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Abstract

We present research aiming to build tools for the normalization of User-Generated Content (UGC). We
argue that processing this type of text requires the revisiting of the initial steps of Natural Language
Processing (NLP), since UGC (micro-blog, blog, and, generally, Web 2.0 user generated texts) presents
a number of non-standard communicative and linguistic characteristics – often closer to oral and col-
loquial language than to edited text. We present a corpus of UGC text in Spanish from three different
sources: Twitter, consumer reviews and blogs, and describe its main characteristics. We motivate the
need for UGC text normalization by analyzing the problems found when processing this type of text
through a conventional language processing pipeline, particularly in the tasks of lemmatization and
morphosyntactic tagging.

Our aim with this paper is to seize the power of already existing spell and grammar correction engines
and endow them with automatic normalization capabilities, in order to pave the way for the applica-
tion of standard NLP tools to typical UGC text. Particularly, we propose a strategy for automatically
normalizing UGC by adding a module on top of a pre-existing spell checker that selects the most plau-
sible correction from an unranked list of candidates provided by the spell checker. To build this selector
module we train four language models, each one containing a different type of linguistic information in a
trade off with its generalization capabilities. Our experiments show that the models trained on truecase
and lowercase word forms are more discriminative than the others at selecting the best candidate. We
have also experimented with a parametrized combination of the models, both by optimizing directly on
the selection task and by doing a linear interpolation of the models. The resulting parametrized combina-
tions obtain results close to the best performing model but do not improve on those results, as measured
on the test set. The precision of the selector module in ranking number one the expected correction
proposal on the test corpora reaches 82.5% for Twitter text (baseline 57%) and 88% for non-Twitter
text (baseline 64%).
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1 Introduction

The Web 2.0 has become a channel where users exchange, explain or write about their lives and

interests, give opinions and comment on other people’s opinions, most of the time using a casual

language. This language often presents peculiarities that make it much closer to transcriptions

of oral language than to standard edited text. Opinion mining techniques, just to mention an

example, are becoming an important source of information for market research, social network

analysis or learning analytics (Pang and Lee, 2008). In order to mine data or extract information

from Web 2.0 we first need to understand its contents. Shortened or misspelled words, which are

frequent in the Social Media informal style, increase the ambiguity and interpretation possibilities

for the same word form, and pose a challenge to the achievement of certain Natural Language

Processing (NLP) analysis tasks such as tokenization, part-of-speech (PoS) tagging or Named

Entity Recognition, as reflected in the literature – (Foster et al., 2011; Muñoz-Garćıa and Navarro,

2012; Maynard et al., 2012; Aminian et al., 2012).

NLP techniques, which are used to provide linguistic representations from unstructured data,

are typically developed to deal with standard language and may not yield the expected results

on User Generated Content (UGC) text. As we discuss later in this section, several approaches

have been tried to tackle this problem either by adapting the tools to the text or else by adapting

the text to the existing tools, through a process generally known as ‘text normalization’.

The structure of the article is as follows. We start by explaining our motivation and reviewing

related work. We then present our findings on what characterizes UGC text in Spanish, based

on a corpus study. We then explore the problems caused by UGC text to the performance of a

pre-existing NLP tool for the analysis of Spanish text, by comparing the results of parsing two

versions of the same UGC text: as-is and manually corrected. Finally, we present and evaluate

an approach to text normalization that uses a module for the automatic selection of correction

candidates; this module is built on top of a pre-existing spell checker.

1.1 Motivation

Pang and Lee (2008) show the relevance that the analysis of UGC text has for the analysis

of product and service reputation and political trends. While the processing of large amounts

of UGC data on the basis of frequencies of (mainly) words or correlated structured data (e.g.,

the use of star-based recommendation scales) have successfully characterized global opinion and

reputation trends, depending on the granularity of the task at hand a more fine-grained charac-

terization is required – e.g., Pang and Lee (2008), Gianfortoni et al. (2011). The non-standard

characteristics of UGC text seem to be one of the main obstacles and challenges in this respect

(Ritter et al., 2011; Maynard et al., 2012; Muñoz-Garćıa and Navarro, 2012).

It is often said that UGC text, as found in social media sites, resembles more oral language than

regular edited text, such as news – which is the kind of text on and for which most NLP tools have

been trained. However, studies of computer-mediated communication in the field of descriptive

linguistics suggest that social media text is a language mode in itself (Herring, 2012a). The

linguistic characterization of UGC text is a research line that might provide interesting insights

into the automatic analysis of UGC – see Bender et al. (2011), Gouws et al. (2011) or Eisenstein

(2013).

Researchers in opinion mining and sentiment analysis often attribute the inaccuracies of their

NLP-based systems to the lower performance of the standard NLP tools when applied to noisy,
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or ill-formed, language – though Bermingham and Smeaton (2010) argue that text length and

noise might be less of a disadvantage when performing sentiment analysis on Twitter texts.

Several studies have investigated the effect of UGC characteristics on the performance of standard

NLP tools. Some have found that UGC text characteristics affect the performance of tasks such

as topic detection (Muñoz-Garćıa and Navarro, 2012), constituency parsing and dependency

parsing (Foster, 2010; Foster et al., 2011), Named-Entity Recognition (NER) (Ritter et al., 2011;

Muñoz-Garćıa and Navarro, 2012; Maynard et al., 2012), and tokenization (Aminian et al., 2012).

Different text cleansing or normalization strategies have been pursued to improve the performance

of standard NLP tools for their application to social media text.

The contributions of this article are i) the presentation and characterization of a UGC corpus

in Spanish, and ii) the description of a normalization strategy that, exploiting the power of pre-

existing spell and grammar correction tools, allows for broad-coverage normalization including

the normalization of the tokenization of non-standard words. In this respect, this paper supposes

a novelty both in the strategies for normalization and in the inclusion of tokenization in the

normalization task.

1.2 Related work

In this section, we review research on three different topics: the definition of text normalization as

a task, the different approaches to text normalization and the strategies found in the literature for

ranking correction candidates in an automatic correction task, as opposed to a human-machine

interactive correction task.

1.2.1 Text normalization as a task

Text normalization is a term that has been used in the field to refer to a task that consists of

transforming an original piece of text into a different piece of text in which some words have

been converted to a normal form. The definition of norm, or normal form, depends on the task

to be performed after normalization. Thus, Sproat et al. (2001), in one of the classical papers

on the topic, present work on the normalization of text to be given as input to a text-to-speech

synthesis engine, and claim that a similar approach could be applied to speech recognition and

information extraction tasks.

However, the norm of a text-to-speech synthesis is not necessarily the same as the norm for

information extraction – to the extent that misspellings are not tackled in Sproat et al. (2001)’s

article, for speech synthesis requires a word form to be obtained that can be ‘said aloud’, while

information extraction requires a word form that can be interpreted or (lexically) analyzed. This

poses the interesting question of how linguistic ‘norm’ is actually defined, a topic that we briefly

take up below.1 A recent paper by Eisenstein (2013) addresses the issue of how the different

ways in which social media text deviates can be influenced by different aspects: keyboard used,

writer’s literacy, writer’s intentions –pragmatics–, medium’s length, and actual social variables.

This paper interestingly suggests how UGC, and again Twitter in particular, can be seen as a

real-time observation platform of language as an evolving social communication tool.

1 Arguably one might not be able to obtain a normal form for text-to-speech without the normal written
form, but the task’s goals are certainly different.
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Another interesting issue is the type of text on which the normalization task is performed.

While Sproat et al. (2001) work with four different types of text (newspaper text, real estate ads,

and servlist texts on the topics of palmtop computers and cooking recipes), most later papers deal

either with SMS texts – see for instance Choudhury et al. (2007), Kobus et al. (2008), or Cook

and Stevenson (2009) – or Twitter text – see for instance Clark and Araki (2011), Brody and

Diakopoulos (2011), Foster et al. (2011), Han and Baldwin (2011), Hassan and Menezes (2013)

or Eisenstein (2013). Also, Liu et al. (2012) have worked on both SMS and Twitter datasets.

1.2.2 Approaches to text normalization

We find two main different ways of dealing with UGC text processing, which can be complemen-

tary. The first one focuses on adapting tools and algorithms to this type of text by annotating

UGC corpora and training the corresponding tools from scratch (Michelson and Knoblock, 2005;

Ritter et al., 2011), while the second one focuses on transforming the source UGC text into a

normalized version before handling it over to the processing tools (Kobus et al., 2008; Agarwal

et al., 2011; Liu et al., 2012). There are some attempts at combining both methods by adapting

or extending the training models while, at the same time preparing the input text, by normalizing

some of the UGC related phenomena (Foster, 2010; Foster et al., 2011).

Kobus et al. (2008) present an interesting discussion on three different “metaphors” or ways of

looking at SMS language, a type of text that has some features in common with UGC text. Each

of these views motivates a different approach to the normalization task. In the first approach, each

input token is taken as a deviation of the correct word form, and normalization is thus viewed as

a spell checking task. The second metaphor considers SMS language as a different language, and

so normalization can be viewed as a machine translation task. Finally, it is possible to consider

normalization as a speech recognition task because some people consider SMS as being closer

to oral productions than to regular written texts. In fact, SMS spellings tend to be a closer

approximation to the phonemic representation of a word than to its normative spelling, though

in this context “typography and orthography take over the functions of sound” (Herring, 2012b).

Most of the attempts at text normalization are based on empirically obtained lists of frequently

observed phenomena, as in Foster (2010), Kobus et al. (2008) and Agarwal et al. (2011), though

some research applies more generalist approaches (Alonso, 2010). Zhu et al. (2007) present an

approach to text normalization (of e-mails and blog posts) that uses a Conditional Random Fields

algorithm with a lot of features and compare it with two other classical normalization methods.

Zhu et al. (2007)’s approach tackles the normalization task as a tagging problem, where the

different normalization transformations required are performed on each token depending on its

type (line break, space, punctuation, word and special). Clark (2003) and Clark and Araki (2011)

use rule-based approaches while Henŕıquez Q. and Hernández (2009) approach the task using

a statistical machine translation system trained on original texts and their semi-automatically

corrected version. More recently, Hassan and Menezes (2013) have shown how a version of Markov

Random Walks can be used to train a normalizer on a small manually corrected corpus – without

any further labeling.

Finally, Liu et al. (2012) propose what they call a broad-coverage normalization algorithm,

meaning it should be domain independent, which includes a module grounded on visual priming

theories that favor the occurrences of words closer or related to words that have already been seen

in the text. They combine this strategy with letter sequence modeling –that to a certain extent
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resonates as a simplification of Zhu et al. (2007)’s approach– and standard spell checking tech-

niques to generate lists of alternatives to non-standard tokens, though they assume normalized

tokenization.

Our aim in the present work is to seize the power of already existing spell and grammar

correction engines and endow them with automatic normalization capabilities, in order to pave

the way for the application of standard NLP tools to typical UGC text. In this respect, our

research is closer to Liu et al. (2012)’s research, since they aim at the implementation of a broad

coverage normalization strategy.

1.2.3 Correction candidate selection

N-gram models have been used for the detection2 and correction3 of misspellings in isolated

words since the late 1980’s (Kukich, 1992). Church and Gale (1990) demonstrate the potential

of word bigrams to improve the accuracy of isolated word correction Mays et al. (1991) used

trigram models and obtained 76% accuracy in detection and 73% accuracy in correction. Hodge

and Austin (2003) integrate Hamming distance and n-gram algorithms that have high recall for

typing errors and a phonetic spell-checking algorithm in a single architecture. Ahmed et al. (2010)

propose a spell checker that works by selecting the most promising candidates from a ranked

list that is derived from n-gram statistics and lexical resources. Other approaches that correct

spelling include rule-based techniques (Mangu and Brill, 1997), a noisy channel model (Brill

and Moore, 2000; Toutanova and Moore, 2002) and a ternary tree search (Martins and Silva,

2004). As far as we know, little work has been made to date on the subject for Spanish, with the

exception of Alonso (2010). Alonso uses a normalization approach based on a strategy to group

words into clusters by computing the Levenshtein edit distance between each new (unknown)

word and a series of word clusters – her work is rather a classification task for out-of-vocabulary

words, more than a candidate selection task.

2 Corpus-based characterization of UGC text in Spanish

As a reference corpus to study UGC related phenomena, we have collected a sample of texts in

Spanish from the following sources: blogs (collected using Google Blog Search), hotel reserva-

tions (booking.com), consumer reviews in three different domains (ciao.es) and Twitter. In the

following sections, we describe the corpus size, source distribution and the annotation rationale.

2.1 Corpus size and distribution

The total size of the corpus is 7,583 sentences, or 192,417 words. Table 1 shows the size of the

corpus in terms of sentences and words, and the corresponding percentage of each source. The

Ciao site comprises texts from three different domains: cars (61%), mobile operators (12%) and

banking (26%). The last row shows the ratio between the number of running words (total number

of words) and the vocabulary size (number of different words appearing at least once, i.e. word

types). The figures indicate that Twitter and Booking texts present a greater lexical variation –

2 Detection is the task of finding words or expressions that do not appear in a specific lexicon or that
do not respond to a particular morphological pattern for word formation.

3 Correction is the task of providing one or more proposals for a given error, possibly as a ranked list.
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which can be accounted for by these being less topic-focused types of texts compared to ciao.es

texts.

Total Twitter Blog Booking Ciao

No. of sentences 7583 20% 21% 2% 57%

No. of words 192417 14% 23% 1% 62%

Ratio words/word types 6 3.1 6 3.4 7.6

Table 1. Corpus size in sentences and words, and ratio of word types (the lower the ration, the

higher is the number of word types per total number of words).

2.2 Annotation rationale

The normalization of ill-formed text presupposes a definition of norm. The concept of norm may

vary from one linguistic community to the other. For example, norm is reached by consensus

in the English-speaking world, but it is dictated by a prescriptive institution for Spanish (Real

Academia Española de la Lengua, RAE) or French (Académie Française). In addition, within a

particular community or corporation it can be further restricted with arbitrary norms, as is the

case of controlled languages for machine-translated manuals or corporate guidelines in publishing

houses. In the English speaking world of NLP, one could argue that the norm for tagging and

parsing is the Wall Street Journal, since it has become the de facto standard.

In our case the norm is the one underlying our dictionary, which mostly follows the RAE, and

thus includes the most common Latin American spellings and words. For instance, our dictionary

includes both futbol (strength on the o) and fútbol (strength on the ú). From the perspective of

NLP, the norm is further restricted by the arbitrary decisions regarding the linguistic apparatus.

If the processing pipeline is not able to recognize one particular word it will not identify it as

belonging to the language; and it will fail to assign the corresponding lexical and morphosyntactic

features.

As suggested in the introduction, the normalization of text for text-to-speech (TTS) is also

different from the normalization of text for text mining. For instance, in a TTS task the highway

name m40, as written in the tweet captured in Figure 1, would eventually result into eme cuarenta

[em forty], while in an text mining text it would stop in M-40 – which might be an intermediate

state for the TTS task.

We agree with Eisenstein (2013) in that we argue that “[n]ormalization is often impossible

without changing the meaning of the text” given the social and pragmatic implications that

UGC text entails.

2.3 Annotation procedure

The reference corpus was manually corrected. Textual deviations were reviewed, corrected and

classified by three different annotators (none of which is involved in the research work). Each
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Fig. 1. Real twitter text containing the highway name m40 for M-40.

annotator annotated a different set of texts, so inter-annotator agreement cannot be calculated.

Texts were not randomly assigned to annotators, but all annotators ended up annotating at

least two different text genres or domains. Each deviation from standard language norms, was

identified, classified and corrected. They were instructed to perform their task in two steps:

Step 1 Localization and correction

1. Search for deviating forms

2. Mark the span of the deviating form using square brackets

3. Write the alternative normalized version of the text within the brackets

4. Write the number of tokens originally involved in the deviation

Step 2 Classification

5. Classify the deviating form according to the following typologies:

(a) Linguistic type

(b) Transformation type

Annotators, all of whom had a degree in either theoretical or applied linguistics, were given

the instructions in print with no examples. Weekly meetings were organized where annotators

could share their findings and doubts and check their progress with us. The annotation process

itself lasted for about three weeks with the annotators working part-time. An example of the

annotation format and how this format was later converted into an XML format is described in

Section 2.3.3.

2.3.1 Annotation of linguistic type

On the basis of an exploratory inspection of the data, we classified norm deviations into the

following types:

Capitalization The text is capitalized for emphasis or emotive purposes, or else proper nouns

are not capitalized: “y NO es broma” [NOT kidding] for “y no es broma” or “me recorro

españa” [I go around spain] for “me recorro España”.

Accentuation Graphical accents are omitted: “en numeros rojos” for “en números rojos” [in

the red].

Punctuation Punctuation signs are omitted or reduplicated; this includes also omission of blank

spaces: “Te quiero!!!!!!!” for “¡Te quiero!” [I love you!], “aver” for “a ver” [let’s see].

Informal Spelling All systematic shortcuts and character substitutions intentionally made by

the user: “pq” for “porque” [because], “t kiere muxo” for “te quiere mucho” [he loves you

so much].

Spelling errors All spelling errors not included in the previous categories, including conven-

tional misspellings, such as “oie” for “oye” [listen] or “targetas” for “tarjetas” [cards]; typos,
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such as “dicindo” for “diciendo” [saying]; and intentional or unintentional reduplication of

characters: as in “cooordenadas” for “coordenadas” [coordinates] , “alistarmeeeee” for “al-

istarme” [join up] or “frrrrrŕıo” for “fŕıo” [cold].

Other errors (lexical, syntactic): e.g., agreement errors or missing prepositions: “delante mi

casa” for “delante de mi casa” [in front of my house], “mucho gente” for “mucha gente”

[lots of people].

Arguably some of the above categories could have been divided into finer-grained ones. For

instance, the two types of capitalization phenomena that we exemplify are quite distinct in

nature: one can be attributed to an intentional communication goal to emphasize some idea,

the other is rather a relaxation of standard spelling norms. Similarly, spellings like “frrrrrŕıo”

could be included in the category informal spelling, instead of spelling error. However, we could

not distinguish the reduplication of letters owing to slips of the keyboard – presumably like

“cooordenadas” – from those due to an intentional communication goal. We decided to keep

the annotation process as simple as possible at this stage of the research – see also Brody

and Diakopoulos (2011), a study exclusively devoted to the analysis and exploitation of letter

reduplication for sentiment analysis of Twitter, which suggests that the semantic interpretation

of certain UGC characteristics is a task in itself.

2.3.2 Annotation of transformation operations

Annotations included also the type of transformation operation with respect to the normalized

version that a given deviation involves. The transformation operations we adopted are derived

from Damerau (1964):

Addition A character or word is added, as in ‘dijo de que vendŕıa’ for ‘dijo que vendŕıa’.

Omission A character or word is omitted, as in “dicindo” for “diciendo” or as in “delante mi

casa” for “delante de mi casa”.

Substitution One or more character or words are replaced by others, as in “t k iere muxo” for

“te quiere mucho”, where ‘k’ replaces ‘qu’ and ‘x’ replaces ‘ch’.

Transposition One character or word is placed before or after the expected position, as in

“uatobús” for “autobús”

Duplication A character or a word is repeated one or several times, as in “frrrrrŕıo” for “fŕıo”.4

2.3.3 Annotation format

With the instructions described in Section 2.3, annotators would correct a fragment like the one

shown in (1) into something like the fragment shown in (2).

(1) (...) estéticamente a la mayoria dela gente no gusta por su forma (...)

(2) (...) estéticamente a la [1 mayoŕıa] [1 de la] no gusta por su forma (...)

Manual annotations were then automatically extracted and a table was generated. In a second

step, they were manually classified by annotators into one of the categories described above. As

a result, we obtained a table of error-correction pairs like the ones exemplified in Table 2.

4 This is admittedly a subset of the deviations accounted for by addition transformation operations, but
its high frequency and relevance in UGC texts justifies a category in its own.
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Deviation Correcction Ling. Type Transform. type

mayoria mayoŕıa Acc Subst

dela dela Punct Om

q que InfSpl Om

∅ la Other Om

diviertansee diviértanse Acc Subst

diviertansee diviértanse SplErr Add

(..)

Table 2. Table for deviation categorization completed by annotators in Step 2 of the annotation

process.

Fig. 2. XML annotation sample.

The initial manual annotation was mapped into an XML annotation scheme. This scheme is

scalable and compatible with the Text Encoding Initiative (TEI) conventions. It is conceived

as a stand-off annotation: instead of mixing the data with the metadata, the original text is

preserved as-is while the annotation forms a separate layer, linked to the original text through

offset indicators.

Figure 2 shows the annotation for the sentence “concerteza amooor=)”, a real Twitter mes-

sage. The normalized version is “|Con| |certeza| |amor| |=)|”, where the three original tokens,

including a space, result in four normalized tokens, including three spaces. The word ‘con’ ap-

pears capitalized – because it is the beginning of a sentence – and the word ‘amooor’ is reduced to

‘amor’. Both instances of annotation show how multiple annotation of deviation types is possible,

since more than one <dev>-tag can be assigned to the same normalized sequence of characters.

2.4 Distribution of deviation types across the different text sources

Overall, the rate of deviated input in our UGC reference corpus is quite high: over a fifth of the

word types (20.8%) contain some error or deviation. This rate varies depending on the types of

texts ranging from 4.62% in more edited text, such as blog posts, to over 25% in Twitter and

informal consumer reviews. Note that this percentage is calculated on word types, not on word

instances. The actual rate of error in word instances, as computed on the total number of words

in the corpus, is around 5.7%.
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Table 3 shows the percentage of word types that were manually corrected with respect to

the total number of word types in each corpus, classified by error or deviation type. With minor

exceptions, the frequency distribution of the deviation types does not exhibit significant variations

across the different text sources.

Due to their relative frequency, three types of deviations clearly stand out over the rest:

spelling errors, capitalization and accentuation. Even though the “Spelling errors” class in our

classification includes reduplications with expressive or emotive purposes, most of the instances

are “ordinary” orthographic errors, which, together with accentuation problems are well handled

by conventional spell checkers. This fact has partly motivated the strategy we have chosen to

deal with UGC text normalization, as we explain in Section 4.

SplErr Cap Acc Punct InfSpl Other Total

Twitter 8.11 7.29 6.25 1.77 1.52 0.68 25.62

Blogs 2.64 1.38 0.41 0.12 0.01 0.06 4.62

Booking 3.71 1.71 8.71 0 0.57 1.56 16.26

CIAO-Banking 4.98 12.34 9.68 0.35 0.14 0.08 27.57

CIAO-CARS 8.95 5.47 7.99 1.86 0.28 0.50 25.05

CIAO-MOBILE 5.70 10.84 9.78 1.47 0.68 0.93 29.4

Total (cross-domain) 6.31 6.30 6.08 1.11 0.57 0.43 20.8

Table 3. Percentage of deviations (in terms of word-types) according to its linguistic type,

across genres.

2.4.1 Characteristics of Spanish UGC and English UGC

There is relatively little research on the characterization of the specificities of UGC. However,

Sproat et al. (2001) and Han and Baldwin (2011) offer some interesting information. Sproat et al.

(2001) find that the percentage of “non-standard words” (NSW) in newspaper text is 8.8%, 43.4%

in real state ads, 27.3% in servlist emails on the topic palmtop computers, and 22% in servlist

emails on cooking recipes. Sproat et al. (2001) include in the NSW category phenomena such as

abbreviations (adv for advertisement, N.Y. for New York, or gov’t for government), any textual

items including numbers (from phone numbers to car models), non-spoken elements (certain

punctuation or token boundaries), and spelling errors or funny spellings (sic).

Han and Baldwin (2011, p. 370–371) provide information on the OOV rate found in newspaper

text, SMS and Twitter text. Their findings show that both Twitter and SMS present a larger

percentage of OOV words independent of the size of the percentage of the corpus looked at, while

newspaper text presents a more Zipfian distribution of OOV words – that is, the more text you

look at, the fewer newer or unknown words are found. One other interesting finding is that OOV

words in SMS tend to be personal names. Last but not least, Han and Baldwin find also that

the most frequent reason for “ill-formed” words are missing or extraneous letters, 72.44%, while
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the second most frequent reason is “slang” – words found in a slang dictionary available on the

Internet.

Though our findings are not fully comparable to those in the two previous references, we can

see that our blog corpus is the one that presents the lowest deviation rate – comparable to

newspaper text if we take into account that Sproat et al. (2001) were looking to a wider variety

of non-standard forms. In contrast, our other corpora present very high rates of deviations –

which are in line with the findings of both Sproat et al. (2001) and Han and Baldwin (2011) in

their less formal types of texts.

3 Processing UGC text

Our hypothesis is that the percentage of deviations present in UGC text will have an impact on

the performance of standard NLP tools. In a similar experiment, Foster (2010) detects problems

with the handling of long coordinated sentences (mainly in the presence of erratic punctuation

usage), domain-specific fixed expressions and unknown words.

To gauge the impact of deviations on the linguistic processing of UGC text, we processed the

original version of the corpus and the manually corrected one, using a conventional linguistic

processing pipeline for Spanish (Rodŕıguez et al., 2010). The pipeline consists of general-scope,

state-of-the-art linguistic tools, not specifically adapted to UGC text, integrated on a UIMA

platform.

We then compared the outcome in terms of changes in the resulting annotation. According to

our analysis, the differences in the results of processing the two versions amount to 30% to 100%

of the tokens, with a varying percentage depending on type of error, task and domain, as we see

below.

3.1 Impact on lexical coverage

As we had expected, the normalization of the input increases lexical coverage (see Gouws et al.

(2011) on the effects of normalization on lexical coverage). Table 4 shows the percentage of words

– in terms of individual instances and word types – covered by the system’s lexical resources in

the original and in the manually normalized version. These values are notably lower for Twitter

than for the rest of the sources.

The increase in coverage after normalization is shown between brackets. This increase turns

out to be more evident in the comparison of word types than in the comparison of word instances,

perhaps as a side effect: The normalization of deviated forms is actually decreasing the number

of hapax (words occurring only once).

3.2 Impact on the performance of three basic NLP processing tasks

We investigated the effect of normalization on three basic NLP processing tasks: (i) lemma-

tization, (ii) part-of-speech tagging (short-tag or syntactic category), and (iii) assignment of

morphosyntactic features (gender, number, tense...). These tasks are at the root of more com-

plex or higher level processing tasks, and errors at this level are likely to propagate and affect

other tasks such as constituent analysis, dependency relation identification, NERC, and other

NLP tasks (see for instance Grefenstette and Tapanainen (1994), Chung and Gildea (2009) or

Mohamed (2011)).



12 M. Melero and others

Original Normalized

Twitter I 81.3 83.7 (+2.4)

T 65.6 68.8 (+3.2)

Blog I 95.5 96.3 (+0.8)

T 86.6 89.0 (+2.4)

Booking I 97.4 98.9 (+1.5)

T 92.0 96.2 (+4.2)

Ciao I 95.4 96.8 (+1.4)

T 80.4 85.4 (+5.0)

Table 4. Percentage of word coverage (instances, I, and types, T) in both the original and the

corrected versions.

Lemmatization PoS tagging Morphosynt. features

Blog 94.6 43.8 62.6

Booking-Ciao 88.6 43.7 65.5

Twitter 85.4 49.8 64.5

Total corpus 89.6 45.8 64.2

Table 5. Percentage of deviating words incorrectly analyzed, by domain.

Table 5 shows the percentage of words for which a change in the resulting linguistic analysis

is found after normalization 5 . In general, results are fairly uniform across the three genres.

On the one hand, we observe that lemmatization is very sensitive to the presence of error. The

percentage of wrong lemma assignment to erroneous, or non-normalized, word forms is 90%

overall, and between 85% and 95% depending on the corpus.

On the other hand, assignment of syntactic category is generally quite robust to deviation,

since only less than half of the non-normalized word forms (around 46%) change their category

assignment after having been corrected or normalized, while the proportion of wrong assignment

of morphosyntactic features is a little higher, around 64%, across genres.

Table 6 presents the same information broken down by deviation type, for the four most

frequent types. Capitalization turns out to be the least detrimental across these basic tasks,

while accentuation is particularly harmful, even for a robust task such as PoS tag assignment

(main grammatical category).

As we can see in Table 6, lemmatization is likely to be inaccurate for most deviated words.

5 The NLP tools used for the analysis are state-of-the-art and provide reasonable results, therefore any
change in these results as a consequence of manually normalizing the input can be safely assumed to
be positive, or at least neutral. Manual verification of a random sample showed only positive changes.
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Lemmatization PoS tagging Morphosynt. features

Capitalization 68.3 29.5 56.3

Accentuation 97.8 65.2 75.9

Spelling errors 97.9 56.0 71.1

Punctuation 99.8 46.1 59.1

Table 6. Percentage of deviating words incorrectly analyzed, by type of error.

These results are consistent with previous findings in the field, where the analysis of lexical items

was found to be particularly sensitive (e.g., Han and Baldwin, 2011, p. 370–371, Gouws et al.,

2011, p. 28). Lemmatization errors increase the variability for the same concept and thus are

likely to affect most semantic related tasks.

4 Building a normalizer on top of an existing spell checker

The large presence of deviated forms in UGC text and its costly impact on the performance of

NLP tools convinced us of the need for a specific solution that addresses the problem of processing

of this type of text. As discussed in Section 1, we find two approaches dealing with this issue

in the literature: either transform the input text (i.e. normalize it) or adapt the tools (e.g. by

retraining the models). While the second option is feasible mostly for statistically trained tools

(which is the case for Foster (2010)), the first option should work for any tool, statistical and

rule-based, and it is the course we have followed in this work.

Among the different approaches to normalization presented in Section 1 we have chosen to

view normalization as a spell checking task, particularly motivated by the high rate of typical

orthographic errors (including accentuation) in UGC text. For this purpose we have built an

automatic normalizer on top of the Spanish version of COTiG, a spell and grammar checker first

developed for Catalan (Quixal et al., 2008).

A key difference between a regular spell checker and a normalizer is interactivity with an end-

user. The lack of interactivity in the normalization task has an important implication: a specific

strategy has to be put in place to rank possible correction candidates and decisively choose the

best one over the whole set. The rest of the article deals with the development of a dedicated

selector module that ranks the list of correction candidates proposed by the spell checker and

selects the highest ranked one.

There are other important aspects that need to be addressed to effectively turn a regular spell

checker into a normalizer. A main concern is the rate of false positives. If over-correcting may be

annoying for the user of a spell checker, over-normalizing, i.e. introducing unwanted changes to

the original text, can be invalidating for a normalizer. Out of vocabulary words are one of the

main sources of false positives. A straightforward way to deal with this is using larger dictionaries

or dictionaries adapted to the domain in question. Moreover, typical UGC phenomena, such as

informal spellings or emoticons may not be appropriately dealt with by using standard spell

checking procedures, such as edit distance algorithms; thus, ad hoc or specific strategies to

approach these phenomena may also be required.
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5 Selection of the right candidate using language models

The output of the spell checker consists of an unordered list of correction candidates obtained

through the application of its own algorithms for the generation of correction proposals, based on

simple editing-distance criteria. For instance, given a sentence such as aunque mire otros coxes

de la misma categoŕıa [even if I look at other cars of the same type], the list generated by the

spell checker for the word coxes (coches [cars] intended) looks as shown in Figure 3.

<devs begin="318" end="322" original="coxes">

<proposals>

<proposal id="1" > boxes </proposal>

<proposal id="2" > comes </proposal>

<proposal id="3" > coses </proposal>

<proposal id="4" > coches </proposal>

<proposal id="5" > coxas </proposal>

<proposal id="6" > coges </proposal>

<proposal id="7" > corres </proposal>

<proposal id="8" > coxis </proposal>

<proposal id="9" > coles </proposal>

<proposal id="10"> boches </proposal>

<proposal id="11"> coces </proposal>

</proposals>

</devs>

Fig. 3. Output of the normalizer in XML format containing a list of correction candidates.

To select the most probable correction among a set of candidates, we experimented with the

use of different trigram models trained on an in-domain corpus described in Section 5.1, each

model conveying a different level of information.

Inspired by the so-called factored models employed in statistical machine translation (Koehn

and Hoang, 2007; Bilmes and Kirchhoff, 2003), our selector module enables the integration of

different language models trained on different automatically generated linguistic annotations at

the word-level:

• Truecase form model (TC). This model was trained on the original unmodified text, where

uppercase and lowercase instances of the same form are different words. It is the most

specific – or the least abstract one – since it is the model with the largest vocabulary.

• Lowercase form model (LC). This model has been trained on the lowercase version of the

original corpus. Uppercase and lowercase versions of the same form are now the same word.

• Lemma model (Lemma). This model has been trained on the lemmatized version of the

original corpus, where each inflected form has been substituted by its root or lemma. Plural

and singular versions of the same noun are now the same word; the same happens with

variations in person, tense and number of verbal forms.

• Part-of-Speech model (PoS). This model has been trained on the PoS tags version of the

corpus. Tags are PAROLE-style part-of-speech long tags, which for each word include its

syntactic category and morphosyntactic features (e.g. AQ0CP0, NCFP000, VSIC3P0; for
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details see (Villegas et al., 1996)). This model is the most general – or the one that abstracts

at a higher level – since it has the smallest vocabulary.

5.1 Building the models

The corpus used to build the models is a 24 million word corpus collected from the Web that

comprises texts from the same domains and genres included in the reference corpus, namely:

banking, cars, mobile, Twitter and blogs.6

The lemma and morphosyntactic labels were assigned using our in-house linguistic pipeline

(cf. Section 3). We then built 4 trigram models with the IRSTLM toolkit (Federico et al., 2008)

using the “modified shift-beta” as smoothing method, also known as “improved Kneser-Ney

smoothing”.

5.2 Querying the models

At run time we query the models using a sliding window over the proposed correction of at most

5 words. For the example in Figure 3, 11 different 5-word candidate strings are generated, one

for each candidate correction, surrounded by its immediate context.

S1 = mire otros boxes de la

S2 = mire otros comes de la

S3 = mire otros coses de la

S4 = mire otros coches de la

S5 = mire otros coxas de la

S6 = mire otros coges de la

S7 = mire otros corres de la

S8 = mire otros coxis de la

S9 = mire otros coles de la

S10 = mire otros boches de la

S11 = mire otros coces de la

For each candidate strings Si, we generate 4 parallel strings:

• STC with all words in truecase: mire otros boxes de la
• SLC with all words in lowercase: mire otros boxes de la
• SLemma with lemmas only: mirar otro box de la
• SPoS with PoS only: VMSP3S0 DI3MP0 NCMP000 SPS00 DA3FS0

With C(M,S) being the cost of string S (i.e. logarithm of the probability) according to model

M , we query each of the four models for the cost value of each one of the strings. For example,

C(TC, STC) is the cost of the truecase string computed against the TC model. That means that

for each candidate, we get four cost values: C(TC, STC), C(LC, SLC), C(Lemma, SLemma) and

C(PoS, SPoS).

6 Much larger data sets are available, however recent research has shown that selecting only a fraction
(e.g. less than 10%) of the data according to the closeness to the domain can be as effective as keeping
the whole data set. Several authors select pseudo in-domain language model training data with cross-
entropy methods and obtain good results in perplexity or in a machine translation task (Moore and
Lewis (2010); Axelrod et al. (2011); Rousseau et al. (2011); Toral (2013)). We thus focused our effort
in collecting in-domain data.
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5.3 Combining the models

The aim of building the four different models is to evaluate which of them is more discriminative

at ranking the different candidates. We also experiment with the combination of models to find

out whether such a strategy can improve over the results of the best performing model used in

isolation. Eq. (1) shows the linear equation for the parametrization of the combination of the

different models.

C(total, S) = λTCC(TC, STC) + λLCC(LC, SLC)+

λLemmaC(Lemma, SLemma) + λPoSC(PoS, SPoS)
(1)

5.3.1 Linear interpolation of language models

Linear interpolation of language models is one of the most popular model combination tech-

niques. Given a set of n-gram language models, linear interpolation consists in computing the

weighted average of the component model costs as shown in Eq. 1. The interpolation weight λi,

where {i = TC,LC,Lemma, PoS} satisfies
∑

i λi = 1 and it is typically tuned to optimize the

perplexity of the development set. We empirically adjusted the combination weights by following

the standard procedure for linear interpolation in language modeling in order to build a unique

optimized model. This procedure uses the expectation-maximization (EM) algorithm to mini-

mize the perplexity over a specific development set (Stolcke, 2002). To apply this procedure, we

previously calculate the probability of the same random variable, which in the TC model is a

word and in the other three models (LC, Lemma and PoS) is a class. For a class model C, we

calculate:

PC(ωn|ωn−k+1...ωn−1) =
∑
i

P (ωn|ciωn
|cωn−k+1

...cwn−1) (2)

where ciωn
are different classes of the word ωn. Using this equation for the three models where

the variable is a class, we can use EM to calculate the mentioned interpolation weights λi, where

{i = TC,LC,Lemma, PoS}.
The development set was extracted out of the text of the reference corpus (described in Section

2), as detailed in Section 5.3.2. This development set of around 50K words was used in the

optimization phase. Table 7 shows the vocabulary sizes for our training and development sets

for the four models: TC, LC, Lemma, and PoS. Even though the number of words is the same

for the four training sets – i.e. 24 million words –, the size of the respective vocabularies varies

considerably, going from 525,742 in the case of the TC model to only 243 in the case of the PoS

model. The same applies to the development set.

The language model weight optimization was computed using the compute-best-mix function

of the SRILM toolkit (Stolcke, 2002). We used the option of expand-classes to normalize the

vocabularies in classes to words (for LC, PoS and Lemma language models). The perplexity of

each language model is shown in Table 8. The PoS language model is the one with the highest

perplexity, which seems reasonable because it has fewer classes and, therefore, a higher degree of

ambiguity. In contrast, the TC model, where each word is a class, has the lowest perplexity.

The resulting optimization assigns a sizeable weight to the truecase model, a small weight to
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TC LC Lemma PoS

Training 525742 456219 440818 243

Development 12673 11482 9058 184

Table 7. Vocabulary size (unigrams counts) for the training and development corpus.

Perplexity

Truecase 94.5662

Lowercase 103.364

Lemma 293.121

PoS 504.553

Combination 92.9201

Table 8. Perplexity in the development set for each language model

the lowercase model and practically overlooks the lemma and part-of-speech models. The final

set of weights is presented in Eq.(3):

C(total, S) = 0.961861 ∗ C(TC, STC) + 0.0309452 ∗ C(LC, SLC)

+ 0.00690778 ∗ C(Lemma, SLemma) + 0.00000003 ∗ C(PoS, SPoS)
(3)

Note that this is theoretically a methodology to optimize the weights over language models with

different word classes. However, in practice, the task of expanding classes may be too ambiguous,

which directly affects the interpolation procedure. For example, when expanding the lowercase

word class of zapatero we have only two possible surface forms zapatero and Zapatero, which is

quite an easy task. But in the case of expanding the PoS word class of Prepositon, we have 23

possible word surface forms. At the end, the weight given to the language model with the most

generic classes (in this case PoS) is quite low, which may be a direct consequence of an improper

expansion of classes.

5.3.2 Optimization on the task

The combination of the models can be further optimized by tuning the parameters of the four

language models to minimize errors directly on the selection task. Optimization on the task is

possible if a gold standard can be used to iteratively measure improvement. For this we used

the reference corpus described in Section 2. We processed the original non-corrected section of

the reference corpus, and found a total of 4235 deviation annotations for which the underlying

spell checker correctly detects an error and the normalization of reference is within the set of

candidates proposed by the selector module. Therefore, the number of deviations that we are

going to optimize in this experiment is the number of deviations (correctly detected by the
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spell checker) for which the candidate ranked first by the selector module coincides with the

normalization of reference according to our gold standard. To evaluate our results, we use the

manually normalized reference corpus. We divide it in two parts: 30% for the development set

(the same one as for the linear interpolation) for optimizing on the task and 70% for evaluation.

To iteratively minimize errors we used a modified version of the Simultaneous Perturbation

Stochastic Approximation (SPSA) (Spall, 1992; Lambert and Banchs, 2006) as an optimization

algorithm.

SPSA Algorithm. The SPSA procedure is in the general recursive stochastic approximation form,

as shown in Eq. (4):

λ̂k+1 = λ̂k − akĝk(λ̂k) (4)

where ĝk(λ̂k) is the estimate of the gradient g(λ) ≡ ∂E/∂λ at the iterate λ̂k, and ak denotes a

positive number that usually decreases as k increases. The gradient was computed with a one-

sided approximation which, given E(λ̂k), requires the evaluation of E(λ̂k + perturbation). In the

simultaneous perturbation approximation, all elements of λ̂k are randomly perturbed together7

and the approximated gradient vector is:

ĝk(λ̂k) =
E(λ̂k + ck∆k)− E(λ̂k)

ck


1/∆k1

1/∆k2

...

1/∆kN

 (5)

In Eq. 5, ∆k is a perturbation vector of the same dimension N as λ, whose values ∆i are

computed randomly. ck denotes a small positive number that decreases as k increases. We took

for each component ∆i of ∆k a Bernoulli ±1 distribution with probability of 1/2 for each ±1

outcome, or a 0,±1 distribution with probability of 1/3 for each outcome. Full details of our

implementation of the algorithm are given in Lambert and Banchs (2006). The main change

with respect to the original algorithm is that the parameters are not necessarily updated at each

iteration. If the new set of parameters λ̂k+1 is worse than the current one, it is updated with a

probability which depends on how much worse it is. The algorithm typically converged after 50

to 60 iterations. Note that, in general, SPSA converges to a local maximum.

Task optimization. Figure 4 exemplifies the optimization process for the candidate selection task

with the goal of maximizing precision (minimizing the number of times the correct proposal was

not ranked first in the list). With the initial set of weights, λ̂0, we normalize the original part

of the development corpus and calculate the precision against the manually corrected reference

of the same corpus. This gives us E(λ̂0). We perturb the λ̂0 vector with c0∆0, normalize the

development corpus with the perturbed set of weights and calculate its precision, which gives

E(λ̂0+c0∆0). We can now update the set of weights according to Eqs. (4) and (5), giving λ̂1. We

evaluate E(λ̂1) and according to the result, we take λ̂1 or keep λ̂0 as the current set of weights.

Then we perturb again the current set of weights with the ck∆k vector, and so on.

7 Compared to a finite-difference gradient approximation, involving N times more function evaluations,
the simultaneous approximation causes deviations of the search path. These deviations are averaged
out in reaching a solution and according to Spall (1998), under reasonably general conditions, both
gradient approximations achieve the same level of statistical accuracy for a given number of iterations.
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Fig. 4. Language model weight optimization according to the selection precision.

The equation resulting from the optimization assigns equal moderate weight to TC and LC, a

small weight to the Lemma model and zero to the PoS model, as shown in Eq.(6):

C(total, S) = 0.4519 ∗ C(TC, STC) + 0.4519 ∗ C(LC, SLC)

+ 0.0962 ∗ C(Lemma, SLemma) + 0 ∗ C(PoS, SPoS)
(6)

5.4 Evaluation of candidate selection

As indicated in the previous section, we used for evaluation purposes the unused portion of the

annotated reference corpus, i.e. 70% of the total. We tested each of the four models individually

and the two different model combinations presented in Section 5.3: linear interpolation and

optimization on the task. As a baseline we ran the normalizer without the selector module,

i.e., taking the first item in the list as proposed by the underlying spell checker – which has

an almost non-existent ranking strategy (Quixal et al., 2008). Moreover, since Twitter text is

known to present specific features that make it different from other UGC text and that may

affect performance, we also evaluate Twitter and the rest of the corpus sources separately. We

repeated the experiment of optimization on the task with specific development and test sets for

Twitter and non-Twitter.

The results, in terms of percentage of instances where the reference correction was ranked

first, are shown in Table 9. The model built on a lowercase version of the corpus turns out to

be the more discriminating model in isolation, with a precision of 86.59%, as measured on the

test set (second column of the table). On the same set, we see that neither model combination

improves the precision achieved by the LC model, although they perform better than the rest of

the models used in isolation. Noticeably PoS obtains results that are below the baseline. Both

model combination techniques, Linear Interpolation and Optimization on the task, obtain quite

comparable results on the test set, although the results of the latter are slightly better (around 0.4

points improvement). The first column of Table 9 shows the results for the development set of the

corpus, used to obtain the optimized set of weights described in Section 5.3.2. We observe that in

this case, the weighted combination obtained by the Optimization on the task technique improves

on the result of the best performing model in isolation, i.e. LC, in the development set, but not
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Model Precision

Dev Test

LC 88.31 86.59

Optimization on the task 89.12 85.93

Linear interpolation 86.76 85.53

TC 86.76 84.99

Lemma 73.63 69.94

Baseline 51.04 61.99

PoS 62.66 52.50

Table 9. Precision values for each model, their combination and baseline.

Model Precision

Twitter non-Twitter

LC 82.56 (-4.03) 87.84 (+1,25)

Optimization on the task 80.12 (-5.81) 87.46 (+1.53)

Linear interpolation 79.81 (-5.72) 86.93 (+1.40)

TC 79.51 (-5.48) 86.70 (+1.71)

Lemma 67.12 (-2.82) 69.97 (+0.03)

Baseline 56.88 (-5.11) 63.58 (+1.59)

PoS 55.35 (-2.85) 49.97 (+3.03)

Table 10. Precision values for each model, their combination and baseline, separated results for

Twitter and non-Twitter text, from the test set.

in the test set and that Linear Interpolation8 and the TC model achieve the same precision.

Remarkably the baseline system (without a selector module) obtains a much lower result on the

development set (10 points below the test set), and in this case it is clearly surpassed by the

worst performing model, i.e. PoS. Table 10 shows separated results for Twitter and non-Twitter

text. In this table we put between brackets the negative or positive difference of each value with

respect to the values in Table 9. All in all the precision measure of the correction selection drops

4.5 points on average when tested on Twitter text. The ranking of the models does not change

for the separated results.

8 Recall that the linear interpolation was tuned on a different development set, described in Section 5.3.1.
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5.5 Discussion of accuracy, precision and recall and related work

The research that is closer to the experiment presented in this paper is that by Han and Baldwin

(2011) and Liu et al. (2012), since they both work on data including text other than Twitter

text, and they both work on the normalization of domain-unspecific text – Liu et al. (2012) call

their approach a broad-coverage system.

In terms of spell checking detection and generation of proposals both Han and Baldwin (2011)

and Liu et al. (2012) work with systems generated by themselves, rather than using existing

resources. Particularly Liu et al. (2012) present proposal generation strategies inspired by visual

priming and in word similarity measures. With the former they can favor the generation and

ranking of spelling corrections on the basis of their frequency in social text and the most economic

transformation operation – the fewer characters that are changed, the better. With the latter

they generate lists of representatives that one particular word can have in a text. For instance,

for a word like please they can generate the set {pleas, pleeas, pleaas, pleeaas, pleeeaas}. Han

and Baldwin (2011) use an algorithm based on morphophonemic similarity to generate correction

proposals. These two approaches allow for higher accuracy in the percentage of errors for which

a correction proposal is generated – not selected.

In addition to the differences in the proposal generation strategies, there is also an important

difference, which is that we include the normalization of tokens as part of the normalization

process, as opposed to what the above mentioned works do. For these reasons results are hardly

comparable among the different experiments. With this caveat in mind, our restricted experiment,

in which we are using only those cases where the spell-checker has been able to correctly detect

an error and propose a set of correction candidates containing the reference correction, shows

a higher precision in terms of 1st-ranked correct proposals.9 Compare our 86.59% vs. Liu et al.

(2012)’s 84.13% when using a Twitter-based language model or their 79.12% when using a web

language model. Their recall is respectively 78.38% and 77.11%, while Han and Baldwin (2011)

reach a precision and recall of 75.30%.

6 Conclusions

In this paper, we presented and analyzed a Spanish corpus of UGC including text from five

different sources. We have seen that UGC text presents some particular features that set it apart

from standard text. On the one hand, it contains specific phenomena that add expressiveness,

such as emoticons, informal spellings, non-standard capitalization and reduplication. On the

other hand, the rate of typical orthographic errors is much higher than in more edited types of

text.

We analyzed the impact that norm deviations have on standard NLP processing tools, by

comparing the results of processing it with the results of processing its manually corrected version.

As a result, we observed that UGC text has a negative impact on the performance of three

basic NLP tasks: lemmatization, assignment of the main syntactic category, and assignment of

morphosyntactic features.

We propose to address the problem by normalizing UGC text before the linguistic processing.

For this, we have used a conventional spell-checker on top of which we have built a module to

9 The actual precision and recall numbers of the underlying, non-adapted spell-checker are quite low:
52% and 57% respectively.
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automatically select the best correction candidate. For the selection task, we wanted to exper-

iment with the use of linguistic information with various levels of fine-grainedness. Therefore,

we have trained four language models on a large domain-specific corpus, each model containing

a different degree of information in a trade off with its generalization capabilities. The model

based on the lowercase version of the corpus has turned out to be the most predictive, with a

reasonable precision value of 86.59% as measured on the test set. This figure is well above the

baseline and is slightly higher than the highest accuracy obtained by related work of Liu et al.

(2012) – 84.13% in the ranking of correction proposals in the first position of the list. We have

also experimented with two methods for combining the four models: model optimization directly

on the final task, using a modified version of the SPSA algorithm, and a linear combination

of the models optimized independently of the task. Both methods achieve comparable results,

although the weights obtained for each language model are quite different. This is an interesting

conclusion since optimizing independently for the task is much easier than the other way round.

Similar conclusions have been obtained in different tasks (e.g. in a phrase-based statistical ma-

chine translation). Results of the combination of models are close to the best performing model,

i.e. LC, but do not perform better, at least on our test set of data. The evaluation for the ad-

ditional experiment using only Twitter text shows a significant drop in precision, compared to

non-Twitter text. The experiment of using different language models has been useful to obtain

better results using the LC model instead of the baseline TC model.
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for the iwslt 2011 speech translation tasks. In International Workshop on Spoken Language

Translation, San Francisco (USA).

Spall, J. C. 1992. Multivariate stochastic approximation using a simultaneous perturbation

gradient approximation. IEEE Trans. Automat. Control, 37:332–341.

Spall, J. C. 1998. An overview of the simultaneous perturbation method for efficient optimization.

Johns Hopkins APL Technical Digest, 19(4):482–492.

Sproat, R., Black, A. W., Chen, S. F., Kumar, S., Ostendorf, M., and Richards, C. 2001. Nor-

malization of non-standard words. Computer Speech & Language, 15(3):287–333.

Stolcke, A. 2002. Srilm-an extensible language modeling toolkit. In Proceedings International

Conference on Spoken Language Processing, pages 257–286.

Toral, A. 2013. Hybrid selection of language model training data using linguistic information

and perplexity. In Proceedings of the Second Workshop on Hybrid Approaches to Translation,

pages 8–12, Sofia, Bulgaria. Association for Computational Linguistics.

Toutanova, K. and Moore, R. C. 2002. Pronunciation modeling for improved spelling correction.

In Proc. 40th Annual Meeting of the Assoc. for Comp. Ling., pages 144–151, Hong Kong.

Villegas, M., Brosa, M. I., and Bel, N. 1996. El léxico PAROLE del español. In XIV Congreso
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