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Abstract. This paper presents an algorithm designed to segment veins in the 

periventricular region of the brain in susceptibility-weighted magnetic 

resonance images. The proposed algorithm is based on a Mamdani-type fuzzy 

rule-based system that enables enhancement of veins within periventricular 

regions of interest as the first step. Segmentation is achieved after determining 

the cut-off value providing the best trade-off between sensitivity and specificity 

to establish the suitability of each pixel to belong to a cerebral vein. 

Performance of the algorithm in susceptibility-weighted images acquired in 

healthy volunteers showed very good segmentation, with a small number of 

false positives. The results were not affected by small changes in the size and 

location of the regions of interest. The algorithm also enabled detection of 

differences in the visibility of periventricular veins between healthy subjects 

and multiple sclerosis patients. 

Keywords. Brain; Fuzzy rule-based systems; Image segmentation; Magnetic 

resonance imaging 

1 Introduction 

Susceptibility-weighted imaging (SWI) is a noninvasive magnetic resonance imaging 

(MRI) technique that takes advantage of the magnetic susceptibility effects of 

paramagnetic deoxygenated hemoglobin [1]. Because of this capability, SWI can be 

used to visualize venous structures in the brain, providing valuable complementary 

information for the diagnosis and treatment of patients with neurological disorders 

such as multiple sclerosis (MS) [2]. A quantitative method to determine the number of 

veins detected on SWI would be of value for monitoring MS severity, progression, 

and the response to therapy [3]. 



Segmentation of venous structures over the entire brain with SWI is extremely 

complex. This is partly because certain regions, including the periventricular white 

matter, contain numerous small veins, most of them very thin and difficult to 

differentiate from their surroundings in these sequences. Many of the available 

methods used for segmenting veins in SW images are adaptations of techniques 

designed and used for segmenting bright arteries from a dark background [4]. Several 

methods for cerebrovascular segmentation have been proposed, and a detailed review 

is provided by Lesage et al. [5]. Focusing only on SWI, two main approaches have 

been used for segmentation of brain venous structures [6]. The first is based on the 

use of a statistical local thresholding algorithm [3]. The second approach involves 

application of scale-space analysis based on vesselness filters, which can be used to 

directly visualize venous structures [7]. Segmentation is then done using thresholding 

[8] or an active contour model [9]. Some examples of vesselness filters [10-13] are 

based on Frangi’s [7] and Sato's vesselness filter [8].  

Detection of venous blood pixels in SW images addressed to segmenting venous 

structures in the brain is subject to several factors that imply inherent uncertainty. 

Most cerebral veins are tiny, thin structures existing in an environment where noise, 

non-homogeneity, artifacts, and partial volume effects introduce varying degrees of 

vagueness that affect their detection and the definition of their paths. Fuzzy rule-based 

systems (FRBSs) are important areas in which fuzzy logic and fuzzy set theory are 

applied. In contrast to classical rule-based systems, FRBS deal with fuzzy rules 

instead of classical logical ones, and their success resides in their approximation to 

human perception and reasoning, and their intuitive handling and simplicity [14]. 

Some examples of FRBS use in MRI have been reported [15][16], and two studies, 

conducted by Forkert et al. [17][18], have described FRBS application to solve the 

problem of segmenting vasculature in MR images. However, Forkert’s work focuses 

on 3D time-of-flight (TOF) magnetic resonance angiography (MRA) rather than 

magnetic resonance venography with SWI. To our knowledge, the approach presented 

here is the first application of a FRBS to segment veins in SW images. 

2 Materials and methods 

2.1 Image datasets 

Image datasets for training and test purposes were obtained from 13 healthy individu-

als (10 women and 3 men), with a mean age of 36.7 years (range, 28-50 years). Im-

ages of one of these subjects were used for training and the images of the other 12 

were used to test the algorithm. To evaluate the capability of the algorithm to detect 

differences in vein visibility between patients and healthy subjects, we also studied 13 

relapsing-remitting multiple sclerosis (RRMS) patients (9 women and 4 men) with a 

mean age of 37.1 years (range, 28-46 years), mean disease duration of 10.3 years 

(range, 0.83–22.0 years), and an average Expanded Disability Status Scale (EDSS) 

score of 3.1. All images were acquired on a Siemens Magnetom Trio 3.0 T scanner 

(Siemens, Erlangen, Germany) with a 12-channel array head coil using a 3D fast-low 

angle single shot sequence (repetition time [TR]/echo time [TE], 32 ms/24.6 ms; flip 



angle, 15°; matrix, 320x320; voxel size, 0.78 x 0.78 x 3.0 mm
3
; iPAT factor, 2). Fifty-

two parallel contiguous axial slices covering the whole brain were acquired using this 

sequence. The study was approved by the Clinical Research Ethics Committee of 

Hospital Universitari Vall d’Hebron in Barcelona (Spain). 

2.2 Proposed method 

The proposed algorithm for segmenting veins on SWI has 5 main steps: image selec-

tion, preprocessing, definition of regions of interest, enhancement of veins, and seg-

mentation of veins.  

The first step is selection of 4 contiguous SW slices from the brain MRI examina-

tion of a subject, )41( ≤≤ nI n , where the regions of interest can be visualized. Then, 

structures outside the intracranial region have to be removed in )41( ≤≤ nI n  by 

applying to I
n
 a procedure based on the brain surface extraction (BSE) algorithm [19] 

included in the Medical Image, Processing, Analysis, and Visualization (MIPAV) 

software package, version 4.4.1 (Center for Information Technology, NIH, Bethesda, 

Maryland, USA). Thus, the )41( ≤≤ nI n

B
 images are obtained. These images are 

then normalized, so that the normalized value for each pixel p located at position (i,j) 

in 
n

BI  is given by: 
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where hmax is the gray-level value greater than 150 associated with the maximum fre-

quency in the smoothed histogram )( n

BS IH  obtained by averaging the frequency val-

ues whose distances in )( n

BIH  were less than or equal than 2. 

In the next step, pixels belonging to veins are enhanced to best differentiate them 

from their surroundings within )( n

NIROI  by applying a Mamdani-type FRBS to the 

images 
)41( ≤≤ nI n

N  to obtain the associated Adequacy images, 
)41( ≤≤ nI n

A . The 

inputs of this FRBS are perceptual features of vein pixels within ROIs evaluated with 

low-level operators, and the output is the adequacy of these pixels to belong to veins. 

Finally, a cut-off value is applied to the Adequacy images to obtain the segmented 

images, )41( ≤≤ nI n

SV
, whose value for a pixel p located at position (i, j) equals one if 

it belongs to )( n

NIROI  and cjiI n

A >),( , and is zero otherwise. ROC curve analysis was 

used to select the best cut-off value.   

2.3  Implementation of the method 

This section describes how the algorithm steps were implemented.  



Selection of images, preprocessing, and definition of ROIs 

From the 52 axial slices acquired in the examination of one healthy volunteer, we 

selected 4 contiguous axial slices, )41( ≤≤ nI n

t
, where the ROIs were visualized. The 

training images n

tI  were then normalized following the preprocessing procedure pre-

viously described, obtaining 
n

tNI . In each hemisphere of 
n

tNI  we then manually de-

fined a 9.38 mm by 42.97 mm rectangular ROI in the periventricular region mainly 

occupied by white matter from the corona radiata, )( n

tNIROI . The pixels within the 8 

rectangular ROIs obtained are the only ones included in the next steps. 

Enhancement of veins within the ROIs 

Selection of features 

A look inside the white rectangles in Fig. 1(a) shows that veins in SW images are 

visualized as mainly linear structures showing a darker gray level than their immedi-

ate surroundings. Comparison of the linear venous structures in the ROIs and the dark 

structures within the ellipses of the magnified image in Fig. 1(b) shows that the veins 

are lighter than the wider vessels in other locations, and some of them show short 

discontinuities. In addition, certain thin, dark structures are seen outside the ROIs, 

such as areas of cortex with a high iron content (Fig. 1b, white arrows), whose charac-

teristics may cause them to be mistaken for veins. 

 

Fig. 1. Example of SW image after application of the BSE algorithm and normalization proc-

ess. (a) Location of ROIs (white rectangles). (b) Magnification of the area containing ROIs in 

which black ellipses enclose blood vessels showing better differentiation than most of those 

within the ROIs, and white arrows point to some cortex locations with high iron content, which, 

because of their perceptual features, could be mistaken for vein vessels. 



Taking into consideration these factors, 3 features are essential to detect vein pixels 

within periventricular ROIs: Gray-level, Thinness, and Linearity. 

Selection of operators to evaluate the features 

Several low-level operators were analyzed, seeking those that best characterized 

Gray-level, Thinness, and Linearity. Selection of the most appropriate operator to 

evaluate Gray-level involved analysis of 9 operators: gray-level of the central pixel, 

and maximum, minimum, mean and median gray-level values of the pixels covered by 

3x3 and 5x5 raster windows. The standard deviations of the gray-level values within 

these windows and the gray-level differences between the central pixel and its 

neighbors were the 26 operators analyzed for Thinness. Lastly, to select the operator 

to evaluate Linearity, we used kernels that enabled detection of horizontal, vertical, or 

oblique (+45 and –45 degrees) single-pixel-wide lines. Application of these kernels 

required inverting the gray scale of the images in order to detect dark linear structures. 

To obtain the operators, pixels corresponding to veins located within the ROIs in 

the training set images )41( ≤≤ nI n

tN
, )( n

tNIROI , were manually labeled using MRIcro 

software [20]. These were the reference images )41( ≤≤ nI n

tREFV
, in which the value 

assigned to a pixel in the (i, j) position was 1 if it belonged to a vein and 0 otherwise. 

Moreover, since our analysis was focused on finding the best operators to evaluate the 

features of vein pixels, pixels within n
REFV tI  were divided into 3 reference sets: S1, 

comprising pixels labeled as veins and belonging to very thin veins; S2, including 

pixels labeled as veins without thinness restrictions; and S3, comprising pixels that 

were not labeled. 

The operator selected to evaluate each feature had to maximize the separability, de-

fined by the ratio between the absolute value of the mean value difference and the 

maximum of standard deviation values obtained for the reference sets Sr and Ss (r, s œ 

{1, 2, 3}, r∫s). Then, the operators showing the best performance for evaluating the 

features of each pixel p located at (i,j) were as follows: gray-level value, gl(i,j), for the 

Gray-level feature; the third highest difference between the central and surrounding 

pixels within a 5x5 window centered on the pixel, ),(3

55 jidif x
, for the Thinness fea-

ture; and the maximum of 4 directional 3x3 kernels centered on (i,j), maxK3x3(i,j), for 

the Linearity feature. 

Proposed Mamdani-type FRBS 

The principal elements of the FRBS were defined and designed based on a priori 

knowledge, in this case, expert judgment and experience. The underlying knowledge 

of the system was then explicitly translated into a set of easy to interpret linguistic 

labels using fuzzy rules. 

Knowledge Base: The data base (DB) of the proposed system is comprised of sets of 

linguistic terms and the membership function partitions associated with the three input 

variables introduced in previous section (Gray-level, Thinness, and Linearity), and the 

output variable (Adequacy of a pixel to belong to a venous blood vessel). The sets of 

linguistic terms considered for the input and output variables are given as follows: 

 



LGray-level = {Dark, Medium-Dark, Light}={D, MD, LG} 

LThinness = {Low, Medium, High}={Lthin, Mthin, Hthin} 

LLinearity = {Low, Medium, High}={Llin, Mlin, Hlin} 

LAdequacy = {Very Poor, Poor, Fair, Good, Excellent}={VP, P, F, G, E} 

 

To define the semantics of these linguistic labels, we adopted trapezoidal-shaped 

membership functions (MFs). The MFs were defined by the quadruple (sl, cl, cu, su), 

where sl and su, and cl and cu are the lower and upper bounds of the support and the 

core, respectively. The shapes of the MFs can be seen in Figs. 2, which show the 

fuzzy partitions defined on the domains of each variable. 

MFs associated with the input variables were obtained by analyzing the values of 

the features within and around )( n

tNIROI  defined in )41( ≤≤ nI n

tN
, whereas the uni-

form partition corresponding to the output variable involved 5 levels of adequacy. 
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Fig. 2. Trapezoidal-shaped membership functions defining the semantics of the linguistic la-

bels. Input variables associated with (a) Gray-level, (b) Thinness, and (c) Linearity features. (d) 

Output variable associated with Adequacy. Values defining the shape of each membership 

function are given in (d) for input variables, and in (f) for the output variable. 



The rule base (RB) is represented in compact format by the decision table shown in 

Table 1. To achieve good performance, the 27 rules conforming the RB were obtained 

taking into account expert human knowledge and attending to a trade-off between the 

number of pixels associated with true and false positives. The pixel values for the 

features fire each rule for the eight ROIs defined in the images of )( n

tNIROI . 

 Linearity 

Gray-Level Thinness Llin Mlin Hlin 

Lthin VP VP VP 

Mthin VP VP P D 

Hthin VP P F 

Lthin F G F 

Mthin F E E MD 

Hthin P F G 

Lthin P F P 

Mthin P F F LG 

Hthin VP P P 

Table 1. Decision table describing the rule base of the proposed FRBS 

Inference Engine: The fuzzification interface establishes a mapping from crisp input 

values to fuzzy sets defined in the universe of discourse of this input, U=Ugl xUthin 

xUlin. To do so, for each pixel p belonging to an ROI we obtained the corresponding 

input vector: xp=(xgl, xthin, xlin)= (gl(i,j), ),(3

55 jidif x
, maxK3x3(i,j)). Then, we sought the 

degree to which it belonged to each of the fuzzy sets defined in U; that is, µD(xgl), 

µMD(xgl), µLG(xgl), µL,thin(xthin), µM,thin(xthin), µH,thin(xthin), µL,lin(xlin), µM,lin(xlin), µH,lin(xlin), 

which were obtained via the corresponding trapezoidal membership functions. 

The inference system and defuzzification interface selected to derive the fuzzy and 

crisp outputs were the classical ones used by Mamdani [21]. These involve the mini-

mum t-norm for both the conjunctive operator, T, which derives the rules firing ac-

cording to the decision table, and the implication operator, I, which determines the 

output of the compositional rule of inference. Mode A-FATI is the defuzzification 

interface, where the aggregation operator, G, is modeled by the maximum t-conorm, 

while the defuzzification method, D, is the center of gravity (COG), such that: 
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where yi was the i-value in the uniform partition of the adequacy interval [0, 1] in N 

values, where the value of N was 100. The values yp so obtained provided the ade-

quacy of each pixel p in )( n

tNIROI  to be a vein pixel. 

Segmentation of veins 

After applying the FRBS to the training images, )41( ≤≤ nI n

tN
, we obtained the asso-

ciated Adequacy images, )41( ≤≤ nI n

tA
: For each pixel p, the value of )( pI n

tA
 was the 

value obtained if the pixel belonged to the ROI. If not, the value was set at zero.  

We then sought the cut-off value, “c”, providing the best segmentation results. We 

considered 71 cut-off values, )711( ≤≤ ici
, in the interval [0.2, 0.9] and applied them 

to the Adequacy images, )41( ≤≤ nI n

tA
. For each ci, four segmented images were ob-

tained, )41( ≤≤ nI n

tSV
, whose value for a pixel p located at position (i, j) equaled one 

if it belonged to )( n

tNIROI  and 
i

n

tA cjiI >),( , and was zero otherwise. To know the 

number of true positives (TP), false positives (FP), true negatives (TN), and false 

negatives (FN), a pixel-by-pixel comparison was performed between n

tSVI  and the 

reference image, n

tREFVI , manually labeled by an expert to determine the correctness of 

the classification within )( n

tNIROI . 

To select the best cut-off value, we used an ROC plot, representing the trade-off 

between sensitivity (S), that is the true positive rate (TPR), and the false positive rate 

(FPR), for each ci value. The true positive and false positive rates are given by 

S=TPR=TP/(TP+FN), and FPR=FP/(TN+FP). Applying this process, we obtained 71 

points (FPRci, TPRci), depicted in the ROC space. The best trade-off value is defined 

by the closest point to the upper left corner, located at (0.0316, 0.9394), which in our 

case was c=0.58. 

3 Results 

To evaluate the performance of the algorithm, we selected quality indices that enabled 

pixel-by-pixel comparison within the ROIs of the reference and segmented images. 

The indices were also defined based on the number of TP, FP, TN, and FN. Then, in 

addition to the true and false positive rates we also considered specificity (SPC), ac-

curacy (ACC), and the Dice coefficient (DC). These quality indices are defined by 

SPC=TN/(TN+FP), ACC=(TP+TN)/(TP+FP+TN+FN), and DC=2TP/(2TP+FP+FN). 

3.1 Evaluation of the algorithm on training and test images 

Training images 

The results for the training images are presented in the third row of Table 2, which 

shows the mean (m) and standard deviation (σ) values for the indices S, SPC, ACC, 



and DC in the comparison between the segmented and reference images. As was ex-

pected, and as can be inferred from the values greater than 0.9 obtained for sensitivity 

and Dice coefficient (third and sixth columns in Table 2), the vast majority of pixels 

labeled as veins within the reference images were detected by the algorithm. More-

over, the specificity and accuracy values (fourth and fifth columns of Table 2) point to 

a low number of false positives. Finally, the low standard deviation values with regard 

to the mean values obtained for all the indices studied indicate that there were no 

large differences in terms of detection quality between the regions analyzed.  

Table 2. Quality index values obtained with the proposed algorithm and other approaches 

 

Fig. 3. Examples of the results obtained by processing three test slices corresponding to differ-

ent anatomical locations. (a) Magnification of the original image area including ROIs. Columns 

(b) and (c) show overlays of the reference delineated and the segmentation results, respectively 

 

  S SPC ACC DC 

Algorithm Group m (s) m (s) m (s) m (s) 

Training 0.938 (0.017) 0.968 (0.001) 0.962 (0.005) 0.916 (0.022) Proposed 
FRBS 

Test 0.914 (0.044) 0.969 (0.023) 0.957 (0.017) 0.910 (0.031) 

Frangi’s Test 0.776 (0.054) 0.886 (0.040) 0.847 (0.028) 0.707 (0.031) 

Sato’s Test 0.796 (0.054) 0.866 (0.045) 0.851 (0.029) 0.720 (0.029) 



Test images 

To help in the interpretation of the results for the 96 regions of interest, )( n

TNIROI , 

selected in the test images, the fourth row of Table 2 shows the mean (m) and stan-

dard deviation (σ) for S, SPC, ACC, and DC. As can be seen, the mean values for the 
test and training images are similar for all the indices except sensitivity, which has a 

slightly lower mean value for the test images. Furthermore, the σ values for the test 

images are somewhat higher than those for the training images, but this is because of 

a greater data heterogeneity from the test set images. Therefore, despite the higher σ 

values, the results indicate a similar performance for the test and training images. 

Figure 3 illustrates the performance of the algorithm. Column (a) is a magnified 

depiction of n

TNI around )( n

TNIROI , the overlays in column (b) correspond to the man-

ual marking of vein pixels by an expert, n

TREFVI , and the overlays in column (c) are the 

results of vein segmentation, n

TSVI . The vast majority of pixels labeled as veins in the 

reference images were included in the segmentation. Only a very small number of 

false positives and false negatives occurred (see quality indices in Table 2). The false 

positives were mainly due to factors such as movement during image acquisition, 

small differences in the width of some vessels between the reference and segmented 

images, and visualization of other thin structures rich in iron. The false negatives were 

mainly due to partial volumes in some locations within the ROIs. 

3.2 Dependence on the window properties 

Location and size of the window selected for ROI delineation must be taken into ac-

count to avoid false positives. Structures surrounding periventricular white matter 

may have characteristics that make them difficult to differentiate from veins when 

they are partially included in ROIs and an automatic segmentation is applied.  

 S SPC ACC DC 
Window m (s) m (s) m (s) m (s) 

W1 0.914 (0.044) 0.961 (0.023) 0.957 (0.017) 0.910 (0.030) 

W2 0.916 (0.044) 0.970 (0.023) 0.958 (0.018) 0.913 (0.031) 

p-value 0.827 0.839 0.822 0.643 

Table 3. Quality index values obtained for test images using windows: W1 and W2. 

The previous analysis was done using ROIs defined by 9.38 mm x 42.97 mm rec-

tangular windows (W1). As an initial approach to evaluate the influence of the size 

and position of the window, we tested a smaller (8.59 mm x 39.06 mm) window (W2). 

Although the size of W2 was not greatly different from W1, the use of a smaller win-

dow helped to select positions with a lower possibility of presenting FP. 

To evaluate the effect of using one or another window in the test images, we com-

pared the quality indices obtained when ROIs were derived using W1 or W2  (Table 3). 

Means and standard deviations for S, SPC, ACC, and DC were very similar using the 

two windows, and p-values for the differences (bottom row) were not significant. 



3.3 Comparison with other methods 

To assess the gain of the proposed approach, we compared it with two publicly avail-

able methods developed for problems similar to the one proposed here. These two 

approaches were based on implementation of vesselness enhancement filters (VEF), 

developed by Frangi [7] and Sato [8], and included in the VMTK module [22] of the 

3Dslicer software [23]. First, the optimum values for the parameters of the approaches 

based on these filters were selected by evaluation of their segmentation performance 

on )(
n

tNIROI . We then used these approaches to analyze )( n

TNIROI . 

The results obtained using the filters on )( n

TNIROI  are shown in Table 2. Although 

the approaches based on the VEF yielded high values for the four quality indices, the 

proposed approach showed better performance: a significant improvement (p<0.001, 

ANOVA test) of around 10% to 15% in S, SPC, and ACC, and around 26% in DC. 

3.4 Evaluation of the ability to detect changes in the visibility of veins 

To evaluate the applicability of the proposed Mamdani-type FRBS algorithm for 

clinical purposes, we considered an approach similar to that reported by Ge et al. [3]. 

The authors demonstrated a significant reduction in the visibility of veins in the 

periventricular white matter in RRMS patients compared to controls.  

In this evaluation, we included images from 13 RRMS patients and 13 healthy con-

trols. The proposed FRBS was applied to the ROIs defined in these images, and the 

segmented images were obtained. Following segmentation, the mean number of ve-

nous blood voxels within the ROIs was 108.60 (σ=14.70) in RRMS patients and 
126.94 (σ=18.70) in healthy controls, and there exists a significant difference 
(p=0.01, Student’s t-test) between these two groups, as was reported by Ge et al. [3]. 

4 Conclusion 

The algorithm proposed here is based on a fuzzy rule-based system that allows seg-

menting periventricular venous vasculature in SW MR images. The algorithm entails 

initial enhancement of cerebral veins in defined ROIs using an FRBS to determine the 

adequacy of each pixel to belong to a vein, and applies a cut-off value for final seg-

mentation of these structures. The results obtained from healthy volunteers showed 

very good segmentation with a very small number of false positives. The method also 

proved to be robust and applicable to the study of periventricular veins in MS. 
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