
Penelope1: The NBTI-Aware Processor

Jaume Abella, Xavier Vera, Antonio González
Intel Barcelona Research Center, Intel Labs - UPC

{jaumex.abella, xavier.vera, antonio.gonzalez}@intel.com

Abstract1

Transistors consist of lower number of atoms with
every technology generation. Such atoms may be
displaced due to the stress caused by high temperature,
frequency and current, leading to failures. NBTI (negative
bias temperature instability) is one of the most important
sources of failure affecting transistors. NBTI degrades
PMOS transistors whenever the voltage at the gate is
negative (logic input “0”). The main consequence is a
reduction in the maximum operating frequency and an
increase in the minimum supply voltage of storage
structures to cope for the degradation. Many PMOS
transistors affected by NBTI can be found in both
combinational and storage blocks since they observe a
“0” at their gates most of the time.

This paper proposes and evaluates the design of
Penelope, an NBTI-aware processor. We propose (i)
generic strategies to mitigate degradation in both
combinational and storage blocks, (ii) specific techniques
to protect individual blocks by applying the global
strategies, and (iii) a metric to assess the benefits of
reduced degradation and the overheads in performance
and power.

1. Introduction

Reliability is a key issue in microprocessor design
because a given performance must be provided for a given
time period (product’s lifetime). While technology
evolution drives to smaller devices (transistors and wires),
the supply voltage does not scale at the same pace, leading
to higher current densities (which also produce higher
temperatures). The increased current density and
temperature accelerate device degradation, and thus,
shorten the lifetime of the product. Moreover, the size of
the chip does not scale, which implies that in every
technology generation there is a larger number of such
highly vulnerable devices.

1 In the Greek mythology, Penelope spent 20 years waiting for her
husband Odysseus to return from the Trojan War. In order to refuse
marriage proposals during that time, she devised several tricks, one
of which was pretending to weave a shroud and claiming she would
choose one suitor when she had finished. Every night for three years
she undid part of the shroud.

The increasing electric field and temperature make
negative bias temperature instability (NBTI) [4][17]
emerge as a threat for future technologies. NBTI affects
PMOS transistors when negative voltage is applied at the
gate (logic input “0”), causing an increase in the threshold
voltage, and hence, a lower speed of the transistor.

Degradation due to NBTI has an impact in the power
and performance of circuits. The cycle time is impacted
because circuits become slower when they are degraded
(if degradation is very high they may even fail). The
conventional solution to address the decreased speed of
circuits is guardbanding, which consists in reducing the
operating frequency to account for the degradation that
circuits may experience during their lifetime. Large
guardbands of 10-20% in the cycle time may be required
[1]. Similarly, storage structures observe an increase of
their minimum voltage required to keep their contents
(Vmin) [3]. This issue is also addressed with
guardbanding, which consists in increasing the nominal
Vmin by a given voltage to account for the degradation
that circuits may experience. For instance, 10% Vmin
increase may be required to tolerate 10% threshold
voltage (VTH) shifts [1]. Higher Vmin produces higher
power because the supply voltage cannot be decreased as
much as desired for power savings.

NBTI depends on circuit parameters and data patterns.
On one hand, NBTI depends on the geometry of
transistors, operating voltage and frequency, and
temperature. Such factors affect power, area and delay of
circuits, so changing them may have a negative impact in
the whole processor design. On the other hand, data
patterns are highly biased for some bits causing some
PMOS transistors to degrade faster, which leads to larger
guardbands. This work focuses on mitigating NBTI by
reducing the amount of time that PMOS transistors
observe a “0” at their gates (zero-signal probability). This
paper presents and evaluates Penelope, an NBTI-aware
processor. The main contributions of this paper are:
• Strategies to mitigate NBTI for combinational and

memory-like blocks.
• A global approach to protect the whole processor by

adapting previous strategies to each concrete block.
• A metric to compare the cost and benefit of different

solutions based on how much they mitigate NBTI and
how much overhead they incur.

40th IEEE/ACM International Symposium on Microarchitecture

1072-4451/07 $25.00 © 2007 IEEE
DOI 10.1109/MICRO.2007.11

85

40th IEEE/ACM International Symposium on Microarchitecture

1072-4451/07 $25.00 © 2007 IEEE
DOI 10.1109/MICRO.2007.11

85

40th IEEE/ACM International Symposium on Microarchitecture

1072-4451/07 $25.00 © 2007 IEEE
DOI 10.1109/MICRO.2007.11

85

By reducing the degradation due to NBTI the
guardband of the different blocks can be reduced to
increase their performance. Guardband reductions of 10X
have been reported (i.e., from 10-20% to only 1-2%) [1].
Similarly, mitigating NBTI in memory-like structures
provides energy savings due to a lower Vmin. Some
experiments show VTH shifts one order of magnitude
lower for non-biased data patterns (i.e., from 10% VTH to
only 1%) [1].

The rest of the paper is organized as follows. The
remaining of this section is devoted to illustrate the high
bias of data flowing through the pipeline that motivates
this work. Section 2 introduces the physics of NBTI.
Global strategies to mitigate NBTI are presented in
Section 3. Section 4 presents the evaluation framework,
specific mechanisms for an adder, register files,
schedulers and caches, and a metric to compare the
different NBTI-aware techniques. Finally, Section 5 draws
the main conclusions of this work.

1.1 Motivation

We have studied data from real world programs (more

details about such programs are provided later) and
evaluated how biased data are for different structures of
the processor such as adders, register files, schedulers and
caches.

Adders have a wide variety of PMOS transistors
observing different inputs. However, some of them
usually observe a “0” at their gate most of the time; for
instance, those PMOS transistors whose gate is connected
to the carry in of the adder have a high bias because such
carry in is typically “0”. Our experiments show that such
bit is “0” more than 90% of the time consistently across
our working set. Therefore, PMOS transistors whose gates
are connected to the carry in degrade very quickly.

Patterns for register files and data caches correspond to
those of the data being fetched, operated and stored back
again. Our experiments for integer and FP data show that
zero-signal probability for some bits is very high. For
instance, zero-signal probability for the integer register
file ranges between 65% and 90% for all bits. Similarly,
some fields of the scheduler have almost 100% zero-
signal probability.

Overall, it is very common observing highly biased
inputs for some PMOS transistors, which will degrade
very quickly. We can conclude that it is crucial reducing
the maximum amount of time that any PMOS transistor
observes a “0” at their gate to mitigate NBTI degradation,
which enables shorter guardbands (higher performance)
and lower Vmin (lower power)..

2. NBTI Source of Failure

NBTI has emerged as a significant issue for reliability

of future technologies. This section illustrates the main
mechanisms involved in NBTI degradation of transistors.
First, we illustrate the physics behind NBTI. Then, we

introduce the self-healing effect of NBTI that allows
recovering from degradation.

2.1 NBTI Physics

NBTI breaks progressively silicon-hydrogen bonds at

the silicon/oxide interface whenever a negative voltage is
applied at the gate of PMOS transistors [13][17]. During
negative voltage at the gate Si-H breakages generate more
interface traps (NIT), which capture electrons flowing from
source to drain, leading to an increase of the threshold
voltage (VTH). Therefore, transistors become slower and
may not fit timing requirements, especially for those
circuits that rely on a given relation between the delay of
the pull-up and the pull-down.

Similarly to NBTI, PBTI (positive voltage temperature
instability) affects NMOS transistors. While the physics of
NBTI on PMOS transistors and PBTI on NMOS ones is
basically the same, the degradation is significantly
different. State-of-the-art experiments [15] have shown
that PBTI degradation in NMOS transistors is practically
negligible when compared to NBTI in PMOS transistors.
Different parameters have an effect on NBTI:
• Geometry. While increasing the length of PMOS

transistors increases the degradation due to NBTI
[16][17], increasing the width decreases such
degradation [7]. Length is typically set to the
minimum possible and only the width is changed to fit
timing, power and area constraints. As a rule of thumb
we can consider that NBTI can be mitigated by using
wider transistors [19], but it has an impact in delay,
area and power.

• Voltage. The higher the operating voltage, the higher
the NBTI-degradation is [13][16]. Therefore, lower
operating voltage is desired to mitigate NBTI.

• Frequency. Some studies show that NBTI is
independent of the operating frequency [6], whereas
other works show a weak dependence [1][4] where
higher frequencies produce lower NBTI degradation.
Either way, the relation between frequency and NBTI
degradation is low.

• Temperature. Research on the area consistently shows
that NBTI degradation is higher for higher operating
temperatures [8][13].

• Zero-signal probability. Different studies have
reported a strong dependence between the amount of
NBTI degradation and the zero-signal probability
[1][4]. The larger the amount of time with input set to
“0”, the higher the degradation due to NBTI is.
Geometry of transistors as well as the operating

voltage and frequency are set considering not only NBTI
but power, area and delay of circuits, so changing them
may have a negative impact in the whole processor
design. Additionally, controlling the processor
temperature has similar implications as the previously
mentioned parameters. Thus, the focus of this work is
mitigating NBTI by reducing the zero-signal probability
of PMOS transistors.

868686

2.2 NBTI Self-Healing Effect

The higher the time a PMOS observes a negative

voltage at the gate, the farther the hydrogen atoms are
dragged. Conversely, when its gate is set to “1” not only it
does not degrade but it enjoys from the self-healing effect
of NBTI [1][4][6][14]. During such periods, those
hydrogen atoms that were dragged away from the
interface of the gate are dragged back to the interface
filling the holes that they created. The closer to the
interface hydrogen atoms are, the faster they are dragged
back to the interface. Hence, whenever the input at the
gate of a PMOS transistor switches, hydrogen atoms are
dragged back and forth providing a variable behavior of
the transistor. NBTI degradation (self-healing effect)
happens in such a way that the number of NIT created
(recovered) in the interface during a given period of time,
∆t, is a fraction of the current number of Si-H bonds (H
atoms). This behavior is illustrated in Figure 1, where
periods of degradation and self-healing alternate (this
picture has been taken from [4]).

Figure 1. NIT at the gate interface of a PMOS during

alternate periods of stress (gate set to “0”) and
relax (gate set to “1”) [4]. Note that VTH shift

depends directly on NIT

As shown in the figure, degradation speed decreases as
the number of Si-H bonds decreases (and hence, the NIT
increases). Recovery happens just the other way around:
the higher the number of NIT, the faster the recovery is.
Full recovery could only happen after infinite relaxation
time. As it can be seen, during relaxation periods
degradation does not freeze but decreases, which implies
that keeping the gate of PMOS transistors set to “1”
extends their lifetime significantly. NBTI is not well
understood yet, so only chip testing can report real data on
the guardband reduction (or lifetime increase) achieved by
reducing the zero-signal probability of PMOS transistors.
Nevertheless, some estimates [1] show that guardbands in
the cycle time can be reduced by 10X or that lifetime can
be increased by a factor of at least 4X [4]. Similarly, there
is a lack of data reporting the magnitude of benefits in
terms of Vmin that can be achieved if NBTI is mitigated,
but VTH shift reductions of 10X have been reported [1].

3. Strategies to Mitigate NBTI

State-of-the-art solutions to NBTI can be considered to

remove some of the guardbands:
• Memory-like blocks may operate in inverted mode

during half of the time as proposed in [10], which
reduces zero-signal probability down to 50%, and

hence guardbands can be reduced by 10X [1][4][10].
The cost of such a technique comes from the extra
XNOR gates required to invert/deinvert data with the
invert bit (global signal indicating the current mode),
which has an impact in cycle time. Note that inverting
is not a suitable solution for combinational blocks
because inverted and non-inverted inputs may stress
the same PMOS transistors.
Since such solution has significant cost in terms of

performance and does not work for combinational blocks,
we propose a set of solutions for the different types of
structures of processors. Our solutions mitigate NBTI by
reducing the zero-signal probability of PMOS transistors
without using extra resources, and thus the cost in terms
of hardware, performance and TDP is negligible.

3.1 Strategy for Combinational Blocks

Combinational circuits may exhibit different
degradation levels in each PMOS transistor because
different inputs for the circuit can lead to different inputs
at the gate of PMOS transistors. In particular, it may
happen that some PMOS transistors degrade practically
100% of the time because they have a “0” at their gates
most of the time, whereas some others may hardly
degrade because they have a “1” at their gates. Each
individual combinational circuit may exhibit different
relations between the degradation of their PMOS
transistors. An example is shown in Figure 2. We can
observe that the PMOS transistor of the inverter will
observe D at its gate. D depends on A, B and C. If it is the
case that C is “1” most of the time, D will be “1” most of
the time, but if all inputs are “0” most of the time, D will
be very biased towards “0”, and therefore, the PMOS
transistor of the inverter will degrade significantly. In
general, combinational circuits will degrade more or less
depending on their inputs.

Figure 2. Example of a combinational circuit

As shown in Section 1.1, data may be very biased for
combinational blocks. Based on the observation that many
combinational blocks are idle a significant fraction of
time, we propose using special inputs alternatively during
idle periods. Note that any given input would always
degrade the same transistors, but by alternating several
inputs that degrade different PMOS transistors the
maximum degradation of any PMOS is reduced with
practically no cost.

Several issues must be addressed to implement this
technique for a given combinational block:
• First, we must analyze how often the block is idle so

we can set special values in its input latches. If the
block is idle most of the time (e.g., integer and FP

878787

ALUs), there is room to set special inputs most of the
time and degradation is kept low. Conversely, if the
block is busy most of the time we can set special
inputs during the idle periods and resize those PMOS
transistors that are expected to make the block fail
before the target lifetime has elapsed, which has a cost
in delay, area and power.

• The other main issue is how to choose the inputs to
use during idle periods. Based on the knowledge of the
circuit we can infer which inputs are most likely to
evenly distribute PMOS degradation. Otherwise, we
can generate a small set of inputs, identify which
PMOS transistors are degraded for each one of them,
and choose those inputs that degrade different PMOS
transistors to be used alternatively (e.g., in a round-
robin fashion). We have observed that with few inputs
we can reduce the maximum degradation of any
PMOS transistor in the block. Other algorithms to
choose the inputs are part of our future work.
Regarding the implementation of the mechanism, the

selected inputs need to be hardwired and written into the
input latches of the corresponding block when it is idle.
Scan ports of latches may be used for that purpose. A
simple implementation sets one of such inputs in each idle
period in a round-robin fashion. Although idle periods
may have different lengths, in the long run all the low-
degrading inputs will be used the same amount of time.

3.2 Strategy for Memory-like Blocks

Memory-like structures have a special characteristic.

Bit cells consist of two inverters arranged in a ring-
manner. Hence, there is always one of the inverters with
negative voltage (logic input “0”) at its gate, which
implies that its PMOS transistor degrades. The best case
degradation happens when the value at the output of each
inverter is “0” 50% of the time, which means that both
PMOS transistors degrade the same. Otherwise, one of
such PMOS transistors degrades faster and the memory
cell fails earlier. As explained in Section 1.1, it is quite
common observing some bits highly biased towards “0”.

Statistically, holding 50% of the time values inverted
would produce 50% degradation for each PMOS in the bit
cell [1][4]. However, operating in inverted mode 50% of
the time may be expensive in terms of delay because a
XNOR gate must be introduced in the read/write data
paths to invert/deinvert data when operating in inverted
mode [12]. Such extra delay may pay off for some slow
structures (e.g., 2nd level caches), but may harm
performance for some fast structures (e.g., register files,
schedulers, 1st level caches, etc.).

We propose mechanisms to write special values in
empty entries so that on average each bit cell stores “0”
and “1” 50% of the time each. The different situations that
may arise for a block or its different fields are as follows:

I. Entries are available more than 50% of the time on
average (e.g., 1st level caches). In this case special
values would be inverted values and they will be

written when needed to keep 50% of the entries
inverted on average. The effect would be the same
as operating 50% of the time in inverted mode.
Writing actual inverted values would require
reading actual values, inverting them and writing
them back. Sampling is an efficient solution to
avoid the read operation. Regular values can be
sampled and inverted periodically, and used to
update those entries that must be inverted.
Sampling produces near-optimal balancing in the
long run. Our mechanism uses a special register for
each structure, which is referred to as RINV, to
store inverted sampled values. RINV is updated
periodically with the inversion of any value being
stored in the block. For instance, we can update
RINV with the value flowing through a given write
port of the block every one million cycles.

II. There are less than 50% of the entries available on
average but no bit stores either “0” or “1” more
than 50% of the time (overall time). That means
that by writing the proper value during idle periods
perfect balancing can be achieved without harming
performance. For instance, if a given bit cell is
busy 75% of the time and holds a “0” 67% of the
time, it means that 50% of the time it holds a “0”,
25% a “1” and 25% it is idle. Therefore, we can
store a “1” during idle time for perfect balancing.

III. There are less than 50% of the entries available on
average and at least one of the bits stores either “0”
or “1” more than 50% of the overall time. In this
case, whatever we write in such bit during idle
periods perfect balancing is unfeasible. Therefore,
guardband savings will be lower than in the case of
perfect balancing. Alternatively, we can resize
those bit cells, but such solution has some cost in
terms of power and area.

IV. The entries are always busy. In this case nothing
can be done because there are not idle periods.

V. The contents of the entries are self-balanced. For
instance, if values stored are uniformly distributed
or completely random values, the bias of each bit
cell will be the ideal one (50%) in the long run.

In order to reduce the hardware overhead of write
operations for inverted values, existing ports can be used
when available in such a way that extra write ports are not
required. In those cases when there is no write port
available and updates are delayed one or two cycles, the
impact on NBTI degradation is negligible because entries
in different blocks remain either inverted or non-inverted
for tens, thousands or even millions of cycles depending
on the block.

Techniques to decide what to write and when for
different types of memory-like structures may change
depending on the characteristics of such structures.
Memory-like structures can be classified into two
categories depending on the way that their entries are
deallocated: cache-like and explicitly managed structures.
The following subsections describe both categories.

888888

3.2.1 Cache-like Blocks. Entries in cache-like structures
(e.g., caches, branch predictor, etc.) are evicted when an
available entry is required. Based on the observation that
most of the cache contents correspond to useless data
(they will be evicted before being reused [2][9]), we
propose to keep a fraction of the cache contents, including
both data and tags, invalidated and with inverted values so
that the degradation of the PMOS transistors is balanced.

Next we describe (i) the granularity at which the cache
contents can be invalidated and overwritten, (ii) the
fraction of the cache that stores special values and (iii)
some implementation issues.

Granularity. The mechanism based on invalidating
and inverting (we refer to it as inversion) can be applied at
different granularities:
• Set. A given number of cache sets can be chosen for

inversion (typically half of them) and the cache
capacity is effectively halved, so there is some
performance loss. The actual cache sets inverted are
selected in a round-robin fashion at coarse time
periods to minimize the extra cache misses.

• Way. Similarly, we can choose a given number of
ways for inversion. The actual cache ways inverted are
selected in a round-robin fashion. The cache works as
if it had lower associativity and smaller size, so some
performance loss is introduced.

• Line. Individual cache lines from different sets or
ways can be chosen for inversion. It can be
implemented by keeping a given ratio of cache lines
inverted (and invalid). When an inverted cache line is
refilled with valid data, a different valid cache line is
inverted and invalidated to keep the ratio of cache
lines inverted constant. To select the cache line to be
inverted, we can use the information provided by the
replacement policy (LRU, pseudoLRU, ...) and pick
those cache lines that will be replaced earlier (LRU
position). This approach is likely to have a minimal
performance penalty considering that most of the
cache access hits occur in the most recently used
(MRU) position of cache sets (e.g., our simulations for
a 32KB 8-way DL0 cache show that 90% of the hits
occur in the MRU position, 7% in the MRU+1
position, and 3% in the remaining 6 positions). One
possible implementation would use a counter
(INVCOUNT) that tracks the number of inverted cache
lines in the whole cache. Whenever INVCOUNT is
below a given threshold (INVTHRESHOLD) and there
is a write port available, a valid cache line from a
random set is invalidated and inverted as explained
above. Then, INVCOUNT is incremented. If there is
no valid cache line in the selected set or there is not
any available write port, INVCOUNT is not updated,
and therefore, another try will be done in the future
because INVCOUNT will remain below
INVTHRESHOLD. Note that the valid/state bits
indicate whether the cache line is valid and non-
inverted, or invalid and inverted.

Fraction of Invalid Cache Contents. The fraction of
the cache contents that are kept invalid and inverted can
be chosen depending on the amount of NBTI-recovery
that we want to achieve. For perfect balancing we would
need 50% of the cache contents inverted on average.

The given fraction of the cache contents to be inverted
(K) is a parameter of the proposed mechanisms, and can
be either set a priori (fixed) or dynamically adjusted
(dynamic). Each alternative has advantages and
drawbacks:
• Fixed. Using a fixed invert ratio requires a simpler

implementation, but may harm performance for those
programs that make an effective use of all or most
cache space. For perfect balancing we would choose
K=50%.

• Dynamic. Using an invert ratio that dynamically
changes can further improve performance while
achieving close to perfect balancing. The idea is to
select low K values for programs that use most of the
cache and high K values for programs using a small
fraction of the cache space.

Implementation Issues. To implement a dynamic
invert ratio we need a mechanism to detect whether
inverting and invalidating some cache contents impacts
performance of a program. We have considered that the
current program is run for some instructions to measure
the performance impact that the inversion would have
without actually performing it. Depending on whether the
performance loss is below or above a given threshold, the
mechanism is activated or deactivated respectively. This
action must be repeated periodically to decide whether the
mechanism is activated or deactivated during the next
period. Our simulations show that the induced extra miss
rate is a good performance indicator. Obtaining such miss
rate is done by adding a bit per cache line that indicates
whether cache lines would have been inverted if the
mechanism was activated. Whenever a hit happens in such
cache lines, it is counted as an induced extra miss. After
the test step we decide which value of K to use.

3.2.2 Explicitly Managed Blocks. The main difference
between explicitly managed and cache-like blocks lies on
the fact that an entry can be inverted (and invalidated)
when needed in a cache-like block, whereas entries in
explicitly managed blocks can be used to store inverted
(or special) values only when they have been released.
Different situations may arise depending on their
occupancy and the contents of the bit cells during busy
periods as described before. Each situation requires a
different strategy.

We will make use of the RINV register to update idle
entries. For structures with multiple fields, each one is
treated as if it was an independent structure, and hence,
independent RINV registers and strategies are used for
each field. Figure 3 describes the casuistic to choose the
technique to use. The different techniques to be used work
as follows:

898989

• ALL1 (0): the contents of RINV are always set to 1 (0).
This technique is used in situation III (section 3.2).

• ALL1-K% (0): the contents of RINV are set to 1 (0)
K% of the time, and the rest of the time RINV is set to
0 (1). Note that ALL1 (0) is a special case of ALL1-K%
(0) when K=100%. This technique is used in situation
II (section 3.2).

• ISV: the contents of RINV are updated with inverted
sampled values (ISV), but the entries in the block are
updated only 50% of the overall time. To measure
how long entries hold inverted or non-inverted
contents we can use timestamps. Whenever an entry
has hold non-inverted contents longer than inverted
ones, such entry is updated with inverted contents. The
update may happen at release time. Statistically, all
entries will spend the same time inverted, and thus,
tracking all entries or any entry gives the same results.
Thus, we sample a single entry to decide when to
write inverted contents. Such entry can be a fixed one,
or one chosen by random selection, round-robin, etc.
In our case we choose a fixed entry for the sake of
simplicity. This technique is used in situation I
(section 3.2).

Figure 3. Casuistic to choose the proper technique
for a given field

3.3 Strategy for Latches

Although latches are memory-like blocks because they

consist of bit cells, they are a special case because we
cannot set inverted or special values easily. Latches feed
other blocks and we may need to set some values to
mitigate NBTI in such blocks, which may not provide
perfect balancing for the bit cells of latches.

Fortunately, transistors in latches are usually quite
large because they have large fan-outs and do not have
sense amplifiers to accelerate their reading. Therefore,
their lifetime can be long enough even if their contents are
highly biased. If it is the case that lifetime of some latches
is not long enough and large guardbands are required,
mechanisms to mitigate NBTI in latches must be used.
Such mechanisms should trade between the proper inputs
to mitigate NBTI in the blocks they feed and the proper
inputs to mitigate NBTI in the latches themselves.

4. Penelope: The NBTI-Aware Processor

This section presents case studies of the strategies
described in Section 3, the evaluation framework and a
new metric to measure the cost and benefit of any NBTI-
aware mechanism. Finally, a global view of the whole
processor is provided.

The case studies considered for the Penelope processor
are a combinational block (Ladner-Fischer adder), an
explicitly managed block with large idle time (register
file), an explicitly managed block with short idle time
(scheduler), and two cache-like blocks (first level data
cache (DL0) and data TLB (DTLB)).

4.1 Evaluation Framework

Results provided for register files, schedulers and

caches have been collected from an IA32 trace-driven
Intel® production simulator. Our workload consists of
531 traces of 10 million consecutive IA32 instructions
each, which were obtained from different programs
presented in Table 1. The processor configuration
resembles the Intel® Core™ Microarchitecture, although
our techniques can be used in any kind of processor.

Aging simulations for the adder have been performed
with an Hspice-like Intel® production simulator for aging
at electrical level using 65nm technology. Inputs for the
adder have been sampled from the traces in Table 1. Idle
time for the adder has been obtained with the same IA32
trace-driven simulator used for the rest of experiments
assuming that there is an adder in each integer and address
generation port.

Table 1. Workloads

Benchmark suite # traces Description
Encoder 62 Audio/video encoding
SpecFP2000 41 Floating-point specs
SpecINT2000 33 Integer specs
Kernels 53 VectorAdd, FIRs
Multimedia 85 WMedia, photoshop
Office 75 Excel, Word, Powerpoint
Productivity 45 Internet contents creation
Server 55 TPC-C
Workstation 49 CAD, rendering
SPEC2006 33 Specs

4.2 NBTI Metric

Several factors must be considered to decide whether a
solution for NBTI is worth or not. Delay (or performance)
is a key metric. Delay is the product of two factors: (i) the
number of cycles of execution and (ii) the cycle time.
While energy is especially important in the portable
market segment, TDP is a key metric in all market
segments. TDP is measured as the maximum amount of
power that the cooling system is required to dissipate. Any
technique requiring a higher TDP implies a modification
of the processor design or more expensive cooling
solutions. Any NBTI-aware technique requiring extra
area has an impact either in performance or in TDP. For

IF (occupancy > 50%) THEN
 IF (occupancy x bias to 0 > 50%) THEN
 use ALL1
 ELSE IF (occupancy x bias to 1 > 50%) THEN
 use ALL0
 ELSE IF (bias to 0 > bias to 1) THEN
 use ALL1-K%
 ELSE
 use ALL0-K%
 ENDIF
ELSE
 use ISV
ENDIF

909090

the sake of simplicity, we assume that area impacts
linearly TDP although other transformations of area
overhead into delay could be considered instead. Finally,
any technique aimed to mitigate NBTI provides some
benefit in terms of NBTI guardband reduction. We will
report benefits of guardband reduction in the cycle time,
so this factor will impact directly the delay.

All factors are combined in one metric (see equation
(1)) that we use to compare different techniques. Similarly
to PD3 (ED2) [5], which weights delay and power (energy)
in high-performance processors, delay is cubed in our
metric. We state without proof that the best techniques to
mitigate NBTI are those with lowest NBTIefficiency in
equation (1). Although absolute values can be used for all
the parameters, we will use relative values in the
remaining of the paper.

()() TDPandNBTIguardbDelayencyNBTIeffici ⋅+⋅= 31 (1)
Equation (1) can be used for any block very easily.

However, obtaining the different parameters for the whole
processor may be a bit trickier. We show in equations (2),
(3) and (4) how delay, TDP and NBTI guardband are
obtained for a processor. The delay of the whole processor
is the product of the number of cycles per instruction
(CPI) and the cycle time. While the cycle time is the
maximum cycle time imposed by any block, the CPI
produced by the different blocks cannot be combined
directly and requires full simulation of all mechanisms
together to consider the cross-impact between different
mechanisms. TDP is the accumulation of the TDP of each
block. Finally, the NBTI guardband of the processor is the
maximum guardband required by any block because we
assume that all paths of the different blocks have been
adjusted to fit the cycle time to save power.

i

Numblocks

iprocessor CycleTimeMAXCPIDelay
1=

⋅= (2)

∑
=

=
Numblocks

i
iprocessor TDPTDP

1

 (3)

i

Numblocks

iprocessor ndNBTIguarbaMAXandNBTIguardb
1=

= (4)

In order to illustrate the new metric we evaluate the
baseline solution to mitigate NBTI presented in Section 3:
inverting data periodically. We also consider the case
where we pay the whole guardband (we assume 20%
guardband in the cycle time [1]).
• The baseline case pays the whole 20% delay

guardband to tolerate NBTI. Our metric provides the
following result:

()() 73.112.011 3 =⋅+⋅=encyNBTIeffici

• If the block is a memory-like structure we can
consider a design that operates in inverted mode half
of the time. Such design requires introducing XNOR
gates in all data-paths as explained in Section 3. The
overhead in area and TDP is negligible, but there is
some impact in the cycle time. For instance, we can
consider that XNOR gates have the delay of 1 FO4
and the cycle time is 10 FO4. Then, the impact in
delay is 10%. In this example we can assume that by

inverting the guardband is reduced by 10X [1].
Overall, the efficiency of such a solution would be as
follows:

()() 41.1102.011.1 3 =⋅+⋅=encyNBTIeffici

Inverting would be the most efficient solution for
memory-like blocks, whereas paying the whole guardband
would be the only solution for combinational blocks. We
can observe that there is significant margin for
improvement by further reducing delay, TDP and NBTI
guardband overheads.

4.3 Case Study for Combinational Blocks:
Ladner-Fischer Adder

This section validates our strategy to mitigate NBTI in

combinational blocks. We have implemented a 32-bit
Ladner-Fischer adder [11], whose layout has been
generated for 65nm technology. Ladner-Fischer adder is a
high-performance adder that speedups the addition at the
expense of some hardware cost.

Accordingly with the strategy described in Section 3.1,
we have studied the utilization of the adders for our 531
traces and found out that (i) if additions are allocated to
adders with priorities, the utilization of the adders ranges
between 11% and 30%, but (ii) if additions are distributed
uniformly across adders, the utilization of adders is 21%.

The second step consists in choosing the proper inputs
(synthetic inputs) to use during idle periods. Inputs during
idle periods are referred to as InputA, InputB and CarryIn.
Whenever we indicate that InputA or InputB are 0 (1), it
means that all their bits are 0 (1). The inputs we have
chosen are the eight combinations given by setting InputA,
InputB and CarryIn either to 0 or 1. These synthetic inputs
have been chosen because they are very likely to
propagate either “0” or “1” to all PMOS transistors.
Besides, some of these inputs stress all carry propagation
circuits whereas some others do not. Other algorithms to
choose the proper inputs are part of our future work.

Results for the actual input data as well as for each one
of the eight synthetic inputs have been collected with the
aging electrical simulator. Actual inputs have been
sampled from our 531 traces (inputs remain unchanged
during idle periods). As expected, some PMOS transistors
are degraded most of the time for actual input data.
Similarly, some PMOS transistors are degraded all the
time for each of the synthetic inputs. Fortunately, different
inputs degrade different transistors, so we have combined
all pairs of synthetic inputs to identify the pair that
requires the shortest guardband. Combination has been
performed in a round-robin fashion. Results for each one
of the combinations of synthetic inputs are shown in
Figure 4. Inputs <InputA, InputB, CarryIn> have been
numbered from 1 to 8 in ascending order (input 1
corresponds to <0,0,0>, input 2 <0,0,1>, and so on). Note
that by combining two different inputs in a round-robin
fashion the zero-signal probability for any transistor is
0%, 50% or 100%. As we can see, the best combination

919191

corresponds to inputs (1) and (8), thus, <0,0,0> and
<1,1,1>. The round-robin combination of such inputs
ensures that narrow PMOS transistors have 0% or 50%
zero-signal probability, and only few wide PMOS have
100% zero-signal probability. Fortunately, such PMOS do
not suffer from NBTI significantly [19] (our simulator
shows that wide PMOS with 100% zero-signal probability
degrade less than narrow PMOS with 50% probability).
Other input pairs require resizing at least some transistors
to ensure that large guardbands are not required.

% narrow transistors with 100% zero-signal probability

0%

1%

2%

3%

4%

1
+
2

1
+
3

1
+
4

1
+
5

1
+
6

1
+
7

1
+
8

2
+
3

2
+
4

2
+
5

2
+
6

2
+
7

2
+
8

3
+
4

3
+
5

3
+
6

3
+
7

3
+
8

4
+
5

4
+
6

4
+
7

4
+
8

5
+
6

5
+
7

5
+
8

6
+
7

6
+
8

7
+
8

input pairs
Figure 4. Narrow transistors with 100% zero-signal

probability w.r.t. the total number of transistors

Finally, we have obtained the degradation of the adder
for the three different scenarios where actual inputs are
used during 11%, 21% and 30% of the time respectively,
and the input pairs 1+8 are used the rest of the time. As
explained in Section 3.1, for the sake of simplicity we can
set one of such inputs in each idle period in a round-robin
fashion. Results are depicted in Figure 5 in terms of
guardband required. Note that without our technique the
guardband required is 20% whereas a 50% zero-signal
probability reduces such guardband to 2% (10X reduction
[1]). Guardband can be reduced from 20% to 5.8%
without any cost if additions are uniformly distributed
across adders (21% utilization), whereas it is reduced to
7.4% if additions are allocated to adders with priorities.
Note that by alternating the selected pair of inputs during
idle periods, latches hold similar amounts of time opposite
values, which is good to mitigate NBTI in such latches
accordingly with the observations in section 3.3.

NBTI Guardband

0%
4%
8%

12%
16%
20%
24%

real inputs 30% real + 000 +
111

21% real + 000 +
111

11% real + 000 +
111

inputs
Figure 5. Guardband requirements for different

inputs and utilization of the adders

If we measure the efficiency of our solution using
equation (1), we observe that the overhead in terms of
area and TDP to store the two input sets used during idle
periods is negligible. Some extra activity (and thus,
power) is caused in the combinational block when
injecting synthetic inputs, but it happens only when the

block is idle, and thus, TDP is not increased. The benefits
in terms of NBTI guardband are significant even for the
worst-case usage of any adder (30% of the time). Hence,
the NBTIefficiency of our solution is 1.24, which is much
better than that of the baseline (1.73). Note that inverting
periodically is not suitable for combinational blocks.

()() 24.11074.011 3 =⋅+⋅=−inputsroundrobinencyNBTIeffici

4.4 Case Study for Explicitly Managed Blocks
with Large Idle Time: Register File

This section presents the case study for the register file,

which is an explicitly managed block whose entries are
idle most of the time (see Section 3.2.2). Figure 6
(baseline) shows the bit bias for the integer and FP
registers. The Y-axis shows the bias towards “0”. It can be
seen that the worst-case for any bit shows a bias of 89.9%
for integer data and 84.2% for FP data.

On average, 54% (69%) of the time integer registers
(FP registers) are free (time between release and the next
write operation), so accordingly with the casuistic detailed
in Figure 3, we must use the ISV technique because they
are free more than 50% of the time.

INT Register file bit bias

0%

50%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

bit number

bi
as Baseline

ISV

FP Register file bit bias

0%

50%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

bit number

bi
as Baseline

ISV

Figure 6. Balancing of bit cells contents for the

different bits of the integer and FP register files. Y-
axis shows the bias towards “0”

Registers are updated with RINV (see ISV mechanism,
Section 3.2.2) when they are released and there is an
available write port. Any update that cannot be done when
the register is released because of lack of idle ports is
discarded. Available ports are found 92% (86%) of the
times for integer (FP) register files. Thus, discarding
updates happens very rarely, so its impact in NBTI
degradation is negligible.

Figure 6 (ISV) shows that near-optimal balancing is
achieved with our technique. The worst-case degradation
is reduced from 89.9% (39.9% from the optimal) to 48.5%
(1.5% from the optimal) for the integer register file. For

929292

the FP register file, degradation reduces from 84.2%
(34.2% from the optimal) to 45.5% (4.5% from the
optimal). Note that FP results are slightly worse than
integer ones because integer traces start the simulation
with an empty non-inverted FP register file and hardly use
FP registers. In the real case, the worst-case bias will be
much closer to 50% because integer programs will find a
variety of inverted and non-inverted values in the FP
register file.

Logic to decide when
to disable inversion

disable invert

WE
port1

RINVevery K
cycles

data from any port

is tag1
released?

data

tag
tag1

(release)
data+tag

busy
port1

busy
port1

data1+tag1
(write)

REGISTER FILE
write
port1

WE
port1

busy
port1

busy
port1

busy
port1

busy
port1

busy
port1

busy
port1

Figure 7. Design of the NBTI-aware register file

Our approach is extremely efficient because TDP
remains practically unchanged since we add a single
register per register file (RINV) and timestamps for a
single register. Roughly speaking this is below 1%
overhead for 128-entry highly-ported register files.
Inverted values are written through actual write ports, so
TDP is not increased. Delay is not impacted because
neither the number of ports nor the critical paths are
changed with respect to the baseline (see Figure 7).
Finally, degradation is reduced significantly because bit
bias reduces from 89.9% (84.2%) to 48.5% (45.5%) for
the Integer (FP) register file. We use equation (1) to
evaluate our proposal and the scheme where data is
inverted periodically. Although we neglect it, such a
solution would need some extra circuitry to read actual
values, invert (deinvert) them and write them back when
changing to inverted (non-inverted) mode. We use 3.6%
guardband for our proposal, which corresponds to the FP
register file bias (the worst one), whereas minimum
guardband (2%) is assumed for the periodic inversion. In
such a scheme TDP is hardly impacted and delay may
grow around 10% (i.e. from 10 FO4 to 11 FO4). By
inverting registers at release the overhead is much lower
than by inverting the whole register file periodically (1.12
for our mechanism vs. 1.41 for periodic inversion as
shown in Section 4.2). Furthermore, inverting at release
does not need the circuitry to change the current mode.

()() 12.101.1036.011 3 =⋅+⋅=−− releaseatinvertencyNBTIeffici

4.5 Case Study for Explicitly Managed Blocks
with Short Idle Time: Scheduler

Schedulers are complex structures to protect because

they have a large number of fields, each one of them

exhibiting different usage and data patterns. The
description of the different fields is provided in Table 2.
Activity patterns for the scheduler show significant
imbalance because some of the bits are “0” (or “1”) most
of the time, producing much higher degradation in one of
the PMOS transistors of such bit cells. Figure 8 (baseline)
shows the value balancing for all the bits of the scheduler
in the same order as in Table 2 but the opcode ones.
Opcode bits are not shown because they depend strongly
on the implementation, but by smartly encoding the
opcodes of the uops, large imbalances can be avoided
(IA32 instructions are split into microoperations also
known as uops). In the figure the Y-axis shows the
fraction of time that bits store “0”. It can be seen that the
worst-case for any bit shows almost a 100% bias for some
flags, shift bits and latency bits.

The occupancy of the scheduler entries is 63%,
although some fields (SRC1 data, SRC2 data and
immediate) are available 70-75% of the time on average
because they remain unused beyond the allocation or are
not used at all for some instructions. Thus, based on the
usage of each field and its bias, we apply techniques in
Figure 3. Note that there are write ports available most of
the time (on average 77% of the ports from allocate are
available) so the very most of the updates of entries with
RINV contents will be performed.

Scheduler bit bias

0%

50%

100%

bit number

bi
as

Baseline

ALL1, ALL1-K%, ISV

Figure 8. Balancing of bit cells contents for the
different bits of the scheduler. Y-axis shows the

bias towards “0”

Table 2. Description of the fields of the scheduler

Field Bits Description
Valid 1 Slot is valid
Latency 5 Latency of the uop
Port 5 Port for issue (loads and stores are not in the

scheduler)
Taken 1 The branch is taken
MOB id 6 Memory Order Buffer identifier
tos 3 Top of stack position for FPs
Flags 6 Flags for the uop
shift1 1 Source 1 must be shifted (AH, BH, CH and DH)
shift2 1 Source 2 must be shifted (AH, BH, CH and DH)
DST tag 7 Destination register
SRC1 tag,
SRC2 tag

7
each

Source 1 and source 2 registers

ready1,
ready2

1
each

Source 1 and source 2 are ready for issue

SRC1 data,
SRC2 data

32
each

Source 1 and source 2 data for data capture
schedulers

Immediate 16 Immediate data field
Opcode 12 Opcode for the uop. Not shown in Figure 8

939393

For the sake of fairness, selection of K for each field
has been done based on the profiling information obtained
from 100 random traces out of the 531 ones available.
Then, such information is used for the remaining 431
traces used in our evaluations. K is computed as the value
that would give us ideal balancing for the 100 traces used
for profiling purposes. The classification of fields is as
follows:
• ALL1 fields: latency (bits 4 and 5), port, flags, shift1

and shift2.
• ALL1-K% fields: latency bit 1 (K=95%), latency bit 2

(K=75%), latency bit 3 (K=95%), taken (K=50%), tos
(K=50%), ready1 (K=60%) and ready2 (K=60%).
Note that ready1 and ready2 use the same value for K
because we assume that both source operands can be
used alternatively to hold the first operand. Otherwise,
the first operand usage would be higher and values for
K would change, although our technique would work
normally.

• ISV fields: SRC1 data, SRC2 data and immediate.
Again, we assume that source operands 1 and 2 can be
used alternatively to hold the first operand. If this is
not possible, then SRC1 data and SRC2 data would
need independent timestamps to decide when they
must be updated with inverted contents. Sampled
values for the corresponding fields of RINV can be
taken from the register file when read or from
bypasses for SRC1 data and SRC2 data, whereas
immediate values are taken directly from the
instruction.

• Nothing must be done to repair register tags (DST tag,
SRC1 tag and SRC2 tag) as well as the MOB id
because their activity is self-balanced because register
file entries and MOB slots are used evenly.

• Nothing can be done for the valid bit because its
contents are always useful, so we cannot update their
contents with NBTI repairing data at any time.
Figure 8 shows the balancing for all the bits of the

scheduler but the opcode ones when our set of techniques
is used. Regarding the opcode, by choosing properly the
encoding of the different uops we can avoid huge
imbalance in all bits of such opcode and any of our
techniques can be used to achieve near-optimal balancing.
It can be seen in the plot that only those bits with very
high bias in the baseline show still some bias after using
our techniques. Those bits correspond to the ones where
ALL1 is used and the valid bit, which cannot be protected.
The worst-case bias decreases from 100% to 63.2%
(13.2% from the optimal solution).

RINV has fewer bits than a scheduler slot because it
does not hold self-balanced fields (DST tag, SRC1 tag and
SRC2 tag). Its fields are set accordingly with the previous
description of the technique used for each field. This
means that ALL1 fields are set always to “1”, ALL1-K%
fields are set to “1” K% of the time and to “0” the rest of
the time, and ISV fields are set to inverted sampled values
always. Fields that do not need to be balanced are not
written in the slots when they are released. RINV contents

for ISV fields must be updated periodically (i.e., every
some thousands or millions of cycles) to provide a good
balancing in the scheduler.

Bias towards “0” is reduced from up to 100% to 50%
approximately for most of the bits. The remaining bits
(10% of the total bits) have an imbalance of up to 63%
and must be resized to ensure the same guardband as we
would have with perfect balancing. Since such resizing
has a cost in power, area and delay, we use the guardband
required for 63% bias (6.7% guardband). Our techniques
have low overhead in terms of area and TDP because
RINV has almost the same number of bits as a single slot
of the scheduler, but it may be smaller because it has
neither CAM cells nor as many ports as the scheduler.
Some small counters can be used to implement ALL1-K%
mechanism (4 small counters of up to 5 bits each for the
different K values: 50%, 60%, 75% and 95%) and
timestamps for ISV (2 timestamps of 10 bits each suffice
for SRC1 data and SRC2 data fields, which share the
same timestamp, and for immediate field). Overall, RINV,
the counters and timestamps may take less than 2% of the
scheduler area (less than 2 entries size in terms of number
of bits, but smaller bit cells than the 32 entries of the
scheduler), so 2% is a pessimistic TDP overhead.
Similarly to the previous structures, inverted values are
written through available write ports, and therefore, TDP
is not increased due to port requirements. On the other
hand, inverting periodically has a delay overhead around
10% as shown before. Recalling equation (1) we can
observe that our set of techniques is more efficient (1.24
NBTIefficiency) than inverting for such a critical
component like the scheduler (1.41 NBTIefficiency).

()() 24.102.1067.011 3
%%,1,1 =⋅+⋅=−− KisvKallallencyNBTIeffici

4.6 Case Study for Cache-like Blocks: DL0 and
DTLB

This subsection presents the performance evaluation of
our strategy for cache-like structures when applied to the
first level data cache (DL0) and the data TLB (DTLB). In
order to validate and illustrate the effect in performance of
the proposed mechanism (see Section 3.2.1), different
possible schemes have been evaluated:
• SetFixed50%. 50% consecutive sets are invalid and

inverted at any time. The cache effectively operates as
if it had half the size.

• LineFixed50%. 50% of the cache lines are invalid and
inverted at any time. Whenever an inverted (and
invalid) cache line becomes valid, the set of the cache
line to be inverted is selected randomly.

• LineDynamic60%. 60% of the cache lines are inverted
at any time. The program is run for some time to warm
up the cache (200K cycles for the DL0 and DTLB),
then we measure the number of misses that our
mechanism would introduce if activated during some
time (other 200K cycles for the DL0 and DTLB), and
if the number of misses that the mechanism would

949494

cause is higher than a threshold (for the DL0, 2% for
32KB, 3% for 16KB and 4% for 8KB; for the DTLB
0.5% for 128 entries, 1% for 64 entries and 2% for 32
entries) the mechanism is deactivated. Such test is
done periodically (in our experiments every 10M
cycles). Our results show that on average the number
of cache lines inverted is slightly above the desired
50%. If the target is keeping the invert ratio at 50%,
we can track the amount of time that the mechanism is
active and disable it for some time if the current invert
ratio is well above 50%.
In order to evaluate the performance impact of our

proposal six DL0 cache configurations have been
evaluated (8KB, 16KB and 32KB caches for 4-way and 8-
way set-associative), as well as three DTLB
configurations (128, 64 and 32 entries, all of them 8-way
set-associative). Table 3 summarizes the average
performance loss for the different implementations of our
mechanism. Results show that LineDynamic60% achieves
the 50% invert ratio with the lowest performance
degradation. Furthermore, the performance of fewer
programs is impacted, because the dynamic scheme
allows disabling the inversion for those programs that
fully utilize the cache. For instance, the fraction of
programs that lose more than 5% (10%) performance for
the 16KB 8-way DL0 is 7.0% (2.8%) for SetFixed50%,
7.2% (2.5%) for LineFixed50%, and only 4.4% (1.1%) for
LineDynamic60%.

Table 3. Average performance loss for the different

mechanisms
 SetFixed50% LineFixed50% LineDynamic60%

DL0 32KB 0.75% 0.53% 0.45%
8-way 16KB 1.30% 1.14% 0.69%

 8KB 1.60% 1.60% 0.96%
DL0 32KB 0.83% 0.67% 0.45%

4-way 16KB 1.29% 1.50% 0.78%
 8KB 1.73% 2.31% 1.02%

DTLB 128 ent. 0.32% 0.34% 0.14%
8-way 64 ent. 0.55% 0.47% 0.32%

 32 ent. 1.31% 1.18% 0.97%

Similarly to the technique for register files, our

proposals for DL0 and DTLB reduce the bias towards “0”
from 90% to roughly 50%. We use equation (1) to
evaluate LineFixed50% scheme for the 32KB 8-way DL0
and the simple solution where the whole contents can be
inverted periodically. For the periodic inversion we ignore
the overhead of flushing the whole cache when changing
from non-inverted (inverted) mode to inverted (non-
inverted) mode, which is against our technique. In such a
scheme the impact in performance would be around 10%
(i.e. from 10 FO4 to 11 FO4). Another alternative would
be increasing the latency (number of cycles) of the cache,
but that might imply modifying some other parts of the
pipeline and increasing the pressure in the scheduler due
to hit-speculated instructions. Moreover, there would be
some performance loss due to the extra DL0 latency.
Regarding our scheme we only need an extra cache line

(the 32KB DL0 cache has 512 of them) and a counter
(INVCOUNT) tracking the number of inverted cache lines.
Overall, the hardware overhead is below 1% that we will
include into the TDP cost. As we can see in the equations,
our scheme is more efficient (1.09 NBTIefficiency) than
inverting periodically (1.41 NBTIefficiency).

()() 09.101.102.010053.1 3
%50 =⋅+⋅=linefixedencyNBTIeffici

4.7 Summary

Once our techniques for different blocks in the
processor have been described and evaluated, we present
an overall view of what kind of technique is more suitable
for each component depending on their benefit and
overheads, and the NBTIefficiency for the Penelope
processor. The alternatives analyzed are our custom
techniques (Penelope processor), as well as the alternative
solution presented in section 3 (inverting periodically).

Table 4 presents a description of the trends for the
different parameters (coverage, NBTI guardband, delay,
TDP and NBTI efficiency) for each mechanism.

Table 4. Summary of the characteristics of the

different alternatives to mitigate NBTI
 Invert periodically Penelope processor

Coverage Only memory-like blocks All
NBTI
guardband

Very low Very low

Delay Some impact None or small impact
TDP Negligible Negligible or small impact
NBTI
efficiency
(global view)

Only for memory-like
blocks where delay impact
is low like 2nd level caches

Suitable for any block with
low cost

The Penelope processor covers any kind of structure.

NBTI guardband is reduced for all structures with
negligible hardware cost. Only some cache-like structures
may require some extra hardware overhead (although low)
to mitigate some performance loss. In general, the
performance loss introduced for few of the structures is
very low. Therefore, our proposals are very suitable for
any kind of structure in the processor.

Measuring the exact cost in terms of delay, TDP and
NBTI guardband for the processor requires designing and
fabricating the whole processor for each one of the
alternatives, which is out of the scope of this paper.
However, we illustrate how it must be done for the five
blocks analyzed in this paper: the adder, the register file,
the scheduler, the DL0 and the DTLB. For the sake of this
example we assume that each one of the five blocks has
the same weight in terms of TDP. Results in terms of
delay, TDP and NBTI guardband for each component
have been presented in the corresponding sections. The
only result missing is the combined CPI for the DL0 and
the DTLB. The combined normalized CPI is 1.007 when
LineFixed50% is used for both blocks simultaneously. As
we can see, only the mechanism for the DL0 and the
DTLB impacts the CPI, whereas none of the mechanisms
impacts the cycle time. The impact in TDP of the different

959595

mechanisms is low. Finally, the guardband of the different
blocks is also combined. Note that the highest guardband
is that of the adder.

007.11007.1
1

=⋅=⋅=
= i

Numblocks

iprocessor CycleTimeMAXCPIDelay

01.1
5
01.1

5
01.1

5
02.1

5
01.1

5
1

1
=++++== ∑

=

Numblocks

i
iprocessor TDPTDP

==
= i

Numblocks

iprocessor ndNBTIguarbaMAXandNBTIguardb
1

() 074.002.0,02.0,067.0,036.0,074.0 == MAX

Finally, the NBTIefficiency for the Penelope processor
is as shown in the equation below. It can be seen that
delay and TDP degradation are very low, whereas the
NBTI guardband is significantly lower than the 20% of
the baseline. Overall, NBTIefficiency for the Penelope
processor is 1.28 whereas the baseline NBTIefficiency is
1.73. Similarly, enabling an invert mode would be quite
expensive in terms of delay and could not be used for
combinational blocks.

()() 28.101.1074.01007.1 3 =⋅+⋅=SisyphusencyNBTIeffici

5. Conclusions

Conventional processors leave significant performance

and power savings on the table due to NBTI guardbands
and high Vmin in memory-like structures. Conventional
solutions to NBTI like enabling an invert mode, which
does not cover all types of blocks, have significant cost in
terms of delay, TDP and/or area. In this paper we propose
the Penelope processor, which consists of global strategies
as well as concrete mechanisms to protect all types of
structures in the processor. In particular we propose:
• Strategies to protect any memory-like block (both

cache-like and explicitly managed ones) and
combinational blocks.

• Custom mechanisms to mitigate NBTI degradation in
a Ladner-Fischer adder, integer and FP register files, a
scheduler, a DL0 cache and a data TLB.

• A metric to compare solutions to NBTI combining
delay, TDP and NBTI guardband in the cycle time.
The benefits of the proposed techniques are (i) their

practically negligible cost in hardware (TDP and area), (ii)
their low delay impact (if any), and (iii) the significant
NBTI guardband reduction. By mitigating NBTI, the
proposed Penelope processor allows reducing the
guardband due to NBTI degradation for any structure in
the chip, and hence, the operating frequency may be
boosted or the complexity of such structures (e.g., number
of ports, size, etc.) increased without impacting the cycle
time. Our results show guardband reductions between
12.6% and 18% for the different blocks without impacting
any critical path. Furthermore, Vmin does not increase as
much in memory-like structures by mitigating NBTI,
hence leading to higher power efficiency of such
structures.

6. Acknowledgements

The authors would like to thank Chris Wilkerson and

Nam Sung Kim for sharing experimental data, and Alex
Piñeiro for the cache workload characterization and for
reviewing drafts of this paper. We would also like to
thank Javier Carretero and Pedro Chaparro for reviewing
drafts of this paper. This work has been partially
supported by the Spanish Ministry of Education and
Science under grant TIN2004-03702 and Feder Funds.

References
[1] W. Abadeer, W. Ellis. Behavior of NBTI under AC Dynamic

Circuit Conditions. In IRPS 2003.
[2] J. Abella, A. González. Heterogeneous Way-Size Cache. In ICS

2006.
[3] M. Agostinelli et al. Erratic Fluctuations of SRAM Cache Vmin

at the 90nm Process Technology Node. In IEDM 2005.
[4] M.A. Alam. A Critical Examination of the Mechanics of

Dynamic NBTI for PMOSFETs. In IEDM 2003.
[5] D.M. Brooks et al. Power-Aware Microarchitecture: Design

and Modeling Challenges for Next-Generation
Microprocessors. In IEEE Micro, November-December 2000.

[6] G. Chen et al. Dynamic NBTI of PMOS Transistors and Its
Impact on Device Lifetime. In IRPS 2003.

[7] S.S. Chung et al. Impact of STI on the Reliability of Narrow-
Width pMOSFETs with Advanced ALD N/O Gate Stack. In
IEEE Transactions on Device and Materials Reliability, vol. 6,
no. 1, March 2006.

[8] P. Hulbert. High Throughput Gate Dielectric Reliability
Testing: Digging Out from the Backlog. Keithley Instruments
Inc. technical note, 2004.

[9] S. Kaxiras, Z. Hu, M. Martonosi. Cache Decay: Exploiting
Generational Behavior to Reduce Cache Leakage Power. In
ISCA 2001.

[10] S.V. Kumar, C.H. Kim, S.S. Sapatnekar. Impact of NBTI on
SRAM Read Stability and Design for Reliability. In ISQED
2006.

[11] R.E. Ladner, M.J. Fischer. Parallel Prefix Computation. In the
Journal of the ACM, vol. 27, no. 4, October 1980.

[12] N.R. Mahapatra, S.V. Garimella, A. Tareen. An Empirical and
Analytical Comparison of Delay Elements and a New Delay
Element Design. In the Workshop on VLSI 2000.

[13] S. Mahapatra, P.B. Kumar, M.A. Alam. Investigation and
Modeling of Interface and Bulk Trap Generation During
Negative Bias Temperature Instability of p-MOSFETs. In IEEE
Transactions on Electron Devices, vol. 51, no. 9, September
2004.

[14] S. Rangan, N. Mielke, E.C.C. Yeh. Universal Recovery
Behavior of Negative Bias Temperature Instability. In IEDM
2003.

[15] V. Reddy et al. Impact of Negative Bias Temperature
Instability on Digital Circuit Reliability. In IRPS 2002.

[16] C. Schlünder et al. On the Degradation of P-MOSFETs in
Analog and RF Circuits under Inhomogeneous Negative Bias
Temperature Stress. In IRPS 2003.

[17] D.K. Schroder, J.A. Babcock. Negative Bias Temperature
Instability: Road to Cross in Deep Submicron Silicon
Semiconductor Manufacturing. In the Journal of Applied
Physics, vol. 94, no. 1, July 2003.

[18] D. Tarjan, S. Thoziyoor, N.P. Jouppi. CACTI 4.0. HP
Technical Report HPL-2006-86.

[19] X. Xuan. Analysis and Design of Reliable Mixed-Signal
CMOS Circuits. Phd. thesis at Georgia Institute of Technology,
December 2004.

969696

