
A new method for the identification of the

parameters of the Dahl model
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d’Enginyeria Tècnica Industrial de Barcelona, Comte d’Urgell, 187, 08036, Barcelona, Spain.

E-mail: isabel.garcia.banos@upc.edu and faycal.ikhouane@upc.edu

Abstract. Friction is a nonlinear phenomenon that is present in many areas of science and
engineering. It has static and dynamic characteristics. This paper deals with a dynamic model
of friction, namely the Dahl model. More precisely, this paper proposes a new methodology for
the identification of the parameters of the Dahl model. It is shown that, in the absence of noise,
the identified parameters are equal to the real ones. Numerical simulations are carried out to
illustrate the identification methodology.

1. Introduction and problem statement
Friction is a nonlinear phenomenon that originates from the contact of two bodies which makes
it present in many areas of science and engineering, including mechanics [10], magnetics [1],
and robotics [4] among others. Friction has two types of characteristics, static and dynamic.
The static characteristics of friction include the stiction friction, the kinetic force (the Coulomb
force), the viscous force, and the Stribeck effect which are functions of steady state velocity.
Dynamic friction models capture properties that cannot be captured by typical static friction
models; for instance, presliding displacement related to the elastic and plastic deformations of
asperities (roughness features), frictional lag, that is the delay in the change of friction force as a
function of a change of velocity, and stick-slip motion, which is the spontaneous jerking motion
that can occur while two objects are sliding over each other [3].

This paper deals with a dynamic model of friction, namely the Dahl model [6]. More precisely,
the aim of the paper is to propose a methodology for the identification of the parameters of the
Dahl model. To explain this model and state the problem under study, we have organized this
introduction into three subsections. In Section 1.1 we introduce the Coulomb model which is a
necessary step to understand the Dahl model. Section 1.2 introduces the Dahl model in relation
with the Coulomb model. Finally, the problem statement is provided in Section 1.3.

1.1. The Coulomb model
Consider the cube of Figure 1 resting on an inclined plane with slope θ.
Using Newton’s second law we get

mẍ = Px − F (1)
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Figure 1: Cube on an inclined plane.

where the x–axis is parallel to the slope of the plane, Px = mg sin(θ) is the projection of the

weight ~P on the x–axis, m the mass of the cube, g is gravity, ẍ = d2x
dt2

(being x the displacement
of the cube and t the time), −F the tangential friction force, and θ is the angle that provides
the inclination of the plane.

We observe experimentally that for small values of θ the cube does not move. This can be
explained by the existence of a force equal to −~Px: friction. To complete the description of
Equation (1), it is necessary to find a description of the force F . The simplest way to describe
friction is through the Coulomb model [5, pp. 41–42] (see Figure 2)

F = Fc for ẋ > 0, (2)

F = −Fc for ẋ < 0, (3)

−Fc ≤ F ≤ Fc for ẋ = 0, (4)

where Fc is the Coulomb friction level.
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Figure 2: Coulomb model.

The Coulomb model provides a simple way to describe friction, however it fails to reproduce
some experimentally observed phenomena. Consider for example the mass m of Figure 3 that



moves to the right towards point A, then moves to the left when it touches point A at some
instant time tA. The Coulomb model predicts that the friction force as a function of time is
discontinuous at tA. This discontinuity of the friction force with respect to time has not been
observed experimentally [2, p. 40].
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Figure 3: Mass doing the described movement.

One might think to substitute this model with the one of Figure 4 which is continuous with a
finite high slope at the origin.
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Figure 4: Continuous approximation of the Coulomb model.

However, we show next that this continuous approximation is not compatible with experi-
mental observations.

Indeed, we have said that for small values of θ we observe experimentally that the cube of Figure
1 does not move. This means that ẋ = 0, which implies that F = 0 by using the model of Figure
4. Also, since ẋ = 0 for all times, it follows that ẍ = 0. Substituting in Equation (1) gives
Px = mg sin(θ) = 0. This is not possible as m 6= 0, θ is small but is not zero, and g 6= 0. This
contradiction means that the continuous approximation of the Coulomb model does not describe
the friction behavior.

1.2. The Dahl model
The Dahl model introduced in [6] relates the friction force F to the relative velocity ẋ as



dF (x)

dx
= σ

∣∣∣∣1− F

Fc
sgn(ẋ)

∣∣∣∣i sgn

(
1− F

Fc
sgn(ẋ)

)
(5)

where σ > 0 is the rest stiffness, and i a real number. In this paper we consider that i = 1 so
that the Dahl model becomes

dF (t)

dt
= σẋ(t)− σF (t)

Fc
|ẋ(t)|. (6)

Defining

w(t) =
F (t)

Fc
, (7)

ρ =
σ

Fc
> 0, (8)

it follows that the Dahl model (6) is described by

F (t) = Fcw(t), (9)

ẇ(t) = ρ
(
ẋ(t)− |ẋ(t)|w(t)

)
. (10)

In the following, we analyze the compatibility of the Dahl model with the observed behavior in
the experiment of Figure 1. Since the displacement x is equal to a constant (the cube does not
move), it follows that ẋ(t) = 0,∀t ≥ 0. Using equation (10) it follows that w(t) = w(0),∀t ≥ 0
so that by equation (9) we have F (t) = Fcw(0), ∀t ≥ 0. Now, the Dahl model is seen as an
extension of the Coulomb model so that we expect that equation (4) holds also for the Dahl
model. We get −Fc ≤ F (t) = Fcw(0) ≤ Fc which implies that

−1 ≤ w(0) ≤ 1. (11)

Equation (11) is a necessary condition that ensures the compatibility of the Dahl model both
with the Coulomb model and with the observed behavior in the experiment of Figure 1.

We need now to check that the Dahl model is also compatible with Equations (2) and (3) which
are obtained from the Coulomb model and are confirmed by experiments [5, p. 44–45]. This
is done in Section 2.1. It is shown that, if −1 ≤ w(0) ≤ 1, then |F (t)| ≤ Fc,∀t ≥ 0 and
limt→∞ F (t) = Fc sgn(ẋ) where sgn is the sign function.

Finally, it is shown in [8] that the solution of the differential equation (10) exists and is unique
on R+ so that w is continuous on R+. This means that the friction force (9) given by the Dahl
model is continuous as a function of time, which resolves the above-mentionned inconsistency
of the Coulomb model.

1.3. Problem statement
The objective of this paper is to present a new methodology for the identification of the parame-
ters of the Dahl model. Identification consists in designing an experiment or a set of experiments
in which the displacement is proposed by the designer, the friction force is measured and an
algorithm is proposed by the designer in order to determine the unkown parameters Fc and ρ.
The difficulty lies in that w is an internal variable that is not accessible to measurements, and
in the fact that the Dahl model is nonlinear.

An extensive survey of the literature dedicated to this specific problem is given in [9] so that we
focus here on the main following issues:



(i) Many research works repose heavily on numerical simulations without providing
mathematical proofs that the identified parameters are the true ones (see for example [11]).

(ii) In some papers where these proofs have been carried out, the identification technique uses
the derivative of measured signals (see for example [7]), which is a method sensitive to noise.

The objective of this paper is to propose a new identification method for the Dahl model that
does not use any derivative of measured signals, and with a rigorous proof that the identified
parameters are the true ones in the absence of noise.

2. Identification method
Before presenting the identification method, we remind the following facts. In Equations (9)–
(10),

(i) the displacement input x is assumed to be accessible to measurements and it can be imposed
by the designer,

(ii) the output force F is assumed to be accessible to measurements,

(iii) and the state w may not be accessible to measurements.

The identification method is done in two stages. In the first stage, the parameter Fc is determined
using the classical technique of fixing the velocity to some value and measuring the obtained
force. A proof is provided to back up this technique in the case of the Dahl model. The second
stage is based on a the characterization of the hysteresis loop for the Dahl model given in [8].

2.1. First stage: Identification of parameter Fc.
Consider that ẋ = v = constant and v > 0 (the same analysis applies for v < 0). From equation
(10) we get:

ẇ(t) = ρ
(
1− w(t)

)
ẋ(t) (12)

Integrating both part of (12) it follows that∫
dw

1− w
=

∫
ρdx (13)

which gives

− ln
(
|1− w|

)
= ρx+ C1 (14)

that is,

1− w = ±e−ρx−C1 = C2e
−ρx (15)

where C2 = ±e−C1

Finally, we obtain that:

w = 1− C2e
−ρx. (16)

The constant C2 can be obtained from (16) as

C2 = (1− w(0)) eρx(0). (17)

Substituting in Equation (16) gives

w(t) = 1−
(
1− w(0)

)
e−ρ[x(t)−x(0)]. (18)



Since ẋ = v = constant, it follows that x(t) = vt+ x(0) so that

w(t) = 1−
(
1− w(0)

)
e−ρvt. (19)

Since ρ > 0 and v > 0, it follows from equation (19) that limt→∞w(t) = 1. Combining this fact
with Equation (9), it follows that Fc can be estimated through

Fc = lim
t→∞

F (t). (20)

Finally observe that, if −1 ≤ w(0) ≤ 1, then 0 ≤ 1−w(0) ≤ 2 so that −1 ≤ 1−(1−w(0))e−ρvt ≤
1. This means that |F (t)| ≤ Fc,∀t ≥ 0.

2.2. Second stage: Identification of parameter ρ
Note that, once Fc identified, w can be determined using Equation (9) as w = F

Fc
. One may

think that ρ can be obtained from Equation (10) as ρ = ẇ(t)
ẋ(t)−|ẋ(t)|w(t) . However, this would mean

that we are using the derivative of w, that is the derivative of F . The aim of the present paper
is precisely to avoid the use of the derivative of functions obtained from experiments because
these derivatives are usually corrupted by noise.

Definition 1 [8] Let T > 0. A T -periodic function x: R+ → R is said to be wave periodic if
there exists some T+ ∈ (0, T ) such that:

• The function x is continuous on R+.

• The function x is continuously differentiable on (0, T+) and on (T+, T ).

• The function x is strictly increasing on (0, T+) and is strictly decreasing on (T+, T ). �

To describe the hysteresis loop of the Dahl model (9)–(10), define the following functions:

ϕ+
1,1 : (−1, 1)→ R

ϕ+
1,1(α) =

α∫
0

du

1− u
= − ln(1− α). (21)

ψ+
1,1, ψ1,1 : R→ R

ψ+
1,1(β) =

eβ − 1

eβ
, (22)

ψ1,1(β) =
eβ − 1

eβ + 1
. (23)

Theorem 1 [8] Consider the Dahl model (9)–(10). Let x be a wave periodic displacement input
as in Definition 1. Define the functions wm : [0, T ] → R for any non-negative integer m as
follows

wm(τ) = w(mT + τ), τ ∈ [0, T ]. (24)

Then,
(a) The sequence of functions {wm}m≥0 converges uniformly on the interval [0, T ] to a continuous
function w̄ : [0, T ]→ R defined by

w̄(τ) = ψ+
1,1

[
γ + ρ

(
x(τ)−Xmin

)]
,∀τ ∈ [0, T+],

(25)

w̄(τ) = −ψ+
1,1

[
γ − ρ

(
x(τ)−Xmax

)]
, ∀τ ∈ [T+, T ],

(26)

γ = ϕ+
1,1

[
− ψ1,1

(
ρ (Xmax −Xmin)

)]
. (27)



(b) For all τ ∈ [0, T ], we have

−1 < −ψ1,1(ρ(Xmax −Xmin)) ≤ w̄(τ), (28)

w̄(τ) ≤ ψ1,1(ρ(Xmax −Xmin)) < 1, (29)

the lower and the upper bounds of w̄(τ) being attained at τ = 0 and τ = T+ respectively. �

The objective of this section is to use Theorem 1 as a basis for an identification method of the
unknown parameter ρ. To this end, define

a =
2

1 + e−ρ(Xmax−Xmin)
. (30)

Then, from Equation (27) it follows that

γ = − ln
(
1 + ψ1,1 [ρ (Xmax −Xmin)]

)
= − ln

(
1 +

eρ(Xmax−Xmin) − 1

eρ(Xmax−Xmin) + 1

)
= − ln(a) (31)

where Equations (21), (23) and (30) have been used. From Equation (31) we obtain

ψ+
1,1

[
γ + ρ

(
x(τ)−Xmin

)]
= ψ+

1,1

[
− ln(a) + ρ

(
x(τ)−Xmin

)]
= 1− eln(a)−ρ(x(τ)−Xmin)

= 1− ae−ρ(x(τ)−Xmin). (32)

Observe that the steady–state force F̄ is given by F̄ (τ) = Fc w̄(τ),∀τ ∈ [0, T ]. Thus, it follows
from Equation (32) that Equation (25) can be written as

F̄ (τ) = Fc

(
1− ae−ρ(x(τ)−Xmin)

)
, ∀τ ∈ [0, T+]. (33)

In a similar vein, Equation (26) can be written as

F̄ (τ) = Fc

(
−1 + aeρ(x(τ)−Xmax)

)
, ∀τ ∈ [T+, T ]. (34)

Observe that the displacement function x is bijective on the time interval [0, T+] since it is
continuous and strictly increasing. This means that to each value of τ corresponds a unique
value x(τ), which provides a unique value of F̄ (τ) through Equation (33). This in turn means
that to each displacement value x ∈ [Xmin, Xmax] corresponds a unique value of the friction force
in steady–state given by Fc

(
1− ae−ρ(x−Xmin)

)
. We denote this last quantity F̄↑(x) where the

index ↑ sets for loading (that is an increasing displacement). Thus Equation (33) can be written
as

F̄↑(x) = Fc

(
1− ae−ρ(x−Xmin)

)
, ∀x ∈ [Xmin, Xmax]. (35)

Observe that, by an abuse of notation, the displacement x in Equation (33) is a function from
[0, T+] to R whilst the same notation is used in Equation (35) to denote some real number in
the interval [Xmin, Xmax]. In a similar vein, Equation (34) can be written as

F̄↓(x) = Fc

(
−1 + aeρ(x−Xmax)

)
, ∀x ∈ [Xmin, Xmax] (36)



where the index ↓ sets for unloading (that is a decreasing displacement). In both equations (35)
and (36), the bar over the symbol F means that the force is the one obtained in “steady–state”.
Equations (35)–(36) describe the hysteresis loop of the Dahl model and are the basis for the
identification methodology of the parameter ρ.

Consider the point x1 = Xmax+Xmin
2 + α and compute F̄↑ at that point using Equation (35).

We obtain:

F̄↑(x1) = Fc

(
1− ae−ρ(Xmax−Xmin+2α)

)
. (37)

Now, consider the point x2 = Xmax+Xmin
2 − α and compute F̄↓ at that point using Equation

(36). We obtain:

F̄↓(x2) = Fc

(
−1 + ae−ρ(Xmax−Xmin+2α)

)
. (38)

It can be seen that F̄↑(x1) = −F̄↓(x2) which means that the hysteresis loop of the Dahl model

is symmetric with respect to the point
(
Xmax+Xmin

2 , 0
)

(see Figure 5).
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Figure 5: Solid line: F̄↑(x) versus displacement x.
Dotted line: F̄↓(x) versus displacement x.

The marker corresponds to the point
(
Xmax+Xmin

2 , 0
)
.

This symmetry property is used to estimate parameter ρ using only function F̄↑(x). By
Equation (35) we obtain:

For x = Xmin

ρ =

ln

(
1+

F̄↑(Xmin)

Fc

1−
F̄↑(Xmin)

Fc

)
Xmin −Xmax

. (39)

For x = Xmax

ρ =

ln

(
1−

F̄↑(Xmax)

Fc

1+
F̄↑(Xmax)

Fc

)
Xmin −Xmax

. (40)

Finally, for x = Xmax+Xmin
2



ρ =

2 ln


1−

√√√√√1−

1−
F̄↑

(
Xmax+Xmin

2

)
Fc

2

1−
F̄↑

(
Xmax+Xmin

2

)
Fc


Xmin −Xmax

. (41)

3. Numerical simulations
The aim of this section is to illustrate the identification methodology of Section 2 by means
of numerical simulations. To this end, we consider a Dahl model (9)–(10) with the following
values of its parameters: Fc = 1 and ρ = 1. As explained in Section 2, our identification method
proceeds in two stages:

(i) In the first stage the parameter Fc is identified using Equation (20).

(ii) In the second stage, that value of Fc is used to determine parameter ρ using any of Equations
(39), (40) or (41).

3.1. First stage: Identification of parameter Fc.
In this stage we choose a displacement function x(t) = t (see Figure 6) which means that the
corresponding velocity ẋ is constant and equals 1. The state w(t) is computed by solving the
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Figure 6: Displacement x(t) versus time t ∈ R+.

differential equation (10) using Matlab solver ode23s with an initial condition w(0) = 0. The
corresponding force F (t) is then calculated using Equation (9) and is plotted in Figure 7. The
parameter Fc is calculated using Equation (20), and we obtain Fc = 1.

3.2. Second stage: Identification of parameter ρ
In this stage we choose a displacement function x(t) = − cos(t) (see Figure 8). Observe that x
is a wave periodic function (see Definition 1) with T = 2π and T+ = π. Again, the state w(t)
is computed by solving the differential equation (10) using Matlab solver ode23s with an initial
condition w(0) = 0. The corresponding force F (t) is then calculated using Equation (9) and is
plotted in Figure 9.

The identification methodology uses the steady–state response of the force to determine the
unknown parameter ρ. We consider that the steady–state is attained at the fourth period (see
Figure 9), and is plotted in Figure 10 as steady–state force F̄ (τ) versus time τ .
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Figure 7: Force F (t) versus time t ∈ R+.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

Time

D
is

p
la

c
e
m

e
n
t

Figure 8: Displacement x(t) versus time t ∈ R+.
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Figure 9: Force F (t) versus time t ∈ R+.
Dotted line: Transient response.

Solid line: Steady–state response.

It is again plotted in Figure 11 where, in this case, the solid line corresponds to the increasing
part of the force which is the part that is used to find the parameter ρ.

Now that the plot F̄↑(x) versus x is available, we obtain the value F̄↑(Xmin) which provides
the parameter ρ through Equation (39). Similarly, the value F̄↑(Xmax) provides the parameter

ρ through Equation (40), whilst the value F̄↑

(
Xmax+Xmin

2

)
provides the parameter ρ through
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Figure 10: Steady–state force F̄ (τ) versus time τ ∈ [0, T ].
Solid line: Loading.

Dotted line: Unloading.
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Figure 11: Steady-state force F̄ (τ) versus displacement x(τ), τ ∈ [0, T ].
Solid line: F̄↑(x) versus displacement x.

Dotted line: F̄↓(x) versus displacement x.

Equation (41). In the three cases we find ρ = 1.

4. Conclusion
This paper presents a new method for the parametric identification of the Dahl model. The
method consists of two stages: in each stage a special kind of displacement is imposed, and the
steady–state force that corresponds to that displacement is collected. As a future research line,
the authors aim to carry out experiments to apply the method to the modeling of large-scale
magnetorheological dampers using a viscous plus Dahl model.
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