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Abstract—Sampled simulation is a mature technique for re-
ducing simulation time of single-threaded programs, but it is not
directly applicable to simulation of multi-threaded architectures.
Recent multi-threaded sampling techniques assume that the
workload assigned to each thread does not change across multiple
executions of a program. This assumption does not hold for
dynamically scheduled task-based programming models. Task-
based programming models allow the programmer to specify
program segments as tasks which are instantiated many times
and scheduled dynamically to available threads. Due to system
noise and variation in scheduling decisions, two consecutive
executions on the same machine typically result in different
instruction streams processed by each thread.

In this paper, we propose TaskPoint, a sampled simulation
technique for dynamically scheduled task-based programs. We
leverage task instances as sampling units and simulate only
a fraction of all task instances in detail. Between detailed
simulation intervals we employ a novel fast-forward mechanism
for dynamically scheduled programs. We evaluate the proposed
technique on a set of 19 task-based parallel benchmarks and
two different architectures. Compared to detailed simulation,
TaskPoint accelerates architectural simulation with 64 simulated
threads by an average factor of 19.1 at an average error of 1.8%
and a maximum error of 15.0%.

I. INTRODUCTION

Computer architecture research heavily relies on simulation.
Increasing design complexity and increasing core counts in
modern multi-core processors present new challenges to archi-
tectural simulation. First, simulating a more complex design
requires more time for a given workload. Second, the more
complex a design, the larger the simulated workload needs to
be in order to meaningfully stress the design.

One technique to reduce simulation time is sampling. Sam-
pled simulation reduces simulation time by only simulating
a fraction of a workload. Sampling is a well-established
technique for simulation of single-threaded architectures. The
prevalent techniques perform detailed simulation of either only
the representative program parts identified in profiling [1] or
periodically via time-based sampling [2].

While sampled simulation is a well-established technique
for single-threaded architectures, techniques targeting multi-
threaded architectures have only been recently proposed. The
main challenge in sampling multi-threaded simulations is to
ensure that at the beginning of each detailed simulation interval
all threads have made the same amount of progress as in a
full detailed simulation. A technique proposed by Carlson et
al. [3] achieves this by selecting a periodic sampling interval
during offline profiling and, during simulation, estimating the
rate at which to fast-forward each thread between intervals of

detailed simulation. Carlson et al. [4] also propose a technique
based on the insight that after a global barrier all threads
are synchronized and resume execution simultaneously. The
technique leverages the inter-barrier regions in barrier syn-
chronized programs as sampling units.

Task-based programming models have been proposed to
reduce load imbalance and thus increase parallel efficiency
of future large-scale multi-core machines [5]. A task-based
programming model allows the programmer to specify pro-
gram parts as fasks and to specify dependencies between
those tasks. Tasks are typically instantiated many times during
the execution of a program. Over-decomposition ensures that
there are many more task instances than there are execution
threads. The over-decomposition of a parallel program into
tasks, together with dynamic scheduling of task instances to
threads, dynamically balances the amount of work assigned to
each thread. Inter-task dependencies enforce synchronization
only when necessary. The lack of global barriers and the
dynamically scheduled execution of task-based programs make
them unsuitable for existing sampled simulation techniques.

In this work we present TaskPoint, a sampled simulation
methodology for dynamically scheduled task-based programs
executed on shared memory multi-core machines. TaskPoint
leverages task instances as sampling units and only simulates
a small number of them in detail. The remaining task instances
are simulated in a faster simulation mode, ensuring that
progress in different threads is modelled correctly.

In this paper, we make the following contributions:

¢ We compare the performance variation of task-based

programs in native execution and architectural simulation.
This motivates the design of our TaskPoint methodology,
its sampling policies and its fast-forwarding methodology.

o We present TaskPoint, a sampled simulation technique

for multi-core architectures programmed with a dynami-
cally scheduled, task-based programming model. In this
context, we introduce two sampling policies, periodic
sampling and lazy sampling. Lazy sampling simulates
task instances in detail based on their type while periodic
sampling considers their type and distribution over time.
¢ We propose a mechanism to accurately fast-forward an
architectural simulation of a task-based program. During
fast-forward, we model the performance of a given task
instance based on previous instances of the same task
type. We account for different task input sizes across
the application execution by factoring in the number of
instructions of the given task instance accordingly.
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Fig. 1: IPC variation across all task instances for native execution with 8 threads, normalized per task type

o We evaluate TaskPoint simulating 19 task-based paral-
lel benchmarks, including 6 task-based versions of the
PARSEC benchmark suite. We evaluate the sensitivity of
TaskPoint to different architectures by testing different
numbers of simulated threads on two different configu-
rations covering the opposite extremes of the multi-core
design space: high-performance and low power.

The remainder of this paper is organized as follows. In
Section II, we provide background and motivation of our
work. In Section III, we present our TaskPoint methodology.
Next, we introduce our experimental setup in Section IV. We
evaluate TaskPoint in Section V. Finally, we present related
work in Section VI, before we conclude in Section VII.

II. BACKGROUND AND MOTIVATION

This section provides background on task-based program-
ming models. We then motivate our work with an analysis
of performance variation in native execution of 19 task-based
parallel benchmarks.

A. Parallel Programming Models

In traditional parallel programming models for shared mem-
ory systems, like POSIX Threads [6], the programmer ex-
plicitly decomposes an application into concurrent instruction
streams and manages synchronization between those. These
instruction streams are processed simultaneously by different
threads. A common problem with multi-threaded programs is
load imbalance. Load imbalance occurs when different threads
reach a synchronization point at different points in time.

Task-based programming models have the potential to al-
leviate load imbalance and thus increase parallel efficiency.
When implementing a parallel program using a task-based pro-
gramming model, the programmer specifies program parts as
tasks and, optionally, data dependencies between these tasks.
Tasks are instantiated many times during the execution of a
program, resulting in a large number of task instances, each
of which operates on different data. A runtime environment
dynamically schedules task instances to execution threads.

Due to a fine-grained over-decomposition of the application,
there are ideally more task instances ready for execution than
there are threads. This allows the runtime environment to
dynamically balance the workload assigned to each thread [5].
Further optimizations are possible if the architecture interfaces
directly with the runtime environment [7, 8].

In this work, we differentiate between fask types and task
instances. Every execution of a task declaration statement at
runtime results in the creation of a task instance. All task
instances resulting from the same task declaration statement in
the source code are said to be of the same task type. In a typical
task-based program, the number of task types is small, whereas
the number of task instances lies in the order of thousands.

B. Performance Variation of Task-Based Programs

In order to motivate TaskPoint, our sampled simulation
technique for task-based parallel programs, we analyze per-
formance variation in native execution of 19 benchmarks. The
investigated benchmarks are introduced in Section IV.

Different benchmarks, and even different task types of the
same benchmark, generally show different average instructions
per cycle (IPC). For an easy comparison of performance
variation across benchmarks, we normalize the IPC of all task
instances to the average IPC of their respective task type. For
each benchmark, we use one box plot of these normalized IPC
values to visualize performance variation across task instances.

Figure 1 shows IPC variation across task instances observed
in a native execution with 8 threads on a system with an
Intel SandyBridge-EP E5-2670 CPU running at 2.6 GHz and
128 GB of DDR3-1600 as main memory. The solid box of
each box plot indicates the range from the first to the third
quartile of the normalized IPC values, while the whiskers
extend from the fifth to the 95th percentile. IPC values of
task instances below the fifth and above the 95th percentile
are treated as outliers. The Figure shows that for 15 out of 19
benchmarks performance variation lies within +5%. We show
that performance variation is closely reflected in simulation
when we introduce the TaskSim simulator in Section IV.

We motivate TaskPoint based on the insight that perfor-
mance of task-based programs is generally regular across
instances of the same task type. A novelty of TaskPoint is that
it leverages the concept of tasks declared by the programmer
to identify task instances of the same task type as sampling
units of similar performance.

III. SAMPLED SIMULATION OF TASK-BASED PROGRAMS

In this section, we present our TaskPoint methodology. First,
we introduce the prerequisites which need to be fulfilled by
an architectural simulator in order to serve as an implementa-
tion platform for TaskPoint. Next, we present the different
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Fig. 2: Initial warmup, sampling, fast-forwarding and resampling in TaskPoint

phases of TaskPoint’s sampling mechanism, namely warm-
up, sampling and fast-forwarding. Afterwards, we introduce
our periodic sampling policy. The separation into sampling
mechanism and policy allows for the integration of other
sampling policies with low implementation effort.

A. Requirements for the Architectural Simulator

Our objective is to provide a sampled simulation method-
ology for task-based programs which does not depend on
a specific architectural simulator. Therefore, we keep the
requirements for the target simulator to a minimum. In order
to serve as a suitable platform for implementing our methodol-
ogy, a simulator needs to fulfil the following two requirements:

1) The simulator needs to feature a detailed and a fast
simulation mode.

2) The fast mode has to be capable of operating at a user-
specified IPC.

Most contemporary architectural simulators feature several
levels of detail [9, 10, 11], allowing to trade off speed for
accuracy. Thus, we assume the first requirement to be trivially
fulfilled. Regarding the second requirement, if a simulator does
not support fixed-IPC simulation by default, we consider the
implementation of this functionality to be a minor effort.

B. Sampling Mechanism

TaskPoint operates on the level of granularity of task
instances. A task instance is simulated either in detailed or
in fast mode. Simulation in detailed mode serves for warming
architectural state or to measure samples, whereas simulation
in fast mode accurately fast-forwards simulation time. Switch-
ing between detailed and fast mode only occurs between two
consecutive task instances.

Figure 2 illustrates the different phases of TaskPoint. For
each task type, we maintain two vectors holding the IPC
histories of the most recently simulated task instances. The
size H of these vectors is a parameter referred to as the history
size. Both vectors are FIFO buffers in which a newly added
element replaces the oldest one. The first vector contains the
history of task instances which are valid samples, i.e. which
are simulated after warming up architectural state. We refer
to it as the history of valid samples. The second vector holds
the history of all task instances simulated in detailed mode,
regardless of the simulation being properly warmed. We refer
to it as the history of all samples. While the former is the
sample history we usually use to determine which IPC to use
in fast mode, the latter is needed if there are task types that

occur infrequently and can not be sampled in a single sampling
interval. We refer to these task types as rare task types.

In multi-threaded applications, co-existing threads interfere
with each other, e.g. by competing for shared resources,
through inter-thread synchronization or by invalidating data
residing in remote caches. In order to correctly model thread
interference, we simulate all threads either in detailed mode
or in fast mode. Since we assume that mode switching only
occurs between two consecutive task instances, there are short
phases during which some threads are simulated in fast-
forward mode, while others are simulated in detailed mode
(see ta, t3 and t5 in Figure 2).

Simulation Warmup: Before conducting performance mea-
surements, a simulation needs to be warmed, i.e. it needs to be
put in a representative state. Warming micro-architectural state
in sampled simulation is well-studied [1, 2, 12, 13, 14, 15]. In
this paper, we warm the simulation by simulating an empiri-
cally determined number of task instances in detail and avoid
complex warmup schemes. Instead, we focus on the sampling
methodology itself. However, we distinguish between warming
at simulation start and warming before resampling after a
simulation phase in fast mode. When a task instance simulated
for warmup finishes execution, its IPC is added to the history
of all samples.

At simulation start, all simulated micro-architectural struc-
tures are in their initial (cold) state. During detailed simulation,
state-holding elements begin to fill until occupancy reaches a
steady state. In this work, we assume that simulating W task
instances per thread at simulation start is sufficient for putting
the simulator into a representative (warm) state. We refer to
W as the size of the warm-up interval and evaluate different
values for W in Section V.

After a simulation phase in fast mode, micro-architectural
state is stale. Before resampling the simulation, warmup makes
sure that micro-architectural state is (approximately) the same
as if the whole program was simulated in detail. Before
resampling, we perform detailed simulation until every thread
has simulated one task instance in detail.

Sampling: Like simulation warmup, sampling is performed
in detailed simulation mode. When warmup is finished, we
start treating the simulated task instances as valid samples.
When a valid sample task instance finishes simulation, its
average IPC is added to the history of valid samples and to the
history of all samples. We trigger the transition to fast mode
when one of the following two conditions is fulfilled:

1) The history of valid samples is fully populated.
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period P

2) A certain number of task instances has been simulated
without encountering any instance of a rare task type
whose history of valid samples is not yet fully populated.

The first condition means that all task types are fully sampled.
The second condition is needed to avoid spending an excessive
amount of time on detailed simulation in the presence of
rare task types. In this paper, we cut off sampling when all
threads have simulated 5 task instances without encountering
an instance of a previously observed rare task type.

Accurate Fast-Forwarding: When the transition to fast
mode is triggered, all task instances starting in the future are
simulated in fast mode. However, task instances which started
in the past are simulated in detailed mode until they complete.
Task instances finishing simulation after the transition to fast
mode are only added to the history of all samples.

A task instance simulated in fast mode is simulated with the
average IPC of the history of valid samples of its task type.
If a task instance belongs to a rare task type whose history of
valid samples is empty, we use the average IPC of the history
of all samples instead. If the history of all samples of the
corresponding task type is also empty, we trigger resampling.

Rare task types tend to occur infrequently during the
execution of an application. They account only for a small
percentage of the total instruction count of an application
and are used for infrequent tasks, e.g. setting up and deleting
data structures. We find the impact of using non-representative
samples for fast simulation of rare task types to be negligible.

One contribution of this paper is the presented fast-
forwarding mechanism for architectural simulation of task-
based parallel programs. Our technique fast-forwards each
thread at a rate depending on the task type of the task instance
currently being simulated.

C. Periodic Sampling Policy

A sampling policy decides when to resample a simulation
running in fast-forward mode. The periodic sampling policy,
illustrated in Figure 3a, warms and samples a simulation at
simulation start. Afterwards, it switches the simulation to fast-
forward mode. When a thread has executed a number P of task
instances of any task type in fast-forward mode, the simulation
is resampled. We refer to the parameter P as the sampling
period. When a simulation is resampled, the entries of the
history of valid samples are discarded. When resampling is
complete, the simulation returns to fast-forward mode and the
process repeats.
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(a) Change in number of execution threads at time ¢, thus altering average
performance due to resource contention
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Fig. 4: Illustration of changing number of execution threads
(a) and rare task type (b)

Simulation speedup is determined by the size of the sam-
pling period. The larger the sampling period, the more task
instances are simulated in fast mode. In the special case of
an infinite sampling period, resampling is never triggered by
the sampling policy. We refer to this case as lazy sampling.
Lazy sampling is illustrated in Figure 3b. If the number of task
instances of a program is too small or the sampling period is
too large, a simulation finishes during the first fast-forward
interval, before any thread has simulated P task instances. In
this case, periodic sampling is equivalent to lazy sampling.

Besides the aforementioned case of a thread having sim-
ulated P task instances in fast mode, resampling is also
triggered when it is impossible to accurately simulate a task
instance in fast mode. This happens in the following two cases.

Figure 4a shows a case where the number of threads
participating in task execution changes at runtime, e.g. when
the simulated application enters a phase exposing more par-
allelism. When the number of execution threads changes, so
does the contention on shared resources, like shared caches
and main memory. This affects per-thread performance and
invalidates previously measured samples. Resampling avoids
prediction errors due to non-representative samples.

Figure 4b shows a case where the first instance of a
new task type is encountered while simulating in fast mode.
When encountering an instance of a previously unknown task
type, the task type’s sample history is empty. Therefore, it
is impossible to simulate this task instance in fast mode. We
circumvent this problem by triggering resampling.



With this resampling strategy, both periodic sampling and
lazy sampling account for phase changes in the application.
If a new phase is implemented with different task types, the
simulation is resampled. The same holds for changes in the
available computation resources or the available parallelism.

IV. EXPERIMENTAL SETUP

In this section, we introduce the experimental setup we
use to implement and evaluate TaskPoint. First, we introduce
the task-based programming model OmpSs. Subsequently, we
present the 19 benchmarks and the two architectures we use in
our evaluation. Finally, we elaborate on the TaskSim simulator
and our implementation of fast simulation at arbitrary IPC
and show an analysis of performance variation observed in
simulation of task-based programs.

The OmpSs Programming Model: For our evaluations we
choose the OmpSs programming model [16]. The OmpSs com-
piler and runtime environment are available as open source.
OmpSs allows to declare tasks and annotate them with data
inputs and outputs. Using this information, the OmpSs runtime
system schedules task instances taking data dependencies into
account and performs synchronization only when necessary.
These OmpSs features were included into the specifications
of OpenMP 3.0 and 4.0.

Benchmarks: Table 1 lists the benchmarks used in our
evaluation. They represent a variety of workloads and are
implemented using the OmpSs programming model. While the
majority of benchmarks represent workloads common to high-
performance computing (HPC), blackscholes, bodytrack, can-
neal, dedup, freqmine and swaptions are part of the PARSEC
benchmark suite [17]. Whenever possible, we generated traces
equivalent to at least ten seconds of single-threaded execution
on a state-of-the-art machine. For the PARSEC benchmarks we
used the simlarge input sets. Table I lists the number of task
instances and the time required for a detailed simulation of
the entire benchmark for 1 and 64 execution threads using the
TaskSim simulator. TaskSim is introduced later in this section.

Simulated Architectures: We evaluate the fidelity of our
methodology by investigating simulation speedup and execu-
tion time error of multi-threaded simulations of two radically
different multi-core architectures. One resembles a server-
class system, while the other resembles a low-power mobile
platform. Table II lists the key characteristics of the simulated
architectures. The high performance architecture features a
large reorder buffer and a three-level cache hierarchy, as found
in HPC systems. The low-power architecture has a smaller
reorder buffer and two levels of cache memories, as is typical
for battery powered mobile systems. Recently, low-power
systems are gaining interest for applications in HPC [18].

The TaskSim Simulator: We evaluate our methodology
using the TaskSim simulator [19, 20]. TaskSim is a cycle-
accurate, trace-driven performance simulator for multi-core
architectures. It interfaces with an unmodified version of the
OmpSs runtime system. The runtime system schedules the task
instances of the simulated application for execution on the
simulated processor cores.

TaskSim has a detailed and a fast simulation mode. The
detailed mode is based on the Reorder-Buffer Occupancy
Analysis model proposed by Lee et al. [21]. When running in
detailed mode, TaskSim models a user-defined memory hierar-
chy including private and shared cache memories, interconnect
structures and DRAM.

In the fast mode, called burst mode, TaskSim only accounts
for the number of CPU cycles between events, in our case
between the beginning and the end of the execution of a
task instance. In the existing implementation, TaskSim reads
a task instance’s cycle count from the application trace. In the
implementation of our fast-forward mechanism, the duration of
a task instance is calculated at the beginning of its execution.
Using the mean IPC of the sample history of a task instance i’s
task type 7' and its dynamic instruction count I;, we estimate
its number of execution cycles C; according to C; = IP{TT
The result is the number of cycles it takes to execute the task
instance at an IPC of I PC'r, the average IPC of the instance’s
task type. The dynamic instruction count is read from the
application trace.

In the scope of this work, we extended TaskSim with the
capability to switch between detailed and fast-forward mode
at runtime. We also extended its fast simulation mode. Instead
of using previously recorded cycle counts from a trace, our
implementation of fast mode uses cycle counts predicted by
our fast-forward mechanism. To the best of our knowledge,
this is the first fast-forward mechanism applying different IPCs
to different parts of a program. Our mechanism allows fast-
forwarding dynamically scheduled parallel programs in which
the per-thread instruction stream is a-priori unknown. Next,
we evaluate performance variation of task-based programs
observed in simulation with TaskSim.

Figure 5 shows IPC variation across task instances in an
architectural simulation with 8 execution threads. The param-
eters of the simulated architecture match the machine used
for native execution, as far as they are publicly available.
All benchmarks showing a performance variation of less
then +5% in native execution (see Figure 1) also do so
in simulation. Conversely, three out of the four benchmarks
showing a variation larger than £5% in native execution also
do so in simulation. The exception is sparse-matrix-vector-
multiplication, which in native execution exhibits a variation
of nearly +10%, compared to less than +5% in simulation.
The three benchmarks with the largest degree of performance
variation in native execution, namely checkSparseLU, dedup
and freqmine, also show the largest variation in simulation.

Due to modelling inaccuracies in TaskSim’s detailed simu-
lation mode, the magnitudes of performance variation in native
execution and simulation do not match exactly. However, for
18 out of 19 benchmarks we correctly identify if a benchmark
exposes a performance variation of more or less than 5%.

V. EVALUATION

In this section, we conduct a sensitivity analysis of Task-
Point’s model parameters. Then, we evaluate execution time
error and simulation speedup of periodic sampling and lazy



TABLE I: Task-based parallel benchmarks used for the evaluation of TaskPoint

Benchmark # Task # Task  Simulation time [k : min| Properties
Types Instances 1 Thread 64 Threads
2d-convolution 1 16384 31:37 59:34  Kernel: strided memory accesses
3d-stencil 1 16370 9:12 40:51  Kernel: strided memory accesses
atomic-monte-carlo-dynamics 1 16384 8:38 15:16  Kernel: embarrassingly parallel
dense-matrix-multiplication 1 17576 70:14 127:10  Kernel: high data reuse, compute bound
histogram 1 16384 6:02 12:13  Kernel: atomic operations
n-body 2 25000 8:15 12:31  Kernel: irregular memory accesses
reduction 2 16384 1:51 5:15  Kernel: parallelism decreases over time
sparse-matrix-vector-multiplication 1 1024 0:33 1:26  Kernel: load imbalance, memory bound
vector-operation 1 16400 24:25 191:00  Kernel: regular, memory bound
checkSparseLU 11 22058 7:25 17:17  Decomposition of large, sparse matrices
cholesky 4 19600 33:42 59:29  Decomposition of Hermitian positive-definite matrices
kmeans 6 16337 75:21 141:02  Clustering based on Lloyd’s algorithm
knn 2 18400 31:28 65:27  Instance-based machine learning algorithm
blackscholes 2 24500 8:42 17:19  Option price calculation
bodytrack 7 21439 15:24 31:28  Human body tracking with multiple cameras
canneal 1 16384 11:13 29:38  Cache-aware simulated annealing
dedup 4 15738 10:08 23:32  Deduplication: combination of global and local compression
freqmine 7 1932 23:52 34:13  Frequent Pattern Growth method for Frequent Item Mining
swaptions 1 16384 29:27 70:25  Monte-Carlo simulation to calculate swaption prices
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Fig. 5: IPC variation across all task instances for simulation of high-performance architecture with 8 threads, normalized per

task type

TABLE II: Architectural parameters of high performance and
mobile configurations used for model validation

Parameter High-perf. Low-power
Reorder-buffer size 168 40

Issue width 4 3

Commit rate 4 3

Cache line size 64 B 64 B

L1 cache 32 kB private 32 kB private
4 cycles latency 4 cycles latency
8-way associative 2-way associative
L2 cache 2 MB private 1 MB shared
11 cycles latency 21 cycles latency
8-way associative 16-way associative
L3 cache 20 MB shared none

28 cycles latency
20-way associative

sampling. Finally, we test the robustness of our model by using
the same parameters to simulate a low-power architecture.

A. Adjusting the Model Parameters

We determine the optimal model parameters following an
incremental approach. First, we determine the optimal number
W of task instances needed for warmup at simulation start.
Afterwards, we consider different numbers of task instances
H constituting the sample history. Finally, we explore a range
of values for the sampling period P.

In order to determine the optimal value for W we set H =
10 and P = oo and evaluate different values ranging from
W = 0 (no warmup) to W = 10. Figure 6a shows error and
speedup, averaged over simulations with 32 and 64 threads.
The reported values are averaged over the benchmarks and
kernels with an error > 5% for at least one value of H, namely
2d-convolution, 3d-stencil, atomic-monte-carlo-dynamics, knn
and blackscholes. We found that W = 2 yields an average
error of less than 2%. Larger values of W do not significantly
reduce the average error, but they reduce simulation speedup.
Therefore, for the remainder of this paper, we set W = 2.

Next, we evaluate different values for H, the size of the
sample history. For this purpose, we set P = oco. Note that
we already set W = 2. Figure 6b shows error and speedup
for different sizes H of the sample history, averaged over
simulations with 32 and 64 threads of the aforementioned
benchmarks. We found that H = 4 minimizes the average
error. This value also minimizes the standard deviation of the
average error, which is not shown in the Figure. Larger values
of H do not only result in a larger average error, but also in
lower simulation speedup. Therefore, for the remainder of this
paper, we set H = 4.

Finally, we explore different sizes of the sampling period P.
With W = 2 and H = 4 already fixed, P is the only remaining
parameter. Figure 6¢ shows the average error for values of
P ranging from 10 to 1,000. We find that average error
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and speedup increase with the size of the sampling period.
The larger the value of P, more task instances are simulated
in fast mode. Since the total number of task instances of
a program is constant, the fraction of detailed simulation
decreases, resulting in increasing speedup. For P > 1000
error and speedup remain constant. At this point, none of
the investigated programs has a sufficient number of task
instances for resampling the simulation at least once and
periodic sampling becomes equivalent to lazy sampling.

We aim for a simulation error of less than 1%. A sampling
period P = 250 yields an error of 0.8% and a simulation
speedup of 15.1x, averaged over the benchmarks used in
our sensitivity analysis. In the remainder of this section, we
evaluate TaskPoint for periodic sampling with P = 250 and
for lazy sampling (periodic sampling with P = o0).

B. Periodic Sampling

First, we evaluate periodic sampling, simulating the high-
performance architecture in Table II, which we also use to find
the sampling parameters. Afterwards, we simulate the low-
power architecture using the same sampling parameters.

High-Performance Architecture: Figure 7 shows execution
time error and simulation speedup for all investigated bench-
marks, simulated with the parameters W = 2, H = 4 and
P = 250. The average execution time error is less than 2%
for 8, 16, 32 and 64 simulated threads. The error for 1, 2
and 4 simulated threads is less than 1% and not shown in the
Figure. We observe the largest simulation speedup of 76.2 for
sparse-matrix-vector-multiplication executed with 8 threads.

We observe the highest error of 8.9% in the simulation of
freqmine with 8 threads. Fregmine consists of 7 different task
types, one of which accounts for 93% of the total number of
dynamic instructions. The dynamic instruction count of the
instances of this task type ranges from 490 to 11,000,000.
Inspecting the source code reveals a construct of nested if-
statements in a task declaration. This causes different instances
of the same task type to follow completely unrelated control
flow paths. The unbalanced size across task instances makes
sampling the simulations with 32 and 64 threads ineffective.
Since these configurations are simulated almost entirely in
detail, the error is negligible and speedup is close to 1.

From this finding, we derive a recommendation to pro-
grammers for improving performance predictability of task-
based programs: One should avoid large-scale control flow
divergence among instances of the same task type. In practice,
this is achieved by declaring code performing unrelated work
as different task types.

The second largest error of 7.3% is shown by dedup for 64
threads. Dedup consists of 4 task types, one of which accounts
for 99.9% of the dynamic instruction count. The dynamic
instruction count of the instances of this task type ranges
from 3,500,000 to 25,100,000. The dominating task type
performs de-duplication as well as compression, which are
highly input dependent operations. Previous work identified
input dependence as a source of performance variation [22].
Performance variation makes it difficult to determine a task
type’s average performance during sampling.

We recognize that, in certain cases, input dependence can
not be avoided. One way to improve the accuracy of sam-
pled simulation of programs showing input dependence is to
classify task instances into classes of similar performance. We
envision clustering of instances of the same task type based on
micro-architecture independent metrics, e.g. instruction count
or instruction mix. We leave this for future work.

Next, we evaluate the generalization capability of periodic
sampling. We simulate a low-power architecture which is
radically different from the high-performance architecture we
used to determine the sampling parameters.

Low-Power Architecture: Figure 8 shows execution time
error and simulation speedup for simulations of all benchmarks
executed on the low-power architecture introduced in Table II
with 1, 2, 4 and 8 threads. We notice that, for increasing
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thread counts, speedup degrades less than in the case of
the high-performance architecture. Since we simulate smaller
thread counts, the simulation is resampled more often and the
percentage of task instances simulated in fast mode is more
similar across different thread counts.

With an error of 13.0% for 4 threads, fregmine is the
benchmark with the highest error. This is consistent with the
simulation of the high-performance architecture. We attribute
this error to the same reason as in the case of the high-
performance architecture, namely the highly imbalanced size
of the instances of the dominant task type.

We observed the second largest error of 8.4% for sparse-
matrix-vector-multiplication with 8 threads. Depending on the
structure of the input matrix, memory accesses are more or
less regular [23]. We conclude that, due to the two-level cache
hierarchy, the smaller last-level cache and the lower memory
bandwidth, this has a higher impact on performance variation
than in the high-performance architecture. This is another
example of input dependence, similar to the case of dedup
explained in the previous section.

C. Lazy Sampling

For our evaluation of lazy sampling, we set W =2, H =4
and P = oco. We simulate the benchmarks listed in Table I
executing on the high performance architecture and the low-
power architecture listed in Table II.

High-Performance Architecture: Figure 9 shows execu-
tion time error and simulation speedup of the lazy sampling
policy for the investigated benchmarks executed on the high-
performance architecture. The average error is less than 2%
for all simulated thread counts (including 1, 2, and 4 threads,
which are not shown in the Figure).

Dedup and freqgmine are still the benchmarks showing the
highest error. Compared to periodic sampling, the highest
observed error of dedup increases from 7.3% to 15.0% for
the simulation with 64 threads. In the case of fregmine, the
highest observed error increases from 8.9% to 9.6% for the
simulation with 8 threads.

While the average error of lazy sampling is comparable
to the error of periodic sampling, we observe a significant
increase of average simulation speedup. Compared to periodic
sampling, we observe the largest increase from 44.4 to 178.5
for the average speedup of the simulations with 8 threads. The
smallest gain in speedup is observed for the simulations with
64 threads, in which speedup increases from 15.8 to 19.1. For

1 thread, which is not shown in the Figure, speedup increases
from 43.2 to 1019.

Low-Power Architecture: Figure 10 shows execution time
error and simulation speedup for the low-power architecture.
We observe a marginal increase of the maximum error of
sparse-matrix-vector-multiplication and freqmine, the bench-
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marks with the largest errors in the simulations of the low-
power architecture employing periodic sampling. However, in
the case of dedup, the error increases for all simulated thread
counts. We observe the highest increase, from 3.2% to 11.3%,
for the simulation with 8 threads.

Summary: The results of our evaluation show that Task-
Point accurately predicts execution time of task-based pro-
grams. For lazy sampling, the average error is 1.8% with a
maximum error of 15% and a simulation speedup of 19.1.
We show that lazy sampling achieves much greater speedup
than periodic sampling at a comparable error. Therefore, we
advocate the use of lazy sampling for evaluations requiring
a large number of simulations, e.g. during the early phase of
design space exploration. We recommend to employ periodic
sampling in later phases of design space exploration when the
size of the design space has already been significantly reduced.

VI. RELATED WORK

In this section, we first introduce different simulators for
multi-core systems. Then, we present the prevalent tech-
niques for sampled simulation of single-threaded architectures.
Afterwards, we review recent work on sampled simulation
of multi-threaded architectures. Finally, we present work on
performance analysis of task-based programs.

Multi-Threaded Architectural Simulation: COTSon [10]
is a full-system simulator decoupling functional and timing
simulation. Functional simulation relies on just-in-time com-
pilation of the simulated program. COTSon features several
levels of detail and supports sampling.

In addition to performance, ESESC [24] also simulates a
future design’s power consumption and thermal behaviour.
ESESC is the first simulator applying time-based sampling
to simulation of multi-threaded applications.

The full-system simulator gem5 [11] features CPU models
at several levels of detail, ranging from a model employing
native execution to a detailed model of a superscalar out-of-
order CPU. Besides others, gem5 supports the x86 and ARM
architectures, which are the most prevalent architectures today.

In contrast to the aforementioned simulators, Sniper [25]
features a purely analytic CPU model. Instead of modelling
micro-architectural structures within the CPU, it employs the
mechanistic Interval Simulation model [26]. The higher level
of abstraction of interval simulation is directly reflected in a
higher simulation speed, compared to more detailed models.

Single-Threaded Simulation Sampling: In their SimPoint
methodology [1], Sherwood et al. use basic block vectors
to identify the most representative code sections. The major
simulation effort is spent on these sections SimPoints requires
a-priori profiling of the application to be simulated in order to



identify basic block vectors.

SMARTS [2] and TurboSMARTS [27] switch periodically be-
tween warmup, detailed simulation and fast-forward. Warmup
makes sure that simulated micro-architectural structures are in
a representative state. After warmup, the performance metrics
of interest are measured in detailed mode. Fast-forward mode
only performs functional simulation maintaining the correct
architectural state of the simulated program. The durations of
the respective intervals are user-specified parameters.

Multi-Threaded Simulation Sampling: There are recent
techniques applying sampling to simulations of multi-threaded
programs. Carlson et al. [3] apply time based sampling [28]
to parallel programs. Short detailed simulation phases take
turns with longer fast-forward phases, resulting in an overall
reduction of simulation time. The fast-forward mechanism
employs functional simulation, using the average IPC of the
previous detailed simulation phase in order to approximate
the progress rates of different threads. The lengths of the
sampling and fast-forward intervals are determined during
profiling using micro-architecture independent metrics.

BarrierPoint [4], also proposed by Carlson et al., first
analyzes micro-architecture independent performance metrics
of program sections between global barriers. Afterwards, the
SimPoint infrastructure [1] identifies clusters of those inter-
barrier regions with similar performance. Simulation time is
reduced by simulating only one representative out of each
cluster. BarrierPoint achieves an average simulation speedup
of 24.7 with an average execution time error of 0.9%. This
shows that leveraging the nature of a parallel programming
model can lead to significantly higher simulation speedup.

In their Multilevel Simulation technique, Gonzalez et al. [29]
identify representative phases (CPU bursts) of programs im-
plemented in the Message Passing Interface (MPI) program-
ming model. These representative CPU bursts are identified
during profiling prior to simulation and are afterwards simu-
lated in detail. The obtained performance information is then
used to extrapolate the overall program performance.

In dynamically scheduled task-based programs, the work-
load processed by each thread varies across different exe-
cutions. This makes it impossible to statically determine the
representative sections of a program. Therefore, the existing
sampling techniques for multi-threaded applications are not
directly applicable to task-based programming models.

Warming in Multi-Threaded Simulations: Warming for
single-threaded simulations has been extensively studied [1,
2, 12, 13, 14, 30]. The technique used by the BarrierPoint
methodology combines two existing methodologies, namely
functional warming [13] and checkpointing [14]. The resulting
technique uses dynamic instrumentation to track the most
recent memory accesses on a per-cache-line basis. Afterwards,
this information is used to restore cache state at the beginning
of each detailed simulation interval.

Luo et al. [15] propose Self-Monitored Adaptive Cache
Warm-Up (SMA), a technique not requiring profiling prior to
simulation. Every cache in a simulated system monitors its
fraction of used lines over time. When this fraction passes a
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threshold or remains constant during a certain time, a cache
is considered warmed. The authors evaluate SMA for single-
threaded simulations. However, there are no fundamental rea-
sons impeding its applicability to multi-threaded simulations.

Performance Variation in Task-Based Programs: Recent
work [22] shows that execution time of task-based programs
is predictable. Generally, instances of the same task type
show similar execution time and performance. If task instances
compete for shared resources in multi-threaded executions,
their execution time increases. Contention on shared resources
also increases performance variation across task instances.
Olivier et al. [31] investigate the effect of increasing execution
time of task instances in case of resource sharing. They refer
to the effect as work time inflation.

VII. CONCLUSIONS

Previous sampled simulation techniques for parallel pro-
grams rely on profiling to identify the parameters of the
sampling mechanism. Although those techniques have been
proven to be accurate for statically scheduled fork-join based
programs, they are not directly applicable to dynamically
scheduled task-based parallel programs.

The proposed methodology enables sampled simulation of
task-based parallel programs. Sampling units are identified
based on the partitioning into tasks provided by the program-
mer. Between detailed simulation phases, we employ a novel
fast-forward mechanism, which correctly reflects the different
progress rates of task instances belonging to different task
types and adapts to phase changes in the simulated application.

We assessed TaskPoint’s generalization capability by using
two radically different architectures to select sampling param-
eters and to run simulations. The evaluation results are satis-
factory across a wide range of benchmarks, different numbers
of simulated threads and different architecture models. The
average simulation error is less than 2% at an average speedup
ranging from 19x for 64 threads to 1019x for 1 thread.
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