
Spatial Support Vector Regression to Detect Silent Errors in the Exascale Era

Omer Subasi,12 Sheng Di,3 Leonardo Bautista-Gomez,3 Prasanna Balaprakash,3

Osman Unsal,1 Jesus Labarta,12 Adrian Cristal,124 Franck Cappello3

1Barcelona Supercomputing Center, 2Universitat Politecnica de Catalunya, Barcelona, Spain
3Argonne National Laboratory, Lemont, Illinois, USA

4IIIA - Artificial Intelligence Research Institute CSIC - Spanish National Research Council, Spain
{omer.subasi, osman.unsal, jesus.labarta, adrian.cristal}@bsc.es

{sdi1, leobago, cappello, pbalapra}@anl.gov

Abstract—As the exascale era approaches, the increasing
capacity of high-performance computing (HPC) systems with
targeted power and energy budget goals introduces significant
challenges in reliability. Silent data corruptions (SDCs) or silent
errors are one of the major sources that corrupt the execution
results of HPC applications without being detected.

In this work, we explore a low-memory-overhead SDC de-
tector, by leveraging epsilon-insensitive support vector machine
regression, to detect SDCs that occur in HPC applications
that can be characterized by an impact error bound. The
key contributions are three fold. (1) Our design takes spatial
features (i.e., neighbouring data values for each data point in a
snapshot) into training data, such that little memory overhead
(less than 1%) is introduced. (2) We provide an in-depth
study on the detection ability and performance with different
parameters, and we optimize the detection range carefully. (3)
Experiments with eight real-world HPC applications show that
our detector can achieve the detection sensitivity (i.e., recall) up
to 99% yet suffer a less than 1% of false positive rate for most
cases. Our detector incurs low performance overhead, 5% on
average, for all benchmarks studied in the paper. Compared
with other state-of-the-art techniques, our detector exhibits the
best tradeoff considering the detection ability and overheads.

I. INTRODUCTION

The typical future exascale High Performance Computing
(HPC) system is expected to have one billion processing
elements. This increase in system complexity coupled with
the associated thermal and power challenges is expected to
increase error rates. Thus, reliability is a serious concern in
the exascale era. Silent data corruptions (SDCs) or silent
errors are one of the most significant problems in terms
of the reliability of HPC applications running on such
systems. As opposed to fail-stop errors, silent errors are
hazardous because they cannot be detected by the underlying
hardware: the application data and results are corrupted
without any indication to users. Therefore, effective and
efficient detection of SDCs is critical in order to guarantee
the correctness of the HPC application results.

In this work, we propose a novel and efficient SDC
detector leveraging machine learning. In particular, we use
Support Vector Machine (SVM) supervised learning method
to detect SDCs. SVMs are effective because their non-linear

nature detects complex SDCs. To decrease the memory
overheads, we employ spatial SVM which uses neighbour-
ing data points instead of a time-series based temporal
method with relatively higher memory overhead. We term
our implementation spatial support-vector-machine detector
(or SSD in short). Our strategy focuses on the analysis
of the spatial features, namely the dynamic spatial support
vector machine of each set of observed data, involving the
following two critical steps: (1) predicting the values for
each data point1 by using a dynamic ε2 in Vapnik’s loss
function [33] and (2) checking the observed value for each
data point to see whether it falls inside the confidential value
range. Since the analysis makes use of only the current-time-
step data, the detector incurs little memory overhead (less
than 1%). Considering the detection ability, performance
(5% on average) and memory overheads, SSD provides the
best tradeoff compared with the state of the art techniques.

Existing research on SDC detection [5, 12, 14] is based
mainly on temporal curve-fitting models. In particular, Adap-
tive Impact-Driven detector (AID) [14] adopts different types
of curve fitting. In that work, solid experiments with real-
world HPC applications were performed to validate that the
impact error bound with respect to the runtime value range
can be used to characterize the impact of SDCs on the
execution results for most applications. Although AID can
achieve high recall (ratio of detected SDCs over all SDCs)
and low false positive rate3 on SDC detections, the memory
overhead can be considerable in some cases. The reason
is that as a temporal scheme, AID maintains four recent
data values for each data point in the data prediction, which
means 400% memory overhead in terms of application state
data to protect. As indicated in [14], the overall memory cost
compared with the total application’s memory usage can be

1The user annotates state variables (e.g., density, pressure) such that our
detector checks them at each application iteration (Section III).

2This parameter refers to the insensitivity, that is, the amount of devia-
tions tolerated by the SVM during the process of regression.

3False positive rate is defined as the ratio of the number of time steps
with false alarms to the total number of time steps in the execution. The
larger false positive rate, the lower execution performance, so false positive
rate is expected to be minimized.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional
purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI 10.1109/CCGrid.2016.33

more than 50% [14] in some cases.
To design and implement our data analytic detector, we

have to resolve two significant challenges. On the one
hand, designing an effective data prediction algorithm based
on SVM is challenging, especially because of the data
dynamics. In particular, we observe that impact error bounds
correspond to the insensitivity of the loss function for a sup-
port vector machine, and the correspondence is diverse since
the impact error bound changes dynamically at runtime. On
the other hand, devising an appropriate detection range that
achieves both a low false positive rate and high recall require
careful a tradeoff. Moreover, the detection range formulation
should be generic enough to fit as many HPC applications
as possible.

In this work, we devise a novel SDC detector, with ex-
tensive evaluation over five different error distributions and
eight real-world HPC applications. Our main contributions
are summarized as follows:
• We design a dynamic spatial SVM-based SDC detector,

namely SSD, for HPC applications. To the best of our
knowledge, this is the first machine learning based
scheme leveraging spatial SVM to detect SDCs for
HPC applications. The predictor can incorporate spatial
features while maintaining a dynamic loss function,
such that our detector suffers little memory overhead.

• We provide an in-depth study of the detection ability
and performance with different parameters, and we
optimize the detection range carefully.

• We implement our SSD library supporting a wide range
of HPC applications. It can be downloaded from [2].

• We evaluate SSD by eight real-world HPC applications
and compare it with the state-of-the-art SDC detector
AID [14] and multivariate interpolation [3] with five
different error distributions. Experiments show that
our detector can achieve the detection sensitivity (i.e.,
recall) up to 99% yet suffer a less than 1% of false
positive rate for most cases. Our detector also incurs
low performance overhead, 5% on average, for all
benchmarks studied in the paper.

The rest of the paper is organized as follows. In Section
II we present the background for this study. In Section III
we discuss the design of our detector in detail. In Section
IV we evaluate our detector in terms of detection and pre-
diction capability, and performance and memory overheads.
In addition, we compare the performance of our detector to
that of the AID algorithm and multivariate interpolation. In
Section V we present the state of the art in SDC mitigation
research. In Section VI we provide concluding remarks.

II. BACKGROUND

In this section, we provide an overview of support vector
machines (SVMs), which is the core technique to be used in
our solution. We then continue with data prediction types.
After that, we discuss the impact-driven SDC detection,

Figure 1. SVM classification compared with other linear classifiers

Figure 2. SVM kernel trick to tackle nonlinear data problem

Figure 3. Temporal (e.g. AID) vs. spatial prediction (SVM predictor)

which is the fundamental detection model we will work on.
Finally, we close the section with an overview of the AID
algorithm and multivariate interpolation, because they are
the most related research with our work.

A. Support Vector Machines: An Overview

SVMs were originally designed for pattern classification
problems by Vapnik and coworkers [33], and they have been
widely applied to other fields for function approximation
signal processing, regression and time series prediction
[7, 15, 16, 23]. The key feature of SVMs is that they
leverage structural risk minimization principle to find a
decision function with a good generalization capacity. The
solution to a particular problem depends only on a subset of
the training data points called support vectors [33]. Figure
1 shows the difference between SVMs and other linear
classifiers. SVMs construct a maximum margin hyperplane
whereas linear classifiers attempt to find some hyperplane.
As a result, SVMs are able to reach a unique and global
optimal solution as opposed to other linear classifiers.

In order to handle nonlinearity, a technique called kernel
trick is applied in SVMs. The input space points are mapped
to a high-dimensional feature space via nonlinear mapping,

Figure 4. SVM architecture. The input x vector and the support vectors
xi (which are digits in this example) are mapped by Φ into a feature
space where dot products are computed. Kernel k is used in practice to
compute the dot products. The results are linearly combined by weights
wi which are found solving a quadratic program. Finally, the sign function
σ(Σ) = sign(Σ) is used to classify the input x vector.

where they are linearly separable and the optimal hyperplane
is constructed in the feature space, as illustrated in Figure
2, where ϕ refers to some kernel function.

SVMs can also be used for regression problems, such
as ε-insensitive SVM regression. The basic idea is fitting a
function to the training data where deviations below ε are
tolerated. Slack variables are often introduced to make the
problem tractable or handle noisy/inseparable data [33].

Figure 4 shows the basic architecture of SVMs and how
they work 4. The input x vector and the support vectors xi
are mapped by Φ into a feature space. Then the dot products
are computed by the use of a proper kernel function. All
dot products are then linearly combined by the weights
which are computed by solving a quadratic program that
finds the optimal hyperplane. Finally, the sign of the linear
combination (which is computed by the weights found in
the previous step) becomes the class of the input vector x.

As follows, we list four key properties of SVMs and
compare them to other techniques. (1) The first property
of a SVM is its duality property: the data only appears
in dot products both in the decision function and training
algorithm. This enables SVMs to use the aforementioned
kernel trick to tackle the nonlinearly separable data as op-
posed to linear techniques. (2) The second property is related
to the kernel trick technique where the implicit mapping is
taken rather than explicit computation of the kernel itself.
This prevents costly processing of high-dimensional data.
(3) The third property of SVMs is the the ability to control
capacity by maximizing the margin. This property mitigates
the overfitting problem that exists in other techniques such
as neural networks. (4) The forth property guarantees the
convergences of the SVM algorithm. SVMs has the convex-

4This example is adopted from Smola and Schölkopf [28].

ity property which makes them solvable in polynomial time.
This property is able to effectively avoid the local minimum
solution, guaranteeing the global optimum of the solution.

The reader is advised to see [33] and [11] for detailed
general discussion on SVMs, and Smola and Schölkopf [28]
in particular for SVM regression.

B. Temporal vs. Spatial Prediction

Data prediction can be categorized into two classes. In
temporal prediction, previous time-step snapshots of data are
used to make a prediction. This causes significant memory
cost. In contrast, in spatial prediction only the neighbouring
data points are used to make a prediction. Figure 3 shows the
techniques. In particular, it depicts our SVM-based predictor.
Neighbouring points are used to obtain an SVM model
which is then used to predict a value for the target point.

C. Impact-Driven SDC Detection

Research by Di and Cappello [14] demonstrates that
not all SDCs may impact the application execution results
significantly, and one should mainly focus on the influential
SDCs. Di and Cappello gave an in-depth analysis of the
impact of SDCs on HPC execution results, and revealed
that the impact of SDCs can be characterized by an impact
error bound, which is defined as the maximum ratio of
the data value change between adjacent time steps to the
global value range size for every data point in a snapshot.
As long as the data changes incurred by SDCs are within
such an impact error bound, the maximum deviation of the
data values (compared to the original fault-free results) will
be limited to only 3% of the global value range for most
of cases. In particular, the experiments with real-world HPC
applications (as shown in [14]) manifested that the impact
error bound = 0.00078125 (or 0.0001 some times) is fairly
enough for detecting SDCs for most of applications. In this
work, we leverage such an impact error bound to devise our
SVM-based detector.

D. AID: Adaptive Impact-Driven SDC Detector

AID [14] is an outstanding SDC detector, which allows
different processes to dynamically select the best-fit curve
fitting models with the minimum prediction errors based
on their runtime data. The curve fitting models include
last-state, linear, and quadratic curve-fitting models. The
AID algorithm incorporates types and periodically selects
the best curve fitting that has the lowest prediction error,
and the selection process is conducted periodically (every
20 iterations as set in the experiments). The detection is
performed by maintaining a normal value range that is based
on the user-specified impact error bound and the dynamically
aggregated value range for data points. If the observed value
for any data point falls outside the normal value range,
the corresponding time step will be treated as a SDC step
and correction operation (such as restarting application from

one previous checkpoint file) will be triggered accordingly;
otherwise, the execution will not be interrupted.

E. Multivariate Interpolation
We now take an overview of the multivariate interpolation

method proposed by Bautista-Gomez and Cappello [3].
Multivariate interpolation is a mathematical technique used
for functions with more than one variable. The interpola-
tion itself can be implemented with different techniques;
Bautista-Gomez and Cappello [3] chose linear interpolation
for simplicity. For 3D space, for instance, linear interpolation
can be performed by

f(x, y, z) = f(xa, y, z)+(f(xb, y, z)−f(xa, y, z))×
x− xa
xb − xa

.

For any data point in a snapshot, its value will be predicted
by using its neighboring points, and the predicted value
will also be compared with a normal range for detecting
possible anomalies. In [3], the normal range is acquired at
the beginning of the execution by estimating the maximum
error, which then will be used until the end of the execution.

III. DYNAMIC SVM-BASED SDC DETECTOR

In this section, we first present the formalization of our
predictor. Then we discuss the design of our detection range
and we detail our implementation.

A. Formalization of The SVM Predictor
Let {(x1, y1), ...(xn, yn)} ⊂ X×< be training data where

X denotes the space of input patterns and X = <d for some
dimension d. In our ε − SV regression [33], our aim is to
approximate a function f(x) such that it deviates at most
from targets yi while being as flat as possible. Therefore
we set ε = θIr

j
i , where θI is the impact error bound of

the application under consideration and rji is the estimated
value range for ith input pattern in the jth iteration of
the application. In our SVM, the target function takes the
conventional form

f(x) = 〈w, x〉+ b, w ∈ X, b ∈ <, (1)

where 〈w, x〉 denotes the dot product in X . Furthermore
in order to tackle nonlinear regression problem, a mapping
Φ, called a kernel, is introduced such that the patterns are
mapped into some feature space F where they are linearly
separable:

Φ : X → F. (2)

The SVM-based prediction can be formalized as follows:

MINIMIZE
1

2
‖ w ‖2 +γ

n∑
i=1

(κiξi + κ∗i ξ
∗
i) (3)

subject to

yi − 〈w,Φ(x)〉 − b ≤ θIrji + κiξi (4)

〈w,Φ(x)〉+ b− yi ≤ θIrji + κ∗i ξ
∗
i (5)

ξ, ξ∗ ≥ 0, (6)

Table I
TRAINING SET W.R.T. DIMENSION AND SIZE

Size 1D Feature Vectors 2D Feature Vectors
1 xi−1 xi−1

2 xi−1, xi+1 xi−1, xi+1

4 xi−1, xi+1, xi−2, xi+2 xi−1, xi+1, xj−1, xj+1

where γ is the regularization parameter, κi and κ∗i are
criticality coefficients, and ξi and ξ∗i are slack variables. The
regularization parameter determines the tradeoff between the
flatness of f and the amount of deviations larger than θIr

j
i

that is tolerated. The criticality coefficients when provided
convey the relative vulnerabilities of variables. The higher
the coefficient, the higher the penalty is. When not provided,
all coefficients are assumed to be one. The slack variables
can have various purposes. They can be used to cope with
the infeasibility of the optimization. They can also be used
for noisy or inseparable data.

Vapnik’s ε-insensitive loss function [33] is

|ξ|ε :=

{
0, if |ξ| ≤ ε
|ξ| − ε, otherwise.

(7)

Our key observation is that the impact error bounds corre-
spond to the ε, the insensitivity, in the loss function of a
SVM. That is, the impact error bounds specify how much
a SVM can tolerate during the process of regression. Hence
the loss function of our SVM predictor is

|ξ|θIrji :=

{
0, if |ξ| ≤ θIrji
|ξ| − θIrji , otherwise.

(8)

Equation (3) presents a convex quadratic problem that is
solved by Lagrangian multipliers and Karush-Kuhn-Tucker
(KKT) conditions [19] in its dual form. For each state
variable specified to be protected, Equation (3) is solved
at each iteration of the application to make a prediction.

Table I shows the feature vectors of our detector, that is,
the neighboring data points used in the training set with
respect to the different dimension and training sizes.

We close this section by discussing the admissibility of
kernel functions for SVMs and the kernels that we use in
our design. Mercer’s condition provides a necessary and
sufficient condition for a kernel to be admissible to be used
so that the input patterns are mapped to the feature space:

Mercer 1909. 1: Assume k ∈ L∞(X2) such that the
integral operator Tk : L2(X)→ L2(X)

Tkf(.) :=

∫
X

k(., x)f(x)dµ(x) (9)

is positive, where µ denotes a measure on X such that
µ(X) is finite and supp(µ) = X . Let ψj ∈ L2(X) be the
eigenfunction of Tk associated with the eigenvalue λj 6= 0
normalized such that ‖ ψj ‖L2

= 1, and let ψj denote its
complex conjugate. Then

Table II
DETECTION MODEL PARAMETERS

Parameter Description
X(t) Predicted value by the predictor at time t
V (t) Observed value of the data point at time t

feedback(t− 1) Max prediction error estimate at time t− 1
η(t) Number of iterations with false positives at time t
θ Relative impact error bound of the application
r(t) Range of the data point at time t

1. (λj(T))j ∈ `1
2. k(x, x,) =

∑
j∈N λjψj(x)ψj(x

,) holds for almost all
(x, x,), where the series converges absolutely and uniformly
for all (x, x,).
Less formally, the theorem says that if the following holds,
then k(x, x,) is admissible, that is, it can be written as a dot
product in some feature space:∫

X×X
k(x, x,)f(x)f(x,)dxdx, > 0 (10)

for all f ∈ L2(X).
The following polynomial and radial basis functions

(RBF) are examples for admissible kernels.

k(x, x,) = (〈x, x,〉+ c)p

k(x, x,) = e−
‖x−x,‖2

2σ2

Even though sigmoid kernels do not satisfy Mercer’s condi-
tions [22], they work well in practice.

k(x, x,) = tanh(ϑ+ ν〈x, x,〉)

We explore the effect of different kernels in our design.
Specifically the kernels that we study are linear (p = 1,
c = 0), polynomial (p = 2, c = 0), RBF (σ = 1), and
sigmoid (ϑ = 0, ν〈x, x,〉 = 〈x, x,〉) kernels.

Remark: Our solution is also applicable to applications
that are not characterized by an impact error bound. Since
these applications have no specified error bound, there will
be no corresponding insensitivity parameter ε for the support
vector predictor. To obtain an appropriate insensitivity pa-
rameter, cross-validation, such as 10-fold, can be used in the
beginning of the application execution. The obtained value
can be used for the rest of the execution. Di and Cappello
[14] find that only three applications fall into this category.
Since these applications are not in the scope of this study,
we will report the results for them in future work.

B. The Formalization of Detection Range and Algorithm

Our detection model is formalized with the parameters in
Table II. The detection radius ρ(t) is defined as

ρ(t) := η(t)θr(t) + feedback(t− 1), (11)

where feedback(t− 1) is the maximum prediction error at
time step t−1 based on second-order (quadratic) prediction
and r(t) = max(V (t))−min(V (t)).

Algorithm 1: SVM-Based Detector
Data: Current step t, data value V (t), relative error bound θ
Result: Boolean indicating whether SDC is present

1 begin
2 Compute range r/* periodically done */
3 isDetected ← false
4 SVM SetEpsilon(θ, r)
5 SVM TrainWithNeighboringPoints()
6 X(t) ← SVM Predict(t)
7 ρ(t) ← calculateRadius(feedback(t), η(t), θr)
8 isDetected ← checkInRange(ρ(t), X(t), V (t))
9 if (isDetected) then

10 Trigger some operation for data recovery.
11 end
12 end

The rationale behind the above design is that the detection
range is supposed to be enlarged as the application experi-
ences a time step with false positives, in order to minimize
false positives. In addition, θr(t) is the impact error bound
that determines whether the SDCs will lead to a significant
impact on the execution results (details can be found in [14]).
The design of the feedback term feedback(t−1) is to adapt
to the possible sharp data changes, which will lead to large
prediction errors accordingly.

θr

real data value

V(t)

Predicted

data

value X(t)

ε

Predicted data value

Real data value

ε Prediction error

θr Impact error bound

Impact error bound

ρ detection radius

ρ

θr

Figure 5. Detection model

Our detection model is illustrated in Figure 5. At each
iteration, our detector checks a data point based on this
model. The normal data value range is defined as [X(t) −
ρ(t), X(t) + ρ(t)]. The detection is performed by checking
whether the observed value V (t) falls in this normal range.

Algorithm 1 summarizes our detection algorithm for a
single process at each iteration in the execution. For each
data value (state variables), the value range is aggregated
among processes, and the epsilon parameter of the support
vector machine (SVM) is initialized with the relative error
bound θ and value range r (note that the impact error bound
is θr). Then, the SVM is trained using every data point’s
neighboring data points. The prediction of the SVM and the
computed radius are used to calculate the normal range. The
observed value for each data point is checked whether it is
in the normal range. If not, the current time step will be
considered with SDCs.

C. Implementation

We implement our detector following our design based on
LibSVM [8]. We integrate our detector with the FTI library
[4] such that application users are allowed not only to detect
the SDCs but also to correct the errors by checkpoint/restart.
Our implementation provides both C and Fortran interfaces
such that a broad range of HPC applications can utilize
our detector. The library is available to download from
[2]. To use our detector, users need to follow four simple
steps where they annotate their applications: (1) initialize the
detector by calling SDC Init(), (2) specify the state variables
to protect by calling SDC Protect(var,ierr), (3) annotate the
execution iterations by calling SDC Snapshot() in the main
loop, and (4) release the memory by calling SDC Finalize()
in the end.

IV. EVALUATION

In this section we detail the experimental evaluation of
our detector. Our evaluation is two fold. First, we evaluate
the false positive rate (FP-rate) and detection sensitivity
(recall) of our detector. We additionally evaluate the effect
of different parameters on these metrics. Moreover, we
compare the detection results of our detector with that of
the AID algorithm [14] and multivariate interpolation [3].
Second, we evaluate the detection overhead of our detector.
We discuss the experimental setup first and then present the
experimental results.

 0 10 20 30 40 50 60 70

P
D
F

Number of Bits in Error

Beta 5-1

Beta 1-10

Normal 32-4

Beta 0.5-0.5

Uniform

Figure 6. Distributions used in the experimental evaluation

A. Experimental Setup

We perform our experiments using the Fusion [1] cluster
at Argonne National Laboratory. Table III shows the applica-
tions that we use in our evaluation from the FLASH package
[18]. For each application we protect state variables, which
are checked at every main iteration of the applications.
When assessing the detection sensitivity, we use the relative
impact error bounds recommended in [14]. In particular,
we use 0.0001 for Blast2, and 0.00078125 for the other
seven benchmarks. We perform error injection according to
the error distribution chosen where injections are performed
to the random bit positions of state variables in sensitivity

analysis. We do not use any criticality coefficients; that is,
we treat all state variables to have the same significance. In
fault injection experiments, each single case is repeated 10×
and the averages are reported.

Since we have no information about how silent errors will
exhibit themselves, we use five different error distributions
(as shown in Figure 6) to cover reasonable scenarios that
can occur in the exascale era and to assess the performance
of our detector.
Beta Distributions: Beta distribution is typically used in
control systems and population genetics. This class of dis-
tributions provides distributions that fit possible scenarios
that can occur in the exascale timeframe by adjusting shape
parameters. Formally the probability density function (PDF)
of the beta distribution is defined for 0 ≤ x ≤ 1 and shape
parameters α and β as

f(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, (12)

where Γ is the gamma function which can be viewed as the
extension of the factorial function over complex numbers.
Formally it can be defined by the integral (except nonpositive
integers)

Γ(t) =

∫ ∞
0

xt−1e−xdx. (13)

We use three settings with the beta distributions, as shown in
Figure 6. Beta distribution with shape parameter α = 1 and
β = 10 represent the case where the probability density
function (PDF) value decreases with the number of bits
corrupted. This setting represents the case where single-
bit errors are more likely than multi-bit errors and the
probability of error decreases as the number of bits in error
increases. In contrast, α = 5 and β = 1 represent the
case where the PDF value increases with the number of bits
corrupted. This case can be justified by the postulation that
single-bitflip or double-bitflip errors are likely to be detected
by the underlying hardware ECCs while multi-bitflip errors
cannot be detected effectively by hardware ECCs. α = 0.5
and β = 0.5 represent another possible case in which single-
bitflip errors or all-bitflip errors are more common than the
other types of bitflip errors. This case is included to reflect
the cases with erratic behavior.
Normal Distribution: The central limit theorem implies that
the number of errors should follow a normal distribution
given that the flip event on each bit follows an independent
and identical distribution. Therefore we include normal dis-
tribution to account for the case where errors are independent
and identically distributed. Formally the normal distribution
is defined with the PDF as follows:

f(x|µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (14)

where µ is the mean and σ is the variance of the distribution.
Without loss of generality, µ and σ are set to 32 and 4
respectively in our evaluation.

Table III
APPLICATIONS USED IN EVALUATION

Name Description
Blast2 [10] Strong shocks and narrow features
SodShock [29] Sodshock tube for testing compressible code’s ability with shocks & contact discontinuities
DMReflection [10] Double Mach reflection: an evolution of an unsteady planar shock on an oblique surface
RHD Sod [20] Relativistic Sod Shock-tube: involving the decay of 2-fluids into 3-elementary wave structures
RHD Riemann2D [25] Relativistic 2D Riemann: exploring interactions of four basic waves consisting of shocks, etc.
BrioWu [6] Coplanar magneto-hydrodynamic counterpart of hydrodynamic Sod problem
OrszagTang [21] Simple 2D problem that has become a classic test for MHD codes
Cellular [31] Burn simulation: cellular nuclear burning problem

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02
 0.04

 0.06
 0.08

 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(a) SSD Beta 5-1 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02
 0.04

 0.06
 0.08

 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(b) SSD Beta 1-10 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02
 0.04

 0.06
 0.08

 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(c) SSD Normal 32-4 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02
 0.04

 0.06
 0.08

 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(d) SSD Beta 0.5-0.5 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02
 0.04

 0.06
 0.08

 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(e) SSD Uniform FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(f) Multiv. Beta 5-1 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(g) Multiv. Beta1-10 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(h) Multiv. Normal 32-4 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(i) Multiv. Beta 0.5-0.5 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(j) Multiv. Uniform FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02
 0.04

 0.06
 0.08

 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(k) AID Beta 5-1 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02
 0.04

 0.06
 0.08

 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(l) AID Beta 1-10 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02
 0.04

 0.06
 0.08

 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(m) AID Normal 32-4 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02
 0.04

 0.06
 0.08

 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(n) AID Beta 0.5-0.5 FP-r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02
 0.04

 0.06
 0.08

 0.1

C
D

F

False Positive Rate

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(o) AID Uniform FP-r.
Figure 7. False positive rate results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(a) SSD Beta 5-1 Recall

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(b) SSD Beta 1-10 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(c) SSD Normal 32-4 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(d) SSD Beta 0.5-0.5 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(e) SSD Uniform Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(f) Multiv. Beta 5-1 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(g) Multiv. Beta 1-10 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(h) Multiv. Normal 32-4 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(i) Multiv. Beta 0.5-0.5 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(j) Multiv. Uniform Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(k) AID Beta 5-1 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(l) AID Beta 1-10 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(m) AID Normal 32-4 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(n) AID Beta 0.5-0.5 Re.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

C
D

F

Recall

Blast2
Sod

DMReflection
RHD_Riemann

RHD_Sod
BrioWu

OrszagTang
Cellular

(o) AID Uniform Re.
Figure 8. Recall results

Uniform Distribution: Another possible case is that the
number of bits flipped follows a uniform distribution, in
which the PDF is defined over an interval [a, b] as

f(x) =
1

b− a
. (15)

Since we use double precision in our experimentation,
the interval in our evaluation is [1, 64]. This distribution
represents the scenario that on the unprotected hardware,
such as logic unit, any number of bit flips can occur. Hence
one can assume a uniform distribution on the number of bit
flips.

B. Experimental Results

1) False Positive Rate and Sensitivity: Figure 7 shows
the cumulative distribution functions (CDFs) of the false
positive rate (FP-rate) under our solution (SSD), multivariate
interpolation, and AID respectively. The results are collected
by running applications on 128 processes. The FP-rate is
defined as the number of false positive iterations (iterations
that have at least one false positive detected) over the total
number of iterations. The FP-rate is very useful in assessing
the precision of a detector. As shown in the figure, SSD
outperforms multivariate interpolation and achieves false
positive rates close to those of AID. In particular, except
for the beta 5-1 distribution, SSD achieves an FP-rate less
than 1%. The beta 5-1 distribution is to stress our detector;
and even under stress, SSD achieves a 1.7% FP-rate on
average. Multivariate interpolation performs poorly espe-
cially because of the over-large detection range. Although
we improved on the detection range presented in [3], it still
exhibits a 4-17% FP-rate on average.

Figure 8 presents the CDFs of the detection sensitivity
(recall) for the benchmarks. Recall is defined as the fraction
of the true positives that are detected over all SDCs experi-
enced/injected. SSD achieves over 90% and up to 99% recall
as AID with error distributions other than Beta 1-10. This
distribution injects errors sparsely, as a result the recall is
lower than that of other distributions. With this distribution,
AID achieves 85% recall and SSD achieves 79% on average.
Multivariate interpolation achieves 77%-99% with Beta 5-
1 and Beta 1-10 at the low and high end respectively. The
key reason that SSD outperforms multivariate interpolation
is two fold: (1) more precise data prediction (to be shown
later) and (2) more accurate detection range estimated.

In our evaluation, we also evaluate four different kernels:
linear, polynomial with degree 2, radial basis, and sigmoid
functions for our SVM-based SDC detector. According to
the results, no correlation exists between recall and the
kernel type. Across applications kernels can incur relatively
high or low recall (we still recommend RBF since it often
achieves relatively high recall). However, this is not the case
for the FP-rate. Sigmoid and polynomial kernels consistently
lead to the lower FP-rate. We suspect the reason is that
data evolves nonhomogeneously among neighbors. Figure

9(a) shows the effect of the kernel type on the FP-rate
(representative figure).

When we evaluate the effect of the training size on the
FP-rate and recall, we cannot infer any relationship between
FP-rate and training size based on the experimental data.
With recall, we find an almost universal correlation. Figure
9(b) illustrates the effect of the training size on the recall
(representative figure). We see that when only one neighbor
is used in the training set, the recall is lowest. Recall is the
highest when two neighbors are used in the training set. Two
neighbors seem to be optimal; providing enough information
while causing relatively low noise.

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

F
a
l
s
e

P
o
s
i
t
i
v
e

R
a
t
e

Kernel Type

LINEAR
POLY2

SIGMOID
RBF

(a) Kernel Effect

 0.835

 0.84

 0.845

 0.85

 0.855

 0.86

 0.865

 0 1 2 3 4 5

R
e
c
a
l
l

Training Size

Size = 1
Size = 2
Size = 4

(b) Training Size Effect
Figure 9. Effect of kernel type and training size

2) Prediction Errors and Range Evolution: Figure 10
shows the normalized prediction error of multivariate in-
terpolation and AID in comparison to our solution SSD.
Specifically, brown dotted curve refers to the difference of
the prediction error between AID and SSD (negative value
means AID leads to smaller prediction errors than SSD
and vice versa); blue solid curve refers to the difference
of prediction errors between multivariate interpolation and
SSD (negative value means multivariate interpolation leads
to smaller prediction errors and vice versa). We include
the comparison for one state variable and omit others for
brevity. We see that the behaviour of detectors changes
across benchmarks. No detector always outperforms others
on prediction errors (yet AID and SSD outperforms multi-
variate interpolation in most of cases). Results show that the
deviation of prediction error between AID and SSD is larger
than that of SSD and multivariate interpolation. This reason
is that the AID predictor is based on the temporal evolution
of data rather than spatial evolution.

In addition to the prediction errors, we also note the
significance of the detection range (i.e., normal value range)
in terms of the performance of a detector. We present how
the detection range of SSD evolves over time. This behaviour
is important and should be examined since detection range
shows the adaptability of the detector to the data changes
over time. Figure 11 shows the detection range evolution
over the executions of the benchmarks. We plot the data
of a representative process. We see that in all applications
the detection range is dynamic as a result of the periodic
aggregation of the value ranges and the computation of
maximum prediction error estimate. When data changes

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(a) Blast2

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(b) BrioWu

-4e+06

-2e+06

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(c) Cellular

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(d) DMReflection

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(e) OrszagTang

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(f) RHD Riemann

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(g) RHD Sod

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0 100 200 300 400 500 600 700 800 900

N
o
r
m
a
l
i
z
e
d

P
r
e
d
i
c
t
i
o
n

E
r
r
o
r

w
r
t

S
S
D

Time(iterations)

AID

Multivariate

(h) Sod
Figure 10. Prediction error comparison

-0.1

 0

 0.1

 0.2

 0.3

250 500 750 1000

R
a
n
g
e

Time(iterations)

Blast2

(a) Blast2

 0

 0.1

 0.2

250 500 750 1000

R
a
n
g
e

Time(iterations)

BrioWu

(b) BrioWu

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

250 500 750 1000

R
a
n
g
e

Time(iterations)

Cellular

(c) Cellular

-3
-2.5

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 10.5
 11

 11.5
 12

250 500 750 1000

R
a
n
g
e

Time(iterations)

DoubleMachReflection

(d) DMReflection

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

250 500 750 1000

R
a
n
g
e

Time(iterations)

OrszagTang

(e) OrszagTang

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

250 500 750 1000

R
a
n
g
e

Time(iterations)

RHD_Riemann

(f) RHD Riemann

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

250 500 750 1000

R
a
n
g
e

Time(iterations)

RHD_Sod

(g) RHD Sod

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 10000 20000 30000 40000 50000 60000 70000

R
a
n
g
e

Time

Sod

(h) Sod
Figure 11. Detection range evolution

rapidly, so does the detection range.
3) Computation Overheads: We now present the compu-

tation time overheads of our detector SSD. We report the
averages over all processes. Figure 12 shows the computa-
tion time overheads (in percentage) with 256, 512, and 1,024
cores. From 512 cores to 1,024 cores we see a decreasing
trend in overheads. When 1,024 cores are utilized, all
overheads are less than 8% and are 5% on average. From the
results, we see that SSD is both lightweight and efficient.

4) Detailed Discussion: Support vectors as nonpara-
metric method: As opposed to Gaussian processes, support
vector machines are parametric methods whose parameters
are usually optimized through Bayesian techniques or cross-
validation. In our case, however since the ε corresponds
to the impact error bound and we choose not perform
any cross validation for the remaining parameters, such as
regularization parameter γ or kernel parameter σ (both are
set to one), to be efficient, support vector regression has

essentially become a nonparametric method achieving good
performance. On mission-critical situations, some compu-
tation cost can be sacrificed, and cross validation can be
performed for the remaining parameters. We will investigate
parameter optimization as future work.
Case with sigmoid kernels: As discussed by Scholkopf
[24], choosing the appropriate capacity control is more
important than choosing the type of kernels used in sup-
port vector learning. However, the performance of sigmoid
kernels cannot be overlooked. The experimental data shows
that when they are used, the maximum prediction error
(less variance) is lower relative to that of the other kernels.
Consequently the false positive rate is relatively lower.

V. RELATED WORK

Research on SDC mitigation can be categorized mainly
into three different categories: algorithm-based fault tol-
erance (ABFT) technique, replication of computation, and

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

Blast2

(a) Blast2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

BrioWu

(b) BrioWu

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

Cellular

(c) Cellular

 0

 1

 2

 3

 4

 5

 6

 7

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

DoubleMachReflection

(d) DMReflection

 4

 4.5

 5

 5.5

 6

 6.5

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

OrszagTang

(e) OrszagTang

 3

 4

 5

 6

 7

 8

 9

 10

 11

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

RHD_Riemann

(f) RHD Riemann

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

RHD_Sod

(g) RHD Sod

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

256 512 1024

O
v
e
r
h
e
a
d

(
%
)

Number of Cores

Sod

(h) Sod

Figure 12. Computation time overheads

runtime analysis technique.
ABFT [9, 27, 32] techniques are tailored solutions to

specific numerical algorithms. As a result, they are usually
efficient. However, they fundamentally lack the ability to be
applicable to other algorithms than the specific numerical or
algebraic kernel they are designed for.

Replication-based schemes [17] can be deployed for
mission-critical situations. In such contexts, double or triple
redundancy of computation is performed in order to detect
SDCs by comparing the results of replica computations. The
inherent drawback of the replication is its high cost; for
instance, with double redundancy, the cost is 100%. Partial
replication [30] has been proposed to decrease costs while
providing required level of reliability. Although partial repli-
cation is promising, it may not be applicable for certain HPC
systems, mainly because errors may not be reproducible for
some systems, such as heterogeneous systems.

Runtime data analysis recently has gained attention in the
HPC community. Studies [5, 12, 13] investigate and compare
different prediction methods such as linear curve fitting or
ARMA models, to detect SDCs. They convert the problem
of detecting SDC into next-step prediction problem. Sharma
et al. [26] utilize temporal features of data (in addition to
spatial features) and provide a tailored SDC detector for
stencil applications where they use support vector machines
as a linear function approximator. The main drawbacks of
temporal data analytics are the memory overhead and the
computation cost of maintaining snapshot data. In contrast,
as a spatial technique, SSD incurs low memory cost while
having low computation overhead.

VI. CONCLUSION

In this work, we propose a novel lightweight SDC detector
based on dynamic spatial support vector regression. Since
our solution only relies on the snapshot data at current time
step (i.e., a spatial technique), our detector suffers from

little memory overhead (less than 1%) and low performance
overhead (5% on average.). Experiments with eight real-
world HPC applications show that for most of the failure
distributions and applications detection sensitivity is high
and up to 99% and the false positive rate is low and less than
1% except being under stress. Our implementation supports
wide range of HPC applications in both Fortran or C.

VII. ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy, Office of Science, Advanced Scientific Computing
Research Program, under Contract DE-AC02-06CH11357,
by FI-DGR 2013 scholarship, by HiPEAC PhD Collabo-
ration Grant, the European Community’s Seventh Frame-
work Programme [FP7/2007-2013] under the Mont-blanc
2 Project (www.montblanc-project.eu), grant agreement no.
610402, and TIN2015-65316-P.

REFERENCES

[1] Fusion cluster. [online]. available at :
http://www.lcrc.anl.gov/.

[2] SSD SDC detection library. [online]. available at :
https://collab.cels.anl.gov/display/esr/aid.

[3] L. Bautista-Gomez and F. Cappello. Detecting and cor-
recting data corruption in stencil applications through
multivariate interpolation. In 2015 IEEE International
Conference on Cluster Computing (CLUSTER), pages
595–602, 2015.

[4] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cap-
pello, N. Maruyama, and S. Matsuoka. Fti: High
performance fault tolerance interface for hybrid sys-
tems. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC ’11, pages 32:1–32:32, New York,
NY, USA, 2011.

[5] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and
F. Cappello. Lightweight silent data corruption detec-
tion based on runtime data analysis for hpc applica-
tions. In Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed
Computing, HPDC ’15, pages 275–278, New York, NY,
USA, 2015.

[6] M. Brio and C. Wu. An upwind differencing scheme
for the equations of ideal magnetohydrodynamics.
Journal of Computational Physics, 75(2):400 – 422,
1988.

[7] L. Cao and F. Tay. Support vector machine with
adaptive parameters in financial time series forecasting.
Neural Networks, IEEE Transactions on, 14(6):1506–
1518, Nov 2003.

[8] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on Intel-
ligent Systems and Technology, 2:27:1–27:27, 2011.

[9] E. Ciocca, I. Koren, Z. Koren, C. M. Krishna, and D. S.
Katz. Application-level fault tolerance in the orbital
thermal imaging spectrometer. In Proceedings of the
10th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC’04), PRDC ’04, pages
43–48, Washington, DC, USA, 2004.

[10] P. Colella and P. R. Woodward. The piecewise
parabolic method (ppm) for gas-dynamical simulations.
Journal of Computational Physics, 54(1):174 – 201,
1984.

[11] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3):273–297, 1995.

[12] S. Di, E. Berrocal, L. Bautista-Gomez, K. Heisey,
R. Guptal, and F. Cappello. Toward effective detec-
tion of silent data corruptions for hpc applications.
In Proceedings of the International Conference on
High Performance Computing, Networking, Storage
and Analysis, 2014.

[13] S. Di, E. Berrocal, and F. Cappello. An efficient silent
data corruption detection method with error-feedback
control and even sampling for HPC applications. In
15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, CCGrid 2015, Shenzhen,
China, May 4-7, 2015, pages 271–280, 2015.

[14] S. Di and F. Cappello. Adaptive impact-driven
detection of silent data corruption for hpc applications.
In www.mcs.anl.gov/publication/adaptive-impact-
driven-detection-silent-data-corruption-hpc-
applications, 2015.

[15] Y. Fan, P. Li, and Z. Song. Dynamic least squares
support vector machine. In Intelligent Control and
Automation, 2006. WCICA 2006. The Sixth World
Congress on, volume 1, pages 4886–4889, 2006.

[16] T. Farooq, A. Guergachi, and S. Krishnan. Chaotic time
series prediction using knowledge based green’s kernel
and least-squares support vector machines. In Systems,

Man and Cybernetics, 2007. ISIC. IEEE International
Conference on, pages 373–378, Oct 2007.

[17] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Fer-
reira, and R. Brightwell. Detection and correction of
silent data corruption for large-scale high-performance
computing. In Proceedings of the International Con-
ference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pages 78:1–78:12, CA,
USA, 2012.

[18] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zin-
gale, D. Q. Lamb, P. MacNeice, R. Rosner, J. W.
Truran, and H. Tufo. FLASH: An Adaptive Mesh Hy-
drodynamics Code for Modeling Astrophysical Ther-
monuclear Flashes. apjs, 131:273–334, Nov. 2000.

[19] H. W. Kuhn and A. W. Tucker. Nonlinear pro-
gramming. In Proceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability,
pages 481 – 492, 1951.

[20] J. M. Mart and E. Mller. Numerical hydrodynamics
in special relativity. Living Reviews in Relativity, 6(7),
2003.

[21] S. A. Orszag and C.-M. Tang. Small-scale structure
of two-dimensional magnetohydrodynamic turbulence.
Journal of Fluid Mechanics, 90:129–143, 1 1979.

[22] Z. Ovari. Kernels, eigenvalues and support vector
machines, 2000.

[23] T. Raicharoen, C. Lursinsap, and P. Sanguanbhokai.
Application of critical support vector machine to time
series prediction. In Circuits and Systems, 2003. ISCAS
’03. Proceedings of the 2003 International Symposium
on, volume 5, pages V–741–V–744 vol.5, May 2003.

[24] B. Scholkopf. Support vector learning, 1997.
[25] C. W. Schulz-Rinne, J. P. Collins, and H. M. Glaz.

Numerical solution of the riemann problem for two-
dimensional gas dynamics. SIAM Journal on Scientific
Computing, 14(6):1394–1414, 1993.

[26] V. Sharma, G. Gopalakrishnan, and G. Bronevetsky.
Detecting soft errors in stencil based computations. In
The 11th Workshop on Silicon Errors in Logic - System
Effects, 2015.

[27] J. Sloan, R. Kumar, and G. Bronevetsky. Algorithmic
approaches to low overhead fault detection for sparse
linear algebra. In Proceedings of the 2012 42Nd Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), DSN ’12, pages 1–12,
Washington, DC, USA, 2012.

[28] A. J. Smola and B. Schölkopf. A tutorial on sup-
port vector regression. Statistics and Computing,
14(3):199–222, 2004.

[29] G. A. Sod. A survey of several finite difference meth-
ods for systems of nonlinear hyperbolic conservation
laws. Journal of Computational Physics, 27(1):1 – 31,
1978.

[30] O. Subasi, J. Arias, O. Unsal, J. Labarta, and A. Cristal.

Programmer-directed partial redundancy for resilient
hpc. In Proceedings of the 12th ACM International
Conference on Computing Frontiers, CF ’15, pages
47:1–47:2, New York, NY, USA, 2015.

[31] F. X. Timmes, M. Zingale, K. Olson, B. Fryxell,
P. Ricker, A. C. Calder, L. J. Dursi, H. Tufo, P. Mac-
Neice, J. W. Truran, and R. Rosner. On the cellular
structure of carbon detonations. The Astrophysical
Journal, 543(2):938, 2000.

[32] M. Turmon, R. Granat, D. Katz, and J. Lou. Tests and
tolerances for high-performance software-implemehted
fault detection. IEEE Transactions on Computers,
52(5):579–591, May 2003.

[33] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer-Verlag, 1995.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator
of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others acting on its behalf, a paid-
up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

