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Resumen 

 

El aumento del uso de internet en estos últimos años debido a servicios en la 

nube, como redes sociales, aplicaciones, páginas web… ha obligado a la 

generación de centros de datos que nos permitan soportar esta gran cantidad de 

tráfico a diario. Un centro de datos actual para almacenar la gran cantidad de 

información que se quiere ofrecer, puede llegar a estar formado por cientos de 

miles de servidores y enlaces que permiten a los usuarios disfrutar de su 

contenido en cualquier momento, en casi cualquier lugar y con una buena calidad 

de servicio. Esta masificación de los centro de datos ha supuesto un gran reto 

para la comunidad científica en términos de cómo gestionar y controlar la gran 

cantidad de elementos que los forman. Por ello, se están desarrollando nuevas 

técnicas tanto de control como de gestión con el fin de disminuir los gastos de 

mantenimiento, facilitar el despliegue de nuevas aplicaciones, y en definitiva, 

sacarle el máximo partido a los centro de datos. Por este motivo, se ha querido 

desarrollar una interfaz gráfica útil y fácil de usar, capaz de facilitar el uso de las 

capas de gestión y control de un centro de datos el cual ofrece el servicio de 

virtualización de sus recursos.  

En resumen, este proyecto desarrollado en Java,  permite al usuario poder 

observar cómo están siendo usados los distintos recursos que forman su centro 

de datos de interés. 
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Overview 

The increased use of Internet in recent years due to cloud services, such as social 

networks, applications, web pages… has forced the necessity of data centres be 

able to support this large amount of daily traffic. A current data centre, in order to 

store this amount of information, can be made up of hundreds of thousands of 

servers and links that allow users to enjoy their content anytime, almost anywhere 

and with a good quality of service. Due to this mass of data centres, the scientific 

community has to face hard challenges of how to manage and control the large 

number of elements that form them. Therefore, new techniques are being 

developed both to control and manage with the purpose of reducing maintenance 

costs, facilitating the deployment of new applications, and definitively, making the 

most of the data centres. For this reason, it has been developed a useful 

graphical interface which is able to facilitate the use of management and control 

layers of a data centre.  

To sum up, this project designed and developed in Java, allows the user to 

observe how the data centre’s resources are being used in a visually and friendly 

way.  
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INTRODUCTION 1 
 

1. INTRODUCTION 

 
Data centres are expecting an exponential increase of the traffic that they have 

to sustain due to the cloud computing and a lot of emerging web applications in 

the last years. To support the billions of daily requests from users to the data 

centres, technological community has to confront the hard challenges of how to 

sustain the high traffic through the data centre network offering a good quality of 

service (QoS) and above all, how to control and manage their hundreds of 

thousands of servers, links and switches. 

 

Nowadays, in order to confront these troubles, a three-layered architecture is 

being implemented on data centres. As it can see in Fig. 1, this architecture is 

formed by an orchestration layer able to give a whole network view of data centre 

with the purpose of efficiently manage data centre’s resources. Also that, a 

control layer is used to offer an easily way to configure the different network 

elements of a data centre.  And finally, the third layer is made up for the physical 

devices of data centre. 

 

 

 

 

 

 

 

 

 

 

     Fig. 1 Layered architecture in actual data centres. 

 

In the same way, in recent years the virtualization of data centres’ network is 

being developed as a promising service able to save costs and to reduce the 

complexity of the data centre’s deployment in new applications and enterprises. 

In the following sections these terms will be explained in detail as well as how 

much can beneficiate to the data centre efficiency both in terms of use and 

management. 
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1.1. Objectives of the final project 

 
The objective of this final project has been the development of a graphical tool 

which allows an easily work with the management plane of a data centre network 

based on SDN paradigm. The graphical interface will offer a friendly and intuitive 

tool in order to interact with the data centre’s resources, providing a graphical 

view of how the servers, links, and switches are being used. 

 

The design and development of the interface entails the following aspects: 

 

 Development of the Graphical User Interface: the user’s interface 

will offer the possibility to see and interact with the topology of data 

centre with the purpose to provision virtual data centres and to 

check the current status of the usage of the DC resources. 

 

 Establishment of the communication interfaces with the 

management plane: these communications will be able to know 

how the orchestrator server is managing the data centre’s 

resources.  

 

 Network Physical Parameters visualization: the graphical interface 

will allow the possibility to show the different physical characteristics 

of each element on data centre and virtual data centre topology. 
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1.2. Scenario 

 

Over the last few years, the exponential increase of the Internet traffic, mainly 

driven from emerging applications like video streaming, social networking and 

cloud computing has created the need of more powerful data centres, both in 

terms of computing resources and network capacities. Enterprise and 

government organizations are moving from test environments to placing their 

workloads into the cloud. On the other hand, consumers use cloud services to 

access to content and services, on multiple devices, in almost any place where 

they are located. Consequently, nowadays data centres’ topologies are formed 

by hundreds of thousands of servers and links creating the necessity to use some 

methods to control and manage the big amount of network elements and their 

resources. 

 

Firstly, in order to increase the data centre’s (DC) efficiency by using its resources 

in the most optimal possible way, an orchestration layer responsible of the 

management of the DC is introduced. Moreover, regarding the configuration of 

the intra-DC network (DCN) resources, a Software Defined Networking (SDN)-

based control infrastructure is considered. As it will be discussed in the following 

sections, the SDN-based controller facilitates the network control and 

configuration by decoupling the forwarding plane from the control plane. 

 

Besides, with the purpose of minimize costs and get the greatest performance of 

data centres, the virtualization of them is a service progressively more and more 

used. In this project, in particular we focus on Virtual Data Centre (VDC), which 

is a service allowing to share the same physical infrastructure among multiple 

tenants. As it will be explained in more detail below, a VDC is a full-virtual network 

based on the creation of Virtual Machines (VM), inter-connected by virtual links, 

containing the necessary resources with the purpose of a tenant can install its 

applications which will be provided to third parties.  

 

 

 

 

 

 

 



4                                  Design and implementation of a GUI for the Orchestrator  

Fig. 2 shows the layered structure in which this scenario is based including the 

developed project. It can be understood as a dashboard of the orchestrator 

capable of show how data centre’s resources are given to the multi VDC requests 

sent to the data centre.  

 

 

 

 

 

 

 

 

 

  

       Fig. 2 This scenario layered structure of a data centre with the developed project. 

 

In conclusion, by using this GUI, an administrator of a data centre which offers 

the virtualization of its resources, can observe how the data centre’s resources 

are actually used or can trigger the provisioning of new VDCs. 

 

1.2.1. Data Centres network topology 

 

A Data Centre (DC) is a dedicated space where companies can keep and operate 

most of their ICT operations that support their business. Typically, a DC is a 

facility used to house computer systems and associated components, such as 

telecommunications and storage systems. Also that, sometimes there are backup 

power supplies, redundant data communication connections, environmental 

controls and security devices. With an estimated 100 billion web pages over 100 

million websites and with almost two billion users accessing all these websites, 

including a growing amount of high bandwidth video, it’s easy to understand but 

hard to comprehend how much data is being uploaded and downloaded every 

second on the Internet. 
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The data centre infrastructure is central to the IT architecture from which all 

content is sourced through. The stored data in servers’ data centre is not static 

but it is in constant movement interrelated with each other resulting in new data. 

For this reason, a proper planning of the data centre infrastructure design is 

critical. The data centre network design is based on a layered approach that has 

been improved over the past few years. This layered structure seeks the 

improvement of performance, resiliency, flexibility and scalability in a data centre 

design.  

 

 

 

 

 

 

 

 

 

 

    

 

As it can see in Fig. 3, [1], the layers of the data centre design are the: core, 

aggregation and access layers. 

 

 Core layer: Provides the high-speed packet switching for flows in 

and off the data centre. This layer provides connectivity to multiple 

aggregation modules. 

 

 Aggregation layer: Provides important functions, such as service 

module integration. These modules provide services, like content 

switching, firewall, intrusion detection, network analysis, and more. 

 

 Access layer: Where the servers are physically attached to the 

network. Servers are stacked up in racks which are interconnected 

by ToRs (Top of Rack).  

 

Fig. 3 Common DC Topology 
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This is an example of a basic data centre topology but the high traffic of Internet 

has caused the huge complexity of them as it can see in the example of Fig. 4 

[11].  

 

1.2.2. Data Centres and Cloud Computing 

 

The first data centres were designed following the classical architectures of the 

network informatics, in which the electronic devices were stacked up in racks. 

These DCs either were built to supply the current bandwidth and capacities 

requirements. Nowadays, the exponential increase of Internet as with Cloud 

Computing has produced the fast necessity of increment in size and in capacities 

the until now data centres known.  

 

Cloud Computing is an informatics model in which the data and applications are 

divided in many data centres, each one containing hundreds of thousands of 

servers. That makes sense if we think about the big number of applications that 

every day have to support millions of requests, such as Hotmail, Gmail, Google, 

among many others. According to Cisco’s report [15] about the global cloud, Fig. 

5, the amount of annual global data centre traffic in 2014 was estimated to be 3.5 

Zettabytes, and by 2019, it will be almost triple, 10.4 ZB per year.  

 

Fig. 4 An overhead view of rows of servers inside the Google data centre in Council Bluffs. 
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       Fig. 5 Global Data Centre IP Traffic Growth 

 

In the same way, in order to reply every request of users around the world, there 

are needed communications between data centres and above all 

communications between servers inside a data centre. Fig. 6 shows that the 75% 

of the global data centre traffic is inside the data centres, between its servers. In 

order to sustain this amount of traffic while offering a good quality of service, the 

servers of a data centre must experience low latency and high throughput with 

each other even if their number continues to increase. Due to this increment of 

servers (e.g. It is estimated that Google uses 900.000 servers approximately), 

the total power consumption inside the racks is increasing significantly. According 

to Greenpeace’s Make IT Green report, the global demand for electricity from 

data centres was 330 billion kWh in 2007, and by 2020, it will be more than 1000 

billion kWh.  

 

 

 

 

 

 

 

 

Fig. 6 Global Data Centre Traffic by Destination 
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To sum up, the impact of cloud computing on data centre traffic is clear and 

because of this, data centres will continue to dominate the Internet traffic and for 

this reason they have undergone an evolution.  

 

1.2.3. From Electrical to Optical data centres 

 

A data centre consists of thousands and thousands of racks hosting the servers 

(e.g. web, applications…) connected via the data centre interconnection network. 

When a request is sent by a user, a packet is forwarded through the Internet to 

the front end of the data centre. Then, the content switches are used to route the 

request to the appropriate server. A request may require the communication of 

this server with many others, for example, in a simple web search may be 

required the communication and synchronization between the web, the 

application and the database servers.  

 

Because of this high demand of fast synchronization and capacities, current data 

centres based on electronic packet switches present a very important problem: it 

is difficult to guarantee a good quality of service because of their high latency and 

the high throughput demand. This is caused by, among others, high losses in 

large distances, problems with electrical conversion and with packets processing, 

and electromagnetic interferences. In order to confront the main problems of 

electric data centres, new interconnection schemes, such as optical networking, 

which can reduce power consumption, latency and increase the bandwidth 

demand have been developed in the last years.  

 

1.2.4. Optical networking in data centres 

 

Optical networking is a communication that uses signals encoded onto light to 

transmit information among various nodes of a telecommunication’s network. 

Component of an optical networking system can include: fibre, laser or LED light 

source, multiplexers, de-multiplexers, optical switches to direct light between 

ports without using an optical-electrical-optical conversion, optical splitters to 

send a signal down different fibre paths and optical amplifier. Nowadays, these 

networks based on optical fibre are being used more frequently thanks to their 

high throughput due to the use of WDM (see section 1.2.4.1.), low latency and 

low power consumption. While the physical limitations of electrical cable are 

speeds of 10 Gigabits per seconds, the limits of fibre optics have not reached yet.  
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Currently, the optical technology is used in data centres only for point-to-point 

links which are based on low cost multi-mode fibres (MMF). These links can offer 

throughputs of 10, 40 and 100 Gbps thanks to the using of WDM. In general, 

current data centres are based on commodity switches for the interconnection 

network. The network is usually a fat-tree 2-Tier or 3-Tier architecture. As it is 

represented in Fig. 7 [3], the servers are accommodated into racks and are 

connected through a ToR switch. The connections between racks and ToRs are 

by copper, so that convert the connection into an optical, ToRs are transceivers 

electrical-to-optical (E/O) and optical-to-electrical (O/E). For this reason, the main 

drawback of this architectures is the high consumption of the ToRs and because 

of the high number of required links. As well as, these ToR switches are inter-

connected through aggregate switches in a tree topology. In topologies Tier-3, 

such as shown in Fig. 7, it is used one more level in which aggregate switches 

are connected using core switches in order to get a better scalability.  

 

  

 

 

 

 

 

 

 

 

 

 

 

As shown before, these days optical data centres are increasingly used because 

of their advantages over the electrical ones. Data centres based on optical 

technology present a lower cost of materials, i.e. thousands of electrical links 

would be required to replace a single high bandwidth fibre cable. In the same 

way, optical connections bring a lower latency and a higher throughput, which are 

two essential terms in the current data centre demands. 

 

Fig. 7 Example of a current optical data 
centre 
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1.2.4.1. Wavelength Division Multiplexing (WDM) 

 

Wavelength Division Multiplexing (WDM) is a technology that puts data from 

different sources together on an optical fibre. This is possible by multiplexing a 

number of optical carrier signals onto a single optical fibre by using 

different wavelengths of laser-light. A WDM system uses a multiplexer at 

the transmitter to join the several signals together, and a de-multiplexer at 

the receiver to split them apart.  

 

 

 

 

 

 

 

 

 

   Fig. 8 WDM principle 

 

In general, the transmitters employed in WDM applications require a control 

mechanism to respect the application’s frequency stability requirements. 

Recommendation ITU-T G.691.1 [7] shows the frequency grid that supports a 

variety of fixed channel spacing between 12.5 GHz and 100 GHz. 

 

1.2.5. SDN paradigm 

 

Nowadays, Internet has led to the creation of a digital society where everything 

is connected and is accessible from anywhere. However, traditional IP networks 

are complex and very hard to manage. In the same way, current networks are 

also vertically integrated, in other words, control and data plane are bundled 

together. Today's network switches and routers program their forwarding 

tables locally, which means that network devices make their own decisions 

internally about how to forward traffic. 
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Software Defined Networking (SDN) is an emerging paradigm that changes this 

way of working, by breaking vertical integration, separating into two layers the 

control plane and data or forwarding plane (Fig. 9 [10]), giving the possibility to 

configure a network in the easier possible way, even more if it is compounded by 

thousands and thousands of servers and other network elements. 

 

 

 

 

 

 

 

 

 

 

 

 

                       

                        Fig. 9 Simplified view of an SDN architecture. 

 

SDN aims to program the network with software running on a controller. There 

are two important terms in controller interfaces: northbound and southbound, for 

this reason, a controller can be thought as a middleware. The first one, the 

northbound communication, is formed by applications that tell the controller how 

to program the network. On the other hand, the southbound communication 

programs the network devices. In conclusion, the controller plays as an arbiter 

between the physical topologies and the applications that wish to program them. 
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1.2.5.1. Northbound and Southbound API 

 

The terms northbound and southbound can apply to almost any type of network 

or computer system. A northbound API is an interface that allows the 

communication between any components with a higher-level component. 

Otherwise, southbound interface allows a particular component to communicate 

with a lower-level component. In spite of, these terms have been used 

increasingly because of APIs used in SDN networking. 

 

In SDN, the southbound interface needs a protocol in order to configure different 

elements in the infrastructure layer, such as SNMP [34], OpenFlow [29], etc. In 

this context is used OpenFlow protocol which is the first standard 

communications interface defined between the controller and forwarding layers 

of an SDN architecture. As it is briefly explained previously, the main controller’s 

function is to establish communication between the SDN controller and the 

network nodes in order to define network flows and implement requests relayed 

to it via northbound APIs.  

 

 

 

 

 

 

 

 

Northbound in SDN protocol is the interface between software applications and 

the SDN controller. One of the most common API technology used at the 

northbound interface, as it will be explained in following sections, is the 

Representation State Transfer (REST) API. In data centre environment, 

northbound APIs can include management solutions for automation and 

orchestration. In the same way, southbound APIs include communication with 

network virtualization protocols, or the integration of a distributed 

computing network. 

 

Fig. 10 Scheme of communication via OpenFlow [11 ] 
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1.2.5.2.  Rest API   

 

One possible API technology used by northbound interface, and as it will be 

explained in following sections is based on a REST API. 

  

Firstly, an API (Application Programming Interface) is an interface presented by 

a software able to collect information from or exchange to a set of resources.  A 

REST (Representational State Transfer) is an architecture style for designing 

networked applications. Consequently, a REST API is a set of functions which 

developers can perform requests and receive responses. REST APIs use the 

HTTP/HTTPS protocol to execute these operations on resources represented by 

Uniform Resource Identifier (URI) strings. Among others, the main requests that 

API costumers are capable of sending are: GET, POST, PUT and DELETE. 

 

 GET:  read a specific resource by an identifier. 

 

 POST: create a new resource. 

 

 PUT: update a specific resource by an identifier. 

 

 DELETE: remove a specific resource by an identifier.  
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1.2.6. Management and control in this scenario 

 

As it has been explained in previous sections, this scenario is formed by data 

centre architectures based on the paradigm of SDN to configure their network 

elements and a management plane commanded by the Orchestrator, which 

allows to have an overview of the entire physical infrastructure in order to use 

their resources in the most optimal possible way. 

 

In this scenario, the Orchestrator is based on OpenStack [12], which is a platform 

that offers multiple accessible services for managing the entire infrastructure and 

applications. On the other hand, the SDN controller is based on an open platform 

called OpenDayLight [13, 14] which is a Java open source controller 

infrastructure hosted by The Linux Foundation whose goal is provide a platform 

which allows the easily programming and facilitates the work between hardware 

and southbound protocols. 

 

 

 

 

 

 

 

Fig. 11 General layer perspective with their platforms. 
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1.3. Objectives 

 

In this project is requested the design and implementation of a graphical tool 

which allows the data centre administrator to observe and interact with the data 

centre resources. In particular, the provisioning of the VDCs service has been 

considered in this project. The tool has to communicate with the Orchestrator via 

REST API interface, with the objective to have a global and updated view of 

resources of an optical data centre. The tool is also a way to automate the 

provision of VDCs upon request from the end-users (e.g., service providers).  

 

The main functionalities of the design and development of the tool are the 

following:  

  

 Load and draw topology of Data Centre: load a text file with a matrix 

which describes the topology of an optical data centre. 

 

 Load and draw Virtual Data Centre’s topology for many different 

tenants: load a text file with a matrix which describes the topology 

of a VDC. 

 

 Load physical characteristics of topologies’ elements: load different 

text files in order to assign the resources to each element. 

 

 Network Physical Parameters visualization: possibility to show the 

physical parameters of different network components. 

 

 Establishment of the communication with the Orchestrator: when a 

VDC is loaded, the graphical interface will establish a 

communication with the management plane, responsible of the 

Virtual Date Centre Embedding (VDCE). 

 

 VDCE visualization: show easily how the VDCs are mapped inside 

the data centre after the connection with the Orchestrator. 
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Other additional functionalities have been incorporated:  

 

 Visualization of Provisioning Time of each VDC: fill a table with the 

time needed for the creation and mapping the VDC. 

 

 Daily LOG text file: write in a text file the state of all the connections 

with the Orchestrator. 

 

 LOG visualization: possibility to show the state of all the 

connections with the Orchestrator in one session.  

 

 

 

1.4. Motivation 

 

The development and design of a graphical interface allows to dispose of an 

auxiliary tool for data centre administrators, making easier the provisioning of 

services (VDCs) and at the same time it represent a valid tool to check the status 

of current usage of the data centres resources. Additionally, the development of 

the software modules to implement the GUI has meant a continuous learning 

process of both programming language and technologies. These are a very 

important abilities in the actual technology societ
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2. VIRTUAL DATA CENTRES (VDC) 

 
The increase of data centre’s size and the high number of elements inside them, 

have caused a very important increment of power consumption, expense, etc. In 

order to solve these issues, technology’s society has instituted a term of 60’s 

called virtualization on the current data centres. Virtualization of data centres is 

an emerging concept which expects apply the concept of network virtualising in 

the data centres. In other words, create virtual instances of data centres’ 

resources, also known as Virtual Data Centres (VDC). A virtualized data centre 

provides computational and network resources allowing tenants to apply their 

own policies, define addresses’ spaces, manage their VMs independently, etc.  

 

A Virtual Data Centre can be described as an Infrastructure as a Service (IaaS) 

that extends virtualization concepts to all the data centres resources and 

services. VDCs allow to data centres operators the possibility to give part of its 

infrastructure up to multiple tenants logically separated between them. These 

tenants VDC are a virtual infrastructure formed by computing resources (Virtual 

Machines, VMs) interconnected with virtual links with a certain capacity.  

 

 

Fig. 12 Multi VDC scenario 
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By a VDC request, a tenant reserves a portion of a DC (e.g. a petition can require 

a determined number of virtual machines specifying the bandwidth of the 

connections between them and their operating system). In Fig. 12 [6] it is shown 

an example of two tenant VDC build in a data centre. Tenant 1 and tenant 2 can 

share the same rack, even the same server, without interfering with each other. 

  

However, the implementation of VDC in a data centre brings the challenge of how 

optimally allocate the resource demands of many virtual data centres on a 

physical infrastructure, so that the data centre operating costs are reduced, 

improving its revenue and fulfilling the agreements of quality service. This 

challenge is known as Virtual Data Centre Embedding (VDCE) problem. 

 

2.1.1.  Virtual Data Centre Embedding (VDCE) 

 

The issue of assignment the resources demanded by a VDC into a physical data 

centre in the most optimal way possible is called VDCE problem. Mainly, VDCE 

consists in mapping the VMs of a VDC onto the physical resources of a data 

centre, which are limited, with the objective of minimizing the number of blocked 

VDCs.  

 

The aims of VDCE are: 

 Maximize number of VDCs assigned into a data centre 

 

 Reduce costs of assignment 

 

 Reduce costs in intra data centre communication 

 

 Reduce power consumption in data centre, embedding resources 

in the way against VDC failures 

 

The responsible to sort it out and map many VDCs into a data centre is the 

Orchestrator located in the management plane. It is the responsible to process 

the data centre topology and the request of the VDC. Also that, it contains the 

algorithms which will decide where instance the different VMs of the VDC inside 

the data centre. Then, a service of Orchestrator, named Nova, will establish them 

in the correct server.  
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From a point of view of resources assignment, the capacity of data centres 

components are fragmented with the purpose of obtaining the individual 

instances that will conform the VDCs. In general, the elements that are to take 

into account are the following:  

 

 Servers: servers are fragmented in instances called virtual machines 

whose capacities used in the mapping procedure are: Central Processing 

Unit (CPU), hard disk capacity and Random-Access Memory (RAM). 

 

 Switches and routers: in these cases there are taken into account the 

number of available virtual ports and buffer capacity of each one. Also 

that, could be important CPU and RAM. 

 

 Links: for links the most important thing is the bandwidth, but sometimes 

the delay and the jitter are also used. 

 

2.1.1.1. Algorithm’s complexity 

 

As it is said previously, algorithms are in charge of the optimally assignments of 

VDC’s resources into a data centre. Keeping this in mind, there are three 

approaches to confront this need using three different types of algorithms: 

 

 Exact algorithms: this type of algorithms are implemented by 

mathematical techniques. They supply the optimum problem solution but 

can become inefficient depending on the instance’s size. Therefore, this 

kind of algorithms is recommended for little instances of VDCE. 

 

 Heuristic algorithms: finding the most optimal solution of a VDC mapping 

into a data centre with hundreds of thousands servers can take a lot of 

time. For this reason, there are needed some algorithms whose solution 

is based on a balance between the optimal solution and the execution 

time to assign the resource. That’s why heuristic algorithms can obtain 

the solution in a shortest execution time but not the most optimal. 

 

 Meta-heuristic algorithms: they are iterative algorithms that are improving 

their solution in each iteration. It is chosen the best solution between the 

proposed when some parameter is reached. 
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To conclude, thanks to the virtualization in data centre so many VDCs can be 

provisioned in just one physical topology. This supposes a significant saving 

costs and an easier way to new applications deploy, because of the non-

necessity to have a data centre for each company that wants to offer a service, 

but just knowing the amount of required sources to offer it.
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3. IMPLEMENTATION OF THE INTERFACE 
 

In order to make this project, it was needed a language to create a Graphic 

Interface, which allowed us to implement some of the required functions. It was 

decided that Java would be the best option because of its simplicity; moreover, 

using Java allows us to create a software from scratch and no an extension of 

another platform of manage plane, in this case OpenStack. 

 

3.1. Java  

 

Java is a programming language introduced by Sun Microsystems in 1995, 

designed to use in the distributed environment of the Internet. Some of the major 

Web browsers include a Java virtual machine. It was designed to have the “look 

and feel” of the C++ and enforces an object-oriented programming model. There 

are some characteristics that make Java a very potential manner of programming: 

 

 Java’s applications are compiled into what Java calls bytecode, which can 

be run on a server or client so these can be used on a single computer or 

in different clients in a network.  

 

 Programs written in Java cannot contain references to data external to 

themselves of other known objects, for this reason the Java’s code is 

robust because an instruction addressed to data storage of another 

application or operating system would cause the program or the operating 

system “crash”. Instead of this, Java Platform is a set of dynamically 

loadable libraries that can call at run time. 

 

 Java is object-oriented, which means that it is based on the concept of 

“objects” which are some data structure in a location in memory, which 

have a “state”, “method” and “identity”. 

 

 Simplicity to learn it. 

 

Having decided a language, it is necessary a tool to work with Java easily. These 

tools are called Java IDEs. An IDE (Integrated Development Environment) is a 

software application which enables users to write and debug Java programs. 

There are a lot of Java IDEs but in this project is used Eclipse, version: Mars.1 

Release (4.5.1). 
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3.2. Eclipse  

 

Eclipse is a Free and Open Source IDE platform based on Java which contains 

a base workspace and an extensible plug-in system for customizing the 

environment. This tool started in 2001 when IBM donated three million lines of 

code from its Java tools. Originally, the goal of Eclipse was to complement the 

community that surrounds Apache. 

 

 

Fig. 13 Screenshot of Java Eclipse 

 

As it is explained previously, Java uses libraries which contain the functions that 

allow the programmer a well-known set of useful facilities, such as container 

classes and regular expression processing. Also that, the library provides an 

abstract interface to tasks that normally depend on the hardware and operating 

system.  

 

In this project, apart from the standard Java libraries, there have been required 

other libraries and package to develop every required functionality, such as: 

Javax.Swing, GSON and Java.net.  
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3.3. Libraries and package 

 

3.3.1. Javax.Swing package 

 

Java provides a lot of options to create graphical interfaces. In this project, is 

used the javax.Swing package which contains the most important classes and 

interfaces of Java Swing (JSwing). JSwing API is based on Model-View-

Controller and is set of extensible GUI Components build upon top of AWT API 

and acts as replacement of it as it has almost every control corresponding to AWT 

controls. AWT (Abstract Window Toolkit) is the original user-interface widget 

toolkit preceding Swing.   

 

 

Fig. 14 Example of a simple GUI using JSwing 

 

3.3.2. GSON 

 

As it is explained in previous sections, the GUI communicates with the 

Orchestrator by a REST API interface.  Moreover, in order to create or take some 

resource to/from the Orchestrator, it is needed to send different files in JSON 

format. JSON (JavaScript Object Notation) is a text format based on subset of 

the JavaScript Programming Language. It is familiar with C-programmers but 

completely language independent, for this reason JSON is an ideal data-

interchange language. 

 

 

Fig. 15 Simple example of toJSON( ) method of GSON library 
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In order to make the conversion from Java class to JSON or in the other way 

round (see Fig. 15), amongst other functionalities, Google offers a library called 

GSON which is an open source Java library and contains so many different 

methods that makes easier the possibility to work with JSON files.  

 

3.3.3. Java.net Package 

 

Java.net package provides the classes for implementing the network applications 

required to establish the communication between the GUI and the Orchestrator. 

This package can be divided into two sections, Low Level API and High Level 

API. The first one deals with “Addresses”, “Sockets” and “Interfaces” abstractions, 

and HL API is responsible of “URIs”, “URLs” and “Connections”.  

 

 

Fig. 16 Code of a GET request made with Java.net functionalities 

 

Fig. 16 shows the implementation of a GET request using functionalities of 

Java.net package. First of all, the URL with URI is declared and created. The URI 

(blue square) indicates to which module of the Orchestrator the request is sent. 

In this case, the GET request is sent to algorithms module in order to take the list 

of available algorithms.  Then, the connection is instanced using the previous 

URL declared and finally, the request “GET” header is added.  

 

In Fig. 17 it can see the participating 

messages in a GET request. As it is 

explained in GSON library section, the 

data of requests and replies is in JSON 

format. In this scenario, the GET reply 

would be a JSON text with all the available 

algorithms and their parameters, then, 

GSON methods will convers this JSON 

text into the different Java class required.
Fig. 17 Scheme of messages in a GET petition 
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4. VALIDATION OF THE GUI 
 

In this section, the implemented functionalities of the graphical interface are 

tested in two parts. The first one will show the well-work of interface’s functions. 

For example, a data centre topology will be loaded with its elements and the 

physical information of each one. Also that, buttons of load VDC’s topology will 

be tested and the panel information which will represent the physical information 

of each topologies’ element.   Then in the second part, some VDCs tenant petition 

will be loaded and via a REST API, they will be sent to the orchestration server. 

It will process and instance the VDC topology inside the data centre.  

 

In this context is considered that all racks host all types of computing resources 

while a single VM is always mapped onto a single rack. However, VMs belonging 

to the same VDC are mapped in different racks in order to provide some degree 

of protection against rack failures. Even so, VMs of different VDCs can be 

mapped in the same rack, even sharing a server. In the same way, virtual links 

have to be assigned in many physical optical links respecting the wavelength 

continuity constraint, so different VDCs must not share optical resources between 

them for isolated purposes. 

 

Also that, the SDN controller will be the responsible to configure the network 

elements of the DC topology in order to establish the communication between the 

VMs of the VDC. After that, it will able to see graphically where have been 

mapped every VM of each VDC and how the data centre’s servers resources and 

links’ wavelength have been updated. 

 

The main functionalities that will be tested are: 

 Load topologies of DC and VDCs 

 

 Visualize network elements information 

 

 Communication with the Orchestrator 

 

 Show mapping of VDCs 

 

 Update busy or free DC’s resources  
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4.1. Test Network Characteristics 

 

As has been discussing during the document, this interface is focused on a data 

centre network. In the following tests, the DC network in which the different VDC 

will be mapped, has the characteristics that are shown in the following table: 

 

Parameters Value 

Number of ToRs: 8 

Number of Optical Switch: 1 

Number of Links: 8 

Link’s Channel Spacing: 100 GHz 

Number of Racks: 8 

Number rack’s servers: 32 

 

4.2. A global description of the interface 

 

Before starting with the simulation of the project, in Fig. 18 it is shown a general 

perspective of the graphical interface: 

 

 

3 

4 

5 6 

1 2 

7 

Fig. 18 Global perspective of the graphical interface 
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As it can see in the image, the interface can be divided in 7 interest spaces. 1 

and 2 are the main panels where the DC (1) and VDCs topologies (2) are 

displayed. Spaces 3 and 7 contain the buttons and the toolbar in charge of load 

the files of topologies. For this reason, they also include some help buttons which 

explain how to make them and the structure of other files needed for the well-

working of the application. Also that, (7) gives the possibility of using the interface 

for other scenarios than intra-data centres, as it will be explained in section 4. 

  

In the middle of the screen under the VDC panel, there is the request panel (4). 

This panel allows the user to select the tenant so that after creating its VDC, 

select the algorithm which with the mapping will be established and shows a table 

which will be filled with the algorithm’s parameters and its values. Finally, in the 

lower space of the interface, there are the panels 5 and 6. The latter, (6), contains 

a table where will be represented the values of Provisioning Time (see section 

1.2.) of each VDC and panel 5 is an informative panel which will show the physical 

information of topologies’ elements, the state of the communications with the 

server, among others informative messages. 

 

4.3. Testing the graphical interface 

 

Firstly, when the application is executed three text files obtained by the 

Orchestrator and located in the program source path are auto-loaded. The first 

file, load the list of tenants which have made a request in order to instance their 

VDC in our data centre. The second one is the flavour file. This file contains the 

different models of VM with its physical characteristics (Core, HDD and RAM) 

and identified by an ID. Tenant will be able to choose which VMs use respecting 

the requirements needed to offer its service.  Then, the third auto-loaded file 

shows the different possible operating system of the VMs identified by an ID. With 

these files loaded, the application gets from the Orchestrator the list of the 

available algorithms with their parameters with the purpose of the data centre 

administrator will be able to select one of them in the VDCE. 
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Subsequently, the user can load the data centre topology in which the 

Orchestrator will route the different elements of the VDC. This topology is 

represented by a matrix in a text file and contains its number of racks, ToRs, 

optical switches, links and how they are inter-connected. Also that, this file 

contains the physical information of all the data centre’s servers’ resources; 

number of cores, memory in disk and RAM as well as the channel spacing of the 

links. Indeed, all the information of each network element is available on the 

information tags, such as state of servers’ resources, state of links’ wavelength, 

number of ToR’s ports, among others. Fig. 19 shows the data centre topology 

loaded and the information of a rack’s servers. 

 

Once the DC topology has been loaded, the user can select a tenant and load 

the file of its VDC topology. This file is formed with a topology matrix, 

consequently, with the number of Virtual Nodes (VN) and each one with its 

number of VMs. In the same way, it contains the ID of flavour and image of each 

VM which the tenant has chosen previously in our VMs catalogue. Also with DC 

elements, the information of each VN can be shown on the panel information but 

in this case apart from physical characteristics there is represented if the VMs’ 

VN are mapped and in case of be, in which rack and server. Fig. 20 shows the 

DC and VDC (id: 1) of tenant 1 loaded. Also that, on the information tags it is 

shown the physical and mapping characteristics of VMs of VN: 1. 

Fig. 19 Data centre topology loaded and rack information shown. 
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Fig. 20 DC and VDC loaded. On information tags, physical characteristics and mapping information. 

 

In order to the user can know the structure topology and the physical 

characteristics files, some HELP buttons are implemented. An example of HELP 

button of the auto-loaded files is shown in Fig. 21. 

 

 

Fig. 21 Auto-loaded files button HELP. 
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At this point, the main functionalities of the client interface are tested and the user 

could create the request of the VDC to the Orchestrator in order to proceed with 

the VDC provisioning. 

 

4.4. VDC provisioning: Experimental validation 

 
The user can proceed with the VDCE selecting the “Create” box and clicking in 

the button “Send”. Before that, it is necessary to select the algorithm depending 

on the data centre needs. As it can see in Fig. 22, the user can select one of the 

available algorithms and have to complete its parameters. Additionally, 

algorithms and parameters, have a brief description in order to know the 

functionality of each one. In this case it is selected ILP (Integer Linear 

Programming) algorithm which in short, hopes to find the allocation of the VMs in 

the lower number of servers and using the low number of network elements 

possible. 

 

 

Fig. 22 User selecting ILP algorithm 

 

With the VDC request sent, the Orchestrator processes the DC and VDC topology 

and applies the ILP algorithm in order to route the different VMs of the VDC on 

the DC. Immediately, its service Nova instance the VMs on the correct data 

centre’s servers and the SDN controller configures the network elements in order 

to establish the connections between them.  At this point, the VDC is mapped in 

the DC. Now, the information of VMs shows in which rack and server are each 

VM instanced. Consequently, the resources information of each rack’s servers 

used are updated. As it can see in Fig. 23, rack: 1 has updated its resources of 

server: 1 because some VMs of the VN: 1 are mapped in this server. In the same 

way, the virtual link between two virtual nodes is mapped as two links in the data 

centre. For this reason, the wavelengths used in the links are updated from “free” 

to “busy”. An example of this situation is represented in Fig. 24. 
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Fig. 23 VDCE visualization. Servers' resources updated. 

 

 

Fig. 24 VDCE visualization. State of links' wavelengths updated. 
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As it can see in Fig. 23 and 24, it has been created a new row on the table in the 

VDC Information panel. This row contains the values of Provisioning Time which 

is the time that has been required to instance the VDC on the DC. In this case, 

the total delay of the operation has been of 2.04 s. The Orchestrator has spent 

1.61 s in the process of the VDC topology establishment and reply a confirmation. 

On the other hand, the SDN controller has used 430.81 ms for configure the 

different network elements of the DC based on the route received from the 

Orchestrator. The representation of these values will allow to the user to create 

statistics of the performance of the different layers when a VDC request is sent.  

 

In the following image (Fig. 25) it has been instanced a new VDC (id: 2) of a new 

tenant in order to verify the well-working in multi-tenant situations. In this case, 

VDC is formed by 2 VNs each one with their VMs which can be mapped in the 

same rack even in the same server than VMs of the first tenant. On the other 

hand, the virtual link of VDC: 2 could be instanced in the same link of VDC: 1 but 

never using the same wavelength. Besides, in the same way as the previous 

case, a new row has been created with the Provisioning Time information of 

tenant 2 VDC. 

 

 

Fig. 25 Multi-tenant VDC example. 
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By now, there are 2 VDCs optimally instanced on the DC but maybe they could 

be more optimal than when they were installed. Consequently, the user can send 

a re-optimization request to the Orchestrator to obtain a new relocation of all the 

VDCs previously instanced. This is possible, selecting de “reoptimize” box and 

clicking in the button “Send”. In case of re-optimize a data centre’s resources, in 

other words, reallocate the VMs and the virtual links previously instanced, both 

servers and links have been updated, leaving free the resources that were using 

and vice versa. Also that, it is possible to remove a VDC of the DC. Fig. 26 

represents this situation, VDC of tenant: 1 has been deleted by sending a delete 

request to the server. If the request is processed correctly a confirmation 

message is shown on information panel and the VDC is automatically deleted, in 

consequence, the resources used by the VDC deleted have been freed. 

 

 

Fig. 26 VDC of tenant: 1 has been deleted. 

 

Additionally, in the information panel there is a Log tag which contains the 

information of states of the different communications established with the 

orchestration server during the session, in order to have a control of every request 

sent. This can be a good support to known the state of correct communications 

or to know the errors which have been experimented. Also that, a Log text file is 

automatically created every day on the source path with this information. 
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Fig. 27 Log tag with the session information. 

 

Finally, as it will be explained in the following section, the toolbar in the upper 

zone, apart from loading the topology files or show information about them, allows 

the user to use the interface for other future scenarios. In this project, it is talked 

about connection intra-DC, in other words, connection between servers inside a 

DC, but with this option the user will be able to use the same application for future 

scenarios such as connections between DCs. It is important to know that all the 

information loaded while the use of “Intra-data centre” scenario will remain if the 

user decides to change the interface for another scenario.  
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5. CONCLUSIONS AND FUTURE WORKS 

 
Since the beginning of this project, the main idea was the fulfilment of a graphical 

tool to facilitate the task of management and control of data centres. To provide 

this tool, there were proposed some objectives and requirements that they had 

to be achieved. Having reached the end of the project, all the features have been 

made successfully and even there have been implemented some extra 

functionalities that have appeared during the development.   

 

This interface can be used primarily by data centres administrators; by the way it 

could also be used by enterprises, groups, or any entity that research or work 

with data centres, because it allows to perform visually tasks that were developed 

by text in a more complex way until now. As in the test section is discussed, this 

project does not only want to stay in the use for connections within a DC, but it is 

also intended that in the near future any other person can expand it for other 

scenarios such as inter-DC connections. This would allow to work in many 

different environments using just one application. 

 

Personally, carrying this project out has meant a great challenge to me because 

during the course of its realization, there have been lots of difficulties and 

obstacles in the development and design as well as writing the documentation. 

Therefore, to overcome them I had to apply concepts learned in the degree and 

I have learned many new others. Overall, the experience of being able to realize 

this project has been remarkably good not only for the concepts learned, but 

because it has allowed me to improve in terms of organization and self-learning.  

  



36                                 Design and implementation of a GUI for the Orchestrator 
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6. ABBREVIATIONS 
 

API – Application Programming Interface 

AWT – Abstract Window Toolkit 

CPU – Central Processing Unit 

DC – Data Centre 

DCN – Data Centre Network 

GUI - Graphical User Interface 

HTTP – Hypertext Transfer Protocol 

JSON – JavaScript Object Notation 

MMF – Multi Mode Fibre 

ODC – Optical Data Centre 

RAM – Random-Access Memory 

REST – Representational State Transfer 

SDN – Software Defined Network 

TOR – Top of the Rack 

VDC – Virtual Data Centre 

VDCE – Virtual Data Centre Embedding 

VM – Virtual Machine 

VN – Virtual Node 

WDM – Wavelength Division Multiplexing 
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