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Abstract

Predicting the expected throughput of TCP is important for several aspects such as e.g. de-
termining handover criteria for future multihomed mobile nodes or determining the expected
throughput of a given MPTCP subflow for load-balancing reasons. However, this is challeng-
ing due to time varying behavior of the underlying network characteristics. In this paper, we
present a genetic-algorithm-based prediction model for estimating TCP throughput values.
Our approach tries to find the best matching combination of mathematical functions that
approximate a given time series that accounts for the TCP throughput samples using genetic
algorithm. Based on collected historical datapoints about measured TCP throughput sam-
ples, our algorithm estimates expected throughput over time. We evaluate the quality of the
prediction using different selection and diversity strategies for creating new chromosomes.
Also, we explore the use of different fitness functions in order to evaluate the goodness of a
chromosome. The goal is to show how different tuning on the genetic algorithm may have an
impact on the prediction. Using extensive simulations over several TCP throughput traces,
we find that the genetic algorithm successfully finds reasonable matching mathematical func-
tions that allow to describe the TCP sampled throughput values with good fidelity. We also
explore the effectiveness of predicting time series throughput samples for a given prediction
horizon and estimate the prediction error and confidence.
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1. Introduction

Achieving the best network performance is one of the main goals for the computer net-
work research community. Many researchers have been focusing on studying and forecasting
bandwidth demands so as to properly use and distribute the available resources. As many
applications have been shifting towards TCP/IP based networks [1]|, the need for further
research on TCP/IP throughput prediction is evident. Also, nowadays multi-homing ca-
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pabilities enable concurrent data transmissions over different interfaces. To enhance this
capability, protocols such as Multipath TCP (MPTCP) can be used to improve the through-
put by sending different flows on each interface simultaneously. The main drawback is to
determine in which subflows should the next packets be sent over in order to efficiently
use several interfaces simultaneously [2, 3]. Moreover, the limited power capacity of mobile
devices requires an efficient use of vertical handover (VHO) (i.e., handover between one in-
terface to the other). Forecasting the TCP throughput may improve decision making during
a VHO as well as using several interfaces simultaneously and efficiently [4].

In the literature, several methods exist to estimate the end-to-end TCP throughput.
For example, model based techniques try to model the TCP throughput as a function of e.g.
packet loss rate, round-trip-time (RTT) and maximum segment size (MSS) [5, 6]. In order to
predict the TCP throughput over time, one needs to obtain predictions of e.g. loss rate and
RTT, which is quite difficult to achieve. On the other hand, using probe based techniques
[7, 8], TCP throughput may be estimated by sending a train of probing packets (typically
using packet pair techniques) to the destination. However, a prediction over time requires
frequent packet pairs to be sent which may translate into high overhead and low prediction
quality. Finally, history based techniques try to model the TCP throughput evolution over
time as a time series and apply tools such as neural networks to find patterns [1|. Based on
such patterns, one tries to predict future TCP throughput over time.

The application of Genetic Algorithms (GA) to optimise processes and solve complex
problems is widely used in computer networks thanks to its easy applicability to a specific
problem. GA can solve large optimization problems with large search spaces and it has been
used e.g. to solve routing problems [9, 10] and for network traffic prediction [11, 12, 13]. An
important feature of GA is that it provides a near-optimal solution in quick time. Time-
series modelling can be combined with GA in order to extend GA’s domain of optimisation
and apply it for forecasting. Authors in [14] applies this technique to predict the traffic
demands for next-generation wireless networks in a cognitive wireless setting with primary
and secondary users, which is of chaotic nature. Based on a time series model, the authors
devise a GA that tries to fit a combination of mathematical expressions to model the time
series of the traffic demands. After tuning the best combination of expressions, the GA can
predict future traffic demands with reasonable fidelity. However, authors in [14] formulate
a rather simple GA with a standard fitness function and selection strategy, which provides
poor results when applied to TCP throughput prediction because of several TCP related
issues such as slow start and congestion avoidance phases [6].

In this paper we take a similar approach in order to predict the estimated TCP throughput
over time by using historical samples of observed throughput. Those samples are modelled
as a time series and prediction techniques based on GA are applied to estimate the future
TCP throughput sample values. Different from [14], we address the TCP prediction by
introducing some modifications on the GA. The main goal is to show the impact of several
tuning parameters in the GA over the reliability of the TCP prediction. To this end and to
keep the study easy to understand, we focus on two representative TCP traces obtained in



a Wireless LAN environment. Several fitness functions and selection methods of the GA are

analyzed and combined in order to fully understand their impact on the prediction in two

scenarios: one with a regular pattern and another one with abrupt changes in the trend?.
The main contributions of this paper can be summarized as follows:

o We tackle the problem of predicting the TCP expected throughput as a mathematical
optimisation problem to match a combination of mathematical expressions to a time
series that is composed of measured TCP throughput sample values.

e In contrast to [14], we customise the GA by applying different selection and diversity
strategies to find the equation that best fits the sampled TCP throughput.

e We evaluate the reliability of several fitness functions in calculating the suitability
of a given chromosome.

e We assess the impact of the proposed modifications of the GA in two scenarios
based on extensive simulations.

e Finally, we explore the possibility of reducing the frequency of retraining, thus
showing the trade-off between the prediction error and the time to solve the GA.

The proposed algorithm may be beneficial in several context. For example, with our
approach, a better MPTCP subflow scheduling method could be designed taking into account
the expected throughput of each subflow over time. Also, it could help mobile users to
improve their experience by assessing them during handover decision (e.g., to which AP
one should connect while moving in a given area, which technology will provide the highest
throughput in the near future in a HetNet scenario, etc.).

The remainder of the paper is structured as follows. Section 2 introduces the background
on GAs, time series and forecasting method, together with a review of the related work.
Section 3 describes the problem statement and the approach followed in this work. The
setup for the numerical evaluation is detailed in Section 4, together with an investigation
on the performance of the proposed GA using different scenarios and algorithmic settings.
Finally, Section 5 concludes the paper.

2. Background and Related Work

For several application scenarios, gaining information beforehand on the throughput that
a TCP connection may provide in the near future may lead to a better planning of the network
resources and thus to an improvement in the network performance. The TCP throughput
evolution over time depends on several factors and is influenced by the TCP congestion
control algorithm using packet loss detection to control and adapt the sending rate. As

"'We explicitly acknowledge the fact that a larger set of TCP traces would be needed if one wants to assess
the accuracy of a given configuration of the GA. Instead, several configurations of the GA are explored in
this work, which allows the use of a smaller set of input data.



already mentioned, several approaches for the prediction of the TCP throughput can be
found in the literature. Formula-based approaches attempt to mathematically model the
TCP throughput according to some parameters. This approach requires an accurate model
in order to find the correlation between the model parameters and the TCP throughput,
or instead large measurement campaigns to find out the corresponding relation. However,
such approach can be applied easily to different scenarios under the model assumptions. For
instance, authors in [15] use the available bandwidth, while authors in [16] use the congestion
window’s evolution of long-lived TCP flows.

On the other hand, history-based techniques attempt to predict TCP throughput over
time from saved measurement data using historical data series. The benefit of history-based
techniques is that they can predict TCP throughput only by analysing the time series behav-
ior using some algorithm or tool such as GA or neural network, in order to detect patterns
in the time series that these techniques exploit for the prediction. Such approach does not
require the information about specific TCP related parameters such as MSS or packet loss
statistics, which may be difficult to obtain. However, history based techniques typically
work on a small dataset so it is difficult to generalize the findings from the measurement
to other scenarios without measuring the TCP throughput again. Previous studies, such
as the ones carried out by Mirza et al. [17] and [18], demonstrate that history-based tech-
niques are more accurate than formula-based. Authors in [19] claim and demonstrate that
formula-based techniques are only accurate when the TCP flow does not saturate the path,
and that using history-based prediction is only feasible when measurements of the system are
available. Unlike us, the authors in [20] construct a time series based on measured segment
windows at the receiver to predict future TCP throughput using different linear regressions.
Other authors attempted to model TCP throughput as time-series and to use other tools for
prediction, such as Support Vector Regression [17], neural networks |21, 22|, autoregresive
and linear regression models |23, 24]. To the best of our knowledge, there are no other similar
works modeling TCP throughput as time-series and using GA for forecasting.

Current mobile terminals have several interfaces to connect to different networks such as
WLAN and 2G/3G/4G. Although cellular networks such as 4G has a wide coverage area and
can be seamless when performing horizontal handover, still the available capacity is often
inadequate or it has a higher cost in terms of energy. On the other hand, WLAN provides
higher data rates in its small radio coverage. When having multiple interfaces available, an
important decision to make is when to change from one interface to another, which is called
VHO. Protocols such as 802.21 or 802.11u uses VHO for seamless handover between networks
of different types [25]. For example, when moving out of the coverage area of a WLAN
access point (AP), the throughput typically goes down with the distance to that AP. At
some point, the throughput will be zero and ideally, a handover occurs to e.g. a 4G network.
Such handover can be based on SNR or achievable throughput. When the throughput goes
down, one would like to initiate a handover in order to always be connected to the network
providing the highest performance [26]. However, such handover strategy implies to have
some knowledge of throughput estimates and ideally be able to predict TCP throughput
evolution over time. Moreover, mobile applications with throughput requirements such as



video streaming can benefit from the predicted information to adapt their bitrate algorithms
[27]. The problem lies in the difficulty to achieve this estimation due to many factors such as
unpredictable link quality, unexpected interference situation or unknown traffic from other
users who may be congesting the AP.

In a wireless environment, packet loss may occur due to non congestion-related effects
such as biterrors, fading, wireless interference, etc., which are to a large extent hard to
predict. Throughput studies and several measuring tools have been proposed for TCP in
wireless environments. Franceschinis et al. [28] present a comprehensive study of the per-
formance impact of TCP parameters such as the maximum congestion window. Bruno et
al. [29, 30] propose an analytical model and measurements for a WLAN persistent TCP-
controlled download and upload data transfer and a wide-scope study of collision avoidance
mechanisms of MAC protocols and TCP, respectively. Several forecast models have been
proposed for WLAN and cellular networks: the autoregressive integrated moving average
(ARIMA) model is the most commonly used for its simplicity [31]; however, algorithms
based on the mean throughput [32] or neural networks [33, 13| can also be used. In re-
lation to computer networks, GA has many applications to serve as a meta heuristic for
optimization purposes. For example in [14], the GA is used to calculate the best fit of a
set of functions to a time series model which is used to describe the number of calls per
minute of a switch centre with the aim of properly using the available resources for cognitive
radio applications. Hence, the GA is used to find the best set of functions that relate past
sample values with the future state of the network. Also, GA has also been applied in WiFi
environments for different purposes such as for scheduling [34], congestion control [35] and
optimization of wireless applications [36].

Therefore, in this paper we take the history-based approach to TCP throughput predic-
tion. This is because we want to be independent of TCP intrinsic behavior and just use a
history of measured samples of TCP throughput values over time in order to predict future
throughput evolution. We apply GA based prediction techniques in order to best fit a set
of functions to the given historic time series of measured TCP throughput values. Based on
the GAs calculated best fit, we use the set of functions then to predict the TCP through-
put over time. This work is a continuation of [37] where simulated traces where used to
forecast TCP available bandwidth and study its relation to MAC busy time on different
ON-OFF patterns governed by birth-death Makovian process. The good results obtained in
the previous work on the prediction of simulated traces motivated us to use the GA tool
from this work, improve it and use real traces to evaluate the prediction impact when several
tuning parameters are changed; furthermore, different from [37], in this paper we study the
possibility to reduce the frequency of retraining.

2.1. Time Series Analysis

Time series analysis [38, 39, 40, 41, 42, 43| can be used to predict future values in a
dynamic system. The theorem proposed by Takens [44] states that a non-linear chaotic
dynamic system can be reconstructed from a sequence of observations. Therefore, having
the following scalar time series {1 2,23, ..., Tn,,,.,... }» Obtained from observations during



constant time intervals, it is possible to reconstruct a vector with embedding dimension m,
into an m-dimensional space, [45, 46, 47| as follows:

Zi(m) = (T4, Tigrs oo Tit(m—1)r), Zi€ R™

(1)
i=1,2,..., Nyamples — (m — 1)7

Here, Z; is the reconstructed vector with the embedding dimension m, x; is the observed
discrete value at time 7 , 7 is the time delay or embedding time and Nygppies is the length of
the historical data series. The m coordinates of each Z; and z; are samples from the time
series separated by a fixed 7. The result is a series of vectors

Z - Zl,Z27 i) ZNsamplesf(mfl)T (2)

The idea of such reconstruction is to capture the original system states at each observation
of the system output.

Applying this theorem to the problem to predict TCP available bandwidth, we assume
that we are given a number of TCP throughput values sampled at different time instants as
a sequence of discrete data points {x;}, in chronological order. The aim is to study the time
series behaviour in order to forecast the future evolution of the TCP throughput, up to a
certain time horizon (also called prediction horizon).

2.2. Genetic Algorithm

GA is a stochastic search method based on Darwins theory on natural selection and
survival of the fittest. It has been applied to solve different optimisation problems without
the necessity of finding an equation or series of steps to solve each problem. GA uses historical
data, such as given by a time series, to find new points of search for an optimal solution of a
problem, trying to improve the results and to converge into the best solution. The GA meta
heuristic has three main processes or operators: selection, crossover and mutation. They
are in charge of manipulating the current population in order to create optimal solutions for
the problem to solve. These optimal solutions are tested over a set of time series samples
called training set. Besides these operators, the fitness function plays an important role in
the evaluation of the chromosomes because it influences the GA behaviour and its evolution.
Fitness functions can be defined by several metrics that help to evaluate the goodness of the
solutions over a training set.

The main general structure of the GA procedure is described in the following steps:

e Step 1: Randomly generate an initial population.

Step 2: Evaluate each individual by means of the fitness function and sort them ac-
cording to the selection method (i.e., by their fitness, calculated on the error from the
real data).

Step 3: Select the individuals for the reproduction (i.e., those with less error).

Step 4: Through means of the crossover and mutation, new solutions are generated.



e Step 5: Evaluate the new population and repeat from step 3 until the termination
criteria are met.

Once the algorithm terminates, the chromosome with the highest fitness within the current
population is selected as the best solution to the original problem.

2.3. Forecasting

In this step, we look for a dependence of z; on its N past values {; 1,2 9, ...,z n}. The
forecasting is done using time series analysis. Having an univariate time series {x xa, ..., 2;}
representing the observations (e.g. TCP throughput samples over time), it is possible to
predict the next n points of this series (i.e., prediction horizon (ph), as the time interval
{t+1,t+2,...,t + n} with a subset T of the previous samples (i.e., called the training set
(ts)) [48, 44, 39].

The forecasting method used in this paper is the direct multistep-ahead prediction of
several points, also known as independent value prediction in [49] or direct strategy in [50].
We apply Takens theorem [44] for the forecasting of the next samples, applying GA to look for
an optimal function f(). The aim is to find a pattern in the past values {z;_,, Zy_or, ..., Tt—mr }
and use it to predict the future samples JZ'{, as follows:

;%‘Z = fj(xtfﬂ'a Tt—275 -y 'thmﬂ')
(3)

mr+1<t<T 1<73<N

Here, i’i represents the predicted sample at time instant ¢ for the chromosome j in the
current population; T is the length of the training set created from the time series of length
(m — 1)7 and N represents the maximum number of chromosomes in the population.

We choose the direct prediction strategy because the error is not summing up in each it-
eration. When using the iteration prediction [50] instead, the predicted sample is included in
every iteration and hence, the inherited error is added for the next prediction [49]. Although
the direct strategy does not have this problem, it implies more computational resources be-
cause when increasing ph a larger ts is required to obtain a good prediction. The approach
proposed in this paper is the combination of the time series analysis, GA and the forecasting
method presented in Figure 1.

3. Problem Statement and Approach

In a wireless scenario, different users using other wireless technologies in the same fre-
quency band may cause interference. A prediction over the future state of the network may
help to take appropriate decisions and ensure optimum use of available resources. The prob-
lem in a real environment lies in several factors that are affecting the TCP throughput such
as multipath, shadow fading and interference. Therefore, it becomes difficult to model and
predict with good accuracy the next state of the network using traditional time series mod-
els. Hence, it is important to select an appropriate tool to find a function that models the
network behaviour in this dynamic and chaotic system. The GA was used before in chaotic
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Figure 1: Approach overview

settings such as [14], which motivated us to apply a similar technique to model and predict
available TCP throughput from a time series of measurement samples. The idea is to let the
GA find the best set of functions that when combined properly match the given time series
in the best way and use that set of functions in order to predict future TCP throughput
evolution over time.

In order to find the best matching functions, each potential solution is encoded in a
chromosome that represents an individual in a population. The GA attempts to find a solu-
tion inside this search space where the chromosomes are manipulated by the GA operators
(like crossover, mutation, etc.). Therefore, the first step is to define the rules to encode a
chromosome through a set of functions. We have to create a valid mathematical expression
which is able to evolve in the GA domain and once decoded can be verified to be a valid
solution. As in [14], we use a combination of arguments (numerical values or past samples),
functions (cos(6), sin(f), In(z), e”) and arithmetic operations (4, —, X, ). Moreover, the
expressions are created using the reverse Polish notation [51] or also called postfiz. Once the
composition of the mathematical expression is defined, some rules must be followed in the
encoded function in order to be able to decode these expressions [14]:

e The first and second position of the chromosome must be an argument and the last
one an operator;

e At any position of the chromosome the number of arguments on the left must be greater
than the operators;

e The chromosome must have the same number of arguments as operators plus 1.

The GA generates randomly an initial population of N chromosomes following the afore-
mentioned rules. Yet, as these solutions are generated randomly, it is necessary to verify if
they meet the rules and otherwise repair them. The verification and repair processes are
also repeated after the crossover and mutation steps as in [14].
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One of the most important tasks is the definition of an appropriate fitness function to
properly evaluate the different solutions given by the meta heuristic. This is because different
criteria and metrics can be used to set the fitness function and attempt to estimate the error
or difference between the real and the predicted sample. While [14] uses a simple fitness
function, we use several ones from the literature and analyze the impact of different fitness
functions on the prediction quality. The main structure of a GA is depicted in Figure 2,
where the boxes in grey represent the functions that have been extended and evaluated in
this paper.

3.1. Selection Methods

The selection operator within the GA selects pairs of chromosomes in the population for
reproduction. This is randomly done by favouring those chromosomes that have a better
fitness. Several selection methods exist in literature such as the roulette-wheel selection
(RWS) [52], rank-based roulette wheel selection (RRWS) [53], tournament selection [52] and
exponential ranking wheel selection (ERWS) [54], among others. The authors in [14] used the
RWS as the selection method even though the solution may not be the optimal one, because



of its drawbacks such as the lower diversity and premature convergence of the population.
For this reason, in Section 4.3 we will compare the prediction quality for different selection
methods such as RWS, RRWS and ERWS.

The probability of selection (PjRWS ) of a chromosome j using the RWS method is based
on the fitness function of each chromosome and is calculated as:

FF;
PRWS _ j 4
! Z?:l FF J ( )
where F'F; is the fitness function of the chromosome j. Section 3.5 provides the details on
how to calculate the fitness function.

The probability of a chromosome j to be selected using the RRWS (P/*"5) and ERWS
(PJ-ERWS ), the rank value is used as a fitness value. These two methods solve the problem
when few chromosomes occupy most of the roulette wheel portion causing a big disadvantage
for the remaining chromosomes. The probability of RRWS method [53] can be calculated
as:

2 — SP+ (2% (SP — 1)Teul)

PRRWS _ (V-1
Pos;j—1
! Y2 = 8P+ (2% (SP — 1)) (5)
1.0<SP <20

Here, Pos; is the position of the chromosome j, N the number of chromosomes, and SP
the selection pressure. The position of the chromosome is obtained by sorting the population
by their fitness value, where the fittest chromosomes will be in the first position and the least
fit in the last position of the list.

The ERWS method uses as selection pressure the exponential weight (C'), which controls
the exponential degree. Therefore, the ERWS method tries to address the low convergence
and the high diversity that RRWS presents due to the lower probability difference between
the fittest and the least fit chromosomes:

PERWS _ CN—POS]'
J Z?:l C’N—Pos]- (6)
0<C<1

The SP and C' control the probability to select the chromosomes with higher or lower
chance depending on their rank. However, a higher exponential weight (C') implies more
equality while a higher SP implies lower equality (i.e., lower probabilities to be selected for
the chromosomes with a lower rank). The main advantage and drawbacks of using these
selection methods are detailed in Table 1. The selection method to use is a trade-off between
computational time i.e. the number of generations to converge, diversity of solutions and
the feasibility or accuracy of the solution.
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Table 1: Overview on Selection Methods

Advantage Disadvantage
Probability depends on the fitness Low diversity and
RWS as occurs in nature premature convergence

Simple and widely used Scaling problems

RRWS ngh diversity Low c?nvergence
No scaling problems Computational resources
ERWS Medlu.m diversity Low/ medu%m convergence
No scaling problems Computational resources

3.2. Elitism

The elitism operator keeps the best chromosomes during the crossover and mutation
process, thus guaranteeing that the best chromosomes are going to survive and be present
in the next generation [55]. This process takes the K best chromosomes as:

K = N -elitism,qe eN, (7)

where elitism,q. is the percentage of elitism that ranges from 0 to 1.

3.8. Crossover

The crossover operator allows the exchange of features from one generation to the next
and thereby the evolution of the species. The main objective is to get an improvement in the
fitness for the next generation (offspring). During the crossover, the chromosomes selected
for reproduction are paired up and crossed over. The crossover operator randomly selects one
position along the chromosome and exchanges the part of the chromosome before and after
that point of the two chromosomes to create the new offspring. This process is performed
with a given probability, which fixes the number of chromosomes that are crossed over and
therefore, the number of parents that will not survive.

3.4. Mutation

Once the crossover operator is finished, the mutation process is carried out to preserve
and introduce diversity, i.e. to avoid premature convergence. This process ensures that the
GA is not stuck in local minima, avoiding two consecutive populations to be very similar,
and therefore allowing to diversify the solutions. The mutation process involves a number of
random genes with a certain probability of mutation by randomly interchanging two values
of a chromosome.

3.5. Fitness Function

The fitness function in our use case evaluates the goodness of each chromosome by calcu-
lating the error between the real data samples from the time series and the training set (in
our case this is the TCP expected bandwidth on the training set). The fitness function has
a big impact on the solution quality because it determines at the end which chromosomes

11



will survive. Several fitness functions have been proposed in the literature [38] and Table 2
summarizes the most frequently used metrics. In Section 4.3 we evaluate the performance
of the prediction quality using different fitness functions as described below.

Several authors propose to use the sum squared error (SSE) between the prediction and
the original sample [14, 39, 40]. Similarly, one can use the mean square error (MSE) for
calculating the fitness according to:

1
FFl = ——— 8
7 1+ MSE ®)

While both fitness functions are very simple to evaluate, they may result in poor results
due to the scarcity of the forecasted model information. One of the problems encountered
using F Fjl is when two or more chromosomes have the same fitness value but when different
trends can be observed. In this situation the GA may select one of them randomly without
taking into account the trend of the solution which may lead to large errors.

By considering the Prediction Of Change In Direction (POCID) metric, Eq. 9 takes into
consideration not only the error between the original sample and the prediction using the
MSE, but also the trend of the model:

POCID
2 _
FF = 1+ MSE 9)

The Normalized Mean Square Error (NMSE) can provide information regarding the de-
viations between predicted and measured values. Such information may contribute to point

out the most noticeable differences among models. Therefore, another possibility is to use
the NMSE instead of the MSE in Eq. 9:

POCID
FF} = =~ 1
I "1+ NMSE (10)

The feasibility of the results can be improved when combining both the use of individual
metrics (i.e., MSE, NSME) and POCID along with other metrics as the Mean Absolute Per-
cent Error (MAPE) and the Average Relative Variance (ARV), as in the following expression:

PR POCID (11)
71+ MSE+ MAPE + NMSE + ARV

However, Eq. 11 may lead to dissimilar results because of the difficulty to satisfy the
requirement of all metrics at the same time, e.g. high POCID, but low MSE and NMSE,
etc.

Finally, the resulting fitness of each chromosome is multiplied by an exponential expres-
sion, Eq. 12, that depends on the number of historical samples (X)) that the functions
depend upon and the number of preferred samples (I,). This exponential expression [14]
results in a maximum of 1 when the chromosomes conform to the preferred number of his-
torical samples. Otherwise, the exponential expression results in a number smaller than 1
and therefore, it reduces the fitness of those chromosomes that do not have the preferred
number of historical samples. For example, by selecting a low [,, we prefer chromosomes

12



Table 2: Metrics for fitness function

Mean Square Error MSE MSE = %Zfzwﬂ()(f — 1)
Mean Absolute Percent Error | MAPE MAPE = § ZtT:mT +1|Xt]x:xt
T J 2
Normalized Mean Square Error | NMSE NMSE = Elmrn Xy = 71)

2
ZZ‘:MT{»l (xt _ xt+1 )

POCID = 1_19’0 Zf:m’r-l-l ‘Dj

Prediction on change POCID . iy .
in direction = (zt — f—l)(fﬂt —xy) >
0 otherwise
T J 2
Average Relative Variance ARV ARV, = DOANIC, 7))

Zz:m7+l(Xg — E)2

(functions) that only depend on a few number of historical samples. As a consequence,
chromosomes that have less or more historical samples than [, will be penalized more.

FF; = FFj x exp v Xota=ls) (12)

3.6. Diversity

Diversity is necessary in a GA since it introduces new solutions in the current population.
Increasing the probability in the mutation process may lead to a random search because both
the fittest and least fit chromosomes may be affected by the randomness. Therefore, two
diversity methods are implemented in this work to provide new potential solutions without
compromising the proper GA functionality. One of the methods consists in the selection
of the least fit D random chromosomes of the last population and injecting them into the
current population [56]. In the other one, D random chromosomes are removed from the
current population, and later new D random chromosomes are generated and introduced to
the current population to be part again of the N population. The D random chromosomes
are calculated as follows:

D=N —(of fspring+ K) €N (13)

where offspring is the number of offspring created in the crossover process and K is the
number of elitism chromosomes.

3.7. Stopping Criteria

The stopping criteria defines the condition, when the GA terminates. In this paper, we use
two different stopping criteria. The first one is when the maximum number of generations is
reached. For the second one, we calculate the maximum tolerable error based on the MAPE.
In our case, we terminate the GA if we can find a good enough solution (a solution which
has an error smaller than a given threshold) or when we reach the maximum number of
iterations as given by the maximum number of generations.
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3.8. Use of Feedback during the Forecasting

The use of updated information (e.g. based on actual measurements during the pre-
dictions) may help the GA to improve the quality. However, it may happen that it is not
possible to include the measured samples or that they can be added only after a certain time.
The update time (i.e., the time that the system needs to get the real predicted samples) may
affect the reliability of future predictions. When we try to predict further ahead (i.e., the
prediction horizon is greater than the training set) and take the predicted samples & as an
input for future predictions, the error may be summing up and, therefore, the quality of the
prediction may decrease. It may be more beneficial to use the measured samples rather than
the predicted sample as input for future predictions. For example, if one tries to predict
with ts = T and ph = n where x;_r is the oldest sample that the system can take from the
whole time series {x1, s, ...,2;}, at time ¢ + n the system may collect real data based on
actual measurements {x;1, Ty42, ..., T4n—1} and use it as input data to function f; for the
next prediction at time ¢ +n + 1:

jjz-i-n-f—l = fj(xb Lig1y oeey mt—i—n) (14)

We will evaluate the impact of feedback based forecasting on the prediction quality in
the evaluation section.

3.9. Retraining

As described in Section 2, GA has been used for short-term forecasting with reliable
results in order to match a given set of functions to a time series of sampled measurement
points. Typically, once the set of functions is found, those equations can be used to forecast
or predict future time series points. However, the characteristic of the time series may
change over time so that a once found set of functions may be not a good fit for the time
series in future instances. To increase the accuracy of the prediction, we may apply a
retraining scheme, for which the GA may compute the best matching set of equations every
ot. Clearly, retraining more frequently leads to a more computationally heavy scheme leading
to a potential better match between the real measured data and the predicted ones. We will
evaluate the impact of retraining on the prediction quality in the evaluation section.

4. Numerical Evaluation

In this section, we perform a series of numerical evaluations varying, among others, fitness
functions and selection methods described in Section 3. First, we provide the details of the
scenario and the evaluation setup in Section 4.1. Then, we discuss our results and study the
effect of different settings on the prediction quality.

4.1. Evaluation Setup

We aim at evaluating the suitability for using GA to predict available TCP bandwidth
that is given by time series measurements. We want to fit a set of mathematical equations
that operate on the time series in order to match the TCP available bandwidth and study
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Table 3: GA default parameters

Parameters Description Value
De Crossover probability (Single point) 0.7
Dm Mutation probability (Single point) 0.05
elitism Elitism percentage 0.1
generation Number of generations 100
N Number of population 100

T Length of the ts (samples) 10 or 30

L Number of preferred time series 1
values in the chromosome

mating pool Mating pool size 0.8

the impact of different fitness functions, selection methods and prediction horizons. We
implemented the GA in Matlab and set-up the GA with the standard values presented in
[14, 57, 58|, see Table 3. All GA tests are run using the same common parameters while the
training set is varied ts depending on the scenario. In addition, one selection method and
one fitness function is selected in each test to study the effect on the prediction quality. We
perform 50 repetitions for each test and calculate the average over all repetitions.

We obtained real TCP throughput samples which are then used by the GA as input to
create the time series of samples that are used to fit a set of functions. To get the throughput
sample values, we used an IEEE 802.11 client in the public library in Karlstad university,
where interference from other devices is common. The TCP throughput is measured every
100 ms at the client side (i.e., one sample is equivalent to 100 ms in the rest of the paper).
Among the huge amount of data that we obtained, we selected two sets of 60 samples of
TCP throughput representing: 1) a scenario with a more regular pattern (Scenario A, see
Figure 3) and 2) a scenario with abrupt changes in the trend (scenario B, see Figure 4).
These scenarios are investigated in order to 1) test the ability of the proposed GA to follow
smoother or sudden changes in the throughput pattern, and 2) assess the prediction error
using different settings in the GA (e.g, selection methods, fitness functions, training set,
prediction horizon, etc.). The results of this first evaluation are presented in Section 4.3.
Then, we select one fitness function, one selection method and one scenario and we further
study the impact of using feedback during the prediction in Section 4.4. Finally, in Section
4.5 the impact of retraining on the prediction quality is studied.

4.2. Scenarios

The two scenarios are depicted in Figure 3 (scenario A) and in Figure 4 (scenario B).
The input data (measured TCP throughput as a time series) is drawn with a blue solid line.
The training set (¢s) constitutes 30 samples (from sample 1 to sample 30) and the prediction
horizon (ph) is also set to 30 samples (i.e., the GA predicts the next 30 samples of the TCP
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Figure 3: Input data and GA output in Scenario A for F'F jQ and RRWS. Different training sets are shown
(ts=10 and ts=30).

throughput, from sample 31 to sample 60). The prediction obtained with FF? (Eq. 9) and
with RRWS as the selection method is also displayed (red dotted line) for both scenarios.
Further in the evaluation, we will also show the case when the ph is set twice or four times
the ts; in that case, we will predict from sample 31 to sample 90 or 150, respectively (for
simplicity, samples from 60 to 150 are omitted in Figures 3 and 4). Also, we will show results
when ts is set to 10 samples; in that case, the ts goes from sample 1 to sample 10. For a ph
of 10, samples 11 to 20 are predicted, while we will predict up to sample 50 when the ph is
four times the ts.

As shown in Figure 4, the TCP throughput trend in scenario B is increasing from sample
1 to 36 due to e.g. better conditions on the wireless channel or lower interference conditions.
Then, the TCP throughput decreases abruptly around sample 36 and, again, around sample
50 due to e.g. more interference. It is important to detect these changes in the trend. Also,
it would be interesting to estimate the duration of such changes.

4.8. Impact of the Selection Method and Fitness Function

In this section, we evaluate the prediction error for the given fitness functions and selection
methods (see Sections 3.1 and 3.5). We select the MAPE as the evaluation metric since it
is scale-independent of the input data range and the calculation results in a percentage
expression.

Figure 5 and Figure 6 show the MAPE between the given input data and the predicted
samples for different settings of the GA in scenario A and B, respectively. In the x axis, each
fitness function (i.e., FF} to FF}) is evaluated for three selection methods (i.e., RRWS,
RWS and ERWS). The four blue bars (darker bars in b/w printing) represent the MAPE
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Figure 4: Input data and GA output in Scenario B for F'F j2 and RRWS. Different training sets are shown
(ts=10 and ts=30).

when the ts is set to 10 samples; the first bar represents the MAPE of the training set (i.e.,
the error between the input data and the output of the GA during the training), while the
second bar depicts the MAPE of the prediction when the ph is set to 10, as the ts. We can
observe that, for scenario A, the MAPE of the ts is always between 15% and 17%, while the
MAPE of the prediction is always higher (i.e., between 18% and 22%). Although it is not
clear whether one fitness function or one selection method performs better than the others,
it seems that the combination of FFf with ERWS shows a smaller overall gap. On the other
hand, scenario B shows better results regarding the training set: the MAPE of the ts is
always lower than 10% and that of the prediction stays between 15% and 19%.

Once the GA finds an equation that properly fits the training set, the same amount of
samples (i.e., ph=ts) can be predicted with good fidelity using that same equation; if one
would like to predict for longer horizons, it is recommended to either retrain the GA [14, 59|
or increase the training set at the expense of higher computational complexity. While the
impact of retraining is further investigated in Section 4.5, in this section we analyze the
impact of using a larger prediction horizon, i.e. ph > ts. Using a large prediction horizon
raises the question what is the impact regarding prediction quality of using a single equation
for time series values that are further away in the future. On the other hand it is not clear,
how far we can predict using the same equation with reasonable fidelity.

To further study those questions, we plot the MAPE when the ph is twice the ts and
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Figure 5: MAPE for different selection methods and fitness functions using a training set of 10 samples vs.
30 samples and for different prediction horizons (scenario A)

when it is four time the ¢s in Figure 5 and 6 for each fitness function and for each selection
method. As expected, the MAPE increases with larger ph; however, in the smoother scenario
A, when we predict for a horizon twice the ts, the increase in the error is very small. For
some combinations (i.e., FF7, and FF; with RWS or ERWS), the MAPE is almost the same
for ph=ts and ph=2ts. In Section 4.4 we will investigate further on this interesting result
and we will study the effects on the time needed for the prediction.

Finally, we want to study the impact, in terms of the prediction error, when longer
training sets are used. Although more computational resources are needed, the authors in
[60, 61] demonstrate that the longer the training set, the more accurate will be the equation
obtained with the GA during the training. Following the statement given above, using a
longer ts we expect a more accurate prediction. Thus, we use a ts of 30 samples and compare
the results with those obtained with ts=10. Figures 5 and 6 show the results for ts=30 in
green (lighter grey scale in b/w printing). First, we observe that in scenario A the MAPE
of the ts when ts=30 is always smaller or equal to that when ts=10. Also, the MAPE of
the prediction with ph=ts is always smaller than the MAPE of the ts, thus confirming what
found in the literature. Also, when the prediction horizon is increased, the performance
drops drastically. On the other hand, the results in scenario B are always worst when the
ts is increased from 10 to 30 and ph=ts. However, when using ph=2ts, there are some
combination of the fitness function and the selection method for which the performance can
even improve (i.e., F Ff, and F F;‘ with RRWS or RWS). Again, with ph=4ts the performance
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Figure 6: MAPE for different selection methods and fitness functions using a training set of 10 samples vs.
30 samples and for different prediction horizons (scenario B)

drastically drops. However, when ts=30 and ph=4ts, the absolute number of samples we
try to predict is much larger than compared to the case when ts=10 and ph=4ts. From our
results we can conclude that a longer training set not always leads to better predictions, as
this performance is also tied to the trend in the dataset. While longer ts is preferred for
regular trends, a more irregular dataset may not necessarily benefit from a longer training
as the prediction errors are not significantly reduced and more computational resources are
required.

4.4. Impact of Limiting the Sample Set and of Feedback

[14] suggests to use the newest samples of the input data (i.e., most recent data) to
validate the fitness of the equations on the training set. Using the newest data should better
follow the trend of the input. In contrast, using old data may lead to erroneous predictions.
In this section we study whether imposing a limit on how far in the past one can go (i.e.,
how old can be the samples used for the training phase) may have an impact on the quality
of the prediction. We set four different constraints: 10, 20, 30 and 40 samples; e.g., with
a limitation of 10 samples (i.e., {#m10), the GA can take any sample among the 10 newest
historical samples to generate an equation. We compare the results with the case where no
limitation is used (i.e., no_lim), meaning that the GA can take any sample among the 150
newest samples. Also, from now on, the fitness function is set to F Fj2 and the selection
method to RRWS; only scenario A is further investigated in this and the following sections.
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Thus, the four blue bars presented in Figure 5 for F Fj2 and RRWS and for ¢s equal to 10
now reappear in Figure 7 as "No lim" (green). The four bars in blue in Figure 7 represent
the MAPE of lim10 (dark blue), 1im20 (blue), lim30 (turquoise), lim40 (light blue).The
standard deviation (stdv) is also displayed for each bar. In general, when a limitation is
introduced, an improvement can be observed. With [im10, the average MAPE and the stdv
decrease if ph=2ts, while the stdv increase for ph=4ts. When older samples are included
(i.e., 14m20 and 1im30), the MAPE and stdv decrease; however, when too old samples are
included (i.e., [im40) the MAPE increases again, thus masking the benefits of the limitation.

Figure 7 also shows the results when feedback is applied to the GA: lim10fdb (dark red),
lim20 fdb (crimson), lim30fdb (red), and lim40fdb (light red). That is, when the ¢s is set
to 10 and at time t=0 we want to predict during ph=2ts=20, at time t=ts the system may
have collected the real data based on actual measurements during {0,1, 2, ...,ts — 1}, so that
it can use the real data instead of the predicted samples for further predicting the next ts
samples (i.e., from t=ts to t=2ts —1). In this way, the prediction error does not accumulate,
as explained in Section 3.8. As shown in Figure 7, when ph—=ts=10 we obtain similar results
when applying feedback or not, as expected. In contrast, the more we try to predict the
future (increase ph), the more using feedback reduces the MAPE and its standard deviation.
For longer prediction horizons we can conclude that it is worth limiting the sample set to
the newest values (i.e., {im10) if feedback can be employed.
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Figure 8: Original and predicted samples using different retraining schemes with feedback (scenario A, F'F J-Q,
RRWS, ts=10)

4.5. Impact of Retraining

Due to the high computational cost, it is essential to exploit as much as possible the
resulting set of functions for predicting once the GA has found a solution. However, the use
of the same function to predict over long-term periods may lead to a loss in prediction quality
and, therefore, an increase in the prediction error. We intend to study the evolution of the
prediction error when the same function is employed to predict samples that are further
away than the prediction horizon (i.e., ph > ts) and the impact of the retraining on the time
needed to find a solution. We want to predict up to e.g. 80 samples (i.e., ph=80, and ts=10)
applying different retraining schemes as follows: retrain every 10, 20, 30 and 40 samples.
When we retrain every 10 samples (ret10), after the first 10 predictions are obtained, the
GA is trained again over the last 10 real data samples (i.e., feedback as explained in Section
4.4) which provides a new set of functions, which is then used to predict the next 10 samples.

When lim10 with feedback was selected, we could observe a positive effect on the quality
of the prediction since unless there is retraining, real samples are used every 10 samples
instead of predicted samples. When a retraining scheme of 20 samples (ret20) is used, after
the first 20 predictions are obtained, the GA is trained again. However, as feedback is also
applied, after the first 10 predictions the GA uses the last 10 real samples to feed its equation
and predict the other 10 samples. Then, after retraining, the new equation is used to predict
the next 20 samples (10 plus 10 with feedback). Therefore, the feedback process is applied
every 10 samples for ret20, ret30 and ret40.

The impact of retraining and feedback using the different retrain schemes is illustrated in
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Figure 8. This figure shows the mean predicted samples and the original data (Input data)
when the retrain schemes of 10, 20, 30 and 40 samples are applied with feedback. Note,
that from sample 10 to 20 all schemes uses the same function, thus the predicted samples
are the same for all schemes. After sample 20, ret10 uses a new function to predict up to
sample 30 and the other schemes update the real predicted samples from sample 10 to 20.
At sample 30, ret10 scheme uses a new function along with ret20. Ret30 and ret40 use the
new function at sample 40 and 50, respectively. When the retraining frequency is reduced,
the MAPE variation increases due to the decrease in the prediction accuracy. Although
better results are obtained with a retraining scheme of 10 samples, the difference between
the mean MAPE of the retrain scheme of 10 samples and the retrain scheme of 40 samples
with feedback is only about 8 %. Moreover, the difference between the mean MAPE of the
retrain schemes with feedback does not exceed 4 %. Therefore, when a retraining scheme
is selected along with feedback, the difference between 10 samples retrain and 40 samples
retrain is reduced. Despite this small difference below 1%, we can see that the difference in
the prediction interval increases for these schemes.

Figure 9 shows the mean prediction time (the time to run the algorithm to find the
solution) versus the MAPE and its standard deviation for the four retraining schemes and
with or without feedback. When we use feedback, we need to update the predicted samples
by using the real measured samples. Adopting feedback consumes more CPU to calculate a
solution. However, retraining needs more CPU resources and time than adopting a feedback
method. Retraining very often (i.e., ret10) requires the highest CPU time but results in the
smallest MAPE. On the other hand, retraining every 40 samples consumes less time but at
the expense of a reduced prediction quality. Note, that ret30 with feedback provides a good
tradeoff as the MAPE is comparable with the one in ret10, while the time required to find
the solution is around 33% less than in ret10. Also, it is evident from Figure 9 that the
feedback always benefits the accuracy of the prediction.

Finally, we were interested how confidence intervals over time evolve when using different
retrain schemes and prediction intervals. As a consequence, we calculate the range of the
mean prediction samples given by the set of functions calculated by the GA. We calculating
the 95% confidence interval, i.e. the area where, with 95% confidence, the mean predicted
samples will be located. This statistical measure gives important information about the
accuracy of the prediction. On the other hand, the prediction interval provides information
about the distribution of the predicted samples. The prediction interval is based on the past
observations and shows, with a certain probability, where we can expect any future sample.
This range is always wider than confidence interval as it considers the uncertainty on the
mean value and its distribution properties. Figure 10 shows the 95% confidence interval and
the prediction interval calculated from the resulted predictions when the input data from
Figure 8 is used.

Figure 11 a) illustrates the effect on the confidence interval and prediction interval when
a retraining scheme of 10 samples is applied. In this case, as can be compared with Figure 10,
both confidence and prediction interval are narrower since this retrain scheme provides more
accurate results at the expense of more CPU resources to find the soution (also compare
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Figure 9).

When we use the same function to predict further ahead we can expect less accuracy and
uncertainty on the results. For example, when the training set is composed of bandwidth
samples that conform to a more steady throughput, it will be hard to predict a sharp
increase in available bandwidth later on. This can be seen from Figure 11 where we show the
confidence and predicted intervals for a retraining scheme using different samples (10, 20, 30
or 40). After sample 70, the TCP throughput starts to increase exponentially, which makes
it hard to predict without proper retraining. Although the error increases significantly after
sample 70, mostly the prediction interval covers the input data, meaning that the algorithm
is able to follow successfully the trend.

When a retraining scheme of less frequency is selected (i.e., ret30 or ret40) as in the case
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of 30 samples, depicted in Figurell c), the effect in the confidence and prediction intervals
remain similar to the case of 20 samples, since the retraining has been applied from sample
60 and 70, i.e. before the TCP throughput rises sharply. When a retraining scheme of 40
samples is applied, the prediction band is consistent across all input samples as Figure 11
d) illustrates. In this scenario, the GA is retrained only once (i.e., at sample 50). However,
the prediction interval is quite wide, but covering mostly all the input data, including the
area where the throughput rises sharply. Despite we are using a less frequent retraining
scheme compared to 20 or 30 samples, we can much better follow the trend because the
GA is retrained in a different area (starting at sample 50). We conclude that even though
retraining with higher frequency may reduce the uncertainty and provide higher accuracy,
it is important to retrain at specific time intervals in order to capture changes in input
statistics.

5. Conclusion

The difficulty of predicting the TCP throughput in interference prone WiFi environments
is challenging because of different unpredictable effects such as interference, multipath or
other users traffic leading to collisions and unpredictable available capacity. In this paper,
we propose to model measured TCP throughput samples as a time series and apply the
meta heuristic genetic algorithm to match a set of mathematical functions to best represent
the time series. By using the set of functions one can predict future samples, given the
GA is trained properly. Using our strategy, one can effectively predict TCP throughput
evolution over time by just looking at measured throughput samples without the need to
have information available from the TCP stack such as estimates on e.g. round-trip-time
or packet loss. We have evaluated the impact of different fitness functions and selection
algorithms on the accuracy of predictions. When a more accurate prediction is needed,
different retraining schemes can be applied at the expense of more computational power
required to find the best set of matching functions. Finally, we have demonstrated that
the use of feedback strategies always increases the accuracy of the prediction. In order to
improve the accuracy even more, a good strategy has to be found that determines when
retraining should be applied.

As a future work, we intend to develop heuristics that guide when a retraining should be
executed, for example based on knowledge about the TCP congestion control phase. Also,
we want to study the impact of different sampling intervals on prediction quality as well as
study more scenarios such as different interference situations, different bottleneck links, etc.
and their impact on the quality of the prediction.
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