

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

A Software-Hardware Hybrid Steering Mechanism for Clustered
Microarchitectures

Qiong Cai Josep M. Codina José González
Antonio González

Intel Barcelona Research Centers, Intel-UPC
{qiongx.cai, josep.m.codina, pepe.gonzalez, antonio.gonzalez}@intel.com

Abstract

Clustered microarchitectures provide a promising
paradigm to solve or alleviate the problems of increas-
ing microprocessor complexity and wire delays. High-
performance out-of-order processors rely on hardware-only
steering mechanisms to achieve balanced workload distri-
bution among clusters. However, the additional steering
logic results in a significant increase on complexity, which
actually decreases the benefits of the clustered design.

In this paper, we address this complexity issue and
present a novel software-hardware hybrid steering mech-
anism for out-of-order processors. The proposed software-
hardware cooperative scheme makes use of the concept of
virtual clusters. Instructions are distributed to virtual clus-
ters at compile time using static properties of the program
such as data dependences. Then, at runtime, virtual clusters
are mapped into physical clusters by considering workload
information.

Experiments using SPEC CPU2000 benchmarks show
that our hybrid approach can achieve almost the same
performance as a state-of-the-art hardware-only steering
scheme, while requiring low hardware complexity. In addi-
tion, the proposed mechanism outperforms state-of-the-art
software-only steering mechanisms by 5% and 10% on av-
erage for 2-cluster and 4-cluster machines, respectively.

1. Introduction

Clustered microarchitecture design is attractive for the
next generation of microprocessor technology, because it
circumvents many power, thermal and complexity problems
faced by today’s computer architects [7, 14]. A clustered
microarchitecture distributes processor resources into sev-
eral partitions or clusters. The components of each cluster
are simpler, faster and much more power-efficient than its
monolithic counterparts.

In a clustered microarchitecture, a value produced by
one cluster and consumed by another cluster needs to pay
extra communication cost. The simplest way to achieve
zero communication cost is to send all dependent instruc-
tions into one cluster. However, this naive method yields
the worst workload distribution. The main challenge for a
clustered microarchitecture is the design and implementa-
tion of a steering unit, which is responsible for distributing
instructions among clusters so that the communication cost
is minimized and the workload is balanced.

A number of high-performance hardware-only steering
mechanisms have been already proposed [3, 4, 15] to mit-
igate most of the penalties introduced by the communica-
tions. However, they are fairly complex to be implemented
in a real processor due to tight timing constraints of the
pipeline. In particular, the complexity of the steering logic
is much higher than that of the register renaming. Our ob-
jective is to reduce such complexity and maintain the per-
formance achieved by the hardware-only schemes.

Different software-only steering techniques have been
proposed [14, 19, 26] and they are particularly common
in statically-scheduled processors (e.g. VLIW) [6, 13, 8,
12, 16, 17, 21], where the compiler is responsible for both
code scheduling and instruction distribution among clusters.
However, as we will show later in this paper, the software-
only approach performs much worse than its hardware-only
counterpart when it is applied to out-of-order processors.

To reduce the complexity of the hardware-only approach
and improve the performance of the software-only ap-
proach, we propose a software-hardware hybrid steering
mechanism for clustered x86 out-of-order processors. The
proposed technique introduces the concept of virtual clus-
ters 1 to make software and hardware work together. The
instructions are partitioned into virtual clusters at compile
time by considering static properties of a program such as

1The concept of virtual clusters and the way they are formed as pro-
posed in this paper are completely different from [11], where the virtual
cluster is used as an interface to combine cluster assignment and instruc-
tion scheduling in a single step for VLIW processors.

data dependences. At execution time, the hardware utilizes
runtime workload information to adjust the decisions of in-
struction distribution made at compile time and maps virtual
clusters into physical ones.

Performance results show that the proposed software-
hardware hybrid steering mechanism achieves performance
close to a state-of-the-art hardware-only steering algorithm
[15] with an average slowdown lower than 2%. We also
show that our approach outperforms two state-of-the-art
software-only steering algorithms by almost 5% and 10%

on average for 2-cluster and 4-cluster processors, respec-
tively.

The main contributions of this paper can be summarized
as follows:

1. A novel software-hardware hybrid steering algorithm
is proposed by using virtual clusters. A virtual cluster
serves as an interface between software and hardware
so that our algorithm can take advantages of both sides.
By using virtual clusters, our mechanism removes
most of the steering complexity in the hardware-only
approach.

2. A detailed quantitative analysis is provided compar-
ing software-only, hardware-only and our hybrid ap-
proaches. This comparison reveals that our hybrid
mechanism achieves performance close to the state-of-
the-art hardware-only steering mechanism and outper-
forms the state-of-the-art software-only mechanism.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe our baseline: a clustered x86 out-of-
order microarchitecture. In particular, we explain why the
complexity of a steering unit is a real issue in clustered
microarchitectures. In Section 3, we review the previous
work on steering for clustered microarchitectures including
hardware-only and software-only approaches. After see-
ing the advantages and disadvantages of both approaches,
we propose our software-hardware hybrid approach in Sec-
tion 4. The performance results on different approaches are
shown in Section 5. Finally, we conclude in Section 6.

2. The Clustered Microarchitecture

Figure 1 shows our baseline clustered x86 out-of-order
microarchitecture design. This architecture consists of a
monolithic frontend and a clustered backend. In the fron-
tend, the dispatching unit receives micro-ops coming from
the instruction cache, and the steering logic is responsible
for sending these micro-ops to the appropriate clusters ac-
cording to a particular steering policy. All backend clusters
have their own register files, issue queues, integer functional
units and floating point functional units. Moreover, the

������������	
��
� � ��������
Figure 1. Block diagram of the clustered mi-
croarchitecture

backend clusters are connected through a dedicated point-
to-point interconnection network.

The Load/Store Queue (LSQ) and the data cache are uni-
fied and accessed by clusters through dedicated buses. At
dispatch time, loads and stores reserve a slot in LSQ and
they are steered to the corresponding cluster, where the ef-
fective address is computed. Memory operations are stored
in the LSQ, and remain there until they access the data
cache.

In this clustered processor, once a micro-op is steered
to a particular cluster, say cluster A, it remains in the issue
queue until its input operands become available. When all
operands are ready, the instruction leaves the issue queue
and proceeds to the execution units. However, if any re-
quired operand is generated from a different cluster, say
cluster B, a communication is required to transfer the value
from cluster B to cluster A. In order to perform this com-
munication, an explicit copy micro-op must be generated
and inserted in cluster B. This communication instruction
will be responsible for transferring the value generated in
cluster B to cluster A through a point-to-point link.

2.1. Complexity Issue of Steering Unit

The complexity issue of a steering unit has not been
well addressed in the literature. The previous hardware-
only steering mechanisms did not pay particular attention
to the tight timing constraints of the pipeline. High perfor-
mance steering mechanisms based on the characteristics of
the dependences are much more complex than the register
renaming.

In register renaming, all inputs and outputs are first re-
named in parallel, and then an overriding phase updates
intra-dependences in the decode bundle. However, the
dependence-based steering is different. An instruction is
distributed to a cluster holding most of its inputs. In case of
a tie, it is sent to the least loaded cluster. If steering is imple-
mented as register renaming, all instructions in the decode
bundle would check the locations of their inputs in parallel,
and then the destination cluster of each instruction would
be decided in parallel through a voting process. The vot-

ing process uses non-updated information, which results in
significant performance degradation. For example, we have
three instructions to be distributed:

I1: R1← R1 + R2

I2: R3← Load (R1)

I3: R4← Load (R3)

We assume that before steering, R1 was in cluster 0, R2
and R3 were in cluster 1, and cluster 1 is empty. If we use
parallel steering, which is similar to register renaming, we
would have the following scenario:

1. I1 goes to cluster 1 (there is a tie and cluster 1 is
empty).

2. I2 goes to cluster 0 (R1 was located in cluster 0).

3. I3 goes to cluster 1 (R3 was located in cluster 1).

This will generate two copies. To have better steering re-
sults, a sequential steering must be implemented. In this
case:

1. I1 goes to cluster 1 as usual.

2. I2 knows that R1 is in cluster 1 now and it is send to
cluster 1.

3. I3 is also sent to cluster 1.

Therefore, we have zero copies. To have fewer copy in-
structions, the hardware-only steering should be imple-
mented in a sequential fashion. However, this increases
complexity dramatically and, may not met the cycle time re-
quirements when it is implemented under tight timing con-
straints. In order to overcome this complexity, our software-
hardware hybrid mechanism removes most of the hardware-
only steering logic and maintains the same performance as
its hardware-only counterpart.

3. Steering Mechanisms

One of key challenges for clustered microarchitectures
is to properly distribute instructions among clusters. Sev-
eral schemes have been proposed in the literature to deal
with this problem. In spite of the fact that they have the
common goal of achieving the workload balance and min-
imizing the communication cost at the same time, they are
different in nature. In particular, previous work can be di-
vided into three main categories: (i) hardware-only mecha-
nisms commonly applied to dynamically-scheduled (or out-
of-order) processors, (ii) software-only mechanisms applied
to dynamically-scheduled processors, and (iii) software-
only mechanisms applied to statically-scheduled processors
such as VLIW.

In this section, we review previous work according to
the above classification. For each category, one state-of-the
art technique is selected and discussed work in details. The
selected mechanisms are implemented in our simulation in-
frastructure and compared with our hybrid mechanism in
Section 5.

3.1. Hardware-based Mechanisms

Most dynamically-scheduled clustered microarchitec-
tures rely on dynamic steering of instructions. Several
hardware-only steering mechanisms have been proposed
[3, 5, 15, 24]. Each one of them uses different heuristics
to perform instruction distribution among clusters by ex-
ploiting runtime information. Most of the hardware-only
steering policies consider data dependences and cluster oc-
cupancies when steering a particular instruction. Some re-
cent work has pointed out the benefit of stalling over steer-
ing [15, 24]. The rationale behind that is in some cases it is
better to stall the processor frontend, rather than steering in-
structions to the less loaded cluster regardless the location
of the operands, which may generate fewer copy instruc-
tions in the critical path. The work presented in [24] shows
a theoretical study of criticality and clustering, present-
ing (with no particular implementation) several enhance-
ments to current steering policies. In [15], an occupancy-
aware steering is presented. The practical implementation
of this technique stalls the steering unit if the preferred clus-
ter cannot be chosen (due to lack of resources) and the
other ones are busy. In this paper, the occupancy-aware
policy will be our baseline for comparison purposes. Al-
though the hardware-based mechanisms can achieve high-
performance, the additional complexity added to the hard-
ware puts timing constraints on the implementation of these
schemes.

3.2. Software-based Mechanisms for
Dynamically-scheduled Processors

A very limited number of previous studies have proposed
software-only mechanisms for dynamically-scheduled pro-
cessors [14, 19, 26]. There are two advantages of using
a software-only mechanism for clustered out-of-order pro-
cessors. First, a bigger window of instructions is inspected
at compile time in order to make steering decision, which
may potentially reduce the number copy instructions gener-
ated. Second, it completely eliminates the dynamic steering
complexity.

Nagarajan et al [19] presented an execution model called
static placement dynamic issue (SPDI) for Explicit Data
Graph Execution (EDGE) architectures [4]. The EDGE ar-
chitecture has similarities to a clustered out-of-order design.
In particular, in an EDGE architecture several ALUs (or

clusters) are connected through an on-chip network inter-
connects (e.g. a mesh). On top of this architecture, the
SPDI execution model relies on the compiler to map the in-
structions into different ALUs and allows the hardware to
dynamically issue the instructions once their operands are
available. Our software-hardware hybrid approach also re-
lies on the compiler to map instructions to different clusters
and allows the hardware to issue the instructions dynami-
cally. The main difference between these two approaches
is that the mapping decision made by the compiler is re-
fined at runtime in our software-hardware hybrid scheme.
We will show later in Section 5 that our proposed software-
hardware approach significantly outperforms the scheme
used in SPDI.

3.3. Software-based Mechanisms for
Statically-scheduled Processors

The static steering mechanism is a common approach for
statically-scheduled clustered processors (e.g. VLIW). All
previous work can be classified according to their compila-
tion scopes. One important category is the code generation
for loops [1, 2, 10, 20, 25] by means of modulo scheduling
techniques [9, 23]. Another category schedules instructions
for more general program structures including cyclic and
acyclic control flow graphs [6, 8, 12, 13, 16, 17, 21]. In this
paper, we focus on the latter category.

One of the state-of-the-art algorithms is based on a for-
mulation of the cluster assignment problem into a graph par-
titioning problem, solved by a multilevel graph partitioning
algorithm [1, 2, 8]. A multi-level graph partition algorithm
[18] consists of two steps: coarsening and refinement. The
coarsening step produces an initial partition for the graph
and the refinement step iteratively refines the initial partition
based on heuristics. RHOP [8] is an example of multilevel
graph partitioning algorithm applied to the cluster assign-
ment problem. In RHOP, the weights are assigned to nodes
and edges in the data dependence graphs based on slack in-
formation computed from the static latencies of the instruc-
tions. The coarsening stage in RHOP tends to group the
operations on the critical path together and it stops coarsen-
ing instructions when the number of coarse nodes equals the
number of clusters in the machine. The refinement stage tra-
verses back through the coarsening step and make improve-
ment to the initial partition based on the metrics such as the
workload per cluster and total system workload. The aim
is to balance the workload and minimize the inter-cluster
communications.

RHOP was originally defined for VLIW processors and
the algorithm relies on the accuracy of the estimated work-
load at compile time. However, it is much harder to esti-
mate the workload for out-of-order machine. The software-
hardware hybrid scheme proposed in this paper addresses

this issue by a co-designed effort. Results reported in this
paper shown that this hybrid algorithm significantly out-
performs RHOP when both are applied to a dynamically-
scheduled processor.

4. The Software-Hardware Hybrid Steering:
Virtual Cluster

This section presents our software-hardware hybrid
steering scheme for a clustered out-of-order microarchitec-
ture. In the process of designing our algorithm, the ad-
vantages and disadvantages of software-only and hardware-
only schemes have been taken into account. In particular,
software-only approaches have better view of data depen-
dences but cannot accurately estimate runtime information
such as workload balance, as discussed in the previous sec-
tion. On the other hand, hardware-only approaches have
much more accurate knowledge of runtime information but
have very limited view of data dependences. These observa-
tions lead us to design a software-hardware hybrid steering
algorithm.

4.1. Virtual Clustering: A bridge from soft-
ware to hardware

To make software and hardware work in harmony and
achieve a cost-effective solution for the steering problem,
we propose the concept of virtual clustering. The virtual
cluster is an interface between software and hardware, and it
is managed by both the compiler and the hardware steering
mechanism. The compiler is in charge of assigning instruc-
tions to virtual clusters, while a simple hardware steering
logic performs the mapping from virtual clusters to physi-
cal clusters. The number of virtual clusters is fixed by the
hardware and exposed to the software through the instruc-
tion set.

By using the virtual cluster model, the proposed hybrid
scheme can combine the benefits from both software-only
and hardware-only approaches. The compiler can build
larger data dependence graphs than the hardware does, and
the hardware can refine the initial steering decisions made
by the compiler based on accurate runtime workload infor-
mation.

In the next sections, we describe in details the two main
steps of our proposal: the partitioning of data dependence
graph (DDG) into virtual clusters and the mapping of virtual
clusters into physical clusters.

4.2. Software Partitioning into Virtual
Clusters

In Figure 2, the algorithm for partitioning a data depen-
dence graph (DDG) into virtual clusters at compile time is

Figure 2. Partition DDG nodes into virtual
clusters at compile time

shown. This algorithm is divided into three main steps:

Computation of critical paths. For a given DDG, the
compiler first computes the critical path information.
This computation requires two traversals of a DDG:
one for computing the depth and another for comput-
ing the height of each node in the DDG [19]. The crit-
icality of each node in the DDG is then defined to be
the sum of its depth and height. Based on the critical-
ity, critical paths in the DDG are found.

Partition of DDG into virtual clusters. Nodes are parti-
tioned into virtual clusters (VC for short), according
to different critical paths. The proposed algorithm tra-
verses the DDG top-down, assigning at each step one
instruction to a VC. The algorithm attempts to include
all dependent instructions in the same VC. It takes
into account the criticality of the instructions when
distributing them among VCs. In particular, for each
instruction, the benefit of assigning the instruction to
all possible VCs is computed and the cluster with the
best benefit is selected. In order to compute such ex-
pected benefit, the completion time of the instruction is
used. In the proposed scheme, the completion time for
a particular instruction is estimated based on the de-
pendences, the latencies, and the resource contention
in the intended cluster.

Note that the estimation may not be accurate enough
for a dynamically-scheduled processor, as discussed
in Section 3.2, due to the lack of dynamic informa-
tion. However, our software-hardware hybrid mecha-
nism can alleviate this problem by performing the final
mapping from virtual clusters to physical clusters at

Figure 3. Chain Leader

runtime based on the dynamic workload information.

Identification of chains and chain leads. The final step
involves assignments of identifiers to virtual clusters
(vc_id) and identifications of chains and chain lead-
ers. In our algorithm, we refer to a group of instruc-
tions in the same virtual cluster that are mapped into
the same physical cluster as chains. The chain leader
is defined as the first instruction of a chain. Special
codes are generated for chain leaders in order to no-
tify the hardware when to update the mapping table
between virtual clusters and physical clusters.

The example in Figure 3 shows how virtual clusters
and chains are managed. The DDG in this example is
partitioned into two virtual clusters. Each node in the
DDG is identified by a vc_id. The chain leaders are
nodes A, B and E. Non chain-leaders are marked with
zero.

The effectiveness of our proposed hardware-software
mechanism largely depends on the selection of chains.
The chain leaders are places in which the hardware
checks the runtime workload balance and maps a
whole chain into a physical cluster.

4.3. Hardware Mapping Virtual Clusters
into Physical Clusters

The steering logic required by our approach is much sim-
pler than the steering logic in a traditional clustered pro-
cessor. Specifically, the steering unit in our hybrid ap-
proach is only responsible for performing the appropriate
mapping between virtual clusters generated at compile time
and physical clusters. The only hardware required is: (1)
a set of counters that indicates the distribution of instruc-

Figure 4. Mapping virtual clusters to physical
clusters at run time

tions among clusters; and (2) a small table to keep track of
the mapping between virtual clusters and physical clusters.
Note that, the number of counters required is equal to the
number of physical clusters minus 1, and the number of en-
tries in the mapping table is equal to the number of VCs.

Figure 4 shows the algorithm to map virtual clusters into
physical clusters at runtime. When decoding an instruction,
if the mark of chain leader is encountered, the workload bal-
ance counters are checked. Based on the contents of these
counters, the VC is mapped to the less loaded cluster.

When a mapping decision is made, the mapping table
is updated by setting the vc_id to the selected physical
cluster. All non-leader instructions (with the mark bit set
to 0) will then follow the mapping decision made for their
chain leaders, and they will be sent to the same physical
cluster.

Once the destination of a physical cluster is decided, the
copy generation step is executed. This task is performed as
in the traditional clustered architectures. The copy instruc-
tions are generated if any of the input operands is produced
in some other cluster. The logic that indicates the location
of a register value can be attached to the rename table with
a negligible complexity increase.

Table 1 shows the comparison of the complexity between
our hybrid approach and the hardware-only approach. Four
main components are included in the hardware-only design:

1. The dependence checking is in charge of obtaining
the location of source registers. It is implemented by
means of a table, accessed with the input register iden-
tifier to obtain the location of a source value and with
the destination register identifier to store the cluster
identifier that will produce that value.

2. The workload balance management consists of a set of
counters that store the number of in-flight instructions
in each cluster.

3. The vote unit takes into account the location of the

steering algorithm hardware-only
occupancy-

hybrid virtual
clustering

dependence check yes no
workload balance
management

yes yes

vote unit yes no
copy generator yes no

Table 1. Complexity comparison between
hardware-only occupancy-aware steering
and our hybrid virtual clustering.

inputs of the instruction as well as the workload bal-
ance information and decides the destination clus-
ter that minimizes communications and keeps clusters
balanced.

4. The copy generator is responsible for generating copy
instructions when required.

When the hybrid scheme is applied, dependence check-
ing and voting unit are removed from the hardware side.
These two units are the most expensive parts, both in com-
plexity and delay, of a hardware-only scheme. In order to
steer a given instruction precisely, all previous instructions
in the decode group must be already steered. This is due
to the fact that it is necessary to know the exact location
of each input. Hence, the steering logic becomes a serial-
ized task in traditional clustered architectures as discussed
in Section 2.1. With our hybrid steering algorithm, the hard-
ware complexity due to the serialization of the steering de-
cision is fully removed.

5. Performance Evaluation

5.1. Simulation Framework

Our software-hardware hybrid steering algorithm con-
sists of two parts. The software part (see Figure 2) is im-
plemented in the code generation step of Intel production
compiler for x86 microarchitectures, and the hardware part
(see Figure 4) is implemented in an event-driven simulator
that executes traces of IA32 binaries. In addition, the x86
instruction set is extended in our simulation framework in
order to allow the virtual cluster information to be passed
from the compiler to the hardware. Table 2 shows the main
architectural parameters of our processor.

The PinPoints tool [22] is used to select representative
simulation points for SPEC CPU2000 benchmarks. Every
simulation point contains 10 million instructions and the
maximum number of phases is set to 10. For most of the
benchmarks, there are less than 10 phases. The results pre-

Front-end
Fetch 24K micro-op trace cache, 6 micro-ops/cycle, 5 cycle fetch-to-dispatch

Decode, rename and steer 3+3 micro-ops/cycle, 1 cycle latency
Reorder Buffer 256+256 entries, commit 3+3 micro-ops/cycle

Back-end (configuration shown per cluster)
Issue queues 48-entry INT, 2 micro-ops/cycle, 48 entry FP, 2 micro-ops/cycle, 24-entry COPY, 1 micro-ops/cycle
Register file 256-entry INT register file, 256-entry FP register file

Inter-cluster communication bi-directional point-to-point link, 1 cycle latency, 1 copy/cycle
L1 data cache 32KB, 4-way, 3 cycle hit, 2 read ports, 1 write port, 256-entry Load/Store Queue

Memory
L2 unified cache 2MB, 16-way, 13 cycle hit, ≥ 500 cycle miss, 1 read port, 1 write port

Table 2. The architectural parameters

Configuration Description

OP Occupancy-aware steering [15]
one-cluster Every instruction goes to one cluster
OB Static-placement dynamic issue

operation-based steering [19]
RHOP Region-based hierarchical operation

partition [8]
VC Our hybrid steering based on virtual

clustering

Table 3. Five configurations in the experiment

sented in the section are weighted by the weights generated
by PinPoints.

In this paper, the five steering mechanisms shown in
Table 3 are evaluated. To demonstrate that our steering
algorithm can achieve almost the same performance as
its hardware-only counterpart, we choose occupancy-aware
steering algorithm (OP)[15] (one of the best hardware-only
steering algorithms in the literature) as our baseline algo-
rithm. To see how good the OP algorithm is, a naive
hardware-only mechanism called one-cluster, which steers
every instruction to the same physical cluster, is also eval-
uated. In order to further demonstrate the benefits of our
approach, we implemented two state-of-the-art software-
only algorithms: static-placement dynamic-issue schedul-
ing (OB) [19] and RHOP steering algorithm [8] described
in Section 3.

Our proposed hybrid steering algorithm is referred to as
VC. The base architecture is a 2-cluster machine. The num-
ber of virtual clusters is set to 2, because such configuration
achieves almost the same performance as the configurations
with the increased number of virtual clusters.

Finally, to demonstrate our algorithm can scale well be-
yond a 2-cluster machine, we will also show the perfor-
mance results for a 4-cluster machine in Section 5.4.

5.2. Performance Results

Figure 5 shows the performance results of one-cluster,
OB, RHOP and VC schemes with respect to the best
hardware-only scheme (i.e., OP). We can see that our hy-
brid approach outperforms the software-only approach for
almost every benchmark. For floating benchmarks, VC can
achieve almost 5% average speedup and obtain the perfor-
mance improvement up to 20% for benchmarks such as gal-
gel. Moreover, the performance of our hybrid approach is
very close to the hardware-only approach with only 2.62%
slowdown.

5.3. Copy Reduction and Workload Balance
Improvement

The aim of a steering mechanism is to minimize the num-
ber of copy instructions generated and maximize the work-
load balance. However, these are two conflicting goals, and
achieving them at the same time is a NP problem [1, 8, 18].
To demonstrate the tradeoff between the minimization of
copy instructions and the maximization of the workload
balance, we compare our hybrid algorithm (VC) with OB,
RHOP and OP algorithms in terms of copy reduction and
workload balance improvement. In this experiment, work-
load balance improvement is computed as the total reduc-
tion of the allocation stalls in the issue queues.

Figures 6(a.1) and (b.1) show the copy reduction and
workload balance improvement of VC over OB with respect
to the speedups. Every point in the figure refers to a trace
gathered by the PinPoints tool. The x-axis represents the
speedup, whereas the y-axis shows the copy reduction and
workload balance improvement in figures (a.1) and (b.1), re-
spectively. We can clearly see that VC reduces the number
copies and improves the workload balance for most of the
traces. This results show the reasons why VC outperforms
OB for most of the benchmarks.

Figures 6(a.2) and (b.2) show the same comparisons be-
tween VC and RHOP. The main observation that we can

-5

0

5

10

15

20

25

30

35

40

gz
ip

-1

gz
ip

-2

gz
ip

-3

gz
ip

-4

gz
ip

-5

vp
r-

1

vp
r-

2

gc
c-

1

gc
c-

2

gc
c-

3

gc
c-

4

gc
c-

5

m
cf

cr
af

ty

pa
rs

er

eo
n-

1

eo
n-

2

eo
n-

3
pe

rl
bm

k

ga
p

vo
rt

ex
-1

vo
rt

ex
-2

bz
ip

2-
1

bz
ip

2-
2

bz
ip

2-
3

tw
ol

f

sl
o

w
d

o
w

n
 (%

)

one-cluster OB RHOP VC

-5

0

5

10

15

20

25

30

w
up

w
is

e

sw
im

ap
pl

u

m
es

a

g
al

g
el

ar
t-

1

ar
t-

2

fa
ce

re
c

eq
ua

k
e

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

sl
o

w
d

o
w

n
 (%

)

one-cluster OB RHOP VC

12.19

6.50
5.40

2.62

0

2

4

6

8

10

12

14

16

One-Cluster OB RHOP VC

S
lo

w
d
o
w
n
 (

%
)

INT AVG FP AVG CPU 2000 AVG

Figure 5. The performance results with respect to configuration OP: (a) SpecInt 2000 (b) SpecFP
2000 (c) the average results.

VC vs OB

-15

-10

-5

0

5

10

15

20

-30 -20 -10 0 10 20 30

speedup (%)

co
p

y
re

d
u

ct
io

n
 (

%
)

VC vs OB

-20

0

20

40

60

-30 -20 -10 0 10 20 30
speedup (%)

w
o

rk
lo

a
d

 b
al

an
ce

im

p
ro

ve
m

e
n

t
(%

)

VC vs RHOP
-20
-15
-10

-5
0
5

10
15
20
25
30

-20 -15 -10 -5 0 5 10 15 20 25 30

speedup (%)

co
p

y
re

d
u

ct
io

n
 (

%
)

VC vs RHOP
-50

-40

-30

-20

-10

0

10

20

30

40

50

-20 -10 0 10 20 30

speedup (%)

w
or

kl
oa

d
 b

al
an

ce

im
pr

o
ve

m
en

t
(%

)

VC vs RHOP

-30

-25

-20

-15

-10

-5

0

5

10

15

-40 -30 -20 -10 0 10 20 30 40

speedup (%)

co
p

y
re

d
u

ct
io

n
 (

%
)

VC vs RHOP
-100

-80

-60

-40

-20

0

20

40

60

-40 -30 -20 -10 0 10 20 30 40

speedup (%)

w
o

rk
lo

ad
 b

al
an

ce

im
p

ro
ve

m
en

t
(%

)

Figure 6. Comparisons of copy reduction and workload balance improvement

-10

0

10

20

30

40

16
4.

gz
ip

-1
16

4.
gz

ip
-2

16
4.

gz
ip

-3
16

4.
gz

ip
-4

16
4.

gz
ip

-5
17

5.
vp

r-
1

17
5.

vp
r-

2
17

6.
gc

c-
1

17
6.

gc
c-

2
17

6.
gc

c-
3

17
6.

gc
c-

4
17

6.
gc

c-
5

18
1.

m
cf

18
6.

cr
af

ty
19

7.
pa

rs
er

25
2.

eo
n-

1
25

2.
eo

n-
2

25
2.

eo
n-

3
25

3.
pe

rl
b

m
k

25
4.

ga
p

25
5.

vo
rt

ex
-1

25
5.

vo
rt

ex
-2

25
6.

bz
ip

2-
1

25
6.

bz
ip

2-
2

25
6.

bz
ip

2-
3

30
0.

tw
ol

fsl
ow

do
w

n
(%

)

OB RHOP VC(4->4) VC (2->4)

-10

0

10

20

30

16
8.

w
u

pw
is

e

17
1.

sw
im

17
7.

m
es

a

17
8.

ga
lg

el

17
9.

ar
t-

1

17
9.

ar
t-

2

18
3.

eq
ua

ke

18
7.

fa
ce

re
c

18
8.

am
m

p

18
9.

lu
ca

s

19
1.

fm
a3

d

20
0.

si
xt

ra
ck

30
1.

ap
sisl

o
w

d
o

w
n

 (
%

)

OB RHOP VC(4->4) VC (2->4)

12.45 12.69 12.96

3.64

0

2

4

6

8

10

12

14

16

OB RHOP VC(4->4) VC (2->4)

sl
o
w

d
o
w

n
 (
%

)

INT AVG FP AVG CPU 2000 AVG

Figure 7. The performance slowdown with respect to the best hardware-only steering on 4-cluster
microarchitectures: (a) SpecInt 2000 (b) SpecIntFP 2000 (c) the average results.

draw is that VC obtains better performance than RHOP.
This improvement is due to the higher reduction in the num-
ber of copy instructions generated by VC. However, VC has
worse workload balance than RHOP in most of the cases.
Hence this result clearly demonstrates that our hybrid algo-
rithm makes better tradeoff between the number of copies
and the workload balance. In particular, VC can send criti-
cal dependence chains to one single cluster, which means no
penalties due to copies, at the expense on increasing work-
load imbalance. Moreover, it also implies that copy reduc-
tion tends to be more important than workload balance for
most of the benchmarks.

The importance of the copy reduction observed in the
above comparison between VC and RHOP is also demon-
strated when comparing VC and OP. Figures 6(a.3) and
(b.3) show the results for this comparison. VC obtains bet-
ter workload balance but generates more copies than OP for
most of the cases. The main reason why OP is performing
better than VC is the fact that it tends to give higher priority
to communication cost at runtime.

5.4. Scalability

We have already demonstrated that our hybrid approach
can achieve almost the same performance as its hardware-
only approach for a 2-cluster machine. In this section we
present results for a 4-cluster machine in order to demon-
strate the scalability of our approach.

In Figure 7 performance results are shown for OB,
RHOP and VC configurations compared with OP. More-
over, the results for two configurations of VC algorithm
are presented. These two configurations differ in the num-
ber of virtual clusters. In particular, the first configuration
(VC(4 → 4)) uses 4 virtual clusters, while the other one
uses only 2 virtual clusters (VC(2→ 4)).

The main observation we can draw from Figure 7 is that
VC(2 → 4) performs significantly better than OB, RHOP
and VC(4 → 4). At the same time, VC(2 → 4) only
has 3.64% slowdown compared with the best hardware-only
steering algorithm.

Furthermore, Figure 7 shows that when moving from
VC(4 → 4) to VC(2 → 4), almost 10% speedup is ob-
tained. The main reason why VC(4 → 4) performs worse
than VC(2 → 4) is that pairs of critical and dependent in-
structions that naturally should go to the same physical clus-
ter are spread among several virtual clusters. The hardware
side of our hybrid approach may map them to two differ-
ent physical clusters according to the dynamic workload of
each cluster, which generate extra communication penalties.
According to our experiments, the VC(4 → 4) configura-
tion generates 28% more copy instructions than VC(2→ 4)
on average.

6. Conclusion

The clustered architecture is a promising architecture for
next-generation microprocessors, as it circumvents many
complexity, power and thermal problems. One of the most
important units in the clustered architecture is the steering
unit that distributes instructions to the clusters at the back-
end. Although there exists several hardware-only steering
implementations that show good performance, the hardware
complexity involved is high, which makes it difficult to be
implemented because of the tight timing constraint of the
pipeline. In this paper, we address this complexity issue
and propose a novel software-hardware hybrid algorithm.

The proposed algorithm makes the compiler and the
hardware work together by using the concept of virtual clus-
tering. The compiler performs the initial steering and as-
signs a virtual cluster number for each instruction based
on the static properties of the programs such as data de-
pendences. At runtime, the hardware checks the dynamic
workload information and maps the virtual cluster to the
physical cluster. By doing so, we remove most of the hard-
ware complexity and achieve almost the same performance
as its hardware-only counterpart.

Finally, we have compared our algorithm against two
state-of-the-art software-only algorithms. The experiment
shows that the hybrid algorithm obtains almost 5% and 10%
speedups on average for 2-cluster and 4-cluster machines,
respectively.

7. Acknowledgements

This work has been partially supported by the Spanish
Ministry of Education and Science under grants TIN2004-
03702 and TIN2007-61763 and Feder Funds. We would
like to thank the referees and David Kaeli for their helpful
comments and suggestions. We would also like to thank
Harish Patil of Intel for answering our PinPoint-related
questions.

References

[1] A. Aletà, J. M. Codina, J. Sánchez, and A. González. Graph-
partitioning based instruction scheduling for clustered pro-
cessors. In MICRO 34: Proceedings of the 34th annual
ACM/IEEE international symposium on Microarchitecture,
pages 150–159, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[2] A. Aletà, J. M. Codina, J. Sánchez, A. González, and D. R.
Kaeli. Exploiting pseudo-schedules to guide data depen-
dence graph partitioning. In PACT ’02: Proceedings of
the 2002 International Conference on Parallel Architectures
and Compilation Techniques, pages 281–290, Washington,
DC, USA, 2002. IEEE Computer Society.

[3] A. Baniasadi and A. Moshovos. Instruction distribution
heuristics for quad-cluster, dynamically-scheduled, super-
scalar processors. In MICRO 33: Proceedings of the 33rd
annual ACM/IEEE international symposium on Microarchi-
tecture, pages 337–347, New York, NY, USA, 2000. ACM.

[4] D. Burger, S. Keckler, K. McKinley, M. Dahlin, L. John,
C. Lin, C. Moore, J. Burrill, R. McDonald, and W. Yoder.
Scaling to the end of silicon with edge architectures. Com-
puter, 37(7):44–55, July 2004.

[5] R. Canal, J. Parcerisa, and A. Gonzalez. Dynamic cluster
assignment mechanisms. High-Performance Computer Ar-
chitecture, 2000. HPCA-6. Proceedings. Sixth International
Symposium on, pages 133–142, 2000.

[6] A. Capitanio, N. Dutt, and A. Nicolau. Partitioned register
files for vliws: a preliminary analysis of tradeoffs. In MI-
CRO 25: Proceedings of the 25th annual international sym-
posium on Microarchitecture, pages 292–300, Los Alami-
tos, CA, USA, 1992. IEEE Computer Society Press.

[7] P. Chaparro, J. Gonzalez, and A. Gonzalez. Thermal-aware
clustered microarchitectures. Computer Design: VLSI in
Computers and Processors, 2004. ICCD 2004. Proceedings.
IEEE International Conference on, pages 48–53, 11-13 Oct.
2004.

[8] M. Chu, K. Fan, and S. Mahlke. Region-based hierarchical
operation partitioning for multicluster processors. In PLDI
’03: Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, pages
300–311, New York, NY, USA, 2003. ACM.

[9] J. M. Codina, J. Llosa, and A. González. A comparative
study of modulo scheduling techniques. In ICS ’02: Pro-
ceedings of the 16th international conference on Supercom-
puting, pages 97–106, New York, NY, USA, 2002. ACM.

[10] J. M. Codina, J. Sanchez, and A. Gonzalez. A unified mod-
ulo scheduling and register allocation technique for clus-
tered processors. pact, 00:0175, 2001.

[11] J. M. Codina, J. Sanchez, and A. Gonzalez. Virtual clus-
ter scheduling through the scheduling graph. In CGO ’07:
Proceedings of the International Symposium on Code Gen-
eration and Optimization, pages 89–101, Washington, DC,
USA, 2007. IEEE Computer Society.

[12] G. Desoli. Instruction assignment for clustered vliw dsp
compilers: A new approach. Technical report, HP Labo-
ratories, 1998.

[13] R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT
Press, 1986.

[14] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The
multicluster architecture: reducing cycle time through par-
titioning. In MICRO 30: Proceedings of the 30th annual
ACM/IEEE international symposium on Microarchitecture,
pages 149–159, Washington, DC, USA, 1997. IEEE Com-
puter Society.

[15] J. González, F. Latorre, and A. González. Cache organiza-
tions for clustered microarchitectures. In WMPI ’04: Pro-
ceedings of the 3rd workshop on Memory performance is-
sues, pages 46–55, New York, NY, USA, 2004. ACM.

[16] S. Jang, S. Carr, P. Sweany, and D. Kuras. A code genera-
tion framework for vliw architectures with partitioned reg-
ister banks. In Pro. of 3rd Int. Conf. on Massively Parallel
Computing Systems, 1998.

[17] K. Kailas, A. Agrawala, and K. Ebcioglu. Cars :a new code
generation framework for clustered ilp processors. hpca,
00:0133, 2001.

[18] G. Karypis and V. Kumar. Analysis of multilevel graph par-
titioning. Supercomputing, 00:29, 1995.

[19] R. Nagarajan, S. K. Kushwaha, D. Burger, K. S. McKinley,
C. Lin, and S. W. Keckler. Static placement, dynamic is-
sue (spdi) scheduling for edge architectures. In PACT ’04:
Proceedings of the 13th International Conference on Paral-
lel Architectures and Compilation Techniques, pages 74–84,
Washington, DC, USA, 2004. IEEE Computer Society.

[20] E. Nystrom and A. E. Eichenberger. Effective cluster assign-
ment for modulo scheduling. In MICRO 31: Proceedings of
the 31st annual ACM/IEEE international symposium on Mi-
croarchitecture, pages 103–114, Los Alamitos, CA, USA,
1998. IEEE Computer Society Press.

[21] E. Özer, S. Banerjia, and T. M. Conte. Unified assign and
schedule: a new approach to scheduling for clustered regis-
ter file microarchitectures. In MICRO 31: Proceedings of
the 31st annual ACM/IEEE international symposium on Mi-
croarchitecture, pages 308–315, Los Alamitos, CA, USA,
1998. IEEE Computer Society Press.

[22] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing representative portions of large
intel® itanium® programs with dynamic instru-
mentation. In MICRO 37: Proceedings of the 37th annual
IEEE/ACM International Symposium on Microarchitecture,
pages 81–92, Washington, DC, USA, 2004. IEEE Computer
Society.

[23] B. R. Rau and C. D. Glaeser. Some scheduling tech-
niques and an easily schedulable horizontal architecture for
high performance scientific computing. SIGMICRO Newsl.,
12(4):183–198, 1981.

[24] P. Salverda and C. Zilles. A criticality analysis of cluster-
ing in superscalar processors. In MICRO 38: Proceedings of
the 38th annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 55–66, Washington, DC, USA, 2005.
IEEE Computer Society.

[25] J. Sánchez and A. González. The effectiveness of loop un-
rolling for modulo scheduling in clustered vliw architec-
tures. In ICPP ’00: Proceedings of the Proceedings of the
2000 International Conference on Parallel Processing, page
555, Washington, DC, USA, 2000. IEEE Computer Society.

[26] S. S. Sastry, S. Palacharla, and J. E. Smith. Exploiting idle
floating-point resources for integer execution. In PLDI ’98:
Proceedings of the ACM SIGPLAN 1998 conference on Pro-
gramming language design and implementation, pages 118–
129, New York, NY, USA, 1998. ACM.

