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Abstract

Several engineering problems need to account for Fluid-Structure Interaction (FSI) in
order to have reliable results. Is for this reason that its simulation in an efficient and re-
liable manner is, since the last decades, a field of study in the computational engineering
science.
In this work a fluid-structure interaction black box resolution environment has been
developed. In the black box FSI resolution, both the solid and fluid solvers are conceived
as black boxes that take and input data to give back a solution. This allows to focus on
the interaction mechanisms, taking advantage of a high reusability of existing codes. In
this work the solid mechanics and fluid dynamics modules of Kratos Multiphysics have
been used as field solvers.
Several coupling schemes and strategies have been developed, all of them based on the
previous concept of black box coupling. Moreover, the capability of solving strongly
coupled non-linear problems was also requested. These kind of problems imply a high
influence in the solution of both the fluid and the solid domains because of its coupling,
and likely drives to large displacements in the structure.
Complementary, it must be highlighted that the difficulty of the coupling is added to
the inherent complexity of the fluid and solid problems, leading to a high resolution cost.
Consequently, this work specially focuses in the analysis of the computational effort of
each one of the implemented methods, among which the recently developed Multivector
Quasi-Newton method stands out due to its efficiency.
Finally, several strongly coupled problems present in the literature have been solved in
order to assess the performance of the implemented strategies.





Resumen

El problema de interacción fluido estructura está presente en múltiples procesos físicos y
tecnológicos que suceden a diario. Es por este motivo que su simulación de una manera
eficaz y fidedigna es desde las últimas décadas un tema de estudio en el ámbito de la
ingeniería computacional.
En este trabajo se ha desarrollado un entorno de resolución del problema de interacción
fluido estructura en el que los métodos de resolución de ambos dominios son concebidos
como cajas negras, que a partir de unos datos de entrada devuelven una solución. Esto
permite focalizar únicamente en los mecanismos de interacción y reutilizar códigos ex-
istentes, tal y como se hace en este trabajo, donde se han empleado los módulos de
mecánica de sólidos computacional y de dinámica de fluidos de Kratos Multiphysics.
Así pues se han desarrollado diferences estrategias de acoplamiento, todas ellas basadas
en el anterior concepto de cajas negras. Además, se estableció como requisito adicional
la capacidad de solucionar problemas no-lineales fuertemente acoplados. Esta tipología
de problemas implica una gran afectación en las soluciones de ambos dominios debido
a su acoplamiento, y suele derivar en grandes desplazamientos en la estructura.
Complementariamente, se debe destacar que a la inherente complejidad del problema
del sólido y la estructura se añade la de su acoplamiento, lo que resulta en un elevado
coste computacional en su resolución. En consecuencia, se ha hecho especial hincapié
en el análisis del coste computacional de los métodos implementados, entre los cuales se
destaca el recientemente desarrollado Multivector Quasi-Newton method por su eficien-
cia.
Finalmente, se han reproducido múltiples problemas presentes en la literatura, todos
ellos no-lineales y fuertemente acoplados, a fin de evalúar el rendimiento de cada una
de las estrategias desarrolladas.
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Chapter 1
Introduction

1.1 The Fluid-Structure Interaction problem

The Fluid-Structure Interaction problem, known by its acronym FSI, describes the ex-
istent interaction between a deformable body and the moving fluid that surrounds it.
One can find lots of FSI problem examples in the nature, as diverse as the blood flood in
the human cardiovascular system or the flapping of birds wings. In the engineering field,
there are also multiple FSI problem examples such as the aeroelastic phenomena exerted
by the wind over plane airfoils and light bridges or the design of immersed structures.
Regarding the nature of the FSI problem, it belongs to the so called coupled problems
family. Hence, the resolution of the FSI problem implies to solve both the solid mechan-
ics problem as well as the fluid dynamics one, taking into account that their solutions
are coupled and depend on each other. As a consequence, the coupling difficulties, which
may be determinant in multiple cases, are added to the inherent complexities of each
one of the problems.
Due to such complexity, which makes its analytical resolution impossible in the majority
of the cases, the FSI problem resolution is typically handled by means of experimental or
numerical techniques. The main experimental tool in the assessment of the FSI problem
are the wind tunnels. Wind tunnels have been a very useful tool for the structural
aeroelastic design since its apparition. However, their construction and operation costs
are hugely large, meaning that few companies can afford them. As a cheaper alternative,
one can perform reduced scale tests but there are still certain material or geometrical
behaviours that are impossible to scale.



2 Introduction

In this context, numerical simulation techniques, as the ones presented in this work,
have become an extremely good alternative to the wind tunnel tests since their appari-
tion. The main advantage of numerical simulation is the possibility of performing a vast
amount of tests at a much cheaper price. Furthermore, thanks to parallelization tech-
nology and supercomputers, the amount of time required to perform a FSI simulation
is increasingly reduced. However, they are still prohibitive in some cases, meaning that
more research effort must be put on the FSI problem optimization for the full technology
transfer to the industry, which requires FSI simulation times according to the project
schedules.

1.2 FSI simulation: Black-box partitioned schemes

The numerical resolution techniques for solving an FSI problem can be roughly divided
in two main groups. The former is the monolithic resolution, in which the solid and
fluid problems are merged as a unique large one. The latter are the so called parti-
tioned schemes, which consist in keeping both problems separated and communicate
their solutions by means of an intermediate procedure.
It has to be said that both techniques have advantages and disadvantages. Thus,
monolithic solvers are understood as the best solvers to deal with strongly coupled
problems, in which one field solution largely depends on the other one and vice versa.
However, they have the large disadvantage of requiring the development of a complete
new solver for the coupled FSI case.
On the contrary, partitioned schemes have the great advantage of allowing large code
reusability since only minor modifications have to be done within each solver. One step
further are the so called black-box partitioned coupling techniques, in which the fluid
and solid solvers are understood as a black boxes that take some input data to give back
a solution. As a consequence, no modifications are necessary to the existent solvers and
only the coupling interface between them has to be programmed.
Apart from the reduction in time and human effort during the development, the black
box partitioned strategies have the advantage of using existent or even commercial
solvers for each one of the fields. This is translated in the use of already optimized and
tested specific solvers for both the solid and fluid domains, driving to a better overall
performance of the main FSI solver.
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1.3 Objectives

The main objective of this work is the development of a black box FSI coupling resolution
environment, starting from the computational fluid dynamics and computational solid
mechanics technology already implemented in Kratos Multiphysics simulation frame-
work.
Due to the inherent large computational effort required to solve the FSI problem, this
work also focuses on the optimization of the coupling procedure. Therefore, several
methods must be tried in order to find the most computationally efficient and stable one.
To do that, some of the most common FSI benchmark examples present in the literature
are reproduced to check the results and to assess the computational performance of the
developed strategies.
Besides, this work also has some extra transversal objectives. The first one is to reach a
deeper knowledge in the numerical simulation of the fluid dynamics and solid mechanics
problems, which is understood to be necessary for the proper development of their
coupling. On the other hand, this work aims to get into contact with Kratos Multiphysics
framework as well as with their coding languages, Python and C++.
Last but not least, it has to be said that the developments of this work are expected to
be implemented within the new Kratos GUI (Graphical User Interface), which has been
recently released. Then, this work also includes some parallel tasks oriented towards the
creation of the FSI Kratos GUI module.

1.4 Contents

In the following lines, the contents of the present document are briefly depicted.
Chapter 2 contains a review on the main aspects involving the numerical simulation of
the fluid dynamics and the solid mechanics problems using the finite element method.
This chapter also includes the peculiarities of the FSI problem resolution.
In chapter 3 the different FSI coupling strategies developed in this work are presented.
Thus, the Dirichlet-Neumann and the Neumann-Neumann coupling schemes are de-
picted. In addition, the formulation of the black box residual minimization techniques
used all along this work (relaxation schemes, Jacobian Free Newton-Krylov methods
and Quasi-Newton methods) is developed.
Chapter 4 collects the results discussion. In particular the cavity flow problem domain
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decomposition, the Mok and Turek-Hron benchmarks as well as a 3D hemodynamics
problem are presented.
Complementary, chapter 5 summarizes the developments in the last version of the new
Kratos GUI and sketches the future FSI GUI module.
Finally, chapter 6 states the conclusions and the future work lines.



Chapter 2
State of the art

This chapter is aimed to be a review on the state of the art of the Fluid-Structure
Interaction (FSI) simulation. Due to the multidisciplinary nature of the FSI problem,
the chapter has been divided in four sections. In the first one, a general overview on
continuum mechanics is done. The second and third ones review the main aspects of the
Finite Element (FE) simulation of the structural and fluid problems. Finally, the fourth
section is devoted to the implications of the solid and structural problems coupling.

2.1 Review on continuum mechanics

This section is intended to be a brief review on the continuum mechanics basics that are
needed for the comprehension of the rest of the work. Thus, the kinematics involving a
body in motion as well as the strain and stress measures are presented. Finally, both the
balance and constitutive equations used along the work are also commented. A more
detailed review on continuum mechanics can be found in [33], [18] or [46] among many
other books. Particularly, in chapter 4 of [13] a quite good explanation about strain and
stress measures can be found.

2.1.1 Kinematics

Kinematics is the study of motion and deformation of a body without regard to the forces
responsible for such action. The position at time t = 0 is called initial configuration and
is denoted as Ω0. Otherwise stated, the initial configuration is taken as the so called
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reference configuration. The reference configuration is needed to refer the movement
equations from the initial configuration Ω0 to the current configuration Ω.
Taking into account that the continuum body is considered to be composed by a set of
particles called material points, the position vector of any material point in the reference
configuration is defined by X. The value of X is

X = Xiei =

ndim∑
i=1

Xiei (2.1)

where ndim are the number of dimensions and ei are the unit base vectors of a rect-
angular Cartesian coordinate system. X coordinates are called material or Lagrangian
coordinates. The motion of the body is described by the deformation map ΦΦΦ. As can
be seen in Eq. 2.2, given the position of a particle in the reference configuration, the
deformation map turns back the so called spatial or Eulerian coordinates in the current
configuration. The expression of the deformation map is

x = ΦΦΦ(X, t) = x(X, t) (2.2)

where x are the spatial coordinates whose value is

x = xiei =

ndim∑
i=1

xiei (2.3)

Figure 2.1: Configurations of a body. Image taken from [44].

Two possible descriptions of the movement arise from the two presented type of coor-
dinates:
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• Material or Lagrangian description: Material coordinates X and time t are taken
as independent variables. Typically used in solid mechanics.

• Spatial or Eulerian description: Spatial coordinates x and time t are taken as
independent variables. Typically used in fluid mechanics.

On the other hand, the difference between the current and the reference configuration
gives the displacement u which can be expressed in material coordinates as

u(X, t) = x−X = ΦΦΦ(X, t)−X (2.4)

The material velocity is the rate of change of the position vector. It is obtained as the
material or total time derivative (derivative when X is held constant) of the position
which is expressed as

v(X, t) =
∂x(X, t)

∂t
=
∂u(X, t)

∂t
= v̇(X, t) (2.5)

In the same way, the material acceleration is rate of change of the velocity vector, what
is to say the material time derivative of the velocity given by

a(X, t) =
∂v(X, t)

∂t
= v̇(X, t) = ü(X, t) (2.6)

For the case of an Eulerian description of the variables, e.g. the fluid dynamics case,
the material time derivative of any variable expressed in terms of spatial coordinates x
and time t can be obtained with

D(•)
Dt

=
∂(•)
∂t

+ v · ∇(•) (2.7)

where the first term is the spatial time derivative meanwhile the second one is the so
called convective term.
Associated to the movement from the reference configuration Ω0 to the current config-
uration Ω there is a change in the size and/or the shape of the body. This change is
called deformation and is measured via the deformation gradient tensor given by

F =
∂x

∂X
= ∇x or Fij =

xi
Xj

(2.8)

The deformation gradient above can be also expressed in terms of the displacements by
means of Eq. 2.4 as follows
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F =
∂X

∂X
+
∂u

∂X
= I +∇u or Fij = δij +

∂ui
∂Xj

(2.9)

Finally, it is interesting to pinpoint another widely used quantity related to F which is
the Jacobian determinant obtained as

J = det(F) (2.10)

2.1.2 Strain measures

The strain is defined as the measure of the geometrical deformation caused by the forces
applied on a continuum body. For Lagrangian descriptions, the essential strain measure
is the Green-Lagrange strain tensor defined as

E =
1

2
(FTF− I) or Eij =

1

2
(F T

ijFij − δij) (2.11)

The Green-Lagrange strain tensor can be rewritten in terms of the displacements by
means of Eq. 2.9 yielding

Eij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

)
(2.12)

For small deformation problems, the non-linear term in Eq. 2.12 can be neglected
yielding the so called infinitesimal strain tensor defined as

εij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
(2.13)

On the other hand, the spatial velocity gradient tensor is given by

l =
∂v

∂x
or lij =

∂vi
xj

(2.14)

and can be decomposed into a symmetric and a skew-symmetric part by means of

l =
1

2
(l + lT ) +

1

2
(l− lT ) = d + w (2.15)

The symmetric term d in Eq. 2.15 is called rate of deformation tensor while the skew-
symmetric w is called spin or rate or rotation tensor.
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2.1.3 Stress measures

The stress is defined as the amount of force per unit area. In continuum mechanics field,
its value is given by the so called surface traction vector denoted by t. Furthermore,
the Cauchy’s theorem states that there exists a tensor field σσσ, known as Cauchy stress
tensor, such that for each unit normal vector n its surface traction vector is obtained as

t = n · σσσ = σσσT · n (2.16)

Regarding the Cauchy stress tensor, it is interesting to point out that σσσ = σσσT due to
the conservation of angular momentum.
The Cauchy’s theorem can also be expressed in the reference configuration as

t0 = n0 ·P (2.17)

where P is the so called nominal stress tensor. It is a must to comment that the
nominal stress tensor is not symmetric unlike the Cauchy stress tensor. The transpose
of the nominal stress tensor is known as first Piola-Kirchhoff stress tensor. The second
Piola-Kirchhoff stress tensor S is symmetric and defined as

F−1 · t0 = n0 · S (2.18)

Finally, it is interesting to state some useful transformation between the previous stress
tensors. Such transformation are listed below.

σσσ = J−1F ·P = J−1F · S · FT (2.19)

P = JF−1 · σσσ = S · FT (2.20)

S = JF−1 · σσσ · F−T = P · F−T (2.21)

2.1.4 Conservation equations

The conservation equations state that certain physical magnitude must be always satis-
fied in the whole problem domain. Thus, they are expressed as an integral relation in the
entire domain Ω. Due to the additive property of the integral, the conservation equa-
tions must be also satisfied in any subdomain of the whole problem domain, allowing to
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be expressed as partial differential equations.
In this subsection, the mass, linear momentum, angular momentum and energy conser-
vation equation are presented in their partial differential form. A better explanation of
the derivation of such equations can be found in [18] or [33].

Mass conservation

The mass conservation equation states that if there are no mass sources or sinks, the
mass of any material domain must remain constant. Hence, the mass can be expressed
in different configurations as

m =

∫
Ω

ρ(X, t)dΩ =

∫
Ω0

ρ(X, t)JdΩ0 =

∫
Ω0

ρ0(X)dΩ0 (2.22)

Note that time dependency of the mass is located in the density ρ. Hence, the mass
conservation equation can be expressed in terms of the density as

Dρ

Dt
+ ρ∇ · v = 0 (2.23)

The previous equation is also known as continuity equation and is found applying the
Reynold’s transport theorem to Eq. 2.22.
In addition, there is the case of incompressible materials. In these cases, the density
keeps constant in time and the material time derivative in Eq. 2.23 vanishes. Hence,
the continuity equation for the incompressible case is

∇ · v = 0 (2.24)

Linear momentum conservation

The conservation of linear momentum, also known as balance of linear momentum,
states that the rate of change of the linear momentum is equal to the total applied
force. Somehow, the conservation of linear momentum can be viewed as the Newton’s
second law. The balance of linear momentum is expressed as

D

Dt

∫
Ω

ρv(x, t)dΩ =

∫
Ω

ρb(x, t)dΩ +

∫
Γ

t(x, t)dΓ (2.25)

Applying the Reynold’s lemma, the mass conservation equation and the Gauss’ diver-
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gence theorem to the linear momentum definition in Eq. 2.25 yields the momentum
equation which reads as follows

ρ
Dv

Dt
= ∇ · σσσ + ρb (2.26)

In static problems, the acceleration term in Eq. 2.26 is negligible. When this term is
dropped, the momentum equation is called equilibrium equation.
In an Eulerian description, the material time derivative in Eq. 2.26 is developed by
means of Eq. 2.7 yielding the so called Eulerian formulation widely used in fluid me-
chanics. The Eulerian formulation can be expressed as

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σσσ + ρb (2.27)

Note that the Eulerian formulation implies the evaluation of the divergence with respect
to the spacial coordinates since Eq. 2.27 is in the current configuration.
On the other hand, in a Lagrangian description the material time derivative can be
directly computed as the partial time derivative. In nonlinear solid mechanics, this
is the so called updated Lagrangian formulation. The updated Lagrangian formulation
reads

ρ
∂v

∂t
= ∇ · σσσ + ρb (2.28)

Finally, the conservation of linear momentum can also be expressed in the reference
configuration for Lagrangian coordinates. In nonlinear solid mechanics, this is called
total Lagrangian formulation and is expressed as

ρ0
∂v

∂t
= ∇0 ·P + ρ0b (2.29)

where ∇0 · (•) is the divergence taken with respect to material coordinates and P is the
nominal stress tensor.

Angular momentum conservation

The conservation of angular momentum is obtained taking the cross product of the
current position vector x by each term of the linear momentum Eq. in 2.26, yielding
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D

Dt

∫
Ω

x× ρv(x, t)dΩ =

∫
Ω

x× ρb(x, t)dΩ +

∫
Γ

x× t(x, t)dΓ (2.30)

As has been commented before, it can be proved that the previous equation leads to

σσσ = σσσT (2.31)

meaning that the Cauchy stress tensor is always symmetric by definition. This implies
that

F ·P = FT ·PT (2.32)

which is in general not symmetric. Moreover, using the previously presented stress
tensors transformations, one can obtain that

S = ST (2.33)

meaning that the second Piola-Kirchhoff stress is also a symmetric tensor.

Energy conservation

The conservation of energy principle requires that the power of the total energy of a
body, which is the sum of the kinetic and the internal energy, equals the power of the
applied forces plus the power of the extra energy entering the domain such as the heat
sources or radiation.
On one hand, the power of the total energy is given by

P tot = P int + Pkin =
D

Dt

∫
Ω

ρwintdΩ +
D

Dt

∫
Ω

1

2
ρv · vdΩ (2.34)

On the other hand, the 1st law of thermodynamics also states that

P tot = Pext + Pheat =

∫
Ω

v · ρbdΩ +

∫
Γ

v · tdΓ +

∫
Ω

ρsdΩ−
∫

Γ

n · qdΓ (2.35)

Note that in this case only heat power has been considered as extra energy for the sake
of simplicity. Equalling Eq. 2.34 to Eq. 2.35 yields the conservation of energy equation,
which can be expressed in Eulerian partial differential form as



Review on continuum mechanics 13

ρ
Dwint

Dt
= σσσ : d−∇ · q + ρs (2.36)

For a purely mechanical process as the ones presented in this work, the energy equation
turns to be

ρ
Dwint

Dt
= σσσ : d (2.37)

The previous equation shows that the Cauchy stress tensor σσσ and the rate of deformation
tensor d are conjugate in power. Complementary, the same purely mechanical process
energy equation can be also expressed in Lagrangian coordinates as

ρ0ẇ
int = P : ḞT = S : Ė (2.38)

showing that the nominal stress tensor P is conjugate in power to the material time
derivative of the deformation gradient tensor Ḟ and that the second Piola-Kirchhoff
stress tensor S is conjugate in power to the material time derivative of the Green-
Lagrange strain tensor Ė.

2.1.5 Constitutive equations

So far, the presented equations are insufficient to describe the mechanical behaviour of
any material. Therefore, the previous set of equations have to be completed with the so
called constitutive equations, which specify the mechanical properties of a material and
its stress-strain relation.
It has to be said that there are lots of constitutive laws in the existing bibliography and
each one is suitable for one type of material present in the nature.
In this work, only purely mechanical processes are treated meaning that in the presented
constitutive equations the stress state uniquely depends on the kinematic state. In the
next subsections, the constitutive equations used in this work are discussed.

Linear elasticity

Linear elasticity theory is suitable for problems in where the analysed body undergoes
small changes of shape and there is barely difference between the reference and the
current configurations. In this cases the linearised infinitesimal strain tensor presented
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in Eq. 2.13 can be used. Thus, the energy conservation equation reads

ρ0ẇ
int = σσσ : ε̇εε (2.39)

The term ρ0w
int in the previous equation is usually denoted by W int which is the so

called strain energy function. For the linear elasticity case, the strain energy function
depends only on the infinitesimal strain tensor and is defined as

W int =
1

2
εεε : C : εεε (2.40)

where C is a 4th order tensor collecting the elastic constants. For an isotropic material,
as the ones considered in this work, the 81 components of C reduce to only two constants.
These constants are λ and µ and are called Lamé parameters. Thus, for an isotropic
material C is defined as

C = λI⊗ I + 2µI (2.41)

where I is the second order identity tensor while I is the fourth order symmetric identity
tensor.
Applying the definition of the strain energy function in Eq. 2.40 into Eq. 2.39 one
obtains that the constitutive equation that relates strain and stresses for the linear
elastic case is

σσσ = C : εεε (2.42)

Finally, the constitutive tensor in Eq. 2.41 can be substituted in Eq. 2.42. This yields
the final linear elastic constitutive equation which can be expressed as

σσσ = λtr(εεε)I + 2µεεε (2.43)

Nonlinear elasticity

Some problems may involve small strains and large deformations coming from large
displacements and rotations. In this cases, the mechanical response can be modelled by
means of the Kirchhoff - Saint Venant material model, which is a generalization of the
linear elasticity theory to the nonlinear elasticity case.
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Thus, the strain energy function is a generalization of the one presented in Eq. 2.40
and reads

W int =
1

2
E : C : E (2.44)

Besides, the counterpart of equation 2.42 is

S = C : E (2.45)

where C is the same fourth order tensor depicted in Eq. 2.41. Therefore, the constitutive
equation for nonlinear elastic materials is

S = λtr(E)I + 2µE (2.46)

Finally, it is interesting to point out some expressions that allow to express λ and ν

in terms of other elastic variables widely used in elasticity theory such as the Young
modulus E, the Poisson ratio ν or the bulk modulus K. These expressions are listed
below.

µ =
E

2(1 + ν)
λ =

νE

(1 + ν)(1− 2ν)
K = λ+

2

3
µ (2.47)

Newtonian fluid

In Newtonian fluids, the stress state is linearly related with the rate of deformation
instead of the proper value of the deformation. Besides, the stress state can be divided
in two contributions: the pressure contribution and the viscous contribution.
The former, comes from the thermodynamic pressure p and appears even in fluids at
rest. In this case, the stress tensor components are orthogonal to the boundaries and
can be obtained as

σσσ = −pI (2.48)

The latter, is related with the fluid movement meaning that that moving fluids develop
an additional stress component due to viscosity. This extra stress component is linearly
related with the strain rate tensor d as follows
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σσσ = −pI + Cd (2.49)

where C is once again the same fourth order tensor depicted in Eq. 2.41. Rearranging
terms and using the Stokes assumption λ + 2

3
µ = 0 one obtains the next constitutive

equation for Newtonian fluids

σσσ = −
(
p+

2

3
µ∇ · v

)
I + 2µd (2.50)

For incompressible fluid flows, the incompressibility condition in Eq. 2.24 can be applied
yielding the simpler form

σσσ = −pI + 2µd (2.51)

2.2 Computational structural mechanics

This section reviews the numerical resolution of the structural mechanics problem using
the Finite Element Method (FEM). For the sake of generality, the finite deformation
assumption has been considered.
First of all, the variational or weak form of the problem is stated using the Principle of
Virtual Work (PVW). Then, the space discretization via finite elements approximations
as well as the most common time discretization schemes are also presented. Finally, the
problem resolution with numerical techniques is also addressed.
The main references for this section have been [13] and [46]. Besides, [36] includes a
pretty clear explanation of the FE method basis and its application to the infinitesi-
mal deformation case. Complementary, in [44] all the computational solid mechanics
concepts involved in the FSI problem simulation are discussed.

2.2.1 Total Lagrangian weak form

In order to construct finite element approximations of the structural problem solution,
it is necessary to write the formulation in a Galerkin (weak) or variational form. Since
in the finite deformation assumption the reference and current configurations are not
almost equal, which is the case in the infinitesimal deformation assumption, one have the
choice of writing the formulation either in the reference or in the current configuration.
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In this work, the total Lagrangian formulation is adopted. The total Lagrangian method
is suitable for finite displacements and small strains. However, it can be also applied to
large elastic strains if an appropriate hyperelastic constitutive law is used [13]. Moreover,
for such finite deformation case, it becomes the simplest approach since the integrals are
expressed over the reference configuration domains, which will remain constant during
the deformation process. Later on, the results in terms of the reference configuration
can be transformed and written in terms of the deformed configuration.
First of all, the problem in strong form must be stated. Therefore, starting from the
linear momentum equation in total Lagrangian configuration depicted in Eq. 2.29 and
adding some boundary and initial conditions, the strong form of the structural problem
in index notation can be expressed as

ρ0üi =
∂Pji
∂Xj

+ ρ0bi in Ω0

ui = ū0
i at t = 0

ui = ūi on ΓD

ti = t̄i on ΓN

(2.52)

where Ω0 is the reference structure domain, ΓD is the Dirichlet boundary and ΓN is the
traction or Neumann boundary.
First of all, the spaces for both the test functions δui(X) and the trial displacement
functions ui(X, t) must be stated. The space of test functions is defined as

δui(X) ∈ U0, U0 =
{
δui | δui ∈ C0(X), δui = 0 on ΓD

}
(2.53)

while the space of displacement functions is defined as

ui(X, t) ∈ U , U =
{
ui | ui ∈ C0(X), ui = ūi on ΓD

}
(2.54)

Note that the spaces of test and trial functions are similar except that the test displace-
ment functions vanishes wherever the displacement is prescribed.
Hence, taking the product of the test displacement by the linear momentum equation
and integrating over the whole reference configuration domain, yields the next Galerkin-
type variational form



18 State of the art

∫
Ω0

δui

(
∂Pji
∂Xj

+ ρ0bi − ρ0üi

)
dΩ0 = 0 (2.55)

However, the first term of the previous equation does not accomplish the regularity
requirements stated in Eq. 2.54 since the trial displacement functions need to be C1.
Thus, integration by parts is applied to such term and the next final variational form is
obtained ∫

Ω0

(δFijPji − δuiρ0bi + δuiρ0üi) dΩ0 −
∫

ΓN0

δuit̄idΓ0 = 0 (2.56)

Eq. 2.56 is the PVW, which can be written as

δW int − δWext + δWkin = 0 (2.57)

Note that the PVW states that the virtual internal work δW int plus the virtual kine-
matic work δWkin are in equilibrium with the virtual external work δWext. These virtual
works can be expressed in matrix form as

δW int =

∫
Ω0

δFT : PdΩ0 =

∫
Ω0

δE : SdΩ0 (2.58a)

δWext =

∫
Ω0

ρ0δu · bdΩ0 +

∫
ΓN0

δu · t̄0dΓ0 (2.58b)

δWkin =

∫
Ω0

ρ0δu · üdΩ0 (2.58c)

Note that in Eq. 2.58a some identities have been applied to express the virtual internal
work in an alternative way. This will be quite useful for the space discretization. The
step-by-step proof of this identity can be found in [44].

2.2.2 Finite element space discretization

In this subsection the finite element discretization of the total Lagrangian formulation in
Eq. 2.56 is presented in such a way valid for both the 2D and 3D cases. This subsection
tries to summarize chapter 5 of [46] in where a much deeper and clarifying explanation
can be found.
The basic idea of the FE discretization is to divide the computational domain, in this
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case the reference domain Ω0, in a finite number of conformant elements. Within each
element, the motion can be approximated by

xhi (X, t) =

nnodes∑
I=1

NI(X)xIi (t) ∀i = 1,ndim (2.59)

where NI(X) are the shape functions of each node, nnodes is the number of nodes in
each finite element, xIi (t) are the nodal values of the i-component of motion at node I
and ndim is the number of problem dimensions (2 or 3 in this work).
In a similar fashion, the displacements approximation reads

uhi (X, t) =

nnodes∑
I=1

NI(X)uIi (t) ∀i = 1,ndim (2.60)

and its corresponding velocity and acceleration approximations are

u̇hi (X, t) =

nnodes∑
I=1

NI(X)u̇Ii (t) ∀i = 1,ndim (2.61)

ühi (X, t) =

nnodes∑
I=1

NI(X)üIi (t) ∀i = 1,ndim (2.62)

Besides this, the space of test functions, which is time independent, can be also dis-
cretized as

δuhi (X) =

nnodes∑
I=1

NI(X)δuIi ∀i = 1,ndim (2.63)

Once arrived to this point, it is convenient to state the matrix or Voigt notation to
represent the stress, strain and variation of strain. For a general 3D case, the six-
component form of the second Piola-Kirchhoff stress tensor S is

S =
[
S11 S22 S33 S12 S23 S31

]T
(2.64)

and the Green-Lagrange strain tensor E is

E =
[
E11 E22 E33 2E12 2E23 2E31

]T
(2.65)

The variation of the Green-Lagrange strain tensor δE is similarly obtained as
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δE =
[
δE11 δE22 δE33 2δE12 2δE23 2δE31

]T
(2.66)

and can be computed taking the variation of the Green-Lagrange strain tensor in Eq.
2.11. Considering that δFij = ∂δui

∂Xj
, the variation of the Green-Lagrange strain can be

expressed in terms of the displacement. Finally, if the previous displacements discretiza-
tion is applied, yields the next matrix form of δE

δE = B̂IδuI (2.67)

where B̂I is the nodal nonlinear strain-displacement matrix which can be decomposed
as

B̂I = BI + BI
NL (2.68)

being BI identical to the infinitesimal deformation strain-displacement matrix and BI
NL

the remaining nonlinear part. These matrices can be found in chapter 5 of [46].
Recovering the PVW terms stated in Eq. 2.58 and substituting Eq. 2.67 into Eq. 2.58a
yields the internal forces vector f int whose components are obtained as

f intI =

∫
Ω0

B̂T
I SdΩ0 (2.69)

It is interesting to point out that the nonlinear behaviour arises in the previous internal
forces vector. Such nonlinearity might come from either a nonlinear constitutive relation
or large displacement or strains. A detailed explanation about the nonlinearity sources
in the equilibrium equation can be found in [34].
Taking Eq. 2.58b and carrying out the same procedure, the external force vector f ext

is obtained as

f extI

∫
Ω0

NIρ0bdΩ0 +

∫
ΓN0

NI t̄
0dΓ0 (2.70)

meanwhile the inertial force vector fkin can be obtained from Eq. 2.58c and its compo-
nents are

fkinI =

∫
Ω0

NIρ0NJdΩ0üJ = MIJ üJ (2.71)
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where M is a mass matrix defined by

MIJ =

∫
Ω0

NIρ0NJdΩ0 (2.72)

Finally, the semi-discrete equations of motion, which remain to be discretized in time,
are given by

f int(S) + Mü = f ext (2.73)

Last but not least, it is interesting to comment that this subsection presents the FE dis-
cretization in a general manner. If any further information about isoparametric quadri-
lateral, bricks, triangular and tetrahedral FE implementations is needed, the reader is
encouraged to review either [36] or Annex A of [46]. For other types of FE discretiza-
tions such as beams, shells or membranes, more specific analysis can be found in [37] or
[44].

2.2.3 Plane strain/stress cases

The 3D general case presented above may be simplified to a 2D one if loading, geometry,
material behaviour and boundary conditions do not vary along the third coordinate.
Then, two possible cases arise: plane stress and plane strain.

(a) Plane stress. (b) Plane strain

Figure 2.2: 2D solid problem examples. Image taken from [36].

As can be seen in figure 2.2, plane stress theory can be applied to those structures in
where the third dimension is much lower than the other two (e.g. slender beams). On
the contrary, plane strain theory can be applied to those structures in where the third
dimension is much larger than the other two (e.g. constant cross section gravity dams).
In plane strain problems, the strain in the third direction (the one orthogonal to the
plane in where the problem is computed) is null, meaning that εεε33 = 0 in the infinitesimal
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deformation case or E33 = 0 in the finite deformation one. The material constitutive
matrix is the same but restricted to the 2D terms.
On the other hand, in plane stress problems the stress in the third direction is null,
what is to say that σσσ33 = 0 in the infinitesimal deformation case or S33 = 0 in the finite
deformation one. To do that, the material constitutive matrix is modified to satisfy this
zero stress condition.

2.2.4 Time discretization

Time discretization schemes can be classified as explicit and implicit. Explicit schemes
obtain the solution at time step tn+1 from the known values of the solution at time step
tn, meaning that no system of equations needs to be solved. Despite the fact that their
implementation is simpler, explicit methods are conditionally stable and lead to larger
computational cost since they require extremely small ∆t to ensure stability.
On the other hand, implicit schemes obtain the solution at time step tn+1 not only from
known values at time tn but also considering the values at tn+1. This implies to solve
a system of equations at every time step but improves both the stability (in general,
implicit schemes are unconditionally stable) and the precision. However, it has to be
said that their implementation is more weird.
In this work, only implicit schemes have been considered due to their better perfor-
mance. In the next subsections, the some of the most common time discretization
schemes used in structural mechanics are pointed out. This section is mainly based in
[44], where a very comprehensive explanation can be found. A much deeper analysis on
time integrators can be found in [34].

Newmark method

Among the several time integration methods, the Newmark method is one of the most
popular in structural dynamics. On one hand, the semi-discrete equations of motion to
be solved at time tn+1 are given by

f int(un+1) + Mün+1 = f ext(un+1) (2.74)

On the other hand, the displacements un+1 and their time derivatives are approximated
with the Newmark formulas below
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un+1 = un + ∆tu̇n + ∆t2
(

1

2
− β

)
ün + ∆t2βün+1 (2.75)

u̇n+1 = u̇n + ∆t (1− γ) ün + ∆tγün+1 (2.76)

where ∆t is the time step and γ and β are the parameters that determine the stability
and accuracy of the scheme. The method is second-order accuracy and unconditionally
stable for γ = 1/2 and β = 1/4.
From Eq. 2.75 one can isolate ün+1 and substitute it into Eq. 2.76 to isolate u̇n+1.
Then, the acceleration term in Eq. 2.74 can be substituted, yielding the next algebraic
system just in terms of the known displacements un and the sought displacements un+1

f int(un+1) +
1

β∆t2
Mun+1 − f ext(un+1) =

M

[
1

β∆t2
un +

1

β∆t
u̇n +

(
1

2β
− 1

)
ün

]
(2.77)

Once the displacements un+1 have been obtained, the velocity and acceleration at the
current time step can be obtained as a post-process with the Newmark formulas above.

Bossak method

The Bossak method is an extension of the previously presented Newmark scheme, in
where αB = 0. Thus, the Bossak scheme uses the Newmark formulas depicted in Eqs.
2.75 and 2.76 but the semi-discrete equation of motion is modified as follows

f int(un+1) + Mün+1−αB = f ext(un+1) (2.78)

where

ün+1−αB = (1− αB)ün+1 + αBün (2.79)

being

αB ∈
[
−1

3
, 0

]
γ =

1− 2αB
2

β =
(1− αB)2

4
(2.80)
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Finally, substituting Eq. 2.79 into 2.78 and using the previously stated Newmark for-
mulas when necessary, yields

f int(un+1) +
1− αB
β∆t

Mun+1 − f ext(un+1) =

M

[
1− αB
β∆t

un +
1− αB
β∆t

u̇n +

(
1− αB

2β
− 1

)
ün

] (2.81)

Generalised-α method

The generalised-α method achieves high-frequency dissipation while minimizing un-
wanted low-frequency dissipation. Once again, the Newmark formulas in Eqs. 2.75
and 2.76 are retained whereas the semi-discrete equations of motion are modified as
follows

f int(un+αsf
) + Mün+αsm = f ext(un+αsf

) (2.82)

where

un+αsf
= (1− αsf )un + αsfun+1 (2.83)

ün+αsm = (1− αsm)ün + αsmün+1 (2.84)

Values of αsf and αsm for low frequency dissipation can be found in [7] or [44] as well as
optimal values of γ and β for second-order accuracy.
Finally, the algebraic equations to be solved for un+1 are given by

f int(un+αsf
) +

αsm
β∆t2

Mun+1 − f ext(us+αsf ) =

M

[
αsm
β∆t2

un +
αsm
β∆t

u̇n +

(
αsm
2β
− 1

)
ün

] (2.85)

2.2.5 Problem resolution: Newton-Raphson iterative scheme

This subsection briefly pinpoints the methodology to solve the non-linear system of
equations that appears after the space and time discretization of the momentum equa-
tion. Among the many procedures to solve non-linear systems of equations, the widely
used Newton-Rahpson iterative method has been used in this work.
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In the Newton-Rahpson method the non-linear system to solve is firstly written in
residual form. For the sake of simplicity, let us consider the system that results after
applying the Newmark time discretization scheme (Eq. 2.77), whose residual is expressed
as

Rn+1 = f ext(un+1)− 1

β∆t2
Mun+1 − f intn+1 + M

[
1

β∆t2
un

1

β∆t
u̇n

(
1

2β
− 1

)
ün

]
(2.86)

On the other hand, the previous residual can be expanded by means of Taylor’s series.
If the high order terms are neglected, the residual is approximated as

Ri
n+1 ≈ Ri−1

n+1 +
∂Rn+1

∂un+1

∣∣∣∣i ·∆uin+1 (2.87)

where i − 1 is supposed to be a previous known iteration and i the iteration in where
the solution is sought. Moreover, the tangent stiffness matrix can be defined as

KT =
∂R

∂u
(2.88)

Considering that the previous residual in Eq. 2.87 must be zero, substituting the
tangent stiffness matrix in Eq. 2.88 and rearranging terms the next algebraic system
arises

(
KT
)i−1

n+1
·∆uin+1 = −Ri−1

n+1 (2.89)

As can be seen, the previous system of equations is solved for ∆uin+1, which is a cor-
rection of the previous iteration solution. Thus, the procedure is carried out until any
convergence criteria (e.g. absolute or relative variation in ∆u) is reached, meaning that
the residual tends to zero. The solution at the current iteration can be easily updated
as

uin+1 = ui−1
n+1 + ∆uin+1 (2.90)

Note that for the first iteration i = 1 of time step n + 1 a prediction is needed. This
problem can be easily overcome taking the previous step solution as initial guess for the
first iteration at the current step, meaning that u0

n+1 = un.
Additionally, it is interesting to spend some words concerning the computation of the
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tangent stiffness matrix. Considering again Eq. 2.86 and disregarding the element
formulation, the tangent stiffness matrix can be split as

KT = KT ,ext −KT ,kin −KT ,int (2.91)

Note that the external forces contribution KT ,ext is null if the external forces are conser-
vative, what is to say that they do not depend on the solution. On the other hand, the
KT ,kin contribution according to the considered Newmark scheme can be easily obtained
as

KT ,kin =
1

β∆t2
M (2.92)

Regarding the KT ,int contribution, it has to be said that it completely depends on the
considered constitutive law as well as element type. However, KT ,int is usually split as

KT ,int = KT ,Mat + KT ,Geo (2.93)

where KT ,Mat depends on the material constitutive law, which can be either linear or
non-linear, whereas KT ,Geo stores the geometrical non-linearity contribution.

2.3 Computational fluid Dynamics

In this section, the finite element numerical resolution of the fluid dynamics problem is
reviewed for the viscous-incompressible case. Thus, the Navier-Stokes equations as well
as their weak form are firstly stated. Then, the space discretization via finite elements
approximations and the time discretization are presented. Finally some of the most
common stabilization techniques are briefly commented.
The main references that have been used in this bibliographic research are [17] and [38].

2.3.1 Viscous incompressible flows

Navier-Stokes equations

The motion of a fluid is governed by the balance of mass, momentum and energy equa-
tions. When the thermal effects are negligible, as is assumed all along this work, the
energy equation is uncoupled and only the mass and momentum continuity equations,
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which combination results in the Navier-Stokes equations, need to be solved to obtain
the velocity field v and the pressure field p.
Therefore, the Navier-Stokes equations can be obtained substituting the constitutive law
for a Newtonian incompressible fluid stated in Eq. 2.51 into the Eulerian description of
the linear momentum conservation stated in Eq. 2.27. Hence, the general form of the
incompressible Navier-Stokes equations for a fluid with constant density ρ in a domain
Ω for time t > 0 reads

∂v

∂t
−∇ ·

[
ν
(
∇v +∇vT

)]
+ (v · ∇) · v +∇p = b

∇ · v = 0
(2.94)

Note in the previous equation that ν = µ/ρ is called kinematic viscosity and p is in fact
the pressure divided by the density (henceforth simply called pressure). Considering that
such kinematic viscosity ν is constant, the diffusive term can be rearranged, yielding the
Navier-Stokes equations form that is considered in this work. Finally, the Navier-Stokes
equations for constant viscosity incompressible flows are

∂v

∂t
− ν∆v + (v · ∇) · v +∇p = b

∇ · v = 0
(2.95)

or in index notation
∂vi
∂t
− ν∆vi +

d∑
j=1

vi
vi
xj

+
∂p

xi
= bi i = 1, . . . ,ndim

ndim∑
j=1

∂vj
∂xj

= 0

(2.96)

Besides, in order to have a well posed problem it is necessary to assign the initial
condition

v(x, 0) = v0(x) ∀x ∈ Ω (2.97)

where v0 is a given divergence-free vector field, together with suitable boundary condi-
tions such as
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v(x, t) = φ(x, t) ∀x ∈ ΓD(
ν
∂v

∂n
− pn

)
(x, t) = ψ(x, t) ∀x ∈ ΓN

(2.98)

being φ and ψ given vector functions while ΓD and ΓN are a partition of the domain
boundary such that ∂Ω = ΓD ∪ ΓN . As usual, n is the outwards unit normal vector to
∂Ω.
Note that no initial condition is required for the pressure field. This is due to the
fact that no time derivative of the pressure appears in the governing equations. When
∂Ω = ΓD, meaning that only Dirichlet boundary conditions are imposed, pressure is
only present by its gradient and thus it is determined up to a constant. In this cases, it
is usual to fix the pressure in one point to uniquely define the pressure field.
Furthermore, it has to be said that when the viscous effects are negligible (e.g. far from
boundaries of the flow field) the diffusive term can be neglected, yielding the so called
Euler equations. On the other hand, for low Reynolds number1 flows, the non-linear
convective term can be neglected yielding the so called Stokes equations.

Viscous incompressible flows main difficulties

Before introducing the numerical techniques used to solve the Navier-Stokes equations,
it is interesting to state which are the main difficulties in the numerical simulation of
viscous incompressible flows. On one hand, the presence of the non-linear and non-
symmetric term (u · ∇)u in the momentum equation is the first difficulty to deal with,
specially for high Reynolds number flows. Thus, the standard Galerkin formulations
used may suffer from instabilities in convection-dominated flows, requiring the use of
stabilization techniques such as the SUPG, GLS or OSS methods.
On the other hand, the incompressibility condition given by the mass conservation
equation is another source of difficulty. As can be seen in Eq. 2.95 the incompressibility
condition is in fact a restriction in the velocity field v, which must be divergence-free.
Thus, the presence of the pressure p in the momentum equation has the purpose of in-
troducing an extra degree of freedom needed to satisfy the incompressibility condition.
In other words, the pressure is acting as a Lagrange multiplier that enforces the incom-
pressibility constraint, meaning that the velocity and pressure unknowns are coupled.

1For a characteristic velocity vc and a characteristic length lc, Reynolds number is defined as Re =
ρvclc/µ
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Despite there are ways to avoid this coupling solving exclusively for the velocity (Penalty
methods), in this work the traditionalmixed finite elements method, which keeps velocity
and pressure as unknowns is considered. This method presents numerical difficulties
due to the saddle-point nature of the resulting variational problem, which implies that
the velocity and pressure interpolation spaces must be compatible. This compatibility
requirement is the so called Ladyzhenskaya-Babuska-Brezzi condition, commonly referred
as LBB-condition or inf-sup condition. However, there exists FE formulations that allow
to use velocity and pressure interpolation pairs that do not satisfy such LBB-condition.
A much more detailed explanation regarding the analysis and resolution of saddle-
point problems can be found in [38]. Regarding the LBB-condition, a very clarifying
explanation as well as a collection of the most popular interpolation pairs can be found
in [17].

2.3.2 Weak formulation of the Navier-Stokes equations

The strong form of the Navier-Stokes equations consists in the mass and momentum
balance equations in Eq. 2.95 or 2.96, the initial condition in Eq. 2.97 and the Dirichlet
and Neumann boundary conditions in 2.98. To develop the weak form, the space of test
functions is defined as

δvi(x) ∈ V0, V0 =
{
δvi | δvi ∈ H1(Ω), δvi = 0 on ΓD

}
(2.99)

where H1(Ω) is the Hilbert space containing the functions whose components and their
first derivatives are square-integrable. Note that once again the test function vanishes at
the Dirichlet boundaries. On the other hand, the space of trial solutions for the velocity
is defined as

vi(x) ∈ V , V =
{
vi | vi ∈ H1(Ω), vi = φ on ΓD

}
(2.100)

Thus, taking the linear momentum balance equation in Einstein notation, multiplying
it by each component of the test function δv and integrating in Ω yields

∫
Ω

δvi
∂vi
∂t
dΩ−

∫
Ω

δviν∆vidΩ +

∫
Ω

δvivj
∂vi
∂xj

dΩ +

∫
Ω

δvi
∂p

∂xi
dΩ =

∫
Ω

δvibidΩ (2.101)

Note that the second term involves the laplacian of the velocity field, increasing the



30 State of the art

regularity required for its interpolation. Same happens in the pressure derivative in the
fourth term. Hence, these terms can be integrated by parts as

−
∫

Ω

δviν∆vidΩ =

∫
Ω

ν
∂δvi
∂xj

∂vi
∂xj

dΩ−
∫
∂Ω

νδvi
∂vi
∂xj

njd∂Ω (2.102a)∫
Ω

δvi
∂p

∂xi
dΩ = −

∫
Ω

p
∂δvi
∂xi

dΩ +

∫
∂Ω

pδvinid∂Ω (2.102b)

Using the previous two relations in Eq. 2.101 one obtains∫
Ω

δvi
∂vi
∂t
dΩ+

∫
Ω

ν
∂δvi
∂xj

∂vi
∂xj

dΩ +

∫
Ω

δvivj
∂vi
∂xj

dΩ +

∫
Ω

p
∂δvi
∂xi

dΩ =∫
Ω

δvibidΩ +

∫
∂Ω

δvi

(
ν
∂vi
∂xj

nj − pni
)
d∂Ω ∀δv ∈ V0

(2.103)

or in vector notation

∫
Ω

∂v

∂t
· δvdΩ+

∫
Ω

ν∇v · ∇δvdΩ +

∫
Ω

[(v · ∇)v] · δvdΩ−
∫

Ω

p∇ · δvdΩ =∫
Ω

b · δvdΩ +

∫
∂Ω

δv ·
(
ν
∂v

∂n
− pn

)
d∂Ω ∀δv ∈ V0

(2.104)

where is easy to notice that the boundary term corresponds to the Neumann boundary
condition ψ stated in Eq. 2.98, which is in fact the traction vector t = σσσ ·n being σσσ the
sum of the viscous and hydrostatic stress for a Newtonian fluid depicted in Eq. 2.51.
Similarly, the weak form of the continuity equation can be obtained. To that purpose,
its space of test functions is firstly defined as

δp(x) ∈ Q, Q =

{
δp | δp ∈ L2(Ω),

∫
Ω

δpdΩ = 0

}
(2.105)

where L2(Ω) is the is the space containing the functions that are square-integrable. The
trial function for the pressure is also contained in Q meaning that

p(x, t) ∈ Q (2.106)

Then, the Galerkin weak form of the incompressible mass conservation equation can be
expressed in index notation as
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∫
Ω

δp
∂vi
∂xi

dΩ = 0 ∀δp ∈ Q (2.107)

or in vector notation as ∫
Ω

δp∇ · v = 0 ∀δp ∈ Q (2.108)

2.3.3 Finite elements in viscous incompressible flows

Finite elements space discretization

In this section the finite element space discretization of the Galerkin weak form of
the Navier-Stokes equations in Eqs. 2.104 and 2.108 is presented. Thus, the velocity
interpolation reads as follows

vhi (x, t) =

nnodes∑
I=1

NI(x)viI(t) ∀i = 1,ndim (2.109)

being NI(x) the nodal shape functions in Eulerian coordinates and viI(t) the velocity
field nodal values. In a similar way, the test function, which is time-independent, is
discretized as

δvhi (x, t) =

nnodes∑
I=1

NI(x)δviI ∀i = 1,ndim (2.110)

Additionally, the acceleration is approximated as

∂vhi
∂t

(x, t) =

nnodes∑
I=1

NI(x)v̇iI(t) ∀i = 1,ndim (2.111)

On the other hand, the pressure is approximated by

p(x, t) =

nnodes∑
I=1

NI(x)pI(t) (2.112)

while its time-independent test function approximation reads

δp(x) =

nnodes∑
I=1

NI(x)δpI(t) (2.113)
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Once the previous space approximations have been defined, one can recover the momen-
tum equation Galerkin weak form in Eq. 2.104 (or 2.103) to write its FE approximation.
Considering that the variation δviI is arbitrary, the following algebraic system of equa-
tions arises

Mv̇ + K(v)v −Gp = f ext (2.114)

being M the mass matrix, K(v) the stiffness matrix obtained as the addition of the
convective (Kc) and viscous (Kν) stiffness matrices, G the pressure matrix and f ext the
volumetric external force vector. The coefficients of such arrays are obtained as

MijIJ = δij

∫
Ω

NINJdΩ (2.115a)

Kc
ijIJ = δij

∫
Ω

Nivh
∂NJ

∂xj
dΩ (2.115b)

Kν
ijIJ = δijν

∫
Ω

∂NI

∂xj

∂NJ

∂xj
dΩ (2.115c)

GiIJ =

∫
Ω

∂NI

∂xi
NjdΩ (2.115d)

f extiI =

∫
Ω

biNIdΩ (2.115e)

On the other hand, the mass conservation equation Galerkin weak form in Eq. 2.108
(or Eq. 2.107) can be also discretized in a similar fashion, yielding the next algebraic
system of equations

GTv = 0 (2.116)

whereGT is the so called divergence matrix, which is in fact the transpose of the pressure
matrix. The coefficients of the divergence matrix can be obtained as

GT
jIJ =

∫
Ω

NI
∂NJ

∂xj
dΩ (2.117)

Once arrived to this point, it is interesting to point out that the same index notation as
the one used in the solid mechanics problem discretization have been used. Therefore,
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minor indices i and j refer to the problem dimensions and run from 1 to ndim meanwhile
capital indices I and J refer to the element nodes and run from 1 to nnodes.
Finally, the coupled Navier-Stokes equations algebraic system to be solved is{

Mv̇ + K(v)v −Gp = f ext

GTv = 0
(2.118)

Note that the previous system is the one solved if a monolithic resolution scheme is
selected.

LBB-condition fulfilment and common interpolation pairs

Once arrived to this point, it is a must to spend a few words regarding the most common
velocity and pressure interpolation pairs used in the mixed FE discretization of the
Navier-Stokes equations. As was commented before, the incompressibility condition
∇·v = 0 in the Navier-Stokes equations introduces a compatibility requirement between
the pressure and the velocity interpolations. This is the aforementioned LBB-condition
or inf-sup condition.
Thus, in order to have v and p uniquely determined, the pressure interpolation spaceQh

and the velocity interpolation space2 Vh must satisfy that dimQh ≤ dimVh. However,
this is a necessary but not sufficient condition which can be interpreted as the larger the
velocity space the higher the probability of the interpolation pairs to be compatible.
The sufficient condition that ensures that both v and p are uniquely determined is the
LBB-condition. The LBB-condition states that

inf
δph∈Qh

sup
δvh∈Vh

(δph,∇ · δvh)
‖δp‖0‖δvh‖1

≥ α > 0 (2.119)

where α is independent of the mesh size. Once again the reader is referred to [17] or
[38] for a much more detailed explanation about the LBB-condition fulfilment.
In the four figures below, which depict some common mixed FE interpolation pairs,
symbols • represent velocity interpolation points while symbols � represent pressure
interpolation points. Figures 2.3 and 2.4 depict some interpolation pairs that have
continuous pressure approximation. However, the approximations in figure 2.3 do not
satisfy the inf-sup condition. On the other hand, figures 2.5 and 2.6 represent interpo-

2These interpolation spaces are the space discretized version of the previously defined spaces in Eq.
2.99 and 2.106
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lation pairs with discontinuous pressure approximation. In these cases, the pairs that
satisfy the inf-sup condition are collected in figure 2.6. Hence, it can be noticed that the
satisfaction of the LBB-condition disregards the continuity of the pressure field but is
related with the difference in the interpolation orders of the velocity and pressure fields.

Figure 2.3: Continuous pressure interpolation pairs which do not satisfy the inf-sup condition.
Image taken from [38].

Figure 2.4: Continuous pressure interpolation pairs which do satisfy the inf-sup condition. Im-
age taken from [38].

Figure 2.5: Discontinuous pressure interpolation pairs which do not satisfy the inf-sup condi-
tion. Image taken from [38].

Figure 2.6: Discontinuous pressure interpolation pairs which do satisfy the inf-sup condition.
Image taken from [38].

2.3.4 Time discretization schemes

In this subsection the time discretization ideas presented for the structural mechanics
case are followed. Thus, only implicit schemes are considered for the fluid dynamics
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time discretization. Recovering Eq. 2.118 it can be noticed that the equations to be
solved at each time step tn+1 are{

Mv̇n+1 + K(vn+1)vn+1 −Gpn+1 = f ext

GTvn+1 = 0
(2.120)

Among the many time discretization schemes, the θ-family method and the Backward
Differentiation method (BDF) are presented for the fluid dynamics case. Besides, the
Bossak scheme and Generalised-α scheme are recovered from the structural mechanics
problem and applied to the fluid dynamics one. More information regarding the classical
time discretization schemes can be found in [17].

θ-family method

Assuming that at time tn the solution fields vn and pn are known, the time derivative
of the velocity can be linearly interpolated as

v̇n+θ = (1− θ)v̇n + θv̇n+1
∼=

vn+1 − vn
∆t

(2.121)

being ∆t = tn+1 − tn. Similarly, the velocity field can be be approximated as

vn+θ = (1− θ)vn + θvn+1 (2.122)

Substituting the previous acceleration and velocity interpolations in Eq. 2.121 and
2.122 into 2.120 one obtains the next set of discrete equationsM

1

∆t
(vn+1 − vn) + K(vn+θ)vn+θ −Gpn+1 = f ext

GTvn+θ = 0
(2.123)

The scheme unconditionally stable for 1/2 ≤ θ ≤ 1. Taking θ = 1 the scheme is first-
order accurate and is known as the Backward Euler method. On the other hand, taking
θ = 1/2 yields a second-order accurate scheme, known as the Crank-Nicolson method.
Only for θ = 1/2 the θ-methods are second order accurate.
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Backward Differentiation method

Backward differentiation methods are also known as Gear schemes. The Backward
differentiation methods are classified according to the approximation order of the time
derivative. Thus, in the 1st order Backward Differentiation method (BDF1) the time
derivative of the velocity is approximated as

v̇n+1 =
vn+1 − vn

∆t
(2.124)

and substituted into Eq. 2.120, yielding the next system of equations to be solved at
each time step M

1

∆t
(vn+1 − vn) + K(vn+1)vn+1 −Gpn+1 = f ext

GTvn+1 = 0
(2.125)

Note that the BDF1 time discretized system in Eq. 2.125 equals the θ-family time
discretized system in Eq. 2.123 when θ = 1.
For second order accuracy, the method is called BDF2. In the BDF2, the velocity time
derivative is approximated as

v̇n+1 =
3vn+1 − 4vn + vn−1

2∆t
(2.126)

Hence, substituting the BDF2 acceleration approximation into Eq. 2.120 yields the
system of equationsM

1

2∆t
(3vn+1 − 4vn + vn−1) + K(vn+1)vn+1 −Gpn+1 = f ext

GTvn+1 = 0
(2.127)

Finally, it has to be said that the BDF2 needs more initialization values that just v0

since vn−1 appears. This problem can be easily overcome using the BDF1 in the first
time step and move then to the BDF2 in the second time step.

Bossak method

Taking the discrete system of equations in Eq. 2.118 and applying the Bossak scheme
yields the next semi-discrete system to be solved
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{
Mv̇n+1−αB + K(vn+1)vn+1 −Gpn+1 = f ext

GTvn+1 = 0
(2.128)

where the time derivative of the velocity v̇n+1−αB is defined as

v̇n+1−αB = (1− αB)v̇n+1 + αBv̇n (2.129)

As was commented in the structural mechanics time discretization section, the Bossak
scheme derives from the Newmark method. Thus, the Newmark formulae for the velocity
in Eq. 2.76 is recovered. Rearranging terms, the acceleration can be approximated as

v̇n+1 =
1

∆tγ
(vn+1 − vn −∆t(1− γ)v̇n) (2.130)

Substituting Eq. 2.130 into Eq. 2.129 the acceleration v̇n+1−αB can be expressed only
in terms of vn+1 and the previous step known values vn and v̇n.
Finally, one can recover the system of equations in Eq. 2.128 and apply the previous
relations. This yields the next final system to be solved



(1− αB)

∆tγ
Mvn+1 + K(vn+1)vn+1 −Gpn+1 = f ext+

+
(1− αB)

∆tγ
Mvn +

[
(1− αB)(1− γ)

γ
− αB

]
Mv̇n

GTvn+1 = 0

(2.131)

Recall that αB and γ are the time integration parameters of the Bossak method referred
in the structural mechanics time discretization section.

Generalised-α method

In this case, the generalised-α method is applied on a first-order system. The application
of the generalised-α method to first-order system of equations, can be found in [25].
As was commented in the structural mechanics section, the generalised-α method has
high-frequency dissipation while the low-frequency dissipation is minimized, something
desirable in analysis with long time periods. In the generalised-α method, the semi-
discrete equations are
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Mv̇n+αfm
+ K(vn+αff

)vn+αff
−Gpn+1 = f ext

GTvn+1 = 0
(2.132)

where the previous acceleration and velocities are defined as

vn+1 = vn + ∆t(1− γf )v̇n + ∆tγf v̇n+1 (2.133)

vn+αff
= (1− αff )vn + αffvn+1 (2.134)

v̇fm = (1− αfm)v̇n + αfmv̇n+1 (2.135)

Isolating v̇n+1 in Eq. 2.133 and substituting it into Eq. 2.135 yields

v̇n+αfm
=

αfm
∆tγf

(vn+1 − vn) +

(
1− αfm

γf

)
v̇n (2.136)

Finally, substituting Eq. 2.134 and Eq. 2.135 into 2.132 allow to express the problem
in terms of the unknowns vn+1 and pn+1. Optimal values of the integration parameters
γf , αfm and αff for second-order accuracy, high-frequency dissipation and optimal low-
frequency dissipation can be found in [44].

2.3.5 Pressure segregation methods

Despite that pressure segregation methods are not used in this work it is interesting
to briefly outline them. The aim of pressure segregation methods is to decouple the
pressure from the balance of linear momentum equation. Therefore, more than one
system of equation arises but with less total computational effort.
Starting from the BDF1 time discretized N-S equations in Eq. 2.125, one can split the
linear momentum equation in the equivalent form

M
1

∆t
(ṽn+1 − vn) + K(ṽn+1)ṽn+1 −Gpn = f ext

M
1

∆t
(vn+1 − ṽn+1)−G(pn+1 − pn) = 0GTvn+1 = 0

(2.137)

considering the auxiliary velocity ṽn+1 and the approximation
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K(vn+1)vn+1 ≈ K(ṽn+1)ṽn+1 (2.138)

Rearranging terms, one arrives to
M

1

∆t
(ṽn+1 − vn) + K(ṽn+1)ṽn+1 −Gpn = f ext

−∆tL(pn+1 − pn) = GT (ṽn+1)

M
1

∆t
(vn+1 − ṽn+1)−G(pn+1 − pn) = 0

(2.139)

where L is an approximation of the Laplacian operator [8] and the last equation is in
fact an explicit velocity update. This is the so called Fractional Step scheme. In [44] the
application of the fractional step scheme combined with the BDF2 and the generalised-α
method can be found. An stability analysis of the method is carried out in [8].
Finally, it is interesting to pinpoint the Predictor-Corrector method. The Predictor-
Corrector method is a decoupled iterative scheme which goal is to converge to the mono-
lithic solution. Considering again the BDF1 time discretization method, the Predictor-
Corrector scheme readsM

1

∆t
(vn+1,i − vn) + K(vn+1,i−1)vn+1,i −Gpn+1,i−1 = f ext

−∆tL(pn+1,i − pn+1,i−1) = GTvn+1,i

(2.140)

where i holds for the current iteration and i − 1 for the known previous one. The
Predictor-Corrector method is widely developed in [12].

2.3.6 Stabilization techniques

As commented before, two are the main sources of numerical instabilities in the nu-
merical approximation of the Navier-Stokes equations. The former is related with the
non-linear convective term, which might generate numerical oscillations in the velocity
field when high Reynolds number convection-dominated flows are considered. These
oscillations are minimized as the mesh is refined. However, this implies a computa-
tional effort increase. Therefore, the use of stabilization techniques is the optimal way
to handle these oscillations.
The other instability source is related to the incompressibility condition constraint and
the LBB-condition, which requires the velocity and pressure approximation spaces to
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be compatible in order to avoid spurious pressure modes. Thus, one have two options,
either to use interpolation pairs that satisfy the LBB-condition or circumvent it using
stabilization techniques, allowing the use of simpler approximations, as the ones pre-
sented in figure 2.3. These approximations, which do not satisfy the LBB-condition,
have advantages such as continuous pressure interpolation or a simpler implementation,
due to the fact that the same interpolation is used for the velocity and pressure fields.
In this work, the Variational Multiscales method (VMS) has been used as main stabiliza-
tion technique. In the next subsection, the VMS method is introduced. However, there
are several stabilization techniques that can be used as well. Some examples are the
Steamline-upwind/Petrov-Galerkin method (SUPG), the Galerkin Least Squares (GLS),
the Orthogonal Subscales method (OSS) or the Finite Increment Calulus (FIC), which
are briefly outlined as well.

Variational Multiscales method

The starting point of any multiscale method is the decomposition of the unknowns.
Hence the velocity v and the pressure p are decomposed as

v = vh + ṽ, p = ph + p̃ (2.141)

where vh and ph belong to the finite element approximation spaces Vh and Qh and
ũ and p̃ are the subscales. The FE components of the decomposition vh and ph are
the so called resolved scales. Conversely, the subscales are the unresolved scales, which
introduce an artificial diffusion that stabilizes the formulation.
For the better comprehension of the VMS method, it is quite useful to analyse are
the implications of introducing the decomposition in Eq. 2.141 into the non-linear
convective term of the Navier-Stokes equations. The complete weak formulation of the
N-S equations considering the subscale can be found in [10]. Focusing only in the non-
linear term, it can be rewritten as

∇ · (v ⊗ v) = ∇ · (vh ⊗ vh) +∇ · (vh ⊗ ṽ) +∇ · (ṽ ⊗ vh) +∇ · (ṽ ⊗ ṽ) (2.142)

where

• ∇ · (vh ⊗ vh) is the term appearing in a standard Galerkin approximation.
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• ∇·(vh⊗ṽ) introduces the numerical stability that controls the convective derivative
and pressure gradient.

• ∇ · (ṽ ⊗ vh) drives to global momentum equilibrium.

• ∇ · (ṽ ⊗ ṽ) have barely difference with similar terms in LES turbulence models.
As a consequence, the question of whether this term is acting as a Large Eddy
Simulation (LES) turbulence model arises [10][22].

Regarding the velocity time derivative in the N-S equations, it turns to be ∂tv =

∂tvh + ∂tṽ when the decomposition in Eq. 2.141 is considered. Then, one can keep the
subscales time derivative (dynamic subscales) or neglect it (quasi-static subscales). It is
proved that dynamic subscales yield the correct long term stability of the space-discrete
scheme [11].
On the other hand, the selection of the subscales spaces is also crucial. For instance,
in the Orthogonal Subscales (OSS) method, the space of the subscales is selected to be
orthogonal to the FE space, what is to say that Ṽ ∈ V⊥h . This has implications in the
kinetic energy balance separation between scales. The foundations of the OSS method
can be found in [9] and [10].
The main reference in this subsection has been [11], which plainly introduces the reader
to the VMS methods formulation and summarizes years of research on the OSS method.
For further details on the VMS stabilization technique, the reference papers are [19] and
[20].

Other stabilization techniques

This subsection briefly outlines some of the most common stabilization alternatives to
the VMS method. One stabilization technique that has been widely used in convection-
dominated problems is the streamline-upwind/Petrov-Galerkin method (SUPG). This
method consists in introducing a numerical diffusion but only along the streamlines. As
is depicted in [5], the method can be applied to the residual form of the Navier-Stokes
equations.
A more general stabilization approach is the Galerkin Least Squares method (GLS). In
the GLS, the stabilization terms are obtained minimizing the sum of the square residual
of the momentum equation. However, it has to be taken into account that the GLS
requires FE discretization for both space and time. A detailed explanation on the GLS
method can be found in [21].



42 State of the art

So far, all the presented stabilization methods require the introduction of artificial
diffusion terms. This is not the case in the Finite Increment Calculus method (FIC), in
where the stabilization terms are considered as a natural and intrinsic contribution to
the original differential equations, meaning that the terms obtained can be interpreted
in a more physical manner. The FIC method main reference is [35].
The formulation and implementation in FSI problems of all the methods outlined in
this subsection can be found in [44].

2.3.7 Problem resolution: linearization techniques

Once the Navier-Stokes equations have been discretized, the problem to be solved is a
non-linear system of equations. In this case, the non-linearity is located in the convective
term K(vn+1)vn+1.
The presence of the non-linearity implies the use of an iterative scheme. Considering
that i is the sought iteration and i− 1 is a the previous known one, the convective term
can be linearised as

• K(vi−1
n+1)vi−1

n+1: there exists a solution but convergence is very slow and only for low
Reynolds numbers.

• K(vin+1)vi−1
n+1: there might not be stable solution as the element size decreases (the

linear form associated to the problem is not coercive).

• K(vi−1
n+1)vin+1: the iteration is said to be of Picard's type (fixed point method).

Among the previous three presented linearization techniques, the most useful and ex-
tended one is the Picard's method. Lets consider again the BDF1 discretization in Eq.
2.125 to show the Picard's strategy, which reads as followsM

1

∆t
(vin+1 − vn) + K(vi−1

n+1)vin+1 −Gpin+1 = f ext

GTvin+1 = 0
(2.143)

Despite the Picard's iteration can achieve convergence in the majority of cases, its
convergence rate is linear. Thus, it is convenient to take advantage of the Newton-
Raphson's method, which has quadratic convergence. Considering once again BDF1 as
discretization scheme, the Newton-Raphson's linearization reads as follows
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M

1

∆t
(vin+1 − vn) + K(vi−1

n+1)vin+1 + K(vi−1
n+1)vi−1

n+1 −Gpin+1 =

= f ext + K(vi−1
n+1)vi−1

n+1

GTvin+1 = 0

(2.144)

2.4 Fluid structure interaction

This section reviews the main aspects regarding the coupling and resolution of the
fluid-structure interaction problem. In this context, the Arbitrary Lagrangian-Eulerian
(ALE) form of the Navier-Stokes equations is firstly presented. Then, the FSI problem
is stated as well as the existing approaches to solve it. Finally, some of the common
issues involved in the FSI problem resolution are pointed out.

2.4.1 ALE framework in computational fluid dynamics

As has been commented before, in CFD analysis the Navier-Stokes equations are usually
solved in their Eulerian form, since it avoids the extremely large element distortion
associated to the flow convection. When solving an FSI problem, one has to take into
account that the skin of the structure, henceforth referred as solid interface, would have
a displacement due to the fluid loads. Considering, that no penetration of the fluid into
the body is allowed, such structure displacement is translated to a displacement of the
fluid interface.
In those cases in where the structural displacements are expected to be infinitesimal,
their affectation to the mesh can be neglected, meaning that the FSI problem can
be solved keeping the Eulerian formulation in the CFD part. On the contrary, when
the structural displacements are finite, the Eulerian formulation turns to be a poor
approximation and the necessity of other techniques arises.
Consequently, the ALE framework has been widely used in the FSI context when the
large displacements assumption is taken in the structure. Despite the fact that in this
work the ALE method has been selected, there exist several alternative techniques that
can be also successfully applied. Among them, the novel embedded formulation [1] has
to be mentioned.
The main feature of the ALE framework is the apparition of a new body configuration,
the so called ALE configuration, which domain is Ω̂. The coordinates of such domain Ω̂
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Figure 2.7: Lagrangian, Eulerian and ALE frameworks comparison. Image taken from [17].

are the ALE coordinates and are denoted by χ. As a consequence, two different motions
appear in ALE methods: material motion and mesh motion (figure 2.7). Material
motion is described as in Eq. 2.2 while the mesh motion is described as

x = Φ̂ΦΦ(χχχ, t) (2.145)

By means of the previous equation, the mesh displacement can be obtained as

û = x−χχχ = Φ̂ΦΦ(χχχ, t)−χχχ (2.146)

The mesh velocity and the mesh acceleration can be obtained as the first and second
time derivative of Eq. 2.146. Besides this, the material time derivative is also rewritten
in ALE framework as

D(•)
Dt

=
∂(•)
∂t

+ c · ∇(•) (2.147)
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where c is the convective velocity obtained as the difference between the material and
the mesh velocities c = v − v̂ = v − vmesh. Once the convective velocity has been
defined, the balance of linear momentum equation in ALE framework can be stated as

ρ

(
∂v

∂t
+ c · ∇v

)
= ∇ · σ + ρb (2.148)

For the sake of simplicity, only the essentials of the ALE formulation have been outlined
in this section. A much further description of the method can be found in [3] or [17].

2.4.2 Problem formulation and transmission conditions

This subsection recalls the concepts stated in chapters 2.2 and 2.3 to state the FSI
problem. First of all, let us divide the problem domain in two disjoint domains such
that Ω = Ωf ∪ Ωs being Ωf the fluid domain and Ωs the solid one. The boundary of
the problem domain can be also separated in Γ = Γf ∪ Γs ∪ Γint being Γint the interface
between fluid and structure. As usual, in both solid and fluid domains the boundary
can be split in Dirichlet (ΓD) and Neumann (ΓN) boundaries. Figure 2.8 schematically
depicts the previous domains and boundaries.
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Figure 2.8: Schematic representation of the FSI problem.

On the other hand, the transmission conditions on the interface boundary must be
defined. In general terms, the interface conditions state how the information between
problem subdomains is transferred. For the FSI case, the required transmission condi-
tions at the interface Γint are

• continuity of displacements: us = uf on Γint

• continuity of tractions: n · σσσs = n · σσσf on Γint
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Note that the continuity of displacements can be formulated equivalently in terms of
the velocity. Moreover, it is interesting to point out that all the components of the
displacement must be continuous at the interface since the viscous flow consideration
is assumed. On the contrary, when the inviscid flow assumption is considered, only the
normal component needs to be continuous, due to the slip nature of the interface.
Recovering the fluid dynamics governing equations in ALE form as well as the solid
mechanics governing equations, both together with their respective boundary and initial
conditions, as well as the transmission conditions above one can formulate the complete
FSI problem as

∂vf
∂t

+ (vf − vmesh) · ∇vf − νf∆vf +∇p = bs in Ωf

∇ · vf = 0 in Ωf

ρ0,s
∂vs
∂t

= ∇0 ·P + ρ0,sbs in Ωs

vf (x, t) = φ(x, t) on ΓDf(
νf
∂vf
∂n
− pn

)
(x, t) = ψ(x, t) on ΓNf

us(x, t) = ūs(x, t) on ΓDs

ts(x, t) = t̄s(x, t) on ΓNs

uf (x, t) = uf (x, t) on Γint

ts(x, t) = tf (x, t) on Γint

vf (x, 0) = v0
f (x) in Ωf at t = 0

us(x, 0) = ū0
s(x) in Ωs at t = 0

(2.149)

Last but not least, it has to be said that considering an ALE framework in the fluid
domain implies the apparition of the mesh movement problem. The particularities of
this problem are addressed in chapter 2.4.5.

2.4.3 FSI approaches

The existent approaches to solve the FSI problem can be roughly divided in two types:
monolithic approaches and partitioned approaches. The monolithic approach consists in
solving all the equations of the FSI problem (Eq. 2.149) in a unified system while the
partitioned approaches use independent solvers for each solid and fluid fields.
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Monolithic approaches

Monolithic approaches have the advantage of larger stability and robustness, meaning
that convergence is usually optimal. Due to this reason, the trend in the literature is
to use this kind of approaches in complex coupling situations such as hemodynamics
[4]. However, monolithic schemes lead to large system of equations, which turn to be
extremely expensive in terms of the computational cost. Besides, the development of a
monolithic solver requires lots of efforts since both the existing solid and fluid solvers
require major modifications to perform in a monolithic manner [41].

Partitioned approaches

On the other hand, partitioned approaches keep a separate field solver for the fluid
and the solid problems. This has the great advantage of code reusability, meaning that
optimal and widely tested, or even commercial, solvers can work as black boxes and the
unique thing that is left to be done is the coupling algorithm between them.
According to the nature of such coupling algorithm, one can distinguish two types of par-
titioned approaches: explicit or implicit partitioned schemes. In the explicit partitioned
schemes, also known as staggered approaches or weakly coupled partitioned schemes,
the information interchange between fields is transferred at the end of the time step
(figure 2.9). As a consequence, the computational cost is very cheap but the interface
convergence rates are poor, even with the use of predictors.

Fluid

Solid

Fluid

Solid

tn tn+1

(a) Serial approach.

Fluid

Solid

Fluid

Solid

tn tn+1

(b) Parallel approach.

Figure 2.9: Loosely coupled partitioned schemes overview.

On the contrary, implicit partitioned schemes, also known as strongly coupled partitioned
schemes, are intended to be an intermediate solution between the monolithic approaches
and the fully explicit ones [41]. In this case, the coupling algorithm between the fluid
and solid solvers implies the iteration until a convergence criterion is reached (figure
2.10).
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Figure 2.10: Strongly coupled partitioned scheme overview.

Despite the fact that have much better convergence ratios than the loosely coupled
methods, the strongly coupled schemes may diverge in some cases depending on the
strategy used. Furthermore, these methods have the disadvantage of its computational
cost, which in some cases can be larger than the monolithic scheme one. Such large
computational cost comes from the fact that it is needed to solve the fluid and structure
problems at each iteration of the coupling scheme.

2.4.4 The added mass effect

This subsection overviews the added mass effect problem. The main reference has been
[23], where a further description of the added mass effect, the foundation and application
of the techniques to deal with it and several numerical examples can be found.
The added mass effect is an issue associated to the incompressible flow assumption.
In a rigorous way, the added mass effect is defined as the addition of virtual mass to
the coupled system because of the movement of a body surrounded by an incompress-
ible fluid. Such incompressible flow assumption is the source of the added mass effect
problem, since the inertial forces associated to the accelerating or decelerating body are
translated to a wider region of the fluid domain. This can be viewed as an extra or
virtual mass which was not present in the original system.
However, the term added mass effect has been widely used in the literature to name
those instability issues that tipically occur in FSI problems combining incompressible
fluids and structures with similar densities (e.g. hemodynamics problems). As pointed
in [23], another particular source of added mass effects is the use of pressure segregation
methods within a monolithic scheme.
As can be seen in figure 2.11, the added mass effect affects to all the FSI approaches
that have been defined in the previous section. Thus, when loosely coupled partitioned
approaches are used, the system may become unstable when the added mass effect is
significant. In the strongly coupled partitioned approaches case, the convergence might
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be ruined by the added mass effect. Finally, in monolithic schemes the system might
become ill-conditioned or it could not converge if pressure segregation methods are used.

Figure 2.11: Added mass effect affectation scheme according to FSI procedures. Image taken
from [23].

2.4.5 Fluid ALE mesh particularities

Mesh movement problem

As has been pointed before, in an ALE framework the solid interface movement implies
to update the fluid mesh after each time iteration. This update consists in solving
an extra problem, which varies according to the mesh updating techniques. Despite
there are several techniques to update the mesh, all of them share the same boundary
conditions at the interface

umesh(x, t) = us(x, t) on Γint

umesh(x, t) = 0 on Γ = ΓDf ∪ ΓNf (2.150)

As can be seen, the first boundary condition in Eq. 2.150 states that the mesh is
attached to the fluid-structure interface. On the other hand, the second one, which
holds for the rest of the fluid domain boundary, states null movement at the external
boundaries. It has to be said that in the external boundaries the mesh movement only
needs to be null in the normal direction, meaning that the mesh nodes can vary their
position within the boundary plane if it is needed.
On the other hand, it is crucial that the fluid mesh update accommodates the interface
changes in a reliable way. How the mesh can be best updated depends on several
factors, such as the interface and overall geometry complexity, how severe the interface
movement is, and how the initial mesh was generated. In general, the mesh update
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could have two components: moving the mesh as long as it is possible and remeshing
(i.e., generating fully or partially a new set of nodes and elements) when the element
distortion becomes too high [2].
It can be guessed that remeshing must be avoided as much as possible due to its high
computational cost, which becomes even larger in 3D cases. Thus, robust and efficient
mesh movement techniques are essential in FSI problems that consider ALE formulation
in the fluid domain.
Among the many mesh updating techniques, a specially interesting one is the stiffness
or structural methods, in which a structural problem is solved considering as interface
boundary conditions the solid interface movement. Thus, a stiffness matrix is generated
from the specific mesh Lamé coefficients. The stiffness methods are particularly interest-
ing in FSI applications, since the smaller the element is, the larger is its stiffness. Since
the finest elements are usually placed near the solid domain, this avoids the element
distortion in the interface surroundings. A deeper explanation about the stiffness mesh
updating technique, as well as the problem equations and expressions of the mesh Lamé
parameters can be found in [2]. Complementary, [42] contains a review on the main
features of these methods.
Another family of mesh updating techniques is the so called elliptic methods (also known
as Laplacian or Poisson methods), which formulation is detailed in [41]. These methods
consists in mapping between the computational space and the physical domain through
a parameter space, that can be used to control the quality of the mesh. Then, an elliptic
equation is solved for each displacement component until a convergence is satisfied.
Finally, it has to be said that there exist other typologies of mesh updating techniques,
such as the transfinite mapping method or simple interpolations. A general overview on
the existing mesh updating techniques can be found in [17].

Mapping strategies

The use of partitioned approaches in the resolution of the FSI problem requires the
proper transference of information between subdomains to guarantee the convergence.
There is no problem when interface matching meshes are used, since the information
can be directly transferred node-by-node. Unfortunately, this might not be the case due
to the need of different mesh resolutions in the fluid and solid domains. Therefore, a
mapping technique is required in order to apply the interface boundary conditions.
According to [45], consistency, which specifies that a constant field should be mapped
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exactly, is the basic criterion for mapping algorithms. Another criterion is the con-
servation of energy, which helps to derive special mapping operators for traction and
force. Thus, the direct use of mapping algorithms is called consistent mapping, while the
use of mapping techniques derived from the energy conservation is called conservative
mapping.
There are several mapping strategies that can be used, from the simpler Nearest Neigh-
bour interpolation to the use of mortar elements. In the following lines, some of the
most popular mapping techniques are outlined.
The Nearest Neighbour interpolation is probably the simplest method of transferring
information between meshes. It is based in a search algorithm so that the closest node to
an origin mesh node is found in the destiny mesh. Once the closest destiny node has been
found for all origin nodes, the values are directly transferred without any interpolation.
This search procedure is likely expensive so it is advised to optimize it using tree data
structures such as the kd-tree.
The second mapping techniques to be commented are the Point-to-Element projec-
tion schemes. This family contains the Node-Projection scheme and the Quadrature-
Projection scheme. In the Node-Projection scheme, the origin nodes are directly pro-
jected towards the destiny interface. On the other hand, in the Quadrature-Projection
scheme, an auxiliary quadrature is generated in the origin interface and such quadrature
points are the ones to be projected onto de destiny interface. Once the projections have
been carried out, the values are simply interpolated.
Another mapping technique is the Common-Refinement based scheme (C-R). In the
C-R scheme the position of the fluid interface nodes is projected onto the solid interface.
Then an auxiliary mesh, which elements are in between the solid nodes and the projected
fluid nodes, is generated. Once the auxiliary mesh has been obtained, the mapped values
can be computed.
A completely different family of methods are the so called mortar elements. The stan-
dard mortar method applies the Galerkin approach which can minimize the L2 norm of
the deviation between two fields. In [45] the application and performance assessment of
mortar and dual mortar methods in the FSI context can be found.
For further information, the reader is aimed to review [24] and [45]. Moreover, the
application of some of the commented interpolation techniques to problems similar to
the ones presented in this work can be found in [27].





Chapter 3
Methodology

This chapter collects the main aspects of the FSI procedures implemented in this work.
First of all, it is important to clearly state that the priority has been to develop a
FSI framework with high code reusability capabilities. As a consequence, monolithic
coupling approaches, which require the implementation of a new whole solver, were
completely rejected since the very beginning, driving towards the use of partitioned
coupling schemes.
In the partitioned coupling schemes a specific solver is used for each one of the coupled
problems. One step further is to consider these solvers as black boxes that are able to
take an input information to give back an output data, without the necessity of any
access to their interior procedures.
This black boxes idea is the key concept of the coupling approaches that are to be
presented, since it allows the junction of different widely tested and optimized codes for
each one of the problem fields. Besides, the development of the coupled solver is cheaper
in economic and time consumption terms due to the possibility of code reusability. Is for
these reasons that partitioned approaches have become more and more popular in the
industry field during the last times. The black box coupling concept is further detailed
in [4]. A general review on algorithms for strong coupling procedures can also be found
in [28].
In this chapter, the Dirichlet-Neumann and Neumann-Neumann strongly coupled par-
titioned schemes are firstly presented and its residual form is developed. Then, the
implemented iterative techniques to minimize such interface residual are discussed.
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3.1 Partitioned strongly coupled approaches developed

In this section the partitioned strongly coupled approaches that have been used all
along this work are presented. On one hand, the Dirichlet-Neumann scheme (D-N) is
discussed. On the other hand, the Neumann-Neumann (N-N) scheme is also developed.

3.1.1 Dirichlet-Neumann iterative scheme

The D-N scheme steps can be roughly divided in

1. Solve the fluid problem from a suitable prediction of the interface velocity as
interface Dirichlet B.C.

2. Extract the interface fluid fluxes

3. Apply the interface fluid fluxes as a Neumann B.C. on the solid interface

4. Solve the solid problem to obtain the resultant step interface displacement

5. Extract the solid interface velocity as next fluid interface velocity prediction

It has to be said, that the D-N scheme can be solved in the other way around, that is
to say, that Neumann B.C.'s are applied on the fluid interface and Dirichlet B.C.'s are
applied on the solid problem. This is suitable in those cases in where the fluid density
ρf is much larger than the solid density ρs. However, this is not the usual case in FSI
problems, where the solid density is normally several orders of magnitude larger than
the fluid one.
For the sake of simplicity, the solid problem previously stated in 2.73 as well as the
fluid problem stated in 2.118 can be firstly expressed in compact form according to their
interior and interface contributions. Thus, the compact version of the solid problem
reads [

SII SIΓ

SΓI SΓΓ

][
uI

uΓ

]
=

[
fSI
fSΓ

]
(3.1)

where uΓ are the solid interface DOF's and uI the rest of solid DOF's. On the other
hand, the compact version of the fluid problem is
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[
FII FIΓ

FΓI FΓΓ

][
vI

vΓ

]
=

[
fFI
fFΓ

]
(3.2)

where vΓ are the fluid interface DOF's and vI the rest of fluid DOF's. It is important
to clearly state that in Eq. 3.2 the degrees of freedom vI and vΓ are considered as
the whole unknowns of the problem, meaning that both the fluid velocity and pressure
unknowns are compacted as interior DOF's and interface DOF's.
Taking the compact form of the fluid problem in Eq. 3.2 at time step n+1, the interior
solution field vn+1

I can be computed from a suitable interface velocity prediction v?Γ as

FIIv
n+1
I = fF ,n+1

I − FIΓv
?
Γ (3.3)

Then, the interface fluxes are directly obtained as

fF ,n+1
Γ = FΓIv

n+1
I + FΓΓv

?
Γ (3.4)

Note that the fluid problem can be viewed as an operator such that, given a fluid
interface velocity prediction v?Γ, gives back a fluid interface flux fF ,n+1

Γ . Henceforth, let
us rename the D-N fluid problem as the operator fn+1

Γ = F(v?Γ).
On the other hand, the solid problem can be stated in terms of the fluid interface nodal
fluxes fF ,n+1

Γ . Recovering the compact form of the solid problem in Eq. 3.1 as well as
the obtained fF ,n+1

Γ interface fluxes from the fluid problem, the solid problem reads[
SII SIΓ

SΓI SΓΓ

][
un+1
I

ũn+1
Γ

]
=

[
fS,n+1
I

fS,n+1
Γ − fF ,n+1

Γ

]
(3.5)

Note that the fluid interface fluxes fF ,n+1
Γ are subtracted to the RHS due to the interface

equilibrium requirement. As in the fluid problem case, the solid problem can be viewed as
an operator such that, given an interface flux fn+1

Γ , turns an interface displacement ũn+1
Γ .

Henceforth, let us rename the D-N solid problem as the operator ũn+1
Γ = S−1(fn+1

Γ ).
Once arrived to this point, one can state the D-N algorithm via the previously defined
fluid and solid problem operators. Therefore, the D-N coupled problem can be expressed
as

ũn+1
Γ = S−1(F(v?Γ)) (3.6)
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or in terms of the solid interface velocity1 ṽn+1
Γ

ṽn+1
Γ = S−1(F(v?Γ)) (3.7)

As said above, in this work strong coupling partitioned schemes are considered. Hence,
the D-N algorithm turns to be an iterative procedure to be solved at each time step.
Therefore, the D-N coupling operator turns to be

ṽn+1
Γ,i+1 = S−1(F(vn+1

Γ,i )) (3.8)

where the prediction v?Γ is the previous iteration solution vn+1
Γ,i . Besides, the D-N

algorithm iteration residual can be defined as

rn+1
Γ,i+1 = ṽn+1

Γ,i+1 − vn+1
Γ,i (3.9)

In a parallel fashion, one can alternatively define the residual as

rS,n+1
Γ,i+1 = S−1(fn+1

Γ,i )− vn+1
Γ,i

rF ,n+1
Γ,i+1 = F(vn+1

Γ,i )− fn+1
Γ,i

(3.10)

The scheme depicted in Eq. 3.9 is known as Gauss-Seidel iteration and requires a
sequential resolution of the fluid and solid problems. On the other hand, the scheme in
Eq. 3.10 is known as Jacobi iteration and allows the parallel resolution of the fluid and
solid problems. In this work, the Gauss-Seidel iteration has been mainly used because
of its better convergence behaviour.
Finally, in an ALE framework, as the one considered in this work, the mesh problem has
to be solved once the interface displacement solution has been obtained. Thus, the mesh
solver becomes in a sort of interior nodes mapper which recomputes their coordinates
from the obtained interface displacement of the D-N coupled problem.
For further information regarding the D-N scheme implementation and its application
to FSI problems the reader is encouraged to review [26] and [44].

1Once the solid problem has been solved in terms of the displacement unknowns, the velocities can
be straightforwardly obtained via the time integration scheme formulas.
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3.1.2 Neumann-Neumann iterative scheme

First of all, for the sake of simplicity let us consider the compact forms previously defined
in Eq. 3.1 and 3.2. Slightly modifying both of them, the N-N fluid problem reads[

FII FIΓ

FΓI FΓΓ

][
vF ,n+1
I

vF ,n+1
Γ

]
=

[
fF ,n+1
I

fF ,n+1
Γ + f?Γ

]
(3.11)

while the N-N solid problem is[
SII SIΓ

SΓI SΓΓ

][
uS,n+1
I

uS,n+1
Γ

]
=

[
fS,n+1
I

fS,n+1
Γ − f?Γ

]
(3.12)

being f?Γ a suitable approximation of the interface fluxes required to the fluid and solid
subdomains equilibrium.
Rearranging terms, both the fluid and the solid domain can be expressed in terms of
the interface unknowns. Hence, after some algebra, the fluid problem reads

(
FΓΓ − FΓIF

−1
II FIΓ

)
vn+1

Γ = fF ,n+1
Γ + f?Γ − FΓIF

−1
II f

n+1
I (3.13)

while the solid problem (in velocity terms) reads

(
SΓΓ − SΓIS

−1
II SIΓ

)
vn+1

Γ = fS,n+1
Γ − f?Γ − SΓIS

−1
II f

n+1
I (3.14)

being the operator acting over the interface unknown in the LHS the so called interface
or Schur complement operator. In this context, it can be noticed that in the N-N scheme
both the fluid and the solid problems act as an operator such that, given a suitable
interface flux prediction, gives back either an interface displacement or an interface
velocity. Henceforth, let us define the N-N fluid problem operator vF ,n+1

Γ = F−1(f?Γ) and
the N-N solid problem operator vS,n+1

Γ = S−1(−f?Γ).
It is important to point out that the resolution of the presented N-N scheme consists in
minimizing the interface velocity residual since the interface flux equilibrium is imposed
by definition. Thus, the N-N residual to minimize by means of an iterative scheme is
defined as

rn+1
Γ,i+1 = vF ,n+1

Γ,i+1 − vS,n+1
Γ,i+1 (3.15)

that is to say
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rn+1
Γ,i+1 = F−1(f i+1

Γ )− S−1(−f i+1
Γ ) (3.16)

In addition, it is interesting to note in 3.16 that the presented N-N algorithm allows to
solve the fluid and solid problems in a parallel way.
Finally, it is worth observing that the presented N-N algorithm is equivalent to impose
the interface velocity continuity vF ,n+1

Γ = vS,n+1
Γ via Lagrange multipliers in a mono-

lithic resolution. Indeed, the Lagrange multipliers can be viewed as the interface flux
required to fulfil the interface velocity continuity constraint. Similar implementation
and applications of the N-N scheme presented in this work can be found in [27].

3.2 Residual minimization techniques

In these section, the Aitken relaxation scheme, the Jacobian-Free Newton-Krylov meth-
ods (JFNK) and the Multivector Quasi Newton method (MVQN) are presented as resid-
ual minimization techniques. These techniques fulfil the black box solver requirement
stated in the introduction of this chapter. Thus, they have the ability of iteratively
minimize the interface residual without any access to the interior of neither the fluid
nor the solid solvers.

3.2.1 Relaxation techniques

Relaxation techniques are nothing but the line search step of a non-linear solver. Typi-
cally, relaxation techniques are used in combination with the D-N iterative scheme. The
D-N relaxation algorithm used in this work is presented in Alg. 1. As can be seen,
it consists on solving the iterative D-N coupled problem in Eq. 3.8 but considering
a relaxed initial approximation at each iteration. Thus, the initial approximation at
iteration i+ 1 turns to be

vF ,n+1
Γ,i+1 = vF ,n+1

Γ,i + w
(
ṽS,n+1

Γ,i − vF ,n+1
Γ,i

)
= vF ,n+1

Γ,i + wrn+1
Γ,i (3.17)

being w the so called relaxation parameter and rn+1
Γ,i+1 the current iteration residual in

3.9.
The relaxed initial approximation computation depends on the relaxation technique
used. The simplest one is the so called fixed relaxation method in where a constant
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relaxation parameter w is used. However, there exists dynamic techniques, such as the
Aitken relaxation method, in where the relaxation parameter is updated at each iteration.

Algorithm 1 D-N relaxation scheme.
1: for t ≤ tend do:
2: i = 0

3: vSΓ,0 = vS,n
Γ

4: while i ≤ imax do

5: solve fluid: fF ,n+1
Γ,i+1 = F(vS,i

Γ )

6: solve solid: ṽS,n+1
Γ,i+1 = S−1(−fF ,n+1

Γ,i+1 )

7: compute rn+1
Γ,i+1 = ṽS,n+1

Γ,i+1 − vS,i
Γ

8: if ‖rn+1
Γ,i+1‖ ≤ ‖rtol‖ then:

9: Break

10: else:
11: if not fixed, compute wn+1

i+1

12: update vS,n+1
Γ,i+1 → vF ,n+1

Γ,i + wn+1
i+1 r

n+1
Γ,i

13: i = i+ 1

14: t = t+ ∆t

Fixed relaxation parameter

The simplest and most ineffective method is to choose a fixed relaxation parameter
w for all the time steps. The relaxation parameter has to be small enough to ensure
convergence but as large as possible to minimize the computational effort. Hence, the
main difficulty of the method is to choose a suitable relaxation parameter, since the
optimal value is completely problem dependent and impossible to know a priori.

Aitken relaxation scheme

As is pointed in [26], the Aitken relaxation scheme has proven to be astonishingly simple
and efficient. The main idea of the Aitken relaxation is to use information from two
previous iterations to compute the relaxation parameter wi+1 at the current one.
Thus, the Aitken dynamic relaxation parameter in a vector problem can be obtained as
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wi+1 = −wi
(rΓ,i)

T (rΓ,i+1 − rΓ,i)

‖rΓ,i+1 − rΓ,i‖2
(3.18)

where the residuals rΓ,i+1 and rΓ,i are defined as is done in Eq. 3.9. Further details on
the derivation of the Aitken relaxation parameter can be found in [26]. The performance
of the Aitken relaxation is assessed and compared against other line search methods in
[30].
Regarding the initialization of the relaxation parameter at the beginning of the analysis,
it is a common practice to perform the first iterations with a fixed parameter. In this
work, a value of w0 = 0.825 has been considered. This value has been used in [26] as
fixed relaxation parameter in similar problems to the ones presented. Furthermore, it
is also common to initialize the relaxation parameter at each time step as the last one
obtained in the previous step.

3.2.2 Newton family methods

The methods presented in this subsection are suitable for both the D-N and N-N algo-
rithms presented above. For the sake of a lighter notation, from now on and otherwise
stated, the step is always n+1 and both the residual and the unknown are defined in the
interface Γ. Hence, let us consider any interface residual r coming from an interface un-
known u. Considering a 1st order Taylor expansion, the residual r can be approximated
as

ri+1 ≈ ri +
∂ri+1

∂u
∆ui+1 (3.19)

Taking into account that one wants the previous residual to be null, it becomes in

− ri = Ji∆ui+1 (3.20)

where the previous Jacobian matrix has been denoted as Ji. Then, the i + 1 solution
update, which can be obtained from the inversion of the Jacobian in 3.20, is applied as
follows to obtain the current iteration solution 2

2Recall that in this case ui+1 represents any unknown interface variable, since the method can be
equivalently applied to a problem formulated either in terms of the displacements (velocities) or the
nodal fluxes.
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ui+1 = ui + ∆ui+1 (3.21)

It is interesting to point out that the inherent non-linearity of the FSI problem is
handled via the iterative nature of the method. In other words, in a linear problem the
method must always converge in one iteration.
So far, nothing else but the standard Newton-Raphson method for non-linear problems
has been presented. Despite the extensive evidence of the good performance of the
Newton-Raphson method, in the black box algorithms context it has the great disad-
vantage of requiring the explicit Jacobian computation. As pointed before, in black box
coupling techniques, the access to the solver is limited, meaning that the Jacobian is
usually not available or if it is, its computation and storage becomes expensive in com-
putational effort terms. In this context, the methods in which the system Jacobian is
approximated rather than computed arise as an extremely good solution for this issue.
In the next lines, two methods in where the Jacobian is not explicitly computed are
presented. The former is the non-linear Jacobian Free GMRES (JFNK). The latter
is the recently developed Multivector Quasi-Newton method (MVQN). Besides, there
exist other Quasi-Newton approaches that might be used for the resolution of FSI prob-
lems. Some of them are the Broyden method or the Broyden-Fletcher-Goldfarb-Shanno
method (BFGS). The application of these methods to strongly coupled procedures can
be respectively found in [28] and [30].

Non-linear Jacobian Free GMRES

The Generalised Minimal Residual method (GMRES) belongs to the Newton-Krylov
family of linear solvers. Newton-Krylov solvers can be defined as iterative methods for
large linear systems that use the jth Krylov subspace from

Kj(A, r0) = span{r0,Ar0,A0r0, . . . ,Aj−1r0} (3.22)

where r0 = b − Ax0 is the initial linear residual for a given initial approximation x0

of the solution x. There are multiple Newton-Krylov solvers such as the Conjugate
Gradient (CG), the Arnoldi method, the Lanczos method or the mentioned Generalised
Minimal Residual (GMRES).
In this work the GMRES algorithm has been selected as main Newton-Krylov linear
system solver due to its widely proven well performance. However, it is worth mentioning
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that any other Newton-Krylov solver could be used in a similar fashion.
The main idea of the GMRES method is to write the sought solution in terms of
an orthonormal base, which is found via Arnoldi iteration, to the one in Eq. 3.22.
Moreover, the GMRES algorithm has the interesting feature of finding a root in a
maximum number of iterations equal to the number of unknowns, always providing that
the problem converges. Further information regarding the formulation and performance
analysis of the GMRES linear solver can be found in [40].
It is interesting to note that in Eq. 3.20 the Jacobian is not explicitly needed but its
projection onto a vector. Then, the Jacobian computation can be avoided approximating
such projection using finite differences. Thus, the finite differences Jacobian projection
approximation reads

Ji∆ui+1 ≈
R(ui + ε∆ui+1)− R(ui)

ε
(3.23)

where R() is any residual function and ε is a small perturbation. It is mandatory
to comment that this small perturbation has the function of linearising the problem.
Taking into account that the GMRES is conceived as a method to solve linear system
of equations, a non-linear residual, as the one that arises in a FSI problem, cannot be
considered.
In this context, the perturbation value ε can be viewed as the distance covered by the
correction, meaning that if ε is sufficiently small R(ui + ε∆ui+1) ≈ ri+1, that is to say
that the two previous residual problems are close to be equal implying that the Jacobian
approximation is almost linear and can be solved with the GMRES method.
However, the selection of a value for such perturbation ε is one of the disadvantages of
the presented method since it is completely problem dependent and might condition the
convergence. Hence, it must be small enough to linearise the residual but as large as
possible to reduce the computational effort. In [30] a formulae for the computation of
ε is used. However, it is also recommended to consider a ε value which order is around
half the machine precision. Taking this statement into account, values ε = 10−6 and
ε = 10−7 have been used in this work.
Thus, to solve the residual equation in Eq. 3.20 with the GMRES method and the
Jacobian approximation in Eq. 3.23 yields the non-linear Jacobian-Free GMRES algo-
rithm, in where the non-linearity of the problem is handled by means of an outer loop,
which iterates until a non-linear tolerance criteria tolNL is fulfilled or up to a maximum
number of non-linear iterations.
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Summarizing, the main features of the presented Jacobian-Free non-linear GMRES
strategy implementation are listed below

• The non-linearity is handled by means of an external loop that carries on until a
given non-linear convergence criterion is fulfilled.

• The capability of the GMRES to iteratively solve large linear systems of equations
is exploited in the resolution of each one of the linearised residual equations.

• The Jacobian computation is avoided approximating its projection onto a vector
via finite differences.

• The Jacobian of the interface residual is linearised provided that ε is sufficiently
small.

Finally, the non-linear Jacobian-free GMRES algorithm implemented in this work is
presented in Alg. 2.

Multivector Quasi-Newton method

According to [4], the MVQN method is a Quasi-Newton method that can be viewed
as a generalisation of the Broyden scheme. Comparing to the Broyden scheme, the
MVQN has the advantage of exactly reproduce all the current step information, as
opposed to the last observation of the current step information. This leads to an inherent
consistency condition with Newton's method. Therefore, the MVQN method is based
in approximating the inverse of the Jacobian in Eq. 3.20 with the information stored in
the so called observation matrices, which are defined as follows

Vi = [∆ri ∆ri−1 . . .∆r2 ∆r1] (3.24a)

Wi = [∆ui ∆ui−1 . . .∆u2 ∆u1] (3.24b)

where ∆ri = (ũi − ui) − (ũi−1 − ui−1) and ∆ui = ui − ui−1, being ũ the solution of
the D-N operator in Eq. 3.6. Moreover, the MVQN can be also applied to the residual
form of the N-N algorithm. For the N-N residual case, ∆ri = (uFi −uSi )− (uFi−1−uSi−1)

while ∆fi = fi − fi−1. Then, the inverse Jacobian approximation can be computed by
means of the previous observation matrices as
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Algorithm 2 Non-linear Jacobian-Free GMRES.
1: i = 0

2: u0 = un (initial guess from prev. time step)
3:

4: while i ≤ iNL,max do:
5: ui = ui−1 (NL iteration guess)
6:

7: Base residual computation:

8: Solve fluid: F(ui)

9: Solve solid: S(ui)

10: Base residual: ri = F(ui)− S(ui)

11:

12: Linearised correction:

13: Create the callable: J∆u =
R(ui + ε∆ui)− ri

ε
14: GMRES minimization: ∆u = GMRES(J∆ui,−ri)
15: NL iteration guess update: ui = ui + ∆u

16:

17: Convergence check:
18: if convergence = True then:
19: Break
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Jn+1
i+1 = Jn + (Wi − JnVi)

(
VT
i Vi

)−1
VT
i (3.25)

The pseudo-code of the MVQN method is depicted in Alg. 3. Note the necessity of
performing a fixed point iteration at the very beginning of the problem to have enough
information to initialize the observation matrices. However, this is only needed at the
first time step, since in the steps onwards the first iteration update can be performed
with the stored previous step Jacobian. Besides, an initial approximation of the inverse
Jacobian is also required. In this case J0 = −I.
In addition, in [4] it is stated that the number of vectors in the observation matrices
should never exceed the number of interface DOFs to avoid an over-determined problem.
According to the convergence behaviour of the MVQN method this rarely occurs, but if
it happens to be the case, the last column, which contain the older information, can be
dropped at each iteration.
Finally, it has to be said that the MVQN can be also applied to the block iterative
equations form as opposed to the residual form described here. According to [4], the
block form is slightly more stable but requires to solve two sets of linear equations.
Thus, the residual equations as described here are expected to be slightly faster as the
system size increases.
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Algorithm 3 Multivector Quasi-Newton method.
1: i = 1

2: u0 = un

3: Empty Vi and Wi

4:

5: while i ≤ inl,max do:
6: Solve the coupled problem→ Get ri
7: Check convergence:
8: if convergence = True then:
9: Break

10: else:
11: if step = 1 and i = 1 then:
12: u1 = u0 + wr0

13: else if step 6= 1 and i = 1 then:
14: Jn+1

2 = Jn

15: ∆u2 = Jn+1
2 r1

16: u2 = u1 + ∆u2

17: else:
18: Vi and Wi updates
19: Jn+1

i+1 = Jn + (Wi − JnVi)
(
VT
i Vi

)−1
VT
i

20: ∆ui+1 = Jn+1
i+1 ri

21: ui+1 = ui + ∆ui+1



Chapter 4
Tests and results

This chapter collects all the tests carried out to validate the implementation of the
methodologies described in chapter 3. First of all, the Kratos Multiphysics framework
as well as the main aspects of the implementation are described. Secondly, this section
also collects the tests performed along with their results.
Regarding the developed simulations, four different problems are presented. The domain
decomposition of the well-known cavity flow problem is firstly discussed to check the
correctness of the implementation due to its simplicity. Secondly, a first FSI case is
presented to assert the performance of the implementation in an FSI context. Besides,
as FSI 2D final test the Turek-Hron benchmark [43] is reproduced. Finally, a preliminary
3D case reproducing the blood flow in a human vein is also depicted.

4.1 Code implementation

4.1.1 Kratos Multiphysics and GiD framework

All the code developed in this work has been implemented using the Kratos Multiphysics
(Kratos) software [14] [16], maintained and developed by CIMNE researchers for more
than ten years ago. Kratos is an open-source framework for the implementation of nu-
merical methods for the resolution of engineering problems. Moreover, it is intended
to be extremely modular to allow the collaborative development by large teams of re-
searchers. Such modularity is achieved thanks to the core and applications combination.
Thus, the standard tools or procedures such as databases, linear algebra or search struc-
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tures come as a part of the core and are available as building blocks in the development
of applications, which focus on the solution of the problem of interest.
In addition, Kratos aims to the optimization and the computational effort reduction.
By this reason, it has two implementation levels. A higher one coded in Python, which
is used as scripting language due to its simplicity, and a lower one coded in C++ which
represents the majority of the code. Furthermore, Kratos also includes parallelization
in both OpenMP and MPI languages.
On the other hand, the GiD v12 commercial software has been used as pre and post-
processor. GiD is also developed by CIMNE researchers and works in combination with
Kratos thanks to a specific problemtype. GiD Kratos problemtype allows to introduce
all the problem settings such as materials, boundary conditions or solution strategies
needed to perform a simulation in Kratos.
Further information regarding Kratos Multiphysics and GiD can be found in their official
websites [15] and [29].

4.1.2 Implementation aspects

Recovering the black boxes concept introduced in chapter 3, the SolidMechanicsApplica-
tion and FluidMechanicsApplication, already implemented in Kratos, are used as black
box solvers for the solid and fluid domains of the FSI problem. Thus, the main effort of
the presented implementation, which has been programmed in the Python top level of
Kratos, is related with the coupling between these two applications.
Despite the fact that C++ has a much more optimized performance than Python,
this is not a large disadvantage in this case, since the most computationally expensive
tasks (the solid and fluid problems resolution) are executed at the C++ level by their
corresponding applications. In this manner, one can take advantage of the simplicity
and flexibility of Python language during the implementation.
However, it has to be said that at the beginning of this work some functionalities
were missing in the existent applications. Apart of some minor modifications, the main
implementation carried out within Kratos was the creation of a punctual load condition
to be applied at the RHS of the fluid problem for the imposition of nodal fluxes in the
N-N coupling algorithm.
Regarding the Python level implementation, it can be roughly summarized in four main
types of scripts that each one of the presented simulations must have. These files are
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listed below.

• Main file: This script, called MAIN_FILE_FSI.py, launches the simulation.

• Strategy scripts: These scripts collect the coupling resolution. Thus, they contain
the implemented coupling strategies distributed in the next set of files

– mvqn_strategy.py

– jfnk_strategy.py

– relaxation_strategy.py

as well as the residual definitions in residual_definitions.py.

• Fluid class script: This script (FluidProblemClass.py) acts as a communicator
between the main script and the Kratos fluid black box solver. Thus, it is a
collection of instructions to be called in the main file to perform tasks such as
initialize the problem, solve it, advance in time or write the output files.

• Solid class script: In a similar fashion to the fluid class script, the solid class script
(SolidProblemClass.py) acts as a communicator between the main script and
the Kratos fluid black box solver.

• Auxiliary scripts: Contain utilities to perform secondary tasks such as the com-
munication between solid and fluid at the interface.

In addition, it has to be said that the main scripts pointed before have been programmed
in an object oriented fashion, meaning that any strategy or new residual definition can
be straightforwardly added if their syntax is respected. Thus, any new residual must
have a constructor as well as a ComputeResidual method that given an input array
gives back a residual. For the coupling strategies, they must have a constructor be-
sides the methods ExecuteInitializeSolutionStep, InterfaceSolutionUpdate and
ExecuteFinalizeSolutionStep.
The main files and scripts described above can be found in annex A.
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4.2 Cavity flow problem

4.2.1 Problem description

In this section the coupling approaches developed in chapter 3 are used to perform the
domain decomposition of the well-known cavity flow problem. Despite this is not a
FSI problem, its domain decomposition approach is specially useful to check correctness
thanks to the known solution. Moreover, the computational cost of each one of the
strategies developed can also be assessed by means of this problem.
As depicted in figure 4.1, the cavity flow problem consists in a fluid contained in a
unit length square domain with Dirichlet boundary conditions on all its sides: three
stationary and one moving. Depending on how the moving side condition is imposed,
one can distinguish two different cases. The former is the lid-driven cavity flow problem
in where the corners of the moving side have velocity different than zero. The latter is
the shear-driven cavity flow problem, in where the corners of the moving side have zero
velocity. This last one has been selected in this work. In [17] a deep analysis of the
cavity flow problem simulation can be found.

Ωf

v=(1,0)

v=(0,0)

v=(0,0)v=(0,0)

p=0

Figure 4.1: Cavity flow problem.

Thus, the presented problem consists in two disjoint domains in which the Navier-Stokes
equations are solved considering that their solutions are coupled at the interface. Figure
4.2 depicts the geometry of the coupled partitioned problem. Regarding the Reynolds
number, the characteristic velocity, density and viscosity were set such that Re = 100.
As a consequence, the convective term contribution is almost null, meaning that the flow
is close to be of Stoke's type. Thus, no stability nor turbulence problems are expected.
Regarding the mesh, a structured mesh of 1720 elements (20×40 equally spaced edge
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Ω1

v=(1,0)

v=(0,0)

v=(0,0)

p=0

intΓ

(a) Left domain.

Ω2

v=(1,0)

v=(0,0)

v=(0,0)

p=0

intΓ

(b) Right domain

Figure 4.2: Cavity flow problem domain decomposition.

divisions) has been used at each subdomain. The element type is a Q1P1 triangular
element for fluids. The time as well as material parameters of the simulation are listed
below.

• ttot = 1sec

• ∆t = 0.01sec

• ρ = 1000kg/m3

• ν = 0.01m2/s

Finally, the convergence criterion has been set as the L2-norm of the interface velocity
residual in accordance to the algorithms presented in chapter 3. Thus, the convergence
criterion is ‖r‖ = ‖vΓ,1 − vΓ,2‖ ≤ tolNL, being tolNL = 1e− 05.

4.2.2 Results assessment

To assess the performance of the aforementioned coupling algorithms and residual mini-
mization techniques, the partitioned cavity flow problem described above has been solved
by means of the next strategies

• Dirichlet-Neumann coupling with Jacobian Free non-linear GMRES residual min-
imization (D-N JFNK).

• Dirichlet-Neumann coupling with Aitken relaxation (D-N Aitken).
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• Dirichlet-Neumann coupling with Multivector Quasi-Newton Method residual min-
imization (D-N MVQN).

• Neumann-Neumann coupling with Jacobian Free non-linear GMRES residual min-
imization (N-N JFNK).

• Neumann-Neumann coupling with Multivector Quasi-Newton method residual
minimization (N-N MVQN).

All the D-N iterative schemes related above are developed in a Gauss-Seidel fashion.
Despite this, Jacobi iterative schemes were also tried but no convergence was achieved.
First of all, one of the obtained partitioned solutions is presented in figure 4.3. In this
case, it has been selected to show the solution obtained with the N-N JFNK coupling
approach as a sample of all the partitioned solutions computed, since no differences can
be appreciated. As can be seen, the partitioned solution matches the expected cavity
flow problem solution.

(a) Left domain solution. (b) Right domain solution.

Figure 4.3: ‖v‖ partitioned results for Re = 100 and t = 1 (N-N JFNK algorithm).

Complementary, figure 4.4 depicts the obtained vx, vy and pressure results at an hori-
zontal cross section placed at y = 0.8. As commented above, there is barely difference
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between the five implemented techniques. Moreover, the results perfectly match the
complete reference solution. Figures 4.4a, 4.4b, 4.4c and 4.4d also shown that the inter-
face velocity continuity requirement is fulfilled by all the coupling techniques developed.
The same cross section data has been extracted from the pressure field (figures 4.4e and
4.4f). As was the case for the velocity results, the partitioned pressure results match the
reference complete solution for all the coupling strategies developed. However, it has to
be said that a little discontinuity, which becomes smaller as the mesh is refined, appears
at the interface values. Taking into account that having two disjoint domains implies
that the nodes at the interface location are doubled and considering that only velocity
continuity is explicitly imposed, it is possible to have two different pressure values at
the interface. Thus, as long as the mesh is refined, the interface pressure must converge
to a unique value as has been proved.
On the other hand, the computational performance of each one of the developed coupling
strategies has been assessed using the number of residual evaluations and the CPU spent
time. The tests have been performed with a Quad-Core AMD FX-8350 processor.
Figures 4.5 and 4.6 collect the number coupled problem evaluations, that is to say, the
residual evaluations and the CPU spent time assessment. As can be seen, there are
barely variation in the results evolution, meaning that all the presented strategies have
almost constant number of problem evaluations.
Besides, it is interesting to point out that the MVQN method performs similarly with
both the D-N and N-N schemes. However, this is not the case for the JFNK one, which
computational cost is much more reduced when the D-N scheme is used (figure 4.6b).
Therefore, it can be observed that the problem linearisation in the JFNK strategy ap-
pears to affect more the N-N scheme. Furthermore, it has to be said that independently
of the minimization strategy, the N-N scheme is much more sensitive to the initial guess,
leading to a much higher number of coupled problem evaluations to reach the equilibrium
at the beginning of the problem.
For the general computational effort assessment, it is useful to study the total resolution
spent time (figure 4.6b). As can be seen, the superior performance of the two MVQN
approaches is overwhelming. Compared with the JFNK strategy, the computational
effort reduction of the MVQN method is around the 75% for the D-N scheme and around
the 85% for the N-N one. Moreover, it has to be said that considering its simplicity,
the Aitken relaxation scheme has an extremely good performance, which in this case is
even better than the JFNK one.
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(a) vx Dirichlet-Neumann algorithms.
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(b) vx Neumann-Neumann algorithms.
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(c) vy Dirichlet-Neumann algorithms.
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(d) vy Neumann-Neumann algorithms.
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(e) Pressure Dirichlet-Neumann algorithms.
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(f) Pressure Neumann-Neumann algorithms.

Figure 4.4: Cross section results comparison (t = 1, y = 0.8).
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Figure 4.5: Coupled problem evaluations comparison.

Finally, it is interesting to point out the reasons that make the MVQN method perform
so well compared with the other schemes. The JFNK approach makes a correction
based on a linearised residual while the MVQN method is approximating the proper
inverse Jacobian considering the original non-linear residual. Moreover, the MVQN
method requires only one residual evaluation per non-linear iteration while the JFNK
one does as linearised residual evaluations as GMRES iterations, leading to a greater
total computational cost. The previous statement also applies for the Aitken relaxation,
but what makes the MVQN method to overcome the Aitken relaxation performance is
the fact that it is considering information from all the previous non-linear iterations
while the Aitken method only considers two non-linear iterations.

4.2.3 Alternative coupling strategies

This section briefly comments the alternative coupling strategies that were tried to
deal with the interface pressure discontinuity. It has to be said that these are some
preliminary tests before a deeper study of the presented alternatives.
The first trial was to define the N-N algorithm residual in a weak sense as

rΓ =

∫
Γ

W (vΓ,1 − vΓ,2) dΓ = 0 (4.1)

As can be seen, instead of minimizing the residual nodally, which is equivalent to
minimize the L∞-norm of the interface residual, the L2-norm is minimized in this case.
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Figure 4.6: Coupled problem CPU times comparison.

To do that, an auxiliary interface mesh, which in the 2D cavity problem case is composed
by 1D elements, is used to discretize the weak residual depicted in Eq. 4.1. After the
space discretization, the residual to be minimized is

rΓ = Mrnodes (4.2)

where M is a mass matrix which components are defined as

Mij =

∫
Γe
Ni(x)Nj(x)dΓ (4.3)

The previous approach led to exactly the same velocity and pressure results that the
previously presented ones. Thus, it was decided to append the interface pressure dif-
ference rΓ,p = pΓ,1 − pΓ,2 to the weak residual. In this way, an extra DOF is added to
the interface problem to explicitly impose the pressure continuity. Despite the fact that
this approach worked in some cases, it do not manage to converge all the times.
This behaviour was associated to the fact that in the incompressible case, the pressure
is linked to the velocity to enforce the divergence free condition. Then, adding it as an
interface DOF implies to add an extra restriction to the minimization problem without
any further information.
Finally, the last idea was to define the residual in the interface edges instead of defining
it nodally. Despite this makes the continuity requirement weaker since there are less
DOFs, the interface pressure discontinuity remained without noticeable differences.
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4.3 Channel with flexible wall problem

4.3.1 Problem description

This model problem was firstly proposed by Mok in 2001 [31]. It consists in a 2D
convergent fluid channel that contains a flexible wall structure attached to its bottom
wall. The main challenge of the test is that the densities of the fluid and the structure
have similar order of magnitude, leading to a strongly coupled problem in where large
interaction between the two fields appears.

Figure 4.7: Mok benchmark geometry and boundary conditions. Image taken from [44].

As depicted in figure 4.7, the top edge is set as a slip boundary while the inferior one
is set as non-slip. Besides, the pressure is set to zero at the right edge. Regarding the
left side inlet, it is considered to be parabolic according to the next equation

v(y, t) = 4v̄y(1− y) (4.4)

where v̄ is a time dependent reference velocity such that

v̄ =

{
0.06067

2

(
1− cos πt

10

)
if t ≤ 10

0.06067 otherwise
(4.5)

Table 4.1 collects the fluid and solid material properties. Regarding their constitutive
equations, the fluid is considered as a simple Newtonian fluid while a linear elastic plane
stress law with unit thickness has been used in the solid. Furthermore, geometrical
non-linearity is considered since large displacements are expected.
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Table 4.1: Mok problem material data.

Structure Fluid

ρs 1500.0 kg/m3 ρf 956.0 kg/m3

E 2.3e106 N/m2 µ 0.145 Pa · s

ν 0.45

The simulation runs from 0 to 25 seconds with a fixed time step of ∆t = 0.1 seconds.
For both the fluid and solid problems, the Kratos default Bossak scheme has been used.
Finally, a mesh composed by 6428 linear triangular elements (Q1P1 element) has been
used in the fluid domain. In this way, the fluid mesh is similar to the one presented
in [44] and a comparable framework is set. The solid mesh is conformed by 404 linear
large displacement quadrilateral elements in order to match the fluid nodes at the inter-
face. The mesh movement is carried out using a non-linear structural technique already
implemented in Kratos.

4.3.2 Results assessment

First of all, it has to be clearly stated that for the sake of simplicity, it was decided to
show the Mok test results assessment with the D-N MVQN and N-N MVQN strategies,
since barely difference can be found with the solution obtained with the other three
approaches. Moreover, the interface residual criterion stated for the cavity problem has
been kept, since it was considered to be restrictive enough for an FSI problem.
The results assessment has been carried out as is done in [31] and [44]. Thus, the x-
component of the velocity vx as well as the pressure p have been extracted from points
A and B, which are located at the tip and the middle point of the windward side of the
flexible wall (figure 4.7).
Figure 4.8 compares the obtained x-component displacement evolution in points A and
B with the reference solutions. In can be noticed that both D-N MVQN and N-N MVQN
strategies have no apparent differences between them. If they are compared with the
reference solutions, the point A ux evolution is in perfect accordance with the one in [44]
but as the problem evolves, it becomes closer to the one in [31] (figure 4.8a). For the
point B case, it perfectly matches the solution given in [44], which is slightly deviated
from the one given in [31] (figure 4.8b).
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Figure 4.8: x-displacement component ux evolution comparison.

The same results comparison has been carried out for the pressure (figure 4.9). As can
be seen in figure 4.9a, both obtained pressure evolutions perfectly match the solution
given in [44]. For the point B case (figure 4.9b), the four analysed solutions match.
Besides, the pressure oscillations that appear in the original solution do not appear.

0 5 10 15 20 25

t [s]

0

5

10

15

20

p
 [
N
/m

2
]

Mok (2001)

Valdés (2007)

N-N MVQN

D-N MVQN

(a) Point A.

0 5 10 15 20 25

t [s]

0

5

10

15

20

25

p
 [
N
/m

2
]

Mok (2001)

Valdés (2007)

N-N MVQN

D-N MVQN

(b) Point B.

Figure 4.9: Pressure p evolution comparison.

Furthermore, some time snapshots of the obtained solution are shown in figure 4.13
and 4.14. Figure 4.13 depicts the vx velocity component evolution. This component
allows to study how the flow is detached from the top part of the elastic wall and
generates a vortex in the leeward side of the wall. Regarding the pressure field evolution
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(figure 4.14), it is interesting to note the pressure gradient between the windward and
the leeward parts of the wall, and how it diminishes when the inlet becomes constant
(t = 10 s) and the flow is stabilized.
Once arrived to this point, it can be said that the obtained solutions are correct and
match the reference ones, specially the one given by [44]. Taking into account that this
solution was confirmed by [39], it can be asseverated that the implementation of the FSI
framework is correct.
Complementary, a computational effort and convergence assessment has been carried
out as well. In this case, the performance analysis have been done with an Intel i7-4790
Quad-Core processor. The previous example absolute residual criterion and tolerance
are used.
Figure 4.10a depicts the step-by-step evolution of the coupled problem evaluations.
Clearly, the N-N JFNK strategy is the one that have the poor performance. Regarding
the other four algorithms, the D-N MVQN and the D-N JFNK ones have a similar
evolution trend, in which the required coupled problem evaluations slightly varies along
the simulation. For the N-N MVQN it can be observed again that it requires more
residual evaluations at the initial steps of the problem but as long as the problem
evolves it starts to decrease. The Aitken relaxation has slight variations without a clear
pattern.
Furthermore, if the total number of coupled problem evaluations is analysed it can
be noted that the D-N MVQN requires around one half of the D-N JFNK residual
evaluations and around one third of D-N Aitken ones. If both MVQN schemes are
compared, the D-N MVQN method performs approximately twice better than the N-N
MVQN method.
Additionally, figure 4.11 collects the CPU time assessment. As can be observed, the
results are pretty similar to the coupled problem evaluations ones. Studying the total
CPU time, it can be asseverated that the MVQN technique performance is overwhelm-
ing for both the D-N and the N-N schemes. Indeed, it represents a reduction in the
computational effort around the 50% compared to the other D-N schemes (Aitken and
JFNK) and around 80% for the N-N scheme case. Consequently, it can be asserted
that the most efficient approach is again the D-N MVQN method. Regarding the N-N
scheme, it has to be highlighted that it is extremely optimized when the MVQN method
is used.
On the other hand, figure 4.12 depicts the convergence rate of the JFNK and MVQN
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Figure 4.10: Coupled problem evaluations comparison.
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strategies with both the D-N and N-N coupling schemes. First of all, it can be noted
that in all the presented cases the convergence is supralinear. Moreover, the JFNK
strategy has a much higher convergence order than the other approaches. Despite this,
it requires a larger computational effort due to the above mentioned higher non-linear
iteration cost, coming from the fact that each GMRES iteration requires one evaluation
of the residual. Comparing the D-N and N-N schemes, the D-N always have a better
convergence rate, specially in the MVQN method case.
Finally, it is important to point out some of the particularities that have been observed
during the development of the previous example. Regarding the MVQN method, it has
to be said that the initial inverse Jacobian approximation widely affects the convergence
of the very first steps, meaning that the lack of information yields an initial rate of
convergence lower than the expected one. Thus, it is advisable to initialize the problem
in a soft manner as is done in the presented case. Secondly, one must take care with the
problem tolerances, meaning that if the overall non-linear tolerance is similar to either
the fluid or solid solver ones, the method might start to struggle around the non-linear
tolerance value without overcoming it.

4.4 Turek-Hron benchmark

4.4.1 Problem description

The well-known Turek-Hron benchmark, which is presented in [43], has been selected
as final 2D test for the FSI framework developed due to its complexity. There are three
configurations of the Turek-Hron benchmark, known as FSI1, FSI2 and FSI3, which
involve the same geometry but different settings.
The complexity of the test comes from either the large displacements that the immersed
structure develop (FSI2) or by the high frequency of its oscillations (FSI3). Moreover,
it has to be taken into account that the solid behaviour considers both geometrical and
material non-linearities.
The problem geometry is depicted in figure 4.15. As can be seen in figure 4.15a, the solid
geometry consists in a radius r = 0.05 cylinder which center is placed at coordinates
(0.2, 0.2). Regarding the flag, its thickness is h = 0.02 and its length is l = 0.35. The
flag right bottom corner is placed at coordinates (0.6, 0.19). On the other hand, the
fluid domain (figure 4.15b) consists in a rectangular box of length L = 2.5 and height
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Figure 4.12: Convergence assessment for the JFNK and MVQN methods.
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(a) t = 5 s.

(b) t = 10 s.

(c) t = 15 s.

(d) t = 20 s.

(e) t = 25 s.

Figure 4.13: Mok test obtained vx [m/s] fields (real scale deformation).
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(a) t = 5 s.

(b) t = 10 s.

(c) t = 15 s.

(d) t = 20 s.

(e) t = 25 s.

Figure 4.14: Mok test obtained p [Pa] fields (real scale deformation).
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H = 0.41 (all the previous measures are given in meters).

(a) Solid domain.

(b) Fluid domain.

Figure 4.15: Turek-Hron benchmark geometry. Image taken from [43].

Regarding the fluid problem boundary conditions, both top and bottom edges as well
as the cylinder are considered as non-slip boundaries while the pressure is set to zero in
the right end edge. Besides, a parabolic inlet is imposed in the left edge according to
the next equation

v(y, t) = 1.5v̄
4

0.1681
y(0.41− y) (4.6)

where v̄ is a time dependent reference velocity such that

v̄ =

{
ū

1−cos(πt2 )
2

if t ≤ 2

ū otherwise
(4.7)

The fluid is considered to be of Newtonian type and its material parameters are a
density ρf = 1000kg/m3 and a kinematic viscosity of νf = 0.001m2/s. On the other
hand, and hyperelastic Kirchhoff-Saint Venant plane strain constitutive law has been
considered in the moving flag. The solid parameters will be discussed later on since they
vary depending on the test performed.
Finally, the same elements as the ones considered in the previous tests have been used.
Thus, the fluid mesh is made by triangular Q1P1 linear elements while the solid mesh
is made by linear quadrilateral large displacement elements. As pointed before, both
elements and constitutive laws were already implemented in Kratos.
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4.4.2 Model calibration

Due to the complexity of the Turek-Hron benchmark, lots of previous calibration tests,
which are also addressed in [43], are required to obtain the expected solution. This
subsection collects the results of the calibration tests performed.

CSM problem calibration

According to [43], the computational solid mechanics problem is calibrated introducing
a body force b = [0,−2, 0] and studying the displacement evolution of point A (see
figure 4.15a). In CSM1 a static problem is solved considering ρs = 1000kg/m3, ν = 0.4

and E = 1.4e+06N/m2. CSM2 has the same material parameters to CSM1 but E =

5.6e+06N/m2. The last test CSM3 is equal to CSM1 test but under dynamic conditions.
Tables 4.2, 4.3, 4.4 and 4.5 collect the obtained results of such CSM1, CSM2 and CSM3
calibration tests. For the two CSM1 and CSM2 static tests the displacements ux and
uy are depicted. On the other hand, for the dynamic test CSM3 the mean value and
amplitude of ux and uy are analysed. The reference solutions for these values are

• CSM1: ux = −0.007187 m, uy = −0.0661 m

• CSM2: ux = −0.000469 m, uy = −0.01697 m

• CSM3: ux = −0.014305± 0.014305 m, uy = −0.063607± 0.06516 m

Once the CSM tests have been performed, it can be stated that the structural solver
settings are in accordance to the ones given by the reference solution. Regarding the
mesh convergence study, the mesh number 4 has been selected as reference mesh, since
it is the unique that ensures a deviation smaller than a 5%, which has been set as the
maximum difference threshold.

CFD problem calibration

As was the case for the solid mechanics problem, the fluid dynamics one needs also to
be calibrated. To do that, in [43] there are also collected the CFD1, CFD2 and CFD3
calibration tests. Such tests consist in solving the fluid problem considering the cylinder
as well as the flag as rigid objects. Regarding the inlet reference velocities, there are
ū = 0.2, ū = 1 and ū = 0.2m/s for CFD1, CFD2 and CFD3 respectively.



88 Tests and results

Table 4.2: CSM1 calibration test results.

Mesh nnodes ux[m] uy[m] rel. err. ux[%] rel. err. uy[%]

0 93 −0.004204 −0.05078 41.5 23.18

1 205 −0.005766 −0.05935 19.78 10.21

2 427 −0.006468 −0.06283 10.01 4.94

3 819 −0.006798 −0.06441 5.42 2.56

4 1331 −0.006936 −0.06506 3.46 1.57

Table 4.3: CSM2 calibration test results.

Mesh nnodes ux[m] uy[m] rel. err. ux[%] rel. err. uy[%]

0 93 −0.0002695 −0.012895 42.54 24.01

1 205 −0.0003731 −0.015160 20.46 10.67

2 427 −0.0004203 −0.016092 10.39 5.17

3 819 −0.0004425 −0.016516 5.64 2.68

4 1331 −0.0004520 −0.016692 3.64 1.64

Tables 4.6 and 4.7 collect the solid (cylinder plus flag) drag and lift obtained results.
The reference solutions of the tests performed are

• CFD1: Drag:14.29 N , Lift:1.119 N

• CFD2: Drag:136.7 N , Lift:10.53 N

• CFD3: Drag:439.45± 5.62 N , Lift:−11.89± 437.81 N

As was expected, both the the CFD1 and CFD2 tests drive to a stationary solution in
all the meshes considered. Besides, it is interesting to point out that the lift calibration
requires much more refinements than the drag one. Hence, at least meshes labelled as
4 and 5 are required in CFD1 test to ensure an lift error below the 5%. For the CFD2
test,at least meshes 7 and 8 are required. Finally, CFD3 was performed using the most
refined mesh 8. The obtained results were in accordance to the reference ones.
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Table 4.4: CSM3 calibration test results (∆t = 0.02).

Mesh nnodes ux[m] uy[m] rel. err. ux[%] rel. err. uy[%]

0 93 −0.008607± 0.008607 −0.049869± 0.050854 39.83± 39.83 21.60± 21.96

1 205 −0.011676± 0.011677 −0.057788± 0.058945 18.35± 18.37 9.15± 9.54

2 427 −0.013087± 0.013087 −0.060965± 0.062293 8.51± 8.51 4.15± 4.40

3 819 −0.013754± 0.013755 −0.062395± 0.063882 3.85± 3.84 1.91± 2.05

4 1331 −0.014036± 0.014036 −0.062991± 0.064460 1.88± 1.88 0.97± 1.07

Table 4.5: CSM3 calibration test results (∆t = 0.01).

Mesh nnodes ux[m] uy[m] rel. err. ux[%] rel. err. uy[%]

0 93 −0.008657± 0.008658 −0.049770± 0.051164 39.48± 39.48 21.75± 21.48

1 205 −0.011803± 0.011803 −0.057756± 0.059403 17.49± 17.49 9.20± 8.84

2 427 −0.013197± 0.013197 −0.060937± 0.062695 7.75± 7.75 4.20± 3.78

3 819 −0.013864± 0.013864 −0.062396± 0.064191 3.08± 3.08 1.90± 1.49

4 1331 −0.014137± 0.014138 −0.062990± 0.064801 1.17± 1.17 0.97± 0.55

4.4.3 Results assessment

This section collects the results of the performed Turek-Hron FSI tests. It has to be
said that only the D-N MVQN approach, which has been proven to be the most com-
putationally efficient one, has been used in this section due to the large computational
cost of the presented experiment. By the same reason, the convergence criterion has
been kept but the tolerance has been reduced to 10−4. Regarding the mesh solver,
the same non-linear pseudo-structural technique has been used again. The comparison
magnitudes for the results assessment are the flag tip (point A) displacement as well as
the whole body drag and lift. The settings to perform the three Turek and Hron FSI
benchmarks are collected in table 4.8.

FSI1 benchmark

According to [43], the FSI1 test can be firstly solved as an initial validation due to its
simplicity, which comes from the low Reynolds number considered. Thus, the FSI1 test
was firstly performed using a coarse mesh (number 4 in the previous calibration tests)
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Table 4.6: CFD1 calibration test results (∆t = 0.01).

Mesh nnodes Drag [N ] Lift [N ] rel. err. Drag [%] rel. err. Lift [%]

1 1300 0.136 0.0002 98.8 99.99

2 1769 14.63 1.31 2.38 16.71

3 2339 14.66 0.81 2.59 27.61

4 2906 14.50 1.12 1.47 0.1

5 4615 14.42 1.10 0.91 1.7

Table 4.7: CFD2 calibration test results (∆t = 0.01).

Mesh nnodes Drag [N ] Lift [N ] rel. err. Drag [%] rel. err. Lift [%]

2 1769 146.83 1.93 7.08 81.67

3 2339 146.36 0.02 7.06 99.81

4 2906 142.31 2.54 4.18 75.88

5 4615 140.81 8.91 3.00 15.38

6 7101 138.23 12.17 1.11 15.57

7 9795 137.92 9.92 0.89 5.79

8 13573 137.62 10.60 0.67 0.66

and the settings given by [43], which are collected in table 4.8.
Table 4.9 summarizes the results of the FSI1 test. As can be seen, the expected station-
ary solution was obtained. Comparing the obtained values against the reference ones,
the maximum relative error in all the studied magnitudes is less than the 3%. Thus, it
can be stated that the FSI implementation is well calibrated and ready to move to the
much more requesting FSI2 and FSI3 benchmarks.

FSI2 benchmark

As pointed in [43], the interesting point of FSI2 test is that it must drive to periodic
oscillations in both the fluid and the solid domains, despite the fact that CFD2 has a
stationary solution. Therefore, FSI2 is specially interesting to check the affectation of
the interaction mechanisms.
Because of the expected oscillatory behaviour a much finer mesh is needed to capture
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Table 4.8: Turek & Hron FSI tests settings.

Parameter FSI1 FSI2 FSI3

ρs [kg/m3] 1000 10000 1000

νs 0.4 0.4 0.4

E [N/m2] 1.4e+06 1.4e+06 5.6e+06

ρf [kg/m3] 1000 1000 1000

νf [ms/s] 0.001 0.001 0.001

∆t [s] 0.01 0.002 0.001

ū [m/s] 0.2 1.0 2.0

Re 20 100 200

Table 4.9: FSI1 reference and obtained control values.

Magnitude Reference Obtained rel. err [%]

ux,A [m] 0.0227e-03 0.02331e-03 2.69

uy,A [m] 0.8209e-03 0.82336e-03 0.30

Drag [N ] 14.295 14.497 1.41

Lift [N ] 0.7638 0.7707 0.90

such phenomenology. Thus, the previously referred refined mesh number 8 has been
used. The particular settings to perform the FSI2 test are collected in table 4.8. How-
ever, for the sake of reducing the computational cost, the time step given in [43] has
been modified to ∆t = 0.0025 s.
Table 4.10 collects the maximum and minimum obtained values for both the drag
and the lift. As can be seen, the drag bounds are in very good accordance with the
reference values. Regarding the lift, the maximum and minimum values relative errors
is a slightly less accurate, being around the 6.5%. On the other hand, table 4.11 collects
the maximum and minimum results for the point A displacements. It can be noted that
the uy results are very close to the reference one, being the relative error for both the
maximum and minimum values less than the 3%. For the ux displacement component,
the relative errors are larger, with a maximum around the 7%. Taking into account
that in the ux case the absolute error magnitude order is 10−4, these results have been
considered to be precise enough.



92 Tests and results

Table 4.10: FSI2 drag and lift results assessment.

Drag Lift

Reference [N ] Obtained [N ] rel. err [%] Reference [N ] Obtained [N ] rel. err [%]

max 292.71 304.14 3.90 238.41 253.54 6.35

min 137.41 137.44 0.02 −237.19 −253.35 6.81

Table 4.11: FSI2 ux and uy results assessment.

ux uy

Reference [m] Obtained [m] rel. err [%] Reference [m] Obtained [m] rel. err [%]

max −0.00215 −0.00231 7.44 0.0830 0.0852 2.65

min −0.02755 −0.02910 5.63 −0.0804 −0.0828 2.99

As pointed in [43], the evolution of the control magnitudes must be studied at least for a
period of time. Thus, in figure 4.16 the time evolution of these variables is collected. As
can be seen, the obtained evolution has barely difference with the reference one, meaning
that minor variations only occur at the maximum and minimum values as depicted in
tables 4.10 and 4.11. Furthermore, a Fast Fourier Transform (FFT) has been performed
using the four control variables data series yielding a characteristic period of oscillation
equal to 0.25 s for the ux and drag data series while it is 0.5 s for the uy and lift ones.
These values represent a relative error of 3.5% and 0% respectively.
Complementary, in figure 4.17 some real scale snapshots of the velocity field are shown
for a full period of oscillation. It can be noticed how the vortex shredding yields large
oscillations in the elastic flag. Thus, the initial small perturbation coming from consid-
ering a deformable flag generates a perturbation in the pressure field, what is to say a
vertical force disequilibrium, that generates the body vibration (figure 4.18). Besides,
it is interesting to recall that these vortex pattern do not appear if the same Reynolds
number (Re = 100) is considered in a CFD analysis, showing the relevance that the FSI
mechanisms might have in those cases close to the Re = 90 limit value.
Finally, it is interesting to pinpoint that the resolution of this case has been specially
challenging because of the large flag displacements, which in the most finer meshes made
the fluid elements close to the flag tip to swap. Hence, it was a difficult task to obtain
a mesh fine enough to ensure precision but coarse enough to avoid element swap.
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(c) Cylinder and flag total drag.
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Figure 4.16: FSI2 test results assessment.
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(a) t = 12.0 s.

(b) t = 12.1 s.

(c) t = 12.2 s.

(d) t = 12.3 s.

(e) t = 12.4 s.

Figure 4.17: FSI2 test ‖v‖ [m/s] fields for a period of oscillation (real scale deformation).
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(a) t = 12.0 s.

(b) t = 12.1 s.

(c) t = 12.2 s.

(d) t = 12.3 s.

(e) t = 12.4 s.

Figure 4.18: FSI2 test p [Pa] fields for a period of oscillation (real scale deformation).
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FSI3 benchmark

Complementary, the FSI3 benchmark has been also performed. As described in [43],
FSI3 test must drive to large deformation and complex oscillations. Once again, the FSI3
settings are collected in table 4.8 except the time increment, which has been resized to
∆t = 0.002 s for the sake of reducing the computational cost.
Tables 4.12 and 4.13 collect the maximum and minimum values of the comparison
magnitudes. As can be noticed in table 4.12 the drag and lift results are almost in perfect
accordance with the reference ones, with a maximum relative error in the maximum lift
around the 3%. Regarding the displacements of the flag tip, the relative errors of the
uy displacement are around the 5% while the ux ones are around the 18% and 10% for
the maximum and minimum values. Despite these values may seem unacceptable, it has
to be taken into account the order of magnitude of the absolute error is 10−4, meaning
that the results can be considered as good as the drag and lift ones.

Table 4.12: FSI3 drag and lift results assessment.

Drag Lift

Reference [N ] Obtained [N ] rel. err [%] Reference [N ] Obtained [N ] rel. err [%]

max 488.24 489.56 0.27 156.41 −161.14 3.02

min 432.76 431.52 0.29 −151.41 −152.14 0.48

Table 4.13: FSI3 ux and uy results assessment.

ux uy

Reference [m] Obtained [m] rel. err [%] Reference [m] Obtained [m] rel. err [%]

max −0.00016 0.00019 18.75 0.03646 0.03826 4.94

min −0.0056 0.0062 10.71 0.03352 0.03551 5.94

Complementary, figure 4.19 collects the previous results time evolution for a few pe-
riods of oscillation. As can be seen, the obtained results time evolutions also match
the reference ones. Furthermore, a FFT has been performed with the obtained time
evolution results. The obtained period of oscillation for the ux displacement and the
drag is 0.1 s while the uy displacement and lift one is 0.16667 s. With respect to the
reference ones, this represents a 10.5% and 7.5% of relative error. Taking into account
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(d) Cylinder and flag total lift.

Figure 4.19: FSI3 test results assessment.

that a larger ∆t than the original one have been considered and that the FFT may
induce some numerical errors, the results have considered to be acceptable.
Besides, it is interesting to point out that no rest of high frequencies were found in the
FFT analysis. Thus, it may be interesting to repeat the analysis with a time integration
scheme without high frequency dissipation such as the Newmark's, since the Bossak's
one introduces numerical damping, which seems to be unnecessary in this case.
Finally, the ‖v‖ and p contours are shown for a full period of oscillation. As can
be seen, the expected periodic flow behaviour appears in the simulation. Besides, it
is interesting to compare the FSI3 and FSI2 flap displacement amplitude. As can be
seen, the FSI3 flap displacement is much smaller than the FSI2 case, despite the larger
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Reynolds number, proving that the amplitude value widely depends in how close the
structure and vortex characteristic frequencies are.

4.5 Pressure pulse in compliant vessel

4.5.1 Problem description

So far, all the presented examples were 2D cases. In this section a 3D hemodynamics
case is presented to show the further capabilities of the implemented strategies. Due
to the large computational cost of solving a 3D case, only the D-N MVQN strategy
is taken into account due to its much better performance. Besides, it has to be said
that non-matching meshes are also considered, thanks to the possibility of using a 3D
mapper already implemented in Kratos.
This problem was originally proposed in [32] and later reproduced in [44]. Its aim is
to simulate the the fluid-structure interaction arising in the modelling of blood flow in
human cardiovascular system. As described in [44], the problem consists of a thin elastic
vessel, which in this case has been modelled with a solid shell recently implemented in
Kratos by V. Mataix, conveying the blood flow, which is modelled as an incompressible
fluid using the Navier-Stokes equations.
It has to be said that the aim of this problem is not to study the real physiological blood
flow phenomena but to show the capabilities of the implemented strategies to deal with
3D problems. Furthermore, this problem is also intended to further test the solid shell
recently implemented in Kratos.
Regarding the geometry, it consists in a straight cylinder of radius r0 = 0.005 m which
length and thickness are L = 0.05 m and t = 0.001 m. The blood physical parameters
are ρf = 1000 kg/m3 and dynamic viscosity µf = 0.003 kg/ms, yielding a kinematic vis-
cosity νf = 3e-06 m2/s. Regarding the solid parameters, the density is ρs = 1200 kg/m3

while the Poisson and Young modulus are νs = 0.3 and E = 3e05 Pa. Regarding the
boundary conditions, both sides of the vein are clamped (radial displacements allowed)
and an overpressure of p = 1333.2 Pa is imposed at the inlet boundary for 0.003 s. De-
spite that in [44] the pressure pulse is imposed in a sudden manner, it has been decided
to introduce it in a more natural way with a sinusoidal function such that
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(a) t = 5.50 s.

(b) t = 5.54 s.

(c) t = 5.58 s.

(d) t = 5.62 s.

(e) t = 5.66 s.

Figure 4.20: FSI3 test ‖v‖ [m/s] fields for a period of oscillation (real scale deformation).
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(a) t = 5.50 s.

(b) t = 5.54 s.

(c) t = 5.58 s.

(d) t = 5.62 s.

(e) t = 5.66 s.

Figure 4.21: FSI3 test obtained p [Pa] fields for a period of oscillation (real scale deformation).
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p =


1333.2 sin

(
0.5πt

0.00025

)
if t ≤ 0.00025

1333.2 if 0.00025 < t ≤ 0.00275

1333.2
(

1− sin
(

0.5π(t−0.00275)
0.00025

))
if 0.00275 < t ≤ 0.003

0.0 otherwise

(4.8)

Moreover, it is interesting to point out that in such a symmetric problem it is advisable
to use a symmetric mesh in both domains. Otherwise, a little geometrical perturbation
in the pressure field may drive to an undesired solution. Thus, a radially symmetric mesh
of 3842 nodes has been used in the fluid. In the solid domain, the mesh is also radially
symmetric and has 1488 nodes. About the element types, the previously commented
solid shell is considered in the fluid while a VMS tetrahedral linear element with same
velocity and pressure interpolations has been used in the fluid domain.
Last but not least, the Bossak default scheme in Kratos has been used again for time
discretization purposes. The total time of the simulation is t = 0.01 while the time
increment is ∆t = 0.0001. Besides, the convergence criterion has been changed to a
relative one due to the low order values of the problem. Thus, the convergence criterion
is ‖∆r‖/‖r‖ ≤ 10−4.

4.5.2 Results assessment

Figure 4.22 collects a comparison between the results in [44] and the obtained ones for
three control points placed at 0.25l, 0.5l and 0.75l, being l the tube length. Regarding
the radial displacements (figure 4.22a), it can be seen that the obtained results are
similar to the reference ones. The major differences appear after the peak value when
the vein section is recovering its shape. Besides, this vein retraction is much clear in the
presented solution and can be clearly noted by the negative radial displacements. This
behaviour is more similar to real hemodynamics and has been also observed in similar
problems in the literature [6].
On the other hand, the pressure evolution is also assessed in figure 4.22b. As can be
noted, the pressure trend matches the radial displacements evolution but some oscil-
lations appear in the solution. Regarding the nature of these oscillations, it can be
asserted that they are not numeric, since one oscillation is developed in several time
steps. Moreover, studying the initial steps solution one can note that in the region close
to the outlet, the velocity field is not stationary but points backwards, generating a small
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wave that is understood to interact to the main pressure wave that is travelling forward,
generating the small pressure oscillations mentioned above. Several ideas arise to solve
this issue, the most straightforward one is to solve a few CFD steps before the intro-
duction of the pressure pulse and the FSI analysis to avoid the fluid to be completely
at rest. An alternative depicted in [6] is to add a simplified 1D version of the presented
FSI problem to the outlet. In this way one can have the outlet pressure controlled and
its reflection is avoided. Furthermore, one can also implement non-reflecting boundary
conditions at the outlet.
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Figure 4.22: Vein flow results comparison.

Taking into account the inherent complexity of the presented problem and the fact
that the issues in the solution are not associated to the FSI implementation, it can be
asseverated that the presented coupling methodology also works in 3D. In addition, it
is interesting to point out the utility that the solid shell elements have in this kind of
simulations, since they allow to model thin geometries with a unique layer of elements
as is done in shell elements but without double sided surfaces, something that makes
the mapping easier.
Finally, some snapshots of the obtained coupled solution are shown below. Figures 4.23
and 4.24 show the fluid pressure and velocity contours for t = 0.003, t = 0.006 and
t = 0.009. Furthermore, the vein wall displacements fields are shown in figure 4.25 for
the same time instants.
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(a) t = 0.003 s.

(b) t = 0.006 s.

(c) t = 0.009 s.

Figure 4.23: Fluid pressure p [Pa] snapshots (deformation scaled 20 times).
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(a) t = 0.003 s.

(b) t = 0.006 s.

(c) t = 0.009 s.

Figure 4.24: Fluid velocity ‖v‖ [m/s] snapshots (deformation scaled 20 times).
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(a) t = 0.003 s.

(b) t = 0.006 s.

(c) t = 0.009 s.

Figure 4.25: Vein wall displacements ‖u‖ [m] snapshots (deformation scaled 20 times).





Chapter 5
Towards the FSI GiD interface

This chapter tries to summarize the developments carried out in the new Kratos GUI,
which has been recently released. Despite the fact that these tasks have a complete
different nature to the ones previously described, it is interesting to spend a few words
to depict them, since all the FSI strategies developed all along this work are expected
to be implemented in the new Kratos GUI in a similar manner.
Before any explanation, it has to be clearly stated that the development of this new
interface has been carried out by a group of CIMNE developers. The tasks described in
this document are the ones performed by the author. All the developments commented
in this sections are already tested and available in Kratos repository. For further infor-
mation or downloads the reader is referred to Kratos official website [15].

5.1 GiD problem types description

One of the advantages of GiD is its modularity, which avoids to program any new
interface from the scratch. Therefore, to program a GUI for any solver only requires the
creation of a problem type, meaning that utilities such as geometry or mesh generation
are common for all the problem types. In this context, GiD problem types can be viewed
as custom modules attached to standard GiD that add extra capabilities to the standard
GiD interface to communicate it with any custom code.
Thus, the purpose of a GiD problem type can be roughly summarized in generating the
input files in accordance to the requirements of an external solver. Moreover, a problem
type must also include the graphical interface custom menus.
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In general terms, one can distinguish two types of files in any problem type. The former
are the .xml and .spd files, which work in a website programming fashion in the sense
that .spd files structure the interface tree and the .xml ones store its information. The
latter are the .tcl scripts, which is the main programming language in GiD. These scripts
are the ones that load the interface tree contents and write the solver input files when
the simulation is run.

5.2 New Kratos GUI

In this section the most relevant new capabilities of the new Kratos GUI are depicted.
To do that, it is interesting to list the major modifications with respect to the previous
Kratos problem types. Therefore, the most relevant features of the new Kratos GUI are

• the use of JSON string as input data format.

• the use of Kratos processes for the loads and boundary conditions imposition.

• the organization of the model using submodelparts instead of meshes.

In the next subsections each one of these new features is briefly described. Furthermore,
the modifications carried out in the original Kratos code to make it fit into the new
format are also explained.

5.2.1 JSON string input format

The JavaScript Object Notation, commonly referred as JSON, is a human-readable open-
standard format for data exchange. JSON files are structured using attribute-value pairs,
so its final appearance is similar to a common dictionary. In Kratos context, JSON files
are used to collect the so called ProjectParameters generated by the interface. The
ProjectParameters, which used to be a Python file in the past Kratos GUI versions,
collect all the simulation settings such as the solving strategy specifications, the linear
solver settings or the tolerances.
The main advantage of using a JSON string instead of a Python script to collect the
ProjectParameters is the much larger information traceability that the JSON format
has. It has to be said that the ProjectParameters information becomes in a dynamic
object when Kratos simulation starts, so it changes during the problem resolution. In
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case of using a JSON string format, all the original information besides the modifications
or additions keeps stored in a unique object. This particular feature is extremely useful
for debugging purposes, since the updated JSON file can be entirely printed by console
at any moment, something that cannot be done with a Python script.
Finally, it is interesting to point out that the boundary conditions and loads speci-
fications have been also included in the ProjectParameters.json file. This has been
possible due to the use of Kratos processes to impose any condition in the model. Hence,
the ProjectParameters.json file also collects the processes settings that Kratos core
takes as information to impose the model conditions.

5.2.2 Kratos Processes

The Kratos processes are a collection of subroutines which are introduced in the main
scripts to perform any action at any moment of the program execution. Their main goal
is to perform specific tasks of a particular simulation without the necessity of modifying
the main scripts because of its standard syntax. Hence, its aim is to always keep the
main file as it is and to do the user customization via his/her own library of processes.
In programming terms, Kratos processes are Python classes that contain a collection of
methods that any Kratos process must have. Each one of these methods is intended to
be always executed at a precise point of the simulation and is its content what distin-
guish one process from another. Besides, all processes must have the same construction
function, called process_factory, to be consistent between them. The methods that
any Kratos process must have are listed below.

• __init__()

• ExecuteInitialize()

• ExecuteBeforeSolutionLoop()

• ExecuteInitializeSolutionStep()

• ExecuteFinalizeSolutionStep()

• ExecuteBeforeOutputStep()

• ExecuteAfterOutputStep()
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• ExecuteFinalize()

• Clear()

Despite the fact that processes have been created as a multi-purpose tool, so far they
are mainly used in the loads and boundary conditions imposition. As pointed before,
processes cannot work only on their own since they need the information contained in
the previously described ProjectParameters.json file.
Once arrived to this point it has to be clearly stated that if it is possible, it is mandatory
to use the general purpose processes already implemented in the Kratos core. If not, the
newly developed ones must be always a derived class from them. In this manner the code
is much more organised and its maintenance becomes easier. Under this assumption,
the next general processes have been programmed

• impose_scalar_value_process.py

• impose_vector_value_by_components.py

• impose_vector_value_by_direction_process.py

which in combination with the already existent main processes

• apply_constant_scalarvalue_process.h

• apply_constant_vectorvalue_process.h

are enough to prescribe any of the boundary conditions and loads present in the new
Kratos GUI. Furthermore, some extra processes have been developed to perform some
specific task (e.g. the inlet or outlet imposition in the fluid dynamics application), but
in any case these are somehow bridge processes towards the previously listed main ones.
Finally, it is interesting to spend a few words regarding the new concept of submod-
elparts that is supposed to substitute the meshes toolbox in the previous versions of
Kratos. Thus, a Kratos modelpart is a class that contains all the information required
for the simulation of a given problem, namely nodes, elements and conditions. Tradi-
tionally, it used to contain one or more Mesh instances, containing the nodes, elements
and conditions that compose the problem domain. This Mesh concept have been sub-
stituted in the last release version by the submodelparts, which have the advantage of
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being derived from the main model part, meaning that they inherit its features by def-
inition. Therefore, processes can be viewed as a tool to apply any modification in a
specific submodelpart, which name is specified along with the process settings in the
ProcessPrarameters.json file.

5.2.3 New solid and fluid solvers

As can be guessed, the previously commented new features have had implications in the
existent Kratos solvers. Thus, it has been necessary to programme new fluid dynamics
as well as solid mechanics solvers in accordance to the new ProjectParameters.json
and model part (.mdpa) files.
Thus, two new Navier Stokes equations solvers have been created, one for the monolithic
approach and another for the fractional step approach. For the solid mechanics case,
a main implicit dynamic solver has been created. From this implicit solver, an explicit
dynamic solver as well as a static one have been derived. Note that the concept of
reducing the code maintenance has been taken into account again. The list of the newly
developed solvers is related below.

• navier_stokes_solver_fractionalstep.py

• navier_stokes_solver_vmsmonolithic.py

• solid_mechanics_implicit_dynamic_solver.py

• solid_mechanics_explicit_dynamic_solver.py

• solid_mechanics_static_solver.py

It has to be said that all this solvers are in fact an adaptation of the old ones, which
are still present in Kratos repository, to the newly developed JSON and submodelparts
formats.

5.3 Kratos FSI interface draft

Before the description of the future FSI Kratos GUI it is interesting to point out which
have been the main bottlenecks in the creation of an FSI simulation using the old Kratos
problem type.
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So far, the creation of an FSI model implies to generate two independent models, one
for the solid mechanics domain and another one for the fluid dynamics one. Apart of
the fact that this requires to work with two separated GiD projects at the same time,
this approach has further disadvantages. The most important one is that the interface
between subdomains cannot be identified in an automatic way. Therefore, one must
do it by hand or in a tricky way (e.g. impose a load in those nodes belonging to the
interface to highlight them in de .mdpa file and then suppress the load). It is obvious
that this manner is neither comfortable nor intuitive for the user and may induce lots
of errors in the model generation.
Moreover, if an ALE formulation is required in the fluid domain, the mesh boundary
conditions imposition is neither automatic. Thus, it has to be done in a weird manner
similar to the current interface definition.
Furthermore, it has to be said that the all the FSI solvers developed during this work
are still programmed in the old format, meaning that they are to be modified to consider
the JSON input format as well as the Kratos submodelparts.
Therefore, the main requirements of the FSI GUI that is to be developed are

• To use the newly developed ProjectParameters.json and the submodelparts
technology. Besides, the main script must include the processes instructions.

• To be able to set the Kratos flag INTERFACE at the interface of both the solid and
fluid domains.

• To join the fluid and solid GiD models in a unique model.

At the moment, the FSI interface is under development but so far it is clear that the
solid mechanics as well as fluid dynamics applications interfaces that have been recently
released will be included in the FSI one. Therefore, the FSI interface will have three
main levels, the solid and fluid application ones besides a new one, which will include
the FSI parameters such as the coupling scheme or the interface residual minimization
strategy.
In addition, it is under study the implementation of a wizard utility. This wizard utility
has the purpose of guiding the user in the creation of the FSI model. In general terms,
it would have the next steps:

1. Creation of the structure: geometry and B.C. definition, meshing and interface
identification.
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2. Creation of the fluid domain: geometry and B.C. definition as well as ALE mesh
boundary conditions (if proceeds). Meshing and interface identification.

3. FSI settings: selection of the FSI strategy and its settings.

As can be noted, the main idea of this wizard is that once the user has completed it,
he/she gets a complete FSI model ready to be computed.





Chapter 6
Conclusions

The aim of this work was to develop an FSI coupling environment able to deal with
strongly coupled large deformation problems. To do that, the optimized and widely
tested fluid dynamics and solid mechanics solvers already implemented Kratos Multi-
physics framework have been used as black boxes in the resolution of the FSI problem.
As a consequence, only partitioned black-box FSI solvers have been considered. In this
context, the next FSI coupling strategies have been implemented and tested

• Dirichlet-Neumann scheme with Jacobian Free Newton-Krylov minimization

• Dirichlet-Neumann scheme with Multivector Quasi-Newton minimization

• Dirichlet-Neumann scheme with Aitken relaxation

• Neumann-Neumann scheme with Jacobian Free Newton-Krylov minimization

• Neumann-Neumann scheme with Multivector Quasi-Newton minimization

Among all of the previous interface residual minimization strategies, the MVQN method
has proved to be the most efficient one, leading to a reduction between 50 and 80%
of the computational cost. Such overwhelming performance comes from its reduced
computational cost per non-linear iteration, which requires only one residual evaluation,
while the JFNK requires one per inner Krylov solver (GMRES) iterations. Comparing
with the Aitken relaxation scheme, the MVQN method uses information from all the
previous non-linear iterations while the Aitken relaxation uses only the two previous
ones. Despite this, all the strategies have been successfully tested in strongly coupled
problems, where the fluid exerts large displacements in the structure.
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However, it has to be said that the MVQN method is slightly less robust than the
JFNK one, because it does not ensure convergence by definition due to its Quasi-Newton
nature. Besides, it has been observed to be more sensitive to the tolerance selection,
meaning that, if the coupling and inner solver tolerances are not selected properly, the
method might start to struggle around the convergence threshold without overcoming
it. This has been also observed in the selection of the Krylov solver tolerance in the
JFNK approach. Consequently, these strategies require more previous experience to be
used.
Furthermore, the Aitken relaxation scheme deserves to be highlighted. Its well-behaviour
in complex problems such as the Mok benchmark has been proved. Thus, the easiness
in its implementation joined to its sufficiently good performance, makes the Aitken re-
laxation a good option to be considered as a reference in the implementation of other
methods, as was done in this work, or in the resolution of simple enough problems.
Moreover, it is interesting to spend a few words about the implementation of each one
of the minimization strategies considered. As pointed before, the implementation of
the Aitken relaxation can be done straightforwardly. The main difficulty in the MVQN
method implementation is its comprehension, which becomes a bit fuzzy at the initial
stage. Once it has been fully understood, it only involves array updates and operations.
Regarding the JFNK approach, its implementation has been the toughest one, firstly
because the theoretical concepts required for its comprehension and secondly due to
the fact that it requires the use of advanced programming tools such as the Python
LinearOperator.
Regarding the coupling schemes, the D-N scheme has proved to be more efficient than
the N-N one, specially at the very beginning of the problem where the N-N requires much
more iterations to reach the equilibrium state. Despite this behaviour was completely
expected, it is interesting to recall that the N-N coupling can be useful in those situations
in where the D-N scheme does not manage to converge, since the N-N scheme imposes
the interface equilibrium explicitly, while the D-N does it as a consequence of the velocity
imposition. Besides, the presented N-N algorithm is able to work in parallel, something
that has not been done in this work but would improve its performance so much.
On the other hand, the limitations of the ALE approach used in the fluid domain have
been proved. Hence, when the structure displacements are extremely large (e.g. FSI2
Turek& Hron benchmark) the mesh movement might yield inverted elements. In this
context, the newly developed embedded FSI techniques arise as a promising solution for
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this kind of problems. Furthermore, it has been also observed that pseudo-structural
mesh updating techniques work better than the Laplacian ones, since a better interface
tracking in such large displacement cases is obtained.
To sum up, it can be asseverated that the presented partitioned black-box coupling tech-
niques are an extremely good alternative to the monolithic approaches if one wants to
take profit from widely tested or even commercial fluid and solid solvers in the resolution
of an FSI problem. Besides, it has been proved that the presented partitioned schemes
can deal with strongly coupled large displacement problems as monolithic solvers do,
but with the advantage of requiring much less time and human effort in its development
and testing.

6.1 Achievements

In this work a black-box FSI solving environment has been developed in Kratos Mul-
tiphysics. The implementation of this FSI environment concerns three different strate-
gies (Aitken relaxation, Jacobian Free Newton-Krylov and Multivector Quasi-Newton
method) as well as two coupling schemes (Dirichlet-Neumann and Neumann-Neumann).
All the previous FSI strategies have been satisfactory tested by means of the well-known
cavity and Mok benchmark problems, showing perfect correlation with the expected
results. During this testing stage, special interest was put in the computational efficiency
assessment.
After this initial study, the recently developed D-N MVQN approach became the refer-
ence strategy due to its much efficient behaviour. Then, the Turek& Hron FSI bench-
mark problems, which are widely known because of their complexity, were solved using
the D-N MVQN technique as final 2D test. In all the cases, the obtained results have
extremely good correlation with the ones present in the literature.
Besides, a preliminary hemodynamics 3D test has been also performed. Despite the fact
that the results does not adjust perfectly to the ones in the literature, the black-box
FSI resolution environment has proved to work also in 3D. Taking into account that the
differences in the solution are associated with some issues in the fluid domain problem,
the results can be considered as satisfactory.
Complementary, this work also involved a contribution in the development of the new
solid mechanics and fluid dynamics Kratos GiD interfaces. These two interfaces are
updated to the last Kratos released version and available to download. Thanks to this
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task, a knowledge concerning the GiD problem types programming have been acquired.
Finally, it is interesting to point out that all the developments of this work will remain
in Kratos Multiphysics repository, which is open source and available to download.

6.2 Future work-lines

The most imminent work to be done is the creation of the FSI GiD interface. At the
moment, the generation of a FSI simulation implies to create two separated fluid and
solid problems and to carry out some extra tasks to define the coupling. Thus, to set
up a FSI model becomes in a tedious and time consuming task that must be optimized
to be much more user-friendly.
Moreover, the majority of code developments have been done at the Python level of
Kratos. For the sake of efficiency, it is reasonable to move them to the C++ level which
will perform faster.
Regarding the presented methodologies, it could be interesting to do a deeper assessment
of the implications of the small perturbation ε used in the linearisation of the Jacobian
approximation in the JFNK approach. It is understood that this parameter widely
affects the Jacobian approximation and in consequence to the convergence of the method.
The performance of the N-N JFNK has been surprisingly poor. Then, the parallelization
of the residual evaluation of the N-N scheme remains as a further improvement to be
done.
On the other hand, to implement a remeshing strategy along with the ALE mesh
movement technique arises as a good option to avoid excessive distortion in the fluid
elements.
Taking into account that the extension of the presented methodologies to the 3D case is
more or less simple and that the resolution of a 3D case implies much more computational
effort in the residual evaluation, the majority of tests in this work are two-dimensional.
However, it is a must to do a further assessment of the capabilities and performance
of the presented strategies in some extra 3D benchmarking problems such as the 3D
version of the presented Turek & Hron benchmark.
Besides, it could be interesting to search for a benchmark problem in where the D-N
scheme would not manage to converge to try the expected robustness of the N-N one.



Appendix A
Developed code

In this appendix the most important and representative Python and C++ files developed
during this work are collected.

A.1 MAIN_FILE_FSI.py

1 # Import l i b r a r i e s
2 import numpy
3 import s c ipy
4 import s c ipy . spar se
5 import s c ipy . spar se . l i n a l g
6 import time as timemodule
7 import j son
8 # Import u t i l i t i e s
9 import connectivity_mapper

10 import r e s i d u a l_d e f i n i t i o n s
11 import mvqn_strategy
12 import j fnk_strategy
13 import r e l axa t i on_st ra t egy
14 import KratosMult iphys ics . FSIAppl icat ion
15 # Import s o l v e r s
16 import FluidProblemClass
17 import Sol idProblemClass
18 # Import ProjectParameters
19 import ProjectParametersFlu id
20 import Pro jec tParameter sSo l id
21
22 # I n i t i a l checks
23 i f Pro jectParametersFlu id . domain_size != Pro jec tParameter sSo l id . domain_size :
24 r a i s e ( "ERROR: D i f f e r e n t working dimensions among subdomains ! " )
25 i f Pro jectParametersFlu id . Dt != Pro jec tParameter sSo l id . time_step :
26 r a i s e ( "ERROR: D i f f e r e n t time step among subdomains ! " )
27 i f Pro jectParametersFlu id . nsteps != Pro jec tParameter sSo l id . nsteps :
28 r a i s e ( "ERROR: D i f f e r e n t number o f time s t ep s among subdomains ! " )
29 i f Pro jectParametersFlu id . max_time != Pro jec tParameter sSo l id . end_time :
30 r a i s e ( "ERROR: D i f f e r e n t f i n a l time among subdomains ! " )
31 i f Pro jectParametersFlu id . output_time != Pro jec tParameter sSo l id . GiDWriteFrequency :
32 r a i s e ( "ERROR: D i f f e r e n t output time among subdomains ! " )
33
34 # Stepping and time s e t t i n g s
35 domain_size = ProjectParametersFlu id . domain_size
36 Dt = ProjectParametersFlu id . Dt
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37 Nsteps = ProjectParametersFlu id . nsteps
38 f ina l_t ime = ProjectParametersFlu id . max_time
39 output_time = ProjectParametersFlu id . output_time
40 time = ProjectParametersFlu id . Start_time
41
42 # So l i d and f l u i d problem cons t ruc t i on
43 D1_problem = FluidProblemClass . FluidProblem ( ProjectParametersFlu id )
44 D2_problem = Sol idProblemClass . Sol idProblem ( Pro jec tParameter sSo l id )
45
46 # So l i d and f l u i d problem i n i t i a l i z a t i o n
47 pr in t ( "Fluid and s o l i d problems i n i t i a l i z a t i o n . . . " )
48 D1_problem . I n i t i a l i z e ( )
49 D2_problem . I n i t i a l i z e ( )
50 pr in t ( "Fluid and s o l i d problems i n i t i a l i z a t i o n f i n i s h e d . " )
51
52 # Condit ions i n i t i a l i z a t i o n
53 pr in t ( "Fluid and s o l i d problem dependent cond i t i on s s e t up s t a r t s . . . " )
54 D1_problem . I n i t i a l i z eC ond i t i o n s ( )
55 D2_problem . I n i t i a l i z eC ond i t i o n s ( )
56 pr in t ( "Fluid and s o l i d problem dependent cond i t i on s f i n i s h e d . " )
57
58 # Fluid i n t e r f a c e i s taken as r e f e r e n c e i n t e r f a c e
59 Inter face_pb_size=D1_problem . inter face_nodes
60
61 # In t e r f a c e communicator con s t ruc t i on
62 i f domain_size == 2 :
63 # Fetch the s o l i d and f l u i d i n t e r f a c e nodes
64 f lu id_inte r face_nodes=D1_problem . inter face_nodes_vec
65 so l id_inte r face_nodes=D2_problem . inter face_nodes_vec
66
67 # Check whether the i n t e r f a c e nodes match or not
68 i f D1_problem . inte r face_nodes != D2_problem . inte r face_nodes :
69 r a i s e ( "ERROR: D i f f e r e n t number o f i n t e r f a c e nodes among subdomains ! . " )
70
71 # Construct the 2D conformant i n t e r f a c e mapper
72 pr in t ( "2D i n t e r f a c e communicator con s t ruc t i on s t a r t s . . . " )
73 wet_interface_comm = connectivity_mapper . interface_communicator ( f lu id_inter face_nodes ,
74 so l id_inte r face_nodes )
75 pr in t ( "2D i n t e r f a c e communicator s u c c e s s f u l l y const ructed . " )
76
77 # Output i n i t i a l i z a t i o n
78 pr in t ( "Output i n i t i a l i z a t i o n . . . " )
79 D2_problem . I n i t i a l i z eOu tpu t ( )
80 D1_problem . I n i t i a l i z eOu tpu t ( )
81 pr in t ( "Output i n i t i a l i z a t i o n f i n i s h e d . " )
82
83 # In t e r f a c e r e s i d u a l con s t ruc t i on
84 coupl ing_algor ithm = "DirichletNeumann"
85
86 pr in t ( " I n t e r f a c e r e s i d u a l con s t ruc t i on s t a r t s . . . " )
87 i f coupl ing_algor ithm == "DirichletNeumann" :
88 r e s i d u a l = r e s i d u a l_d e f i n i t i o n s . Dir ichletNeumannResidual (D1_problem ,
89 D2_problem ,
90 wet_interface_comm )
91 pr in t ( " D i r i ch l e t −Neumann r e s i d u a l const ructed . " )
92
93 e l i f coupl ing_algor ithm == "NeumannNeumann" :
94 r e s i d u a l = r e s i d u a l_d e f i n i t i o n s . NeumannNeumannResidual (D1_problem ,
95 D2_problem ,
96 wet_interface_comm )
97 pr in t ( "Neumann−Neumann r e s i d u a l const ructed . " )
98
99 # In t e r f a c e s t r a t egy cons t ruc t i on

100 coupl ing_strategy = "Relaxat ion "
101
102 pr in t ( " I n t e r f a c e coup l ing s t r a t egy cons t ruc t i on s t a r t s . . . " )
103 i f coupl ing_strategy == "MVQN" :
104 i n t e r f a c e_s t r a t e gy = mvqn_strategy . MultiVectorQuasiNewtonStrategy ( Inter face_pb_size ,
105 domain_size ,
106 D1_problem ,
107 D2_problem ,
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108 wet_interface_comm ,
109 r e s i d u a l )
110 pr in t ( "MultiVector Quasi−Newton s t r a t egy const ructed . " )
111 e l i f coupl ing_strategy == "JFNK" :
112 i n t e r f a c e_s t r a t e gy = j fnk_strategy . JacobianFreeNewtonKrylovStrategy ( Inter face_pb_size ,
113 domain_size ,
114 D1_problem ,
115 D2_problem ,
116 wet_interface_comm ,
117 r e s i d u a l )
118 pr in t ( " Jacobian Free Newton−Krylov s t r a t egy const ructed . " )
119 e l i f coupl ing_strategy == "Relaxat ion " :
120 i f coupl ing_algor ithm == "DirichletNeumann" :
121 i n t e r f a c e_s t r a t e gy = re l axa t i on_st ra t egy . Re laxat ionStrategy ( Inter face_pb_size ,
122 domain_size ,
123 D1_problem ,
124 D2_problem ,
125 wet_interface_comm ,
126 r e s i d u a l )
127 pr in t ( "Relaxat ion s t r a t egy const ructed . " )
128 e l i f coupl ing_algor ithm == "NeumannNeumann" :
129 r a i s e ( "ERROR: Relaxat ion s t r a t egy must be used with D i r i ch l e t −Neumann algor i thm . " )
130 e l s e :
131 r a i s e ( "ERROR: I n t e r f a c e s t r a t egy not implemented yet ! " )
132
133 # Output f i l e s
134 f i l ename = "MAIN_FILE_FSI_"+coupl ing_algor ithm+"_"+coupl ing_strategy+" . log "
135
136 # . log F i l e c r e a t i on to s t o r e the i t e r a t i o n s evo lu t i on
137 with open ( f i l ename , ’w ’ ) as f i l e :
138 f i l e . wr i t e ( " I n t e r f a c e problem s i z e : "+s t r ( Inter face_pb_size )+"\n" )
139 f i l e . wr i t e ( " I n t e r f a c e r e s i d u a l s i z e : "+s t r ( Inter face_pb_size ∗domain_size )+"\n"+"\n" )
140 f i l e . c l o s e ( )
141
142 # NL so l v e r parameters
143 max_nl_iterations = 50
144 nl_tol = 1e−5
145
146 guess_value = 0.0001∗numpy . ones ( Inter face_pb_size ∗domain_size , dtype=’ f l o a t ’ )
147
148 out = 0
149 step = 0
150
151 pr in t ( "COUPLED PROBLEM RESOLUTION STARTS . . . " )
152 pr in t ( " I n t e r f a c e problem s i z e : " , Inter face_pb_size )
153
154 whi le ( time <= f ina l_t ime ) :
155
156 time = time + Dt
157 step = step + 1
158 convergence = False
159
160 D1_problem . Ex e cu t e I n i t i a l i z e S o l u t i o nS t ep ( time )
161 D2_problem . Ex e cu t e I n i t i a l i z e S o l u t i o nS t ep ( time , s tep )
162
163 i n t e r f a c e_s t r a t e gy . Ex e cu t e I n i t i a l i z e S o l u t i o nS t ep ( )
164
165 pr in t ( "STEP = " , step )
166 pr in t ( "TIME = " , time )
167
168 with open ( f i lename , ’ a ’ ) as f i l e :
169 f i l e . wr i t e ( "STEP: "+s t r ( s tep )+"\n" )
170 f i l e . wr i t e ( "TIME: "+s t r ( time )+"\n" )
171 f i l e . c l o s e ( )
172
173 f o r n l_it in range (1 , max_nl_iterations+1) :
174 pr in t ( " NL−ITERATION " , nl_it , "STARTS. " )
175
176 pr in t ( " Res idual computation s t a r t s . . . " )
177 ve l_re s idua l = r e s i d u a l . ComputeResidual ( guess_value )
178 nl_res_norm = sc ipy . l i n a l g . norm( ve l_re s idua l )
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179 pr in t ( " Res idual computation f i n i s h e d . | r e s |=" , nl_res_norm )
180
181 ### CONVERGENCE ACHIEVED ###
182 i f nl_res_norm < nl_tol :
183
184 convergence = True
185
186 pr in t ( " CONVERGENCE ACHIEVED" )
187 pr in t ( " Total non−l i n e a r i t e r a t i o n s : " , nl_it , " NL r e s i d u a l norm : " , nl_res_norm )
188
189 with open ( f i l ename , ’ a ’ ) as f i l e :
190 f i l e . wr i t e ( " Non−l i n e a r i t e r a t i o n summary : \ n" )
191 f i l e . wr i t e ( " n l_it : "+s t r ( n l_it )+"\n" )
192 f i l e . wr i t e ( " nl_res_norm : "+s t r ( nl_res_norm )+"\n"+"\n" )
193 f i l e . wr i t e ( " CONVERGENCE ACHIEVED\n"+"\n" )
194 f i l e . c l o s e ( )
195
196 break
197
198 ### CONVERGENCE NOT ACHIEVED ###
199 e l s e :
200
201 i t e ra t i on_cor rec t ed_va lue = in t e r f a c e_s t r a t e gy . In te r f aceSo lu t i onUpdate ( step ,
202 nl_it ,
203 guess_value ,
204 ve l_re s idua l )
205 guess_value = numpy . copy ( i t e ra t i on_cor rec t ed_va lue )
206
207 with open ( f i l ename , ’ a ’ ) as f i l e :
208 f i l e . wr i t e ( " Non−l i n e a r i t e r a t i o n summary : \ n" )
209 f i l e . wr i t e ( " n l_it : "+s t r ( n l_it )+"\n" )
210 f i l e . wr i t e ( " nl_res_norm : "+s t r ( nl_res_norm )+"\n"+"\n" )
211 f i l e . c l o s e ( )
212
213 # Solve the mesh movement
214 so l i d_ in t e r f a c e_d i sp = D2_problem . GetInter faceDisp lacement ( )
215 solid_interface_disp_comm = wet_interface_comm . StructureToFluid_VectorMap ( so l i d_ in t e r f a c e_d i sp )
216
217 D1_problem . SolveMesh ( solid_interface_disp_comm )
218
219 # Print r e s u l t s
220 i f ( output_time <= out ) :
221 out = 0
222
223 out = out + Dt
224
225 D1_problem . ExecuteF ina l i z eSo lu t i onStep ( time , output_time , out )
226 D2_problem . ExecuteF ina l i z eSo lu t i onStep ( )
227
228 i n t e r f a c e_s t r a t e gy . ExecuteF ina l i z eSo lu t i onStep ( )
229
230 D1_problem . ExecuteF ina l i z e ( )
231 D2_problem . ExecuteF ina l i z e ( )
232
233 pr in t ( "COUPLED PROBLEM SOLVED. " )



Coupling strategies scripts 123

A.2 Coupling strategies scripts

A.2.1 relaxation_strategy.py

1 from __future__ import pr int_funct ion , absolute_import , d i v i s i o n
2
3 import numpy
4 import s c ipy
5
6 c l a s s Re laxat ionStrategy :
7
8 de f __init__( s e l f , inter face_problem_size , domain_size , problem1 , problem2 , interface_communicator ,

r e s i d u a l ) :
9

10 # Common i n i t i a l i z a t i o n f o r a l l s t r a t e g i e s
11 s e l f . inter face_problem_size = inter face_problem_size
12 s e l f . domain_size = domain_size
13 s e l f . problem1 = problem1
14 s e l f . problem2 = problem2
15 s e l f . interface_communicator = interface_communicator
16 s e l f . r e s i dua l_ca l cu l a t o r = r e s i d u a l
17
18 # Relaxat ion method i n i t i a l i z a t i o n
19 s e l f . a cce l e ra t i on_type = "Aitken" # Acce l e ra t i on types a v a i l a b l e : "Aitken " , "Fixed " , " Ful l "
20 s e l f .w_0 = 0.25 # Relaxat ion parameter i n i t i a l i z a t i o n
21
22
23 de f Ex e cu t e I n i t i a l i z e S o l u t i o nS t ep ( s e l f ) :
24 pass
25
26
27 de f In te r f aceSo lu t i onUpdate ( s e l f , step , nl_it , i terat ion_guess_value , i n t e r f a c e_r e s i dua l ) :
28
29 i f s e l f . a cce l e ra t i on_type == "Aitken" :
30 i f n l_it==1:
31 s e l f . res_1 = numpy . copy ( i n t e r f a c e_r e s i dua l )
32 va l_correct = iterat ion_guess_va lue + s e l f .w_0∗ i n t e r f a c e_r e s i dua l
33
34 e l i f nl_it >1:
35 s e l f . res_2 = numpy . array ( i n t e r f a c e_r e s i dua l )
36
37 aux1 = numpy . dot ( s e l f . res_1 , s e l f . res_2−s e l f . res_1 )
38 aux2 = numpy . dot ( s e l f . res_2−s e l f . res_1 , s e l f . res_2−s e l f . res_1 )
39 w_1 = − s e l f .w_0∗( aux1/aux2 )
40
41 va l_correct = iterat ion_guess_va lue + w_1∗ s e l f . res_2
42
43 # Update va lues
44 s e l f . res_1 = numpy . copy ( s e l f . res_2 )
45 s e l f .w_0 = w_1
46
47 e l i f s e l f . a cce l e ra t i on_type == "Fixed" :
48 va l_correct = iterat ion_guess_value + s e l f .w_0∗ i n t e r f a c e_r e s i dua l
49
50 e l i f s e l f . a cce l e ra t i on_type == " Ful l " :
51 va l_correct = iterat ion_guess_value + in t e r f a c e_r e s i dua l
52
53 return va l_correct
54
55
56 de f ExecuteF ina l i z eSo lu t i onStep ( s e l f ) :
57 pass
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A.2.2 jfnk_strategy.py

1 from __future__ import pr int_funct ion , absolute_import , d i v i s i o n
2
3 import numpy
4 import s c ipy
5 import s c ipy . spar s e . l i n a l g
6
7 c l a s s gmres_counter ( ob j e c t ) : # Aux i l i a ry c l a s s to be c a l l e d within the GMRES so l v e r
8 de f __init__( s e l f , d i sp=True ) :
9 s e l f . _disp = disp

10 s e l f . n i t e r = 0
11 de f __call__( s e l f , rk=None ) :
12 s e l f . n i t e r += 1
13 i f s e l f . _disp :
14 pr in t ( " GMRES i t e r a t i o n : " , s e l f . n i t e r , " rk = " , s t r ( rk ) )
15
16
17 c l a s s JacobianEmulation :
18 de f __init__( s e l f , i t e ra t ion_gues s , eps i l on , problem1 , problem2 ,
19 interface_communicator , r e s i dua l , i n t e r f a c e_r e s i dua l ) :
20
21 s e l f . i t e r a t i on_gue s s = i t e ra t i on_gue s s . copy ( )
22 s e l f . e p s i l o n = ep s i l o n
23 s e l f . problem1 = problem1
24 s e l f . problem2 = problem2
25 s e l f . interface_communicator = interface_communicator
26 s e l f . base_res idua l = i n t e r f a c e_r e s i dua l
27 s e l f . r e s i dua l_ca l cu l a t o r = r e s i d u a l
28
29 de f ComputeDerivative ( s e l f , du ) :
30 # This func t i on approximates the Jacobian p r o j e c t i on onto a vector us ing f i n i t e d i f f e r e n c e s .
31 # Jv = R( guess+ep s i l o n ∗du)−R( guess ) / ep s i l o n
32 du = du . reshape ( ( du . shape [ 0 ] , ) )
33
34 v = s e l f . i t e r a t i on_gue s s + s e l f . e p s i l o n ∗ du
35 rv = s e l f . r e s i dua l_ca l cu l a t o r . ComputeResidual ( v )
36
37 Jv = rv−s e l f . base_res idua l
38 Jv /= −( s e l f . e p s i l o n ) # Reca l l the minus s i gn from the Newton ’ s method c o r r e c t i o n d e f i n i t i o n
39
40 return Jv
41
42
43 c l a s s JacobianFreeNewtonKrylovStrategy :
44
45 de f __init__( s e l f , inter face_problem_size , domain_size ,
46 problem1 , problem2 , interface_communicator , r e s i d u a l ) :
47
48 # Common i n i t i a l i z a t i o n f o r a l l s t r a t e g i e s
49 s e l f . inter face_problem_size = inter face_problem_size
50 s e l f . domain_size = domain_size
51 s e l f . problem1 = problem1
52 s e l f . problem2 = problem2
53 s e l f . interface_communicator = interface_communicator
54 s e l f . r e s i d u a l = r e s i d u a l
55
56 # GMRES parameters
57 s e l f . r e s t a r t = 300
58 s e l f . maxiter = 300
59 s e l f . t o l e r an c e = 1e−6
60 s e l f . e p s i l o n = 1e−6 #Step f o r the A de r i va t e approximation
61
62
63 de f Ex e cu t e I n i t i a l i z e S o l u t i o nS t ep ( s e l f ) :
64 pass
65
66
67 de f In te r f aceSo lu t i onUpdate ( s e l f , step , nl_it , i terat ion_guess_value , i n t e r f a c e_r e s i dua l ) :
68
69 emulator = JacobianEmulation ( i terat ion_guess_value ,
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70 s e l f . ep s i l on ,
71 s e l f . problem1 ,
72 s e l f . problem2 ,
73 s e l f . interface_communicator ,
74 s e l f . r e s i dua l ,
75 i n t e r f a c e_r e s i dua l )
76 rhs = in t e r f a c e_r e s i dua l
77
78 Jemulator = sc ipy . spar s e . l i n a l g . LinearOperator ( ( s e l f . inter face_problem_size ∗ s e l f . domain_size ,
79 s e l f . inter face_problem_size ∗ s e l f . domain_size ) ,
80 matvec = emulator . ComputeDerivative ,
81 dtype=f l o a t )
82
83 gmres_callback_counter = gmres_counter ( )
84 p r in t ( " GMRES r e s i d u a l minimizat ion s t a r t s . . . " )
85 co r r e c t i on , i n f o = sc ipy . spar se . l i n a l g . gmres ( Jemulator ,
86 rhs ,
87 r e s t a r t=s e l f . r e s t a r t ,
88 ca l l ba ck=gmres_callback_counter ,
89 maxiter=s e l f . maxiter ,
90 t o l=s e l f . t o l e r an c e )
91 pr in t ( " GMRES r e s i d u a l minimizat ion f i n i s h e d . " )
92
93 va l_correct = iterat ion_guess_va lue + co r r e c t i o n
94
95 return va l_correct
96
97
98 de f ExecuteF ina l i z eSo lu t i onStep ( s e l f ) :
99 pass
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A.2.3 mvqn_strategy.py

1 from __future__ import pr int_funct ion , absolute_import , d i v i s i o n
2
3 import numpy
4 import s c ipy
5
6 c l a s s MultiVectorQuasiNewtonStrategy :
7
8 de f __init__( s e l f , inter face_problem_size , domain_size ,
9 problem1 , problem2 , interface_communicator , r e s i d u a l ) :

10
11 # Common i n i t i a l i z a t i o n f o r a l l s t r a t e g i e s
12 s e l f . inter face_problem_size = inter face_problem_size
13 s e l f . domain_size = domain_size
14 s e l f . problem1 = problem1
15 s e l f . problem2 = problem2
16 s e l f . interface_communicator = interface_communicator
17 s e l f . r e s i dua l_ca l cu l a t o r = r e s i d u a l
18
19 # MVQN method i n i t i a l i z a t i o n
20 s e l f . Jac_n = −(numpy . i d en t i t y ( s e l f . inter face_problem_size ∗ s e l f . domain_size ) )
21 s e l f . w_0 = 0.825
22
23
24 de f Ex e cu t e I n i t i a l i z e S o l u t i o nS t ep ( s e l f ) :
25
26 # Observation matr i ces i n i t i a l i z a t i o n
27 s e l f . obs_matrix_v = numpy . z e ro s ( ( s e l f . inter face_problem_size ∗ s e l f . domain_size , 1 ) , dtype=" f l o a t

" )
28 s e l f . obs_matrix_w = numpy . z e ro s ( ( s e l f . inter face_problem_size ∗ s e l f . domain_size , 1 ) , dtype=" f l o a t

" )
29
30
31 de f In te r f aceSo lu t i onUpdate ( s e l f , step , nl_it , i terat ion_guess_value , i n t e r f a c e_r e s i dua l ) :
32
33 val_k1 = numpy . array ( i te rat ion_guess_va lue )
34 res_k1 = numpy . array ( i n t e r f a c e_r e s i dua l )
35
36 i f n l_it == 1 :
37 i f s tep == 1 :
38 # The very f i r s t c o r r e c t i o n o f the problem i s done with f i x ed r e l a xa t i on
39 pr in t ( " F i r s t f i x ed point i t e r a t i o n " )
40 va l_correct = val_k1 + s e l f .w_0∗ res_k1
41
42 e l i f s tep > 1 :
43 # F i r s t s tep c o r r e c t i o n i s done with prev ious step Jacobian
44 va l_correct = iterat ion_guess_va lue − numpy . dot ( s e l f . Jac_n , res_k1 )
45 pr in t ( " I t e r a t i o n i n t e r f a c e f l ux updated with prev ious Jacobian . " )
46
47
48 e l i f n l_it > 1 :
49
50 i f n l_it == 2 :
51 # F i r s t obse rvat ion matr i ces f i l l
52 s e l f . obs_matrix_v [ : , 0 ] = res_k1−s e l f . res_k
53 s e l f . obs_matrix_w [ : , 0 ] = val_k1−s e l f . val_k
54 pr in t ( "Observation matr i ces f i r s t f i l l . " )
55
56
57 e l i f n l_it > 2 :
58 i f s e l f . obs_matrix_v . shape [1] < s e l f . inter face_problem_size ∗ s e l f . domain_size :
59 new_obs_matrix_v = numpy . z e ro s ( ( s e l f . obs_matrix_v . shape [ 0 ] , s e l f . obs_matrix_v .

shape [1 ]+1) , dtype=" f l o a t " )
60 new_obs_matrix_w = numpy . z e ro s ( ( s e l f . obs_matrix_w . shape [ 0 ] , s e l f . obs_matrix_w .

shape [1 ]+1) , dtype=" f l o a t " )
61
62 new_obs_matrix_v [ : , 0 ] = res_k1−s e l f . res_k
63 new_obs_matrix_v [ : , 1 : ] = s e l f . obs_matrix_v
64
65 new_obs_matrix_w [ : , 0 ] = val_k1−s e l f . val_k
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66 new_obs_matrix_w [ : , 1 : ] = s e l f . obs_matrix_w
67
68 s e l f . obs_matrix_v = numpy . copy (new_obs_matrix_v)
69 s e l f . obs_matrix_w = numpy . copy (new_obs_matrix_w)
70 pr in t ( "Observation matr i ces updated . " )
71
72 e l s e :
73 p r in t ( "ALERT: Old columns are to be dropped . " )
74 new_obs_matrix_v = numpy . z e ro s ( ( s e l f . obs_matrix_v . shape [ 0 ] , s e l f . obs_matrix_v .

shape [ 1 ] ) , dtype=" f l o a t " )
75 new_obs_matrix_w = numpy . z e ro s ( ( s e l f . obs_matrix_w . shape [ 0 ] , s e l f . obs_matrix_w .

shape [ 1 ] ) , dtype=" f l o a t " )
76
77 new_obs_matrix_v [ : , 0 ] = res_k1−s e l f . res_k
78 new_obs_matrix_v [ : , 1 : ] = s e l f . obs_matrix_v [ : , : −2 ]
79
80 new_obs_matrix_w [ : , 0 ] = val_k1−s e l f . val_k
81 new_obs_matrix_w [ : , 1 : ] = s e l f . obs_matrix_w [ : , : −2 ]
82
83 s e l f . obs_matrix_v = numpy . copy (new_obs_matrix_v)
84 s e l f . obs_matrix_w = numpy . copy (new_obs_matrix_w)
85 pr in t ( "Observation matr i ces updated . " )
86
87
88 # Jacobian approximation
89 aux_1 = numpy . array ( s e l f . obs_matrix_w − numpy . dot ( s e l f . Jac_n , s e l f . obs_matrix_v ) )
90 aux_2 = sc ipy . l i n a l g . pinv2 (numpy . dot ( s e l f . obs_matrix_v .T, s e l f . obs_matrix_v ) )
91
92 s e l f . Jac_k1 = s e l f . Jac_n + numpy . dot (numpy . dot (aux_1 , aux_2) , s e l f . obs_matrix_v .T)
93 pr in t ( " Jacobian updated . " )
94
95 # So lut i on update
96 va l_correct = iterat ion_guess_value − numpy . dot ( s e l f . Jac_k1 , res_k1 )
97 pr in t ( " I t e r a t i o n i n t e r f a c e s o l u t i on updated . " )
98
99 # Var iab l e s update

100 s e l f . val_k = numpy . copy ( val_k1 )
101 s e l f . res_k = numpy . copy ( res_k1 )
102
103 return va l_correct
104
105
106 de f ExecuteF ina l i z eSo lu t i onStep ( s e l f ) :
107
108 s e l f . Jac_n = numpy . copy ( s e l f . Jac_k1 )
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A.3 residual_definitions.py

1 #!/ usr /bin /env python
2 # −∗− coding : utf−8 −∗−
3 import numpy
4
5 c l a s s NeumannNeumannResidual :
6 de f __init__( s e l f , problem_D1 , problem_D2 , interface_communicator ) :
7 s e l f . problem_D1 = problem_D1
8 s e l f . problem_D2 = problem_D2
9 s e l f . interface_communicator = interface_communicator

10
11 de f ComputeResidual ( s e l f , interface_flux_D1 ) :
12
13 s e l f . problem_D1 . SolveNeumann ( interface_flux_D1 )
14 result_int_D1 = s e l f . problem_D1 . Get In t e r f a c eVe l o c i t y ( )
15
16 interface_flux_D2=−( s e l f . interface_communicator . FluidToStructure_VectorMap ( interface_flux_D1 )

)
17
18 s e l f . problem_D2 . SolveNeumann ( interface_flux_D2 )
19 result_int_D2 = s e l f . problem_D2 . Get In t e r f a c eVe l o c i t y ( )
20
21 result_int_D2_comm = s e l f . interface_communicator . StructureToFluid_VectorMap ( result_int_D2 )
22
23 r e s i d u a l = result_int_D1 − result_int_D2_comm
24
25 return numpy . array ( r e s i d u a l )
26
27
28 c l a s s Dir ichletNeumannResidual :
29 de f __init__( s e l f , problem_D1 , problem_D2 , interface_communicator ) :
30 s e l f . problem_D1 = problem_D1
31 s e l f . problem_D2 = problem_D2
32 s e l f . interface_communicator = interface_communicator
33
34 de f ComputeResidual ( s e l f , inter face_veloc i ty_D1 ) :
35
36 s e l f . problem_D1 . So l v eD i r i c h l e t ( inter face_veloc i ty_D1 )
37 result_int_D1 = s e l f . problem_D1 . Get Inte r faceReact ion ( )
38
39 interface_flux_D2=−( s e l f . interface_communicator . FluidToStructure_VectorMap ( result_int_D1 ) )
40
41 s e l f . problem_D2 . SolveNeumann ( interface_flux_D2 )
42 result_int_D2 = s e l f . problem_D2 . Get In t e r f a c eVe l o c i t y ( )
43
44 result_int_D2_comm = s e l f . interface_communicator . StructureToFluid_VectorMap ( result_int_D2 )
45
46 r e s i d u a l = result_int_D2_comm − inter face_ve loc i ty_D1
47
48 return numpy . array ( r e s i d u a l )
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A.4 Punctual fluid load

A.4.1 pointforce2Dfluid.h
1 #i f ! de f ined (KRATOS_PointForce2Dfluid_CONDITION_H_INCLUDED )
2 #de f i n e KRATOS_PointForce2Dfluid_CONDITION_H_INCLUDED
3
4
5 // System inc l ude s
6
7
8 // External i n c l ude s
9 #inc lude " boost /smart_ptr . hpp"

10
11
12 // Pro j ec t i n c l ude s
13 #inc lude " i n c l ude s / de f i n e . h"
14 #inc lude " i n c l ude s / s e r i a l i z e r . h"
15 #inc lude " i n c l ude s / cond i t i on . h"
16 #inc lude " i n c l ude s / ub la s_ in t e r f a c e . h"
17 #inc lude " i n c l ude s / v a r i a b l e s . h"
18
19
20 namespace Kratos
21 {
22
23 ///@name Kratos Globals
24 ///@{
25
26 ///@}
27 ///@name Type De f i n i t i o n s
28 ///@{
29
30 ///@}
31 ///@name Enum ’ s
32 ///@{
33
34 ///@}
35 ///@name Functions
36 ///@{
37
38 ///@}
39 ///@name Kratos C la s s e s
40 ///@{
41
42 /// Short c l a s s d e f i n i t i o n .
43 /∗∗ Deta i l c l a s s d e f i n i t i o n .
44 ∗/
45 c l a s s PointForce2Df lu id
46 : pub l i c Condit ion
47 {
48 pub l i c :
49 ///@name Type De f i n i t i o n s
50 ///@{
51
52 /// Counted po in t e r o f PointForce2Df lu id
53 KRATOS_CLASS_POINTER_DEFINITION( PointForce2Df lu id ) ;
54
55 ///@}
56 ///@name L i f e Cycle
57 ///@{
58
59 /// Defau l t cons t ruc to r .
60 PointForce2Df lu id ( IndexType NewId , GeometryType : : Po inter pGeometry ) ;
61 PointForce2Df lu id ( IndexType NewId , GeometryType : : Po inter pGeometry ,
62 Propert iesType : : Po inter pProper t i e s ) ;
63
64 /// Destructor .
65 v i r t u a l ~PointForce2Df lu id ( ) ;
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66
67
68 ///@}
69 ///@name Operators
70 ///@{
71
72
73 ///@}
74 ///@name Operat ions
75 ///@{
76
77 Condit ion : : Po inter Create ( IndexType NewId , NodesArrayType const&
78 ThisNodes , Propert iesType : : Po inter pProper t i e s ) const ;
79
80 void CalculateLocalSystem ( MatrixType& rLeftHandSideMatrix ,
81 VectorType& rRightHandSideVector ,
82 Proce s s In f o& rCurrentProce s s In fo ) ;
83
84 void CalculateRightHandSide ( VectorType& rRightHandSideVector ,
85 Proce s s In f o& rCurrentProce s s In fo ) ;
86
87 // v i r t u a l void CalculateLeftHandSide ( MatrixType& rLeftHandSideMatrix ,
88 // Proce s s In f o& rCurrentProce s s In fo ) ;
89
90 void EquationIdVector ( EquationIdVectorType& rResult ,
91 Proce s s In f o& rCurrentProce s s In fo ) ;
92
93 void GetDofList ( DofsVectorType& Condit iona lDofLis t ,
94 Proce s s In f o& CurrentProces s In fo ) ;
95
96 ///@}
97 ///@name Access
98 ///@{
99

100
101 ///@}
102 ///@name Inqu i ry
103 ///@{
104
105
106 ///@}
107 ///@name Input and output
108 ///@{
109
110 /// Turn back in format ion as a s t r i n g .
111 // v i r t u a l S t r ing In fo ( ) const ;
112
113 /// Pr int in format ion about t h i s ob j e c t .
114 // v i r t u a l void Pr in t In f o ( std : : ostream& rOStream ) const ;
115
116 /// Pr int ob j e c t ’ s data .
117 // v i r t u a l void PrintData ( std : : ostream& rOStream ) const ;
118
119
120 ///@}
121 ///@name Friends
122 ///@{
123
124
125 ///@}
126
127 protec ted :
128 ///@name Protected s t a t i c Member Var iab l e s
129 ///@{
130
131
132 ///@}
133 ///@name Protected member Var iab l e s
134 ///@{
135
136
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137 ///@}
138 ///@name Protected Operators
139 ///@{
140
141
142 ///@}
143 ///@name Protected Operat ions
144 ///@{
145
146 f r i e nd c l a s s S e r i a l i z e r ;
147
148 // A pr iva t e d e f au l t cons t ruc to r nece s sa ry f o r s e r i a l i z a t i o n
149 PointForce2Df lu id ( ) {} ;
150
151 v i r t u a l void save ( S e r i a l i z e r& r S e r i a l i z e r ) const
152 {
153 KRATOS_SERIALIZE_SAVE_BASE_CLASS( r S e r i a l i z e r , Condit ion ) ;
154 }
155
156 v i r t u a l void load ( S e r i a l i z e r& r S e r i a l i z e r )
157 {
158 KRATOS_SERIALIZE_LOAD_BASE_CLASS( r S e r i a l i z e r , Condit ion ) ;
159 }
160
161
162 ///@}
163 ///@name Protected Access
164 ///@{
165
166
167 ///@}
168 ///@name Protected Inqu i ry
169 ///@{
170
171
172 ///@}
173 ///@name Protected L i f eCyc l e
174 ///@{
175
176
177 ///@}
178
179 pr i va t e :
180 ///@name S t a t i c Member Var iab l e s
181 ///@{
182
183
184 ///@}
185 ///@name Member Var iab l e s
186 ///@{
187
188
189 ///@}
190 ///@name Pr ivate Operators
191 ///@{
192
193 ///@}
194 ///@name Pr ivate Operat ions
195 ///@{
196
197
198 ///@}
199 ///@name Pr ivate Access
200 ///@{
201
202
203 ///@}
204 ///@name Pr ivate Inqu i ry
205 ///@{
206
207
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208 ///@}
209 ///@name Un a c c e s s i b l e methods
210 ///@{
211
212 /// Assignment operator .
213 // PointForce2Df lu id& operator=(const PointForce2Df lu id& rOther ) ;
214
215 /// Copy cons t ruc to r .
216 // PointForce2Df lu id ( const PointForce2Df lu id& rOther ) ;
217
218
219 ///@}
220
221 } ; // Class PointForce2Df lu id
222
223 ///@}
224
225 ///@name Type De f i n i t i o n s
226 ///@{
227
228
229 ///@}
230 ///@name Input and output
231 ///@{
232
233
234 /// input stream func t i on
235 /∗ i n l i n e std : : i s t ream& operator >> ( std : : i s t ream& rIStream ,
236 PointForce2Df lu id& rThis ) ;
237 ∗/
238 /// output stream funct i on
239 /∗ i n l i n e std : : ostream& operator << ( std : : ostream& rOStream ,
240 const PointForce2Df lu id& rThis )
241 {
242 rThis . P r in t In f o ( rOStream ) ;
243 rOStream << std : : endl ;
244 rThis . PrintData ( rOStream ) ;
245
246 return rOStream ;
247 }∗/
248 ///@}
249
250 } // namespace Kratos .
251
252 #end i f // KRATOS_PointForce2Dfluid_CONDITION_H_INCLUDED de f ined
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A.4.2 pointforce2Dfluid.cpp

1 // System inc l ude s
2
3
4 // External i n c l ude s
5
6
7 // Pro j ec t i n c l ude s
8 #inc lude " i n c l ude s / de f i n e . h"
9 #inc lude " custom_conditions / po in t f o r c e 2D f l u i d . h"

10 #inc lude " incompre s s ib l e_f lu id_app l i ca t i on . h"
11 #inc lude " u t i l i t i e s /math_utils . h"
12
13 namespace Kratos
14 {
15 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
16 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
17 PointForce2Df lu id : : PointForce2Df lu id ( IndexType NewId ,
18 GeometryType : : Po inter pGeometry )
19 : Condit ion (NewId , pGeometry )
20 {
21 //DO NOT ADD DOFS HERE ! ! !
22 }
23
24 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
25 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
26 PointForce2Df lu id : : PointForce2Df lu id ( IndexType NewId ,
27 GeometryType : : Po inter pGeometry ,
28 Propert iesType : : Po inter pProper t i e s )
29 : Condit ion (NewId , pGeometry , pProper t i e s )
30 {
31 }
32
33 Condit ion : : Po inter PointForce2Df lu id : : Create ( IndexType NewId ,
34 NodesArrayType const& ThisNodes ,
35 Propert iesType : : Po inter pProper t i e s ) const
36 {
37 return Condit ion : : Po inter (new PointForce2Df lu id (NewId ,
38 GetGeometry ( ) . Create ( ThisNodes ) , pProper t i e s ) ) ;
39 }
40
41 PointForce2Df lu id : : ~ PointForce2Df lu id ( )
42 {
43 }
44
45
46 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
47 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
48 void PointForce2Df lu id : : CalculateRightHandSide ( VectorType& rRightHandSideVector ,
49 Proce s s In f o& rCurrentProce s s In fo )
50 {
51 KRATOS_TRY
52 i f ( rRightHandSideVector . s i z e ( ) != 3)
53 rRightHandSideVector . r e s i z e (3 , f a l s e ) ;
54
55 array_1d<double ,3>& f o r c e = GetGeometry ( ) [ 0 ] . FastGetSolut ionStepValue (FORCE) ;
56 rRightHandSideVector [ 0 ] = f o r c e [ 0 ] ;
57 rRightHandSideVector [ 1 ] = f o r c e [ 1 ] ;
58 rRightHandSideVector [ 2 ] = 0 . 0 ;
59
60 KRATOS_CATCH("" )
61 }
62
63 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
64 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
65 void PointForce2Df lu id : : CalculateLocalSystem ( MatrixType& rLeftHandSideMatrix ,
66 VectorType& rRightHandSideVector ,
67 Proce s s In f o& rCurrentProce s s In fo )
68 {
69 KRATOS_TRY
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70
71 i f ( rLeftHandSideMatrix . s i z e 1 ( ) != 3)
72 rLeftHandSideMatrix . r e s i z e (3 ,3 , f a l s e ) ;
73 noa l i a s ( rLeftHandSideMatrix ) = ZeroMatrix (3 , 3 ) ;
74
75 i f ( rRightHandSideVector . s i z e ( ) != 3)
76 rRightHandSideVector . r e s i z e (3 , f a l s e ) ;
77
78 array_1d<double ,3>& fo r c e = GetGeometry ( ) [ 0 ] . FastGetSolut ionStepValue (FORCE) ;
79 rRightHandSideVector [ 0 ] = f o r c e [ 0 ] ;
80 rRightHandSideVector [ 1 ] = f o r c e [ 1 ] ;
81 rRightHandSideVector [ 2 ] = 0 . 0 ;
82
83 KRATOS_CATCH("" )
84 }
85
86
87 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
88 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
89 void PointForce2Df lu id : : EquationIdVector ( EquationIdVectorType& rResult ,
90 Proce s s In f o& CurrentProces s In fo )
91 {
92
93 rResu l t . r e s i z e (3 ) ;
94 rResu l t [ 0 ] = (GetGeometry ( ) [ 0 ] . GetDof (VELOCITY_X) . EquationId ( ) ) ;
95 rResu l t [ 1 ] = (GetGeometry ( ) [ 0 ] . GetDof (VELOCITY_Y) . EquationId ( ) ) ;
96 rResu l t [ 2 ] = (GetGeometry ( ) [ 0 ] . GetDof (PRESSURE) . EquationId ( ) ) ;
97
98 }
99

100 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
101 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
102 void PointForce2Df lu id : : GetDofList ( DofsVectorType& Condit iona lDofLis t ,
103 Proce s s In f o& CurrentProces s In fo )
104 {
105
106 Cond i t iona lDofL i s t . r e s i z e (3 ) ;
107 Cond i t iona lDofL i s t [ 0 ] = (GetGeometry ( ) [ 0 ] . pGetDof (VELOCITY_X) ) ;
108 Cond i t iona lDofL i s t [ 1 ] = (GetGeometry ( ) [ 0 ] . pGetDof (VELOCITY_Y) ) ;
109 Cond i t iona lDofL i s t [ 2 ] = (GetGeometry ( ) [ 0 ] . pGetDof (PRESSURE) ) ;
110
111 }
112 } // Namespace Kratos
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