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Abstract — This paper proposes a simple, fast and accurate simulation approach based on one-dimensional 
reduction and the application of the finite difference method (FDM) to determine the temperatures rise in 
substation connectors. The method discretizes the studied three-dimensional geometry in a finite number of 
one-dimensional elements or regions in which the energy rate balance is calculated. Although a one-
dimensional reduction is applied, to ensure the accuracy of the proposed transient method, it takes into 
account the three-dimensional geometry of the analyzed system to determine for all analyzed elements and 
at each time step different parameters such as the incremental resistance of each element or the convective 
coefficient. The proposed approach allows fulfilling both accuracy and low computational burden criteria, 
providing similar accuracy than the three-dimensional finite element method but with much lower 
computational requirements. Experimental results conducted in a high-current laboratory validate the 
accuracy and effectiveness of the proposed method and its usefulness to design substation connectors and 
other power devices and components with an optimal thermal behavior.  
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NOMENCLATURE 

i=1,2,…,I Node index identifying the position along the x axis 
j=1,2,…,J Time step index  
cd Abbreviation of conductor  
conn Abbreviation of connector 
Δx Spatial step [m] 
Δt Time step [s] 
T Temperature [K] 
Ti

j Temperature [K] at node i·Δx and time instant j· Δt  
To Reference temperature, 293.15 K 
Tcd,∞ Conductor temperature far from the connector [K] 
Tair,∞ Air temperature far from the conductor [K] 
Tfilm Film temperature [K] 
Hsea Conductor elevation above sea level [m] 
Q  Rate of energy with respect to time [W] 
Dcd Outer diameter of the conductor [m] 
Cp Specific heat [J/(kg·K)] 
k Coefficient of thermal conductivity [W/(m·K)] 
ρ Mass density [kg/m3] 
ρe Electrical resistivity [Ω·m] 
αe Temperature coefficient of the resistivity [1/K] 
R Electrical resistance [Ω] 
r Electrical resistance per unit length [Ω/m]  
Ie Electric current [A] 
S Cross sectional area perpendicular to the electric current [m2] 
P Convective/radiative heat transfer perimeter [m] 
P· Δx Convective/radiative heat transfer incremental area [m2] 
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h Convective heat transfer coefficient [W/(m2·K)] 
ε Emissivity 
σ Stefan-Boltzmann constant [W/(m2·K4)] 
µ Dynamic viscosity of air [Pa·s] 
β Thermal expansion coefficient of air [1/K] 
g Gravity of Earth [m/s2] 
θ Angular coordinate [º] 
Lc Characteristic length [m] 
Nu Nusselt dimensionless number  
Pr Prandtl dimensionless number 
Gr Grashof dimensionless number 

 

1.  INTRODUCTION 

During the last years, the finite element method (FEM) has been widely applied to design electrical 
devices. Two- and three-dimensional (2D and 3D) multiphysics FEM simulations are recognized as a 
realistic means to predict the electromagnetic and thermal behavior of diverse type of electrical devices. 
Different authors have struggled to develop coupled electromagnetic-thermal 2D- and 3D-FEM 
formulations to predict the thermal behavior of diverse electrical components such as conductors, bus bars, 
cables, connectors or semiconductors among others [1–9]. Despite significant improvements in computer 
performance, 3D-FEM simulations are still time-consuming and memory-intensive due to the heavy 
computational resources involved to provide the required resolution for complex 3D multiphysic problems 
[10]. It can cause serious difficulties, particularly when applying recursive simulations during the design 
optimization stage [11]. The use of 3D-FEM simulation tools often requires the use of costly licenses and 
the implication of specialized engineers to carry out tedious and time-consuming tasks associated to the 
preparation of 3D geometries, generation of the 3D mesh, or settling of boundary conditions among others. 
Therefore the development of accurate fast models [12] which can be based on model reduction techniques 
[13] and are highly appealing to overcome the abovementioned drawbacks. 

Different approaches have been applied to reduce the computational burden in complex 3D problems. For 
example in [14] a co-simulation strategy combining 1D finite difference and 3D finite volume codes are 
applied. In [15] a1D analytical model for simulating the response of piezoelectric transformers was 
compared against 3D-FEM simulations. In [16] a 1D finite difference approach to model mass conservation 
in ducts of an internal combustion engine was studied. Cerfontaine et al. [17] proposed a 1D-finite element 
formulation to model the grouting and field temperatures of borehole heat exchangers. 
This paper proposes a one-dimensional fast method based on nodal equations and finite differences 
formulation to accurately predict the temperature evolution in substation connectors during the standard 
temperature rise test. This is a multiphysics electromagnetic-thermal problem since the main heat source is 
the Joule loss due to the electric current whose time-profile is known, although there is a minor 
contribution due to the induced eddy currents. The proposed method discretizes the analyzed domain in 
finite one-dimensional regions in which the energy rate balance due to the flow of heat is calculated. To 
accurately predict the temperature profile along the connector and the surrounding conductors, the 
proposed transient model takes into account the three-dimensional geometry of the analyzed system to 
determine for each discretized element and at each time step different parameters such as the incremental 
electrical resistance or the convective coefficient. It is worth noting that the proposed approach can also be 
applied to simulate the temperature rise of other power devices.  
To evaluate the accuracy of the proposed system, two substation connectors are evaluated and the 
standardized temperature rise test according to the ANSI/NEMA CC1-2009 standard [18] is simulated and 
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checked against experimental tests. According to this standard, the connector passes the test if its 
temperature is below the temperature of the conductors at with which the connector is associated. This test 
is very useful since it allows evaluating the thermal behavior of the substation connectors under both 
transitory and stationary conditions. Temperature rise tests are expensive since they last for long time, and 
consume large amounts of electrical power. As a result, to obtain designs with optimal thermal performance 
[19], substation connectors’ manufacturers require fast, easy-to-use and accurate simulation tools to 
anticipate the results of the mandatory standard temperature rise tests.  
The finite difference method (FDM) is a recognized tool to approximate the solutions of systems governed 
by differential equations by means of finite differences calculated at the grid points of a discretized 
geometry. The FDM method has been widely applied in the technical bibliography, for example to model 
the heat transfer in solar cells by applying the conservation principle [20], calculate the natural convection 
heat transfer in a cavity filled with a nanofluid [21,22], determine the temperature rise of a surgical drilling 
machine [23], model the transient thermal performance of machining processes [24], predict the 
temperature distribution of ball-screw mechanical systems [25] or to perform vibrational analysis in elastic 
media [26]. 
Most of the works are based on two- or three-dimensional FDM approaches. In this paper it is shown that 
by using a one-dimensional FDM reduction by considering the whole three-dimensional geometry in 
calculating key parameters for the energy conservation laws it is possible to obtain very accurate results, 
similar to those attained with 3D-FEM, which is the current way to solve this kind of problems [27], but 
with much less computational burden. As a consequence, the method here proposed can be very useful to 
optimize in an economical and fast manner the design of different power devices including substation 
connectors, power conductors, busbars or fittings used in power lines among others to ensure an improved 
thermal behavior. 
 

2.  THE MODEL BASES ON NODAL EQUATIONS AND FINITE DIFFERENCE FORMULATION  

2.1 Problem discretization 

The temperature of the connector is directly related to the temperature of the reference conductors at which 
it is connected. Due to the longitudinal geometry and heat conduction of the considered problem, the 
thermal analysis can be reduced to a one-dimensional problem by formulating suitable assumptions. To this 
end the whole domain is divided into several discrete elements called nodes, along the axial and main 
dimension of the geometry, as shown in Fig. 1. The axial dimension is selected to solve the heat transfer 
problem because it is the dimension where almost all heat conduction occurs. It is assumed that the 
temperature of the central point of the any node is the average temperature of this node. This assumption is 
accurate since connectors are made of good conductor materials such as copper and aluminum and because 
a small enough spatial step x is selected.   

 
Fig. 1. Conductor-connector discretization. 

FDM is based on replacing the partial derivatives by approximations using Taylor expansions near the 
discrete points of the geometry under study. The temperature calculation in each node is based on the 
temperature of the two adjacent nodes, that is the left-side and right-side nodes. Since three nodes are 
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involved in each calculation step, a three-diagonal matrix system of equations can be generated. As a 
consequence, the TDMA (tri-diagonal matrix algorithm) algorithm [28] is well-suited to solve this problem 
since it allows calculating the temperatures in all nodes simultaneously. A tridiagonal matrix corresponds to 
a system of equations given by, 
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the constant coefficients in equation i-th. It is worth noting that superscript j refers to time steps whereas 
subscript i is used for spatial steps. The system of equation in all nodes can be represented in matrix form 
as, 
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where ja1
= 0 and j

Ic  = 0. Therefore once all coefficients j
i
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jj TTT  can be solved by applying the TDMA algorithm.  

It is noted that j
ia is the coefficient agglutinating all the terms multiplying 1

1


j

iT , j
ib is the coefficient that 

agglutinates all the terms multiplying 1j
iT , j

ic is the coefficient agglutinating all the terms multiplying 1
1


j

iT , 

whereas j
id is the coefficient that agglutinates all the independent terms in (1).  

2.2 Energy rate balance 

To determine the actual temperature in all nodes of the analyzed domain, the energy rate balance equation 
must be applied to each node,  

)()(
nconsumptiooutputgenerationinputchange

QQQQ=Q               (3) 

Q  [W] being the rate of energy with respect to time. Taking into account the differential element shown in 

Fig. 2, (3) can be rewritten as, 

)(-)( _rightconductionradiation convectiongeneration_ leftconductionchange Q+Q+QQQ=Q            (4) 

changeQ [W] being the rate of energy change within the considered element, 
leftconductionQ _

  the rate of energy 

inputting the left side of the considered element, 
generation

Q  the rate of energy generated and 
rightconductionQ _

  

the rate of energy outputting the right side of considered element, convectionQ  the rate of convective cooling 

through the outer surface and radiationQ  the rate of radiative cooling. 

 
Fig. 2. Components of the rate of energy in a general element of the considered domain. 

The terms in (4) are calculated as follows, 
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Δt and Δx being, respectively, the discretized time and spatial steps taken in the simulations. Note that S is 
the cross-sectional area perpendicular to the conduction heat flux and P·Δx is the radiation and convection 
area in the considered element, P being the outer perimeter. It should be pointed out that parameters S, h 
and P depend on the 3D geometry of the problem, so they are calculated in each node by considering the 
3D information. 
The finite-difference method (FDM) is a numerical discretization algorithm that allows approximating the 
solutions of differential equations by applying difference equations. It is worth noting that to ensure the 
numerical stability, implicit FDM algorithms are preferred [29]. As a consequence, an implicit FDM 
algorithm is proposed, which solves (1) using backward differences. 
It is noted that the values of physical parameters involved in the calculation of the thermal behavior of 
connectors such as k, h, or ρe are evaluated at the j-th time step since the TDMA algorithm is an implicit 
calculation method that calculates future temperature values in this case under analysis, from the present 
known values of the physical parameters and temperatures. Therefore, by considering a small enough time 
step, it is assumed that the change of physical parameters values between two consecutive time steps is 
almost negligible. Implicit methods often provide more stable solutions than explicit methods. Although the 
later ones are faster, implicit methods provide reliable and fast enough solutions when dealing with one-
dimension problems.  
 
Equation (3) is applied to all nodes i = 1, 2,…, I over the discretized time simulation interval t = [0, Δt, 
2·Δt,…, j·Δt,…, J·Δt]  with j = 1, 2,…, J. 
It should be noted that several assumptions have been made. The electrical resistivity e of the material has 
been considered isotropic for both the connector and the conductor. Cooling effects are considered by 
means of natural convection and radiation. There are two main ways to calculate the convective cooling 
effects. The first and more accurate one is to simulate the behavior of the fluid surrounding the connector. 
Since this approach is very computationally intensive and thus time-consuming it is not the most suitable 
option when designing a fast simulation tool. So, the empirical correlation of Qureshi and Ahmad [30] for 
convective cooling in horizontal cylinders was applied since it provides accurate enough results. Similar 
approaches are found in [31,32]. 
Radiative cooling is also considered, since it is assumed that both conductor and connector are radiating 
towards a black body at the ambient temperature. This is an accurate approach for indoor tests. Other 
sources of heat such as incident solar radiation are not considered since the tests are conducted indoors.  

2.3 Boundary and initial conditions 

Assuming the initial temperature of the conductor is the same than that of the surrounding air, the initial 
conditions are defined as, 

I iTT
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Assuming the geometry discretization shown in Fig. 1, the following boundary conditions are imposed, 
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The temperature j
cd

T ,
 of the conductor very far apart from the connector (points 1 and I in Fig. 1) are 

calculated at each time step j by applying the simplified transient calculation method proposed in the IEEE-
738 standard [33]. It is based on solving the first order differential equation corresponding to the heat 
balance as a difference equation, 
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h [W/(m2·K)] being the convection coefficient, ε the dimensionless emissivity coefficient, σ [W/(m2·K4)] 
the Stefan–Boltzmann constant, Cp [J/(kg·K)] the specific heat of the conductor material, Dcd [m] the outer 
diameter of the conductor, Tcd [K] its surface temperature, r(T) [Ω/m] the electrical resistance of the 
conductor per unit length and I [A] the electric current. Note that (9) assumes natural convection although it 
can be modified to deal with forced convection. 
The convective coefficient hcd is calculated as, 
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ρair [kg/m3] being the air density, which can be calculated as, 
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Hsea [m] being the elevation of the conductor above sea level and Tfilm is defined as, 
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2.4 Calculation of the resistance of the connector 

Substation connectors have complex shapes. As explained, the calculation process discretizes the geometry 
in small elements, each one having its own incremental resistance ΔRi

j+1 and convective coefficient 
)( 1j

iconn
Th must be adapted to the specific shape and temperature of the incremental element. 

To calculate the resistance of the connector a three-step procedure is applied. First the connector is divided 
in several slices of the same thickness, whose parallel faces are perpendicular to the direction of the electric 
current. By increasing the number of faces the accuracy also increases. Next, a convex-hull algorithm is 
applied to determine the envelope and the inner area in this envelope. Finally, the resistance of the 
connector is obtained by adding the incremental resistances of all slices as, 
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where, 
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ρe,conn [Ω·m] being the electrical resistivity of the connector material, αe,conn [1/K] the temperature 
coefficient of the resistivity and To the reference temperature. Fig. 3 shows the slices obtained from the 3D-
CAD file of the analyzed connectors and the results from the convex-hull algorithm. 
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          a)  b) 

c) d) 
Fig. 3. a) CAD of the analyzed the T-type S285ZTLS connector. b) Convex-hull envelopes of the T-type 
S285ZTLS connector after dividing the domain in different slices. c) CAD of two S285ZA4P23LS terminal 
connectors as usually joined. d) Convex-hull envelopes of the S285ZA4P23LS terminal connectors after 
dividing the domain in different slices. 

2.5 Convective coefficient of the connector 

In this section natural convection is assumed since it is the most restrictive case regarding cooling 
performance and most tests are done indoors. The convective coefficient h is a key parameter to accurately 
compute the energy rate balance in the nodes considered in the discretized model, which depends on 
geometry, fluid properties and surface and air temperatures. The convective coefficient htri in each triangle 
of the discretized outer surface of the connector is computed from the dimensionless Nusselt number Nu, 
the thermal conductivity of air k [W/(m·K)] and the characteristic length Lc [m], 

ctri
LNukh /·                      (15) 

The characteristic length Lc is calculated as the cubic root of the connector’s volume. The Nusselt number 
for natural convection in horizontal cylinders from Qureshi and Ahmad [34,35] has been used to determine 
the convective coefficient h. Values used in the simulations were interpolated from Table I, which shows 
the value of the Nusselt number as a function of the angular coordinate θ and the Rayleigh number.  
 
TABLE I 
NUSSELT NUMBER AS A FUNCTION OF ANGLE AND RAYLEIGH NUMBER FOR HORIZONTAL CYLINDERS 

 Nu(θ) 
Ra  θ = 0º  30º 60º 90º 120º 150º 180º
10-2 0.48 0.47 0.46 0.46 0.43 0.45 0.45 
10-1 0.70 0.70 0.69 0.68 0.68 0.67 0.67 
100 0.93 0.92 0.90 0.86 0.82 0.79 0.78 
101 1.34 1.32 1.28 1.20 1.11 1.03 1.00 
102 2.06 2.05 1.99 1.88 1.70 1.48 1.38 
103 3.03 3.02 2.96 2.83 2.59 2.17 1.88 
104 4.50 4.7 4.39 4.23 3.94 3.30 2.57 
105 6.76 6.72 6,58 6.35 5.95 5.10 3.50 
106 10.23 10.16 9.95 9.59 9.04 7.84 4.85 
107 15.50 15.39 15.08 14.57 13.77 12.07 6.88 
θ: angular coordinate measured from the bottom of the 
cylinder’s symmetry axis 
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The Nusselt number was recalculated at each time step since it depends upon temperature, and evaluated in 
each triangle of the outer connector’s surface of the 3D-CAD geometry. From the Nusselt number, the 
convective coefficient htri of each triangle is calculated by means of (15) and finally the overall heat 
transfer coefficient h for the connector is obtained through the weighted average of the individual htri of 
each triangle by using the area of each triangle as weighting factor. 
To obtain the dimensionless Rayleigh number, it is first necessary to obtain the dimensionless Prandtl and 
Grashof numbers,  

GrPrRa ·                    (16) 
The Prandtl number is calculated as, 

k

Cp
Pr

·
                      (17) 

µ [Pa·s] being the dynamic viscosity of air and Cp [J/(kg·K)] the specific heat of air.  
The Grashof number is calculated as, 
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3
,

2 )··(··


 cairs LTTg

Gr 
                  (18) 

g [m/s2] being the gravity of Earth, β [1/K] the thermal expansion coefficient of air, ρ [kg/m3] the air 
volumetric mass density, Tair,∞ [K] the air temperature far from the object’s surface and Ts [K] the surface 
temperature. Air properties ρ, µ,   β and k depend upon film temperature, so they are recalculated at every 
time step from tabulated valued found in [36]. The film temperature Tfilm is defined as, 

2/)( , sairfilm TTT                    (19) 

2.6 Thermal FDM based on nodal equations 

A numerically stable implicit one-dimensional model based on the finite difference method to calculate the 
temperature on each discrete node of the studied volume is proposed. As explained, the TDMA method 
[28] allows solving this problem since the temperature of any node depends upon the temperatures of the 
two adjacent nodes. By analyzing the I nodes (see Fig. 1) of the considered geometry a IxI matrix is 
obtained from which the temperatures in all I nodes are calculated by means of the TDMA algorithm.  
Four types of nodes must be considered to accurately predict the temperature distribution along the 
considered domain as detailed below. 

2.6.1 First node and last nodes 
A first node is considered to only set the boundary condition, that is, 1
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 a1 = 0, b1 = 1, c1 = 0, d1 = 1
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1
,



j
cdT is the initial condition in the conductor, very far from the connector, which is calculated according to 

method found in the IEEE-738 standard and detailed in Section II-C. 
Similarly for the last node also sets the boundary condition at the other side of the conductor, 1

,
1 
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j

I
TT . 

The constant coefficients of this node result in,  
aI = 0, bI = 1, cI = 0, dI = 1

,



j
cdT                   (21) 

2.6.2 Second and penultimate node 
The second node represents the interface linking the conductor very far from the connector initial condition 

1
,



j
cdT and the regular conductor. The energy rate balance in (4) is applied to node 2 as shown in Fig. 4, 

resulting in (22), 
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Fig. 4. Energy rate balance in node 2. 
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Coefficients jj ba
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It is worth noting that TDMA does not accept temperatures raised to the fourth power, therefore the 
radiation term applies 4

2 )( jT instead of 41
2 )( jT . 

Similarly for the penultimate node the coefficients in (1) are as follows, 
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2.6.3 General conductor node 
The i-th conductor node is placed between two regular conductor nodes, that is i-1 and i+1. Fig. 5 shows 
the energy rate balance in this node, resulting in (25), 
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Fig. 5. Energy rate balance in a general i-th node of the connector. 
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Coefficients jj

ii
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2.6.4  Intermediate conductor-connector and connector-conductor contact nodes 
These nodes are in the boundary between conductor-connector and connector-connector. As shown in Fig. 
6, they are hybrid nodes, half of the node belonging to the connector and the other half to the conductor. 
Fig. 6 shows the energy rate balance in this node, resulting in (27), 

a)  b) 
Fig. 6. Energy rate balance in the intermediate conductor-connector and connector-conductor contact 
nodes. 
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From (27), the constant coefficients in (1) for the conductor-connector contact node result in,  
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Similarly, the constant coefficients in (1) for the connector-conductor contact are the same as in (28) 
except, 
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2.6.5 General connector node 
The formulation and equations resulting in this node are identical to the general conductor node, but all 
properties must be taken from the connector material. As a consequence (23) and (24) are valid for the 
connector general nodes by replacing subscripts cd by conn.  

2.7 Summary of the steps applied  

Fig. 7 summarizes the different steps in the proposed transient calculation method.  
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Fig. 7. Methodology summary. 
 
Since the convective and radiative thermal processes take place in the boundary of the domain, they are 
evaluated taking into account the three-dimensional shapes of both the conductor and connector. The 
connector’ and conductor’ parameters providing information about their 3D shape are Sslice,k in (13) and 
Sconn, Scd, hconn, hcd, Pconn and Pcd in (22)-(29). 

3.  MODEL VALIDATION. SIMULATION RESULTS AGAINST EXPERIMENTAL DATA  

Experimental temperature rise tests according to the ANSI/NEMA CC1-2009 standard [18] were conducted 
in the AMBER laboratory of the Universitat Politècnica de Catalunya to validate the simulation method 
proposed in this work. The test loop was composed of HTLS GTACSR-464 conductors with outer diameter 
Dcd = 20.5 mm and two S28ZTLS T-type connectors and four S285ZA4P23LS terminal connectors from 
SBI-Connectors catalogue, as shown in Fig. 8.  
ANSI/NEMA CC1-2009 is the main international standard used by the substation connectors industry. This 
standard specifies the type of normalized tests to be applied in substation connectors, which include the 
temperature rise test, which evaluates the performance of the connector at 100%, 125% and 150% of the 
nominal current of the conductor at which the connector is joined. To pass the test, the temperature of the 
connector must always be below that of the conductor at any current level. The simulation model proposed 
in this paper is intended to shorten the development time of new lines of connectors and also to avoid the 
testing of non-compliant prototypes. 
Experimental tests were performed at atmospheric conditions (14.5 ºC, 982.7 hPa and 52.3% relative 
humidity) under a constant current Ie = 1206 ARMS. The experimental setup includes a 120 kVA bi-phase 
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variable autotransformer [0V-400V] connected to a 120 kVA 400/10 V transformer whose rated output 
values are 0-10 V, 0-10 kA. The output of this transformer was connected to the test loop. The loop current 
was measured with a calibrated Fluke i6000s-Flex Rogowski coil that has an uncertainty of 2%. 
Temperature measurements were performed with 16 K-type thermocouples with a stainless steel sheath 
(AISI 316, 1 mm diameter) placed on the surface of the conductors’ and connectors’ bodies. The tolerance 
of these thermocouples is typically 2.2ºC within the 0-275ºC temperature interval once the temperature 
reading is stabilized. A small hole was drilled in the connector body to place the thermocouple, which was 
attached with thermal grease. Thermocouples signals were acquired every 10 seconds by means of a 
Tecnocat acquisition card.  
Tables II and III summarize the values of the physical properties considered in the simulations. 

 a) 

b) 

Fig. 8. Experimental setup. a) Schematics of the experimental setup. b) Test loop composed of an ACSS 
conductor, S285ZTLS T-connectors and S285ZA4P23LS terminal connectors. 

TABLE II 
PHYSICAL PROPERTIES OF THE CONDUCTOR 

Variable Value 
Conductor type GTACSR-464 
Aluminum conductor mass 559.8 kg/km 
Steel conductor mass 367 kg/km 
Diameter of the conductor 20.47 mm 
Diameter of steel core 8.77 mm 
Aluminum thermal heat capacity, CpAl 534.6 J/(m·K) 
Steel thermal heat capacity, Cpsteel 174.7 J/(m·K) 
Conductor electrical resistivity, ρe,20ºC 4.46·10-8 Ω·m 
Temperature coefficient, αcd  0.0041 1/K 
Aluminum thermal conductivity, kpAl 229 W/(m·K) 
Steel thermal conductivity, kpsteel 43 W/(m·K) 
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TABLE III 
PHYSICAL PROPERTIES OF THE CONNECTOR 

Variable Value 
Aluminum alloy A356.0
Aluminum mass density 2700 kg/m3 

Aluminum thermal heat capacity, CpAl 534.6 J/(m·K) 
Aluminum thermal conductivity, kpAl 229 W/(m·K) 
Connector thermal emissivity, ε 0.45 
Connector electrical resistivity,  ρe 4.5·10-8 Ω·m 
Temperature coefficient, αcd 0.004 1/K 
Contact resistance factor* 2 
*Based on measurements, it is known that the contact resistance is 2 
times higher than the theoretical connector resistance 

 

Table IV shows the time- and spatial-steps considered in the simulations performed as well as the duration 
of the simulations. A time step of 50 s and a spatial step of 0.1 mm were selected after carrying out a study 
of their values to fulfill both speed and accuracy criteria. 

 

TABLE IV 
CALCULATION PARAMETERS OF THE SIMULATION 

Variable Value 
Time step (Δt) 50 s 
Simulation time 9000 s 
Spatial step (Δxcd = Δxconn) 0.1 mm 

Figs. 9 compare the temperature evolution in the T-type connector and the conductor. Fig. 9a clearly shows 
that the temperature of the connector is always below than that of the reference conductor, as required by 
the ANSI/NEMA CC1-2009 standard. Fig. 9b displays the temperature profile along the whole geometry. It 
shows that the connector tends to cool the conductor portion closest to the connector, this effect being 
negligible at about 2 m far from the connector.  
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Fig. 9. a) Experimental data and FDM-based simulation results of the temperature rise for both the 
conductor (Tcd,∞) and the T-type S285ZTLS connector (center point). b) Simulated temperature profile 
evolution with time. c) Temperature difference evolution between experimental and simulated data for the 
S285ZTLS connector and its reference conductor. The average relative temperature difference is 2.33% for 
the connector and 1.09% for the conductor. 

Figs. 10 compare the temperature evolution in the terminal connector and the conductor. Once again Fig. 
10a shows that the connector is always cooler than the reference conductor. Fig. 10b displays the temporal 
evolution of the temperature profile along the whole geometry.  
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Fig. 10 a) Experimental data and FDM-based simulation results of the temperature rise for both the 
conductor (Tcd,∞) and the S285ZA4P23LS terminal connector (center point). b) Simulated temperature 
profile evolution with time. c) Temperature difference evolution between experimental and simulated data 
for the S285A4P23LS connector and its reference conductor. The average relative temperature difference is 
0.42% for the connector and 1.15% for the conductor. 

Figs. 9a and 10a show the close agreement between experimental data and simulated temperature profiles 
for the conductor and the two types of analyzed connectors. 

To further validate the usefulness and accuracy of the method proposed in this paper, it is validated against   
the experimental and 3D-FEM results presented in [27] as shown in Fig. 11. These results show 
comparable accuracy of the FDM-based simulation method proposed in this paper when compared with the 
3D-FEM approach. 
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Fig. 11. Loop composed of a YAT450am20C connector and AA-1080 conductors [27]. FDM, 3D-FEM and 
experimental results comparison. 

It is noted that the elapsed time required to run a complete simulation is about 40 s using an Intel-Core® i7-
3770 CPU 3.4 GHz with 6 GB RAM using a code programmed in the Matlab® R2014a environment. It is 
much shorter than the average time required by an experienced designer to prepare the 3D-geometry, the 
3D-mesh, to define the equations and boundary conditions and to run an equivalent transient 3D-FEM 
electromagnetic-thermal simulation. 

4.  CONCLUSION 

The finite element method is a widely-used tool to design electrical devices from both electromagnetic and 
thermal points of view. Due to the complex three-dimensional shape of substation connectors, three-
dimensional FEM simulations are required which regardless of significant improvements in computer 
performance, are still very computationally-intensive and time-consuming, thus being expensive and 
sometimes unpractical when iterative simulations are required, especially during optimal design processes.  
To minimize these drawbacks, this paper has presented a fast and accurate FDM approach based on one-
dimensional reduction to simulate the temperature rise in substation connectors. The proposed transient 
method discretizes the original three-dimensional geometry into small one-dimensional elements in which 
the energy rate balance equation is applied. To improve the accuracy, the proposed one-dimensional 
method retains three-dimensional information of the original geometry to calculate at each time step for all 
analyzed surface points different parameters such as the convective coefficient of each element or the 
incremental resistance. It has been proved that accuracy is comparable to that attained with the 3D-FEM 
approach but with much less computational requirements and time involved in preparing the 3D 
geometries, generating the 3D mesh, or settling the boundary conditions. Experimental results conducted in 
a laboratory have validated the accuracy of the proposed method and its effectiveness to assist the design 
process of substation connectors and other power devices and components. 
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