
Universitat Politècnica de Catalunya

Statistical models for genome sequence mapping

Master of Science thesis

in partial Fulfillments for the Degree of
Electronic Engineering

at the
Universitat Politècnica de Catalunya

Author:

Eduard Valera i Zorita

Advisors:

Dr. Guillaume Filion

Dr. Josep Vidal Manzano

September 14, 2016

Contents

Resum 11

Resumen 13

Abstract 15

1 DNA and sequence alignment 17

1.1 Biological information is stored using DNA . 17

1.1.1 The molecule . 17

1.1.2 Origins of DNA . 18

1.1.3 Genes and genomes . 20

1.1.4 Evolution of genomes . 21

1.1.5 DNA sequencing technologies . 22

1.2 Sequence alignment . 22

1.2.1 Needleman-Wunsch algorithm . 24

2 Finding needles in a haystack 28

2.1 Sequence mapping . 28

2.2 Efficient string search structures . 30

2.2.1 Hash tables . 30

2.2.2 Trees . 31

2.2.3 Suffix arrays . 32

2.2.4 BW Transform and FM index . 33

2.3 The sequence neighborhood . 40

2.3.1 Neighborhood annotation algorithm . 40

2.3.2 k-mer uniqueness . 41

3 Mapping algorithm 44

3.1 Seeding . 45

3.1.1 MEM seeding . 45

3.1.2 Threshold seeding . 46

3.1.3 Inexact seeding . 46

3

3.2 Filtering significant seeds . 46

3.2.1 Filter on seed length . 46

3.2.2 Filter on number of hits . 47

3.2.3 Filter on seed significance . 47

3.3 Aligning . 48

3.3.1 Sequence alignment . 49

3.3.2 Split reads and breakpoint algorithm . 49

3.4 Mapping quality . 51

3.4.1 Alignment score model . 51

3.4.2 The neighbors model . 52

4 Results 56

5 Conclusions and future work 61

List of Figures

1.1 DNA molecule. a) DNA nucleotides are formed by a Phosphate group, a 5-carbon

sugar and a nitrogenous base. b) Sugars that compose RNA/DNA differ by an

OH/H group on the second carbon. c) The nitrogenous bases are Guanine, Adenine,

Cytosine, Thymine (DNA only) and Uracil (RNA only). 18

1.2 Structure of the DNA double helix. The nitrogenous bases hold together through

hydrogen bonds: A and T with two bonds, C and G with three. The nucleotide

pairs form stacks through sugar-phosphate bonds. 19

1.3 Single-stranded RNA molecules can form secondary structures. a) Self-annealing

of complementary nucleotides from the same RNA strand. b) Representation of

the secondary structure. Source [1]. 20

1.4 Human karyotype. Human cells have 23 pairs of chromosomes. Each cell contains

two copies of chromosomes 1 to 22 and two copies of chromosome X (female) or

one copy of chromosome X and one copy of chromosome Y (male). Source [1]. . . . 21

1.5 Organization of genes in the human genome. a) Representation of chromosome 22.

b) A ten-fold expansion of a fragment of chromosome 22 with about 40 genes indi-

cated in red. c) An expanded portion of (b) showing four genes. d) Representation

of one of the genes of chromosome 22 where the regulatory region and its 9 exons

are indicated. Source [1]. 22

1.6 A representation of the nucleotide sequence content of the sequenced Human genome.

Source [1]. 23

1.7 BLOSUM62 matrix, used to score alignments between evolutionarily divergent pro-

tein sequences. 24

1.8 Initialization of a Needleman-Wunsch alignment between ATGCAA and ACGCTTTAA. . 25

1.9 Needleman-Wunsch matrix for q =ATGCAA and t =ACGCTTTAA (top row) and align-

ment path based on backtracking through valid cell transitions (bottom row).

Green: match/mismatch. Red: Gap open/extend. a) Score matrix for Leven-

shtein distance (Pm = 0, Ps = 1, Po = 1, Pe = 1). b) Score matrix for Pm = −1,

Ps = 4, Po = 6, Pe = 1. 25

1.10 Smith-Waterman matrix initialization for q =ATGCAA and t =TGTGCATGGAAAGCAGCT. 26

1.11 Smith-Waterman alignment for q =ATGCAA and t =TGTGCATGGAAAGCAGCT using

min-gap score model. 27

5

2.1 Representation of error free subsequences modeled as a stick breaking problem.

The mismatched nucleotides and the longest error-free stretch are highlighted in red. 29

2.2 Seeding probability for error rate q = 0.02 and read lenghtsm = 25, 50, 75, 100, 125, 150 nt. 31

2.3 Process of construction of a tree structure containing all the suffixes of the text

ATGAC. The position of the suffixes are stored in the leaf nodes. 32

2.4 Suffix array of GATGCGAGAGATG. The numbers on the top represent the positions of

the suffixes (the suffix array). Below, the suffixes sorted in lexicographical order. . 33

2.5 The preceding character of the suffixes shown in Figure 2.4. The preceding character

of the first suffix is the last character of the text ($). 34

2.6 The correspondence between the preceding character and its order of appearance in

the suffix array. Note that the oder of appearance is conserved for each nucleotide

set. 35

2.7 Backward search using the preceding character information. The inteval of the

matching suffix is shrinked every iteration, when the preceding nucleotide is added. 36

2.8 Backward search using only the C and Occ tables. The suffix intervals are updated

with (2.8) reading the query backwards. 37

2.9 Subintervals of the suffix A. The subintervals are consecutive in the suffix array.

The interval of the suffix A is denoted by IA, the subintervals are IAA, IAC, IAG, IAT

and fp is the position of the first suffix of the interval. 39

2.10 Representation of the recurive block search algorithm. The first step (top-bottom)

divides the intervals in two blocks. When the bottom is reached, the algorithm

starts a bottom-up search and extension. 43

3.1 Seed and extend algorithm. Seeding consists in finding short exact matches between

the read and the reference. The extension step performs a full alignment between

the read and the reference at the position of the seeds. 49

3.2 Seed and extension over a split read. The split read is composed of two distant

fragments of the reference (blue and red). At the extension step, the alignment

proceeds passed the fragment border, where the sequences do not coincide anymore

(represented in gray on the reference). 50

3.3 Local neighborhood of the read TR, its best match TB and the closest neighbor of

the best match TN . The Lenvenshtein distance between sequences is denoted by

d(·, ·). 52

3.4 On our hypothesis for the mapping score, TR originated from TN . This figure

summarizes the three possible scenarios when a nucleotide of TR is modified. . . . 53

4.1 Sensitivity vs error rate for all the possible mapping quality thresholds. Illumina

simulated reads on Human Genome v19, with 1% (left), 2% (right) and 5% (bottom)

error rate. Comparison between bowtie2 (blue), bwa-mem (red) and our mapper

(black). 59

4.2 Throughput (correctly mapped sequences per core per second) vs error rate for

all the possible mapping quality thresholds. Illumina simulated reads on Human

Genome v19, 1% (left) and 5% (right) error rate. Comparison between bowtie2

(blue), bwa-mem (red) and our mapper (black). 60

4.3 Sensitivity vs error rate for all the possible mapping quality thresholds. Illumina

simulated reads on Drosophila Melanogaster genome v3, 2% (left) and 15% (right)

error rate. Comparison between bowtie2 (blue), bwa-mem (red) and our mapper

(black). 60

List of Tables

1.1 Genome size and protein-coding gene count of model organisms. 20

1.2 DNA sequencing technologies in current use. 23

1.3 Examples of alignment scores. 24

1.4 Alignments generated with different score models for q = AAATCA and t = AAAGAATTCA. 26

3.1 Upper bound probability of incorrect seed (l = 19). 48

9

Resum

En aquest projecte hi presentem un algoritme de mapping. Els mappers són algoritmes que

s’utilitzen per trobar seqüències curtes d’ADN en textos de referència molt grans. El nostre al-

goritme utilitza la tècnica estàndard de seed-and-extend, utilitzada per la majoria de mappers

actuals, combinada amb una nova anotació del genoma que hem anomenat neighborhood annota-

tion. Aquesta anotació consisteix en una estructura de dades que emmagatzema informació sobre

les similaritats entre les seqüències del text de referència. Basant-nos en aquesta estructura, hem

dissenyat un model estad́ıstic que utilitzem per assistir els processos de seeding i d’estimació de

la qualitat de mapping. Finalment, hem implementat i mesurat el rendiment del nostre algoritme

en seqüenciacions simulades d’Illumina. Els resultats obtinguts determinen millor sensitivitat i

estimacions més acurades de la fiabilitat de mapping, a la mateixa velocitat que els mappers de

l’estat de l’art. El codi font de la implementació en C està disponible en open-source al web

http://github.com/ezorita/mapper.

Resumen

En este proyecto presentamos un algoritmo de mapping. Los mappers son algoritmos utilizados

para encontrar secuencias cortas de ADN en textos de referencia mucho más largos. Nuestro

algoritmo utiliza la técnica estándar de seed-and-extend, utilizada por la mayoria de mappers

actuales, combinada con una nueva anotación del genoma: el neighborhood annotation. Esta

anotación es una estructura de datos que almacena información sobre las similitudes entre las

secuencias del texto de referencia. Basandonos en esta estructura, hemos diseñado un modelo

estad́ıstico que utilizamos para favorecer los procesos de seeding y de estimación de la calidad de

mapping. Finalmente, hemos implementado y testeado el rendimiento de nuestro algoritmo en

secuencias simuladas de Illumina. Los resultados obtenidos muestran una mejor sensitividad y

estimaciones más precisas de la fiabilidad de mapping, a la misma velocidad que los mappers del

estado del arte. El código fuente de la implementación en C está disponible en open-source en

http://github.com/ezorita/mapper.

Abstract

In this work we present a mapper, an algorithm to find short DNA sequences in large refer-

ence texts. Our algorithm uses the standard seed-and-extend approach, utilized by most modern

mappers, combined with a novel genome annotation called neighborhood annotation. The neigh-

borhood annotation is a data structure that contains information of similarity between sequences

of the same reference. Based on this annotation, we build a statistical model to aid the processes

of seeding and mapping quality estimation. Overall, our algorithm achieves higher sensitivity and

more accurate estimation of mapping reliability with simulated Illumina reads, at the same speed

compared to the state-of-the art algorithms. The C source code of the algorithm implementation

is available at http://github.com/ezorita/mapper.

16

Chapter 1

DNA and sequence alignment

1.1 Biological information is stored using DNA

1.1.1 The molecule

The deoxyribonucleic acid (DNA) is the molecule that provides all living organisms the ability to

store, retrieve and pass from generation to generation the genetic instructions required to make

and maintain a living organism. A molecule of DNA consists of two long strands of complementary

poly-nucleotide chains. The building blocks which compose a chain of DNA are called nucleotides.

The nucleoties are molecules with simple structure composed of a five-carbon sugar, a nitrogen-

containing base and one or more phosphate groups (Figure 1.1a).

The nucleotides are covalently linked together building a backbone of sugar-phosphate bonds,

in which the phosphate groups that are attached to the 5th carbon of the sugars (5’) form a covalent

bond with the 3rd carbon (3’) of the next nucleotide in the strand (Figure 1.2). Following this

fashion, DNA nucleotides can be enchained to form an arbitrarily long DNA strands. Note that

only one of the ends of a DNA molecule will have a dangling phosphate group on its backbone (the

5’ end), giving an inherent polarity to the strand. The base group is the only subunit that differs

in each of the four types of nucleotides. There are four different nitrogen-containing bases that

give name to their respecive nucleotide: Adenine (A), Thymine (T), Guanine (G) and Cytosine

(C) (Figure 1.1c). The bases can hold together two strands of DNA through hydrogen bonds.

However, they do not pair at random: the chemical structure of the bases only permits the efficient

formation of hydrogen bonds in the interior of the double helix between A and T with 2 hydrogen

bonds, and G and C with 3 hydrogen bonds. The latter pairing of bases is not a strict limitation,

nevertheless, in terms of free energy, it’s the best combination to bring the atoms close enough to

form hydrogen bonds without distorting the structure of the DNA backbone. One last additional

requirement to form the double helix molecule is that the bases can only pair if the complementary

strands are antiparallel, i.e. the polarities of the strands (5’ and 3’) are oriented in an opposed

manner (see Figure 1.2).

The discovery of the double helix structure of the DNA [2] in 1953 was crucial to answer

17

18 CHAPTER 1. DNA AND SEQUENCE ALIGNMENT

Figure 1.1: DNA molecule. a) DNA nucleotides are formed by a Phosphate group, a 5-carbon
sugar and a nitrogenous base. b) Sugars that compose RNA/DNA differ by an OH/H group on
the second carbon. c) The nitrogenous bases are Guanine, Adenine, Cytosine, Thymine (DNA
only) and Uracil (RNA only).

two important questions: (i) how the information is stored in a chemical form and (ii) how this

information is passed from the mother cell to its daughters. The answer to the first question

is that the biological information in living organisms is encoded in the sequence of nucleotides

along DNA strands. Therefore, the genetic information is analogous to a text with a 4-letter

alphabet: A, C, G and T. In consequence, different organisms differ from each other because they

have different nucleotide sequences. The discovery of the DNA structure also shed some light

to the second question. The fact that the DNA molecule contains two strands bearing identical

information rapidly suggested a mechanism of DNA replication: unwinding the two strands and

filling them separately with the complementary nucleotide sequence would give rise to two new

double stranded DNA molecules with the same information.

1.1.2 Origins of DNA

There are two main types of nucleic acids, which differ in the type of sugar contained in their

sugar-phosphate backbone (Figure 1.1b). The acid based on the sugar deoxyribose is known as

deoxyribonucleic acid (DNA) and contains the bases A, G, C and T (Sec. 1.1.1). On the other

hand, the acid based on sugar ribose, known as ribonucleic acid (RNA), contains the bases A, C,

G and Uracil (U), see Figure. 1.1c. Despite their structural similarities, the RNA is commited to

many more cellular tasks than its sister nucleic acid. For instance, RNA is usually found in cells

in the form of a single-stranded molecule, whereas DNA is almost always in the form of a double

1.1. BIOLOGICAL INFORMATION IS STORED USING DNA 19

Figure 1.2: Structure of the DNA double helix. The nitrogenous bases hold together through
hydrogen bonds: A and T with two bonds, C and G with three. The nucleotide pairs form stacks
through sugar-phosphate bonds.

stranded polynucleotide chain. Being single stranded, the RNA backbone is flexible, allowing the

polymer chain to bend back on itself and form weak bonds between different parts of the same

molecule. In fact, these types of internal associations form specific shapes that are dictated by its

sequence (Figure 1.3). The shape of the RNA molecule, in turn, may recognize other molecules

and bind to them selectively or act as a catalyst in some chemical reactions. However, besides its

enzymatic roles, the RNA can also store and replicate genetic information in the same manner

as DNA. Most notably, RNA works in all living organisms as an intermediate in the transfer of

genetic information in the form of messenger RNA (mRNA), bearing the information and guiding

the synthesis of proteins.

The triple role of RNA (enzymatic, protein synthesis and information-bearing) strongly sug-

gests that early stages of life emerged from a combination of RNA and proteins. Such early

RNA-protein world would imply the existence of genetic code prior to DNA, which is consistent

with the ubiquitous use of messenger RNA (mRNA) and transfer RNA (tRNA) as protein-building

machinery. Given the success of this early form of life, an immediate question arises: why would

the transition from RNA to DNA be so complete as to eradicate all RNA-based genomes of living

organisms? The straightforward answer is that DNA genomes would have had substantial ad-

vantage with respect to RNA genomes in terms of the reliable production of progeny genotypes.

In effect, the absence of the −OH group on desoxyribose renders DNA much more structurally

stable than RNA. In addition, the use of Thymine in place of Uracil evades one of the most

common sources of mutations in RNA: the accidental production of Uracil via the deamination

of Cytosine (see the similarities in Figure 1.1c). These advantages for DNA-based organisms may

20 CHAPTER 1. DNA AND SEQUENCE ALIGNMENT

GGG A

C
CC U

A
G
C
U
U
A
A
A

U
C
G
A
A
U
U
U

A
U
G
C
A
U

U
A
C
G
U

A

AAA

UU U

U A U
G

A
U A C

G
C

A
U

G

C G

C

A
U
G

C

(A) (B)

Figure 1.3: Single-stranded RNA molecules can form secondary structures. a) Self-annealing
of complementary nucleotides from the same RNA strand. b) Representation of the secondary
structure. Source [1].

have facilitated its survival in less permisive environments where they could develop more complex

biological functions.

1.1.3 Genes and genomes

Table 1.1: Genome size and protein-coding gene count of model organisms.
Organism Genome size [bp] Coding genes

Escherichia coli (Bacterium) 4.6 · 106 ∼4.400

Sacchromyces cerevisiae (Yeast) 12.5 · 106 ∼6.000

Neurospora crassa (Fungus) 39.9 · 106 ∼10.000

C. Elegans (Nematode) 100.2 · 106 ∼20.000

Arabidopsis Thaliana (Plant) 135 · 106 ∼27.000

Drosophila Melanogaster (Fly) 180 · 106 ∼13.000

Danio Rerio (Zebra Fish) 1.7 · 109 ∼26.000

Mus musculus (Mouse) 2.8 · 109 ∼23.000

Homo Sapiens (Human) 3.3 · 109 ∼20.000

In eukaryotic cells, the large amounts of DNA required to encode all the information needed

to sustain cellular life, are packaged into chromosomes. Chromosomes are very long double-

stranded DNA molecules found in the cell nucleous (Figure 1.4). These DNA molecules fit readily

inside the nucleous and, after they are replicated, they can be easily distributed between the two

daughter cells. On the other side, prokaryotic cells typically carry their genes on a single, circular

DNA molecule called bacterial chromosome, found in the cytoplasm.

The DNA in human species is packed into 24 different chromosomes, each consisting of a fine

1.1. BIOLOGICAL INFORMATION IS STORED USING DNA 21

 CHROMOSOMAL DNA AND ITS PACKAGING IN THE CHROMATIN FIBER

(A) (B)
10 µm

1

6 7 8 9 10 11 12

181716151413

19 20 21 22
X X

2 3 4 5

Figure 1.4: Human karyotype. Human cells have 23 pairs of chromosomes. Each cell contains
two copies of chromosomes 1 to 22 and two copies of chromosome X (female) or one copy of
chromosome X and one copy of chromosome Y (male). Source [1].

thread of DNA and a set of proteins that fold and pack it into a compact structure. Such complex

of protein and DNA is called chromatin. The main function of the chromosomes is to carry the

genes (Figure 1.5). A gene is a segment of DNA that is transcribed, i.e. that is converted to RNA

either to be used as is (structural, catalytic, regulatory RNA...) or to guide the synthesis of a

protein. The total genetic information carried by all the chromosomes of an organism constitutes

its genome. As it may be expected, there exists a correlation between the genome size and the

complexity of the species, Table 1.1 summarizes the genome sizes of the most widely used model

organisms.

1.1.4 Evolution of genomes

The evolution of the current living species from the ancestral forms of life has been an impressive

journey. The living organisms had been continuosly adapting to get through the selective pressure

of the environment, a process that wouldn’t have been possible without the capacity of the genomes

to change and generate new genes. Remarkably, the genes that provide an organism with selective

advantage do not arise as a whole; they are instead the product of thousands or even millions

of years of collection of non-deleterious single nucleotide changes, combined with the horizontal

transfer of bigger sequence blocks.

Single nucleotide changes or mutations may be produced by the exposure to radiation, double-

strand breaks on DNA, replication errors, etc. However, the evolution of genomes due to single

mutations is an extremely slow process, considering that error rates during DNA synthesis in

humans are in the 10−6 to 10−8 range. Besides, only an insignificant part of such mutations will

remain, given that deleterious mutations are rapidly displaced by selective pressure. On the other

side, more sophisticated mechanisms, which include: sequence duplication and recombination,

virus infections or plasmid transformation, among others, allow the transfer of bigger blocks of

DNA, a process called horizontal gene transfer (HGT). As a result of HGT, the genomes of the more

22 CHAPTER 1. DNA AND SEQUENCE ALIGNMENT

heterochromatin

regulatory DNA
sequences

human chromosome 22 in its mitotic conformation, composed of two
double-stranded DNA molecules, each 48 × 106 nucleotide pairs long

one gene of 3.4 × 104 nucleotide pairs

×10

×10

×10

10% of chromosome arm ~40 genes

1% of chromosome arm containing 4 genes

protein

RNA

folded protein

gene expressionexon intron

(A)

(B)

(C)

(D)

Figure 1.5: Organization of genes in the human genome. a) Representation of chromosome 22. b)
A ten-fold expansion of a fragment of chromosome 22 with about 40 genes indicated in red. c) An
expanded portion of (b) showing four genes. d) Representation of one of the genes of chromosome
22 where the regulatory region and its 9 exons are indicated. Source [1].

complex species are full of duplicated sequences that may belong, for instance, to a functional

substructure present in many genes, a massive infection from ancestral virus or an accidental

duplication. Such repeated sequences are so significant that fill up to 50% of the Human genome,

whereas the protein coding sequences only represent the 2% (Figure 1.6). We will see in the

following chapters that such repetitive structure of the genomes is the major source of difficulties

in the field of sequence mapping.

1.1.5 DNA sequencing technologies

DNA sequencing is a method or technology that is used to measure the precise order of the four

bases (A,C,G,T) in a strand of DNA. The first sequencings methods: Chemical and Sanger se-

quencing were invented in 1977. These methods were very slow and expensive, requiring enormous

human power, but were able to generate reads of several hundreds of nucleotides [3]. Later in the

early 2000’s, Next Generation sequencing technologies were developed, currently yielding bilions

of reads in less than 24 hours. A summary of the current sequencing technologies along with their

properties is presented in Table 1.2.

1.2 Sequence alignment

Sequence alignment is a process in which sequences of DNA, RNA or protein are arranged to

identify the regions of highest similarity based on a score model. In other words, alignments are

1.2. SEQUENCE ALIGNMENT 23

100 20 30 40 50 60 70 80 90 100

LINEs SINEs introns

retroviral-like elements

simple sequence repeats
nonrepetitive DNA that is
neither in introns nor codons

protein-coding regions

DNA-only transposon “fossils”

TRANSPOSONS

segmental duplications

GENES

REPEATED SEQUENCES UNIQUE SEQUENCES

percentage

Figure 1.6: A representation of the nucleotide sequence content of the sequenced Human genome.
Source [1].

Table 1.2: DNA sequencing technologies in current use.
Name Read length [bp] Reads Time Error rate Cost/Mb

Illumina 150+150bp >100M 24hrs ∼1% 0.1$

PacBIO up to 30kbp ∼100K 1-4hrs ∼15% 0.5$

Pyrosequencing 700bp 1M 24hrs <1% 10$

SOLiD 50+50bp 1G 1 week <0.5% 0.1$

Sanger 900bp <100 hours <0.1% 2000$

measurements of similarities between sequences. Alignments can be local or global, depending on

whether subsequences of the query sequence are expected to be found split in distinct regions along

the reference (local alignment) or the query sequence is expected to be found as a whole (global

alignment). An example of a local alignment would be to align the mRNA sequence of a gene that

contains introns against its reference genome, whereas global alignments would be used to align

sequences of DNA that have been extracted from the genome itself. On the other side, sequence

mapping is the process of finding the most probable original locus of a short sequence in a much

larger reference, e.g. its reference genome. In the following sections we describe and discuss the

complexity and purpose of some basic algorithms used for sequence alignment. Sequence mapping

will be descripted in the following chapter.

Even though there are a myriad of sequence alignment algorithms in the literature, the vast

majority are based on the same approach: dynamic programming methods. The alignment between

two sequences is computed by applying a recurrence relation throughout a matrix of m · n terms,

called edit matrix or alignment matrix, where m and n are the respective sequence lengths. Such

relation is based on a substitution matrix, the score matrix, that establishes a relationship between

the possible sequence modifications and their respective penalties. The technique of dynamic

programming can be applied to produce global alignments via the Needleman-Wunsch algorithm,

and local alignments via the Smith-Waterman algorithm, described below.

24 CHAPTER 1. DNA AND SEQUENCE ALIGNMENT

1.2.1 Needleman-Wunsch algorithm

The Needleman-Wunsch algorithm [4] is used to compute the global distance between two se-

quences. Let q be a query sequence and t be the reference sequence, with lengths m and n,

respectively. Hence, the alignment matrix S is an integer matrix with dimensions m × n, i.e.

S ∈ Z
m×n. We will refer to the i-th character of either sequence with a subindex, i.e. as ti and qi.

Let us also introduce a simple score matrix, which defines the update values for character match,

mismatch, gap open and gap extend (Table 1.3).

Table 1.3: Examples of alignment scores.
Levenshtein min-gap

Pm (match) 0 −1

Ps (mismatch) 1 4

Po (gap open) 1 6

Pe (gap extend) 1 1

Other, more sophisticated matrices, take into account the probability of nucleotide transition

(or aminoacid, in case of protein) drawn from empirical models of sequence evolution (Figure 1.7).

Figure 1.7: BLOSUM62 matrix, used to score alignments between evolutionarily divergent protein
sequences.

Once the score matrix is defined, the Needleman-Wunsch algorithm is initialized as follows:

each character of the query sequence qi is associated with the i+1-th row, similarly the reference

characters ti are placed one per column, following the same trend. The first row and column are

not associated to any character because they represent the first run of gaps. Hence, the first row

and column are initialized by recursively applying a gap extension penalty Pe, as shown in Figure

1.8.

Then, the matrix cells are computed row-wise or column-wise starting from the top left corner

with the following update rules:

1.2. SEQUENCE ALIGNMENT 25

1 2 3 4 5 60

1

2

3

4

5

6

7 8 9

A C G C T T T A A

A

T

G

C

A

A

Figure 1.8: Initialization of a Needleman-Wunsch alignment between ATGCAA and ACGCTTTAA.

S[i, j] =

S[i− 1, j − 1] + Pm, if qi = tj .

min(S[i− 1, j − 1] + Pm, S[i− 1, j] + Pe, S[i, j − 1] + Pe), if qi 6= tj and gap is open.

min(S[i− 1, j − 1] + Pm, S[i− 1, j] + Po, S[i, j − 1] + Po), otherwise.

(1.1)

1 2 3 4 5 60

1

2

3

4

5

6

7 8 9

A C G C T T T A A

A

T

G

C

A

A

1 2 3 4 5 60

1

2

3

4

5

6

7 8 9

A C G C T T T A A

A

T

G

C

A

A

0 1 2 3 4 5 6 7 8

1 1 2 3 4 4 5 6 7

2 2 1 2 3 4 5 6 7

3 2 2 1 2 3 4 5 6

4 3 3 2 2 3 4 4 5

5 4 4 3 3 3 4 4 4

1 5 6 7 8 9

5 3 9 6 7 8

6 9 2 8 9

7 5 8 1 7 8 9

3 9 9 7 5 8 9

4 7 9 7

10 11 12

14 1510

10 11 12 13

10 11

11 12

13 13 11 15 11

A C G C T T T A A

A T G C - - - A A

A C G C T T T A A

A T G C - - - A A

1 2 3 4 5 60

1

2

3

4

5

6

7 8 9

A C G C T T T A A

A

T

G

C

A

A

a

1 2 3 4 5 60

1

2

3

4

5

6

7 8 9

A C G C T T T A A

A

T

G

C

A

A

b

0 1 2 3 4 5 6 7 8

1 1 2 3 4 4 5 6 7

2 2 1 2 3 4 5 6 7

3 2 2 1 2 3 4 5 6

4 3 3 2 2 3 4 4 5

5 4 4 3 3 3 4 4 4

1 5 6 7 8 9

5 3 9 6 7 8

6 9 2 8 9

7 5 8 1 7 8 9

3 9 9 7 5 8 9

4 7 9 7

10 11 12

14 1510

10 11 12 13

10 11

11 12

13 13 11 15 11

Figure 1.9: Needleman-Wunsch matrix for q =ATGCAA and t =ACGCTTTAA (top row) and alignment
path based on backtracking through valid cell transitions (bottom row). Green: match/mismatch.
Red: Gap open/extend. a) Score matrix for Levenshtein distance (Pm = 0, Ps = 1, Po = 1,
Pe = 1). b) Score matrix for Pm = −1, Ps = 4, Po = 6, Pe = 1.

26 CHAPTER 1. DNA AND SEQUENCE ALIGNMENT

Applying (1.1) for q =ATGCAAA and t =ACGCTTTAAA, one obtains the matrix shown in Figure

1.9. The final score of the alignment corresponds to the value of the bottom-right cell (highlighted

in red). The small lines connecting adjacent cells represent the transitions that satisfy the update

rules.

The final alignment is computed following the transition trace from the last cell back to the

upper-left corner. Any path that connects these two cells through valid transitions represents

a valid best alignment (Figure 1.9, second row). Note that different score models may produce

different alignments. For instance, the alignment of AAATCA against AAAGAATTCA generates the

best alignments represented in Table 1.4. In this example, the min-gap score would be preferred

because it produces only one alignment in which all the gaps appear in succession.

Table 1.4: Alignments generated with different score models for q = AAATCA and t = AAAGAATTCA.
Levenshtein score min-gap score

AAAGAATTCA AAAGAATTCA

--A-AA-TCA AAA----TCA

-A--AA-TCA

A---AA-TCA

AA--A--TCA

AA--A-T-CA

AAA---T-CA

...

Smith-Waterman

The Smith-Waterman algorithm [5] is a simple variant of the Needleman-Wunsch to compute

local alignments. Local alignment is preferred when the query sequence is much smaller, partially

present or split in the reference, e.g. the alignment of a mRNA sequence against its full gene

sequence. The exons will be aligned locally, each producing an independent score that will not be

affected by the low score of the intronic region gaps. On the other side, a global alignment will

report a low score given the huge amount of gaps that would need to be introduced to fill the

introns.

0 0 0 0 0 00

0

0

0

0

0

0

0 0 0

T G T G C A T G G A A A G C A G C T

A

T

G

C

A

A

0 0 0 0 0 0 0 0 0

Figure 1.10: Smith-Waterman matrix initialization for q =ATGCAA and t =TGTGCATGGAAAGCAGCT.

1.2. SEQUENCE ALIGNMENT 27

Smith-Waterman and Needleman-Wunsch are very similar methods, both use the same matrix

and the same update rules, however there are two differences between them. First, the initial gap

runs are initialized with all 0 (Figure 1.10). Second, since this method computes local alignments,

the final score for a given alignment may not coincide with the lower-right corner. Hence, one

should define a criterion to select good alignments. Usually, the criterion is to select scores greater

than some threshold with a minimum alignment path length, e.g. match score greater than 30

(matrix score -30 with min-gap score model) and alignments of, at least, 30 nucleotides. An

example of a local alignment using Smith-Waterman along with the best 3 local alignments is

shown in Figure 1.11.

0 0 0 0 0 00

0

0

0

0

0

0

0 0 0

T G T G C A T G G A A A G C A G C T

A

T

G

C

A

A

0 0 0 0 0 0 0 0 0

4 4 4 4 4 1 4 4 4 1 1 1 4 4 1 4 4 4

1 5 3 8 8 5 2 4 5 5 3 3 3 8 5 3 8 3

0 0 0 0 0 00

0

0

0

0

0

0

Figure 1.11: Smith-Waterman alignment for q =ATGCAA and t =TGTGCATGGAAAGCAGCT using min-

gap score model.

Chapter 2

Finding needles in a haystack

2.1 Sequence mapping

Mapping: formal definition

Let t and q be sequences of DNA (e.g. a genome and a sequencing read) of lengths m and n,

respectively. The alphabet of t and q will be denoted as Σ and contains the four DNA nucleotides

plus the unknown base N, Σ = {A, C, G, T, N}. Let ai denote the 1-based i-th nucleotide of an

arbitrary sequence a, and ai,j its substring of j − i nucleotides starting at position i, e.g. if

a = ACGGCAGTAT, a2 = C and a5,9 = CAGT. We then define the mapping process as:

l = min
j

(Sqt[n, j]) (2.1)

where Sqt is the Smith-Waterman alignment matrix of the query sequence q against the reference

t. In other words, mapping is the process of finding the position(s) l on the reference for which

the local alignment between q and tl−n,l yields the best score.

Aligning the fast way

In Chapter 1 we reviewed the basic alignment algorithms. These algorithms solve elegantly the

alignment problem and allow us to find similarities between sequences, like conserved regions of

a protein in diverging species. In this section, however, we will present methods with the aim of

finding where a short sequence aligns well in a much larger reference text (eq. (2.1)). Speaking in

numbers, the typical length of a high-throughput seqeuencing read is on the order of hundreds of

nucleotides (Table 1.2), whereas the size of the reference (human genome) is over 109 nucleotides

(Table 1.1). In such context, one could use the Smith-Waterman algorithm to find the matrix

positions l that satisfy equation (2.1) with complexity O(nm). Running this process in a modern

computer takes around ten seconds. This is a reasonable performance if one needs to map several

reads, but recall that an Illumina MiSeq run yields more than 200 milion reads in less than 24

hours (Table 1.2). Hence, aligning a full lane with this method would take longer than 60 years.

28

2.1. SEQUENCE MAPPING 29

To deal with this bottleneck, it is possible to query the genome at a much faster rate using an

index. An index is a data structure generated from the reference sequence that allows very fast

sequence lookup operations, e.g. the faster indexes require only O(1) or O(n) (the length of the

query) operations per lookup. This means that, with only a few operations, one may obtain the

complete list of positions of the reference where the query sequence is present. However, most

indices only allow lookups of exact sequences, whereas high-throughput sequencing technologies

have error rates ranging between 1% and 15% (Table 1.2). Therefore, most of the time we will not

find a complete read in the index because it is unlikely that a sequence of hundreds of nucleotides

does not contain any mismatch. More concretely, the probability of finding a perfect read of

100 nt, considering an error rate of 1% and binomial distribution of the errors is:

pr(no error|n = 100 nt, Pe = 0.01) = (1− Pe)
n = 0.37 (2.2)

In effect, looking for exact matches of 100 nt would work only in 37% of the reads. Hence,

instead of querying the index with the aim of finding long exact matches, we use a better method

called seeding. This method consists in looking up short subsequences of the query q to increase

the probability of finding a perfect match, because short sequences are less likely to contain

mutations. However, one has to be conservative and avoid extremely short sequences because these

may appear frequently in the reference and yield too many candidate loci. In general, assuming

a random reference of length m, the lookup of a sequence of length l yields m/4l matching loci.

As the lookup length increases, the number of reported loci reduces exponentially.

Seeding methods allow us to quickly find tentative positions in the reference where the query

sequence may align well. The seeding step is then followed by local alignments of the whole query

sequence at all the candidate loci (see seed-and-extend in Chapter 3). Since the seed length is

adjusted to yield only a few matches in the genome, the positions of the best alignments are found

much faster compared to a Smith-Waterman alignment over the whole reference.

ATGCTTAGCTCGATCGGATTAGCGAGAGCACGATCGATCGATAGCGCCTAGCTAGCGAT

Figure 2.1: Representation of error free subsequences modeled as a stick breaking problem. The
mismatched nucleotides and the longest error-free stretch are highlighted in red.

Although it is fast, the seeding method is an heuristic. This means that there is a certain

probability of missing the best aligning position l. For instance, imagine that we split the sequence

in Figure 2.1 in two halves (seeds) of 30 nucleotides. Since the sequence contains two mutations

(highlighted in red), each seed would contain one mutation and neither seed would be found

exactly in the reference. Or even worse, despite being mutated, the seed sequence may still exist

in the reference and report an incorrect locus, different than the real position where the query

sequence was taken from.

We can model the probability of successful seeding, which is the probability of choosing a

30 CHAPTER 2. FINDING NEEDLES IN A HAYSTACK

subsequence of q without any mutation. This probability depends on the global error rate1, the

length of the query sequence and the error distribution, which will be assumed binomial. Consider

a sequencing read q extracted from a reference t and modified with respect to the original reference

at k different positions. Choosing the position of the k differences at random would split the read

in k + 1 subsequences without errors. This process is analogous to inserting k breaks at random

in a stick of length n. Figure 2.1 illustrates this concept with a read of length n = 60 and k = 2,

the longest error-free stretch is highlighted in red. For a fixed binomial distribution of errors with

q = 1 − p, the cummulative distribution of the longest error-free stretch Xm in a read of length

m is:

P (Xm ≤ x) =

m
∑

k=0

(

m

k

)

qkpm−kP

(

Zk ≤
x

m− k

)

(2.3)

where

P (Zk ≤ x) =

k+1
∑

j=0

(

k + 1

j

)

(−1)j(1− jx)k+ (2.4)

is the cummulative distribution of the longest fragment when k breaks are inserted (a+ = a if

a > 0 and 0 otherwise). The cummulative distribution of the seeding probability (2.3) is shown

in Figure 2.2 for q = 0.02 and several read lengths.

A good tradeoff for the seed length on Illumina reads from Homo Sapiens is between 17 and

20 nucleotides. With these seed lengths, the expected number of perfect matches in a random

reference is 3 · 109/417 < 1, with a seeding probability over 95% (Figure 2.2) even with reads as

short as 50 nucleotides.

2.2 Efficient string search structures

In the following section we will review the most common data structures (indices) used to efficiently

search on long reference texts. The goal of an index structure is to provide very fast lookup

operations on a reference text with complexities of O(1) or O(n) and memory footprint O(m)

(comparable to the raw genome size).

2.2.1 Hash tables

The first and simplest indexing technique is based in hash tables [6, 7, 8]. The idea is simple,

build a hash table with all the substrings in t of fixed length l:

H{ti,i+l} = [H{ti,i+l}, i] for x = 1 . . . m− l (2.5)

where H{·} is the hash table and · is the table key. Note that the seed length is fixed in this

index and this restricts the search to sequences of length l. Therefore, each hash table is built

1This accounts for the technology error rate, the divergence between the sequenced organism and the reference
genome and the rate of single nucleotide polymorphisms (SNP).

2.2. EFFICIENT STRING SEARCH STRUCTURES 31

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Seed length

P
ro

ba
bi

lit
y

of
 s

ee
di

ng

●

50 bp
75 bp
100 bp
125 bp
150 bp

Figure 2.2: Seeding probability for error rate q = 0.02 and read lenghts m =
25, 50, 75, 100, 125, 150 nt.

for a concrete error rate and sequence length. Note also that the arbitrary substring ti,i+l may

be repeated in different positions of the reference, therefore we use the array append operation

a = [a, ·] to keep a complete list of the positions matching ti,i+l. Storing all the l-mers in a hash

table achieves the fastest lookup time O(1), with a good memory footprint of O(m). However,

the fact that l is determined at the building time and cannot be modified is a major drawback,

especially when the error rate is variable or unknown. Nonetheless, querying seeds of length l′ < l

is possible by appending all the combinations of sequence termination, yielding a lookup cost of

O(4l−l′).

2.2.2 Trees

Another possible index structure is the tree of suffixes. A tree is nothing but the tree-structure

arrangement [9, Section 2.3] of all the suffixes of the reference text. If t is a reference text of length

m, then the i-th suffix is the end of t starting from position i, i.e. ti,m+1, and will be denoted as

ti,.

A tree structure is built using nodes that contain links to other nodes, called branches. Each

node has as many branches as the cardinality of the alphabet ‖Σ‖. The suffixes are added to the

tree starting from the root node. The different leaves of the tree represent all the suffixes of the

32 CHAPTER 2. FINDING NEEDLES IN A HAYSTACK

text. The tree is built following the procedure illustrated in figure 2.3: to insert the suffix ti,, the

root node is selected, if the branch ti does not exist, a new node is added to this branch. Then,

the same process is recursively applied starting at the new node and following ti+1. The position

of the suffix i is stored at the last node of the branch (the leaf).

ATGAC
1

A

T

A

T

G

A

C

1

A

T

G

A

C

1

T

G

A

C

2

G

A

C

3

C

4

C

5

Figure 2.3: Process of construction of a tree structure containing all the suffixes of the text ATGAC.
The position of the suffixes are stored in the leaf nodes.

To retrieve the occurrences of a seed in the index, the branches corresponding to the nucleotides

of the seed are followed. The sequence is not present in the reference if, during this process, a

branch is not found. Otherwise, the seed exists in the reference but the search may terminate

in an intermediate node. When this happens, all the branches downstream must be followed to

retreive the positions of the seed in the text. This index presents an expensive memory footprint

(O(m2)) if the suffixes are stored at full. Besides, the exploration until the leaf becomes very

demanding, with a worst case of O(m). To solve these problems and make this structure efficient,

the suffixes are pruned at a predefined length l.

The tree structure has a worse overall performance and footprint compared to the hash table.

Assuming that the tree is pruned at length l, each query has a cost O(l) and the memory footprint

is asymptotically O(lm). However, when querying subseeds of length l′ < l, the cost is O(4l−l′)

only in the worst case, because only the existing seed terminations (branches) will be followed. A

much more efficient implementation of the tree-like index is the suffix tree [10]. Suffix trees store

more than one letter per branch and reuse repeated parts of the text to boost the compression,

achieving O(m) space and O(m) access time.

2.2.3 Suffix arrays

The suffix array is a powerful data structure used to index and compress big texts [11]. It is an

array containing the start positions of the suffixes after sorting them in lexicographical order. In

other words, the suffix array of a text t of length m is:

SAt = [i1, i2, . . . , im] where tij , < tik, iif j < k. (2.6)

2.2. EFFICIENT STRING SEARCH STRUCTURES 33

in equation (2.6), the symbol < denotes the lexicographical order comparison between two strings.

Before computing the suffix array, a unique, lexicographically smallest symbol (usually $), must

be appended at the end of the text (tm = $).

An example of the suffix array of GATGCGAGAGATG is shown in Figure 2.4. Note that t =GATGCGAGAGATG$

has the $ symbol at the end of the text, which increases the text length by one (m = 14). The

list of numbers at the top of Figure 2.4 is the suffix array of t, each with its corresponding suffix

shown below. Noteworthy, the suffix array can be computed by traversing a suffix tree of t from

14 7 9 11 2 5 13 6 8 10 1 4 12 3

G
A
T
G
C
G
A
G
A
G
A
T
G
$

G
A
T
G
$

G
C
G
A
G
A
G
A
T
G
$

T
G
$

T
G
C
G
A
G
A
G
A
T
G
$

G
A
G
A
T
G
$

G
A
G
A
G
A
T
G
$

G
$

C
G
A
G
A
G
A
T
G
$

A
T
G
C
G
A
G
A
G
A
T
G
$

A
T
G
$

A
G
A
T
G
$

A
G
A
G
A
T
G
$

$

Su�x array of GATGCGAGAGATG

S
o

rt
e

d
 s

u
�

xe
s

Figure 2.4: Suffix array of GATGCGAGAGATG. The numbers on the top represent the positions of the
suffixes (the suffix array). Below, the suffixes sorted in lexicographical order.

left (branch AAAA...A) to right (branch TTTT...T). The positions stored at each leaf coincide

with the indices stored at the suffix array.

We can use the suffix array to query exact sequences from the text. Since the suffixes are

sorted, one possible method is to use the bisection algorithm [?] on the suffix array, which takes

O(log2 m) for a query q of any length. The memory footprint is compact, taking only O(m) space.

2.2.4 BW Transform and FM index

Burrows-Wheeler Transform

The Burrows-Wheeler Transform (BWT) is a lossless text transform based on text permutation

[12]. The transform of a text t of length m will be denoted as BWt = BWT(t). The BWT is

performed in two steps: (i) Compute the suffix array of t (SAt). (ii) The BWT of t is the list of

preceding characters of each position of the suffix array. Formally,

BWt[i] = t[SAt[i]− 1] (2.7)

for SAt[i] > 1 and BWt[i] = t[m] if SAt[i] = 1.

34 CHAPTER 2. FINDING NEEDLES IN A HAYSTACK

Following the previous example shown in Figure 2.4, we construct the Burrows-Wheeler trans-

form by taking the preceding character of each suffix (Figure 2.5). A fundamental property of the

Burrows-Wheeler transform is:

Property 1. Each nucleotide in the BWT appears in the same relative order as in the Suffix

Array.

That means that the first A in the BWT will be also the first A appearing in the SA, the fourth

G in the BWT is the same as the fourth G in the SA, and so on.

14 7 9 11 2 5 13 6 8 10 1 4 12 3

$

G
A
T
G
C
G
A
G
A
G
A
T
G
$

A

G
A
T
G
$

T

G
C
G
A
G
A
G
A
T
G
$

A

T
G
$

A

T
G
C
G
A
G
A
G
A
T
G
$

A

G
A
G
A
T
G
$

C

G
A
G
A
G
A
T
G
$

T

G
$

G

C
G
A
G
A
G
A
T
G
$

G

A
T
G
C
G
A
G
A
G
A
T
G
$

G

A
T
G
$

G

A
G
A
T
G
$

G

A
G
A
G
A
T
G
$

G

$

S
o

rt
e

d
 s

u
�

xe
s

(BWT)

P
re

ce
d

in
g

Figure 2.5: The preceding character of the suffixes shown in Figure 2.4. The preceding character
of the first suffix is the last character of the text ($).

To prove Property 1, consider the first character of the BWT shown in Figure 2.5, BWt[1] =

G. Note that the full suffix starting at this position is the concatenation of BWt[1] with the suffix

tSAt[1],
. Since tSAt[i],

> tSAt[j],
for any j > i, BWt[1] = G will be also the first G to appear in the

suffix array. The property is illustrated in Figure 2.6.

The Burrows Wheeler transform has other interesting properties, like the rearrangement of

the text into runs of similar characters. This allows for effective text compression using simple

algorithms like run-length encoding.

The Ferrangina-Manzini Index and Backward Search

The Burrows-Wheeler transform is an interesting structure but it cannot be used as is for the

purpose of sequence mapping. The Ferrangina-Manzini (FM) index is a combination of the BWT

with other structures which allows to query any sequence of length n in O(n) time, regardless of

the text size [13].

Let us illustrate how the Burrows-Wheeler transformed text can be used to look for an arbitrary

sequence q in the text, for instance, q = GAGA (Figure 2.7). All the occurrences of GAGA in the text

2.2. EFFICIENT STRING SEARCH STRUCTURES 35

14 7 9 11 2 5 13 6 8 10 1 4 12 3

$

G
A
T
G
C
G
A
G
A
G
A
T
G
$

A

G
A
T
G
$

T

G
C
G
A
G
A
G
A
T
G
$

A

T
G
$

A

T
G
C
G
A
G
A
G
A
T
G
$

A

G
A
G
A
T
G
$

C

G
A
G
A
G
A
T
G
$

T

G
$

G

C
G
A
G
A
G
A
T
G
$

G

A
T
G
C
G
A
G
A
G
A
T
G
$

G

A
T
G
$

G

A
G
A
T
G
$

G

A
G
A
G
A
T
G
$

G

$

S
o

rt
e

d
 s

u
�

xe
s

(BWT)

P
re

ce
d

in
g

Figure 2.6: The correspondence between the preceding character and its order of appearance in
the suffix array. Note that the oder of appearance is conserved for each nucleotide set.

end with A. Each A is also the first letter of some suffix of the text. Because such suffixes all start

with A, they are stored next to each other in the suffix array, namely between positions 2 and 5

(Figure 2.7). However, only those suffixes preceded by a G can potentially contain the query. This

is exactly the information encoded in the Burrows-Wheeler transformed text BWt: the preceding

character. In this concrete example, all the As are preceded by a G, so the text contains 4 suffixes

that start with GA.

So far we know there are 4 suffixes in the text that start with GA, but how do we continue

extending the query? Now we need to search for all the A preceding the suffix GA. Indeed, we just

learned that the set of G from the suffix GA are the 2nd, the 3rd, the 4th and 5th on the BWT.

Therefore, they also will be the 2nd, 3rd, 4th and 5th G in the Suffix Array (Property 1). So now

we can continue from the range in the SA covering from the 2nd until the 5th G, and check for the

preceding A in the BWT. Now we find two A that correspond to the 1st and 2nd A in the Suffix

array. We would continue in the same fashion until the completion of the query q. This process is

called backward search because the query starts with the last nucleotide and iteratively queries

the preceding nucleotides.

The BWT is necessary but not sufficient to perform the backward search on an index. We

need additional information to: (i) get the positions in the suffix array where a suffix is present

and (ii) the order of occurrence of each nucleotide in the BWT.

Since the Suffix Array is a representation of the sorted suffixes, all the occurrences of the same

letter will appear together, i.e. first all the A, then all the C, and so on (Figure 2.4). Therefore,

to know the position of the first appearance of each letter, we will directly store them in an array

called C. It is straightforward to retrieve the full range of any nucleotide from C, for instance

the range of A is C[A] to C[C]− 1. In general, the full range of the i-th letter of the alphabet Σ is

[C[Σ[i], C[Σ[i+ 1]− 1]].

36 CHAPTER 2. FINDING NEEDLES IN A HAYSTACK

G

A

A

G

$A T A AACTGGGGGG

GG G T TGGGCAAAA$

2 3 4 5

$A T A AACTGGGGGG

GG G T TGGGCAAAA$

1 2

$A T A AACTGGGGGG

GG G T TGGGCAAAA$

2 3

$A T A AACTGGGGGG

GG G T TGGGCAAAA$

14 7 9 11 2 5 13 6 8 10 1 4 12 3

Sorted text

BWT

Figure 2.7: Backward search using the preceding character information. The inteval of the match-
ing suffix is shrinked every iteration, when the preceding nucleotide is added.

To store the order of occurrence of the nucleotides in the BWT we will use the Occ structure.

This structure, shown in Figure 2.8, is the individual cummulative count of each nucleotide in the

BWT. The cummulative count directly indicates the order of appearance of a nucleotide in any

position of the BWT.

Figure 2.8 illustrates the query of q = GAGA in t, now using the complete index with C and

Occ. First we start looking for the full range of A, this is from C[A] until C[C] − 1. Then we

check the occurrences of G within this range: (i) we find one appearance of G before C[A] checking

Occ(G, C[A]− 1) = 1 and (ii) at the end of the range, we have Occ(G, C[C]− 1) = 5. With a simple

subtraction we conclude that the range contains 4 G, from the 2nd until the 5th. Now we would

like to obtain the range of the suffix array covering these G. Since C[G] points to the 1st G, the

range covering from the 2nd until the 5th G is from C[G] + 1 until C[G] + 4. Once we got a new

range, we can start again the process by checking the occurrences of the next nucleotide of the

query.

In general, we define the range update process for an arbitrary query q of length n as

sp[i+ 1] = C[q[n− i]] +Occ(q[n− i], sp[i] − 1)

ep[i+ 1] = C[q[n− i]] +Occ(q[n− i], ep[i]) − 1
(2.8)

for i = 1 . . . n − 1 and sp[0] = C[q[n]], ep[0] = C[q[n] + 1] − 1. The range at the i-th step of the

query is completely determined by [sp[i], ep[i]], where sp and ep denote the start and end points of

the BWT ranges, respectively. Once the update process finishes, we obtain the range [sp[n], ep[n]],

which contains the positions of q in the suffix array. The number of occurrences of q in the text is

ep[n]− sp[n] + 1 and their positions in t will be the values of the Suffix Array stored at positions

2.2. EFFICIENT STRING SEARCH STRUCTURES 37

G

G 1 2 3 4 5

A

A

G

6 6 6 6 6 6 6 6 6

A

A G TC$

0 0 0 0 0 0 0 0 1 2 2 2 3 4

T 0 0 0 0 0 0 1 1 1 1 1 2 2 2

C 0 0 0 0 0 0 0 1 1 1 1 1 1 1

C[G]+Occ(G,5)

C[C]-1C[A]

C[A]+Occ(A,11)

C[G]+Occ(G,1)+1

C[G]+Occ(G,3)

C[G]+Occ(G,1)+1

C[A]+Occ(A,7)+1

Occ

BWT

C

$A T A AACTGGGGGG

Figure 2.8: Backward search using only the C and Occ tables. The suffix intervals are updated
with (2.8) reading the query backwards.

from sp[n] to ep[n]. Note that the update algorithm described in (2.8) takes exactly n update

steps, which only require the Suffix Array, the Occ table and the C array as auxiliary structures.

Hence, we conclude that the backward search algorithm has a complexity of O(n). The memory

footprints for the different structures are: O(m) for the Suffix Array, O(‖Σ‖) for the C array and

O(‖Σ‖m) for the Occ table, resulting in an overall memory footprint O(‖Σ‖m). However, with

the use of simple compression techniques, the final size of the index may be reduced to less than

m bytes.

Bi-directional FM index

There exists a variant of the FM-index that supports both backward and forward search, as well

as switching from backward search to forward search, or vice versa. This index is called bi-

directional FM index [14]. This index is just an extension of the FM index described above,

in which the reverse complement of the text is appended to the original text. That is, if t is the

original text to be indexed and (·)R denotes the reverse complement operation, then the input

to the FM index is “ttR$”. The main advantages of having the reverse complement of the text

stored in the index are:

• the possibility of searching in both DNA strands with just one query.

• performing a backward search operation on the reverse strand is equivalent to a forward

search on the forward strand, and vice versa.

For that, we need to know the position of the start and end pointers for both strands for a given

query, e.g. if we perform a backward search of ACTGCA and compute its sp and ep pointers in a

38 CHAPTER 2. FINDING NEEDLES IN A HAYSTACK

given index using (2.8), the pointers of the reverse complement of the query (reverse strand) spqR

and rpqR are necessary to perform bi-directional search. To keep track of the positions of the

pointers in the forward query and its reverse complement, we define the following property:

Property 2. For any given sequence q, the number of occurrences of q and qR on a bi-directional

FM index structure is the same.

As an example, we will search the query ACTGCA starting from the middle, i.e first do backward

search on ACT and then extend the query forward querying GCA. We start the backward search with

the nucleotide T, but we need to store the pointers both for the forward and reverse complement

of the query. For the first nucleotide this process is straightforward; we find the sp and ep pointers

as: spT = C[T], epT = C[T+1]−1. And the same for the reverse complement: sp
TR = C[TR] = C[A]

and ep
TR = C[A+1] − 1. Since we know from Property 2 that epq − spq = epqR − spqR , we do

not need to store the four pointers. Instead, the search state in the bi-directional FM index is

completely defined by a triplet: the forward pointer fpq = spq, the reverse pointer rpq = spqR

and the interval size szq = epq − spq + 1. Using this notation, we derive a second property:

Property 3. For any given sequence q, fpq = rpqR on a bi-directional FM index structure.

Once the triplet fpT, rpT, szT has been computed, one can extend the search either forward or

backward. To continue with our example, we extend the forward strand of the query backwards,

adding a C. We do so with the backward search update step described in (2.8). This will yield

the updated values fpCT and szCT, but we still need to keep simultaneous track of the pointer in

the reverse complement strand: rpCT. Note that a backward extension on the forward strand is

equivalent to a forward extension on the reverse strand (the equivalent search of CT in the reverse

strand is AG). Thus, to know rpCT we need to perform a forward search of the nucleotide G on the

reverse strand of the query. The process to update rpT to rpCT relies on very basic properties of

the bi-directional FM index and the suffix array. Our current interval I
TR

= [rpT, rpT + szT − 1]

are all the positions of the suffix array with suffixes starting with TR = A (Figure 2.8). Since the

forward-extended suffix AG also contains the suffix A, the new pointer rpCT must lie in the current

interval I
TR
, i.e. I

CTR
= [rpCT, rpCT + szCT − 1] is a subinterval of I

TR
. More generally, we can

divide any interval Iq in 5 subintervals, one for each possible forward extension: IqA, IqC, IqG, IqT

and IqN, as shown in Figure 2.9. In such context, the following identities verify:

Iq = IqA ∪ IqC ∪ IqG ∪ IqT ∪ IqN

|Iq| = |IqA|+ |IqC|+ |IqG|+ |IqT|+ |IqN|
(2.9)

where |Iq| = szq. Provided that szCT = szAG from Property 2, we can obtain the interval sizes for

the forward extension as |IqX| = szqX = sz(qX)R = sz
XRqR , therefore the sizes obtained with the

backward search can be reutilized to compute the subinterval sizes

|IqX| = sz
XRqR (2.10)

2.2. EFFICIENT STRING SEARCH STRUCTURES 39

AAACGATT

AACATTGA

AATTAGTA

ACATGGAG

ACCTACAC

ACGGGCTT

AGAGTGTC

AGCAAAGG

AGGTATTT

ATCTCCGT

ATTGCGGA

CAACAAGA

IA

IAA

IAC

IAG

IAT

fp
AA

fp
A

fp
AC

fp
AG

fp
AT

Figure 2.9: Subintervals of the suffix A. The subintervals are consecutive in the suffix array. The
interval of the suffix A is denoted by IA, the subintervals are IAA, IAC, IAG, IAT and fp is the position
of the first suffix of the interval.

where NR = N. Once the subinterval sizes are known, we use Property 3 to derive the update rules

for rpq:

rpTq = rpq

rpGq = rpq + szTq

rpCq = rpq + szTq + szGq

rpAq = rpq + szTq + szGq + szCq

rpNq = rpq + szTq + szGq + szCq + szAq

(2.11)

Back to our example, we already computed fpCT and szCT with the backward search update

rules, we can now follow Equation 2.11 and obtain the reverse strand query pointer as rpCT =

rpT + szTq + szGq.

To perform a forward search, one only needs to apply the same procedure to the reverse strand.

In effect, assume that we already computed the triplet fpACT, rpACT, szACT for the first half of the

query and we would like to continue extending the query (ACTGCA) forward. To do so, we perform

a forward extension of G in the forward strand. Again, performing a forward extension on the

forward strand is equivalent to a backward extension to the reverse strand, so we only need to apply

the same process but swapping the strands. We update the reverse pointer rpACTG = fpCAGT with a

backward search on GR = C and compute the forward pointer as fpACTG = fpACT + szACTA + szACTC.

40 CHAPTER 2. FINDING NEEDLES IN A HAYSTACK

2.3 The sequence neighborhood

In this section we will introduce the concepts of sequence neighborhood and neighbor sequences.

The neighbor annotation of a text t will be very useful to determine sequence similarities and will

be exploited in some steps of the mapping algorithm to speed-up the process and improve the

quality of the classification.

Let us first define the sequence neighborhood. A k-neighborhood is the complete set of

sequences that are k nucleotides long, i.e. the permutation with replacement of k elements taken

from the set Σ = {A, C, G, T}. A k-neighborhood contains 4k different sequences of length k (k-

mers). For instance, the 1-neighborhood is {A, C, G, T}, the 2-neighborhood {AA, AC, AG, AT, CA,

CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT}, and so on...

We say that two k-mers are τ-neighbors iif their distance under a certain metric is equal to τ .

We consider two different metrics for DNA sequences, namely the Hamming distance where only

substitutions are accounted as differences, and the Levenshtein distance where both substitutions

and indels (insertions and deletions) are accounted as differences2. Both metrics are suitable for

the methods introduced below.

2.3.1 Neighborhood annotation algorithm

In future sections, we will assist the detection of repeats and accurately compute the probability

of correct mapping with a neighborhood annotation. The annotation consists in computing the

τ -neighbors of all the k-mers of a reference text and store, for each of them, (i) the distance to

the closest neighbor and (ii) the number of neighbors at such distance. This information very is

valuable because sequences that have, for instance, a high count of 1-neighbors are more prone to

be incorrectly mapped compared to the ones whose closest neighbor is at greater distance.

The design of an efficient algorithm to annotate the neighborhood of every k-mer of a long

text is not straightforward. A naive approach would be to compare all the k-mers of the text with

each other. Such algorithm has a complexity of O(m2k) for a genome of size m. In the human

genome, where m ∼ 109, this approach would take ages to complete.

In this section we propose a divide-and-conquer algorithm to efficiently compute a neighbor-

hood annotation. This algorithm exploits the advantages of the bi-directional FM index and can

compute a full annotation of the human genome with k = 48, τ = 4 in less than 100 CPU hours.

The algorithm proceeds as follows:

1. Select the next k-mer from the suffix array (in lexicographical order).

2. Query the sequence using backward search. If the sequence has more than one matching

position, set τ = 0.

3. Otherwise, perform a divide and conquer search up to τ mismatches, using bi-directional

search and starting the search by the interval without mismatches.

2Introduced in Section 1.2

2.3. THE SEQUENCE NEIGHBORHOOD 41

4. Annotate the distance to the closest neighbor τ̂ and the number of matches at distance τ̂ in

the position of the genome (available at the suffix array) where the k-mer was taken from.

Block search algorithm

For these cases in which the query sequence is not exactly repeated in the genome, we have

designed a divide and conquer algorithm to perform inexact k-mer search, up to τ mismatches.

This algorithm is called block search because it divides the k-mer in τ + 1 blocks and performs a

recursive inexact matching using the bi-directional FM index.

The algorithm starts by dividing the sequence in τ + 1 blocks, at this level blockcount is

τ +1. Then, the blocks are grouped in two sides, left and right, and we recursively apply the same

division to both sides. Once blockcount is 1, an exact search is performed and the result of the

search is returned to the calling function. When the block search call on the left side has returned,

we extend the search until the end of the right side, allowing up to blockcount-1 mismatches.

The same procedure is applied once the recursive call to the right side has returned, extending

until the end of the left side. On the top level, the recursive call will return all the matches from

the left side with up to τ/2 differences, and each one of these matches will be extended forward

until the end of the query, allowing a total of τ mismatches. The other recursive call will return

all the matches of the right side with up to τ/2 mismatches and they will also be extended using

backward search until the beginning of the query, allowing up to τ mismatches. The aggregate

of the forward and backward extension is the set of sequences in the index that match the query

with up to τ mismatches. The block division and extend process is illustrated in Figure 2.10 and

the algorithm is described in Algorithm 1.

The algorithm presented achieves a notable speedup over the naive algorithm described above.

The improved efficiency of the FM index reduces the complexity from O(m2k) to O(m
(

k
τ

)

3τ),

where the binomial-exponential term represents the exhaustive tree-like traversal of the index to

find inexact matches. The block search algorithm (described in Algorithm 1) is efficient because

it reduces the search space of the index where the expensive inexact search is performed. In

other words, since the block search always starts by an exact search of k/(τ + 1) nucleotides,

the subsequent dead-end mismatched extensions are more likely to fail immediately unless the

queried sequence is a true neighbor. In a best case scenario (random genomes), the search space

and hence the complexity would be consistently reduced by at least a factor 4k/τ+1 after the first

exact search.

2.3.2 k-mer uniqueness

A k-mer s is τ -unique in a reference text t if neither d-neighbor (for d = 0 . . . τ) of s is a suffix of

t. It is straightforward to check the uniqueness of s using the previously described neighborhood

annotation. We can obtain the genomic locus of s with a backward search on t and then check

the distance of the closest neighbor in the annotation. If the annotated distance is greater than τ

then s is τ -unique in t.

42 CHAPTER 2. FINDING NEEDLES IN A HAYSTACK

Algorithm 1 Block Search algorithm

1: function block search(query,blocks):
2: if len(blocks) == 1 then ⊲ Last block.
3: matches = fw search on query[blocks] with τ = 0
4: return matches

5: end if
6: ⊲ Split blocks
7: middle = (blocks[0] + blocks[len(blocks)-1])/2
8: left blocks = blocks[0]:middle
9: right blocks = (middle+1):blocks[len(blocks)-1]

10: ⊲ Recursively process left blocks
11: left matches = block search(query, left blocks)
12: ⊲ Extend left blocks to the right (fw search)
13: for all left matches do
14: matches += fw extend left match on query[right blocks] with τ = blocks-1

15: end for
16: ⊲ Recursively process right blocks
17: right matches = block search(query, right blocks)
18: ⊲ Extend right blocks to the left (bw search)
19: for all right matches do
20: matches += bw extend right match on query[left blocks] with τ = blocks-1

21: end for
22: return matches

23: end function

2.3. THE SEQUENCE NEIGHBORHOOD 43

TGCCTAGTCGAGCCTAGCATTATCGGCGCTAGCTAGCTAAAGCTAGCGCG

fw(tau = 0)

bw(tau <= 4)

TGCCTAGTCGAGCCTAGCATTATCGGCGCTAGCTAGCTAAAGCTAGCGCG

5

3 2

2 1 1 1

1 1

fw(tau = 0)

bw(tau <= 2) fw(tau <= 1)

a)

b)

Figure 2.10: Representation of the recurive block search algorithm. The first step (top-bottom)
divides the intervals in two blocks. When the bottom is reached, the algorithm starts a bottom-up
search and extension.

Chapter 3

Mapping algorithm

The field of sequence alignment and mapping started right after the appearance of the first com-

puters. During the 80s there were no assembled genomes but biologists were making efforts to

reveal the DNA and amino-acid sequences of the genes and their proteins. However, at that stage,

there was no apparent need to find the origin of the sequence. Instead, the main interest was to

investigate whether there were potential sequence similarities and/or divergences between species.

To do so, big databases containing the set of known protein and DNA sequences were released

so that scientists could start comparing their findings. The growth of the available annotations

triggered the need for fast and accurate computer algorithms to find local sequence similarities

of relatively short queries in a much bigger reference. The first approaches, like FASTA [15],

were based on optimized word-to-word heuristic search methods which selected potential matches

before performing exhaustive alignments. On the 90s, BLAST [16] succeeded the previous algo-

rithms with a novel combination of statistics and seeding strategies, where the high scoring words

of the query were extracted and used to filter the most significant seeds in the database. Also,

BLAST introduced a statistical model to assess the significance of the alignments.

The field of sequence mapping evolved rapidly with the appearance of new-generation se-

quencing technologies (NGS). The modern sequencing technologies are nowadays able to produce

data of the order of thousands of millions of base-pairs per day. This changed the use and the

needs dramatically. Notably, some established experiments like Chromatin Immuno-Precipitation

(ChIP) [17] or Chromosome Conformation Capture (3C) [18] were adapted to take advantage

of high-throughput sequencing (ChIP-seq[19], Hi-C[20]) and the immediate need was to identify

where, in a reference genome, the sequenced reads were coming from. Even though the new map-

ping algorithms use different kinds of indices, namely hash-tables or suffix arrays/FM indices, the

vast majority are still based on the seed-and-extend approach. This heuristic, nonetheless, is not

new, but it has been continuously improved with more sophisticated seeding strategies and faster

alignment algorithms.

Our algorithm is also a standard seed-and-extend approach with several improvements in the

seeding strategy and the statistical evaluation of the mapping reliability. Overall, our algorithm

achieves higher sensitivity and better estimation of mapping reliability with Illumina reads, at the

44

3.1. SEEDING 45

same speed compared to the state-of-the-art mappers.

3.1 Seeding

As discussed before in Section 2.1, the main difficulty of mapping is to deal efficiently with the

divergence between the query sequence and its best match in the reference. These differences may

be caused by the natural divergence of the species, sequencing errors or polymorphism, among

others. Seeding is the most widely-used heuristic to solve this problem and has become a critical

part of any aligning/mapping algorithm. The technique consists in identifying tentative query-

reference matches by finding small regions of the query that partially match the reference with high

significance. Seeding is very fast in combination with modern indices (Sec 2.2) and significantly

speeds up the overall mapping process. This speed up is due to the fact that exhaustive alignments

are reserved only for the positions of the reference that show significant similarity with the query.

Moreover, seeding is a flexible heuristic and offers a well characterized trade-off between speed

and sensitivity. There are several widely used strategies in the literature, namely fixed-length

seeding, usually for indices based on hash tables, maximal exact match (MEM) seeding, threshold

seeding, etc. In our algorithm we use a combination of three seeding strategies that are suitable

for the bi-directional FM index: MEM seeding, threshold seeding and inexact seeding.

3.1.1 MEM seeding

A maximal exact match (MEM) is any longest uninterrupted exact match between the query and

the reference. In other words, a MEM is an exact match between two sequences that cannot be

extended in either direction. MEMs are a form of seed especially suited to the FM index, given

that forward and backward search allow arbitrarily long extensions in either direction. A query

sequence may have only one (if the query exactly matches the reference) or many MEMs. The

fact that a query has more than one MEM indicates that it necessarily differs from the reference,

but the contrary does not guarantee the real correspondence between the original sequence (prior

to sequencing) and its exact match, provided that a mutation in the original sequence may still

exactly match a different sequence of the reference.

MEMs become computationally advantageous seeds when there is a high correspondence be-

tween the reads and the reference. In such conditions, the search space is considerably reduced

because MEMs tend to generate long seeds that exploit the high identity of the compared se-

quences. On the other side, however, long MEMs perform poorly on the job of detecting repeats.

Detecting highly repeated subsequences in the query is utterly important since these reveal a

potentially larger set of match candidates in the reference. To handle this issue, usually MEM

seeding is accompanied with reseeding of long MEMs to avoid seeding only over one variant of

a highly repeated sequence. Reseeding a MEM with L hits consists in finding the longest seed

inside the MEM that matches at least L+ 1 positions in the reference.

46 CHAPTER 3. MAPPING ALGORITHM

3.1.2 Threshold seeding

Threshold seeding consists in performing arbitrarily long seed extensions until the number of hits

in the reference drops below a certain threshold. Every time a seed is extended, the number of

hits is either mantained or decreased, therefore one should start a forward extension from the

beginning of the seed and continue extending until the last seed whose number of hits is greater

than the defined threshold.

This seeding method is very simple but powerful. Its main strength is that it generates seeds

of relatively high sensitivity (the higher the threshold the more sentitive) while permitting a very

precise control of the number of alignments and hence the mapping time.

3.1.3 Inexact seeding

Taking advantage of the bi-directional FM index and the block search algorithm, it is feasible

to compute mismatched seeds with small τ (usually 1 or 2 mismatches). Inexact seeding can be

applied in many ways: inexact MEMs, to find potential repeats or close neighbors, inexact seeds

of fixed length to increase sensitivity, or even inexact seeding on short subsequences of the query

that do not exist in the reference, as a way to perform error correction. The method is simple,

the subsequence is passed to the block search algorithm (described in Sec 2.3), which returns the

set of neighbors at distance τ . The neighbors are then treated as normal seeds and the algorithm

proceeds with the alignments. This is the most sensitive but the slowest seeding method and

should be reserved for those reads that fail to find significant matches with the other seeding

methods.

3.2 Filtering significant seeds

A step prior to alignment is to classify the seeds based on their significance. Given that the

number of seeds obtained at the seeding stage may be large, it is critical to filter out those that

are not significant enough to be worth spending a complete alignment. The aim of this step is,

therefore, to enhance the throughput of the algorithm while maintaining the sensitivity. The filter

is applied on several seed metrics: the seed length, the number of hits and the significance.

3.2.1 Filter on seed length

The first step is to discard the seeds shorter than l nucleotides. The parameter l depends on the

size of the reference text, and the choice is usually greater than 17 nucleotides for the Human

genome. Assuming a perfectly random genome of size m, the expected number of appearances of

an arbitrary sequence of length l is:

Ematch(l,m) =
m− l + 1

4l
≈

m

4l
(3.1)

3.2. FILTERING SIGNIFICANT SEEDS 47

where the approximation holds for m ≫ l. Applied to the Human genome (m ∼ 3 ·109), we expect

to find 3 · 109/417 = 0.17 matches per random search of length l = 17, Ematch(15, 3 · 10
9) = 2.79

for l = 15 and Ematch(19, 3 · 109) = 0.01 for l = 19. This important result indicates that seeds

shorter than 17 nucleotides are not significant due to their high likelihood to randomly match the

human genome, given that almost all the possible 16-mers exist in the reference. The threshold

value l̄ is 19 for our default Illumina setting.

3.2.2 Filter on number of hits

Once the short seeds have been discarded, we expect the remaining seeds to match a single

position in a random reference. Real genomes, however, are not random. They are mostly filled

with repetitive and conserved sequences, which notably increase the chances of finding the same

sequence in several distinct positions even if the sequence is apparently significant. At this step,

a filter is applied on the maximum permitted alignments per seed. Our consideration is that

seeds matching more than N̄h different positions are likely to originate from long repeats. Hence,

performing a full alignment in all the matching positions would be redundant. Thus, if a sequence

matches more than N̄h positions, N̄h randomly selected matches will be aligned and the rest are

discarded. The default value is N̄h = 20 in our Illumina settings.

3.2.3 Filter on seed significance

The evaluation of the seed significance based on the sequence neighborhood is a novel contribution

of this work. This method is very powerful in the sense that it permits a quantitative evaluation

of the seed significance. Significant seeds are those that associate a read to a single (or a few)

position in the reference with high confidence. This method utilizes the knowledge of the seed

neighborhood to measure its significance. For instance, a seed that has only one hit but many

1-neighbors will be less significant that a seed whose closest neighbor is at distance 3. The

measurement of the significance is based on the probability that the seed contains errors and is

the result of a fortuitous divergence of the original sequence towards another existing sequence.

Consider that our seed of length l has Nc closest neighbors at distance τc. Then, the conditional

probability P (neighbor|τ differences) that the original sequence is not the seed, but one of its

closest neighbors, given that the original sequence suffered a divergence of τ differences (including

insertions, deletions and substitutions) is

P (neighbor|τ differences) =
Nc
(l
τ

)

8τ
(3.2)

where the 8 (3 for Hamming distance) accounts for all the possible divergences: 3 substitutions, 4

insertions and one deletion. Applying the law of total probability, we derive the probability that

48 CHAPTER 3. MAPPING ALGORITHM

the true sequence is not the seed but originates from one of its neighbors:

P (neighbor) =
∑

τ

P (neighbor|τ differences) · P (τ differences) (3.3)

We observe from the neighborhood annotation that the closest neighbor is at distance τc, therefore

P (neighbor|τ differences) = 0 for τ < τc. Assuming also that

P (neighbor|τc+1differences) · P (τc+1 differences) ≪ P (neighbor|τc differences) · P (τc differences)

we approximate

P (neighbor) =
∑

τ≥τc
P (neighbor|τ differences) · P (τ differences)

P (neighbor) ≈ P (neighbor|τc differences) · P (τc differences)
(3.4)

this lets us obtain an upper bound for P (neighbor), considering that P (τc differences) ≪ 1,

P (neighbor) < P (neighbor|τc differences) (3.5)

or, equivalently

P (neighbor) <
Nc
(l
τ

)

8τ
(3.6)

Table 3.1 summarizes this probability for various combinations of Nc and τc at the minimum

seed distance for the Illumina setting (l = 19).

Table 3.1: Upper bound probability of incorrect seed (l = 19).

τc = 1 τc = 2 τc = 3

Nc = 1 6.6 · 10−3 10−4 2 · 10−6

Nc = 10 0.07 10−3 2 · 10−5

Nc = 100 0.66 0.01 2 · 10−4

After the first round of seeding, if a seed shows a P (neighbor) smaller than a predefined

threshold (∼ 10−4) it is considered significant enough, thence only this seed is aligned and the

rest are discarded.

3.3 Aligning

Once a seed has passed the significance filter, it is used as an anchor to start a more exhaustive

comparison between the query and the reference. Such comparison is called sequence alignment.

Standard methods for sequence alignment were described in Section 1.2.

3.3. ALIGNING 49

3.3.1 Sequence alignment

The alignment process starts at the seed, i.e. coordinates where the read and the reference

partially match. Then two Needleman-Wunsch (NW) alignments are performed, extending the

seed forward (towards the end of the read) and backwards (towards the beginning of the read).

The overall score of the alignment is computed as the sum of both extensions. In the current

version of the software we used a naive non-optimized implementation of the NW algorithm,

however, SIMD [21, 22] and GPU [23] optimized versions of this algorithm have been published,

reporting speedups of several orders of magnitude.

1. seed

read

reference

2. extend

read

reference

read

reference

Figure 3.1: Seed and extend algorithm. Seeding consists in finding short exact matches between
the read and the reference. The extension step performs a full alignment between the read and
the reference at the position of the seeds.

3.3.2 Split reads and breakpoint algorithm

Another interesting feature of our mapping algorithm is its ability to map split reads. Split reads

are sequences constituted by more than one DNA fragment. Such reads are deliberately generated

in experiments like Hi-C [20], in which the different fragments that constitute the sequenced DNA

molecule may originate from very distant positions of the genome.

In this context, the problem generalizes to map an unknown number of subsequences of un-

known lengths. One possible way to detect the breakpoint between two different fragments is to

infer the location of an abrupt decrease of sequence identity during alignment. In effect, during

the Needleman-Wunsch extension, one expects high identity between the read and the reference

as long as the alignment extends over the seeded fragment. However, when the alignment reaches

the breakpoint between fragments, the rest of the extension behaves approximately like an align-

ment between random sequences. We exploit this fact and design an optimal breakpoint detection

algorithm based on the Maximum Likelihood (ML) breakpoint detection model presented in [24].

50 CHAPTER 3. MAPPING ALGORITHM

split read

reference

alignments

fragment 1

fragment 2

Figure 3.2: Seed and extension over a split read. The split read is composed of two distant
fragments of the reference (blue and red). At the extension step, the alignment proceeds passed
the fragment border, where the sequences do not coincide anymore (represented in gray on the
reference).

In the breakpoint detection algorithm we model our read as a sequence S = (S1, . . . , Sn),

where the Si are independent random variables following a binomial probability distribution

pr(Si = 1) =

θ0 (i = 1, . . . , b)

θ1 (i = b+ 1, . . . , n)
(3.7)

and pr(Ri = 0) = 1− pr(Ri = 1); and θ0 and θ1 are the known alignment mismatch probabilities

but the change-point b is unknown. The random variable outputs 0 and 1 represent matches and

mismatches between the read and the reference, respectively. For our model of alignment over a

split-read, we estimate θ0 to be the expected error probability of two truly-matching sequences,

which depends on the sequencing technology error rate, the mutation rate and the divergence of

the reference text and the real genome. We expect the value of θ0 for Illumina reads mapped on

a well annotated genome to be θ0 < 0.05. On the other side, θ1 represents the error read past

the split-read boundary, which we approximate to a comparison of two random sequences, being

θ1 > 0.35 for an alignment with insertions, deletions and substitutions.

Under the model (3.7), the likelihood function of (S1, . . . , Sn) is

b
∏

i=1

θSi

0 (1− θ0)
1−Si

n
∏

i=b+1

θSi

1 (1− θ1)
1−Si (3.8)

so that the log likelihood conditional on b = t, with known θ0 and θ1, can be written as

L(t) =

t
∑

i=1

{

Si log

(

θ0
θ1

)

+ (1− Si) log

(

1− θ0
1− θ1

)}

+

n
∑

i=1

{Si log θ1 + (1− Si) log(1− θ1)} (3.9)

Hence the maximum likelihood estimate of the breakpoint b̂ is the value of t which maximizes the

3.4. MAPPING QUALITY 51

sequence

Xt =
t
∑

i=1

{

Si log

(

θ0
θ1

)

+ (1− Si) log

(

1− θ0
1− θ1

)}

(t = 1, . . . , n) (3.10)

The maximization step described in (3.10) is applied periodically during the alignment process

to track the position and the likelihood of a potential breakpoint. The algorithm stops when Xb̂

exceeds a defined threshold, or at the end of the alignment otherwise. A detailed relationship

between the the breakpoint confidence and the likelihood Xb̂ can be found in [24].

3.4 Mapping quality

At this point of the algorithm we obtained many candidate mapping positions and computed the

alignment score for them. But there is still one crucial step: to provide a mapping confidence score,

i.e. the probability that the association between the read and the reported locus is correct. The

mapping quality model is what ultimately makes the difference between a good and an average

mapper, because the final users will process their reads and trust the assignments based on a

threshold confidence score. Hence, the mappers should be characterized by: (i) how many of the

input reads is the mapper able to find in the reference? (sensitivity) and (ii) how many of the

high confidence mappings are actually wrong assignments? (false positive rate). In this section we

present two simple models to evaluate the mapping confidence, which used in combination yield

better confidence estimates compared to other widely-used mappers [25, 26].

The mapping quality reported by our mapper is computed as:

MAPQ = −10 log (pr(wrong assignment)) (3.11)

3.4.1 Alignment score model

This widely-used mapping quality model is based on the alignment scores of the extended seeds.

The idea is simple: sort the alignment scores of the seed extensions. The locus with highest

alignment score is considered the true mapping position of the read. In case there are many n1 > 1

best matches, each match is considered equally likely to be the true origin of the sequence. Hence,

the probability of incorrect assignment is pr(wrong assignment) = 1− 1/n1. As the gap between

the best and the second best alignment scores grows, the probability that the best alignment is

indeed the correct mapping position becomes evident. In effect, this is analogous to the neighbors

model, a big gap in the alignment score indicates that the reference sequence is somehow unique

and therefore it is unlikely that its similitude with the read is due to an artifact.

When the alignments report only one n1 = 1 best alignment, the model computes the mapping

quality with an heuristic which takes into account the difference between the best and the second

best alignment scores ∆12, the number of second best score matches n2 and the identity (1 minus

52 CHAPTER 3. MAPPING ALGORITHM

the mismatch rate) of the best alignment η:

QA = f (η) · (c∆12 − 10 log10(n2)) (3.12)

where f is a function and c a constant. This model is powerful but may show substantial perfor-

mance differences depending on the sequencing technology and the reference genome, because the

parameters of the heuristic f , c are usually calibrated by fitting a curve on simulated data. This

model alone, however, already gives extraordinary results for well-calibrated inputs [25].

3.4.2 The neighbors model

The neighbors model follows the same principle of the alignment score model: quantify the relia-

bility of the read-locus assignment through the exploration of the close neighborhood. This model,

however, is both faster and more precise thanks to the availability of exhaustive neighborhood

information. It also allows a notable reduction of the necessary alignments at the extension step,

since one can assess the state of the neighborhood with a single seed extension, whereas the same

is not possible using the alignment score model, in which at least two alignments are required.

Consider the following sequences TR, TB ,and TN , which represent the read, the sequence in

the reference that best matches the read and its closest neighbor, respectively. TB is known and

has been obtained through a seed-and-extend process applied to TR. The closest neighbor of

TB is generally unknown but we can infer some information about TN using the neighborhood

annotation. Since TB and TN exist in the reference, we will denote their positions with lB and

lN . We also denote the Levenshtein distance between two sequences T1 and T2 as d(T1, T2).

d(TR
,TN

)

TN

TBTR
d(
T B
,
T N
)

d(TR,TB)

Figure 3.3: Local neighborhood of the read TR, its best match TB and the closest neighbor of the
best match TN . The Lenvenshtein distance between sequences is denoted by d(·, ·).

The diagram of Figure 3.3 illustrates the local neighborhood composed by TR, TB and TN .

Note, however, that this neighborhood does not represent the annotation since, in general, TR

does not belong to the reference. The distance d(TR, TB) is known because TR and TB had been

aligned previously during the seed-and-extend algorithm. The distance d(TB , TN) can be obtained

from the neighborhood annotation, but the remaining distance d(TR, TN) is generally unknown.

3.4. MAPPING QUALITY 53

The fact that d(TR, TS) is unknown greatly complicates the construction of a model to evaluate

the mapping quality.

The goal of the model is to estimate the probability that TR did not originate from TB , which

we approximate by the probability that TR originated from any of its closest neighbors TN . To

derive an estimation of such probability, we make several reasonable assumptions on d(TR, TN):

Assumption 1. The distance d(TR, TB) is small enough to assume that the whole d(TR, TB)-

neighborhood of TR has been explored during the seeding stage. In other words, we assume that

the seeding strategy is fully sensitive up to d(TR, TB) mismatches.

Assumption 2. As a result of assumption 1, we conclude that TB is the closest neighbor of TR

and the inequality d(TR, TN) > d(TR, TB) must hold. Otherwise, if d(TR, TN) ≤ d(TR, TB) we

would have performed a seed extension of TR on TN and d(TR, TN) would be known.

We start to build our model leveraging on assumptions 1 and 2, with the hypothesis that the

true origin of TR is lN instead of lB. From our definition of mapping quality, it is reasonable to

approximate the probability of incorrect mapping by the probability that TR originated from lN

even when TB lies closer in the neighborhood space.

 T A T
N

 T A T
R

T
B

original sequence: (T
R
=T

N
)

 T A G T
N

 T A A T
R

T
B

common mismatch:
d(T

R
,T

B
)+=1

d(T
R
,T

N
)+=1

 T A T
N

 T T T
R

T
B

divergence of T
N
: d(T

R
,T

N
)+=1

 T A T
N

 C A T
R

T
B

correction:
d(T

R
,T

B
)-=1

d(T
R
,T

N
)+=1

Figure 3.4: On our hypothesis for the mapping score, TR originated from TN . This figure sum-
marizes the three possible scenarios when a nucleotide of TR is modified.

From our hypothesis we conclude that the physical sequence taken from the reference is TN

but it has been exposed to modifications during the experiments and/or the sequencing steps,

causing the final read to lie closer to TB . In Figure 3.4 we summarize the possible modifications

that the molecule can suffer and how do they affect the position of TR relative to TN and TB . The

top-left panel illustrates the original sequence, where TR is copied from TN , and their differences

54 CHAPTER 3. MAPPING ALGORITHM

with TB . The only way to push TR towards TB is through nucleotide modifications, with three

possible scenarios:

• The first is a common mismatch, when the modified nucleotide is not a mismatch between

TB and TN , the distances from both references to TR increase by one.

• The second case is when a mismatched nucleotide between TN and TB is modified but it

is not set equal to the one in TB. So, TR diverges from TN but not from TB , because the

mismatch already existed between TR and TB at that position.

• The third case is the same as case 2 but the modified nucleotide is set to match the one in

TB, causing a correction with respect to TB. In this case the distance to TN increases by

one and d(TR, TB) is decreased by one.

Now the question is how these modification events combined to finally situate TR closer to TB .

Following Figure 3.3, we can express the distances of the local neighborhood as

d(TR, TN) = M + C +D

d(TR, TB) = d(TB , TN) +M − C
(3.13)

where the distances and all the other terms are non-negative: M are the common mismatches, D

the divergent mismatches and C the corrections. Besides, the sum of corrections and divergences

must be equal or smaller than the distance between TB and TN :

D + C ≤ d(TB , TN) (3.14)

Plugging (3.13) into assumption 2, it is clear that at least one correction or two divergences must

happen to verify d(TR, TB) < d(TR, TN):

d(TB , TN) +M − C < M + C +D (3.15)

which simplified, yields

d(TB , TN) < 2C +D (3.16)

where, in effect, for the smallest distance d(TB , TN) = 1 we need C ≥ 1 or D ≥ 2.

Our interest is to find the probability of the most likely divergence of TR towards TB. Since

divergences are more likely to happen compared to corrections, we will start by determining the

minimum number of corrections necessary to verify the hypothesis. The value of C has two

restrictions, the first is that M on (3.13) must be non-negative. The limiting case is M = 0,

which plugged into (3.13) yields the inequality d(TR, TB)− d(TB , TN) + C ≥ 0, hence

C ≥ max(1,d(TB , TN)− d(TR, TB)) (3.17)

The second constrain is derived by applying the triangle inequality to Figure 3.3, i.e. d(TR, TN) ≤

3.4. MAPPING QUALITY 55

d(TR, TB) + d(TB , TN),

2C +D ≤ 2d(TB , TN). (3.18)

The two constrains together give a lower bound (3.17) and upper bound (3.18) for C, that we will

denote CL and CU respectively. Once the range [CL, CU] has been found, we can determine Di

and Mi for i = [L,U] from and (3.13):

D = max(0,d(TB , TN)− 2C + 1)

M = d(TR, TB)− d(TB, TN) + C
(3.19)

Finally, we model the probability that TR originated from lN given Ci corrections and Di

divergences on a sequence of length L as:

pri(origin is TN) =

(d(TB ,TN)
Ci

)(d(TB ,TN)−Ci

Di

)

· 3Di

(L
Mi+Di+Ci

)

· 3Mi+Di+Ci

=

(d(TB ,TN)
Ci

)(d(TB ,TN)−Ci

Di

)

(L
Mi+Di+Ci

)

· 3Mi+Ci

(3.20)

and the mapping quality is obtained from the maximum of these probabilities

MAPQ = −10 log(max
i

(pri(origin is TN))). (3.21)

Final remarks on the mapping quality

The mapping qualities are computed independently for the neighbors and the alignment score

models. The final mapping quality is the minimum of these two. Also, the neighbors model does

not have neighbor annotation for any length L, since the neighborhood annotations are computed

for discrete values of k. Therefore, L is selected to be the largest k < n, where n is the length of

the query. The neighbor model for the mapping quality may be then computed for all the k-mers

of the read. In such case, one should keep the maximum among all the qualities obtained.

Chapter 4

Results

To test the results of this work, we implemented all the algorithms described above in C lan-

guage. The source code of the mapper is available at http://github.com/ezorita/mapper. The

mapping performance of our algorithm is tested and discussed in this chapter. We compare all

the results of our mapper with two of the most widely used mappers: bwa-mem [25] and bowtie2

[26]. The performance of the three mappers has been tested on simulated Human and Drosophila

Illumina data generated with wgsim (http://github.com/lh3/wgsim).

Datasets of 1 million single-end 50bp reads were generated for different sequencing error rates.

Namely, we considered three usual sequencing scenarios: good (1% error rate), standard (2%)

and average (5%). Wgsim was run in command line with parameters -e R -N 1000000 -1 50

-2 0, where R was set to 0.01, 0.02 or 0.05 depending on the scenario. The simulated reads are

presented in fastq format without meaningful quality information (all bases are assigned the same

quality score). The sequence headers contain the real locus and the strand of the read. After

running the three mapping algorithms on the datasets the read headers are parsed and compared

to the mapped locus and strand. Reads are considered well mapped if the estimate in the same

strand and within 100 basepairs of the actual locus.

The algorithms were benchmarked on a dual-processor Intel Xeon E5-2687W v2 system with

256GB of DDR3-RAM at 1866 Mhz. All softwares were set to run single-core. Our mapper

and bwa-mem were ran using default parameters, bowtie2 was setup to use the very-sensitive

configuration.

Our benchmark includes three measurements:

• Sensitivity expressed as the fraction of correctly mapped reads with respect to the total

input read count.

• Positive error rate is the rate of false positives per true positive.

• Throughput expressed as the rate of true positives per second.

We believe that these three magnitudes provide a good characterization of the performance of

a mapper. Almost all benchmarks evaluate the sensitivity, but it is equally important to provide

56

57

an accurate estimate of the expected number of incorrect mappings for each quality score. This

will ultimately help the users decide which quality score threshold is better suited for their needs.

We combine these magnitudes in two-dimensional plots to show the comparison of sensitivity

versus positive error rate, and throughput versus positive error rate. The first provides valuable

information to tune the acceptable quality threshold, clearly showing how many correct mappings

one must disregard in order to reduce the false positive rate. The latter is a representation of how

efficiently the computational power is spent.

Classification performance

The classification and mapping performence achieved by the different algorithms is represented in

Figure 4.1. This result compares the sensitity versus the false positive rate achieved in the Human

datasets with 1% (left), 2% (right) and 5% (bottom) error rate. Each point represents the values

for a different mapping quality threshold, i.e. a threshold on mapping quality is applied on the

mapping output and all the reads below the threshold are discarded. The sensitivity and false

positive rates are therefore measured with the reads whose quality is above the threshold. This

process is repeated for all the possible quality values, starting from 0 (the rightmost points). The

general trend of the mappers is the one expected: the false positive rate decreases as the quality

increases, but so does the sensitivity.

Our algorithm outperforms the bwa-mem and bowtie2 in the three configurations, achieving

a good response even in the worst configuration. Remarkably, our algorithm consistently reports

100.000 more well-mapped sequences with false positive rates below 10−4 at the standard Illumina

setting (2%). Moreover, our mapper shows a smooth response on average sequencing (5% error),

recovering > 65% of the reads in all the possible configurations, whereas the other mappers drop

well below 50% as soon as they reach a false positive rate of 10−4.

Computational efficiency

In this section we assess the computational efficiency of the algorithms. To do so, we measure

the rate of true positives produced at the output for a target error read. We prefer a direct

measurement of how well the computational resources are spent rather than the absolute running

time, since an algorithm may run very fast but produce poor results. The measurements of

computational efficiency are shown in Figure 4.1 for Human Genome reads in the two extreme

cases of 1% error rate (left) and 5% error rate (right). We expect the algorithms to perform faster

when the data contains few errors, because the seeding is more effective and it is more likely

that a few alignments will suffice to produce an estimate. This is what we observe if we compare

the average true positive rates. All the algorithms perform faster when the error rate is small.

On the other side, our algorithm takes advantage of the seed significance filter to speed up the

mapping process when the seed is considered highly significant, which happens more often if the

read quality is good. On the other side, for 5% error, both bwa-mem and bowtie2 outperform our

mapper for false positive rates above 10−4. Hence, the good performance of our mapper observed

58 CHAPTER 4. RESULTS

in Figure 4.2 is at the expense of a decreased computational efficiency. This lower computational

efficiency at higher error rates is attributed to the time spent processing difficult reads. The

difficult reads, which contain many errors, take orders of magnitude longer to map because they

can only be assigned the right locus using high-sensitivity seeding strategies.

Other genomes

We have also benchmarked the mappers on a different reference: Drosophila Melanogaster. Figure

4.3 summarizes the same results shown in Figure ?? for error rates of 2% and 5%. The results

show the same trend as in the Human genome, but all the algorithms show diminished sensitivity

at the highest mapping qualities. This is due to the nature of the genome and generally indicates

that the repeats have more copies compared to the average number in the Human genome.

59

●

●●●●●●●●●●●
●●●●

●●●

●●●

●●●
●●●●●●

●●●●
●●

●●●

1e−05 1e−04 1e−03 1e−02 1e−01

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

False Positive/True Positive

Tr
ue

 p
os

iti
ve

/to
ta

l

●

●●
●●

●●
●

●●

●●
●●

●●●●●●
●●

●●

●●●

●●
●●●

●●

●●

●
●

●

●
●

●●

●
●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●●●●●●

●●●●
●●●●

●●●●●●●

●

●●

●

●●●●

●
●

●●●

●

●

●●

●

●●

●

●●●●●●●●●●●
●●●●

●●●

●●●
●●●

●●●●●●
●

●●●
●●

●●●

1e−05 1e−04 1e−03 1e−02 1e−01

0.
5

0.
6

0.
7

0.
8

0.
9

False Positive/True Positive

Tr
ue

 p
os

iti
ve

/to
ta

l

●

●●
●●

●●
●

●●

●●●●●●●●●●
●●

●●

●●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●
●●●●

●
●●●

●
●

●
●●●●

●
●●

●

●
●●●
●
●
●
●●

●●

●
●

●

●●

●

●●●●●●●●●●●●●●●
●●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1e−05 1e−04 1e−03 1e−02 1e−01

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

False Positive/True Positive

Tr
ue

 p
os

iti
ve

/to
ta

l

●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●
●●●●

●●●●
●

●●●●●●●

●●
●

●●●●●●●●●●●●●●

●●

Figure 4.1: Sensitivity vs error rate for all the possible mapping quality thresholds. Illumina
simulated reads on Human Genome v19, with 1% (left), 2% (right) and 5% (bottom) error rate.
Comparison between bowtie2 (blue), bwa-mem (red) and our mapper (black).

60 CHAPTER 4. RESULTS

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●
●●●

1e−06 1e−04 1e−02

20
00

30
00

40
00

50
00

60
00

Error rate

Tr
ue

 p
os

iti
ve

 r
at

e
[s

eq
s/

s]

●●
●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●

●●●●●
●
●
●●

●

●●

●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●

●●●
●●

●●
●●●

●●
●
●
●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1e−05 1e−04 1e−03 1e−02 1e−01

10
00

15
00

20
00

25
00

30
00

40
00

Error rate

Tr
ue

 p
os

iti
ve

 r
at

e
[s

eq
s/

s]

●●
●●●●●

●●●●●●●●●●
●●●●●●●

●●
●

●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 4.2: Throughput (correctly mapped sequences per core per second) vs error rate for all the
possible mapping quality thresholds. Illumina simulated reads on Human Genome v19, 1% (left)
and 5% (right) error rate. Comparison between bowtie2 (blue), bwa-mem (red) and our mapper
(black).

●

●
●●●

●●●●●●●●●●●
●●●

●●●
●●●●●●

●●●●

●●●
●
●

●●●

5e−05 5e−04 5e−03 5e−02

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

False Positive/True Positive

Tr
ue

 p
os

iti
ve

/to
ta

l

●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●

●
●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●●●●●●
●●●●●

●●●●●●

●●●
●●●●
●
●●●●
●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●●●●

●●●●●

●●●

2e−04 5e−04 2e−03 5e−03 2e−02 5e−02 2e−01

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

False Positive/True Positive

Tr
ue

 p
os

iti
ve

/to
ta

l

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●
●●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●

Figure 4.3: Sensitivity vs error rate for all the possible mapping quality thresholds. Illumina
simulated reads on Drosophila Melanogaster genome v3, 2% (left) and 15% (right) error rate.
Comparison between bowtie2 (blue), bwa-mem (red) and our mapper (black).

Chapter 5

Conclusions and future work

Overall, we have shown that even though the current mapping algorithms have good performance,

there is still room for innovation. Complementing the search indices with annotations of genomic

features, such as the k-mer neighborhood, can enhance the overall performance and efficiency of

the algorithm. This enhancement also shows that statistical models built upon annotations, like

the one presented, can be exploited to recursively evaluate the computational cost of the on-going

computations and feedback this information to make efficient decisions. In this work, we have

shown a simple and straightforward use of the neighborhood model. To better characterize the

advantages of this annotation, we would have to evaluate its performance in a more extensive

benchmark, with varying sequence lengths, error rates and other sequencing technologies. In the

context of our research line, this mapper was ideated as the previous step to build a split-read

mapper for Hi-C reads. Therefore, our goal was to achieve high sensitivity and improved mapping

score estimations on short reads, with running times comparable to the state-of-the-art mappers.

In this sense, we have clearly succeeded.

The next steps would be to improve the mapper to work reliably with the latest sequencing

technologies (PacBio and Oxford Nanopore), which produce reads on the order of kilobasepairs

long, but at the expense of a much higher error rate (around 15%). To do so, we would need to

generalize the Neighbor model to greater neighborhood spaces, in which the presented assumptions

may not hold. Other future tasks include the design of optimized-decision algorithm based on the

seed significance to increase even more the computational efficiency.

61

Bibliography

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular biology of

the cell, 6th ed. Garland Science, Nov 2014.

[2] J. Watson and F. Crick, “Molecular structure of nucleic acids: A structure for deoxyribose

nucleic acid,” Nature, vol. 171, pp. 737–738, Apr. 1953.

[3] F. Sanger, S. Nicklen, and A. R. Coulson, “Dna sequencing with chain-terminating in-

hibitors,” Proceedings of the National Academy of Science, vol. 74, pp. 5463–5467, Dec.

1977.

[4] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for

similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology,

vol. 48, no. 3, pp. 443–453, Mar. 1970. [Online]. Available: http://dx.doi.org/10.1016/0022-

2836(70)90057-4

[5] T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences.”

Journal of molecular biology, vol. 147, no. 1, pp. 195–197, 1981. [Online]. Available:

http://dx.doi.org/10.1016/0022-2836(81)90087-5

[6] T. D. Wu, “Bitpacking techniques for indexing genomes: I. hash tables,” Algo-

rithms for Molecular Biology, vol. 11, no. 1, pp. 1–13, 2016. [Online]. Available:

http://dx.doi.org/10.1186/s13015-016-0069-5

[7] W. J. Kent, “Blat-the blast-like alignment tool,” Genome Res, vol. 12, 2002. [Online].

Available: http://dx.doi.org/10.1101/gr.229202. Article published online before March 2002

[8] Z. Ning, A. J. Cox, and J. C. Mullikin, “Ssaha: a fast search method for large dna databases,”

Genome Res, vol. 11, 2001. [Online]. Available: http://dx.doi.org/10.1101/gr.194201

[9] D. Knuth, The art of computer programming: Fundamental algorithms, 3rd ed. Addison-

Wesley, 1997.

[10] E. Ukkonen, “On-line construction of suffix trees,” Algorithmica, vol. 14, no. 3, pp. 249–260,

1995. [Online]. Available: http://dx.doi.org/10.1007/BF01206331

62

BIBLIOGRAPHY 63

[11] U. Manber and G. Myers, “Suffix arrays: A new method for on-line string searches,” in

Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA

’90. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1990, pp.

319–327. [Online]. Available: http://dl.acm.org/citation.cfm?id=320176.320218

[12] M. Burrows and D. Wheeler, “A block-sorting lossless data compression algo-

rithm,” HP labs technical reports, Tech. Rep., May 1994. [Online]. Available:

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html

[13] P. Ferragina and G. Manzini, “Opportunistic data structures with applications,” in

Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, vol. 0.

IEEE, 2000, pp. 390–398. [Online]. Available: http://dx.doi.org/10.1109/sfcs.2000.892127

[14] T. W. Lam, R. Li, A. Tam, S. Wong, E. Wu, and S. M. Yiu, “High throughput short

read alignment via bi-directional BWT,” in Bioinformatics and Biomedicine, 2009. BIBM

'09. IEEE International Conference on, vol. 0. IEEE, Nov. 2009, pp. 31–36. [Online].

Available: http://dx.doi.org/10.1109/bibm.2009.42

[15] D. Lipman and W. Pearson, “Rapid and sensitive protein similarity searches,”

Science, vol. 227, no. 4693, pp. 1435–1441, 1985. [Online]. Available:

http://science.sciencemag.org/content/227/4693/1435

[16] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment

search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403 – 410, 1990. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0022283605803602

[17] V. Jackson, “Studies on histone organization in the nucleosome using formaldehyde as

a reversible cross-linking agent,” Cell, vol. 15, no. 3, pp. 945–954, 2016/09/14 XXXX.

[Online]. Available: http://dx.doi.org/10.1016/0092-8674(78)90278-7

[18] J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, “Capturing chromosome

conformation,” Science, vol. 295, no. 5558, pp. 1306–1311, 2002. [Online]. Available:

http://science.sciencemag.org/content/295/5558/1306

[19] D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold, “Genome-wide mapping of in

vivo protein-dna interactions,” Science, vol. 316, no. 5830, pp. 1497–1502, 2007. [Online].

Available: http://science.sciencemag.org/content/316/5830/1497

[20] E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling,

I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A.

Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and

J. Dekker, “Comprehensive mapping of long-range interactions reveals folding principles of

the human genome,” Science, vol. 326, no. 5950, pp. 289–293, 2009. [Online]. Available:

http://science.sciencemag.org/content/326/5950/289

64 BIBLIOGRAPHY

[21] M. Farrar, “Striped SmithWaterman speeds database searches six times over other SIMD

implementations,” Bioinformatics, vol. 23, no. 2, pp. 156–161, Jan. 2007. [Online]. Available:

http://dx.doi.org/10.1093/bioinformatics/btl582

[22] T. Rognes, “Faster smith-waterman database searches with inter-sequence simd

parallelisation,” BMC Bioinformatics, vol. 12, no. 1, pp. 1–11, 2011. [Online]. Available:

http://dx.doi.org/10.1186/1471-2105-12-221

[23] S. A. Manavski and G. Valle, “Cuda compatible gpu cards as efficient hardware

accelerators for smith-waterman sequence alignment,” BMC Bioinformatics, vol. 9,

no. Suppl 2, pp. S10–S10, Mar 2008, 1471-2105-9-S2-S10[PII]. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2323659/

[24] D. V. Hinkley and E. A. Hinkley, “Inference about the change-point in a sequence of

binomial variables,” Biometrika, vol. 57, no. 3, pp. 477–488, 1970. [Online]. Available:

http://biomet.oxfordjournals.org/content/57/3/477.abstract

[25] H. Li, “Aligning sequence reads, clone sequences and assembly contigs with bwa-mem.”

arXiv:1303.3997v2, 2013. [Online]. Available: http://arxiv.org/abs/1303.3997

[26] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with bowtie 2,” Nat

Meth, vol. 9, no. 4, pp. 357–359, Apr 2012, brief Communication. [Online]. Available:

http://dx.doi.org/10.1038/nmeth.1923

