
 
 
 
 
 
 
 
 
 

 

 

Title: Service Flow Modelling in the Telecom Cloud 

Author: Enle Lin 

Advisor: Luis Velasco Esteban 

Co-Advisor: Marc Ruiz Ramírez 

Department: Computers Architecture 

Academic year: 2015-2016 

 

Master of Science in 

 Advanced Mathematics and 

Mathematical Engineering 





 
 
 
 
 
 
 
 
 

Abstract 

Keywords: Service flow, Telecom Cloud, Big Data Analytics, statistical modelling. 

MSC2010: 68U20 

In telecom cloud infrastructures, a wide variety of network elements can be 

monitored to retrieve for many purposes, such as improving network performance 

and end user experience. Such wide and intense monitoring entails collecting huge 

volumes of data that needs to be transferred and stored, as well as being analyzed 

and fast processed to achieve near real-time performance. Therefore, Big Data 

techniques for data collection, pre-processing, and analysis and visualization have 

been recently proposed to provide a fully Big Data-backed ecosystem for telecom 

operators. 

This project tackles the problem of service traffic flow modelling in the telecom 

cloud. A simulation and modelling procedure targeting at obtaining predictive 

models for realistic service traffic flows is developed. Distinct data analytics 

approaches can be emulated with the objective of evaluating the performance of 

distributed and centralized monitoring and modelling deployments. 





 
 
 
 
 
 
 
 
 

Index 

List of Figures ......................................................................... VII 

List of Tables ............................................................................. IX 

Chapter 1 Introduction ........................................................ 10 

1.1 Motivation and objectives ........................................................................... 10 

1.2 Report organization ....................................................................................... 3 

Chapter 2 Background ........................................................... 4 

2.1 Cloud-ready optical transport networks ....................................................... 4 

2.2 Service characterization ................................................................................ 6 

2.3 Big data analytics architecture ..................................................................... 8 

2.4 Summary ..................................................................................................... 10 

Chapter 3 Methodology........................................................ 11 

3.1 Notation ....................................................................................................... 11 

3.2 Service traffic generation ............................................................................ 12 

3.2.1 Profile model ......................................................................................... 12 

3.2.2 Weighted model .................................................................................... 13 

3.2.3 Gravity models ...................................................................................... 13 

3.2.4 Evolutionary model ............................................................................... 14 

3.2.5 Dependent model .................................................................................. 14 

3.3 Service traffic prediction ............................................................................. 14 

3.3.1 Time series analysis .............................................................................. 15 



IV  Enle Lin 

3.3.2 Linear regression .................................................................................. 16 

3.4 Validation .................................................................................................... 18 

3.4.1 Akaike Information Criterion (AIC) ..................................................... 18 

3.4.2 R-squared .............................................................................................. 19 

3.4.3 Tests for residuals ................................................................................. 19 

3.4.4 Error computation ................................................................................ 20 

3.5 Proposed algorithms .................................................................................... 20 

3.5.1 Stepwise regression .............................................................................. 21 

3.5.2 Transformation of variables ................................................................. 22 

3.5.3 Selection of candidate models ............................................................... 23 

3.6 Summary ..................................................................................................... 24 

Chapter 4 Simulator ............................................................. 25 

4.1 Design .......................................................................................................... 25 

4.2 Input and output details ............................................................................. 27 

4.3 Traffic Generation ....................................................................................... 29 

4.4 Modelling ..................................................................................................... 31 

4.5 Validation .................................................................................................... 32 

4.6 Summary ..................................................................................................... 33 

Chapter 5 Numerical results .............................................. 34 

5.1 Case study ................................................................................................... 34 

5.2 Reference scenario ....................................................................................... 36 

 Data ............................................................................................................. 38 

5.3 preprocessing and transformation .............................................................. 38 

5.4 Model fitting methodology evaluation ........................................................ 42 

5.4.1 Residential ............................................................................................ 43 

5.4.2 Business................................................................................................. 46 

5.4.3 CDN ....................................................................................................... 48 

5.4.4 DC2DC .................................................................................................. 50 

5.5 Modelling approaches evaluation ............................................................... 52 

5.5.1 Goodness-of-fit evaluation .................................................................... 52 



Index V 

5.5.2 Analysis of required monitoring data ................................................... 55 

5.5.3 Sensitivity analysis of trafOD .............................................................. 57 

5.6 Summary ..................................................................................................... 59 

Chapter 6 Concluding Remarks ......................................... 61 

6.1 Contributions and conclusions .................................................................... 61 

6.2 Personal Evaluation .................................................................................... 62 

6.3 Future Work ................................................................................................ 62 

Apendix A.Linear Models ........................................................ 63 

Apendix B.References .............................................................. 73 

 





 
 
 
 
 
 
 
 
 

List of Figures 

Figure 2-1: Considered network ................................................................................ 5 

Figure 2-2: Service daily profiles. .............................................................................. 7 

Figure 2-3: Example of aggregated OD flows............................................................ 7 

Figure 2-4: Big Data Backed telecom clouds scheme ................................................ 8 

Figure 3-1: Illustration of generated data of an OD pair........................................ 16 

Figure 4-1: OD traffic generation of simulator. ...................................................... 27 

Figure 4-2: Traffic flows prediction of simulator. ................................................... 27 

Figure 4-3: Illustration of generated data of an OD pair........................................ 32 

Figure 5-1: The reference scenario .......................................................................... 36 

Figure 5-2: Example of generated service flows (2 days). ....................................... 38 

Figure 5-3: Scatterplots of different variables w.r.t Business ................................ 39 

Figure 5-4: R-squared plot of Business with emp1 and emp2. ................................ 39 

Figure 5-5: Scatterplots between hour and trafOD and Business. ......................... 40 

Figure 5-6: R-squared plot for OD models. ............................................................. 40 

Figure 5-7: AIC plot for OD models. ........................................................................ 41 

Figure 5-8: Scatterplots between gravity models and the services. ....................... 42 

Figure 5-9: Normal plot and autocorrelation for residuals of Residential service. 45 

Figure 5-10: Residential flow prediction (from node 1 to node 5). .......................... 45 

Figure 5-11: Normal plot and autocorrelation for residuals of Business model. .... 47 

Figure 5-12: Business flow prediction (from node 1 to node 5) ............................... 48 

Figure 5-13: Normal plot and autocorrelation for residuals of CDN model. .......... 49 

Figure 5-14: CDN flow prediction (from node 1 to node 5) ..................................... 50 

Figure 5-15: Normal plot and autocorrelation for residuals of DC2DC model. ..... 51 

Figure 5-16: DC2DC flow prediction (from node 2 to node 4) ................................. 52 



VIII  Enle Lin 

Figure 5-17: Prediction errors of Business. ............................................................. 53 

Figure 5-18: Prediction errors of DC2DC. ............................................................... 53 

Figure 5-19: Absolute error comparison .................................................................. 54 

Figure 5-20: Relative error comparison .................................................................. 55 

Figure 5-21: Requires data volume for each services ............................................. 56 

Figure 5-22: Errors of the models for different set explanatory variables. ............ 58 



 
 
 
 
 
 
 
 
 

List of Tables 

Algorithm 3-1: Stepwise regression algorithm. ........................................................ 21 

Algorithm 3-2: Transformation of variables. ............................................................ 23 

Algorithm 3-3: Selection of candidate models........................................................... 24 

Table 5-1: Number of models for each of the approaches ......................................... 35 

Table 5-2: Explanatory variables for each of the approaches. ................................. 35 

Table 5-3: Users of each services for the nodes in the network. .............................. 37 

Table 5-4: Stepwise process for Residential service ................................................. 43 

Table 5-5: Stepwise process for Business service. .................................................... 47 

Table 5-6: Stepwise process for CDN service. ........................................................... 49 

Table 5-7: Stepwise process for DC2DC service ....................................................... 51 

Table 5-8: Required data volumes and relative reduction ....................................... 56 

 

 



 
 
 
 
 
 
 
 
 
 

Chapter 1.  

Introduction 

1.1 Motivation and objectives 

The increasing demand of new services such as Live-TV and Video on Demand 

(VoD) distribution is motivating a huge transformation of telecom operators. Due to 

the need to provide not only data transport but also computing services, they are  

deploying their own cloud infrastructure [Co12] to prove cloud services and 

enabling Software Defined Networking (SDN) [ONF16] and Network Functions 

Virtualization (NFV) [NFV]. The resulting infrastructure is referred to as the 

telecom cloud [Ve15]. NFV decouples network functions from proprietary hardware 

appliances, so they can be implemented in software and deployed on virtual 

machines (VM) running on commercial off-the-shelf computing hardware. 

In telecom cloud infrastructures, a wide variety of network elements, servers and 

applications can be monitored to retrieve useful information for, among others, 

improving network performance and end user experience (e.g. see [Ru16]). Such 

wide and intense monitoring entails collecting huge volumes of data that needs to 

be transferred and stored assessing validity, as well as being analyzed and 

processed fast to achieve near real-time performance. Therefore, Big Data 

techniques for data collection, pre-processing, and analysis and visualization have 

been recently proposed to provide a fully Big Data-backed ecosystem for telecom 

operators [Gi16]. 

Recently, monitoring and modelling network traffic is receiving special attention 

due to its potential capacity to improve network performance. Specifically, 

proposed use cases including network reconfiguration based on future traffic 

estimation [Mo16] or prompt detection of traffic anomalies [AV16] are based on 

monitoring and modelling origin-destination (OD) traffic flows. An OD traffic flow 
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can be defined as a stream of data packets between a source and a destination node 

(router). These kind of aggregated flows can be easily monitored since no 

distinction of services within the flow is required. 

In case of requiring traffic models with finer granularity, e.g. service OD traffic 

models, traffic analysis tools such as Deep Packet Inspection (DPI) needs to be 

performed to monitor disaggregated traffic flows. DPI is a network function in 

charge of examining the data part (and possibly also the header) of a packet with 

the aim of searching for defined criteria to decide whether the packet may pass or if 

it needs to be routed to a different destination (e.g. for avoiding viruses spread, 

blocking attacks, or correcting protocol non-compliance) and collecting monitoring 

data of per service OD flows [Ro11]. 

DPI is also one of the most interesting use cases of NFV [Fi14]. Due to the large 

computing resources required for this exhaustive traffic analysis function, the 

distribution of virtualized DPI instances along the telecom cloud to achieve target 

performance needs to be studied, e.g. for collecting meaningful service traffic data 

to estimate predictive models. Note that how to collect that disaggregated service 

traffic data, as well as how to use data analytics procedures to maximize useful 

information extracted from that collected data is receiving recent research interest 

[Ma14]. 

This project tackles the problem of service traffic flow modelling in the telecom 

cloud. The contributions are two-fold: i) to develop a statistical modelling procedure 

targeting at obtaining service traffic prediction models from a heterogeneous set of 

input variables; and ii) to provide a simulation platform for generating realistic 

service traffic flows and evaluating the accuracy of the proposed modelling 

procedure for a wide range of monitoring architecture configurations. We assume 

that service traffic flow modelling can be done by means of DPI VNF instances 

deployed in telecom cloud datacenters. 

In the context of this work, a predictive model is defined as a function that returns 

the expected traffic flow of a given service at a given time between a given OD node 

pair subject to a set of descriptive explanatory variables. Besides of the utility to 

predict traffic flows, models can also serve as tools for analyzing the significance of 

the explanatory variables and the relationship among them thus, serving as 

additional tools to better understand the behavior of service traffic flows and its 

impact on aggregated OD flows behavior. 

The simulation platform is oriented to provide flexibility to configure different 

scenarios according to different monitoring architectures. To achieve this, two main 

blocks are clearly separated. The OD flow generation block provides simulated 

service and aggregated traffic flows according to the loaded network configuration 

https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Header_(computing)
https://en.wikipedia.org/wiki/Packet_(information_technology)
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and the characterization of different services. That monitoring data as well as 

available data related to the network is stored in separated data files for further 

model estimation. The model fitting block receives monitoring data and, after 

applying filtering and aggregation actions according to the configured monitoring 

architecture, runs a statistical procedure to obtain the model with the best trade-

off between accuracy and number of coefficients (i.e. descriptive variables). Note 

that these modules can be independently executed, e.g. the model fitting block 

could be applied to real traffic traces obtained from monitoring real networks. 

To facilitate even more the utility of the simulator and foster further improvements 

and enhancements, we have selected Matlab as software engine and platform. 

Matlab is optimized for solving engineering and scientific problems. A vast library 

of prebuilt toolboxes with basic and advanced algorithms is available. Good 

scalability, friendly programming interface, and easy integration with other 

languages and applications are some of the advantages behind our choice. 

1.2 Report organization 

The rest of the document is organized as follows. Chapter 2 approaches the 

necessary background to understand the contributions of this work. It starts with 

an introduction to the cloud-ready optical transport networks, then the typical 

service traffic in the network are briefly presented and finally, the Big data 

analytics architecture based on telecom cloud is explained. 

In Chapter 3, the methodology for simulation platform is explained, some 

mathematical models are introduced to generate service traffic flows and the 

modelling procedures for this project are presented.  

The contents of Chapter 4 are focused on the technical details of the 

implementation of the distinct modules in the simulator including: i) service traffic 

flow generation; ii) predictive model fitting, and iii) model validation.  

Chapter 5 presents a case study for a reference scenario. The evaluation of the 

methodology for the scenario is concluded and the prediction models are presented 

and evaluated. Based on the models statistics, the comparison of modelling in 

different architectures is done. 

Finally, Chapter 6 concludes the report with the main contributions and 

conclusions of the project. 

 





 
 
 
 
 
 
 
 
 

Chapter 2.  

Background 

In this chapter, the necessary concepts are introduced in order to facilitate the 

understanding of the contents of this project. Firstly, the cloud-ready optical 

transport networks are presented, subsequently, the typical service traffic 

characterization and the basic concepts of DPI are presented. Finally, Big Data 

backed telecom cloud scheme for Big Data analytics architecture is explained. 

2.1 Cloud-ready optical transport networks 

An optical transport network can be defined as an undirected graph, where the 

edges are fiber optic links and the vertices are optical nodes, named Optical Cross 

Connects (OXC), capable of switching high-speed optical signals in a fiber optic 

network. The optical technology employs a range of frequencies of the total Optical 

Spectrum (OS), measured in Gigahertz (GHz). The capacity of an optical link 

depends on, among the others, the amplitude of OS. 

On the top of described optical layer, large packet nodes (e.g., IP routers or 

Ethernet switches) are collocated with some OXCs and it serve as end points of 

network traffic, as well as to support intermediate transit routing/switching. Thus, 

an OD traffic flow represents an amount of data transported between an origin 

packet node and a destination packet node, usually expressed in Megabits per 

second (Mb/s) or Gigabits per second (Gb/s). 

The transmission of OD traffic is supported by connections in the optical layer, 

called as lightpaths. From the abstracted view of the packet layer, a lightpath is 

considered as a virtual link directly connecting two packet nodes. Thus, a virtual 

topology is created and used to transmit OD traffic between origin and destination 

nodes. 

Figure 2-1 presents a simplified network approach conceived for the understanding 

of the contents of this project. An optical transport network containing a set of 
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packet nodes that are interconnected by means of virtual links at the packet layer 

is considered. Each virtual link is supported by one or more optical connections in 

the optical layer and OD traffic is served through such capacity. For the sake of 

simplicity, details on network connectivity are not depicted in the figure. 

Small DC

Access/metro domain Packet layer

OD traffic flow

Packet nodes

Optical layer

Large DC

Network Controller

Service traffic flows

 

Figure 2-1: Considered network  

The network in the example interconnects different metropolitan areas. All the 

service traffic generated in one area, such as mobile applications or data sharing,  

targeting other area in the operator’s domain or another network (e.g., the 

Internet) are sent towards the destination node as an aggregated OD traffic flow, 

which contains all the service traffic flows. 

Besides the aforementioned network approach, a set of datacenters of different 

sizes are integrated as part of the network infrastructure. These datacenters 

provide IT resources to, among others, support user services computational 

requirements and host virtual network functions (VNF). An example of VNF can be 

DPI used for analyzing OD traffic between metropolitan areas. Note that if a 

metropolitan area has no local computing resources (i.e. datacenter) to perform DPI 

function, its outgoing OD traffic should be sent to an intermediate destination 

where that function will be executed before reaching the final destination. 

The considered cloud-ready transport network requires dynamic control of both 

network and computing resources. In fact, coordination between cloud and 

interconnection network is required to organize resources in both strata in a 

coherent manner, which is done by means of an intelligent network controller. 

Although no specific technology is strictly assumed for this control, the Application-

Based Network Operations (ABNO) architecture proposed by the Internet 

Engineering Task Force (IETF) can be used as a centralized entity in charge of 

controlling the network in response to requests from the applications and services 

[RFC7491]. 



6  Enle Lin 

2.2 Service characterization 

Service traffic flows generated at one metropolitan area belong to a wide variety: 

mobile applications, web browser, VoD, data migration, etc. In this project, these 

traffic flows are classified into four categories, namely: Residential, Business, CDN 

and DC2DC. Figure 2-2 shows the daily profiles of the services based on the 

definitions in references [SS] and [Mo16].  

The main characteristics of these services are as follows: 

 Residential traffic is generated by resident users from checking the weather 

or sports scores, shopping and banking, communicating with family and 

friends in myriad ways. This traffic is less in the morning and increases at 

night according to Figure 2-2. 

 Business traffic is generated by employers for their work office, it includes 

fixed IP WAN or Internet traffic generated by businesses and governments. 

An average business user might generate 4 GB per month of Internet and 

WAN traffic, large-enterprise user would generate significantly more traffic, 

8–10 GB per month [CISCO]. As show in the figure, it has two peaks: at the 

midday and 6:00 p.m., as the rush hours in the offices. 

 A Content Delivery Network (CDN) is a system of strategically positioned 

servers around the globe, to avoid the latency problem because of long 

distance between origin server and users. These servers maintain copies of 

the content and are retrieved when a user looks up the website. The CDN 

can deliver images, HD video, 4K content, as well as a multitude of other 

files. The profile of this traffic starts increasing at 8:00 a.m. arriving the 

rush time at 6 p.m., and then decreases at 9 p.m. 

 DC2DC (Data Center to Data Center) traffic is generated among datacenters 

by replication, back up, data migration, virtualization, and other Business 

Continuity/Disaster Recovery (BC/DR) flows. It has peaks in some hours 

when migration of data between datacenter occurs; that is, a huge volume of 

data traffic moving from one to the other datacenter. This huge volume of 

data will be transferred with a limit transmission speed until all the data is 

migrated. The transmission speed is slower at the day, when the network is 

saturated; and faster at night, when the network is more fluid. 

Different mixes of these profiles lead to an extensive variety of aggregated OD 

traffic flows. To illustrate these differences, Figure 2-3 shows three examples of 

ODs between metropolitan areas of different sizes and different demand of 

services. Specifically, OD1 represents an example where DC2DC traffic clearly 

predominates, OD2 presents the case where residential and CDN are the most 

dominant services, and OD3 illustrates the case of similar proportion of four 

services. Note that not only the resultant aggregated daily pattern varies among 

examples but also traffic volumes ranges are different. 
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Figure 2-2: Service daily profiles. 
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Figure 2-3: Example of aggregated OD flows 
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2.3 Big data analytics architecture 

Traffic monitoring is an essential task for network operators since it allows 

evaluating network performance. To perform control upon the network, using data 

analytics in the observed traffic can be useful. For this purpose, data is recollected 

and appropriately stored, preprocessed, and modelled by predictive models that 

indicate the future evolution of the traffic. Figure 2-4 illustrates a general view of 

this approach.  

Model fitting
Data Stream 

Mining

t

Modelled

Data

Modelled

Data

t0 ….

Monitored

Data

601 …

Model 

Evaluation

Models 

DB

DPI

Network Controller

Service OD 

traffic

Aggregated OD 

traffic

 

Figure 2-4: Big Data Backed telecom clouds scheme 

Traffic is generated by users through different services as explained in the previous 

section. This generated OD traffic is transferred from origin node to the destination 

node as an aggregated flow. We assume that the traffic monitoring data is collected 

at the edge IP routers at regular intervals, e.g., every minute. 

As previously introduced, a possible technique to extract information of the service 

flows within an OD flow is Deep Packet Inspection (DPI). DPI is a form of computer 

network packet filtering that examines the data part and the header of a packet as 

it passes an inspection point, searching for protocol non-compliance, viruses, spam, 

intrusions, or defined criteria to decide whether the packet may pass or if it needs 

to be routed to a different destination, or, for the purpose of collecting statistical 

information [Wi16.2]. DPI engines can be virtualized and dynamically deployed as 

pieces of software on commodity hardware [NFV]. In this work, we assume 

obtaining data from service traffic flows by means of virtualized DPI instances. 

That service traffic flow data is stored in a common data repository, named 

Monitored Data Repository.  
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Following a predefined time period, e.g. every hour, the collected data for a given 

OD pair in the Monitored Data Repository is summarized applying data stream 

mining, producing a Modelled Data Repository. This modelled data contains the 

minimum, maximum, average, the last value of each of the period, and a time 

stamp. Then, the Model fitting and Model evaluation are performed after a 

predefined number of modelled data periods. 

In view of the architecture of the telecom cloud previously introduced in this 

chapter, two main schemes can be devised to implement the aforementioned Big 

Data analytics architecture in the telecom cloud: 

 Centralized: similar to Figure 2-4, all monitoring data is collected in a unique 

repository, thus modelling cycle can be done with global view of the network. 

Regarding DPI instances placement, we can assume that those instances are 

either centralized or distributed closer to where the traffic is generated, thus 

avoiding sending extra traffic for inspection purposes. Although the latter 

allows reducing network traffic volume, it requires of distributed 

computational resources available for deploying DPI instances. Regardless of 

the DPI function deployment chosen, this architecture entails sending 

monitoring traffic data from a plenty of sources to the centralized repository. 

 Distributed: data is stored and processed locally and as a consequence of this, 

predictive models have a local (partial) view of the network. This method 

allows reducing the impact of centralized databases (monitoring and modelled 

data) synchronization since they are stored in a distributed way. Moreover, 

distributed computational resources are better exploited; there is no need to 

have a large DC able to deal with data analytics from huge volumes of 

collected data. Note that this distributed approach can co-exist with the 

centralized one; e.g. independent traffic models can be computed in nodes with 

the data monitored and inspected locally, whereas those models can be 

synchronized in a centralized repository for a deeper correlated analysis 

aiming at improving the accuracy of traffic models. 

2.4 MATLAB simulation environment 

MATLAB (matrix laboratory) is a multi-paradigm numerical computing 

environment with a proprietary programming language (M programming 

language) developed by MathWorks. The main features of MATLAB are, among 

others: matrix manipulations, plotting of functions and data, implementation of 

algorithms, creation of user interfaces, and interfacing with programs written in 

other languages, including C, C++, Java, FORTRAN and Python. 

Throughout this project, the traffic generation and modelling are implemented and 

embedded in an MATLAB based simulator. The simulator is organized in two 
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blocks: i) flow generation block to emulate the real performance of an optical 

network and ii) model fitting block to predict the future traffic in this network.  

The flow generation block has been implemented to simulate several 

functionalities. Its combination allows emulating the protocols of a network. 

Different optical network topologies can be created specifying a configuration of 

nodes.  

Each node is able to generate traffic according to the mathematical models which 

are described in Chapter 4. The traffic prediction module is also explained in that 

chapter, which is in charge of analyzing the provided traffic and node information 

to build from it models that are later used to predict the network traffic. 

2.5 Summary 

In this Chapter, the basic concepts of the telecom cloud focusing on the Big Data 

architecture for service traffic analysis were presented to understand the aim of 

this project. Based on these basic concepts, next chapters are devoted to present 

the main contributions of this project. 

 



 
 
 
 
 
 
 
 
 

Chapter 3.  

Methodology 

In this chapter, we introduce the mathematical models and procedures used for 

service traffic flows generation, fitting predictive models and validation. It starts 

with the notation of the set and the parameters used in the models formulation. 

Then, the mathematical models for the service flow are presented, followed by the 

explanation of the prediction and validation methods. Finally, the proposed 

algorithms for modelling and validation are explained. 

3.1 Notation 

The following sets and parameters are necessary to explain the content of this 

chapter: 

G(N,L) Network graph, where N represents the set of nodes in the network 

and L the links between nodes. 

S Set of traffic services, index s. 

OD Set of OD pairs. Every element in OD contains a tuple <i, j> of nodes 

indicating the origin and destination of such OD, i.e. i→j 

ODs Set of OD pairs which have traffic flow of service s. 

t absolute time in the simulation. 

T period for the service profiles. 

τ relative time in the simulation, defined as mod(t,T). 

P set of explanatory variables, index p.  

Yijs(t) traffic flow of service s from node i to j in the time step t.  
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We consider that the period T is a known variable, so, τ can be deducted with t. 

Thus, the use of t and τ will be indifferent to our consideration. 

The object of traffic generation and prediction is Yijs, which is a time series 

characterized by the source i and destination j nodes of an OD and a traffic service. 

In other words, Yijs represents a specific service traffic flow. 

3.2 Service traffic generation 

In this section, we explain some models to generate OD traffic flows of the services 

that we considered in this project. Note that these models can be used as modules 

to compose more complex service models. 

3.2.1 Profile model 

A simple way to model service traffic is to use only their average profiles. The 

formulation for this model is: 

)()( tftY sijs  , (3.1) 

where fs(t) is the profile function of the service s. For simplicity, all the service 

profiles are considered to be periodic with period T. Then, the profile function can 

be defined by interpolating a set of profile values in the period, 

I=    ),0(|)()(),0( TttT hh   . The formulation for fs(t) is, using the relative 

time, τ, instead of absolute time, t, 
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In order to fit a more realistic case, the service traffic flow presents a random 

variation from the model, so a random number with normal distribution is added 

as variate term: 

 ))(,0  sfN （ . (3.3) 

Therefore, the variance of the normal distribution depends on the profile value, 

which is reasonable since the services present higher deviation as more traffic flow 

is generated. 

The resulting model is: 

  ))(,0)()(  ssijs fNftY （ . (3.4) 
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3.2.2 Weighted model 

Besides the profiles, the service generation models could depend on some weight 

terms in the origin nodes, wi 

)()( siijs fwtY  , (3.5) 

or on the weight terms in the destination nodes, wj 

)()( sjijs fwtY  , (3.6) 

or on the terms in both nodes, addictive or multiplicative: 

)()(,)()()(  sjiijssjiijs fwwtYfwwtY  .  (3.7) 

In this model, the service traffic flow depends on two independent parameters of 

both nodes and the service profile. As in the profile model, it has a variate term to 

be realistic. The final formulation for weighted model is: 

      ))(,0)()(,))(,0)()()(  ssjiijsssjiijs fNfwwtYfNfwwtY （（  , (3.8) 

where wi or wj may be 1 in the case that only depends on the weights of one node. 

3.2.3 Gravity models 

Gravity models are a type of models, developed largely in the social sciences, for 

describing aggregate levels of interaction among the people of different population. 

They have traditionally been used mostly in areas such as geography, economics, 

and sociology, but also have found applications in the network traffic analysis 

[Ko14].  

The term gravity model derives from the fact that, in analogy to Newton’s law of 

universal gravitation, it is assumed that the interaction among two populations 

varies in direct proportion to their size, and inversely, with some measure of their 

separation, e.g. the distance. 

The expected traffic represents the prediction of the flow created by two nodes and 

calculated by the gravity equation [Gr03]: 

ij

ji

ijij
d

mm
kw


 , (3.9) 

where mi and mj are the mass term in both nodes and the dij is the measure of their 

separation. Note that this model depends on a term dependent on both origin and 

destination nodes. 

Then, we introduce the gravity model for the service traffic generation as: 
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)()( sijijs fwtY  . (3.10) 

Adding the variate term as the previous models: 

  ))(,0)()(  ssijijs fNfwtY （ . (3.11) 

3.2.4 Evolutionary model 

For services that presents some extra traffic flow that does not depend on the 

profile, it can be modeled with an additive function, g(t,P), so, these services can be 

modeled with the following formulation: 

),()(
~

)( PtgtYtY ijsijs  , (3.12) 

where )(
~

tYijs  indicates the service traffic that depends on the profile, which can be 

modeled with previous models; and g(t,P) is the extra flow which depends on time 

and other variables in P (number of population, migration of a datacenter, etc.). 

3.2.5 Dependent model 

Finally, some service traffic could depend on the flows of same service generated by 

OD pair with same origin node: 







jj
ODij

sijijijs

s

tYctY

'
'

'' )()( , (3.13) 

where cij’ are scalars; and Yij’s are the traffic flows of service s generate by pair 

sODij ' . Another version of this model formulation is that the service traffic could 

depends on the flow generated OD pairs with same destination node: 







ii
ODji

jsijiijs

s

tYctY

'
'

'' )()( . (3.14) 

3.3 Service traffic prediction 

Time series analysis and linear regression are models that can be used to predict 

values of a time series. In this section, these two modelling methods will be 

presented. 
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3.3.1 Time series analysis 

A time series is an ordered sequence of values of a variable at equally spaced time 

intervals over a continuous time interval. 

Time series analysis contains methods for analyzing time series data in order to 

extract meaningful statistics and other characteristics of the data. A time series 

model predicts future values based on previously observed values [We94]. 

The autocorrelation refers to the correlation of a time series with its own past and 

future values. Let Y(t) = {y1,…,yn} be a time series and Y(t+k) = {yk+1,…,yn+k} the 

same time series lagged by k time units (k ≥ 0); then the autocorrelation between Yt 

and Yt+k is given by autocorrelation function (ACF) 

))(())((

))(),((

ktYtY

ktYtYCor
ACF







, (3.15) 

where Cor is the covariance function and σ is the standard deviation. 

Positive autocorrelation might be considered a specific form of “persistence”, a 

tendency for a system to remain in the same state from one observation to the next. 

For example, the likelihood of tomorrow being rainy is greater if today is rainy 

rather than if today is dry. 

Given a time series Y(t), the partial autocorrelation of lag k, denoted α(k), is the 

autocorrelation between Y(t) and Y(t+k) that is not accounted for by lags 1 to k−1, 

inclusive. 

 )(),1()1( tYtYCor    , (3.16) 

     )()(,)()()( ,, tYPtYktYPktYCork ktkt         for k ≥ 2  , (3.17) 

where Pt,k(Y) denotes the projection of Y onto the space spanned by Yt+1,…,Yt+k-1. 

Some time series data have presence of sparse sampling, that is, the intervals 

between time points are not uniform in general [Jh15]. In this case, the associate 

temporal series model will get false autocorrelation due to the sparsity of 

observations. 

For example, a equidistant time series of size 10000 generated by  

)()1(5.0)( ttYctY    , (3.18) 

where c is a scalar and ε(t) is a white noise process with zero mean and constant 

variance. In the Figure 3-1 shows the autocorrelations of this time series, one can 

observe that for lag greater than 7, the values of ACF belong to [-0.2,0.2] (the blue 
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lines); and for lag greater than 1, the values of partial ACF belong to same interval. 

After randomly deleting 5000 observations, the new autocorrelations are computed 

(See Figure 3-1), and one can observe that there are autocorrelations for large lag 

values, which are false since the time series is generated only with the value of the 

previous time step, so there are no autocorrelation in the far time steps. In view of 

the problem that presents time series analysis with sparse dataset, another 

prediction method will be considered: the linear regression models. 

 

Figure 3-1: Illustration of generated data of an OD pair. 

3.3.2 Linear regression 

Regression analysis are statistical processes for estimating the relationships 

among variables. Linear regression was the first type of regression analysis to be 

studied rigorously and to be used extensively in practical applications. 

Linear regression is an approach for modeling the linear relationship between a 

scalar dependent variable Y and one or more explanatory variables (or independent 

variables) denoted Xp. The relationships are modeled using linear predictor 
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functions whose unknown model coefficients are estimated from the data. Given a 

data set {Y,X1,…,Xp,…}, the linear regression model take the form 




0CXCY
Pp

pp   , (3.19) 

where cp denotes the coefficients for variable xp; c0 is the intercept term, which is a 

scalar; and ε is an error variable. 

If the response variable is a time series, Y(t), then some time dependent predictive 

variables can be considered [Ra95]: 

)()()( 0

'

'' tCXCtWBtY
Pp

pp

Pp

pp  


  , (3.20) 

where Bp’ are the coefficient for Wp’(t).  

An extension formulation can include also explanatory variable values in previous 

time steps: 

)()'()( 0

' '

''' tCXCtWBtY
Pp

pp

Pp tt

ptp  
 

  . (3.21) 

Also the values of the response variable in the previous time steps (t’ < t since the 

Y(t) is the value which have to predict) can be considered: 

 )()'()ˆ()( 0

' '

'''
ˆ

' tCXCtWBtYAtY
Pp

pp

Pp tt

ptp

tt

t  
 

  .  (3.22) 

With the notation of Yijs, the formulation become: 

 )()'()ˆ()( 0

' '

'''
ˆ

' tCXCtWBtYAtY ijs

Pp

ijspijsp

Pp tt

ijsptijsp

tt

ijstijs  
 

 (3.23) 

Knowing this, we can also construct a predictive model for time series with linear 

regression. And it has no problem with sparsity since we could model without the 

values of the response variable at previous time steps. 

Linear regression predicts the expected value of a response variable as a linear 

combination of a set of observed explanatory variables values. This implies that a 

constant change in an explanatory variable leads to a constant change in the 

response variable. This is appropriate when the response variable has a normal 

distribution (data that only varies by a relatively small amount in each direction, 

e.g. human heights). However, these assumptions are inappropriate for some types 

of response variables [Ne72]. For example, in cases where the response variable is 

expected to be always positive and varying over a wide range, e.g. income salary; or 

cases when the model predicts the probability that an event occurs.  
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A solution for non-normal distributed data is do a power transformation in the 

response variable to get it normal-like. The Box-Cox transformation is a good 

approach, it transforms no normally distributed data to a set of data that 

approximates to normal distribution. 

The Box-Cox transformation of the variable Y is also indexed by parameter λ, and 

is defined as 






1
'




Y
Y

 

 , (3.24) 

If λ = 0, then 

)log('  YY 

 

 , (3.25) 

The algorithm calls for finding the λ value that maximizes the Log-Likelihood 

Function.  

3.4 Validation 

For the validation of the models, the AIC information and the R-squared 

(coefficient of determination) are appropriate statistics to measure the goodness of 

the models.  

3.4.1 Akaike Information Criterion (AIC) 

AIC is founded on information theory; it’s a measure of the relative quality of the 

models for a given set of data. It deals with the balance between the model’s 

goodness of fit and the complexity of the model. AIC does not provide a test about 

the quality of the model in an absolute sense. If all candidate models fit poorly, AIC 

will not give any warning. 

The AIC information of a model is calculated with following formula [Ah14]: 

)ln(22 LkAIC 

  

, (3.26) 

where L is the maximum value of the likelihood function for the model and k is the 

number of estimated parameters in the model. 

Given a set of candidate models for the data, the preferred model is the one with 

the minimum AIC value. Hence AIC rewards goodness of fit (as assessed by the 

likelihood function), but it also includes a penalty that is an increasing function of 

estimated parameters’ number. 
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3.4.2 R-squared 

The R-squared, also called the coefficient of determination, is a number that 

indicates the proportion of the variance in the dependent variable, which is 

predictable from the independent variable for a model [Wi16]. 

If Y1,Y2,…,Yn is a vector of dependent variable of size n and Z1,Z2,…,Zn  for their 

respective predicted values. The mean of the observed data is 





n

i

iY
n

Y
1

1
  . (3.27) 

The total sum of square is 

2)( YYSS
i

itot     . (3.28) 

The regression sum of squares is 

2)( YZSS
i

ireg     . (3.29) 

The sum of residuals square is 

2)( 
i

iires ZYSS   . (3.30) 

A general version, based on comparing the variability of the estimated errors with 

the variability of the original values, is 

tot

res

SS

SS
R  12  , (3.31) 

Another version is common in statistics texts but holds only if the modeled values 

are obtained by ordinary least squares regression, which must include a fitted 

intercept or constant term. 

The coefficient of determination is an important statistical measure of how well the 

regression line approximates the real data points. A value 1 for R-squared 

indicates that the regression line perfectly fit the data. 

3.4.3 Tests for residuals 

Although a high R-squared value is an important asset of the linear regression, 

there are objections to relying exclusively on this empirical criterion [Wi99]. Then, 

it is recommended to process a complement analysis of residual to validate the 

model. Two assumptions for validation of regression models are that the residuals 

are normally distributed and independents. 

The Jarque-Bera test is a test decision for the null hypothesis that the data in a 

variable X comes from a normal distribution. The alternative hypothesis is that it 

http://es.mathworks.com/help/stats/jbtest.html#btv1pjk
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does not come from such a distribution. The result h is 1 if the test rejects the null 

hypothesis at the 5% significance level, and 0 otherwise. 

The test statistic is 








 


3
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2
2 k

s
n

JB  ,  (3.32) 

Where n is the sample size, s is the sample skewness, and k is the sample kurtosis. 

If the data comes from a normal distribution, the Jarque-Bera statistic 

asymptotically has a chi-squared distribution with two degrees of freedom, so the 

statistic can be used to test the hypothesis that the data are from a normal 

distribution. 

The Ljung-Box Q-test is a test that assesses the null hypothesis that a series of 

residuals exhibits no autocorrelation for a fixed number of lags L at 5% significate 

level, against the alternative that some autocorrelation coefficient ρ(k), k = 1,...,L, 

is nonzero [Ts10]. 

The test statistic is 
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 ,  (3.33) 

Where n is the sample size, L is the number of autocorrelation lags, and ρ(k) is the 

sample autocorrelation at lag k. Under the null hypothesis, the asymptotic 

distribution of Q is chi-square with L degrees of freedom. 

3.4.4 Error computation 

A measurement to evaluate the fitting of the models could be the mean prediction 

error at all the OD pairs, calculated with the following formula: 

s

ijsijs
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E

 



||

 (3.34) 

Where aijs denotes real flow from location i to location j for service s; bijs denote the 

same flow predict by the models; Ns is the number of pair of OD that interchange 

flow of service s. The most suitable model is the one which minimizes this error. 

3.5 Proposed algorithms 

In this section, some proposed algorithms for modelling and validation are 

explained, each of them using previously detailed modelling and validation 

procedures. 
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3.5.1 Stepwise regression 

Stepwise regression is a systematic method for adding and removing terms from a 

linear model, based on their statistical significance in explaining the response 

variable. There are different criteria to measure the statistical significance, such as 

AIC or R-squared.  

The Step 3: The method searches for variables in P’ to remove from the model 

according to the criteria (lines 14-21). If some variable is removed, go back to step 

2; otherwise, end. 

The algorithm finishes when the set P’ contains the most appropriate variables to 

fit the model, according to the selected criteria. Besides to select linear terms of the 

available variable in P, the algorithm can also select cross-product terms or higher 

order terms of a variable to find the best set of explanatory variables according to 

the selected criteria. 

Algorithm 3-1 presents the stepwise regression process. The method starts with no 

explanatory variables in the stepwise model (lines 2-3) and then enters or removes 

one of them based on the selected criteria. The main steps are: 

Step 1: Fit the initial model. 

Step 2: The method searches for variables in P to add to P’ (set of explanatory 

variables to fit the model) according to the criteria, and repeat this step until 

no more variables can be added (lines 7-13). Goodness-of-Fit (GoF) of models is 

computed to decide whether an incremental model improves the best model 

obtained so far. 

Algorithm 3-1: Stepwise regression algorithm. 

Procedure Stepwise regression Algorithm 

Input: y, P, data 

Output: model 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

begin  

P’=Ø 

model=lm(y,Ø) 

conv=False 

while not conv 

   conv=True 

  for x in P\P’ do 

    m=lm(y~P’∪ x, data) 

    if GoF(m)> GoF(model) then 

      model=m 

      P’=P’∪ x 

    endif 

  end 

  for x in P’ do 
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15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

    m=lm(y~P’\ {x}, data) 

    if GoF(m)> GoF(model) then 

      model=m 

      conv=False 

      break 

    endif 

  end 

end 

end 

Step 3: The method searches for variables in P’ to remove from the model 

according to the criteria (lines 14-21). If some variable is removed, go back to 

step 2; otherwise, end. 

The algorithm finishes when the set P’ contains the most appropriate variables to 

fit the model, according to the selected criteria. Besides to select linear terms of the 

available variable in P, the algorithm can also select cross-product terms or higher 

order terms of a variable to find the best set of explanatory variables according to 

the selected criteria. 

3.5.2 Transformation of variables 

In linear regression models, there is a set of available variables that can be used 

for the modelling. However, some derived terms of these variables can be created in 

order to obtain more linearly correlated with the response variables. We process an 

analysis of the variables to create high order terms (square, cube, etc.) using both 

AIC information and R-squared measurement. The process is described in 

Algorithm 3-2, it starts with generation of traffic data for n days, then, for each 

explanatory variable X, it process the following steps: 

Step 1: Build the linear models with power terms of X (line 7) 

Step 2: Compute R-squared values and AIC information for the linear models. 

(lines 6-10) 

Step 3: Find, from the set of linear models with highest values of R-squared, 

the model with minimum AIC information. (lines 14-21) 

The most suitable model is which has highest R-squared value and lowest AIC 

according to the theory. With this in mind, first, it find the highest R-squared 

value, R_high (line 11); then establishes set of linear models with those that have 

R-squared value greater than R_high – δ, δ small; and find the model in the set, 

which has the lowest AIC. All the powers terms used in this model are considered 

available explanatory variables. 

Adding power terms of variables that are not related with response ones do not 

improve the model fitting. Then, instead of applying this algorithm exhaustively to 
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all the explanatory variables, some previous analysis to extract the relationships 

between the explanatory variables and response ones are done, in order to select 

appropriate variables to apply it. 

Algorithm 3-2: Transformation of variables. 

Procedure Transformation of variables 

Input: data, P, R, data 

Output: P' 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

Begin 

Models = Ø 

R_Models = Ø 

P’ = P 

  for x in P, y in R 

    for i := 1 to m do 

  model = stepwise_regression(y,{x,x2,…,xi}, data) 

  r(i) = r_squared (model) 

  AIC(i) = AIC(model) 

end 

R_high = max(r) 

term_to_add = find(r == R_high) 

AIC_min = AIC(term_to_add) 

for i := 1 to m do 

  if (r(i) < R_high - δ) 

    if (AIC(i) < AIC_min) 

      term_to_add = i 

      AIC_min = AIC(i) 

    endif 

  endif 

end 

n = term_to_add 

P’=P’∪ {x,x2,…,xn} 

  end 

end 

3.5.3 Selection of candidate models 

For the modelling, consider that there is not only one model for the prediction but a 

set of candidate models. Algorithm 3-3 explains the candidate models selection’s 

process: the simulator builds new candidate models during the first d1 days (line 2-

4) and establishes Models as the set of candidate models; subsequently, it does the 

traffic flows prediction with Models and calculates the prediction errors with 

formulation in 3.35 (9-10). Then, removes the one with largest error remaining only 

d1-1 models (line 11-17). Apart from this, it introduces a new candidate model to 

the set at intervals of d2 days, d2 > d1, and the model with the largest error is 

removed from Models when a new model is introduced. 
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Algorithm 3-3: Selection of candidate models. 

Procedure Selection of candidate models 

Input: y, P, day, Models 

Output: Models 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

begin  

  if day <= d1 or mod(day,d2) == 0 then 

    model = stepwise_regression(y, P) 

    Models = Models ∪ model 

    if day == d1 or mod(day,d2) == 0 then 

      remove = True 

    endif 

  endif 

predict(Models) 

calculate errors for model in Models 

  if remove then 

    if (error(model) == error(Gof(Models)) then 

      Models = Models\model  

      remove = False 

    endif 

  endif 

end 

 

3.6 Summary 

In this chapter, the methodology for the data generation, the modelling and the 

validation has been presented. The 5 traffic generation models exposed in this 

chapter will be used to generate the service flows introduced in the previous 

chapter. The time series analysis, linear regression and the validation methods will 

be considered for the modelling procedure. Finally, some proposed algorithm are 

presented to enhance the fitting and validation of service traffic flow models. 

In the following chapter, technical details about the implementation of the 

different techniques into the simulator platform will be presented. 

 



 
 
 
 
 
 
 
 
 

 

 

Chapter 4.  

Simulator 

This chapter is devoted to the design and description of the simulation platform. 

Specifically, after introducing a global overview of the simulator, it tackles 

theoretical sections 3.2, 3.3 and 3.4 of the previous chapter from a practical 

perspective. A Matlab-based implementation of the simulator has been developed 

during this project following the specifications in this chapter 

4.1 Design 

The simulator basically consists in code blocks (scripts and functions) and 

databases (DB) composed to create two main blocks clearly separated: 

 The OD traffic generation block: provides simulated service and aggregated 

traffic flows according to the loaded network configuration and the 

characterization of different services. That monitoring data as well as 

available data related to the network is stored in separated data files for 

further model estimation. 

 The model fitting block receives monitoring data and, after applying 

filtering and aggregation actions according to the configured monitoring 

architecture, runs model estimation procedures to obtain the model with the 

best trade-off between accuracy and number of coefficients (i.e. descriptive 

variables). 

The Figure 4-1 illustrates the OD traffic generation block of the simulator. It 

requires network configuration data as input (see next subsection for details about 

network configuration parameters). Part of this configuration data is used to 

generate service traffic flows between every of the (allowable) network nodes 
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according to the user defined models. At each generation timer (e.g. every minute), 

a traffic sample for each of the service flows for all the OD pairs following the 

service profiles is generated and stored in the Raw traffic flow DB. This DB 

contains a quite unrealistic high level of traffic detail. For this reason, with a 

longer period that the generation timer (e.g. every 15 minutes), the aggregation 

timer triggers when average traffic values need to be computed. This aggregated-

in-time traffic is then replicated and sent to two distinct DBs: the Per-service OD 

flows DB where traffic is stored as it is received, and the Aggregated OD flows DB 

where the sum of all the service flows in the same OD is firstly performed. With 

this procedure, the former DB contains traffic similar to that that could be 

monitored by means of some traffic analysis tool such as DPI, whereas the latter 

could correspond to the aggregated traffic monitoring performed by measuring 

traffic bitrate e.g. at router interfaces. 

The model fitting block of the simulator is detailed in Figure 4-2. It requires of the 

monitoring traffic DBs (i.e. those created in the generation part) and also the 

network configuration parameters DB. Before starting modelling, data coming from 

that DBs needs to be filtered according to different criteria. Regarding network 

configuration, some data used to generate service traffic profiles is hidden in order 

to perform a fair evaluation of model fitting procedures. On the other hand, the 

selected monitoring configuration will affect the amount and type of data that can 

be used from the per-service OD flows DB. After applying those filters, a model 

fitting DB is generated combining data from such three DBs. In addition, some 

service OD flows data are stored for testing the validity of service flows models.  

Once model fitting DB is obtained, the modelling and validation processes for the 

models explained in Chapter 3 start.  The resultant models are stored in a Models 

DB. From those models, predictions can be performed for different services, OD 

pairs, and time instants. These predictions can be compared with previously stored 

testing data to finally assess the validity and accuracy of the models. The analysis 

of the goodness-of-fit of the models provides several statistics that are analyzed to 

take conclusions about the object of the simulation (e.g. evaluate the accuracy of 

models when some monitoring architecture is configured and service flows are 

assumed to be monitored at a given rate). 
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Figure 4-1: OD traffic generation of simulator. 
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Figure 4-2: Traffic flows prediction of simulator. 

4.2  Input and output details 

A simulation is configured by defining the number and characteristic of locations 

(nodes) such as number of users for each service, the distance between the nodes, 

etc. In this section, all these parameters and the generated flow format are 

specified. 
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Main parameters related to the network and service profiles are: 

n Positive integer. Number of nodes. 

s Positive integer. Number of services. 

fs Real. The services profiles. The profile will be represented with a 

vector of a given length (e.g. 24) where each point represents the 

density of active users at a time unit (e.g. one hour). 

data Positive integer. Mean of volume in GB generated by a server in data 

migration. 

vel Positive Real. Transmission speed in Gb/s for the datacenters 

migration for each location. 

For each of the network nodes, the simulator requires the following input 

parameters: 

res Positive integer. Thousands of ADSL subscribers.  

emp Positive integer. Thousands of employers.  

cdn Positive integer. Thousands of CDN subscribers. 

dc Positive integer. Number of servers in the datacenters. 

cache Binary, equal to 1 if there is a cache; 0 otherwise. 

gateway Binary, equal to 1 if it is Internet node; 0 otherwise. 

(x,y) Real. Coordinates of the nodes in the network. 

Other aspects to configure regarding the overall simulation are: 

num_inspecc Positive integer. Number of DPI instances deployed in the 

network. Without loss of generality, we assume that one 

instance is able to inspect 100% of the total traffic injected in a 

node. However, in case of configuring less instances than 

nodes, inspected traffic is equally distributed in the network 

(e.g. if 5 DPI instances are configured in a 10-node network, 

then 50% of traffic at every node is analyzed) 

time_inspecc Positive integer. Interval of time in time units for 

summarizing traffic analyzed by DPI instances. 

step Positive integer. Time step in time units to generate traffic 

flows. 

max_step Positive integer. Total time in time units for the simulation. 

Given the aforementioned input parameters, the simulator generates the following 

output: 



Chapter 4 – Simulator 29 

G numerical 2-D matrix with the aggregated flow between each pair of 

OD for each time step. Element G((t-1)· n + i,j) corresponds to the 

aggregated flow from node i to node j in time step t. 

U numerical 3-D matrix with flow of all services between all OD pairs 

for each time step. Element U((t-1)· n+i,j,s) corresponds to the 

traffic flow of service s from node i to node j in time step t. 

D numerical 3-D matrix with means of all services flow between all 

OD pairs during dpi timer. Element D((t’-1)· n + i,j,s) corresponds to 

the mean traffic flow of service s from node i to node j in inspection 

time step t’. 

models structures with a set of candidate models for each services. 

U’ 3-D numerical matrix with the predict value by the models. 

Element U’((t-1)· n + i,j,s) corresponds to the predicted traffic flow of 

service s from node i to node j in inspection time step t. 

e numerical vector with the prediction error. e(i) correspond to the 

error of day i. 

 

4.3 Traffic Generation 

When the simulator receives the input parameters, it generates service traffic flows 

in the network with the following patterns:  

Residential traffic between two nodes is generated following the gravity model 

exposed in 3.2.3, the mass terms are the population of the adsl subscribers in both 

nodes: resi and resj; and the dij is the Euclidian distance between the nodes. 

Business traffic between two nodes is generated also with the gravity model, but 

the mass terms are the number of employers in both nodes: empi and empj; and the 

dij is the Euclidian distance between the nodes as the previous case. 

CDN traffic between two nodes is generated following the weighted model exposed 

in 3.2.2, where the weight is the number of cdn subscribers in the destination node 

(cdnj). 

The DC2DC traffic is the most complex one. First, consider that the datacenters 

have two sizes: large datacenter, which have more than or equal to 10000 servers, 

and small datacenter, which have a range of 1000 to 9999 servers. Then, the 

datacenters have a regular traffic following multiplicative weighted model taking 

the number of server in datacenters in both nodes as the weights: dci and dcj. 
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Additionally, it has extra traffic flow when a data migration occurs. The data 

volume for migration is proportional to the DC2DC profile and number of servers 

in the origin location (i): 

)(),,,( tfdatadcxtjig siiD    , (4.1) 

where datai denotes the mean of data volume generated by a server in the origin 

node. Then, it generates an additional traffic equal to the transmission speed until 

the data is migrated: 

 
iiiiD timetvelxveltimetjig ),,,,,(   , (4.2) 

with veli denotes the transmission speed for the location i  and timei  the time step 

when the data migration of location i will terminate. Note that if a migration from 

location i to location j occurs, then the extra traffic of migration from location i to 

the other destination (different than j) will be 0 since the datacenter can only have 

migration with one datacenter at a time point. So the function g(i,j,t,x) also 

depends on g(i,j,t-1,time). 

For the simulator, if a data migration occurs or not is a probabilistic event, the 

probability that a migration from a large datacenter (pi = 0.5) is higher than 

migration from a small one (pi = 0.3). 
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And there will be only one data migration with larger volume at night (8:00 p.m. to 

6:00 a.m.) for each datacenter.  
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where migi denotes if a migration occurred at night (it takes value 1 once the night 

migration terminates). 

Then, the extra flow for DC2DC traffic can modeled with 
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where D denotes the interval of daytime hours (from 6:00 a.m. to 8:00 p.m.). 

Finally, the formulation for DC2DC service traffic is an evolutionary model as 

explained in 3.2.4 with g as an additive function: 
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)(tYijs = g
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For the traffic of a service generated by a node, it has a traffic flow of the same 

service from the location to Internet and it also receive traffic from Internet. These 

two flows are proportional, in different proportion, to the total traffic of the 

respective service generated by the node. The formulation for the traffic received 

from Internet follows the dependent model explained in 3.2.5, setting the Internet 

as node p: 
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And for traffic goes to Internet: 
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The cin(s) and cout(s) are two scalars independent to OD pair ij, it only depends on s; 

and Ys(i,j’,t) denotes the traffic flow of service s generated by OD pair (i,j). 

For simplicity, we assume that the service profiles do not evolves during the 

simulation. 

The services traffic in our scenarios has the following connectivity:  

• All the nodes with res > 0 interchange residential traffic among themselves. 

• All the nodes with emp > 0 interchange Business traffic among themselves.  

• There is only CDN traffic from nodes with a cache to other nodes with cdn > 

0. But there is not CDN traffic between network nodes and the Internet 

node. 

• For the nodes with dc > 0: 

• There are regular DC2DC traffic among themselves. 

• There are data migration among datacenters with same size. 

• There are data migration from small to large datacenter, but not in 

the other way. 

4.4 Modelling 

On the one hand, the OD traffic flows is stored in the database at each aggregation 

timer, e.g., every 15 minutes. On the other hand, there are a fixed number of DPI 

instances extracting service flow information at the nodes (random selected)at 

another rate (e.g. summaries every hour) . Consequently, the data generated has 
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not information of the service traffic flows at equally spaced time intervals, because 

some OD pair presents missing values. The Figure 4-3 shows one such example of 

the generated data, where one can observe that the data provided by DPI (the 

means, minimums and maximums of each service) can be very sparse. Recall that 

each row represents one collected measure of aggregated OD traffic. 

The time series analysis is seems not to be appropriate to model this data due to 

the sparsity as explained in 3.3.1. In contrast, linear model is a good approach 

since we can use all the other covariates. Thus, we can use the formulation (3.19) 

for our model without the values of response variable in previous time steps. Then, 

for modelling, we use the information extracted from DPI to construct a linear 

regression model and predict the service matrix for each time step in the future.  

For the construction of linear models, we use all the input data mentioned in the 

previous section, also the aggregated flow matrix (G) and DPI matrix (D) as 

variables to predict the values of the service’s flow matrix (U).  As the profile of the 

services are periodic with period of 1 day, then we can take the relative hour on the 

day as an explanatory variable. Applying Algorithm 3-3, some power terms of these 

variables can be also introduced as explanatories. 

 

Figure 4-3: Illustration of generated data of an OD pair. 

4.5 Validation 

For the validation of the models, it applies the stepwise regression procedure as 

explained in Algorithm 3-1, with AIC criteria to select the set of explanatory 

variables and testing up to cross-product terms of these variables. That is, it 

searches the set of variable from all the explanatory variables and their cross-

product terms, which has the model with minimum AIC information. It also applies 
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Box-Cox transformations to the response variable to make it a normal-like 

distributed data. 

The simulator applies Algorithm 3-1 to get a set of candidate models. To evaluate 

the goodness of the models, it compares the predict matrix for services flow U’ and 

the real flow matrix U and computes the mean error for each services with the 

formula exposed in (3.35). 

We consider two errors: the absolute error, using (3.35), and the relative error (the 

absolute error divided by the real value of the flow); we will use the absolute one to 

compare models for different approach and the relative one to evaluate the 

prediction error for different services. 

4.6 Summary 

In this chapter, the details of the main blocks and DBs (and the relationship among 

them) included in our designed simulator have been firstly presented. The inputs 

and outputs of the simulator were presented defined. Choosing linear regression as 

most appropriate modelling tool, stepwise linear regression with AIC criteria for 

model selection has been implemented. At last, the process to evaluate the 

goodness of the candidate models is exposed. 

In the following chapter, the utility of the simulator will be evaluated through 

numerical results over an illustrative case study. 

 



 
 
 
 
 
 
 
 
 

 

Chapter 5.  

Numerical results 

This chapter presents a case study where different monitoring and data analytics 

configurations are evaluated from the perspective of service flow modelling. By 

means of numerical results obtained with the simulator, the accuracy of models 

and the amount of monitoring data needed to obtain a target goodness-of-fit 

threshold are evaluated for different configurations of the service flow monitoring 

function. Finally, the sensitivity of some key explanatory variables in the service 

traffic models is analyzed. 

5.1 Case study 

As we introduced in Chapter 2, there are two main (and opposite) data monitoring 

architectures, i.e. Centralized and distributed. With those concepts in mind, in this 

study we compare three different approaches for collecting monitoring data and 

obtaining predictive traffic models, namely Network, Node and OD. The main idea 

behind each option is following explained: 

 The Network approach takes all the available information to construct a 

model. Thus, each of the services is characterized by a unique model where 

explanatory variables include data from the source and destination 

locations of the OD that wants to be predicted. Note that this model 

requires centralizing monitoring data to a common repository, where also 

locations data need to be synchronized to allow model fitting and 

predictions. 

 The Node approach assumes knowing available partial information. 

Basically, it requires from traffic monitoring data at sources and some 
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destination location data. This approach can be deployed either in a 

centralized way or in a distributed one. If the latter is chosen, although 

some location data needs to be spread and replicated at every location, 

traffic monitoring data collected locally can remain in local repositories. 

 The OD approach consider obtaining models just from local information at 

nodes. This is the best candidate to implement a fully distributed scheme 

where data is stored locally and models per each OD are obtained only by 

means of monitoring traffic data at source locations. 

Table 5-1 shows the amount of models that need to be fitted under every approach, 

where |S| represent the amount of service and |N| the amount of network 

locations. Note that the simpler the model is (in terms of considered explanatory 

variables) the higher is the amount models to fit. For the sake of a fair comparison, 

we assume that models under the Node approach can use a subset of the 

explanatory variables of the Network model and similarly, OD models use a subset 

of the Node models one (as illustrated in Table 5-2). 

Table 5-1: Number of models for each of the approaches 

Approach Number of models 

Network |S| 

Node |N|·|S| 

OD |N|·(|N|-1)·|S| 

Table 5-2: Explanatory variables for each of the approaches. 

 Hour TrafOD Destination node information Origin node information 

resj … distj gravity resi … … distij 

OD X X         

NODE X X X X X X     

NETWORK X X X X X X X X X X 

 

To represent different configurations of de-aggregated service traffic monitoring, 

we configure different filters to allow considering a pre-defined proportion of 

service monitoring traffic for model fitting. In this way, we emulate different 

deployments of DPI VNF instances into computing network resources. Without loss 

of generality, we assume that every considered approach has its best DPI VNF 

deployment, e.g. OD models can take advantage of deploying few resources in local 

computing nodes, whereas a Network approach could concentrate both DPI and 

traffic modelling resources in centralized and powerful DCs. 
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5.2 Reference scenario 

Figure 5-1 shows the reference network selected for evaluation of the case study. It 

contains 6 node locations with distinct characteristics: 3 of them are collocated with 

a DC and 1 is collocated with a large cache node. Moreover, node 6 interconnects 

the network with the Internet.  

For this scenario, we considered that each user generates around of dozens of Kb/s 

for Residential and Business services; and Mb/s for CDN service. We establish 

dozens of GBs as the volume generated by a datacenter’s server in a migration on 

the day and hundreds of GBs at the night. The data volume is transmitted with 

speed 5 Gb/s on the day and 20 Gb/s at the night for small datacenters; the 

transmission is double quickly at the night for large datacenters. We assume that 

the service traffic flows coming from the Internet are equivalents to the total 

service traffic generated by the node (Cin(s) = 1), except CDN since we configured it 

has no interchange flow with Internet. But the service traffic go to the Internet has 

different proportions: 0.6 for Residential, 0.4 for Business and 0.2 for DC2DC. 

DC

DC

DC

1

2

3

4

5

6

INTERNET

CACHE

 

Figure 5-1: The reference scenario 

Table 5-3 shows the number of users for each service in every node (in thousands 

for users of Residential, Business and CDN). We considered that Internet node has 

the service user numbers equal to the total users of the respective service in the 

network. With this configuration, where every node has different proportion of each 

service users, we are able to generate a wide variety of aggregated and de-
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aggregated traffic flows for OD pairs. In fact, although that the scenario seems to 

have few node locations, it generates 4 service flows for 30 distinct OD pairs, that 

is, 120 service flows altogether. 

 NODE 1 NODE 2 NODE 3 NODE 4 NODE 5 

res 80 000 10 000 50 000 100 000 250 000 

emp 140 000 100 000 300 000 60 000 160 000 

cdn 40 000 80 000 90 000 110 000 200 000 

Dc 0 1 000 1 000 10 000 0 

Table 5-3: Users of each services for the nodes in the network. 

We generated simulations of 15 days, generating traffic flows every minute and 

with a time interval for monitoring traffic aggregation equal to 15 minutes. In 

terms of data to manage for modelling, one can easily observe that each of the 

distinct OD flows has 96 records for a day. Since simulations last for15 days, 1440 

records for each service flow for different OD pair are generated. Then, modelling 

procedure must manage data sets containing 1440·120 = 172800 records, which is a 

considerable volume of data. 

An example of generated service traffic flows are shown in Figure 5-2. The traffic 

volume generated by each service is between 20-30% of the total traffic. The 23% of 

the aggregated traffic volume corresponds to Residential service, 23% to the 

Business, 24% to the CDN and 30% to the DC2DC service. Nonetheless, according 

to the connectivity, there is only CDN traffic between node 1 and the others nodes; 

and the DC2DC service only occurs between DC nodes. So the traffic generated by 

a pair of OD has much higher volume in CDN and DC2DC than Business and 

Residential. 

Next sections will be devoted to analyze that amount of generated traffic data and 

take conclusions about the proposed data pre-processing and modelling procedures, 

and evaluate the strong and weak aspects of each proposed data analytics 

approach. 
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Figure 5-2: Example of generated service flows (2 days). 

5.3 Data preprocessing and transformation 

To evaluate whether using different power terms of the variables or not using, we 

processed scatterplots for explanatory and response variables to see the 

relationship between them. Some of the resultant scatterplots are shown in Figure 

5-3, where we observe that the most of the explanatory ones only take few values 

and no relation is concluded. Apart from this observation, the R-squared value did 

not significantly improve when new terms of these variables are added. Figure 5-4 

shows the R-squared evolution of models for Business service traffic when new 

terms of emp are added. In view of the figure, we can conclude that it is not 

necessary to apply such data transformation algorithm to this explanatory 

variable. Besides this, we observed that there are some relationship between the 

explanatory variables, such as res and cdn that have a strong linear relation. This 

fact causes to linear models that include one or the other will not offer difference 

and we will take it account in the next section for methodology evaluation. 

After analyzing all the variables, we consider that the only two interesting 

variables to add significant power terms are Hour and trafOD. Figure 5-5 shows 

the scatterplots of these variables with Business as example; in this figure, the 

Hour seems to have quadratic correlation with Business; the trafOD seems linear 

with Business at beginning but the linearity fails when trafOD is large. Then, we 

applied transformation to these two variables and set δ = 0.05. 
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Figure 5-3: Scatterplots of different variables w.r.t Business 

Business (Network models) Business (Network models)

order of emp1 order of emp2  

Figure 5-4: R-squared plot of Business with emp1 and emp2. 
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Figure 5-5: Scatterplots between hour and trafOD and Business. 

Residential (OD models) Business (OD models)

order of trafOD order of trafOD

CDN (OD models) DC (OD models)

order of trafOD order of trafOD  

Figure 5-6: R-squared plot for OD models. 
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Residential (OD models) Business (OD models)

order of trafOD order of trafOD

CDN (OD models) DC (OD models)

order of trafOD order of trafOD  

Figure 5-7: AIC plot for OD models. 

Figure 5-6 shows the evolution of R-squared values when new terms of Hour are 

added for OD models. As we can observed, the R-squared has a great improvement 

when new terms are added. The Figure 5-7 shows the evolution of AIC information, 

for Residential service, it has a minimum at order 4; for the cases of Business and 

CDN, at order 11; and DC2DC has it at order 7. The algorithm concluded to add 

hour up to order 8 for Residential; up to order 11 for Business and CDN; and 7 for 

DC2DC. But to be fair in the modelling of each service, we add the highest term 

(order 11) to all the models. There may be too much variables for Residential and 

DC2DC, but the stepwise process will take over those variables that are the most 

appropriate ones to construct the model. We do the same analysis for the variable 

trafOD and concluded to add terms up to order 15. 

We also combine some of the predictive variables to get new ones. For example, the 

distance with number of users of a service in such way to get a gravity model. 

Although we know that the simulator generates some services with gravity model, 

and we are supposed to be without this information in a real case, we can do it 

because there is gravity model theory behind this. The matrix of scatterplots for 

gravity models is shown in the Figure 5-8 we see that the gravity model has more 

or less a linear correlation with Residential and Business services, what is really 

helpful introducing this variable to the linear model. But it seems not to have a 
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linear correlation with CDN and DC2DC services. Seeing that, we decide to use 

gravity model as predictive variable in models for Residential and Business. 

 

Figure 5-8: Scatterplots between gravity models and the services. 

5.4 Model fitting methodology evaluation 

This section is devoted to evaluate the performance of the stepwise regression 

procedure. Since the methodology is the same for all the considered approaches, the 

evaluation is done with an exhaustive analysis of the process for each service model 

in the Network approach, which includes all the explanatory variables. Outcomes 

and conclusions of this section will be applied in further sections to compare 

different approaches. 

After applying the data transformation process explained before, 39 explanatory 

variables are initially considered; that is, a total of 1482 cross-product terms that 

stepwise regression can choose. For the sake of simplicity, we decided to avoid 

variable interactions and consider only linear relations among variables. Next 

subsections present results for each of the considered services. 
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5.4.1 Residential 

The result of the stepwise process with linear variables for the Residential service 

is shown in Table 5-4. We see that the predictive variables considered are: res, emp, 

cdn, dc, dist, gravity, gateway, cache, hour and trafOD. The variables hour, trafOD, 

dist, gravity and res are clearly related variables. In contrast, other variables such 

as emp, cdn or dc seem not related with Residential traffic flow. This facts due to 

the relationship among these variables with res as explained in the previous 

section. Another fact that we observed is that the prediction of Residential flow 

depends on trafOD, which depends on other variables, so his values can be 

modified by other values.  For example, a large value of emp in both nodes generate 

a larger Business traffic flow, and it contributes a larger trafOD flow, what makes 

a larger prediction value of Residential traffic flow. The same thing happens with 

gateway and cache since trafOD flows that goes to Internet or that have CDN are 

much higher than traffic without these conditions. 

Table 5-4: Stepwise process for Residential service 

1. Adding dist AIC = 7713.141 

2. Adding res1 AIC = 6772.837 

3. Adding Hour2 AIC = 6280.2316 

4. Adding res2 AIC = 6038.9278 

5. Adding Hour AIC = 5782.4047 

6. Adding Hour3 AIC = 4406.2143 

7. Adding gateway AIC = 4011.9741 

8. Adding Hour8 AIC = 3797.7978 

9. Adding Hour4 AIC = 3134.9886 

10. Adding Hour7 AIC = 2095.1988 

11. Adding cache AIC = 1762.9129 

12. Adding dc1 AIC = 1362.0558 

13. Adding emp2 AIC = 1166.5572 

14. Adding cdn1 AIC = 825.9848 

15. Adding gravity_mult_res AIC = 779.839 

16. Adding gravity_mult_bus AIC = 756.6801 

17. Adding Hour5 AIC = 738.4066 

18. Adding trafOD6 AIC = 736.8389 

19. Adding trafOD5 AIC = 733.9518 

Interestingly, we observe that there are correlations between service traffic even 

when we did not make it deliberately in the generation. This fact makes this 

analysis more complex since the real correlations between the variables are 

unknown. 

Details of the final model are below: 

Generalized Linear regression model: 

    Residential ~ [Linear formula with 20 terms in 19 predictors] 

    Distribution = Normal 

 

Estimated Coefficients: 

                         Estimate          SE         tStat       pValue    

                        ___________    __________    _______    ___________ 
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    (Intercept)             -2.0569      0.050523    -40.713    3.0599e-286 

    Hour                    0.56884      0.042173     13.488      3.042e-40 

    Hour2                  -0.40939       0.02151    -19.032     3.8618e-76 

    Hour3                  0.048641     0.0044834     10.849     6.6708e-27 

    Hour4               -0.00079789    0.00043404    -1.8383       0.066122 

    Hour5               -9.3828e-05    1.7744e-05    -5.2878     1.3314e-07 

    Hour7                2.8425e-07    2.0201e-08     14.071     1.5694e-43 

    Hour8               -6.7549e-09    4.0776e-10    -16.566     6.2852e-59 

    dist                 -0.0026907    3.0501e-05    -88.217              0 

    gravity_mult_res    -1.9934e-06    2.8734e-07    -6.9374     4.9185e-12 

    gravity_mult_bus      9.618e-07    1.8071e-07     5.3225      1.103e-07 

    gateway                 -1.0833      0.053448    -20.268     1.8902e-85 

    cache                 -0.783309      0.025197     3.3064     0.00095687 

    res1                  0.0016892    3.0707e-05      55.01              0 

    cdn1                 -0.0010033    4.4252e-05    -22.672    8.6436e-105 

    dc1                  5.4624e-05    1.8074e-06     30.223    2.2651e-174 

    res2                 0.00066426    9.7371e-06      68.22              0 

    emp2                -0.00018843    6.9808e-06    -26.992     3.844e-143 

    trafOD5              4.4488e-10    2.2464e-10     1.9804       0.047755 

    trafOD6             -5.0328e-12     2.424e-12    -2.0762        0.03796 

 

2880 observations, 2860 error degrees of freedom 

Estimated Dispersion: 0.0821 

F-statistic vs. constant model: 9.53e+03, p-value = 0 

R-squared: 0.9845 

 

As we can see, the variables trafOD and hour have both positive and negative 

coefficients in terms of different orders in order to approximate the values 

Residential with polynomial terms; the res have positive coefficients because it 

contribute positively in the model (the higher the amount of users the higher the 

traffic is); dist has a negative contribution in the predictive model because it is 

inverse proportional to the service flow according to the gravity model; the 

variables cache, gateway, emp, cdn and dc have negative or small coefficients in 

order to correct the linear dependence between trafOD and Residential as 

explained before; at last, gravity model for residential has a negative coefficient 

and business gravity model has positive coefficient, what is strange since the 

service flow is generated with residential gravity model. It is probably due to the 

complex correlations between the variables: the relationship among res and emp as 

explained in the previous section, the dependence of trafOD, etc. Thus, all the 

variables of this model seems to be significant with relevant coefficients. 

The stepwise process and the resulting linear model with cross-terms are available 

in Apendix A. The AIC began at 7679 and it decreased to -1213 when process 

finished. It selected 69 variables in total of 1482 variables, and the R-squared 

worth 0.9940, that is, the process has selected less than 5% of the variables, 

explaining more than 99% of the response variable variation, what is another proof 

that the method works properly. The variables that involve in the model are the 

same as the linear case with interactions between them. 
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For the residuals tests in this model, the Jarque-Beras test rejects the normality of 

the residual distribution, but we can see in Figure 5-9a, which shows the normal 

plot of the residuals, that it is not too far from a normal distribution. The Ljung-

Box Q-test accept the null hypothesis and confirm the residuals of this model are 

independent, as shown in Figure 5-9b, there is not strong autocorrelation in these 

residuals. 

a) b)

 

Figure 5-9: Normal plot and autocorrelation for residuals of Residential service. 

Although the normality test fails, we did not reject directly the validation of our 

methodology, and we analyzed the prediction for different OD pairs to evaluate the 

goodness-of-fit of the model. Figure 5-10 illustrates a representative example of the 

Residential traffic flow prediction with this model. In this figure, one can observe 

that the model fits well in general, although it sometimes underestimates traffic 

and makes some bad prediction in the highest traffic flow points, particularly, at 

beginning of a day. 
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Figure 5-10: Residential flow prediction (from node 1 to node 5). 
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5.4.2 Business 

The result of the stepwise process with linear variables for Business service is 

shown in Table 5-5. We see that the predictive variables considered are: res, emp, 

cdn, dc, dist, gravity, gateway, cache, hour and trafOD. The explanation for these 

variables is similar to the Residential service, but now the mass term is emp 

instead of res. The final model is detailed below: 

Generalized Linear regression model: 

    Business ~ [Linear formula with 25 terms in 24 predictors] 

    Distribution = Normal 

 

Estimated Coefficients: 

                         Estimate          SE         tStat       pValue    

                        ___________    __________    _______    ___________ 

 

    (Intercept)             -4.3456      0.043903    -98.982              0 

    Hour                    0.40272      0.036134     11.145     2.8697e-28 

    Hour2                  -0.40942      0.019505     -20.99      4.346e-91 

    Hour3                   0.11264      0.004388      25.67    6.1769e-131 

    Hour4                 -0.012697    0.00048214    -26.336    5.0681e-137 

    Hour5                0.00067658    2.6466e-05     25.564    5.6417e-130 

    Hour6               -1.5109e-05    6.1728e-07    -24.477     2.859e-120 

    Hour8                3.4764e-09    1.5435e-10     22.523    1.5619e-103 

    dist                 -0.0023477     2.657e-05    -88.362              0 

    gravity_mult_res     2.4078e-06    2.3877e-07     10.085     1.5943e-23 

    gravity_mult_bus    -3.0784e-06    1.5097e-07    -20.391     2.1474e-86 

    gateway                 -2.3787      0.067121    -50.337              0 

    cache                   -0.9937      0.038773      51.42              0 

    res1                 -0.0018646    6.4943e-05    -28.711    1.7464e-159 

    emp1                  0.0005121    1.8165e-05     28.192    1.7737e-154 

    cdn1                  0.0029533    9.5772e-05     30.837    1.7598e-180 

    dc1                 -5.2702e-05    3.3739e-06     -15.62     7.6481e-53 

    emp2                  0.0007266    7.7372e-06     93.911              0 

    cdn2                -0.00010091     1.141e-05    -8.8445     1.5774e-18 

    dc2                 -3.8471e-05    1.7038e-06    -22.579    5.2997e-104 

    trafOD                 0.034956     0.0044648     7.8294     6.8544e-15 

    trafOD2               -0.002839    0.00038578    -7.3593     2.4052e-13 

    trafOD3              6.8313e-05     1.193e-05     5.7261     1.1344e-08 

    trafOD4             -5.4038e-07    1.2663e-07    -4.2676     2.0404e-05 

    trafOD6              1.0892e-11    4.4684e-12     2.4375       0.014851 

 

2880 observations, 2855 error degrees of freedom 

Estimated Dispersion: 0.0539 

F-statistic vs. constant model: 7.76e+03, p-value = 0 

R-squared: 0.9849 

 

The stepwise process and the resulting linear model with interaction are available 

in Apendix A. The AIC of this model began at 6982 and decreased to -2400. The 

model selected 55 variables and R-squared worth 0.9941.  

For the tests of residuals, the Jarque-Beras test rejects the normality of the 

residual distribution, however, it rejects with a p-value of 0.0377. In Figure 5-11a 

shows the normal plot of residuals, one can see that it closely resembles a normal 

distribution. The Ljung-Box Q-test accepts the null hypothesis and confirm that 
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the residuals of this model are independent. As shows in Figure 5-11b, we see there 

is not strong autocorrelation in the residuals. 

An example for Business traffic flow prediction is shown in Figure 5-12. We can see 

that the model has good fit in general even when it behaves slightly different in the 

rush time. 

Table 5-5: Stepwise process for Business service. 

1. Adding emp1 AIC = 7235.4725 

2. Adding emp2 AIC = 6521.536 

3. Adding dc2 AIC = 6233.9602 

4. Adding Hour AIC = 5951.5569 

5. Adding Hour4 AIC = 4564.1031 

6. Adding dist AIC = 4178.3773 

7. Adding gateway AIC = 3392.377 

8. Adding cache AIC = 2895.1728 

9. Adding cdn1 AIC = 2717.327 

10. Adding res1 AIC = 2530.5759 

11. Adding gravity_mult_bus AIC = 2389.9035 

12. Adding Hour2 AIC = 2252.3477 

13. Adding Hour3 AIC = 684.1794 

14. Adding dc1 AIC = 524.8696 

15. Adding res2 AIC = 500.883 

16. Adding gravity_mult_res AIC = 451.8432 

17. Adding Hour5 AIC = 434.4108 

18. Adding Hour6 AIC = 267.5157 

19. Adding Hour8 AIC = -83.1315 

20. Adding trafOD6 AIC = -93.7572 

21. Adding trafOD2 AIC = -123.4507 

22. Adding trafOD4 AIC = -143.9359 

23. Adding trafOD AIC = -159.5645 

24. Adding trafOD3 AIC = -179.3428 

25. Adding cdn2 AIC = -179.9752 

26. Removing res2 AIC = -181.97 

a) b)

 

Figure 5-11: Normal plot and autocorrelation for residuals of Business model. 
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Business flow prediction (Network model)
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Figure 5-12: Business flow prediction (from node 1 to node 5) 

5.4.3 CDN 

The result of the stepwise process with linear variables for the CDN service is 

shown in Table 5-6. We see that the predictive variables considered are: emp, hour 

and trafOD. It is obviously the dependence on the trafOD since that, for a given 

pair of OD, the CDN and DC2DC service flows has much higher volumes than 

Residential and Business, as explained in 5.2. Then, the trafOD flow between a pair 

OD which has CDN flow is really dependent to this service flow. Details of the final 

model are as follows: 

 

Generalized Linear regression model: 

    CDN ~ 1 + Hour + Hour7 + Hour9 + Hour10 + emp2 + trafOD + trafOD5 

    Distribution = Normal 

 

Estimated Coefficients: 

                    Estimate          SE         tStat       pValue    

                   ___________    __________    _______    ___________ 

 

    (Intercept)              0             0          0              0 

    Hour              -0.15454      0.017943    -8.6126     1.0772e-16 

    Hour7          -2.5441e-08    5.4062e-09    -4.7058     3.3268e-06 

    Hour9           2.0229e-10    3.3599e-11     6.0208     3.4914e-09 

    Hour10         -6.6078e-12    1.0281e-12    -6.4269     3.1894e-10 

    emp2           -0.00016276    2.6248e-05    -6.2007      1.228e-09 

    trafOD              1.0046      0.011146     90.124    1.4208e-299 

    trafOD5         -3.588e-09    9.8172e-10    -3.6548     0.00028628 

 

 

480 observations, 473 error degrees of freedom 

Estimated Dispersion: 1.93 

F-statistic vs. constant model: 6.18e+03, p-value = 0 

R-squared: 0.9874 



Chapter 5 – Numerical Results 49 

Table 5-6: Stepwise process for CDN service. 

1. Adding trafOD AIC = 1470.7007 

2. Adding Hour7 AIC = 1406.3492 

3. Adding Hour AIC = 1353.2947 

4. Adding Hour10 AIC = 1322.1173 

5. Adding gravity_mult_bus AIC = 1287.8029 

6. Adding Hour9 AIC = 1270.8982 

7. Adding emp2 AIC = 1269.9552 

8. Adding trafOD5 AIC = 1269.7622 

9. Removing gravity_mult_bus AIC = 1267.8 

 

One can observe that trafOD has a coefficient ≈1, what means there are a quasi 

linear correlation between trafOD and CDN. This is another prove of the 

importance of trafOD. The gateway has no effect in this service since there is no 

CDN traffic to Internet. 

For the cross-product terms case, the AIC begins at 1484 and decreases to 1150. 

The model selected 10 variables and R-squared worth 0.9889. The stepwise process 

and the resulting linear model are available in Apendix A. 

For the tests of residuals, the Jarque-Beras test rejects the normality of the 

residual distribution. In the Figure 5-13a shows the normal plot of the residuals, 

one can see that it has too much small residual values to be a normal distribution, 

what seems good since we do not want a model with much high residuals. The 

Ljung-Box Q-test accepts the null hypothesis and confirms that the residuals of 

this model are independent. As shown in Figure 5-13b, there is very small 

autocorrelation in these residuals. 

a) b)

 

Figure 5-13: Normal plot and autocorrelation for residuals of CDN model. 

Although the normality test of residuals fails, the prediction for this service is 

much fitted. An example of CDN traffic flow prediction is shown in Figure 5-14, 

where we can see that the model fits very well the traffic flow. 
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CDN flow prediction (Network model)
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Figure 5-14: CDN flow prediction (from node 1 to node 5) 

5.4.4 DC2DC 

The result of the stepwise process with linear variables for the DC2DC service is 

shown in Figure 5-16.We see that the predictive variables considered are: gateway, 

cdn, dc, gravity, hour and trafOD. There is a strong dependence between DC2DC 

and traOD when a data migration occurs (in this case, the DC2DC traffic flow 

contributes the mayor part of total flow) and the regular DC flow is dependent on 

hour, trafOD and dc. The introduction of variable gateway is because the service 

flow to the Internet has a different generation model as previous cases. The 

variable cdn and gravity for business are probably introduced to correct the 

dependence on trafOD as explained before. Final model is as follows: 

Generalized Linear regression model: 

    DC ~ 1 + Hour + Hour5 + gravity_mult_bus + gateway + cdn2 + dc2 + trafOD + trafOD2 + 

trafOD3 + trafOD4 

    Distribution = Normal 

 

Estimated Coefficients: 

                         Estimate          SE         tStat       pValue   

                        ___________    __________    _______    __________ 

 

    (Intercept)             0.89081       0.37959     2.3468      0.019108 

    Hour                   -0.51093      0.032664    -15.642     4.083e-50 

    Hour5                1.7669e-06    1.2934e-07     13.661    1.8282e-39 

    gravity_mult_bus    -1.7623e-05    2.4242e-06    -7.2695    6.6798e-13 

    gateway                 -7.1981       0.56811     -12.67    1.6166e-34 

    cdn2                 0.00083792    0.00017024      4.922    9.8237e-07 

    dc2                  0.00046779    4.5292e-05     10.328    5.7363e-24 

    trafOD                   1.2035      0.092329     13.035    2.6272e-36 

    trafOD2               -0.038667     0.0058002    -6.6665    4.0707e-11 

    trafOD3              0.00084358    0.00012837     6.5713     7.567e-11 

    trafOD4             -5.0231e-06    8.2959e-07    -6.0548    1.9049e-09 

 

 

1152 observations, 1141 error degrees of freedom 

Estimated Dispersion: 19.1 

F-statistic vs. constant model: 1.01e+03, p-value = 0 

R-squared: 0.8983 
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Table 5-7: Stepwise process for DC2DC service 

1. Adding trafOD2 AIC = 5757.7183 

2. Adding trafOD4 AIC = 5609.9179 

3. Adding gravity_mult_bus AIC = 5498.0511 

4. Adding dc2 AIC = 5357.8557 

5. Adding trafOD AIC = 5320.9379 

6. Adding gateway AIC = 5241.0584 

7. Adding Hour AIC = 5206.307 

8. Adding Hour5 AIC = 5081.3997 

9. Adding trafOD3 AIC = 5066.8839 

10. Adding cdn2 AIC = 5048.6734 
 

The AIC of the result model, with cross-product terms, began at 5648 and it 

decreases to 4204. It selected 26 variables and R-squared worth 0.9447.  

The Jarque-Beras test reject the normality of the residual distribution. Figure 

5-15a represents the normal plot of the residuals and we observe the same thing as 

CDN case. The Ljung-Box Q-test accepts the null hypothesis and confirms that the 

residuals of this model are independent. As shown in Figure 5-15b, there is no 

strong autocorrelation among these residuals.  

Figure 5-16 shows an example of DC2DC traffic flow prediction, where the model 

made some bad predictions due to the extra flow generated by migration: it 

underestimated the traffic flow when a migration occurred and overestimated the 

flow when there was not migration. Nevertheless, it fits well in general since it 

clearly identifies when the migration of a large volume of data occurs. 

a) b)

 

Figure 5-15: Normal plot and autocorrelation for residuals of DC2DC model. 
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Figure 5-16: DC2DC flow prediction (from node 2 to node 4) 

As final remark of this section, we conclude that proposed stepwise procedure 

selects relevant explanatory and provides accurate models. Although the normality 

tests fails in some cases, we observed few relative errors when comparing predicted 

and observed values. Therefore, we consider that the methodology used is valid for 

the proposed case study. 

5.5 Modelling approaches evaluation 

In this section, we compare the different modelling approaches from three distinct 

points of view: the overall goodness-of-fit for distinct services, the amount of service 

traffic monitoring data required to obtain good enough models, and the sensitivity 

of aggregated traffic flow as explanatory variable,  

5.5.1 Goodness-of-fit evaluation 

We process the evaluation of the prediction error for the model of different 

approaches. Figure 5-17 and Figure 5-18 illustrate the Business and DC2DC 

prediction errors for different approaches as a function of the time of the 

monitoring data generation process. Therefore, the higher is the amount of days, 

the higher is the amount of data used to fit models. Additionally, we assume 

different percentages of service flow monitoring data availability, a parameter that 

is comparable to the amount of DPI resources deployed to monitor service traffic 

flows. 

In view of the figures, one can observe that OD models take more time to converge 

than the other two approaches. This is due to the fact that the OD models have 
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only data of an OD pair to fit a model, its error will not be established until getting 

a meaningful amount of monitoring data. 
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Figure 5-17: Prediction errors of Business. 
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Figure 5-18: Prediction errors of DC2DC. 
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Minimum observed errors for each service are illustrated in Figure 5-19. Both CDN 

and DC2DC services have much larger errors than Business and Residential. The 

reason behind that fact is that the first two services generate higher traffic than 

the last two as explained in 5.2. The Figure 5-20 illustrates the relative error of the 

prediction, it shows that CDN has very small relative error, so its big absolute 

error is due to larger traffic generation. In the same figure, one can observe that 

DC2DC has also large relative error; this fact is because that the largest volume 

part of DC2DC traffic flows is related to data migration of large volumes. In 

contrast, regular traffic of this service is very small compared with the migration 

traffic as shown in Figure 5-16. Then, the relative error is very large when no data 

migration occurs and the model overestimate the traffic flow. 

From the previous error figures, main conclusions about distinct approaches are 

twofold. On the one hand, Network and Node models converge faster that the OD 

one, which clearly becomes unappropriated when few monitoring data is available.  

On the other hand, errors are smaller with the Node approach compared with other 

approaches, except in the case of Business, where the error in Node models is 0.22 

(being 0.2 in OD models). These results open the door to propose the Node 

approach as the best candidate for the proposed case study. However, a deep 

analysis (coming in next subsection) is required to finally validate this proposal. 
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Figure 5-19: Absolute error comparison 



Chapter 5 – Numerical Results 55 

0

1

2

3

4

5

6

7

8

9

10

Network Node OD

Relative errors

Residential

Business

CDN

DC2DC

 

Figure 5-20: Relative error comparison 

5.5.2 Analysis of required monitoring data 

In the previous section we analyzed the prediction errors for each approaches. As 

one can observe from Figure 5-17 and Figure 5-18, it is not necessary to deploy 

resources to monitor 100% of service traffic to reach the minimum error in most of 

the cases. In this section, we aim at analyzing the necessary volume of data to fit 

good enough models, i.e. close to a given target error. Recall that this volume is an 

important factor to analyze since it affects how resources dedicated to service 

traffic analysis (both computing and storage) need to be configured.  

For the sake of a fair comparison, we set a stabilized error as an indicator that the 

model has a good fitting; this error is obtained doing the average of the errors of 

the models at the last simulation day (i.e. when all simulated data becomes 

available for modelling). 

After setting the stabilized error as target, the next step is calculate the volume of 

data that each model requires to reach this error. We define such volume as a 

dimensionless value obtained by multiplying the percentage of service traffic low 

monitoring by the required simulation time. Figure 5-21 illustrates the necessary 

volumes to get the stabilized error with 50% and 100% of service flow monitoring 

rate. The volumes are obtained by the average of the errors of each services.  
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Figure 5-21: Requires data volume for each services 

It is worth noting that necessary volumes reduce significantly using 50% of 

monitoring data when Network and Node approaches are used. On the contrary, no 

relevant differences are observed for the OD approach when using more or less 

resources. However, this approach requires much more data volume than the 

others to get good fitting. 

The reduction of required data by using 50% of DPI resources instead of 100% is 

shown in Table 5-8. The largest reduction is observed under the Network approach, 

decreasing 46% of the necessary volume; Node models reduce 38% and the OD 

models have only 3% of reduction. The average reduction, which is just the average 

of the three approaches reduction values, is 29%; with this, we can conclude that 

modelling with 50% of resources reduce the volume of data we need to analyze, 

what means saving 29% of DPI resources. 

Table 5-8: Required data volumes and relative reduction 

 

50% 100% reduction 

    

Network 1.625 3 46% 

Node 1.875 3 38% 

OD 4.375 4.5 3% 

avg    29% 
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Comparing Network and Node approaches, the former seems to be more efficient 

since it needs slightly smaller data volumes for 50%. However, its practical 

implementation in a real network would require centralizing lots of monitoring 

data, whereas the Node approach would allow obtaining models close where data is 

collected and stores thus, reducing the total amount of network traffic overhead. 

Therefore, the Node approach becomes again the more appropriated solution for 

the proposed case study.  

5.5.3 Sensitivity analysis of trafOD 

Every of the final models of the proposed approaches includes variable trafOD as 

significant factor. It means that, the estimation of a given service flow for a given 

OD pair at a given time depends on the aggregated traffic flow of such OD pair. 

This is useful to estimate the amount of service flows by means of aggregated 

traffic flow as unique available traffic monitoring data. However, when the 

objective of model application is to predict future service traffic, it is worth noting 

trafOD variable is unknown for that time, unless some existing model could be 

used to anticipate such aggregated traffic (e.g. those used in [Mo16]). 

To evaluate the impact of such important explanatory variables, we evaluate two 

alternatives that explicitly exclude such variable: i) models without trafOD, and ii) 

models considering a variant of trafOD called prevTrafOD that holds for the 

amount of aggregated traffic measured in the last period. Note that both of them 

can be used for predicting future values since all variables are perfectly known in 

advance. Evaluation is done by comparing the errors of these two new alternatives 

with respect to the errors of model containing trafOD. 

Figure 5-22 shows the errors of the modelling with three different set of 

explanatory variables: with trafOD, without trafOD, and with prevTrafOD. 

Obviously, errors are smallest when modelling with trafOD; it increases when 

modelling with prevTrafOD, which have an approximate information about trafOD; 

On the contrary, modelling without trafOD has the biggest error since it has no 

information about aggregated flows. 
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Figure 5-22: Errors of the models for different set explanatory variables. 

For Residential and Business services, errors do not behave significantly different 

under the Network approach. In contrast, the errors have grown considerably in 

the other approaches, especially for the case of OD when modelling without trafOD. 

This behavior is due to the fact that OD models only have hour and trafOD while 

the other two approaches use also other information, such as distance and the 

number of users of each service, as explanatory variables. Therefore, the 

information of trafOD is more relevant for OD models than for the rest of 

approaches. 

For CDN and DC2DC services, errors are much larger when the modelling is 

without trafOD. This is because these two services has a strong linear relation with 

trafOD, so predicted values are strongly dependent on this variable. Therefore, the 

errors with the modelling without trafOD largely increase compared to other sets of 

explanatory variables. 

Finally we concluded that the modelling without trafOD at the same time step 

makes bigger errors (larger in the case of modelling without trafOD). This 

increment of errors depends on the different services and different approaches: in 

some cases the error increase is small like the cases of Residential and Business 

models under Network approach, whereas it considerably grows for the models of 

CDN and DC2DC. 
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5.6 Summary 

In this chapter we evaluated the utility of the developed simulation platform 

(combining realistic traffic generation and service flows modelling) by means of a 

case study, where distinct modelling approaches namely, Network, Node, and OD 

have been studied. Ranging from centralized to distributed data analytics 

architectures, approaches have been designed to illustrate the applicability of our 

developed tool to fit a wide range of real deployments. 

From the numerical results, we concluded that the Node approach becomes the 

most appropriate one for obtaining service flow models meeting desirable low 

target errors. Models include a variate set of explanatory variables including 

characteristics of source and destination locations as well as current aggregated 

traffic. Additionally, Node models experience fast converge to reach that target 

error as soon as the amount of available service traffic monitoring data increases. 

Moreover, that data can be obtained allowing a great reduction of the amount of 

monitoring resources without compromising the quality of models.  

Finally, an analysis of getting rid of the current aggregated traffic flow as 

explanatory variable has been carried out to demonstrate the significance of such 

variable and to illustrate the poorer goodness-of-fit of such reduced models. 

Nevertheless, using aggregated traffic monitored at the previous time step clearly 

improves traffic prediction accuracy thus, mitigating the impact of unknown 

current aggregated traffic, which occurs when models are used for service traffic 

forecasting. 

 





 
 
 
 
 
 
 
 
 

Chapter 6.  

Concluding Remarks 

6.1 Contributions and conclusions 

This project focused on the topic of service traffic flow modelling in the telecom 

cloud. Starting from previous works on modelling aggregated OD traffic flows, the 

contributions of this project were: i) the development of a statistical modelling 

procedure to obtain service traffic flow models from a wide range of heterogeneous 

explanatory variables; and ii) the design and implementation of a simulation 

platform able to generate realistic service traffic flows, which also integrates the 

traffic flow modelling procedures to evaluate distinct approaches for traffic 

monitoring, data collection, and traffic modelling. 

It is important to recall that the current implemented simulator separates the 

traffic generation from service flow modelling. Therefore, it allows many 

possibilities to configure a simulation, where one could combine the modelling with 

different data analytics approaches by selecting respective information from data 

monitoring for each approach and choosing the modelling methods in the modelling 

block. Thus, the resultant simulator becomes a flexible tool that can easily adapt to 

different technologies and scenarios. 

The utility of the tool has been demonstrated by means of a case study that was 

designed to compare distinct data analytics approaches ranging from centralized to 

distributed approaches. From the numerical results obtained, analysis on several 

key performance metrics such as models goodness-of-fit, amount of data to be 

monitored/collected, and impact of key explanatory variables was carried out. Main 

conclusions are aligned with the idea that combining the benefits of centralized and 

distributed data analytics architectures become the most appropriate solution for 

accurate traffic prediction. 
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6.2 Personal Evaluation 

For the achievement of this project, I have been able to apply many of knowledge 

that I had studied during the degree and the Master, such as statistical modelling, 

time series, etc. During my personal training, I had great interest in coding and 

algorithmic methods, especially in mathematical modelling with Matlab that I 

learnt from Numerical methods in ODEs. After the degree, I chose the two 

Numerical methods course in the Master: Numerical methods with PDEs and 

Numerical methods for Dynamic Systems, to improve the knowledge about 

numerical methods, where I acquired a strengthening in Matlab and what is really 

helpful for the construction of the simulator. 

In this project, I learnt about telecom cloud infrastructures, network traffic 

analytics and data analysis by means of reading specific papers and the valuable 

help of my advisors. This project also gave me an opportunity to see how a 

university researchers group works: discuss of the problems they have confront, the 

project organization, the elaboration of a paper for some conference, etc. which 

have provided an enriched experience for me in the area of research. 

I want to thank my advisors, Luis Velasco and Marc Ruiz, who acted as mentors 

and friends to me during this project, they have not been only help me in the 

project issues but also give me advices for my professional career. It has been a 

delight to work alongside them in this project. 

6.3 Future Work 

In this project, linear regression has been proved as valuable technique for 

modelling service traffic flows. However, there are other techniques that could be 

evaluated (e.g. neural networks) in order to improve the prediction of some 

services. 

One important future way to explore is to use a real data set to substitute traffic 

generation and evaluate distinct approaches in the context of a real operator. To 

this aim, we propose to contact with telecom operators such as Telefonica or British 

Telecom (which are partners in projects where the research group is enrolled) to 

ask for such kind of monitoring data. Since a large and complete data set is really 

difficult to be obtained, another approach to follow is to adjust and improve our 

traffic generation models from real sparse monitoring measures. In this way, 

artificial but close-to-real traffic can be generated in a continuous manner. 

 



 
 
 
 
 
 
 
 
 

Apendix A. Linear Models 

Residential 

This is the Stepwise process (with interactions as the largest set of terms in the fit) 

and the network model for Residential service traffic: 

 
1. Adding dist AIC = 7679.6149 

2. Adding cdn1 AIC = 6830.1726 

3. Adding Hour2 AIC = 6331.7569 

4. Adding Hour AIC = 6101.079 

5. Adding Hour:Hour2 AIC = 4910.8546 

6. Adding res2 AIC = 4560.5894 

7. Adding emp2 AIC = 4177.8998 

8. Adding res1 AIC = 3891.1787 

9. Adding Hour8 AIC = 3637.9929 

10. Adding Hour4 AIC = 2903.4197 

11. Adding Hour7 AIC = 1629.2175 

12. Adding cache AIC = 1389.0891 

13. Adding dist:res2 AIC = 1205.8666 

14. Adding Hour2:dist AIC = 1108.7606 

15. Adding dist:cache AIC = 1018.4288 

16. Adding Hour:dist AIC = 977.7195 

17. Adding Hour4:dist AIC = 801.4322 

18. Adding gravity_mult_res AIC = 758.6633 

19. Adding res2:emp2 AIC = 672.6621 

20. Adding Hour2:cdn1 AIC = 645.2577 

21. Adding Hour:Hour4 AIC = 621.4079 

22. Adding res1:emp2 AIC = 607.4067 

23. Adding gravity_mult_bus AIC = 588.4361 

24. Adding gravity_mult_bus:emp2 AIC = 564.1461 

25. Adding dc1 AIC = 551.2926 

26. Adding dist:dc1 AIC = 542.6115 

27. Adding Hour:cdn1 AIC = 534.7524 

28. Adding Hour4:cdn1 AIC = 492.5239 

29. Adding trafOD AIC = 490.1751 

30. Adding dist:gravity_mult_bus AIC = 488.1088 

31. Adding gateway AIC = 485.3541 

32. Adding dist:res1 AIC = 481.1013 

33. Adding Hour2:res2 AIC = 479.1049 

34. Adding Hour9 AIC = 412.0921 

35. Adding dist:emp2 AIC = -120.8881 

36. Adding dist:cdn1 AIC = -558.1568 

37. Adding Hour7:dist AIC = -676.9325 

38. Adding dc1:emp2 AIC = -747.5886 
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39. Adding gravity_mult_res:emp2 AIC = -790.6593 

40. Adding gateway:res2 AIC = -968.9476 

41. Adding cdn2 AIC = -1007.6695 

42. Adding gravity_mult_res:gateway AIC = -1074.2102 

43. Adding emp1 AIC = -1122.5286 

44. Adding Hour2:gateway AIC = -1132.4877 

45. Adding gravity_mult_bus:cache AIC = -1134.5813 

46. Adding emp1:res2 AIC = -1141.1393 

47. Adding gravity_mult_res:trafOD AIC = -1144.305 

48. Adding trafOD6 AIC = -1146.2113 

49. Adding emp2:trafOD AIC = -1150.1205 

50. Adding gateway:trafOD AIC = -1153.568 

51. Adding cdn2:trafOD AIC = -1156.2491 

52. Adding Hour4:trafOD AIC = -1158.0296 

53. Adding Hour:dc1 AIC = -1158.9814 

54. Adding Hour:res2 AIC = -1159.8863 

55. Adding Hour4:res2 AIC = -1167.4825 

56. Adding Hour:gravity_mult_res AIC = -1169.2334 

57. Adding Hour2:gravity_mult_res AIC = -1171.9401 

58. Adding Hour:res1 AIC = -1174.1146 

59. Adding Hour4:gravity_mult_res AIC = -1175.7706 

60. Adding dc1:trafOD AIC = -1177.5009 

61. Adding Hour:cache AIC = -1177.5288 

62. Adding Hour2:cache AIC = -1180.8955 

63. Adding Hour4:cache AIC = -1190.6818 

64. Adding Hour9:cache AIC = -1200.4428 

65. Adding dc1:res2 AIC = -1200.4823 

66. Adding Hour2:gravity_mult_bus AIC = -1200.6226 

67. Removing gravity_mult_res:trafOD AIC = -1202.5 

68. Removing gateway:trafOD AIC = -1204 

69. Removing Hour2:cdn1 AIC = -1205.6 

70. Removing Hour:cdn1 AIC = -1207 

71. Removing res1:emp2 AIC = -1208.2 

72. Removing Hour4:trafOD AIC = -1208.9 

73. Removing dc1:emp2 AIC = -1209.5 

74. Removing dc1:res2 AIC = -1211.2 

75. Removing dist:gravity_mult_bus AIC = -1211.7 

76. Adding cdn1:res2 AIC = -1212.4139 

77. Removing Hour2:gateway AIC = -1212.5 

78. Adding Hour9:gateway AIC = -1213.1864 
 
Generalized Linear regression model: 

    Residencia ~ [Linear formula with 59 terms in 20 predictors] 

    Distribution = Normal 

 

Estimated Coefficients: 

                                 Estimate          SE         tStat        pValue    

                                ___________    __________    ________    ___________ 

 
    (Intercept)                           0             0           0              0 

    Hour                              0.728      0.512334      13.173              0 

    Hour2                             0.351      0.010392      33.776    2.5617e-210 

    Hour4                          0.032981    0.00049702      66.357              0 

    Hour7                        5.6751e-06    8.3856e-08      67.676              0 

    Hour8                       -2.4108e-07    3.7082e-09     -65.014              0 

    Hour9                        3.1949e-09    5.1414e-11       62.14              0 

    dist                         -0.0027223    0.00035961       -7.57     5.0237e-14 

    gravity_mult_res            -0.00011596    2.1905e-05     -5.2938     1.2898e-07 

    gravity_mult_bus             3.0371e-05    1.3439e-06        22.6    4.4343e-104 

    gateway                          2.0012    0.00049702      5.5753     5.2621e-07 

    cache                           -1.8348    0.03029502      5.5753     1.1729e-06 

    res1                         0.00064325    0.00011537      5.5753     2.7054e-08 
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    emp1                        -0.00097939    8.0065e-05     -12.233     1.4538e-33 

    cdn1                          0.0012445    0.00025086      4.9611     7.4244e-07 

    dc1                         -8.1596e-05    1.5865e-05     -5.1431     2.8869e-07 

    res2                         0.0010654    0.00023342     -4.5645     5.2219e-06 

    emp2                         -0.0019781    5.2668e-05     -37.558    1.0522e-250 

    cdn2                         0.00056095    4.6036e-05      12.185     2.5336e-33 

    trafOD                        0.0025008     0.0011487      2.1771       0.029556 

    trafOD6                      9.0611e-13    1.8597e-13      4.8725     1.1629e-06 

    Hour:Hour2                     -0.19632     0.0035278     -55.648              0 

    Hour:Hour4                   -0.0020544    2.9415e-05     -69.843              0 

    Hour:dist                   -0.00085039    3.1478e-05     -27.016    3.7272e-143 

    Hour:gravity_mult_res         8.079e-07    1.4641e-07      5.5179     3.7417e-08 

    Hour:cache                  -2.8348e-09    1.4103e-06           0              0 

    Hour:res1                   -3.0849e-06    1.3565e-06     -2.2742       0.023029 

    Hour:dc1                     3.0604e-07    1.3531e-07      2.2618       0.023786 

    Hour:res2                   -2.4944e-05    2.7011e-06     -9.2347      4.945e-20 

    Hour2:dist                   7.5479e-05    2.9686e-06      25.426    1.4049e-128 

    Hour2:gravity_mult_res      -5.0992e-08    1.0552e-08     -4.8326     1.4194e-06 

    Hour2:gravity_mult_bus       1.3425e-09    5.6167e-10      2.3903       0.016901 

    Hour2:cache                  0.00023854    0.00034901     0.68348        0.49436 

    Hour2:res2                   1.6606e-06    1.8655e-07      8.9015     9.6487e-19 

    Hour4:dist                  -1.1834e-07    6.2024e-09      -19.08     1.9782e-76 

    Hour4:gravity_mult_res       4.4502e-11    1.1301e-11      3.9377     8.4263e-05 

    Hour4:cache                   -5.67e-07    1.1697e-06    -0.48474         0.6279 

    Hour4:cdn1                  -3.7654e-10    1.5912e-10     -2.3665       0.018027 

    Hour4:res2                  -1.7358e-09    2.3491e-10     -7.3893     1.9347e-13 

    Hour7:dist                   3.3293e-12    2.5117e-13      13.255     6.0191e-39 

    Hour9:gateway                1.0108e-13    5.3612e-14      1.8854       0.059475 

    Hour9:cache                  7.5568e-15    1.0604e-13    0.071267        0.94319 

    dist:cache                    0.0019421    0.00026535      7.3189     3.2449e-13 

    dist:res1                   -4.9166e-06    4.4041e-07     -11.164     2.3889e-28 

    dist:cdn1                    5.6829e-06    3.6585e-07      15.533     2.8352e-52 

    dist:dc1                    -2.3905e-07    1.6727e-08     -14.291     8.7828e-45 

    dist:res2                   -1.3236e-06    3.3915e-07     -3.9026     9.7396e-05 

    dist:emp2                    1.2518e-06    1.1877e-07       10.54      1.679e-25 

    gravity_mult_res:gateway     0.00028036    2.0347e-05      13.779     7.4725e-42 

    gravity_mult_res:emp2       -2.4268e-08    1.2926e-09     -18.775     3.3707e-74 

    gravity_mult_bus:cache       4.0073e-06    9.1836e-07      4.3636     1.3254e-05 

    gravity_mult_bus:emp2       -2.8348e-09    2.6319e-10     -10.771     1.5443e-26 

    gateway:res2                 -0.0081738    0.00052643     -15.527     3.1106e-52 

    emp1:res2                   -7.1688e-08    1.3437e-08     -5.3353     1.0293e-07 

    cdn1:res2                    6.3127e-08    3.5549e-08      1.7758       0.075879 

    dc1:trafOD                  -6.5895e-07    1.2718e-07     -5.1812     2.3595e-07 

    res2:emp2                    1.4939e-06    9.4125e-08      15.871     2.1141e-54 

    emp2:trafOD                  3.0415e-06    5.7937e-07      5.2496     1.6373e-07 

    cdn2:trafOD                 -3.6219e-06    8.5479e-07     -4.2372     2.3355e-05 

 

 

2880 observations, 2826 error degrees of freedom 

Estimated Dispersion: 0.0326 

F-statistic vs. constant model: 8.8e+03, p-value = 0 

R-squared: 0.9940 
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Business 

 

This is the Stepwise process (with interactions as the largest set of terms in the fit) 

and the network model for Business service traffic: 

 
1. Adding emp1 AIC = 6982.3719 

2. Adding emp2 AIC = 6356.3868 

3. Adding Hour AIC = 6045.0455 

4. Adding Hour4 AIC = 4512.3262 

5. Adding dc2 AIC = 3958.2885 

6. Adding dc1 AIC = 3338.4896 

7. Adding dist AIC = 3104.7483 

8. Adding gateway AIC = 2793.4826 

9. Adding emp1:emp2 AIC = 2538.015 

10. Adding Hour2 AIC = 2392.249 

11. Adding Hour3 AIC = 737.5422 

12. Adding Hour:emp1 AIC = 625.6696 

13. Adding Hour4:emp1 AIC = 199.8091 

14. Adding gravity_mult_bus AIC = 77.8897 

15. Adding cache AIC = 9.6351 

16. Adding dist:cache AIC = -35.3595 

17. Adding dist:dc1 AIC = -109.1556 

18. Adding dc1:emp2 AIC = -151.0136 

19. Adding Hour:emp2 AIC = -188.416 

20. Adding Hour4:emp2 AIC = -331.142 

21. Adding gravity_mult_bus:dc1 AIC = -354.5485 

22. Adding cdn1 AIC = -401.579 

23. Adding dist:cdn1 AIC = -517.6986 

24. Adding Hour:Hour4 AIC = -539.5044 

25. Adding Hour6 AIC = -828.2307 

26. Adding Hour2:Hour6 AIC = -1588.2748 

27. Adding Hour2:emp1 AIC = -1620.1102 

28. Adding Hour3:emp1 AIC = -1831.0254 

29. Adding cache:dc2 AIC = -1865.3417 

30. Adding cdn1:dc2 AIC = -1908.7964 

31. Adding res2 AIC = -1941.7344 

32. Adding Hour:dc2 AIC = -1958.9471 

33. Adding Hour3:dc2 AIC = -2027.6304 

34. Adding Hour:dc1 AIC = -2046.9708 

35. Adding Hour4:dc1 AIC = -2105.6345 

36. Adding gravity_mult_bus:emp2 AIC = -2119.7752 

37. Adding dc1:dc2 AIC = -2129.9363 

38. Adding emp2:dc2 AIC = -2148.0017 

39. Adding dist:emp1 AIC = -2187.3304 

40. Adding cdn2 AIC = -2213.4554 

41. Adding gravity_mult_bus:emp1 AIC = -2222.8921 

42. Adding gateway:cache AIC = -2230.6518 

43. Adding Hour2:emp2 AIC = -2238.1237 

44. Adding Hour3:emp2 AIC = -2288.211 

45. Adding Hour2:dc2 AIC = -2296.2314 

46. Adding Hour4:dc2 AIC = -2305.6038 

47. Adding Hour:dist AIC = -2309.9415 

48. Adding Hour4:dist AIC = -2334.5298 

49. Adding Hour:gravity_mult_bus AIC = -2336.8258 

50. Adding Hour4:gravity_mult_bus AIC = -2345.7651 

51. Removing gravity_mult_bus:emp2 AIC = -2345.8 

52. Adding gravity_mult_bus:dc2 AIC = -2346.0756 

53. Adding Hour2:gateway AIC = -2346.2849 

54. Adding Hour6:gateway AIC = -2369.4733 

55. Adding Hour2:dist AIC = -2375.9499 

56. Adding Hour3:dc1 AIC = -2377.1134 

57. Adding Hour2:dc1 AIC = -2398.7069 

58. Removing Hour:dist AIC = -2400.7 
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Generalized Linear regression model: 

    Business ~ [Linear formula with 55 terms in 16 predictors] 

    Distribution = Normal 

 

Estimated Coefficients: 

                               Estimate          SE          tStat        pValue    

                              ___________    __________    _________    ___________ 

 

    (Intercept)                   -3.7498      0.050062      -74.903              0 

    Hour                          0.30671      0.024549       12.494     6.6351e-35 

    Hour2                        -0.41364      0.011888      -34.794    4.5332e-221 

    Hour3                         0.12073     0.0026321       45.868              0 

    Hour4                       -0.013826    0.00028877      -47.879              0 

    Hour6                     -1.6574e-05    3.6988e-07       -44.81              0 

    dist                       -0.0041696    9.5668e-05      -43.583     8.081e-318 

    gravity_mult_bus          -3.0872e-05    6.2679e-06      -4.9254     8.9032e-07 

    gateway                       -1.2894    1.5855e-05            0              0 

    cache                         0.65678      0.096953       6.7742     1.5163e-11 

    emp1                       0.00049783    3.4815e-05       14.299     7.8363e-45 

    cdn1                       0.00017747    5.8951e-05       3.0105      0.0026311 

    dc1                       -7.1287e-05    5.2939e-06      -13.466     4.1836e-40 

    res2                       0.00026441    3.8125e-05       6.9354     5.0021e-12 

    emp2                        0.0010233    1.7689e-05       57.848              0 

    cdn2                      -0.00031162    4.3372e-05      -7.1848     8.5704e-13 

    dc2                       -2.1316e-05    5.5636e-06      -3.8313     0.00013025 

    Hour:Hour4                 0.00074047    1.5855e-05       46.703              0 

    Hour:gravity_mult_bus      1.3277e-07    2.5415e-08       5.2242     1.8762e-07 

    Hour:emp1                   4.678e-05     3.442e-06       13.591     8.4641e-41 

    Hour:dc1                  -6.0954e-06    1.6083e-06        -3.79     0.00015379 

    Hour:emp2                  2.2055e-05     3.442e-06       6.4075     1.7274e-10 

    Hour:dc2                  -7.0283e-06    1.6083e-06      -4.3701     1.2869e-05 

    Hour2:Hour6                3.8279e-09     9.251e-11       41.379    5.4929e-293 

    Hour2:dist                 5.1403e-06    5.6653e-07       9.0733     2.1092e-19 

    Hour2:gateway               0.0023767    0.00046319        5.131     3.0765e-07 

    Hour2:emp1                -1.2196e-05    6.2301e-07      -19.576     4.0307e-80 

    Hour2:dc1                  1.5531e-06    2.9359e-07       5.2901     1.3163e-07 

    Hour2:emp2                -5.9992e-06    6.2301e-07      -9.6294     1.2859e-21 

    Hour2:dc2                  1.7983e-06    2.9359e-07       6.1254     1.0304e-09 

    Hour3:emp1                 7.2177e-07    4.2997e-08       16.787     2.3384e-60 

    Hour3:dc1                  -1.063e-07     1.948e-08      -5.4567       5.27e-08 

    Hour3:emp2                 3.2863e-07    4.2997e-08       7.6431     2.8847e-14 

    Hour3:dc2                 -1.2115e-07     1.948e-08      -6.2191     5.7401e-10 

    Hour4:dist                -1.0578e-08    1.1585e-09      -9.1306      1.263e-19 

    Hour4:gravity_mult_bus    -9.8641e-12    2.1832e-12      -4.5182      6.492e-06 

    Hour4:emp1                -1.1996e-08      1.01e-09      -11.877     8.7327e-32 

    Hour4:dc1                  2.2118e-09    4.2461e-10       5.2091     2.0343e-07 

    Hour4:emp2                -4.5941e-09      1.01e-09      -4.5485     5.6296e-06 

    Hour4:dc2                  2.4636e-09    4.2461e-10        5.802      7.279e-09 

    Hour6:gateway             -1.1246e-08    1.9346e-09      -5.8132     6.8157e-09 

    dist:cache                 -0.0028659    0.00029389      -9.7518     4.0288e-22 

    dist:emp1                  1.1356e-06    5.5589e-08       20.429     1.2567e-86 

    dist:cdn1                 -1.0115e-06    1.5271e-07      -6.6234     4.1865e-11 

    dist:dc1                  -2.2791e-08    1.3742e-08      -1.6585       0.097332 

    gravity_mult_bus:emp1      8.1997e-09    1.7008e-09       4.8211     1.5035e-06 

    gravity_mult_bus:dc1       -3.442e-09     7.492e-10      -4.5942     4.5338e-06 

    gravity_mult_bus:dc2       1.1451e-10    2.4352e-10      0.47021        0.63824 

    gateway:cache                -0.54906       0.11706      -4.6904     2.8559e-06 

    cache:dc2                  4.1486e-05    5.6041e-06       7.4027     1.7509e-13 

    emp1:emp2                 -1.2894e-09    1.6571e-08    -0.077809        0.93799 

    cdn1:dc2                   1.5697e-08    2.3092e-09       6.7976     1.2929e-11 

    dc1:emp2                   2.1912e-08    1.7335e-09       12.641     1.1421e-35 

    dc1:dc2                    -4.901e-09    8.6111e-10      -5.6915     1.3884e-08 

    emp2:dc2                  -4.5667e-08    4.1831e-09      -10.917     3.3212e-27 

 

 

2880 observations, 2826 error degrees of freedom 
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Estimated Dispersion: 0.0194 

F-statistic vs. constant model: 9.05e+03, p-value = 0 

R-squared: 0.9941 

 

CDN 

 

This is the Stepwise process (with interactions as the largest set of terms in the fit) 

and the network model for CDN service traffic: 
 

 
1. Adding trafOD AIC = 1484.1445 

2. Adding Hour7 AIC = 1415.3004 

3. Adding Hour7:trafOD AIC = 1267.2889 

4. Adding gravity_mult_bus AIC = 1228.2792 

5. Adding trafOD7 AIC = 1211.3947 

6. Adding Hour AIC = 1193.1486 

7. Adding Hour9 AIC = 1164.2719 

8. Adding Hour9:trafOD AIC = 1150.8435 

9. Adding gravity_mult_res AIC = 1149.7467 

 

 

 
Generalized Linear regression model: 

    CDN ~ 1 + Hour + gravity_mult_res + gravity_mult_bus + trafOD7 + Hour7*trafOD + 

Hour9*trafOD 

    Distribution = Normal 

 

Estimated Coefficients: 

                         Estimate          SE         tStat       pValue    

                        ___________    __________    _______    ___________ 

 

    (Intercept)                   0             0          0              0 

    Hour                   -0.12032      0.016604     -7.246     1.7724e-12 

    Hour7                3.2247e-09    1.2865e-09     2.5065       0.012529 

    Hour9               -5.0546e-12    2.4521e-12    -2.0613       0.039822 

    gravity_mult_res     5.1043e-05    2.9111e-05     1.7534       0.080188 

    gravity_mult_bus    -3.3928e-05    1.3076e-05    -2.5947      0.0097639 

    trafOD                  0.86636      0.016548     52.354    3.0389e-198 

    trafOD7               -1.59e-12    2.7232e-13    -5.8386       9.83e-09 

    Hour7:trafOD         3.4956e-10    7.6149e-11     4.5905     5.6821e-06 

    Hour9:trafOD        -4.9208e-13    1.5532e-13    -3.1682      0.0016335 

 

 

480 observations, 471 error degrees of freedom 

Estimated Dispersion: 1.68 

F-statistic vs. constant model: 5.23e+03, p-value = 0 

R-squared: 0.9889 
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DC2DC 

This is the Stepwise process (with interactions as the largest set of terms in the fit) 

and the network model for DC service traffic: 

 

1. Adding trafOD AIC = 5648.0884 

2. Adding cdn1 AIC = 5235.6074 

3. Adding gravity_mult_bus AIC = 5146.9429 

4. Adding gravity_mult_bus:trafOD AIC = 4810.0948 

5. Adding trafOD2 AIC = 4747.6629 

6. Adding cdn1:trafOD AIC = 4683.0647 

7. Adding Hour AIC = 4646.8256 

8. Adding Hour:cdn1 AIC = 4610.2072 

9. Adding Hour9 AIC = 4579.4277 

10. Adding dc2 AIC = 4562.9524 

11. Adding dc2:trafOD2 AIC = 4488.016 

12. Adding Hour:dc2 AIC = 4468.2796 

13. Adding gravity_mult_res AIC = 4451.8439 

14. Adding Hour:gravity_mult_bus AIC = 4443.471 

15. Adding Hour9:trafOD AIC = 4418.7739 

16. Adding Hour:trafOD AIC = 4324.2232 

17. Adding Hour10 AIC = 4307.0234 

18. Adding cdn1:dc2 AIC = 4293.4995 

19. Adding Hour8 AIC = 4286.9962 

20. Adding Hour:gravity_mult_res AIC = 4286.1833 

21. Adding Hour8:trafOD AIC = 4286.0331 

22. Adding gravity_mult_bus:cdn1 AIC = 4285.9956 

23. Removing Hour9:trafOD AIC = 4280.4 

24. Adding trafOD7 AIC = 4228.6897 

25. Adding gravity_mult_res:trafOD AIC = 4223.1189 

26. Adding res2 AIC = 4215.9606 

27. Adding gravity_mult_res:gravity_mult_bus AIC = 4212.0124 

28. Adding emp1 AIC = 4211.874 

29. Removing cdn1:dc2 AIC = 4210.1 

30. Adding Hour:emp1 AIC = 4210.06 

31. Removing gravity_mult_bus:cdn1 AIC = 4208.1 

32. Removing gravity_mult_bus:trafOD AIC = 4206.3 

33. Adding gravity_mult_bus:trafOD2 AIC = 4204.391 
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Generalized Linear regression model: 

    DC ~ [Linear formula with 26 terms in 13 predictors] 

    Distribution = Normal 

 

Estimated Coefficients: 

                                          Estimate          SE          tStat        pValue   

                                         ___________    __________    _________    __________ 

 

    (Intercept)                                    0             0            0             0 

    Hour                                  2.7829e-10             0            0             0 

    Hour8                                -8.9918e-12    1.1113e-09    -0.008091       0.99355 

    Hour9                                 2.3291e-11    1.0241e-10      0.22743       0.82013 

    Hour10                               -9.7118e-13    2.3677e-12     -0.41017       0.68176 

    gravity_mult_res                      0.00010792    2.6269e-05       4.1081    4.2776e-05 

    gravity_mult_bus                      7.1316e-05     1.209e-05       5.8985    4.8459e-09 

    emp1                                  1.5807e-05    0.00022331     0.070786       0.94358 

    cdn1                                  0.00088518    0.00037207       2.3791      0.017522 

    res2                                  -0.0012975    0.00017838      -7.2739    6.5269e-13 

    dc2                                   0.00072162    5.9182e-05       12.193    3.2794e-32 

    trafOD                                 -0.091095             0            0             0 

    trafOD2                                 0.027092      0.002238       12.105     8.496e-32 

    trafOD7                              -1.3568e-12    6.4125e-14      -21.159     6.278e-84 

    Hour:gravity_mult_res                 3.4893e-06    9.9248e-07       3.5158    0.00045593 

    Hour:gravity_mult_bus                 1.1351e-06    2.3124e-07       4.9088    1.0517e-06 

    Hour:emp1                             1.2669e-05    1.6584e-05      0.76392       0.44507 

    Hour:cdn1                            -0.00012376    2.9188e-05        -4.24     2.418e-05 

    Hour:dc2                             -2.6984e-05    4.4746e-06      -6.0305    2.2139e-09 

    Hour:trafOD                            -0.013251     0.0016684      -7.9424    4.7753e-15 

    Hour8:trafOD                          6.6212e-12    5.2834e-13       12.532    8.0156e-34 

    gravity_mult_res:gravity_mult_bus    -3.1702e-09    4.4453e-10      -7.1316    1.7711e-12 

    gravity_mult_res:trafOD               4.8735e-06    9.0492e-07       5.3856    8.7869e-08 

    gravity_mult_bus:trafOD2             -6.0371e-08    9.3432e-09      -6.4616    1.5395e-10 

    cdn1:trafOD                          -7.1659e-05    1.6314e-05      -4.3924    1.2267e-05 

    dc2:trafOD2                          -6.2488e-07    2.0863e-07      -2.9952     0.0028025 

 

 

1152 observations, 1129 error degrees of freedom 

Estimated Dispersion: 10.3 

F-statistic vs. constant model: 876, p-value = 0 

R-squared: 0.9447 
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