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Abstract
A novel dynamic register renaming approach is

proposed in this work. The key idea of the novel scheme is
to delay the allocation of physical registers until a late
stage in the pipeline, instead of doing it in the decode
stage as conventional schemes do. In this way, the register
pressure is reduced and the processor can exploit more
instruction-level parallelism.

Delaying the allocation of physical registers require
some additional artifact to keep track of dependences.
This is achieved by introducing the concept of virtual-
physical registers, which do not require any storage
location and are used to identify dependences among
instructions that have not yet allocated a register to its
destination operand. Two alternative allocation strategies
have been investigated that differ in the stage where
physical registers are allocated: issue or write-back. The
experimental evaluation has confirmed the higher
performance of the latter alternative.

We have performed an evaluation of the novel scheme
through a detailed simulation of a dynamically scheduled
processor. The results show a significant improvement
(e.g., 19% increase in IPC for a machine with 64 physical
registers in each file) when compared with the traditional
register renaming approach.

1. Introduction

Dynamically scheduled processors are the most com-
mon organization nowadays in the marketplace. Most of
the latest general purpose microprocessors of major ven-
dors, as well as those announced for the near future, use
such organization. A dynamically scheduled processor has
the ability of executing instructions out-of-order, and thus,
it puts obviously much less constraints on the issue order
of instructions than an in-order execution processor. This
in general results in much higher instruction-level parallel-
ism (ILP).

However, a dynamically scheduled processor does not
have complete freedom to chose the execution order of
instructions. In particular, it must obey instruction depen-
dences. These dependences are usually classified into
three types [5]:

• Data dependences. They occur when one instruction
produces a value that is used by another instruction.

• Name dependences. They are caused by the reuse of
storage locations, namely registers and memory.
However, in this case there is no flow of data
between the involved instructions.

• Control dependences. They are due to conditional
branches. These instructions determine which
instructions should be executed later.

Name dependences through registers are usually elimi-
nated by providing multiple storage locations for the same
register name and keeping track of which storage location
is referred to by each different instance of the same name.
This technique is calleddynamic register renaming. In this
context, the name of a register is referred to as alogical
register whereas the physical location to which it is
mapped at a given time is called aphysical register.

The amount of physical storage devoted to register
renaming determines the maximum number of simulta-
neously live values, and therefore, it limits the instruction
window size. Future microprocessors will likely manage a
larger instruction window to increase the exploitation of
ILP and thus, the register requirements will be higher.
Enlarging the physical register file is an obvious solution
for a balanced design. However, the hardware cost of the
register file is very high mainly because of the large num-
ber of ports that it has. In addition, larger register files
have a longer access time, and this may increase the criti-
cal path length and penalize performance [1].

In this paper we propose a novel register renaming
approach that significantly reduces the register pressure.
This benefit can be used either to increase the processor
performance through the increase of the active instruction



window size or to reduce the hardware cost by reducing
the amount of storage devoted to register renaming, with-
out loosing performance when compared with the tradi-
tional renaming scheme. The novel register renaming
approach is based on introducing a new concept that is
calledvirtual-physical registers. Virtual-physical registers
are names that are used to identify values that will be pro-
duced by instructions in the future, and thus, do not use
any storage location. Virtual-physical registers are used to
keep track of dependences among instructions and there-
fore, to drive the issue logic. Physical registers are used to
store the live values of instructions as in the conventional
scheme and thus, virtual-physical registers are mapped to
physical registers at some point in time. However, the vir-
tual-physical register organization allocates a physical
register for a much shorter interval of time than the con-
ventional scheme, which is the reason for the reduction in
register pressure.

The performance evaluation of the virtual-physical reg-
ister approach for a dynamically scheduled processor with
64 physical registers shows a 19% speedup when com-
pared with the traditional scheme, and about the same per-
formance than the traditional scheme with just about half
the number of physical registers for renaming.

The rest of this paper is organized as follows. Section 2
reviews the traditional register renaming approaches. Sec-
tion 3 presents the novel virtual-physical register scheme.
The performance of the new scheme is compared with the
traditional one in section 4. Finally, the main conclusions
of this work are summarized in section 5

2. Register renaming

Register renaming was first implemented for the float-
ing-point unit of the IBM 360/91 [14]. Register renaming
is a key issue for the performance of out-of-order execu-
tion processors and therefore, it is extensively used. In this
paper we focus on dynamically scheduled processors that
implement precise exceptions [9]. In such processors,
instructions are committed in-order. After being decoded,
instructions are kept in the instruction reorder buffer until
they commit. The size of the reorder buffer determines the
maximum number of in-flight instructions. These instruc-
tions are usually called the instruction window and the
size of the reorder buffer is the size of the instruction win-
dow. In other words, the instruction window is defined as
the set of instructions from the oldest not committed
instruction to the latest decoded instruction

The objective of register renaming is to remove name
dependences through registers (anti- and output depen-
dences). This is achieved by allocating a free storage loca-
tion for the destination register of every new decoded

instruction. There are two different schemes regarding the
approach taken to implement these rename storage loca-
tions. In particular, the two following approaches are the
most common solutions to provide the rename storage
locations:

• The entries of the reorder buffer [11]. In this case,
the result of every instruction is kept in the reorder
buffer until it is committed. It is then written in the
register file. The source operands that are available
when an instruction is decoded are read either from
the register file or from a reorder buffer entry. Those
operands that are not ready at decode are forwarded
from the execution units to the corresponding
instruction queue entries (reservation stations) when
they are produced. When an instruction commits, its
result is copied from the reorder buffer to the regis-
ter file. There is a slight variation that includes a
register buffer used just for renaming and avoids to
store the result in the reorder buffer(e.g. PowerPC
604 [12]).

• A physical register file. In this case there is a physi-
cal register file that contains more registers than
those defined in the ISA (instruction set architec-
ture), which are referred to aslogical registers. By
means of a map table, each logical register is
mapped to aphysical register in the decode stage.
The destination register is mapped to a free physical
register whereas source registers are translated to
the last mapping assigned to them. When an instruc-
tion commits, the physical register allocated by the
previous instruction with the same logical destina-
tion register is freed. In this scheme, the operands
are always read from the physical register file,
which simplifies the operand fetch task when com-
pared with the previous model.

Both register renaming schemes are being used in the
latest microprocessors. The first one is used by the Intel
Pentium Pro [2], the PowerPC 604 [12], and the HAL
SPARC64 [3]. The MIPS R10000 [15], and the DEC
21264 [4] are current implementations of the second
approach. In this paper, we focus on the second scheme. A
comparison of both approaches in terms of cost-effective-
ness could be an interesting study but it is beyond the
scope of this paper. However, notice that both approaches
have similar renaming storage requirements. In both
cases, a new rename storage location is allocated when an
instruction is decoded, and a location is released when an
instruction commits. Therefore, the main advantage of the
virtual-physical register organization, which is the alloca-
tion of rename storage locations for a shorter period of
time, also applies when compared with the reorder buffer
approach.



In the physical register file organization, to take advan-
tage of a given instruction window size a number of phys-
ical registers close to the number of logical registers plus
the window size is required since most of the instructions
have a destination register. This is so because when the
instruction window is empty (e.g., after a branch mispre-
diction), each logical register is mapped to a physical reg-
ister. Thus, the minimum number of physical registers that
are used is equal to the number of logical registers. In
addition, for every instruction whose destination operand
is a register, an additional register is allocated when it
enters the window (decode stage) and a physical register is
released when it leaves the window (commit stage).

3. Virtual-physical registers

This section describes the virtual-physical register
renaming approach. First, the motivations for the new
scheme are presented and then, its implementation is
detailed.

3.1. Motivation

The motivation for the register renaming approach that
is proposed here comes from the observation that the con-
ventional register renaming scheme based on a physical
register file allocates a new physical register for every
instruction with a destination register. This register is allo-
cated when the instruction is decoded and it is not released
until the next instruction that has the same logical destina-
tion register is committed.

Notice that this is a conservative approach that is used
for simplicity reasons. In fact, the value that a register
holds is live for a shorter period of time. The lifetime of
the value produced by an instruction extends from the
time the execution of the instruction finishes to the time
when all the instructions that use such value have read it
and are guaranteed to commit.

Thus, the conventional register renaming scheme
“wastes” a register for each instruction that is in either of
the two following states:

• It has been decoded but its execution has not fin-
ished yet (i.e., it is either waiting in the instruction
queue to be issued or being executed in its corre-
sponding functional unit).

• It has been committed as well as all the instructions
that used the produced value but the next instruction
with the same logical destination register has not
been committed yet.

As described by other authors [8] [10], the second
source of register waste can be eliminated by associating a
counter with each physical register that keeps track of the

pending read operations. A register is freed whenever the
counter is zero, provided that the corresponding physical
register has been subsequently renamed to another physi-
cal register.

The virtual-physical register renaming scheme elimi-
nates the first factor of register usage waste. Notice that
this factor can be very important in the presence of long
latency instructions and parts of codes with small amount
of ILP. In such circumstances, some instructions spend
long time in the instruction queue waiting for their oper-
ands and they use (unnecessarily) a physical register for
all that period of time. For instance, suppose the following
sample code (destination operands are on the left):

load f2,0(r6)
fdiv f2,f2,f10
fmul f2,f2,f12
fadd f2,f2,1

These four instructions in this code can be fetched and
decoded in the same cycle in a four-way superscalar pro-
cessor. At that time, four different physical registers are
allocated to logical registerf2 , each one corresponding to
a different instruction. Let us call themp1, p2, p3 andp4

respectively. Assume that in the next cycle the load
instruction can start its execution but it produces a cache
miss. Assume also that the remaining instructions can be
issued as soon as they have all their operands and that they
can commit as soon as it execution finishes. Suppose that
the cache-miss latency is 20 cycles, the FP division takes
20 cycles, the FP multiplication takes 10 cycles and the FP
addition takes 5 cycles.

In the conventional register renaming scheme,p1, p2

and p3 are used for 42 cycles (i.e. 1 cycle spent in the
decode of the load, 20 cycles in the execution of theload ,
20 cycles in the execution of thefdiv  and 1 cycle in the
commit of thefdiv ), 52 cycles and 57 cycles respec-
tively. However, if the physical registers were not allo-
cated until the corresponding instruction finished its
execution, they would only be used for 21, 11 and 6 cycles
respectively. That is, the register pressure would be
reduced by 75% (from 151 to 38 cycles) if we measure the
register pressure as the sum of the number of cycles that a
register is allocated for each produced value. If the physi-
cal registers were allocated when the corresponding
instructions were issued, they would be used for 41, 31
and 16 cycles respectively, which still implies a reduction
of 42% in the register pressure.

Load instructions that miss in cache is a common
source of long latency operations. Due to the increasing
gap between processor and memory speed, the load miss
latency measured in processor cycles may be even higher
in future microprocessors. Other source of long latency
operations are complex floating point arithmetic instruc-
tions such as divide or square root. However, they usually



represent a small fraction of executed instructions. In any
case, even for short latency operations, the reduction in
register pressure can be significant when the code includes
long chains of dependent instructions, as it is the case of
the above sample code. Finally, note that the amount of
time that instructions spend in the instruction window
before being executed will grow when the size of the
instruction window increases, as it is expected in the
future.

Notice that the reason why logical registers are mapped
to physical registers at decode stage in the conventional
scheme is mainly to keep track of dependences among
instructions. In fact, what is just required to keep track of
dependences is a tag that identifies the last producer for
every logical register. These tags are used to determine
from where the source operands are to be read.

3.2. The virtual-physical register renaming

The new organization, which is calledvirtual-physical
registers, is based on adding a new type of registers, in
addition to the conventional logical and physical types.
The registers referenced by the instructions of the ISA are
referred to aslogical registers. When an instruction is
decoded, its destination register is mapped to a new tag.
Tags are not related to any physical storage location and
therefore we will call themvirtual-physical registers (VP
registers). Later on, when the instructions finishes its exe-
cution, it allocates a physical register to store its result.
Finally, when the instruction commits, the physical regis-
ter allocated by the previous instruction with the same log-
ical destination register is freed.

The virtual-physical register renaming scheme can be
used for both integer and floating point registers. Thus, the
implementation described below is replicated for both reg-
ister files.

3.2.1 Register map tables. The virtual-physical register
organization is implemented by means of two register map
tables (see Figure 1). There is a table, which is called the
general map table (GMT), that is indexed by the logical
register number and contains the following three fields:

• VP register: the last virtual-physical register to
which the logical register has been mapped.

• P register: the last physical register to which the log-
ical and the virtual-physical registers have been
mapped, if any.

• V bit: indicates whether the P field contains a valid
value, that is, whether a physical register has already
been allocated to this logical register.

The other table is called thephysical map table (PMT).
It has an entry for each virtual-physical register and it con-

tains the last physical register to which the virtual-physi-
cal register has been mapped. Alternatively, this map table
could be implemented by means of a CAM (content-
addressable memory) with a number of entries equal to
number of physical registers, which is much lower than
the number of virtual-physical registers. This approach is
used for instance by the DEC 21264 [4] to implement the
logical to physical map table.

In addition, there is a pool of free physical registers,
like in the conventional scheme, and a pool of free virtual-
physical registers.

The GMT has NLR rows of log2(NVR) +
log2(NPR) + 1 bits each, where NLR is the number of
logical registers, NVR in the number of virtual-physical
registers and NPR is the number of physical registers. The
PMT has NVR rows of log2(NPR) bits each or NPR
rows of log2(NVR) bits each if it is implemented
through a CAM.

Since virtual-physical registers are not related to any
storage location, the number of such registers has a small
impact on the hardware cost, especially if the PMT is
implemented through a CAM. To guarantee that the pro-
cessor never stalls because of the lack of them, the NVR
must be equal to the number of logical registers (NLR)
plus the instruction window size.

3.2.2 Functional description. For each new decoded
instruction, its source operands are renamed either to vir-
tual-physical registers or to physical registers if they are
available. In particular, for each source register operand,
the GMT is looked up. If the V bit is set, the logical regis-
ter is renamed to the physical register specified in the P
register field; otherwise it is renamed to the virtual-physi-
cal register. The destination logical register, if any, is
renamed to a free virtual-physical register. The corre-
sponding entry of the GMT is updated as follows: the VP
register field is modified to reflect the new mapping and
the V field is reset. The previous value of the VP register
field is kept in the reorder buffer to restore a precise state
in case of a branch misprediction or an exception. Then,
the instruction is dispatched to the instruction queue,

Figure 1. Tables required by the virtual-physical regis-
ter organization.

VP reg.    P reg.   VL reg.

GMT

P Reg

PMT

VP reg.



where it waits until it is issued, and the reorder buffer,
where it remains until it is committed.

An entry of the instruction queue has the following
fields (see Figure 2):

• Op code: the operation code.

• D: The virtual-physical destination register.

• Src1 and Src2: the identifiers of the two source oper-
ands (to simplify the explanation we assume that
they are always registers). Each identifier corre-
sponds either to a virtual-physical register or to a
physical register

• R1 and R2: these are the ready bits of the source
operands. When an operand is ready, the Src field
contains a physical register identifier. Otherwise it
contains a virtual-physical register identifier.

An entry of the reorder buffer has the following fields
(see Figure 2):

• L register: the destination logical register identifier.

• C: a single bit that indicates whether the instruction
has completed its execution.

• VP register: this field identifies the virtual-physical
mapping of the last instruction that had the same
logical destination register.

An instruction can be issued when the R fields of both
operands are set. This also guarantees that the Src fields
contain physical register identifiers. When an instruction
is issued, it reads its register operands from the physical
register file using the Src identifiers of the corresponding
entry in the instruction queue (if the operand is not for-
warded from the output of a functional unit).

Every instruction whose destination is a register allo-
cates a new physical register when its execution com-
pletes. At this time, a new physical register is taken from a
free pool of physical registers (the solution to the lack of
free physical registers is considered in the next section; for
the sake of simplicity we assume now that this event never
happens). Then, the PMT is updated to reflect the new vir-
tual-physical to physical mapping. In addition, the virtual-
physical register identifier of the destination operand is

Figure 2. The instruction queue and the reorder buffer.

Op code  D  Src1  R1  Src2  R2 L reg.  VP reg.  C

Instruction queue Reorder buffer broadcast to all the entries in the instruction queue along
with the physical register identifier. If there is a match in a
Src field whose corresponding R bit is not set, this field is
updated with the physical register and the corresponding
R bit is set. The virtual-physical register and the associ-
ated physical register are also broadcast to the GMT. Each
entry then compares its VP register identifier with the one
broadcast and if there is a match, the physical register
identifier is copied into the P register field and the V flag is
set. In this way, any new decoded instruction that uses
such logical register will find the corresponding physical
register in the GMT. Finally, the C flag of the correspond-
ing entry of the reorder buffer is set.

When an instruction commits, the virtual-physical reg-
ister allocated by the previous instruction with the same
logical destination register is freed. This register is identi-
fied by the VP field of the reorder buffer. Besides, the
physical register allocated by that instruction is also freed.
The identifier of such register is obtained through the
PMT, by indexing it with the VP register that is to be
freed.

In case of a exception or a branch misspeculation, a
precise state can be obtained by undoing the mappings
performed by the instructions that follow the offending
one. This can be done by popping out the entries of the
reorder buffer from the newest until the offending one. For
each instruction, the reorder buffer stores the destination
logical register and the previous virtual-physical register
that was allocated to it. Using the logical register identi-
fier, the GMT is accessed and the current virtual-physical
mapping is obtain. In addition, if the V flag of the GMT
entry is set, the current physical mapping is also obtained.
Both the current virtual-physical register and the physical
register (if already allocated) are returned to their corre-
sponding free pools. The VP register field of the GMT
entry is restored with the VP field of the reorder buffer
(the previous virtual-physical mapping) and the physical
mapping associated to such register, if any. Such physical
mapping is obtained from the PMT. If the restored virtual-
physical register is mapped to a physical register, the V
flag is set; otherwise it is reset.

A mechanism based on checkpointing similar to the
one used by the R10000 [15] could be used to recover
from branches in just one cycle.

Finally, notice that the proposed mechanism does not
imply any additional delay to the critical path when com-
pared with the traditional scheme, except for the commit,
which may be delayed by one cycle due to the requirement
to look up the PMT. The GMT look-up is equivalent to the
traditional register mapping task. The allocation of physi-
cal registers can be performed during the last cycle of the
execution so that it is available at the beginning of the
write-back stage.



3.3. Avoiding deadlock

A virtual-physical register organization may be
designed with any number of logical, physical and virtual-
physical registers. The number of virtual-physical regis-
ters has a small impact on the hardware cost, as pointed
out above. The number of logical registers is a feature of
the ISA and therefore remains fixed for different imple-
mentations of the same ISA. On the other hand, the num-
ber of physical registers has a very high impact on the
hardware cost as discussed in the introduction. In conse-
quence, the number of physical registers will be lower
than that of virtual-physical registers.

In this case, it may happen that when a instruction com-
pletes there is no a free physical register. The obvious
approach to deal with this situation would be to squash
such instruction. However, in this situation, the oldest
instruction in the window would not be able to commit
because when its execution completes it would also find
that there is not any free physical register. Under this cir-
cumstances, no instruction would be allow to commit and
therefore no physical register would be freed, which
would result in a deadlock.

This deadlock can be avoided by a slight modification
of the register management policy. In particular, it suffices
to guarantee that a given number of the oldest instructions
that have a destination register will have a physical regis-
ter for renaming. Let us call this number thenumber of
reserved registers (NRR).In general, this parameter can be
different for floating point and integer registers. In this
way, the oldest NRR instructions that have a destination
register and those instructions in between without a desti-
nation register are guaranteed to commit. Since every
instruction that consumes a register frees another one
when it commits, the next NRR instructions with a desti-
nation register and those instructions in between are also
guaranteed to commit. Following the same reasoning it
can be proved that all instructions are guaranteed to com-
mit and therefore no deadlock occurs.

Such scheme is implemented by means of two pointers
in the reorder buffer, one for integer and the other for FP
instructions. Such pointers identify the oldest NRR inte-
ger/FP instructions that have a destination register and
they are called PRRint and PRRfp respectively (see Figure
3 for an example). In addition, there are two registers that
indicate the number of instructions below such pointers
that have a destination integer/FP register and another two
registers that indicate the number of such instructions that
have already allocated a physical register. Such counters
will be called Regint, Regfp, Usedint and Usedfp respec-
tively.

Every time an instruction with an integer destination
register commits PRRint is moved up to the next instruc-

tion with an integer destination register. If such instruction
has not yet allocated its physical register, Usedint is
decreased; otherwise it is left unchanged. If the head of the
reorder buffer is reached before finding the next instruc-
tion, then Regint is decreased. When a new instructions
with a integer destination register is decoded, if Regint is
lower than NRRint then Regint is increased and PRRint is
made to point to such instruction. The same procedure is
applied to instructions with an FP destination register and
their corresponding pointer and counters.

When an instruction completes, it allocates a new phys-
ical register as previously described, provided that the are
more free physical registers than NRRint/fp minus Usedint/

fp or it is an instruction not youngest than the one pointed
by PRRint/fp. Otherwise, the instruction is squashed and
sent back to the instruction queue to be re-executed again.

NRR can take any value from 1 to the number of physi-
cal registers minus the number of logical registers. It is
difficult to anticipate which is the best value without
experimental evaluation. A low NRR implies that the pro-
cessor has more registers to allocate on demand of com-
pleting instructions, which favor a more aggressive out-of-
order execution. On the other hand, when the processor
runs out of physical registers, the execution can progress
using only NRR registers for renaming (those reserved for
the oldest instructions) since those younger instructions
that have completed and thus allocated a new physical
register will not release any register until all previous
instructions and themselves have committed.

To be more precise, let us suppose that NRRint is equal
to 1, all the instructions have a integer destination register,
the number of logical registers is 32, the number of physi-
cal registers is 64 and the size of the reorder buffer is 64.
Suppose that at a given time the reorder buffer is full; the
oldest instruction, which has a long latency, is executing
but has not completed yet; the next 32 instructions depend
on the oldest one and thus have not been issued and the
remaining 31 instructions (the youngest ones) have all

Figure 3. Example of the use of the PRRint and PRRfp for
NRR equal to 2.

Reorder buffer

add r1,r2,r3

sub r2,r3,r5

load f2,0(r1)

store 0(r2),r3

bne r1,L

fadd f4,f4,f6

add r1,r2,r7

fdiv f4,f2,f8

PRRfp

PRRint

oldest

youngest



executed and completed. Since NRRint is equal to 1, the
youngest 31 instructions are allowed to allocate a register
when they complete since there is only one register
reserved for the oldest instruction. Then, when the oldest
instruction completes it allocates the reserved register.
Next, it commits an frees a register that is used by the fol-
lowing instruction. When this instruction commits, the
register that it frees can be used by the next one and so on.
In consequence, until the commit point reaches the young-
est 31 instructions, the remaining instruction have only
one renaming register available, which forces a sequential
execution.

In conclusion, avoiding to allocate some registers to
some instructions that cannot issue and giving them to
some younger instructions is beneficial because it allows
to advance some future work. However, it penalizes the
execution of the instructions in between.

Notice that having an NRR equal to the number of
physical registers minus the number of logical registers,
which could be considered the most conservative configu-
ration, is expected to perform at least as well as the con-
ventional register renaming scheme. In such scenario the
virtual-physical register scheme allocates all available
physical registers always to the oldest instructions, like the
conventional scheme. However, the virtual-physical regis-
ter scheme has important additional advantages. First, if
the processor runs out of a type (integer or FP) of regis-
ters, the processor is allow to continue executing instruc-
tions of the other type, whereas in the conventional
scheme the processor would stall. Second, the processor
cannot complete the execution of any instruction beyond
the oldest NRR with a destination register, like in the con-
ventional scheme. However, in the virtual-physical regis-
ter organization the processor is allowed to continue the
fetch and decode of further instructions. Finally, those
instructions without a destination register will never stall
once they have their operands, even if they are beyond the
PRR pointer. This may help for an earlier resolution of
branch instructions.

The performance achieved by different values of NRR
is experimentally evaluated in section 4.

3.4. Alternative allocation policy

One potential drawback of the virtual-register organiza-
tion described above is the re-execution of instructions
that do not have a physical register when they complete.
An alternative solution that we have researched is based
on allocating physical registers when instructions are
issued instead of when they complete. In such scheme, an
instruction with a destination register will be allowed to be
issued if it has a physical register available. Obviously the
drawback of this approach is that it reduces the register

pressure when compared with the conventional scheme
but not as much as the scheme based on allocating regis-
ters when the instructions complete. Section 4 compares
both approaches.

4. Performance evaluation

This section presents a performance evaluation of the
virtual-physical register organization. The evaluation of
the new scheme is performed by comparing the execution
time of an aggressive superscalar processor with a conven-
tional register organization with that of the same processor
with the virtual-physical register organization. In both
cases it is assumed the same amount of physical registers.

4.1. Experimental framework

A trace-driven simulator of a realistic out-of-order
superscalar processor has been developed to evaluate the
proposed register organization. Two different register
organizations have been simulated. The first one is the
conventional register renaming scheme used by the
R10000 [15] among others, which is based on a physical
register file and a map table that translates logical to phys-
ical registers. The second one is the virtual-physical regis-
ter organization proposed in this paper.

The processors can fetch up to eight consecutive
instructions every cycle. A perfect instruction cache is
assumed. Branch prediction is performed using a 2048
entry Branch History Table with a 2 bit up-down saturated
counter per entry. A 128-entry instruction reoder buffer is
assumed. There is one physical register file for integer
data and another for FP data. Both have 16 read ports and
8 write ports. The number of physical registers has been
varied from 48 to 96. Functional units are fully pipelined
except for integer and FP division. Table 1 shows the
number of functional units and their latency.

Three cache memory ports and the memory disambigu-
ation scheme implemented in the PA-8000 [6] have been
assumed in this experiment. Up to 8 instructions can com-
mit every cycle.

Functional Unit Count Latency

Simple Integer 3 1

Complex Integer 2 9 multiply
67 divide

Effective Address 3 1

Simple FP 3 4

FP Multiplication 2 4

FP Divide and SQR 2 16 divide

Table 1. Functional units and instruction latency.



The processor has a lookup-free data cache [7] that
allows up to 8 pending misses to different cache lines. The
cache size is 16 KB, and it is direct-mapped with 32-byte
line size. Cache hit latency is 2 cycles and the penalty for
a cache miss is 50 cycles. This cache configuration is cho-
sen to stress the penalties caused by the cache memory, as
expected in future microprocessors. An infinite L2 cache
is assumed and a 64-bit data bus between L1 and L2 is
considered (i.e., a line transaction occupies the bus during
four cycles).

Our experimentation methodology is trace-driven sim-
ulation. The object code, previously compiled with full
optimization for a DEC AlphaStation 600 5/266 with a
DEC 21164 processor, is instrumented using the Atom
tool [13]. The instrumented program is executed and the
trace generated feeds the processor simulator. A cycle-by-
cycle simulation is performed in order to obtain accurate
timing results. Because of the detail at which simulation is
carried out the simulator is slow, so we have simulated 50
million of instructions for each benchmark after skipping
the 100 million of instructions. Five floating-point (swim,
hydro2d, mgrid, apsi, wave5) and four integer (go, com-
press, li, vortex) SPEC95 benchmarks have been selected
for this study. Each program was run with the largest input
set available for that benchmark.

4.2. Results

4.2.1 Write-back allocation with maximum NRR. The
first experiment evaluates the performance of the virtual-
physical register scheme when physical registers are allo-
cated in the write-back stage. Sixty four physical registers
(like some current microprocessors have) are considered
for each register file. The NRR parameter is set to its max-
imum value (number of physical register minus number of
logical registers: 32) since this configuration is expected to
perform at least as well as the conventional scheme.

Table 2 shows the instructions committed per cycle
(IPC) for the conventional and the virtual-physical
schemes. It can be seen that the virtual-physical register
organization provides a significant improvement for all
the benchmarks. In average, the increase in IPC is of 19%
(12% if the miss penalty is 20 cycles instead of 50) and it
goes up to 84% for the best case. It can also be observed,
that the improvement is much higher for floating point
than for integer programs. Each committed instruction is
executed in average 3.3 times. However, this does not hurt
performance since re-executions usually spend resources
that otherwise would be unused.

4.2.2 Write back allocation for different values of
NRR. The next experiment evaluates the effect of the
NRR parameter on the performance of the virtual-physical

register organization. This parameter determines the num-
ber of oldest instructions that are guaranteed to have a
physical register. This parameter can be different for inte-
ger and FP registers although we consider here the same
value for both. As discussed in section 3.3, one can find
reasons that favor both high and low values of NRR. For
64 physical and 32 logical registers, NRR can take any
value from 1 to 32. Figure 4 shows the speedup achieved
by the virtual-physical register organization when com-
pared with the conventional one (IPCvirt./IPCconv.) for
NRR equal to 1, 4, 8, 16, 24 and 32.

It can be seen in Figure 4 that there are significant dif-
ferences between integer and FP programs. For the latter,
the maximum NRR (32) is almost always the best, except
for hydro2d that achieves the best performance for 24. The
speedup obtained with NRR equal to 32 is 1.3 in average
for the FP programs. Values of NRR between 16 and 24

Conv. reg.
Virtual-

physical reg.

IPC IPC imp. (%)

int

go 0.73 0.76 4

li 0.98 1.05 7

compress 1.75 1.84 5

vortex 1.14 1.24 9

FP

apsi 1.37 1.76 28

swim 1.12 2.06 84

mgrid 1.32 2.09 58

hydro2d 2.16 2.24 4

wave5 1.64 1.71 4

harmonic mean 1.23 1.46 19

Table 2. Instruction completion rates of the conventional
and virtual-physical register organizations.

Figure 4. Speedup of the virtual-physical register organi-
zation with register allocation at write-back.
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provide a better performance than the conventional
scheme for all FP programs but the performance decreases
when NRR decreases. Finally, very small values of NRR
are not adequate for any FP programs. In this case, the vir-
tual-physical register organization can perform worse than
the conventional scheme. It is remarkable the good perfor-
mance of the new scheme for the swim program for any
value of NRR. The speedup for this benchmark range
from 1.27 to 1.84.

For integer benchmarks the speedup of the virtual-
physical register scheme is lower but still significant. In
this case only NRR equal to 32 provides an improvement
for all the benchmarks. Decreasing NRR provides a slight
improvement for two programs (go and li) but a signifi-
cant detriment for the other two.

4.2.3 Issue allocation versus write-back allocation.As
discussed in section 3.4, an alternative implementation of
the virtual-physical register organization could allocate the
physical registers in the issue stage instead of the write-
back. This will avoid re-executions of instructions but will
not be as effective to reduce the register pressure. Figure 5
shows the speedup of the virtual-physical register organi-
zation with this alternative register allocation scheme. In
this case, the optimal value of NRR is 32 (24 has the same
average performance), which provides an improvement of
4% over the traditional register mapping scheme.

Figure 6 compares the two alternative schemes to allo-
cate physical registers in the virtual-physical register orga-
nization. In each case, the optimal value of NRR observed
in the previous experiments is considered (32 for both). It
can be seen that allocating registers in the write-back stage
significantly outperforms the other scheme.

Figure 5. Speedup of the virtual-physical register orga-
nization with register allocation at issue.
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4.2.4 Varying the number of physical registers. We
have also evaluated the virtual-register scheme for a dif-
ferent number of physical registers. In addition to the size
of each register file previously considered (64) we have
also evaluated the performance of the virtual-physical reg-
ister organization for 48 and 96 registers. Figure 7 shows
the IPC of the virtual-physical organization with allocation
in the write-back stage and NRR equal to 16, 32 and 64
respectively, compared with that of the conventional
renaming scheme. It can be seen that the virtual-physical
organization always outperform the conventional one. The
improvement increases when the number of physical reg-
ister decreases, as one could expect since the new organi-
zation reduces the register pressure. In average, the
improvement of the virtual-physical scheme is 31%, 19%
and 8% for 48, 64 and 96 registers respectively.

Another conclusion that can be drawn from these
results is that the virtual-physical register organization can
reduce the size of the register file without penalizing per-
formance when compared to the conventional scheme. For
instance, the average IPC of the virtual-physical register
organization with 48 registers (1.17) is about the same as
that of the conventional scheme with 64 registers (1.23);
thus, the new organization provides a 25% register saving.

5. Conclusions

We have presented a novel register renaming scheme
for dynamically scheduled processors. The key idea
behind the new organization is to delay the allocation of
physical registers, instead of doing it in the decode stage,
in order to reduce the register pressure.

The new scheme is based on introducing a new concept
that is called virtual-physical registers. Virtual-physical
registers are not related to any storage location but they
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Figure 6. Write-back versus issue register allocation.



are merely tags that are used to keep track of register
dependences.

We have investigated two alternative realizations of the
virtual-physical register scheme that differ in the time
when physical registers are allocated. We have shown that
the scheme that allocates them in the write-back stage is
more effective than the scheme that allocates them in the
issue stage, in spite of the large number of instruction re-
executions that the former scheme implies. Besides, both
schemes outperform the traditional register renaming
organization.

We have also researched the most critical design
parameter of the novel organization, that is the number of
oldest instructions in the instruction window that are guar-
anteed to have a physical register. This feature is neces-
sary to avoid deadlocks in a precise exception processor.

We have shown that the new renaming approach pro-
vides significant improvements for a different number of
physical registers. When compared with the conventional
scheme, the virtual-physical registers provides an increase
in IPC of 31%, 19% and 8% for 48, 64 and 96 physical
registers. In general, the improvement for FP programs is
higher than for integer benchmarks. We have also shown
that the new scheme with 48 registers provide about the
same performance than the traditional one with 64.

Finally, it is important to point out that the benefits of
reducing the register pressure can be even much more
beneficial for future architectures with a larger instruction
window and thus, a much higher register pressure. For
instance, we believe that in the context of multithreaded
architectures the benefits of the virtual-physical register
organization will be more important than those observed
for a superscalar processor. We plan to explore this sce-
nario in future work.

Figure 7. IPC of the virtual-physical register organiza-
tion and the conventional renaming scheme for a varying
size of each register file.
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