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Abstract

Nonlinear reaction-convection-diffusion equations are encountered in

modeling of a variety of natural phenomena such as in chemical re-

actions, population dynamics and contaminant dispersal. When the

scale of convective and reactive phenomena are large, Galerkin finite

element solution fails.

As a remedy, Orthogonal Subgrid Scale stabilization is applied to the

finite element formulation. It has its origins in the Variational Multi

Scale approach. It is based on a fine grid - coarse grid component sum

decomposition of solution and utilizes the fine grid solution orthogonal

to the residual of the finite element coarse grid solution as a correction

term. With selective mesh refinement, a stabilized oscillation-free

solution that can capture sharp layers is obtained. Newton Raphson

method is utilized for the linearization of nonlinear reaction terms.

Backward difference scheme is used for time integration.

The formulation is tested for cases with standalone and coupled sys-

tems of transient nonlinear reaction-convection-diffusion equations.

Method of manufactured solution is used to test for correctness and

bug-free implementation of the formulation. In the error analysis,

optimal convergence is achieved. Applications in channel flow, cav-

ity flow and predator-prey model is used to highlight the need and

effectiveness of the stabilization technique.

Keywords. finite element, stabilization, Variational Multi Scale,

nonlinear reaction, predator-prey
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Chapter 1

Introduction

Many processes in nature are modelled as a combination of diffusive, advective

and reactive phenomena. One can come across Convection-Diffusion-Reaction

Equations (CDRE) models in varied fields in science. Population dynamics mod-

els to describe the proliferation of living organisms Fisher [1937], predator-prey

models Holzer [2014] Hamidi et al. [2012] Cussler [2013], heat and mass transfer

models Danilov et al. [2012], chemical reaction models Cussler [2013] and chemo-

taxis models Zhang et al. [2016] incorporate convection, diffusion or reaction

terms. In this chapter we take a close look at the various applications of CDRE

to model different physical phenomenon. Obstacles encountered while solving the

CDRE numerically are laid out and a motivation to adopt the proposed stabi-

lization method for finite element solution of CDRE equation is presented.

1.1 CDR models in nature

Evolution of many entities may involve a combination of spreading (diffusion),

bulk movement (convection), creation or destruction (reaction) phenomena. Math-

ematically, they can be described by diffusion, convection and reaction operators

acting on the quantity of interest. Such descriptions result in models that de-

scribe a wide variety of phenomena which can be mathematically analyzed and

solved for.

We can encounter models in biology to study population of organisms Fisher
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[1937] and propagation of nerve pulses in a neuron Nagumo et al. [1962]. In

chemistry, they are used to model chemical reactions Cussler [2013]. Models for

circuit theory in electronic design Linares-Barranco et al. [1991], rumor spreading

in sociology Zhu et al. [2016] demonstrate the prevalence and ubiquity of CDRE.

1.1.1 General form of CDRE

Let us denote the quantity of interest of the CDRE by u which is a scalar in

our case (it could also be a vector u). The quantity of interest may describe

population density, concentration of chemical species, etc. The general form of

the CDRE consist of five terms:

1. The diffusion term signifies the spreading of the species in space. Physics

dictates that transport of quantity of interest u occurs from a region of

higher concentration to a region of lower concentration. Hence quantity u

diffuses/spreads out from a region of high concentration. This process is

modelled by the laplacian operator. Laplacian is given by the divergence of

gradient operator (∆u = ∇ · ∇u). In physics, we come across phenomenon

where the diffusion is generally given by ∇ · k∇u, where k is called the

coefficient of diffusion. k can be a constant or a function of space and time.

2. The convection term signifies the bulk movement of species in space and

time. Matter gets transported in the domain at a velocity called convec-

tive/advective velocity. It is denoted by a. Such phenomena is common for

fluid mechanics problems with heat and/or mass transfer. The advection

term is given by the dot product of gradient of u and the convective velocity

velocity (a·∇u). Advective velocity can be a constant or a function of space

and time.

3. The reaction term models the creation or destruction of the quantity of

interest in space and time. In chemical processes, it can signify the creation

of new products and consumption of reactants. In population studies, it

signifies the birth and mortality of species. Reaction term is given by su,

where s is the reaction coefficient. s can be a constant or a function of

space and time. Also the reaction term is nonlinear if s is a function of u.

2



4. Temporal derivative term is present if the quantity of interest u varies in

time. But if only a steady state solution is expected, this term is neglected.

Temporal derivative is given by ∂tu =
∂u

∂t

5. Source term is used to add or subtract the quantity of interest into the

domain of interest. It is denoted by f . It can be constant or a function of

space and time.

The problem is now to find the quantity of interest u in the domain of interest

Ω, such that the initial and boundary conditions are satisfied. It can be stated

as:

Find u such that

∂tu− k∆u+ a · ∇u+ su = f in Ω, t > 0 (1.1)

Initial condition: u = u0 in Ω, t = 0 (1.2)

Dirichlet boundary condition: u = uD on ∂ΩD, t > 0 (1.3)

Neumann boundary condition: k n · ∇u = uN on ∂ΩN , t > 0 (1.4)

In the present study we consider nonlinearity only in the reaction term. Hence,

we explore solutions to CDRE where s = s(u)

1.1.2 CDRE with nonlinear reaction terms

Models that involve diffusion and nonlinear reaction terms of the quantity of

interest u are generally presented in literature in the following form:

Du

Dt
= k∆u+ s(u) (1.5)

∂tu+ a · u = k∆u+ s(u) (1.6)

where s(u) is the nonlinear reaction term. A positive value of this term signi-

fies generation and a negative value signifies destruction of u. Diffusion-reaction

equations are generally solved for without a specified advection field. These forms

of equations are encountered in population dynamics Fisher [1937] Tikhomirov

[1991], pollution dispersal models and nonuniform chemical reaction models Cus-
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sler [2013]. Such equations generally exhibit traveling wave solutions and forma-

tion of spacio-temporal patterns in solution Volpert and Petrovskii [2009] Pao

[1982]. Turing patterns Turing [1952] and patterns in Belousov-Zabotinski re-

actions Zhang et al. [1993] are some such examples. In our study, we explore

solution with added advection field, since its addition is one of the challenges in

obtaining numerical solutions.

One of the most popular model for nonlinear reaction term is the Fisher-

KPP model. Fisher Fisher [1937] and the team of Kolmogorov, Petrovsky and

Piskunov Tikhomirov [1991] arrived at Eqn 1.7 independently to model the pop-

ulation density of species in ecology. It has since been extended to various other

application domains. Fisher-KPP equation is given below:

∂tu+ a · ∇u = k∆u+ s(1− u

K
)u (1.7)

Convective velocity a and reactive coefficient s are constants. The reaction

term is the so-called logistic term. K denotes the maximum carrying capacity of

the system for the species u. Hence Eqn 1.7 models dispersion of species subjected

to the carrying capacity of the system and given convective velocity (advection is

used to model migration towards food sources or safety). This equation exhibits

a single traveling wave front solution.

Another important equation in study of nonlinear reaction-diffusion models is

the Nagumo equation. It has been used to model propagation of nerve impulses, in

circuit theory for electronics and propagation of flames Aronson and Weinberger

[1975]. It reads:

∂tu+ a · ∇u = k∆u+ s(a− u)(u− b)u (1.8)

where a and b are constants. Several notable extensions to Fisher KPP equa-

tion are available. Fitzhugh - Nagumo equations is a system of equation for prop-

agation of waves through excitable media Nagumo et al. [1962], Barkley model

for catalytic reactions Bär and Eiswirth [1993] and Gross-Pitaevski equation to

describe Bose Einstein condensates in quantum mechanics Gross [1961].

Extensive study have been carried out to obtain conditions for well-posedness

4



of the Fisher-KPP equation. Conditions for the existence of solution, bifurcation

phenomena are well explored Volpert and Petrovskii [2009].

Several studies have been conducted to apply numerical methods to solve

CDRE, most of them are restricted to generic 1D problems Tang and Weber

[1991]. Analytical solutions have been explored for simple problems too Magyari

[2008]. One of the important themes of the present work is to explore the appli-

cation of finite element method with stabilization to solve the nonlinear CDRE

in 2D. Hence for our efforts, we develop the solution for Fisher KPP equation.

Also population models with different types of nonlinear reaction term are solved

in the predator-prey modeling at the end of this thesis.

1.2 Solution of CDRE with finite elements

Non-dimensional numbers of great significance for finite element solution of CDR

equations are the numerical Peclet number and mesh dependent Damköhler num-

ber defined below:

Numerical Pèclet number = Pe =
|a|h
2k

(1.9)

Numerical Damköler number = Da =
sh2

k
(1.10)

where h represents the characteristic size of the finite element discretization.

Numerical Peclet number Pe, is a measure of the relative strength of convec-

tion to that of diffusion. Mesh dependent Damköhler number Da, is a measure

of relative strength of reaction to that of diffusion.

Standard Galerkin finite elements fail when Pe > 1 or when Da >> 1.

Our proposed remedy is to add stabilization to the Galerkin finite element

method. This thesis explores the approach of Orthogonal Subgrid Scale (OSS)

stabilization Codina [2002] which in turn is based on Variational Multi Scale

methods (VMS) proposed by Hughes Hughes [1995].
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1.3 Outline of the thesis

In the present work, we begin with presenting the formulation and implementa-

tion of the Orthogonal Subgrid Scale method for a linear CDRE. This is then

later extended to nonlinear CDRE, time-dependent/transient nonlinear CDRE

and finally to a system of coupled, transient, nonlinear CDRE. Newton Raph-

son method used for linearization of nonlinear equation is explained. Backward

difference scheme used for time integration is detailed. The accuracy of solution

obtained from these implementations are then tested with method of manufac-

tured solutions for convergence. Further, examples of channel flow, cavity flow

and predator-prey modelling is presented to highlight the effectiveness of the

stabilization method.
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Chapter 2

Orthogonal Subgrid Scale

stabilization

In this chapter, we discuss the origins of Orthogonal Subgrid Scale stabilization

in the Variational Multi Scale method. A formulation suited for linear CDRE is

presented and the implementation procedure is detailed. Since we only deal with

nonlinearity in the reaction term, the linearization procedure introduced in the

next section will not affect the OSS stabilization term. Moreover we do not let

subgrid scale term vary in time. Thus the time integration discussed in the next

chapter does not affect the OSS stabilization term too. (See Codina and Blasco

[2002] for time dependent subgrid scales and how they need to be tracked at each

time step for more details)

2.1 Introduction to Subgrid Scales

Most prevalent phenomena in physical sciences are multi-scale in nature. Galerkin

finite element solution to partial differential equations arising from such models

suffer from inaccuracy. Classical case of solution to convection dominated flow

problems with Galerkin finite element lead to oscillatory solution. Several sta-

bilization techniques were introduced to attenuate the problem. This led the

extension of Galerkin finite element into Galerkin Least Squares, Stabilized Up-

wind Petrov Galerkin (SUPG), Taylor Galerkin etc.
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The seminal work by Hughes et. al. in 1995 Hughes [1995] on Variational

Multi Scale formulation brought all the stabilization techniques under a common

umbrella with a single theoretical framework. It introduced the concept of subgrid

scale model. Each of the stabilization techniques that had appeared earlier in

literature was shown to arise from a particular class of subgrid scale models as

suggested by Hughes Hughes et al. [1998] and was elucidated by Codina Codina

[1998]. This abstraction led to further development of stabilization methods

Hughes et al. [1998].

The basic idea of VMS approach is that the solution u can be evaluated as

the sum of the two components u = ū+ ũ. ū is the so-called coarse grid solution

which is typically solved numerically using finite element method. And ũ is the

so-called fine grid solution which is determined analytically a priori. The idea

is to obtain the ‘effect’ of ũ on ū rather than an explicit expression for ũ. ũ

affects the solution globally but when it is defined, it may be done so locally or

globally. The effect of ū is always global Hughes et al. [1998]. The end result is

an additional term to the Galerkin finite element formulation.

Therefore, a good design of the fine grid solution is the logical next step. The

relationship between the coarse grid and the fine grid component plays a major

role in this process. Let the finite dimension space of coarse grid solution be V̄ .

The fine grid solution can be chosen from an infinite dimension subspace Ṽ of

the solution space V such that V = Ṽ ⊕ V̄ . Now if our formulation is exact, we

obtain that the fine grid solution must be the error in the coarse grid solution

Hughes et al. [1998].

2.2 OSS formulation for a stationary, linear CDRE

In this section we consider a stationary linear CDRE with k > 0, s ≥ 0 and

constant velocity a ∈ Rd where d = (2, 3) is the dimension of the problem.

We shall elucidate the development of the OSS formulation resulting in the final

equation containing the Galerkin formulation term and an additional stabilization

term which provides control over and suppress the oscillations in the finite element

solution.

We solve the following stationary CDRE subjected to the homogeneous Dirich-

8



let boundary condition:

Find u such that

Lu := −k∆u+ a · ∇u+ su = f in Ω (2.1)

u = 0 on ∂Ω (2.2)

Using the test function v ∈ V the weak form of the equation is obtained. Here

the solution space V = H1
0 (Ω). We define the space H1

0 (Ω) = {u|u ∈ L2(Ω),∇u ∈
L2(Ω) and u = 0 on ∂Ω}. The problem is to find u ∈ V such that the following

holds

B(v, u) := k(∇v,∇u) + (v, a · ∇u) + s(v, u) = 〈v, f〉 ∀v ∈ V (2.3)

where (·, ·) is the L2 inner product and 〈·, ·〉 is the integral of product of two

functions.

When finite element solution is sought, the solution space is Vh ⊂ V which is

built from a partition P = {J} of the domain Ω (meshing with J elements). Using

conformal Galerkin finite element formulation, now the problem is as follows

Find uh ∈ Vh such that

B(vh, uh) = 〈vh, f〉 ∀vh ∈ Vh (2.4)

Introducing the subgrid scale into the formulation, we decompose the solution

u into the component solved by finite element approximation uh and the unre-

solvable component ũ. As a result, the solution space now is V = Vh ⊕ Ṽ . Two

equations arise from testing the weak form with test functions vh and ṽ.

B(uh, vh) +B(ũ, vh) = 〈f, vh〉 ∀vh ∈ Vh (2.5)

B(uh, ṽ) +B(ũ, ṽ) = 〈f, ṽ〉 ∀ṽ ∈ Ṽ (2.6)

Using the definition of inverse adjoint operator L∗ and B(u, v) = 〈Lu, v〉, the
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equations become

B(uh, vh) + 〈ũ,L∗vh〉 = 〈f, vh〉 ∀vh ∈ Vh (2.7)

〈Luh, ṽ〉+ 〈Lũ, ṽ〉 = 〈f, ṽ〉 ∀ṽ ∈ Ṽ (2.8)

We introduce two approximations to the subgrid scale component ũ. Firstly,

we suppose that the jumps of the solution derivatives across the element bound-

aries are zero. But this in not a necessary condition as shown in the reference

Baiges [2009]. The article indicates that the choice of subgrid scale must be able

to satisfy the condition that the value of subgrid scales at the boundary should be

proportional to the jump of the flux of finite element component and the average

of the subgrid scale value in the element interior. With our approximation, we

have:

〈Luh, ṽ〉 ≈
∑
J

(Luh, ṽ) ≡ (Luh, ṽ)h (2.9)

Second approximation is as follows:

〈Lũ, ṽ〉 = τ−1(ũ, ṽ) (2.10)

where τ is called the stabilization parameter and is defined in Eqn 2.11. For the

given problem with zero Dirichlet boundary condition, the maximum principle for

a continuous problem ensures that the solution attains its maximum value along

the boundary when the source term is negative. This property needs to be carried

into the discrete form of the equation. The value of the coefficients defining τ

are obtained from the article Codina [1998] and are shown below. The article

Codina [2010] provides an in-depth treatment on the stabilization parameter. τ

is defined as:

τ−1 = c1
k

h2
+ c2
|a|
h

+ c3s (2.11)

where c1, c2 and c3 are constants. For linear finite elements:
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τ−1 =
4k

h2
+

2|a|
h

+ s (2.12)

The equations now become

B(uh, vh) + (ũ,L∗vh)h = 〈f, vh〉 ∀vh ∈ Vh (2.13)

〈Luh, ṽ〉+ τ−1(ũ, ṽ) = 〈f, ṽ〉 ∀ṽ ∈ Ṽ (2.14)

The subgrid space is yet to be defined and it may not belong to H1
0 (Ω). We

consider that the subgrid solution is comprised of the L2 projection onto the space

Ṽ (denoted by P̃ ) of the residual of finite element solution.

ũ = τ P̃ (f − Luh) (2.15)

In Orthogonal Subgrid Scale stabilization, the subgrid space is orthogonal to

the finite element space Vh. Hence we take into account only the orthogonal

component of the projection

Ṽ = V ⊥h (2.16)

ũ = τP⊥h (f − Luh) (2.17)

A further simplification is to consider the convective component of the resid-

ual alone. This is because Galerkin formulation precisely lacks control over the

convective term (a · ∇uh) and addition of this term to the orthogonal component

adds stability to the formulation. This is in contrast to the algebraic subgrid

scale choice, ũ = τ(f − Luh) which adds components that lead to stable but

‘over-diffusive’ solution. Thus, we may take

ũ = −τP⊥h (a · ∇uh) (2.18)

Substituting this value in Eqn. 2.13

B(uh, vh) + (−τP⊥h (a · ∇uh),L∗vh)h = 〈f, vh〉 ∀vh ∈ Vh (2.19)
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We can simplify above expression by using the value of adjoint operator and

the property of L2 norm with an orthogonally projected component

L∗vh =

=0︷ ︸︸ ︷
−k∆vh−a · ∇vh + svh (2.20)

P⊥(svh) = 0 (2.21)

(P⊥h (a · ∇uh), (a · ∇vh)) = (P⊥h (a · ∇uh), P⊥h (a · ∇vh)) (2.22)

Hence the final equation with the additional orthogonal term is given below

B(uh, vh) + τ(P⊥h (a · ∇uh), P⊥h (a · ∇vh))h = 〈f, vh〉 ∀v ∈ Vh (2.23)

In the next section, we discuss the finite element implementation of equation

2.23

Remark. Orthogonal Subgrid Scale provides global bounds for the solution, not

locally since the method lacks monotonicity. Hence only global convergence is

guaranteed. Typically oscillations are restricted to only a few layers. This is

easily mitigated by using shock-capturing techniques or selective mesh refinement

2.3 Implementation of OSS stabilization

In this section, we describe the term-by-term implementation of the Eqn 2.23 to

show its algebraic form.

2.3.1 FEM terms

The implementation of the Galerkin finite element terms is using the first order

approximation. The solution is approximated as a combination of shape functions

Na(x) and nodal values ua as shown below.

uh =
∑n

a u
aNa(x) (2.24)

vh =
∑n

b v
bN b(x) (2.25)

where superscript n is the number of degrees of freedom.

12



Hence the term B(uh, vh) becomes

B(uh, vh) = k
(∑n

b v
b∇N b(x),

∑n
a u

a∇Na(x)
)

+
(∑n

b v
bN b(x),

∑n
a u

aa · ∇Na(x)
)

+ s
(∑n

b v
bN b(x),

∑n
a u

aNa(x)
)

(2.26)

Defining diffusion, convection and reaction matrices as

Kk|ab= k
∫

Ω
∇N b(x) · ∇Na(x) (2.27)

Ka|ab=
∫

Ω
N b(x)(a · ∇N(x)a) (2.28)

Ks|ab= s
∫

Ω
N b(x)Na(x) (2.29)

we obtain

B(uh, vh) = vT (Kk + Ka + Ks)u (2.30)

u is the vector of unknowns

The source term is computed as

〈f, vh〉 = 〈f,
n∑
b

vbhN
b(x)〉 = vT f ∀vh ∈ Vh (2.31)

where

f |j=
∫

Ω

fN b(x) (2.32)

2.3.2 OSS stabilzation term

The L2 projection of the finite element convection term is obtained from the

property for projections that dictates the following:(
Ph(a · ∇uh), vh

)
=
(

(a · ∇uh), vh
)
∀vh ∈ Vh (2.33)
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Approximating Ph(a · ∇uh) =
∑

a r
aNa(x), we substitute in Eqn. 2.33∫

Ω

∑
a

raNa(x)
∑
b

vbhN
b(x) =

∫
Ω

∑
a

uah(a · ∇Na(x))
∑
b

vbhN
b(x) (2.34)

(2.35)

Defining the matrices as follows,

M|ab=
∫

Ω
N b(x)Na(x) (2.36)

L|ab=
∫

Ω
N b(x)(a · ∇N(x))a (2.37)

we obtain the solution in algebraic form where r is the vector of unknowns.

Mr = Lu (2.38)

r = M−1Lu (2.39)

The orthogonal component of projection is obtained with the following rela-

tion:

P⊥h (a · ∇uh) = a · ∇uh − Ph(a · ∇uh) (2.40)

We use them in the final expression of the stabilization term. The algebraic
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form of the scalar stabilization term τ(P⊥h (a · ∇uh), P⊥h (a · ∇vh))h is given below

Algebraic form: (2.41)

= τ
∫

Ω

((
[
∑

c a · ∇N c]Tv − [
∑

cN
c]TM−1Lv

)T
(2.42)(

[
∑

c a · ∇N c]Tu− [
∑

cN
c]TM−1Lu

))
(2.43)

= τ

(∫
Ω

(a · ∇N i(x))(a · ∇N j(x))

)
u (2.44)

−τ
(∫

Ω
(a · ∇N i(x))(∇N j(x))

)
M−1Lu (2.45)

−τM−1L

(∫
Ω

(∇N i(x))(a · ∇N j(x))

)
u (2.46)

+τM−1L

(∫
Ω

(∇N i(x))(∇N j(x))

)
M−1Lu (2.47)

= KOSSu (2.48)

Collecting all the terms in Eqn 2.30 2.48 and 2.32 leads to the final algebraic

system of equation

(Kk + Ka + Ks + KOSS)u = f (2.49)
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Chapter 3

Numerical Approximation

This chapter is devoted to the algorithms for numerical approximation for two

cases, one for linearization of nonlinear reaction terms and the other for the time

integration. We employ Newton Raphson iterative algorithm for linearization.

And Backward Difference formula, particularly BDF2 is used for time integration.

3.1 Newton Raphson linearization

In this section we perform the linearization of the nonlinear stationary CDRE

using Newton Raphson technique. Consider the nonlinear system as shown in

Eqn 3.1. (
Kk + Ka + Ks(u) + KOSS

)
u = f (3.1)

where only the reaction matrix Ks(u) is a function of u. Newton Raphson algo-

rithm consists of performing iterations (update ui+1 using ui) until convergence

starting with an initial solution u0 using Eqn 3.2.

ui+1 = ui −T−1(ui)r(ui) (3.2)

T(u) is called the tangent stiffness matrix and r(u) is the residual, defined as
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follows:

r(u) =
(
Kk + Ka + Ks(u) + KOSS

)
u− f (3.3)

T(u) =
dr(u)

du
= Kk + Ka + Ks(u) +

dKs(u)

du
u + KOSS (3.4)

The derivative is computed as shown below, where n is number of degrees of

freedom (dKs(u)

du
u
)
|ij=

n∑
m=1

∂Ks(u)|im
∂uj

um (3.5)

Finally we compute the tangent stiffness matrix at ui using

T(ui) = Kk + Ka + Ks(ui) +
dKs(u)

du
|ui+KOSS (3.6)

to obtain the updated solution ui+1. This process is continued until the L2 norm

of the difference between two successive solutions (normalized) is less than the

tolerance. In all cases presented in the next chapter, we set the tolerance to 10−4.

3.2 BDF time integration

For a transient nonlinear CDRE, the total time is split into into intervals. At

each time step the Newton Raphson linearization is to be performed. Consider

the time dependent nonlinear CDR equation shown below in its differential and

algebraic forms.

∂tu− k∆u+ a · ∇u+ s(u)u = f (3.7)

M
∂u

∂t
+ (Kk + Ka + Ks(u) + KOSS)u = f (3.8)
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The Backward Difference scheme for time integration is given as follows

BDF1:
∂u

∂t
=

un+1 − un

δt
is O(δt) (3.9)

BDF2:
∂u

∂t
=

3

2
un+1 − 2un +

1

2
un−1

δt
is O(δt2) (3.10)

Using BDF1 and BDF2 in the transient equation, we obtain

(
M

δt
+ Kk + Ka + Ks(u

n+1) + KOSS)un+1 = f +
M

δt
un (3.11)

(
3

2

M

δt
+ Kk + Ka + Ks(u

n+1) + KOSS)un+1 = f + 2
M

δt
un − 1

2

M

δt
un−1(3.12)

The first time step cannot be solved with BDF2 since un−1 is non-existent.

Hence BDF1 is used for the first time step and the successive time integrations

are carried out using BDF2.

When Newton Raphson linearization is applied, we obtain additional terms

in the definition of Tangent stiffness matrix and the residual.

un+1
i+1 = un+1

i+1 −T−1(un+1
i )r(un+1

i ) (3.13)

For the first time step using BDF1,

r(un+1) = (
M

δt
+ Kk + Ka + Ks(u

n+1) + KOSS)un+1 − M

δt
un − f (3.14)

T(un+1) =
M

δt
+ Kk + Ka + Ks(u

n+1) +
dKs(u

n+1)

du
un+1 + KOSS (3.15)

For successive time steps using BDF2,

r(un+1) = (
3

2

M

δt
+ Kk + Ka + Ks(u

n+1) + KOSS)un+1

− 2
M

δt
un +

1

2

M

δt
un−1 − f (3.16)
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T(un+1) =
3

2

M

δt
+ Kk + Ka + Ks(u

n+1) +
dKs(u

n+1)

du
un+1 + KOSS (3.17)

The new definitions of Tangent Siffness and residual can be used as discussed

in previous section for the Newton Raphson iteration. Algorithm 1 gives the im-

plementation of time integration (counter n) with Newton Raphson linearization

(counter i).

Algorithm 1: Time integration with Newton Raphson Linearization

Data: un, un−1

1 while n 6= (end time) do

2 i = 0

3 Initialize: un+1
i = un

4 Initialize: uni = un

5 Initialize: un−1
i = un−1

6 do

7 Calculate: r(un+1
i )

8 Calculate: T(un+1
i )

9 Find: un+1
i+1

10 Calculate L2 error:
||un+1

i+1 − un+1
i ||L2

||un+1
i ||L2

11 Update: i = i+ 1

12 while L2 error ≥ tol(NewtonRaphson);

Result: un+1 = un+1
i+1

13 end

Result: un+1
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Chapter 4

Numerical Tests

In the present chapter, we deal with conducting tests to check algorithmic and

implementation correctness. Also suitability of the solution methodology of the

code developed. Method of manufactured solutions is used for this purpose. This

method involves assuming an analytical solution of a preferred form. This ana-

lytical solution satisfies the conditions (initial and boundary). The source term in

CDRE is modified such that the analytical solution satisfies CDRE. Further, nu-

merical solution of the equation is obtained using Galerkin finite element method

with OSS stabilization. A comparison of numerical and analytical solutions can

be made and convergence of solution error is discussed.

With the method of manufactured solutions, we test the numerical solution

against the analytical one for the following cases:

1. Stationary linear CDRE

2. Stationary nonlinear CDRE

3. Transient nonlinear CDRE

4. Transient nonlinear system of coupled CDRE

Solution to the equations above are calculated for various values of the co-

efficients. The convective velocity is a = |a|( cos(
π
3

)

sin(π
3

) ), where |a| is a norm of the

velocity. The direction of the velocity field was chosen so that it did not align

with the mesh. The tests performed on each of the equations are shown in Table
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ID k |a| s Pe Da
Test1 10−4 10−4 10−4 10−2 4× 10−4

Test2 10−4 10−4 10 10−2 40
Test3 10−4 1 10−4 100 4× 10−4

Test4 10−4 1 10 100 40

Table 4.1: Tests of different coefficient values

4.1. Corresponding numerical Peclet number and numerical Damköler number

are indicated.

The tests are carried on a unit square domain with zero Dirichlet condition on

all boundaries. Mesh consisting of linear quadrilateral elements are used through-

out the testing. The element size h = 0.02. The non-dimensional numbers are

based on the uniform mesh in the domain and not local reduction in mesh size

due to refinement carried out in regions of sharp layers. Such local refinements

are carried out only to mitigate the presence of oscillatory solution in the region

of sharp gradients only.

4.1 Stationary linear CDRE

Stationary linear CDRE is of the form shown in Eqn 4.1. We have spacial deriva-

tives only. The term linear means that the coefficients k, a and s are not functions

of the unknown u. The problem to be solved is:

−k∆u+ a · ∇u+ su = f in Ω = [0, 1]× [0, 1] (4.1)

u = 0 on ∂Ω (4.2)

Numerical solution with OSS stabilization obtained are shown in fig 4.1 for

different test cases mentioned in Table 4.1. The value of source term f is unity in

all the tests. Large oscillations were observed for test cases Test2, Test3 and Test4

close to the boundary where steep gradients in solution exists. We employed local

mesh refinement to capture the solution and the oscillations completely vanished

close to the boundary in Test2 and were limited to a few layers in Test3 and Test4

cases.
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Figure 4.1: Solution plot for stationary linear CDR equation
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Figure 4.2: Convergence plot for stationary linear CDRE. Case 1: u = x2(1 −
x2)y2(1− y2)

The method of manufactured solution was now employed to study the conver-

gence of error with decreasing size of the uniform mesh. Two cases were studies

for the convergence analysis and each of the cases were subjected to the afore-

mentioned tests. The analytical solution for each case tested for are given below

and they automatically satisfy the boundary conditions. These solutions were

used to build the suitable source term. They are:

Case 1: u = x2(1− x2)y2(1− y2) (4.3)

Case 2: u = sin(πx)sin(πy) (4.4)

The normalized L2 norm of the error is a function of the mesh size. Let uh be

the piecewise linear finite element approximation of u, then the L2 norm of the
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Figure 4.3: Convergence plot for stationary linear CDRE. Case 2: u = sin(πx)
sin(πy)

error is given by

||u− uh||L2= Ch2||D2u||L2 (4.5)

where C is a constant.

In our case D2u, the second derivative of the solution, is a constant. For linear

finite element approximation the L2 error is O(h2). This means that the plot of

log(||u− uh||L2) vs. log(h) should yield linear behaviour with slope 2

Convergence plots for Case 1 and Case 2, each for different test scenarios

indicated in Table 4.1 are shown in fig 4.2 and fig 4.3 respectively. We observe

that optimal convergence rates are obtained for linear finite elements with slope

value of 2 for all the test cases.
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Figure 4.4: Convergence plot for stationary nonlinear CDRE. Case 1: u = x2(1−
x2)y2(1− y2)

4.2 Stationary nonlinear CDRE

We now allow for nonlinearity in the stationary CDRE. The nonlinearity is of

the of the logistic equation kind, thus the resulting CDRE is the Fisher-KPP

equation. It is as shown below:

−k∆u+ a · ∇u− su(1− u) = f in Ω = [0, 1]× [0, 1] (4.6)

u = 0 on ∂Ω (4.7)

As previously discussed, we employ method of manufactured solutions for con-

vergence study. Two cases were tested for convergence whose analytical solutions
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Figure 4.5: Convergence plot for stationary nonlinear CDRE. Case 2: u = x(1−
x)y(1− y)

are given below:

Case 1: u = x2(1− x2)y2(1− y2) (4.8)

Case 2: u = x(1− x)y(1− y) (4.9)

The stabilization parameter (Eqn. 2.11) in this case was chosen as follows to

retain dimensional homogeneity:

τ−1 =
4k

h2
+

2|a|
h

+ s(1−max(ui)) (4.10)

where ui is the solution from the previous Newton Raphson iteration.

Fig 4.4 and fig 4.5 represent the convergence plots of the Case 1 and Case 2 re-

spectively for various test cases shown in Table 4.1. It shows optimal convergence

rate with slope 2 for linear finite elements.
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Figure 4.6: Convergence plot for transient nonlinear CDRE. Case 1: u = 2t3x(1−
x)y(1− y)

4.3 Transient nonlinear CDRE

We advance to transient equations in this section. Nonlinearity in reaction term

of a transient CDRE is considered. The problem statement along with initial and

boundary conditions are given in Eqn 4.11:

∂tu− k∆u+ a · ∇u− su(1− u) = f in Ω = [0, 1]× [0, 1], t > 0 (4.11)

u(t = 0) = 0 in Ω (4.12)

u = 0 on ∂Ω, t > 0 (4.13)

The time interval under consideration is [0 1]. This interval was subdivided

into equal time steps. For the convergence of error, we measured the error at the

end of the time interval t = 1. BDF2 was employed for temporal discretization.

As expected, with smaller time step size, the error measured in the L2 norm
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Figure 4.7: Convergence plot for transient nonlinear CDRE. Case 2: u =

sin(
πt

2
)x(1− x)y(1− y)

decreased. For characteristic mesh size h and time step size δt, the behaviour of

L2 norm is given below√
n∑
δt||u− uh||2L2 =

(
C1h

2 + C2(δt)2
)
||D2u+D2

t u||L2 (4.14)

C1 and C2 are constants, D2 and D2
t are spacial and temporal second deriva-

tives. Since we are interested in the convergence of solution with time, we consider

a fine mesh so that the error contribution due to spacial discretization is mini-

mum. Hence, the dependency of error on time is O(δt2). The convergence plot

of normalized error measured in L2 norm, we anticipate a slope of 2.

Two cases with different time dependencies are considered and the correspond-
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ing analytical solutions are listed below:

Case 1: u = 2t3x(1− x)y(1− y) (4.15)

Case 2: u = sin(
πt

2
)x(1− x)y(1− y) (4.16)

The stabilization parameter τ was considered constant for a given time step

and was calculated using the solution at the previous time step un. It was not

updated for every Newton Raphson iteration as carried out for the stationary

nonlinear case. The choice was made in order to reduce computational expenses.

The drawback is that the rate of convergence is linear and not quadratic. This

is demonstrated in the predator-prey example presented later in this document.

The stabilization parameter is

τ−1 =
4k

h2
+

2|a|
h

+ s(1−max(un)) (4.17)

Solution errors in the L2 norm for different time steps sizes were calculated for

various test cases in Table 4.1 and are plotted in Fig 4.6 and Fig 4.7 respectively.

In Case1, we obtain optimal convergence rates and in Case2, the slope is less than

2. Case 2 offers a small flattening of the error slope with decrease in time step size.

The reason for the behaviour may be due to spacial error becoming significant

in affecting the slope for the convergence in time. This can be mitigated with

further finer meshes.

4.4 Transient nonlinear system of coupled CDREs

A system of coupled transient CDREs is considered in the present section. The

coupling is in the nonlinear reaction term only. The solution unknowns are de-

noted by u1 and u2. The nonlinearity in reaction is of the Fisher-KPP form for

both equations. The problem statement is presented in Eqn 4.18

Find u1 and u2 such that
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Figure 4.8: Convergence plot for transient nonlinear system of CDREs. u1 =
t2x(1− x)y(1− y)

[
∂tu1

∂tu2

]
−

[
k1∆u1

k2∆u2

]
+

[
a1 · ∇u1

a2 · ∇u2

]
−

[
s11 s12

s21 s22

][
u1(1− u1)

u2(1− u2)

]
=

[
f1

f2

]
in Ω = [0, 1]× [0, 1] (4.18)

u1(x, y, t = 0) = u2(x, y, t = 0) = 0 in Ω (4.19)

u1(x, y, t > 0) = u2(x, y, t > 0) = 0 on ∂Ω (4.20)

In the Newton Raphson linerization loop, iterations were performed until the

respective differences between successive solutions of both u1 and u2 were below

the specified tolerance.

Again, method of manufactured solutions was used to perform the convergence

study. The case considered with the analytical solution is shown below. u1 and

u2 behave differently in time since the convergence study in time is of interest in
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Figure 4.9: Convergence plot for transient nonlinear system of CDREs. u2 =

sin(
πt

2
)x(1− x)y(1− y)

this case. They are given by:

u1 = t2x(1− x)y(1− y) (4.21)

u2 = sin(
πt

2
)x(1− x)y(1− y) (4.22)

Fig 4.8 and fig 4.9 show the convergence in time for u1 and u2 respectively.

Optimal convergence is obtained with slope 2. Hence we are assured of a bug-free,

correct implementation of the finite element code with OSS stabilization, Newton

Raphson linearization and BDF2 time stepping.

In the next section, we apply the code for various examples to demonstrate the

effectiveness of the developed code in terms of capturing of sharp layers, flexibility

of implementation and effectiveness of handling large Pe and Da numbers.
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Chapter 5

Numerical Examples

We present the application of finite element code with OSS stabilization in various

scenarios where CDRE needs to be solved for. Examples of CDRE in flow through

a channel and cavity flow are highlighted. These cases demonstrate the ability

of stabilization in obtaining an oscillation-free solution for a transient nonlinear

CDRE. Also a predator-prey model consisting of a transient nonlinear system of

coupled CDREs is solved.

We would like to convey a strong message that the present formulation is

capable of solving a number of applications of CDRE with nonlinear reaction.

We would like to highlight the stability of the method even for high Pe and Da

numbers that are traditionally not solvable by Galerkin finite element method.

Also the formulation is able to capture sharp layers in the solution with selective

mesh refinement. The error remains bounded and the method offers optimal

convergence

5.1 Channel flow

Pressure driven, fully-developed laminar fluid flow through a channel is a well

studied problem. A characteristic parabolic velocity profile is developed across

the cross-section of the channel. A no-slip boundary imposes zero velocity along

the walls. The fluid achieves maximum velocity along the center. Examples of

such scenario include Couette flow (laminar viscous flow between two parallel
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Figure 5.1: Channel flow: Initial solution for test cases

plates), Hagen-Poiseuille flow (laminar flow in a closed conduit), etc.

In the present example we study the spacio-temporal evolution of a quantity

of interest u governed by a nonlinear CDRE when subjected to the convective ve-

locity field of a channel flow. In particular we chose Fisher-KPP equation. These

model population growth of bacteria and hence the solution can be considered as

the time evolution of a bacteria colony in a pipe flow.

The domain of the problem is a rectangle of dimension [0 3] × [0 1]. The

left and right boundaries are inlet and outlet respectively. The top and bottom

boundaries represent rigid walls with no-slip velocity. The parabolic velocity

profile shown in fig 5.2 is unaltered by the concentration of the species. Hence

there is a one-way coupling between the flow problem and the CDRE. The initial

condition for the problem consists of a normal distribution of the species close to

the wall as shown in fig 5.1. The problem is stated as follows

Find u such that

∂tu− k∆u+ a · ∇u+ su(1− u) = f in Ω = [0 3]× [0 1] (5.1)

a(x, y, t) = ( 4(y−y2)
0

) (5.2)

Initial condition: Fig 5.1

u(x, y = 0, t) = u(x, y = 1, t) = 0 (5.3)

kn · ∇u|x=0,y,t= kn · ∇u|x=3,y,t= 0 (5.4)

The maximum velocity attained at the centre is of magnitude unity. We
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Figure 5.2: Channel flow velocity field for test cases

ID k s h Pe Da
Case1 10−4 0.1 0.025 125 0.4
Case2 10−4 1 0.02 100 4
Case3 10−4 5 0.02 100 20

Table 5.1: Channel flow test cases for different coefficient values

perform the tests as shown in Table 5.1. We would like to highlight that the Pe

number is very high at 100 to 125. Moreover, each case corresponds to various

strengths of reaction coefficient and thereby different Da number.

The result for different time steps for Case1, Case2 and Case3 are shown in

figs 5.3, 5.4 and 5.5 respectively. We can observe that in fig 5.3 with small value

of reaction coefficient s, we can obtain a smooth solution with a relatively coarser

mesh. Since advection is dominant to reaction, generation or destruction is not

dominant. For the case when s = 1 shown in fig 5.4, we observed that a finer mesh

was required to capture the solution. If a coarser mesh was used, the error built-

up from each consecutive time step resulted in non-convergence of the solution

at a later time step. This is one the drawbacks of using Newton Raphson for

linearization. This can be overcome to a certain extent by introducing relaxation

or using other linearization techniques. This is not carried out as it is not in

the scope of this study. For the case with s = 5 and Da = 20, the reaction

term has a dominant effect in the proliferation of the species. The solution is

oscillation free and sharp layers are captured well. Hence we have demonstrated

that finite element method with OSS stabilization can successfully solve problems
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with moderately large convection and reaction terms. Newton Raphson iteration

was unable to resolve splitting into ‘plumes’ in the case with s = 5 when large

advection field cuts through a dense concentration of species generated by large

reaction. This is one of the limitations of our preferred linearization technique.
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(a) t = 0.5

(b) t = 1.0

(c) t = 1.5

(d) t = 2.0

Figure 5.3: Channel flow for s = 0.1 with Pe = 125 and Da = 0.4
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(a) t = 0.4

(b) t = 0.8

(c) t = 1.2

(d) t = 1.6

Figure 5.4: Channel flow for s = 1 with Pe = 100 and Da = 4
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(a) t = 0.14

(b) t = 0.28

(c) t = 0.42

(d) t = 0.56

Figure 5.5: Channel flow for s = 5 with Pe = 100 and Da = 20
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Figure 5.6: Cavity flow domain and boundary conditions

5.2 Cavity flow

A lid-driven cavity flow is a popular benchmark problem in CFD. It is a flow

problem in a rectangular domain with three stationary walls and one moving

boundary (usually the top). Incompressible Navier-Stokes equation in its non-

dimensional form is solved. The domain and the boundary conditions for the flow

problem employed in the study are shown in fig 5.6. The velocity field generated

is dependent on the Reynold’s number (Re). It is observed that a steady field

is obtained upto Re = 10000, after which the solution is transient. Hence, we

restrict ourselves to below this Re limit. Steady state velocity fields for Re =

200 and 4000 shown in fig 5.7 are used for our tests since they represent distinct

features in their vortical structures.

Transient, nonlinear CDRE equation of Fisher-KPP kind is solved in the

domain with the advection field of the cavity flow problem. Cavity flow generates

a central large eddy and smaller eddies along the corners depending on the Re.

Such velocity fields provide challenges in obtaining numerical solution to the

CDRE. The aim of this section is to demonstrate the capability of OSS stabilized

finite element solution in providing smooth solutions to CDRE with high Pe and

Da numbers in a complex flow field. An initial distribution of the quantity of

interest (species) used as the initial condition is shown in fig 5.8. The evolution

of the distribution is the solution sought after. In the present case, diffusion is

39



(a) Re = 200 (b) Re = 4000

Figure 5.7: Cavity flow velocity field for test cases

Figure 5.8: Cavity flow: Initial solution for test cases
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weak with value k = 10−4 and reaction is strong with s = 1. The maximum

velocity on the top surface has unit magnitude as shown in fig 5.7. The CDRE

problem is stated as follows

Find u such that

∂tu− k∆u+ a · ∇u+ su(1− u) = f in Ω = [0 3]× [0 1](5.5)

u(x = 0, y, t) = u(x = 1, y, t) = u(x, y = 0, t) = 0 (5.6)

a is the velocity field shown in Fig 5.7

Initial condition: Fig 5.8

The problem consists of large convection and reaction processes relative to

diffusion. We thus expect sharp layers and hence considerations for mesh size

and selective refinement is important. The problem was initially solved with a

coarse mesh to determine the distribution of u. For Re = 200, u was found to

get transported in the whole domain, hence an overall finer mesh (h = 1/75)

was chosen with a thin refinement zone along the boundary. For Re = 4000, u

was found to evolve being transported close to the domain boundaries. Hence an

overall coarse mesh (h = 1/50) with thicker zone of refinement from the boundary

was found to be good choice. Pe and Da numbers are determined based on the

mesh size which is different for the two cases considered (for Re = 200, Pe = 67

and Da = 1.8 . and for Re = 4000, Pe = 100 and Da = 4). It is to be noted

that although Da number seem close to unity in the cases above, these cases with

finer meshes are employed only to capture the transition of solution through the

sharp layer via multiple elements. But it is not necessary since the initial coarse

mesh with higher Da was able to produce a globally smooth solution.
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5.2.1 CDRE solution for Re = 200

Solution to transient nonlinear CDRE whose advection field is from the cavity

flow problem with Re = 200 is shown in fig 5.9. We can observe dominant

advection and reaction phenomenon driving the change. The thickness of layer

due to diffusion is small, hence a finer mesh is preferred to capture the transition

although it is not necessary. Also the effect of a finer mesh in increasing the

resolution of the solution obtained in fig 5.9(g) clearly close to the right boundary.

(a) t = 0.5 (b) t = 1.0

(c) t = 1.5 (d) t = 2.0

Figure 5.9: Cavity flow: CDRE solution snapshots for Re = 200, Pe = 67 and
Da = 1.8
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(e) t = 2.5 (f) t = 3.0

(g) t = 3.5 (h) t = 4.0

(i) t = 4.5 (j) t = 5.0

Figure 5.9: Cavity flow: CDRE solution snapshots for Re = 200, Pe = 67 and
Da = 1.8
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5.2.2 CDRE solution for Re = 4000

In the solution for Re = 4000 shown in fig 5.10 the first observation is that

the species caught up in small eddies at this flow regime are captured well. As

remarked in the previous case, the thickness of transition layer is small and a

fine mesh helps if accurate monitoring of the transition zone is critical. Smooth

non-oscillatory solutions are obtained.

(a) t = 0.5 (b) t = 1.0

(c) t = 1.5 (d) t = 2.0

Figure 5.10: Cavity flow: CDRE solution snapshots for Re = 4000, Pe = 100 and
Da = 4
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(e) t = 2.5 (f) t = 3.0

(g) t = 3.5 (h) t = 4.0

(i) t = 4.5 (j) t = 5.0

Figure 5.10: Cavity flow: CDRE solution snapshots for Re = 4000, Pe = 100 and
Da = 4
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5.3 Predator-prey system

As an example of coupled system of nonlinear equations, we consider the predator-

prey model in ecological interactions describing population dynamics in terms of

spatially and temporally continuous quantity such as density function. Also, here

we consider models with time-continuous properties.

When population studies were required to be initiated, it was found that

species specific studies were discouragingly complicated for a system with large

number of interacting entities. The easiest simplification was to reduce the com-

plexity to just the interaction between two ‘functional groups’, zooplanktons and

photoplanktons. This binary description worked good in empirical sense too.

The next step was to formulate the model and discover the properties such as

existence, stability and bounds of the solution, periodicity or pattern formation

and bifurcation. It is not the intention of the present study to delve in these

mathematical aspects. Rather, when such system is required to be solved for

different values of parameters of the equations, challenges in obtaining numerical

solution are encountered when the scales of these parameters are hugely different.

To address and tackle these challenges is the main intention.

In the next section, we briefly describe the origin of the predator-prey model

used in the present work. Much of the details about the model can be obtained

in the reference book by Malchow et al.Malchow [2008].

5.3.1 Formulation of predator-prey model

A generalized starting point for a closed system predator-prey modelling is the

transient diffusion reaction equation as mentioned in the first chapter. This is of

a general form shown in Eqn 5.7

∂tu1 = k1∆u1 + P (u1)− E(u1, u2) (5.7)

∂tu2 = k2∆u2 + κE(u1, u2)− µ(u2)

In Eqn 5.7, u1 and u2 represent the population densities of the prey and

predator respectively. P (u1) is the prey population growth function. E(u1, u2)

represents the act of predation, resulting in a decline of prey and growth of preda-
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tor populations. κ is the predation efficiency which determines the effectiveness

of predation on the growth of predator population. µ(u2) quantifies predator

mortality.

Hence the prey equation consists of diffusion or spreading of prey population,

its growth by reproduction P and its demise by predation E. On the other hand,

predator equation consists of its spreading, its growth by predation E (with κ

efficiency, where 0 ≤ κ ≤ 1) and its death by mortality µ.

One of the popular approaches to model the functions P,E and µ is shown in

Eqn 5.8 and 5.9

∂tu1 = k1∆u1 + Cu1(1− u1

K
)−B u1u2

u1 +H
(5.8)

∂tu2 = k2∆u2 + κB
u1u2

u1 +H
−Mu2 (5.9)

Here, predator functional response to prey density E, is modelled by the

often-used so-called Hollinger type II. B represents the predation rate and the

parameter H has the meaning of the half-saturation prey density. For prey pop-

ulation growth model, logistic equation is used. C represents the prey growth

rate and K is the carrying capacity of the system, which denotes the maximum

population of prey supported by the domain. Also, the predator mortality µ is

given by a linear term.

Adding to this, a seasonal migration pattern or migrations towards regions of

resource availability can be introduced via the convection term. This models the

bulk movement of populations and is the origin of a1 and a2. We combine all of

the above processes and represent it in terms of our notation. We assume the

carrying capacity K to be unity. Resulting predator-prey model is shown in Eqn

5.10 with suitable initial and boundary conditions. Here coupling of equations

in the reaction terms can be observed and hence our code for transient coupled
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Figure 5.11: Predator-prey initial solution for test cases

ID s11 s12 s21 s22

Case1 0 0 0 0
Case2 0 0 0 1
Case3 0 0 3 1
Case4 1 0 3 1
Case5 1 2 3 1

Table 5.2: Predator-prey test cases of different reaction coefficients

CDRE can be utilized. The system of equations reads:

[
∂tu1

∂tu2

]
−

[
k1∆u1

k2∆u2

]
+

[
a1 · ∇u1

a2 · ∇u2

]
−

 s11(1− u1) −s12
u1

1 + α1u1

−s21
u1

1 + α2u1

s22

[u1

u2

]
=

[
f1

f2

]

with suitable initial and boundary conditions (5.10)

In the above equation, s11 = C, K = 1, s12 = B
H

, α1 = 1
H

, s21 = κB
H

, α2 = 1
H

and s22 = −M .

5.3.2 Numerical tests and results

Let us consider the predator-prey equation within a unit square domain (Eqn

5.11) with initial condition (population density) shown in Fig. 5.11 and boundary

conditions. The initial population density is a normal distribution. A number of
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cases are run for different values of the reaction coefficients sij where i, j = 1 : 2.

They are indicated in the table 5.2. Other coefficients are retained as constant

for all the cases. Diffusion coefficients are k1 = k2 = 10−4, convection velocity

fields are a1 = 0.5( 1
1 ) and a2 = 0.5( −1

−1 ). Hence predator and prey populations

are driven in opposite directions for head-on encounter with one another. No

source terms are considered (f1 and f2 = 0) and constants α1 and α2 are taken

to be unity. The problem reads:[
∂tu1

∂tu2

]
−

[
k1∆u1

k2∆u2

]
+

[
a1 · ∇u1

a2 · ∇u2

]

−

 s11(1− u1) −s12
u1

1 + αu1

−s21
u1

1 + αu1

s22

[u1

u2

]
=

[
f1

f2

]
in Ω = [0, 1]× [0, 1]

u1(x, y, t > 0) =0 on ∂Ω

u2(x, y, t > 0) =0 on ∂Ω

(5.11)

The domain is discretized with quadrilateral elements with h = 0.02. Hence Pe

= 50 and considering the maximum values of s11 and s22, Da = 4. The temporal

domain t = [0 1] and solution snapshots at t = 0.2, 0.4, 0.6, 0.8, 1.0 indicated for

each case.
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5.3.2.1 Case1: s11 = 0, s12 = 0, s21 = 0 and s22 = 0

Case1 represents the absence of reaction terms. Diffusion is relatively weak com-

pared to convection. The equations are uncoupled and independent of each other.

In fig 5.12, we can observe a small diffusion and consequently large advection of

the population along the direction of the advection velocity. Since there is no

interaction, the populations of predator and prey do not affect each other. This

case is important to observe the effect of transport and diffusion alone. It will

serve as a reference for comparison to cases with reaction terms.

(a) t = 0.2

(b) t = 0.4

Figure 5.12: Predator-prey population densities for Case1. s11 = 0, s12 = 0, s21 =
0 and s22 = 0
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(c) t = 0.6

(d) t = 0.8

(e) t = 1.0

Figure 5.12: Predator-prey population densities for Case1. s11 = 0, s12 = 0, s21 =
0 and s22 = 0
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5.3.2.2 Case2: s11 = 0, s12 = 0, s21 = 0 and s22 = 1

In Case2, s22 = 1. The prey population is still governed by convection-diffusion

but the predator is governed by a CDRE with linear reaction. The linear reaction

term models the decline of the predator due to lack of availability of prey. Hence

we expect a temporal decline of population of predator and we can observe that

in fig 5.13. As in Case1, both equations are uncoupled and independent of one

another. Hence the solution for the prey remains the same as in Case1.

(a) t = 0.2

(b) t = 0.4

Figure 5.13: Predator-prey population densities for Case2. s11 = 0, s12 = 0, s21 =
0 and s22 = 1
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(c) t = 0.6

(d) t = 0.8

(e) t = 1.0

Figure 5.13: Predator-prey population densities for Case2. s11 = 0, s12 = 0, s21 =
0 and s22 = 1
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5.3.2.3 Case3: s11 = 0, s12 = 0, s21 = 3 and s22 = 1

Case 3 adds more complexity to the predator equation with s22 =1 and s21 = 3.

For the predator, the contribution of decline of species by mortality and growth

by predation is added. We can see that it is now linked to the prey population

through a one-way coupling (prey population is not affected by predator). This is

evident in the fig 5.14. In fig 5.14 (a) and (b), the predator population declines.

But after encountering the prey the predator population rapidly increases as

depicted in fig 5.14 (c) and (d). In fig 5.14 (e) we observe that predator population

declines in the absence of prey.

(a) t = 0.2

(b) t = 0.4

Figure 5.14: Predator-prey population densities for Case3. s11 = 0, s12 = 0, s21 =
3 and s22 = 1
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(c) t = 0.6

(d) t = 0.8

(e) t = 1.0

Figure 5.14: Predator-prey population densities for Case3. s11 = 0, s12 = 0, s21 =
3 and s22 = 1
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5.3.2.4 Case4: s11 = 1, s12 = 0, s21 = 3 and s22 = 1

Case4 introduces a logistic growth reaction term for the prey population. In this

case, along with s22 = 1 and s21 = 3, we also have s11 = 1. We can expect

to observe growth in population of prey. But the equations are just one-way

coupled. The growth of prey population is indicated in fig 5.15. Due to altered

prey population, the dynamics of predator is different too.

(a) t = 0.2

(b) t = 0.4

Figure 5.15: Predator-prey population densities for Case4. s11 = 1, s12 = 0, s21 =
3 and s22 = 1
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(c) t = 0.6

(d) t = 0.8

(e) t = 1.0

Figure 5.15: Predator-prey population densities for Case4. s11 = 1, s12 = 0, s21 =
3 and s22 = 1
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5.3.2.5 Case5: s11 = 1, s12 = 2, s21 = 3 and s22 = 1

Case5 is the most realistic and comprehensive case. Growth and decline of popu-

lations of both prey and predator are considered and there is a two-way coupling

in the equation. The prey population grows in a logistical manner with mortality

by predation. On the other hand, predation fuels the growth of predator and but

its mortality controls overpopulation. Predation occurs when both populations

meet spacially at the same time. The behaviour is highly nonlinear as seen in fig

5.16. Diffusion, convection and reaction terms compete to produce a net result

which interacts with that of the other population. This in-turn affects its own

population.

(a) t = 0.2

(b) t = 0.4

Figure 5.16: Predator-prey population densities for Case5. s11 = 1, s12 = 2, s21 =
3 and s22 = 1
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(c) t = 0.6

(d) t = 0.8

(e) t = 1.0

Figure 5.16: Predator-prey population densities for Case5. s11 = 1, s12 = 2, s21 =
3 and s22 = 1
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High Pe and Da numbers are observed but OSS stabilization provides control

over the error and oscillation-free accurate results are obtained. Fig 5.17 and 5.18

shows the convergence of solution u1 and u2 at every time step for each iteration

of Newton Raphson linearization. Since the stabilization parameter is constant

for all Newton Raphson iteration in a time step, the convergence rate is linear.

As pointed out in the previous chapter, this was chosen to save on numerical

expenses. If un+1
i+1 is the updated solution and un+1

i is the solution at previous

iteration at current time step n + 1, L2 norm of error in u is given in Eqn 5.12.

Acceptable tolerance for the error was set to 0.1%.

Normalized error =
||un+1

i+1 − un+1
i ||L2

||un+1
i ||L2

(5.12)
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Figure 5.17: Convergence plot for Newton Raphson linearization of u1
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Figure 5.18: Convergence plot for Newton Raphson linearization of u2
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Chapter 6

Conclusion

In the present study, we highlighted the ubiquity of CDRE in modeling of physical

phenomenon. Our focus was concentrated upon models with nonlinear reaction

term. Such equations arise in population study, circuit theory, quantum mechan-

ics, etc. Solution exhibit varied properties such as pattern formation, periodicity

and bifurcation. When considering Fisher-KPP equation, one of the earliest and

most widely used CDRE with nonlinear reaction, we noted that obtaining nu-

merical solution isn’t straightforward. This was especially true for CDRE with

different scales for convection, diffusion and reaction terms. We introduced two

non-dimensional quantities. Numerical Peclet number Pe is a measure of relative

strength of convection to that of diffusion and numerical Damköhler number Da

is a measure of relative strength of reaction to that of diffusion. When Pe and

Da are large, Galerkin finite element method does not yield stable and smooth

solution. This inspired us to utilize stabilization techniques which became the

main objective of our study.

Our preferred choice of stabilization is Orthogonal Subgrid Scale method

which is a derivative of Variational Multi Scale approach. The key idea is the de-

composition of unknown solution into a finite element resolvable component and

unresolvable component. The former was referred to as coarse grid and the latter

as the fine grid component in VMS terminology. When it comes to approximating

the fine grid component, OSS methodology utilizes the property that if the sum

decomposition formulation is to represent a highly accurate solution, the error in

the coarse grid component must be compensated by the fine grid component. In
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particular, the choice of functional space for the fine grid component was to be

orthogonal to the finite element functional space. And the approximation of the

fine grid component was taken to be the L2 projection onto a space orthogonal to

the finite element functional space of the finite element residual. This formulation

has the advantage that it is not overly diffusive compared to other stabilization

techniques. Moreover, it helps to regain control over the finite element error. But

the error is globally bounded and local oscillations in the region of sharp layers

were still encountered. This was mitigated by restricting severe oscillations to

only few elements using selective mesh refinement. In the end, this formulation

led to an additional term to the Galerkin finite element weak form. We presented

the exposition of the formulation suitable for CDRE and implementation was

detailed.

First implementation was for a stationary, linear CDRE. Later, CDRE with

nonlinear reaction was implemented. In order to deal with nonlinear terms, we

resorted to Newton Raphson linearization. This technique served our purpose

fairly well with only a few hiccups for highly nonlinear cases. Since all real-world

models for nonlinear CDRE were transient equations, time integration was nec-

essary. Hence an implementation of Backward Differences scheme was included.

The OSS stabilization term was constant for each time step and was independent

of temporal terms. Implementation was extended to include coupled system of

CDREs.

Next step was the testing phase. The implementation was checked for correct-

ness and tests were necessary to ensure that they were bug-free. The choice was

to use method of manufactured solutions to test the implementation. Conver-

gence study for error was carried out for all implementations. One could observe

optimal convergence rates and this instill confidence in our implementation. The

code was ready to solve real-world applications.

We set out to demonstrate the advantages of OSS stabilization via solving real-

world problems. The first example was the solution of CDRE in a channel flow.

This case presented a scenario where the stabilization was successful in obtaining a

smooth solution for moderately large advection and reaction phenomenon. When

very large Pe and Da numbers were encountered, complex physics was unable

to be resolved with the current linearization technique. This highlighted the
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advantages and shortcomings of the method employed. Cavity flow was the next

example which presented a complex advection field. The method was able to

successfully generate a stable solution and sharp layers were captured. We saw

that small efforts at performing selective refinement could yield great benefits in

terms of reduction of local oscillations and accurate representation of transition

zone. The next problem that was tackled was a predator-prey model consisting

of coupled transient nonlinear system of CDREs. This dynamical system was

solved for various test scenarios and we could capture the complex interaction for

large Pe and Da numbers.

We conclude that stabilization is necessary for finite element solution of non-

linear CDRE for large Pe and Da numbers. In particular, OSS offered good

stability and globally smooth solution with least added numerical diffusion. The

problem with local oscillations was mitigated with selective mesh refinement.

Sharp layers in the solution were captured well without oscillations. Newton

Raphson method was the preferred choice for linearization of nonlinear reac-

tion terms. Application of the formulation to various examples highlighted the

strengths and limitations of this choice of linearization. Newton Rapshon is a ro-

bust scheme but falters when nonlinearity is very large and sudden (for which the

initial guess is not close enough for the scheme to converge). With respect to the

error analysis, we observed optimal convergence behaviour in our numerical tests

of our implementation. Method of manufactured solutions was utilized and this

validated the correctness of our implementation. Three examples of real-world

problems were solved which extol the benefits of OSS stabilization.

Several possible research avenues branch out from this study. The formulation

can be applied to large systems such as air pollution monitoring, contaminant dis-

persal in marine environments using real-world data. Rewarding insights can be

reaped by tackling challenges of such large scale systems. Different linearization

techniques in conjunction with OSS stabilized finite element formulation could

be tested to study the pros and cons of each scheme. This can act as a reference

for scenarios where a choice needs to be made. Nonlinearity in diffusion and

convection terms could be introduced which opens up more applications for the

formulation. A two way coupling with a flow solver could be implemented.
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