access the locations. A static instruction’s reuse
and locality with respect to a loop of the loop nest that
encloses it are the reuse and locality exhibited by the

ed by many current compilers (for example,
the Sun £77). From this information, the pro-
filer derives the number of each memory
instruction’s executions and the average num-
ber of each loop’s iterations, which are stored
in the reference file and the iteration file. This
dynamic information and the static informa-
tion in the reuse, nest loop, and interference
files are the input to the locality analyzer.

Locality analysis

The locality analysis consists of three phases:
reuse, volume, and interference. The first phase
identifies all the reuse exhibited by the program.
This information is the basis for the rest of the
analysis. However, identifying compulsory miss-
es requires no additional analysis; compulsory
misses consist of all references without any reuse.
For instance, for an instruction with only self-
temporal reuse, the first reference is a compul-

instruction’s dynamic instances corresponding to the
loop’s various iterations. An instruction in a loop nest
can have a different type of reuse and locality for each
loop.

Cache misses

Cache misses traditionally fall into three categories:
compulsory, capacity, and conflict? Compulsory miss-
es (also called cold-start misses) occur the first time a
cache block is accessed. In contrast, both capacity and
conflict misses are replacement misses—in other
words, the data in the cache was replaced before the
current access. Capacity misses occur because the
cache cannot contain all the blocks needed during a
program’s execution. Conflict misses occur when the
mapping function maps too many blocks to the same
set.

References
1. M.E. Wolf and M.S. Lam, “A Data Locality

"

Optimizing Algorithm,” Proc. Conf. Pro-
gramming Language Design and Imple-
mentation (PLDI), ACM Press, New York,
1991, pp. 30-44.

2. M.D. Hill, Aspects of Cache Memory and
Instruction Buffer Performance, PhD thesis,
UCB/CSD 87/381, Univ. of California at

Berkeley, Nov. 1987.

sory miss, whereas the rest are hits.

The volume phase identifies capacity miss-
es. Finally, the interference phase computes
conflict misses.

The core of the locality analysis is the func-
tion qreuse (Figure 2), which is used by all
three phases. This function quantifies the
locality of each memory instruction for the
various types of reuse.

First, SPLAT applies qreuse to a program,
using as an input the static reuse information.
All references that cannot exploit any type of
reuse will cause a cache miss (a compulsory
miss), and thus a new block will be brought into
the cache. In this way, the analyzer computes
the number of blocks brought into the cache by
each loop, which is referred to as loop volume.

Then, whenever the program references a
volume of data greater than the cache size
between two accesses to the same block, the

analysis registers a nonexploitable reuse. The function greuse () ¢

number of nonexploitable reuses due to for i=0 to NMINSTR do {
capacity constraints reflects the number of NNi[NT = 1;
pacity co STi[N] = SSi[N] = GTi[N] = GSi[N] = 0;
capacity misses. for j=N-1 to 0 do {
Finally, the analyzer identifies instructions Compute (GItj, NGItj, TItj, ATIt]);
that cause self-interferences due to their switch (SELFReuse[j]) {
strides, and instructions that cause interfer- case NONE:
. . . . NNi[j] = NGItj * NNi[j+11;
ences with other instructions in the same loop. S e s T
K A STi[j] = TItj] STi[j+1];
The lost reuses resulting from these causes rep- SSi[3] = TTt3 * SSil3+11;
resent the number of conflict misses. break;
The algorithm for the qreuse function pro- case TEMPORAL:
. . NNi[j] = NNi[j+1];
ceeds as follows: In each phase, this function B STi[3] = (TTt3 - 1)*ATTt + STi[j+1]
performs the locality analysis of each memo- SSil[j] = TItj * SSi[j+1];
ry instruction (from 0 to NMINSTR) except break;
h ith Kk Thel case SPATIAL:
those with unknown reuse. (The latter corre- factor = stride / blocksize:
spond to references outside loops, array refer- c NNi[j] = (factor *NGItj) * NNi[j+1];
ences inside loops with nonlinear expressions STi[j] = TItj * STi[j+1];
. ftheir di . i ith SSi[j] = (factor * TItj) * SSi[j+1] A
inany of their dimensions, or references wi ((1-factor) * TItj) * ATIt]
expressions that contain variables that are not break;
loop indices. References with unknown reuse }
. Ti[§] = NGItj * GTi[j+1];
are assumed always to miss in cache. They rep- CTi[3] = NIty * GTLil[j+1]
o GSi[j] = NGItj * GSi[j+11];
resent 15% of the total memory references in switch (GROUPReuse(d]) {
the analyzed programs.) The analysis starts case NONE:
from the innermost loop (denoted N—1) and break;
. . case TEMPORAL:
ends with the outermost loop that includes D GTi[5] += GItj * ATTtS;
each instruction 7 (denoted 0). break;
Using the reuse vectors, qreuse computes case SPATIAL: _
he followi 1 f h . GSi[j] += GItj * ATItj;
the following values for cach memory instruc- break;
tion 7in loop f:)
}

* Gl (group reuse iterations in loop 7)—
the number of iterations with group reuse
in loopj. Figure 2. Algorithm for quantifying intrinsic reuse: greuse.

* NGl (no group reuse iterations in loop
j)—the number of iterations without
group reuse in loop ;. sents the number of executions of instruction

* TIz(total iterations in loop j)—the aver- 7 that exhibit self-temporal reuse considering
age number of iterations of loop jin all iterations of loop ;. The greuse function
which instruction 7is executed. quantifies each type of intrinsic reuse identi-

* ATIz; (accumulated total iterations in fied by the compiler as follows (see Figure 2):
loop j)—the number of executions of the
memory instruction per each iterationof ¢ Section A. The instruction does not have
loop ;. It is computed as either kind of self-reuse in loop ;. In this

case, for each iteration of jwithout group
N1 reuse, the number of executions without
HTIT,- any reuse is the number of executions
= without reuse in the loop j + 1 (that is,

NN|j] = NG[tj* NN/ j+ 1]). For each

The quantification of each reuse type for iteration of loop j, the number of execu-
each loop enclosing the reference is stored in tions with self-temporal or self-spatial
vectors VN (no reuse), ST (self-temporal), S§ reuse is the number of executions with
(self-spatial), GT (group-temporal), and GS such reuse in loop j + 1 (for example,
(group-spatial). For instance, S7}[j] repre- ST{j)=TIt* ST|j+ 1]).

JULY—AUGUST 2000 ﬁ]

ANALYZING DATA LOCALITY

Loop j Loop i
ST SS GT GS Glt NGt TIit ATIt ST SS GT GS Glt NGt TIt ATIt
DO 1 =1, N
A(1)
DO =1, M X (1) X X 0 N N 1
B(:.I, i) X /(1) X X 0 M M 1 X X /(2) X N-2 2 N M
ENDDO
D v X X X 0 N N 1
ENDDO
X Does not exhibit this reuse
v Exhibits this reuse
(1) Stride
(2) Distance
(a) Mand N Loop bounds
Loop j Loop i
NN ST SS GT GS NN ST SS GT GS
A(i) N/4 0 3N/4 0 0
B(5, i) M/4 0 3M/4 0 0 M/2 0 3NM/4 |(N-2)M 0
C (i) 1 M-1 0 0 0 N/4 N(M-1) 3NM/4 0 0
B(j, i+2) M4 0 3M/4 0 0 NM/4 0 3NM/4 0 0
D 1 N-1 0 0 0
(b)

Figure 3. Quantifying reuse: two nested loops with reuse types and parameter values (a); greuse analysis of the two loops (b).

[EEE MICRO

Section B. The instruction has self-tem-
poral reuse in loop ;. In this case, the first
iteration of loop ; has the same number
of no reuses as the whole execution of
loop j+ 1. The executions corresponding
to the remaining iterations reuse the data
of the first iteration. Therefore, NN /] =
NNJ j+1]. All executions except the first
iteration exploit self-temporal reuse. For
this iteration, the number of self-tempo-
ral reuses corresponds to that exhibited
by the next inner loop. Self-spatial reuse
is computed as in section A.

Section C. The instruction has self-spa-
tial reuse in loop ;. In this case, qreuse
computes a value called a factor, which
represents the percentage of references
that access a new cache block. Then, for
each iteration of j without group reuse
that references a new cache block, the
number of executions without reuse is
the number of executions without reuse
inloop j + 1. Self-temporal reuse is com-
puted as in section A. Finally, the algo-
rithm computes self-spatial reuse as
follows: For iterations of j such that 7 ref-

erences a new block, the number of self-
spatial reuses is the same as the number
in the next inner loop. For the remain-
ing iterations, all the executions exhibit
self-spatial reuse.

e Section D. The algorithm computes
group reuse (spatial and temporal) as fol-
lows: First, for iterations of j such that
does not exhibit group reuse, the num-
ber of executions with group reuse is the
same as that of the next inner loop. For
the remaining iterations, all executions
exhibit group reuse.

Reuse phase. The input to this phase is the
reuse file computed at compile time, and this
phase applies the qreuse function using this
reuse information. After computation of
greuse, NN][0] contains the number of com-
pulsory misses of instruction 4.

Figure 3a shows an example of code com-
posed of two nested loops. The left-hand
parts of the tables show the type of reuse
exhibited by each memory instruction in
each loop. If the instruction exhibits self-spa-
tial reuse, the stride is also shown. If it

exhibits group reuse, the distance is also list-
ed. The right-hand part of each table shows
the values of the parameters defined earlier.
Figure 3b is an example of how the func-
tion greuse works. The tables quantify the
types of reuse for each reference in each loop
in Figure 3a, as computed by greuse. Looking
at the table corresponding to loop 7, we can
see the reuse exhibited by each reference for
the whole loop nest, since loop 7includes loop
. For instance, among the VM executions of
reference B(j,7), we see that 3NM/4 exhibit
self-spatial reuse, (IV— 2)M exhibit group-
temporal reuse, and M/2 exhibit no reuse.
Note that the number of reuses totals more
than NM because a particular dynamic
instruction can exhibit more than one type.

Volume phase. A factor that can inhibit the
exploitation of reuse is the cache memory’s
limited storage. That s, if the number of data
blocks referenced between two consecutive
reuses of the same block exceeds the cache
capacity in block units, an LRU (least recent-
ly used) fully associative cache cannot exploit
this reuse. The result is a capacity miss.

This phase computes the volume (in cache
blocks) that each memory instruction con-
tributes to the total volume of the loops that
enclose it. The analyzer obtains this value
directly from the data computed in the reuse
phase. For a given loop j, each execution of
instruction 7 that does not exhibit any type of
reuse will bring a new block into the cache.
On the other hand, if a particular execution of
an instruction has any type of reuse, it does
not bring any additional data into the cache.
Therefore, the value of NN ;] is the volume
contributed by instruction 7 to loop ;.

After computing the volume of every loop,
the analyzer marks some reuses nonex-

ploitable:

* If an instruction has self-reuse in loop ;
(temporal or spatial), but the volume of
loop jis greater than the total number of
cache blocks, this reuse will likely not be
exploited by a conventional cache.

* Ifan instruction has group reuse (temporal
or spatial), and the volume corresponding
to the loop’s distance iterations is greater
than the total number of cache blocks, this

reuse will likely not be exploited.

Next, SPLAT computes the function qreuse
again, but without considering the nonex-
ploitable reuses. The newly computed
NNJ0], as in the previous phase, represents
the cache misses of instruction 7 and the dif-
ference from its previous value is the number
of capacity misses of instruction 4.

Interference phase. Conflict misses can have a
high impact on cache memories with a low
degree of associativity, especially direct-mapped
caches. These misses are hard to identify
because they depend on various dynamic fac-
tors such as each data structure’s initial memo-
ry address and the instruction order. The
interference phase identifies conflict misses by
finding interferences among data references.

Interferences are of two types: self-interfer-
ences and cross-interferences. Self-interferences
occur when different data blocks referenced by
the same static instruction are mapped onto
the same cache location. Cross-interferences
occur among different static instructions.
SPLAT detects a subset of these interferences
and focuses on direct-mapped caches. (Alter-
natively, we have also developed a more accu-
rate, but more complex, interference analysis
for set-associative caches.® This approach uses
the cache miss equations” and some efficient
techniques to reduce the complexity of the
analysis. Nevertheless, as we will show, the sim-
plified analysis presented in this article is quite
accurate for the evaluated programs.)

For every array reference and every loop for
which the reference does not exhibit temporal
locality, the analysis assumes that self-interfer-
ences occur if the following condition is met:

cache_size_in_blocks< N % 27idefamily_in_blocks

N represents the number of iterations of the
loop. The stride_family_in_blocks is derived
from the stride of the reference in the analyzed
loop, measured in cache block units. If the
stride is not an integral number of blocks, the
stride is rounded up to the next integer. The
stride_family identified as x is the set of strides
5% 2such that sis any odd number. All strides
belonging to the same family (for example, 12
= 3% 2%and 20 = 5 * 2? belong to family 2)
have the same self-interference behavior.

For each reference and each loop, SPLAT
computes a self-conflict ratio, which denotes

JULY—AUGUST 2000

i

ANALYZING DATA LOCALITY

[EEE MICRO

the percentage of the Niterations of the loop
that produce self-interferences. The amount
of reuses in outer loops decreases by this fac-
tor due to self-interferences.

Regarding cross-interferences, we focus on
those usually called ping-pong interferences.
Two static instructions cause ping-pong inter-
ferences if they reference different data blocks
that map onto the same cache block for every
execution. These interferences will completely
inhibit the exploitation of any reuse exhibited
by the interfering instructions. This type of
conflict is analyzed for each pair of memory
instructions that meet the following conditions:

* Variables whose base address and size of
every dimension is statically known—that
is, variables allocated at compile time.

* Both references follow the same pattern.

¢ The difference, or “hole,” between the
addresses of the first element referenced
by both instructions (addresses R, and Rp)
modulo the cache size is less than the cache
block size. That is, there is no chance of
interference if the two references do not
map onto the same cache block:

hole,z=| R, mod cache_size— Rymod cache_size |
holeyp < block_size

For each instruction that meets these condi-
tions, a real value between 0 and 1 that repre-
sents the percentage of interference (P)) is
defined. If P/is 0, the instruction is free of inter-
ferences. If Plis 1, this instruction conflicts
with another instruction for every loop itera-
tion. Values between 0 and 1 represent differ-
ent percentages of interference—that is, the
percentage of total iterations in which an
instruction causes a cache miss due to interfer-
ences. For two instructions Aand B that inter-
fere, SPLAT computes this factor as follows:

Pl = (block_size— hole,p) | block_size

We derive this expression from the fact that
the probability of interference grows as the dif-
ference between the addresses (sole,z) decreas-
es. When the two instructions always reference
the same location (that is, hole,; = 0), they
interfere for every execution. If an instruction
conflicts with various other instructions, the
analysis considers the maximum P/

The reuse of an instruction 7in a loop that
is not marked nonexploitable in the volume
phase will be exploited only by the percent-
age of references that are free of interferences.
That s, the number of reuses computed in the
previous phase (S7;[0], SS;[0], GT}[0], and
GS]0]) are multiplied by (1 — PI). The rest
of the references will produce a cache miss.

To summarize, the interference phase
applies the self-conflict ratio and the P/ fac-
tor to the locality vectors (S7;[0], SS,[0],
GT]0], and GS[0]). The accumulated dif-
ference between the previous values of the ele-
ments of these vectors and the current ones is
the number of conflict misses.

Performance

SPLAT would be useless if its results were
inaccurate or if obtaining them was too costly.
We validated SPLAT’s accuracy by comparing
its estimated miss ratios with those obtained
through a cache simulator. We also found that
the tool’s overhead is almost negligible.

Framework

We implemented SPLATs static analysis
using the Ictineo compiling platform with full
optimizations. We used the following pro-
grams from the SPEC{p95 benchmark suite:
tomcatv, swim, su2cor, hydro2d, mgrid, applu,
and turb3d. Our study considered a direct-
mapped cache. The results represent the pro-
filing and execution of each program, using
the “train” input set for profiling and the “test”
input set for simulations. This method took
the effect of different input data sets into
account. See our technical report for more
details and additional performance results.*

Accuracy

We simulated a direct-mapped cache mem-
ory of different capacities (1, 8, and 64
Kbytes) and block sizes (16, 32, and 64 bytes).
Figure 4 shows the results for three benchmark
programs. Two of them (tomcatv and swim)
show high variability in the miss ratio; the
other (hydro2d) has a miss ratio much less
affected by the cache parameters. Also, tom-
catv and swim have a high conflict miss ratio,
whereas hydro2d has a low conflict miss ratio.

The graphs show the simulated and esti-
mated cache miss ratios for the various cache
configurations. SPLAT’s results are very close

to the simulation results, showing that the tool
is accurate for a typical range of cache para-
meters. We obtained similar results for the
remaining benchmarks.

Another way to measure the estimate’s accu-
racy is to compute the average absolute error
per instruction. This error indicates how far
from reality the estimate is for each instruc-
tion. We compute the dynamic average error
per instruction as

NINSTR
Z |missratioes,’ - misstatiogy, | # nrefs;

avg _ derror = —1

NINSTA
Z nrefs;

i
where missratio,,, represents the estimated miss
ratio of a particular memory instruction, and
missratio;, represents the miss ratio obtained
by simulation. The dynamic average error per
instruction is around or less than 10% for all
programs and all cache configurations. The
impact of references with unknown reuse is
very low, since normally these instructions are
outside of loops and are rarely executed.

We also studied the estimated error for a par-
ticular configuration (in this case, an 8-Kbyte
cache with 32-byte blocks). The results show
that a large percentage of dynamic instructions
have a low error rate. The tool’s accuracy is
extremely high for the hydro2d program; about
90% of the instructions had no error at all.

Slowdown
SPLAT's overhead consists of three parts (cor-
responding to the components in Figure 1):

* Compiling. The static reuse analysis is a
new pass of our compiler platform. The
time required for this phase is similar to
the time required by any other pass of our
compiler. The tool must perform this
step only once per program.

* Profiling. The slowdown of a simple
basic-block-count profiling ranges from
0.0 to 0.1 on a SuperSparc/60 worksta-
tion (a 0.1 slowdown means that the pro-
gram takes 10% more time due to the
profiling). This step must be performed
once per program and data input set.

o Locality analysis. The time needed to exe-
cute this phase (for a particular set of
cache parameters) is no more than a few

Miss ratio (%)

(@)

Miss ratio (%)

(b)

Miss ratio (%)

(c)

100 44444444444444444

f<T0 [[S—

Q N
60 |- g\l \ >
"\ 9 \
40 [. R W)
‘b \ \
[oTo J) —
: %

0
m m m m m m m m m
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
— [ee] < — [ce] < -~ [ce] <

© © ©
16 bytes 32 bytes 64 bytes
Cache size
100 44444444444444444
80 3\ B\\
60 ‘\ \

0
m m m m m m m m m
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
— [ee] < — [ce] <t - [ee] <

© [{e] ©
16 bytes 32 bytes 64 bytes
Cache size
100 44444444444444444
80 [¢ Simulated | _:
----0--- Estimated
[0 [[E—
N RN
N 0\\

0
m m m m m m m m m
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
~— [o0] < -— [o0] < — [o0] <

© [{e] ©
16 bytes 32 bytes 64 bytes
Cache size

Figure 4. Comparison of SPLAT's results with simulation
results for three SPECfp95 programs: tomcatv (a), swim (b),
and hydro2d (c).

JULY—AUGUST 2000

ANALYZING DATA LOCALITY

[EEE MICRO

seconds, and the tool spends most of that
time reading the dara files.

Opverall, SPLAT s overhead is almost negli-
gible. In addition, the tool can analyze multi-
ple cache configurations with about the same
overhead as one, since only the locality analy-
sis must be repeated.

o far, fully automatic optimization tools

have proved insufficient to handle the vari-
ety of scenarios they must cope with. The best
approach to memory optimization appears to
be an iterative and interactive process, inter-
leaving repetitive analysis and optimization
steps until the final result is acceptable. The
type of analysis presented here can be very use-
ful in such an approach. The speed of the
analysis tool and the range of information it
provides are critical. Moreover, tools like
SPLAT can take advantage of the hints includ-
ed in instruction set architectures to make effi-
cient use of the memory hierarchy.

We have successfully used SPLAT and an
extended version with a more powerful inter-
ference analysis to solve problems such as
managing a multimodule cache’ and per-
forming variable padding.® We are currently
using the extended tool to improve the
instruction scheduler for a distributed cache
memory architecture. MCRD

Acknowledgments

This work was supported by the Spanish
Ministry of Education under contract
CICYT-TIC 98-511, the ESPRIT Project
MHAOTEU (EP24942), and the Catalan
CIRIT under grant 1996FI1-3083-APDT.

1. D. Bacon, S. Graham, and O. Sharp, Com-
piler Transformations for High-Performance
Computing, Tech. Report UCB.CSD-93-781,
Univ. of California, Berkeley, 1993.

2. S. Ghosh, M. Martonosi, and S. Malik,
“Cache Miss Equations: An Analytical Rep-
resentation of Cache Misses,” Proc. Int’l
Conf. Supercomputing (ICS 97), IEEE Com-
puter Soc. Press, Los Alamitos, Calif., 1997,
pp. 317-324.

3. R.A. Uhlig and T.N. Mudge, “Trace-Driven
Memory Simulation: A Survey,” ACM Com-

puting Surveys, Vol. 29, No. 2, June 1997,
pp. 128-170.

4. J.Sanchez and A. Gonzalez, SPLAT: A Stat-
ic and Profiled Data Locality Analysis Tool for
Numeric Applications, Tech. Report UPC-
DAC-1999-68, Dept. of Computer Architec-
ture, Universitat Politecnica de Catalunya,
Barcelona, 1999; http://www.ac.upc.es.

5. M.E. Wolf and M.S. Lam, “A Data Locality
Optimizing Algorithm,” Proc. Conf. Pro-
gramming Language Design and Imple-
mentation (PLDI 97), ACM Press, New York,
1991, pp. 30-44.

6. X. Vera et al.,, A Fast Implementation of
Cache Miss Equations, Tech. Report UPC-
DAC-1999-50, Dept. of Computer Architec-
ture, Universitat Politecnica de Catalunya,
Barcelona, Nov. 1999; http://www.ac.upc.es.

7. J.Sanchezand A. Gonzdlez, “A Locality Sen-
sitive Multi-Module Cache with Explicit Man-
agement,” Proc. Int’l Conf. Supercomputing
(ICS 99), IEEE CS Press, 1999, pp. 51-59.

8. X.Vera, A. Gonzélez, and J. Llosa, Near-Opti-
mal Padding for Removing Inter-Variable
Conflict Misses, Tech. Report UPC-DAC-
2000-30, Dept. of Computer Architecture,
Universitat Politecnica de Catalunya,
Barcelona, 2000; http://www.ac.upc.es.

Jestis Sdnchez is an assistant professor and a
PhD candidate in the Department of Com-
puter Architecture of the Polytechnic Uni-
versity of Catalonia, Barcelona. His research
interests focus on computer architecture and
compilers. Sdnchez received an MS in com-
puter science from the Polytechnic Universi-

ty of Catalonia.

Antonio Gonzélez is an associate professor in
the Computer Architecture Department of
the Polytechnic University of Catalonia. His
research interests center on computer archi-
tecture, compilers, and parallel processing.
Gonzélez received an undergraduate degree
in computer science and a PhD in computer
science, both from the Polytechnic Universi-
ty of Catalonia. He is a member of the IEEE
Computer Society and the ACM.

Send comments to Jests Sdnchez and Anto-
nio Gonzdlez, Dept. of Computer Architec-
ture, Universitat Politécnica de Catalunya,
Barcelona, Spain; [fran, antonio]@ac.upc.es.

