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Viñas3, Josep Tarragó3, Emilio Rojo3, and Rafal Nowak4

1Knowledge Engineering and Machine Learning Group. Universitat Politècnica de
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Abstract

The current wide access to data from different neuroimaging techniques has permitted to obtain data
to explore the possibility of finding objective criteria that can be used for diagnostic purposes. In order
to decide which features of the data are relevant for the diagnostic task, we present in this paper a simple
method for feature selection based on kernel alignment with the ideal kernel in support vector machines
(SVM).

The method presented shows state-of-the-art performance while being more efficient than other meth-
ods for feature selection in SVM. It is also less prone to overfitting due to the properties of the alignment
measure. All these abilities are essential in neuroimaging study, where the number of features representing
recordings is usually very large compared with the number of recordings.

The method has been applied to a dataset in order to determine objective criteria for the diagnosis
of schizophrenia. The dataset analyzed has been obtained from multichannel magnetoencephalogram
(MEG) recordings, corresponding to the recordings during the performance of a mismatch negativity
(MMN) auditory task by a set of schizophrenia patients and a control group. All signal frequency bands
are analyzed (from δ (1-4Hz) to high frequency γ (60-200Hz)) and the signal correlations among the
different sensors for these frequencies are used as features.

1 Introduction

According to [Institute of Mental Health, 2013], schizophrenia affects approximately 1% of the world popu-
lation. Despite the huge development of several techniques to analyze brain’s structure and function (i.e.
EEG, fMRI, MEG, MRI, PET, SPECT), no specific biomarkers are available for a diagnostic purpose. While
there is vast evidence of anatomical changes and abnormalities in neurotransmitter systems in schizophrenia,
psychiatry research in recent years has focused in functional disconnectivity of cortical circuits as a core
feature of the illness. Abnormal oscillatory activity throughout different neural populations and its aberrant
synchronization may account for the symptoms observed in schizophrenia. Thus, defining specific patterns of
synchrony in individuals with schizophrenia should allow us to make a reliable diagnosis.

Early pioneering work using quantitative EEG laid the foundation for the application of discrimination
and classification of electrophysiological brain patterns in health and disease. [John et al., 1977] introduced
the concept of neurometrics, to provide quantitative information about brain activity related to anatomical
integrity, developmental maturation, and mediation of sensory, perceptual, and cognitive processes. However,
as already indicated by [Hinkley et al., 2009], there are significant advantages of using MEG over EEG to
study neural processes, especially when modeling how activity within a cortical field can influence and interact
with activity in other parts of the brain. As well as EEG, MEG is able to reconstruct neural activity on the
order of milliseconds. However, MEG sensors allows investigators to access oscillatory neural activity in higher
frequency ranges (e.g. α, β, γ) than those attainable in both fMRI/PET.
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In addition, the sampling frequency of data acquisition in MEG (generally greater than 100Hz) is not
limited by electrode impedance (as in EEG), permitting the examination of ultra-high frequency brain activity
in this modality. Moreover, volume conduction artifacts commonly found in other imaging modalities are
significantly reduced in MEG, as structures such as the skull and CSF do not interfere with the propagation
of the magnetic fields ([Leahy et al., 1998]).

Hence, MEG arises as a useful method to study how neural oscillations behave and relate to clinical
manifestations in schizophrenia.

1.1 Previous work

Several methods using measures of brain activity and brain anatomy have been suggested for discriminating
schizophrenia patients from healthy subjects. These methods are based on features extracted from different
types of signals. We will focus in the works that use MEG approach to characterize subjects.

In [Georgopoulos et al., 2007] a classifier for separating several conditions (six conditions including schizo-
phrenia) from healthy subjects is described. The dataset used was obtained from around one minute of
MEG recordings from 142 subjects without engaging any specific task during the recording. This dataset
was obtained by prewhitening the signals, computing the cross-correlation of all the pairs of sensors and
normalizing the feature values. An initial set of 30,628 features described each recording, so the authors
decided to perform feature selection using a genetic algorithm. Linear Discriminant Analysis (LDA) on the
complete dataset was used to assess the fitness function of each feature set in the genetic algorithm. In the
end, they reported that a set of 16 features, when used for building LDA classifiers, returned 78.9% percent
average accuracy for all conditions (without specifying the accuracy for the different conditions, specially for
the schizophrenic condition we are studying) using the leave one out (LOO) testing procedure, and 86.4%
accuracy for 10 runs of 80/20% random split cross-validation. The genetic algorithm was parameterized to
only consider up to 20 features in the feature set. This reduces the overfitting effect that is prone to happen
in small datasets described with a lot of features.

This paper shows that MEG recordings carry relevant information for condition discrimination. However,
from the methodological point of view, the set of 16 features selected to build the classifiers was obtained
applying the genetic algorithm and LDA procedure to the complete set of 142 individuals (not to the 80% of
individuals from the training set in the crossvalidation step), which biases the results of the validation.

In different papers [Ince et al., 2007, Ince et al., 2008, Ince et al., 2009] describe their analysis of MEG
oscillatory patterns when subjects engaged in a working memory task during the recordings. They studied
a number of other works and reported that a higher accuracy can be obtained from features extracted from
recordings of functional brain activity (77 – 94%) than from resting state brain activity (67 – 76%).

The goal of their study was to discriminate schizophrenic patients from control subjects. The dataset had
15 patients and 23 control subjects. From the MEG recordings, event related synchronizations (ERS) and
event related desynchronizations (ERD) patterns were extracted, accounting for an increase and decrease of
amplitude in the rhythmic activity in different frequency bands and time points. Data is filtered between 1
and 48Hz and separated in 8 not standard frequency bands: 4 with 4Hz wide and 4 with 8Hz wide. The
patterns obtained were used as features for training different machine learning classifiers. Specifically, decision
trees ([Ince et al., 2007]), support vector machines (SVM) ([Ince et al., 2008]) and LDA ([Ince et al., 2009])
were used. For the last two methods, feature selection strategies were also used to reduce the number of
features of the final classifier. In particular, for LDA the ROC curve for each feature was used to filter the
set of attributes, and for SVM the recursive feature elimination algorithm (RFE [Guyon et al., 2002]) was
applied. The highest average accuracy using the LOO testing procedure was reported for the LDA classifier,
being of 94.5%. It is important to notice that, when selecting a classifier method, the results in LOO help to
find the best parameters of the learning algorithm, but they are not a true indication of the generalization
ability of the classifier. An unseen validation test set has to be used in order to measure the accuracy on
unseen data. So, results are not indicative of percentage of success in clinical application. In all three cases,
data was obtained assuming a set of hypothesis on the schizophrenic conditions, for instance that it can be
discriminated in ERS/ERD episodes, or the separation in bands.

[Escudero et al., 2013] used resting state MEG recordings to obtain a classifier of schizophrenic patients.
The dataset was composed by 15 patients and 17 control subjects. The sensors were divided in five anatomical
meaningful areas and the average of the power spectral density, Median Frequency, Spectral Entropy, and
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Relative Power of the sensors of each area was computed and used as features. Logistic Regression (LR) was
used for building the classifier. It is reported that subset feature selection was used to reduce the number of
features, but the methodology used was not specified. The mean accuracy reported for the final classifier was
of 71,3%. Again, accuracy is computed as the average of a 5-fold cross-validation testing procedure, not on a
validation data set.

1.2 Plan of the paper

In the current paper, we suggest how to take profit of MEG information for diagnostic purposes, and how
to identify some MEG characteristics in the brain relevant to discriminate individuals among a sample of
patients with chronic schizophrenia (stable compensate or acute exacerbation state) and healthy controls. In
order to achieve these goals, we propose the use of state-of-the-art classification procedures from the machine
learning area such as support vector machines (SVM) together with a proposal for feature selection to use with
support vector machines that shows some advantages over other methods in terms of reduction of overfitting,
speed and need of extra set of samples for stopping the feature selection procedure.

The paper is organized as follows: In §2 we describe the materials and the methods to prepare data used
in this research. In §3 we describe how Support Vector Machines (SVM) can be used to discriminate between
patients and control individuals in the data gathered for this task. In the same section we explain how we
set the parameters for the SVM and the initial results obtained. In §4 we describe our novel procedure for
feature selection in support vector machines. In §4.1 we analyze and discuss the results obtained using this
new feature selection procedure. In §5 we present the validation of the approach. Finally, in §6 we discuss
the experimental results and give our conclusions and propose our future lines of research.

2 The dataset

A total of 30 subjects were recruited over a 12 month period: 20 patients meeting DSM-IV diagnostic criteria
for a chronic psychotic disorder (schizophrenia or schizo-affective disorder) and 10 healthy control subjects.
All patients were receiving care at Granollers Mental Health Center from Vallès Oriental Area (Barcelona) and
their diagnosis was confirmed by clinical psychiatrist in charge at least 2 years before recruitment, claiming
a longitudinal diagnosis. Their psychopathological status was assessed on the day of the experiment by a
psychiatrist by means of the Positive and Negative Syndrome Scale (PANSS).

On the other hand, healthy volunteers were picked from the local area, after screening by the structured
Clinical Interview for DSM-IV Non-Patient version (SCID-NP) to exclude any history of DSM-IV Axis I/II
diagnosis or substance abuse, with an additional exclusion criterion of any first or second-degree biological
relatives with psychotic disorder diagnosis.

In order to obtain a good representativeness of the heterogeneity of chronic psychotic patients, we aimed to
recruit a sample including patients through different stages of the illness (acute vs stable patients). Therefore,
the sample was divided in:

1. Ten patients with a chronic psychotic disorder diagnosis, suffering an acute psychotic episode at the
moment of the study, scoring PANSS >27 (acute patients).

2. Ten patients with a chronic psychotic disorder with no current relevant positive psychotic symptoma-
tology at the moment of the study (PANSS <14) (stable patients).

3. Ten healthy subjects (control group).

Exclusion criteria for all participants included neurological diseases, substance dependence, a history of
head injury or a full-scale IQ estimation of less than 70. All subjects proved to be right-handed according
to modified version of the Edinburgh Handedness Questionnaire ([Oldfield, 1971]), which asks subjects to
demonstrate hand use on various actions.

Prior to the study, all subjects were fully informed and gave written consent to participate. This study
was approved the Ethics commission of Clinical Research (CEIC) of Hospitals of Hermanas Hospitalarias in
Barcelona in accordance with the Declaration of Helsinki protocols.
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Table 1: Demographic and clinical data of study groups.
Stable Disorder Acute Exacerbation Disorder Healthy Control

Gender 9 Male/ 1 Female 8 Male/ 0 Female 9 Male/ 1 Female
Age (years) 36.7 (±10.7) 37.5 (±13.3) 36.7 (±10.7)
Education (years) 10 (±1.7) 9.60 (±2,2) 11 (±1.8)
Distribution Diagnosis axis I 7 Schizophrenia disorder 6 Schizophrenia disorder Not applicable
(DMS-IV) 3 SchizoAffective disorder 2 SchizoAffective disorder
Duration of illness (years) 13.8 (±7.5) 17.5 (±13.3) Not applicable
PANSS-P 10.5 (±2.6) 30.3 (±4) Not applicable
PANSS-NN 15.4 (±4.8) 19.9 (±3) Not applicable

All subjects were Spanish natives or bilingual Catalan/Spanish speakers and they were matched by gender,
age and educational degree through the three groups. To guarantee the homogeneity of the groups regarding
these characteristics, subjects were recruited according to a sequential design, starting by the acute psychotic
patients, following by the stable group, and finally enrolling the control group. Demographic and clinical data
for all subjects are presented in Table 1.

At the time of MEG recordings acquisition, all patients were using atypical antipsychotic medication. Two
patients from the acute psychotic group could not complete the MEG recording due to psychomotor agitation
during the tasks, so their recordings were not considered for the purpose of the study.

The data used in the experiments corresponds to MEG recordings acquired with a 148-channel whole-head
magnetometer (MAGNES 2500WH) in a magnetically shielded room (Vacuumschmelze GmbH, Germany) at
the Teknon Hospital in Barcelona, Spain. These were acquired while the subjects were lying on a patient
bed with their head inside the helmet-like MEG device. Activity was recorded during an auditory oddball
paradigm to assess the mismatch negativity (MMN) response. Acoustic stimuli were generated using the
E-Prime software (Psychology Software Tools, USA) and were presented binaurally through Etymotic ER-30
(Etymotic Research, Inc. USA) non-magnetic earpieces. Subjects were instructed to relax and ignore the
auditory stimuli during the task. The oddball paradigm was based on sequences of two tones, each starting
on a pseudorandom basis, either with a 1000-Hz standard (p=0.8) tone followed by a 800-Hz deviant (p=0.2)
tone. Tone duration was 100 ms, with rise and fall times of 10 ms, and the inter-stimulus interval was 350
ms. The recording frequency was 678.19Hz (band-pass 0.1-250Hz). Five position coils were attached to the
forehead and to the periauricular points in order to determine the position of the head and to track any head
movement during the recording. Data sets in which the relative position of the head changed by >0.5cm
throughout the recording session were discarded from further analysis. For each subject, the headshape
including the forehead, the nose, and the location of the sensor position coils were digitized using a digitizer
wand (Polhemus Fastrak, Polhemus Inc., USA).

From the MEG data recordings, six different frequency bands were extracted, using an 8th-order Butter-
worth digital IIR filter: δ [1-4 Hz], θ [4-8 Hz], α [8-13 Hz], β [13-30 Hz], lower γ [30-60 Hz], and upper γ
[60-200 Hz].

The upper γ band was included given that several studies indicate that synchronizations at this frequency
range can be linked to schizophrenia (see for example [Uhlhaas et al., 2011]). Studies without band separation
were also performed.

2.1 Data Preparation

One objective of this study is to find out if there is a set of features, in terms of MEG recording of the brain,
for determining an objective, efficient and safe way whether an individual has schizophrenia or not. This set
of attributes has to be easy to interpret in terms of brain areas and their relationships. In order to explore
this hypothesis, first we must extract from the raw data a suitable group of features that allow the separation
of subjects suffering schizophrenia from other ones.

We want these features to represent the connectivity of different areas of the brain. They also have to
capture the global behavior of the signals independently of their magnitude. Different feature extraction
methods that extract synchronization information can be used for MEG signals, being the most common
those oriented to the frequency domain like coherence ([Srinivasan et al., 2007]) or to the time domain like
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Figure 1: Signals from sensors MEG148, MEG91 and MEG61 (from left to right) with 1000 time points length.
Correlation is higher for more synchronized signals (corr(MEG148,MEG91)=0.66, corr(MEG148,MEG61)=-
0.008). MEG148 and MEG91 correspond to right side temporal sensors and MEG61 corresponds to an
occipital sensor.

covariance ([Shenoy et al., 2006]). Given that one of the goals of was to study separately different frequency
bands, we judged more adequate to extract the characteristics from the time domain.

Among the different alternatives, the decision was to use the Pearson product-moment correlation coef-
ficient because it is a simple way to measure global similarity among the different sensors and normalizes
the contribution of each pair of sensors. The coefficients capture this effect as a coincidence of the statistical
distribution of the signals as can be seen in figure 1.
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Figure 2: Data preparation process.

We wanted to use relatively large time periods of the signal (around a minute), so the synchronizations
among different areas are captured by the features, capturing a fingerprint of the brain activity. Also, It
was needed to reduce the variability of the measures and to obtain characteristics that were not affected by
artifacts. Thus, an additional preprocess was performed, consisting in the segmentation of the 10 minute
recordings in several windows of one minute to obtain measures at different time segments of the experiment.
We proceeded to average the correlation coefficient matrices of these windows to smooth the behavior along
the time, obtaining this way a better estimate of the mean behavior of the sensor synchronizations. This
procedure also reduces the effects of possible artifacts during the recording, allowing working directly with
the raw data.

Data preparation for a specific frequency band was performed in the following way (see figure 2):

1. Extract a specific band to study from a file of a subject.

2. Separate the total length of the signal in k = 10 windows of the same size.

3. Compute the correlation coefficient among all pairs of sensors for each window

ρxy =
covxy
σxσy

=

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2
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4. Average the k correlation matrices of all windows building the global correlation matrix for the whole
signal

In the resulting dataset, separated for each band, each subject file is described by a number of continuous

attributes in the range [−1, 1] as n2−n
2 measures, where n is the number of sensors used in the recordings.

For the learning task a random training subset of the data was selected, consisting in 7 control subjects, 7
compensated patients and 6 non compensated patients, for a total of 20 examples. On this data we will study
the bands and parameters for the learning algorithm using the standard leave-one-out procedure. As we are
concerned with overfitting, we will finally validate the approach selected using the remaining 8 recordings: 3
control subjects, 3 compensated patients and 2 non compensated patients.

Given that the number of individuals in training and testing is very small, we explore bootstrapping
methods for validation and to obtain a valid p-value for the statistical point of view (see section 5.1).

3 Experimental procedure

As stated in §2, preliminary experiments are directed to test whether the dataset has enough information to
separate control individuals from the ones with schizophrenia diagnostic. Machine learning literature offers a
plenty of tools to perform this task. Nevertheless, the problem under study shows a key feature which reduce
possible choices. On one hand, recordings in the data set are described by correlations among 146 (of 148, due
to two reported malfunctioning sensors) pairs of sensors entailing 10,585 correlations. On the other hand, we
only have 20 recordings. So, we have an extremely small number of recordings described by a lot of features.
We have to choose a method that, while showing a state-of-the-art accuracy in most benchmarks, it is also
able to deal with such kind of dataset. Support Vector Machines (SVMs) seem a promising approach because
they have shown the ability to deal with large dimension spaces compared with the number of instances in
several domains, for instance in document classification ([Joachims, 1998]).

3.1 Classification using Support Vector Machines

In this section we define the notation that we will be using to describe SVMs and related expressions. Suppose
having a set of n data points xi ∈ Rd along with each point’s classification can take on one of two possible
values yi ∈ {±1}. The linear SVM is defined considering the best hyperplane 〈x,w〉 + b = 0 separating the
points in two different classes. It is often useful to consider the SVMs in its dual formulation:

min
α

1
2

∑n
i,j=1 yiyjK(xixj)αiαj −

∑n
j=1 αj (1)

s.t.
∑n
i=1 αiyi = 0 0 ≤ αi ≤ C

where K is the selected kernel and C is a parameter usually determined experimentally specifying the trade-off
between the empirical error and the complexity term.

Once this problem has been solved the coefficients (αi, b) can be used to classify the test point x based on
separating two classes with the hyperplane trough

f(x) = sign(

n∑
j=1

αjyjK(xj ,x) + b) (2)

which classifies x as either +1 or −1.
Interpreting the Equation 2, one understands that the dual variables αi represent the importance of a

particular point (Support Vectors) within the model. A high value of αi associated with a particular support
vector xi indicating that the kernel value calculated using this support vector will have more influence on the
final value for f(x). We will consider in this paper the α values of the resulting solution of the SVM, because
it is know that the number of supports (α different of zero) can be used as a bound to the empirical LOO
error (see next section).

6



Table 2: Accuracy, Recall and Precision in separation from control to patient diagnosed for each band. Last
column shows number of support vectors and proportion of support vectors. See §3.3 for a complete discussion.

Band Accu. Recall Prec. Sups. (perc.)

Full Band 80 57 80 13 (0.68)
δ 90 86 86 13 (0.66)
θ 50 14 20 12 (0.61)
α 60 29 40 14 (0.75)
β 55 29 33 15 (0.78)
lower γ 80 57 80 14 (0.74)
upper γ 80 57 80 13 (0.68)

3.2 Parameters selection and initial results

SVMs performance depends on the selected kernel, its parameters and, eventually, on some data preparation.
Within our experiments using MEG data, the only pre-process is a standard data normalization, common in
the learning of SVMs.

On the one hand, selecting a kernel can be done experimentally or using some heuristics, and usually
requires some cross-validation technique, to study the possible kernels and its parameters. In order to avoid
overfitting in our small data set, we limit our choices by using a linear kernel, which is the simplest approach
and does not require further parameters to be tuned. Intuitively, it should be enough for our discriminative
task for our dataset, due to the large number of features used to describe the data when compared with the
number of recordings.

Although SVMs often produce effective solutions for balanced datasets, they could be sensitive to unbal-
anced datasets and might produce sub-optimal models. A simple method to overcome this problem consists
in modifying the SVM objective function by assigning two different misclassification costs, such that the cost
of misclassifying training instances of the minority class becomes higher than the penalty for misclassifying
instances of the majority class ([Cawley and Talbot, 2001]). A rule of thumb working reasonably well for clas-
sification tasks is to set penalty C− for the negative class (assuming that negative class is the majority class)
and C+ = fcC− for the positive class, where fc is equal to the number of negative examples in the training
set divided by the number of positive ones. The effect of this procedure is equivalent to building a SVM with
an oversampled minority class to match the number of examples of both classes. Our dataset is imbalanced,
having 7 control and 13 patient individuals. We set C− = 1 for negative (patient) and C+ = (13/7)C− for
positive (control) examples. We tested different values of the C− parameter in the interval [0.1,∞] essentially
leaving unchanged the obtained results.

Finally, in order to evaluate the classification performance we apply a standard Leave one out (LOO)
procedure which gives an almost unbiased estimate of the expected generalization error. LOO consists in
removing one element from the training data set, constructing the decision rule on the basis of the remaining
training data and then testing on the removed element. The procedure is repeated n times (where n is the
number of instances of the data set), each time leaving a different individual for testing. Our data set, with
20 examples, allow to repeat this procedure 20 times. Results of the 20 runs were averaged.

The LOO error (ELOO) is related with the number of supports in SVMs. It is known that the propor-
tion of support vectors with respect to the total number of instances is a theoretical bound of the LOO
error. That is, ELOO ≤ nSV

n where nSV is the number of support vectors (see for instance Remark 7.57
in [Shawe-Taylor and Cristianini, 2004]). As a consequence SVMs with a reduced set of support vectors show
a lower leave on out error, which means that we expect from such machines a higher accuracy on data unseen
in the learning process (better generalization).

3.3 Classification results

Results obtained for the correlation computation on the original data, and on data after filtering each band,
are reported in table 2. These results cannot be understood only in terms of accuracy. Note that, being
this an imbalanced dataset, a classification method saying that all individuals are schizophrenic leads to an
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accuracy of 65%. Hence, to avoid this kind of misinterpretation, fairer evaluation scores on the smaller class
(in this the control case) are also displayed:

• Recall: number of control individuals correctly classified with respect to the total of control individuals.
It estimates the probability of detecting the control cases.

• Precision: number of the cases classified as control that were actually control instances with respect
to the number of cases classified by the system as control. Complementary to recall, it estimates the
probability of success in determining the class of the cases classified as control.

Table 2 shows that using the correlation of sensors. Considering the full spectrum band, we obtain
SVMs with an accuracy of 80% to distinguishing between control and patients individuals. It seems that
the correlation of sensors carries information useful for the discrimination task. Separating the signal in
different frequency bands shows that θ, α and β do not help to discriminate control from patients. On the
other hand, the δ and γ bands have a higher accuracy, specially in the case of the δ band, that recognizes
almost all patients and only fails in 2 cases from 20. However, from the point of view of the robustness of the
results, it is worth noting that all classifiers show a high rate of support vectors with respect to the number of
examples, most of them around 70% (see last column in table). We have mentioned in section 3.1 that LOO
error (ELOO) is theoretically bounded by proportion of supports in the SVM. The higher the proportion of
supports vectors needed to build the SVM is, the higher are the expectations on error on unseen cases. So,
such machines could show in the worst case unreliable predictions on test data.

This is a sign that we may have ended with overfitted SVMs for our data set. Given the small number of
examples that we have available and the large number of features describing them, this is an issue that we
have to check carefully.

Also, being encouraging results, the problem within this approach is that they are not easy to interpret
in terms of the visualization of areas of the brain possibly related to schizophrenia. The SVM describes the
hyperplane separating positive and negative examples with a set of 10,585 weights in the primal form that are
not easily interpretable. Nevertheless, most of them may not be necessary to build an effective hyperplane
and we will try to simplify the dataset by using feature selection.

4 Feature Selection by incrementing alignment

Fortunately, the interpretation of the classification results is actually possible by studying the effect of feature
selection on the dataset. Feature selection methods reduce the feature set in the data collection by removing
noisy or redundant features, and thus allowing a better understanding of the classification procedure, which
in medical datasets is desirable.

Several methods have been proposed for this task in the SVM framework. [Weston et al., 2000] proposes to
find, via gradient descent, those features which minimize the leave-one-out error bounds, that depend on the
radius which includes all vectors and the margin of the learned SVM. [Guyon et al., 2002] presents the method
Recursive Feature Elimination (RFE) that from the whole set of features and the learned SVM, removes the
feature that shows the smaller weight w in primal after learning (and so decreases less the margin). Features
are removed iteratively until a given threshold, in terms of weight, is achieved.

The main problem with all these approaches is their computational cost. A feature is only detected after
learning takes place. This means that many SVMs have to be learned with the associated cost. Also, those
methods rely on cross-validation to adjust the parameters for stopping the removing of features.

We propose a different approach that, while taking advantage of the SVM peculiarities, does not require
the previous building of SVMs and has also a natural threshold for stopping the feature removal. This
approach is based on a measure known as empirical kernel-target alignment ([Cristianini et al., 2002]).

SVMs find the maximum margin hyperplane separating data with different labels. To do that, they only
need the dot product of the data in the original space or in the feature space. For this, they use the kernel
function and the kernel matrix over the data set. A way to measure how a kernel helps to separate the data
is by comparing it with the so called ideal kernel : T = yy′. This is a n×n matrix that by definition presents
Ti,j = +1 when xi and xj have the same label, and −1 otherwise.
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Empirical kernel alignment measures the fitness of a kernel K to training labels [Cristianini et al., 2002]:

A(K,T ) =
〈K,T 〉F√

〈K,K〉F 〈T, T 〉F
(3)

where 〈M,N〉F is the Frobenius product of matrices M and N .
Alignment is a measure ranging in [0, 1] (the higher the better), having a number of convenient properties,

specially (1) it can be evaluated before learning and (2) it is a sharply concentrated statistic around its
expected value (stable to different splits of the training data and not prone to overfitting). The last feature
is specially relevant in our case because, given the small number of examples and large number of features in
our dataset, we want to avoid an overfitting of the results.

Alignment has been used for a priori kernel selection (choosing the best kernel from a set of candidates)
and for kernel adaption ([Lanckriet et al., 2004]). We will use this a priori model selection procedure to find
a suitable set of features, facilitating the learning process. We define kernel KF from the set of features F as
the kernel matrix obtained by applying the selected kernel function on the data represented only with features
in set F . The idea is to implement feature selection using the empirical kernel-target alignment, using the
fact that choosing one set of features or another is equivalent to choosing one kernel or another. Hence, we
select the set of features F defining the kernel KF with the highest empirical kernel-target alignment.

In order to deal with unbalanced data sets, we used a modified version of alignment ([Kandola et al., 2002])
in which labels to calculate the ideal kernel are changed from +1 to +1/m and from −1 to −1/n, where m
and n are the number of positive and negative examples respectively. The learning of the SVM is done with
the original set of labels.

For feature selection, we implemented an iterative procedure that, starting from the empty set, incremen-
tally adds the feature increasing the most the alignment with the ideal kernel. This stops when no increment
in alignment is found. The advantages over other approaches as RFE ([Guyon et al., 2002]) are (1) that our
method avoids the costs of building SVMs to consider relevance of features, and (2) that the addition of fea-
tures naturally stops when alignment is not increased, that is, no validation dataset is required to determine
when to stop.

However, the cost of the method is still expensive. The cost of computing the linear kernel KF is O(n2f),
where n is the number of examples and f is the number of features in F . The kernel has to be calculated
for each set of features before computing its alignment. In addition, the number of features f in our dataset
is very large, so removing the f term is desirable. A careful examination of the problem shows that there is
an efficient incremental way to compute the kernel after adding a new feature from the same kernel without
that feature. This reduces the cost of computing the new kernel for our incremental algorithm from O(n2f)
to O(n2). For the linear kernel, the following equation shows how to quickly calculate the new kernel from
the old kernel when only adding a new feature i:

KF∪{i}(x, y) =
∑

j∈F∪{i}

xjyj =
∑
j∈F

xjyj + xiyi = KF (x, y) + xiyi

with constant cost for one pair of examples. Hence computing the kernel KF∪{i} from KF only has a cost of
O(n2). We will take advantage of this fact in our algorithm.

This procedure can be easily extended for non linear kernels, like polynomial or the RBF kernel. In this way,
we can reduce also to O(n2) the cost of computing the alignment A(KF∪{i},T ) from KF . For large data sets
this could still be a problem. However, alignment is a sharply concentrated measure ([Cristianini et al., 2002])
and could be accurately estimated from a sample of the whole training set.

With this in mind, the method of incremental Feature Selection by Alignment can be detailed as shown
in algorithm 1.

The algorithm starts from the empty set of features F . At each iteration it always looks for the feature
which increases the alignment the most. This feature is added to F and the procedure is repeated until no
more features remain in the set of candidate features C increasing the alignment. Note that after selecting
one feature, that feature is removed from set C.

The computational time complexity of line 7 is n2. Thus, loop of lines 6-8 has complexity n2|C| ≤ n2f ,
and thus, the outer loop (lines 5-16) has complexity n2ffa (where fa is the final number of features of set
F). So, the final computational complexity of the feature selection procedure is then O(n2ffa).
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Algorithm 1 Feature Selection by incrementing Alignment procedure (FSiA)

1. C = Complete set of features
2. F= ∅
3. K1

F = 0 for all x,y
4. CurrentAlign = 0
5. repeat
6. for each i in C do
7. IncrAlign(i) = A(K1

F∪{i},T )− CurrentAlign
8. endfor
9. add = Feature i with higher IncrAlign(i)
10. if IncrAlign(add) > 0 then
11. Calculate incrementally K1

F∪{add} from K1
F

12. F= F ∪ {add}
13. C= C\{add}
14. CurrentAlign= A(K1

F , T )
15. endif
16. until IncrAlign(add) ≤ 0

Table 3: Accuracy, Recall and Precision in separation from control to patient diagnosed for each band using
feature selection. Last column shows number of support vectors and proportion of support vectors.

Band Accu. Recall Prec. #SV (prop.)

Full Band 75 57 67 12 (0.64)
δ 85 71 83 9 (0.45)
θ 65 57 50 13 (0.68)
α 45 43 30 12 (0.62)
β 75 43 75 12 (0.64)
lower γ 90 86 86 9 (0.50)
upper γ 90 86 86 9 (0.47)

The method described above was implemented in matlab and applied on our dataset to do feature selection.
The running time of the algorithm was less than 2 seconds for finding a reduced set of features for the
task on hands. After that we used the libsvm ([Chang and Lin, 2011]) implementation of SVMs to obtain
classification accuracy on test set.

4.1 Results using feature selection

Results obtained for each band of recordings are shown in table 3. Best results appear now in the upper γ
and lower γ bands. Table shows that for those bands of frequencies the method is able to separate with 90%
of accuracy recordings for control individuals from recordings for diagnosed schizophrenia individuals. Only
2 errors have been produced: 1 control individual was classified as patient and 1 patient was classified as
control.

Compared with results in table 2 we may confirm that β, α and θ bands do not contain enough information
to separate control from patient recordings. Notice that the feature selection method increases the accuracy
for the γ bands from 80% to 90%. On the other hand, δ band reduces the accuracy from 90% to 85%. So,
feature selection improves results for two bands while reducing accuracy in another one. It is also worth
noting that the feature selection procedure significantly reduces the number of support vectors and, therefore,
it increases the confidence on good generalization to unseen cases.

Recall that the goal for applying feature selection is not to improve classification accuracy, but to find out
which features are relevant for patient classification. Their location in the brain will help to understand the
illness.

We can conclude that the feature selection procedure was very effective. This set is enough to accurately
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Table 4: Number of features and actual sensors selected for the feature selection procedure. Last two columns
show initial alignment of the dataset with all features and final alignment after feature selection.

Band #Feats. #Sens, I.Align. F.Align.

Full Band 10 18 0.105 0.762
δ 19 35 0.151 0.838
θ 7 13 0.114 0.667
α 15 26 0.088 0.670
β 11 20 0.044 0.602
lower γ 16 29 0.123 0.861
upper γ 22 36 0.128 0.897

Figure 3: Matrix showing correlation values selected by the feature selection method on the upper γ band.
Each column represents a feature selected. Each row represents a individual recording. Recordings are sorted
so the first ones are control recordings and the later schizophrenic individual’s recordings. Bar shows code
for correlation values.

represent recordings with the goal of separating control individuals from those that do suffer schizophrenia.
Notice that for the upper γ band only 22 of the features suffice to separate the data (table 4).

Figure 3 shows for each one of the 20 recordings (rows) the values of the correlations for each of the 22
features (columns). Each feature is the correlation between a pair of sensors, ranging in [−1, 1]. With a simple
look at the table one may guess where the separation of individual’s recordings is located.

Table 4 shows information about the relation between feature selection by alignment measure and possible
overfitting. In the two last columns, alignment before and after feature selection is displayed. The bands with
better final alignment show better results in the LOO procedure, suggesting that final alignment is highly
correlated with accuracy. These results support the idea of doing feature selection by increasing the kernel
alignment.

The second column of Table 4 indicates how many sensors are actually needed to compute the features
describing the recordings. One would expect, being each feature the correlation of a pair of sensors, the
number of sensors to be close to twice the number of features. For the upper γ band the number of sensors is
36, meaning that when we unfold the correlations in pairs of sensors, some sensors appear several times. We
hypothesize that the number of times each sensor is needed to compute the relevant features is an index of
its relevance.

Figure 4 shows, for the upper γ band, a map of the brain with the location of the sensors and how many
times each one is used to compute the features relevant for classification. One sensor appears up to 8 times
in the 22 feature-correlation definitions.

We infer that upper γ band may be the more relevant band for understanding schizophrenia. Still, lower
γ and δ bands seem also to carry information about how to classify individuals.

11



Figure 4: Brain map showing the number of times a sensor is needed to compute the set of selected features
for the upper γ band. Nose is the north of the figure. Right and Left hemispheres are east and west sides
respectively.

5 Validation step

Along all the analysis, we were concerned with overfitting, given the large number of features and the small
number of examples. We have reduced parameter selection to the minimum. However, the C parameter for
the SVM and the bands selected for the final results, remained. Most papers report only the ELOO without
realizing that those results could fail when extended to new examples. To test the validity of our results to
new data, data for eight individuals randomly selected were hidden (before carrying the experiments) for a
final validation step. The validation data set consists in 3 control individuals plus 3 balanced patients plus 2
unbalanced patients.

To test this methodology, we trained a SVM for the three selected bands: upper γ, lower γ and δ. We
used a SVM with linear kernel, the C parameter set to 0.1 (value obtained in the LOO step of the research)
and applied the feature selection procedure (see §4). This SVM trained with the filtered upper γ band of the
initial 20 examples, resulted in only 1 error over the 8 validation examples. For the lower γ band we obtained
2 errors and, finally, on the δ band we obtained 3 errors.

These results should be considered orientative. There is not enough data to obtain a statistically significant
result in terms of accuracy and confidence intervals. However, it is worth noting the tendency that bands
with better results in LOO, also return better results in the validation step. So, validation results consistently
suggest that γ bands actually carry useful information for separation of control from patients using the
proposed feature selection procedure. Notice also that results in the validation set for each band are better
for those bands with higher final alignment as shown in table 4. This fact supports the idea that alignment is
a good indicator of generalization on unseen cases. So, overfitting can be avoided using our feature selection
method.

5.1 Probabilistic analysis

However, we may still be concerned with overfitting. Note that we have 10,585 features describing a set of
20 observations. From this dataset, applying the feature selection method that relies on kernel alignment, a
subset of 22 features is selected. The selected set shows the highest alignment found with ideal kernel. Still,
two hypotheses could be the reason for such high alignment:

(1) Random effect: Among the huge number of features (10,585), it could exist a small set of features not
actually related with the labels but that, by chance, present values able to separate the 20 examples in the
two classes, and that is what the proposed method finds. This would be a clear overfitting case.

(2) Structural effect: The data present features related with labels that are captured by the method
proposed. This would be the case of a correct modelization of the problem.
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Figure 5: Distribution of alignment for all possible labelings of data with 7 positive examples and 13 negative
examples. Mark shows true labeling alignment.

How to differentiate between the two cases? We hypothesize that if (1) holds, then this effect would appear
with any labeling of the data. That is, for any labeling there will be a set of features with high alignment
because of chance. From the large initial set of features, a small set would be enough to separate the 20
examples.

In order to test whether (1) or (2) holds, we did the following permutation test: We assigned an artificial
labeling to data (following the original proportion of positive versus negative examples) and then we applied
the method to find the set of features with maximum alignment. We repeated the experiment for all possible
labeling with the same proportion of positive and negative examples (77,250 cases). Table 5 shows for each
frequency band the average alignment obtained after feature selection for all possible labeling of data. For
comparison, the same table shows alignment obtained using the original labels. For instance, Upper γ shows
the expected best alignment with random labels of 0.66 but 0.90 with true labels. Figure 5 shows an histogram
of the number of different labelings for each alignment value. Mark shows the final alignment using true labels.
If we translate the position of the mark to p-values, we have a probability of 0.0022 to obtain by chance such
high alignment using true labels (far from the 0.05 to accept standard statistical tests). So chance is not
enough to explain the high alignment with the true labels and we must conclude that for the problem at hand
(1) is not the case and that (2) holds.

Table 5: Number of features and sensors expected after FSiA when labeling randomly the dataset. Compare
results with true labels in table 4. Last two columns show expected alignment of the dataset with random
labels (ERL Align) and final alignment with true labels (True L. Al).

Band #Feats. #Sens. ERL Align. True L. Al.

Full Band 12 21 0.56 0.76
δ 11 19 0.51 0.84
θ 9 17 0.47 0.67
α 12 22 0.54 0.67
β 9 17 0.51 0.60
lower γ 17 30 0.67 0.86
upper γ 16 27 0.66 0.90

5.2 Comparison with Recursive Feature Elimination (RFE)

A popular and very effective method for feature selection using SVMs is RFE ([Guyon et al., 2002]). In order
to compare the performance of our method with it, we designed and performed some experiments. However,
there are two considerations to be made before applying RFE to our data.
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The first one is that RFE needs a validation dataset in order to decide the number of features to keep.
The method iteratively removes features until performance in the validation dataset decreases. In our dataset
we have too few examples to extract a validation dataset for deciding when to stop the removal of features.
Conversely, our method has a natural way to stop, that is, when alignment measure is not increased, so it
does not need such validation dataset.

The second one is that RFE builds a SVM at each iteration in order to decide which features to remove.
So, before applying RFE we have to decide the appropriate parameters for the SVM. Again this is solved using
a cross-validation scheme where several combinations of parameters are tested against a validation dataset in
order to find the best parameters while feature selection is done. In contrast, our feature selection method
based on the alignment measure does not have any parameter to adjust. The finding of the best parameters
of the SVM are done after selection of features has been done, with the according reduction in execution time.

So, a fair comparison of both methods cannot be done because in RFE we need a validation dataset that
we cannot afford given the small size our dataset. However, we will do a comparison assuming that we know
both the number of features needed to obtain a good accuracy and the parameters of the SVM: those will be
the obtained in an a priori execution of the alignment method. The experiment will consist in a leave one
out of the whole set of 40 examples and the goal will be to compare the accuracy and time execution of both
methods.

Using the same number of features that the alignment method found, and parameters for the SVM
described in section 3.2, RFE obtains a LOO of 95% of accuracy (2 failures out of 40), exactly the same
than our method. Notice that in a fair comparison of RFE we should reduce the examples used for training
because some of them should be used for determining when to stop removal of features, so we should expect
a lower accuracy in a fairer comparison.

The running time of RFE with careful elimination (one feature at one iteration) is about 11 hours, while an
aggressive approximation implementation that removes several features at each iteration reduces time spent
up to 46 seconds. Notice that in a fair comparison we should add time needed for cross-validation to find
best parameters of the SVM. In contrast, our method only spent 24 seconds.

So, in conclusion our method can take more profit of the number of examples, specially critical when
the dataset is very small like on our case. The method is very fast and has an accuracy similar to the
state-of-the-art algorithms like RFE.

6 Conclusions and Future Work

The main contribution of this paper is the methodology used to analyze MEG signals in order to obtain an
objective criteria to discriminate schizophrenic individuals from control participants. Unlike other similar
studies, for this one we have recruited a sample of patients through different stages of the illness (acute vs
stable) that may be more representative of the heterogeneity of chronic psychotic patients.

From the experiments, we can confirm that MEG readings carry valuable information on schizophrenia
condition, as it has been suggested in [Georgopoulos et al., 2007, Ince et al., 2008, Ince et al., 2009] and also
in [Escudero et al., 2013]. We have shown that schizophrenia condition can be detected, while the subject is
doing a simple task, by studying the correlation between sensors capturing MEG activity in γ frequency bands
in different parts of the brain. Unlike other works, data was collected with a minimum of data preprocessing.
Only band separation has been applied to better understand the schizophrenic condition. The experimental
conclusions of this study shows that MEG signals can be a useful tool to successfully discriminate schizophrenic
patients from healthy participants.

This analysis can be a complementary objective tool to help psychiatrists to obtain a reliable and objective
diagnosis of schizophrenia. With the help of this tool, screening, preventive and early therapeutic strategies
could be established in order to change the course of the illness. An objective diagnosis may favour patients’
insight and better adherence to the treatment, which is the main prognostic factor. Research on the basis
of a certain diagnostic label also would allow a better comprehension of the underlying mechanisms of the
illness and lighten the future development of novel treatments.

Results have been validated after modeling the classifier. This contrast with most papers that only show
results obtained with LOO for the best classifier obtained. It is known that the best LOO error after model
selection is not a valid predictor of accuracy for unseen data because of overfitting, which is prone to appear
in small datasets described with a lot of features as the one used in this paper. In addition, we have proposed
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suited simple procedure for feature selection for support vector machines applied to the discrimination task
which shows:

• State of the art performance in the separation of control subjects from patients: Our LOO results are
about 90% accuracy, which are better or equal that the ones shown in the previous literature (ranging from
77% to 94%). Consider that individual diagnosis of schizophrenia using the gold standard procedure (clinical
interview by a specialist) can vary depending on the study but never overcomes a 90-95% ([Harvey et al., 2012],
[Aboraya et al., 2006]).
• Robustness to overfitting : FSiA relies on the alignment measure, which shows the mathematical property

of concentration. That means that with few data we can have good estimations in the feature selection process
and, additionally, it will show good performance on unseen data (it does not overfit).
• Efficiency in examples required for learning: Most methods for feature selection in SVMs (for instance

RFE [Guyon et al., 2002]) need a validation dataset to detect the stopping criteria for addition or removal
of features in the feature selection procedure. FSiA shows a natural way to stop the addition of features:
when the addition of one feature does not increase the kernel alignment. This saving in examples is specially
important when dealing with small dataset, which is our case.
• Efficiency in time: The method has quadratic cost in the number of examples, linear with the num-

ber of features and linear with the number of features finally selected O(n2ffa), which is lower than the
cost time of building a SVM. The selection of the final feature set using this new approach is in the or-
der of seconds. So, it is much faster than RFE used in [Ince et al., 2008], which requires building several
SVMs. Also, that time cost is much lower than other approaches that use genetic algorithms for feature
selection ([Georgopoulos et al., 2007]), which requires several hours in order to deliver a feature set.

Finally, we have presented a visualization method that allows mapping, in a representation of the brain,
which parts of the brain could be related to the illness. It shows the dissimilarities in the correlation of sensors
from different regions of the brain that separate control subjects from schizophrenic patients.

We plan to extend this work in several directions. Firstly, we will complement and expand current data
about schizophrenia patients with MEG registers in different experimental conditions, and study how diverse
patients’ states help to increase the accuracy in the diagnostic task. We will also use the collected results
to study the neurophysiological relevance in the schizophrenic illness of brain regions detected by the feature
selection mechanism. Also, we plan to extend this kind of analysis to other known mental disorders and to
neurodegenerative diseases.
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