

Smartphone Relative Positioning using

Phone Sensors

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Nèstor Bonjorn López

In partial fulfilment

of the requirements for the degree in

BACHELOR'S DEGREE IN TELECOMMUNICATIONS

SYSTEMS ENGINEERING

Advisor: Dr. Ilker Seyfettin Demirkol

Barcelona, June 2016

 1

Abstract

A relative positioning system that enables two Android smartphone pedestrian users to find

each other without the need of GPS availability is presented. Moreover, the smartphone user

will also be able to track his movement in real time without the GPS constraint. The methods

proposed involve both radio and acoustic waves emission and reception, as well as the

mastery of several embedded phone sensors usage. Obtained results show difficulties to

accomplish the main objective of the project, due to the radio waves power fluctuation in

urban environments. However, the self-movement tracking and a high-accuracy ranging

system for short distances based on acoustic signals emission work properly.

 2

Resum

En aquesta tesi es proposa un sistema de posicionament relatiu que permet a dos usuaris

d’smartphones Android que vagin a peu trobar-se l’un a l’altre sense la necessitat de cobertura

GPS. A més a més, l’usuari també podrà seguir el seu moviment en temps real sense la

limitació del GPS. Els mètodes proposats involucren l’emissió i la recepció tant d’ones

electromagnètiques com acústiques, a més d’un clar domini dels sensors del mòbil. Els

resultats obtinguts demostren dificultats per assolir el principal objectiu del projecte, degut a

la fluctuació de la potència de les ones electromagnètiques en ambients urbans. Tot i això, la

monitorització de la pròpia trajectòria i un acurat sistema de mesura de distàncies curtes basat

en l’emissió de senyals acústics funcionen adequadament.

 3

Resumen

En esta tesis se propone un sistema de posicionamiento relativo que permite a dos usuarios

de smartphones Android que vayan a pie encontrarse el uno al otro sin la necesidad de

cobertura GPS. Además, el usuario también podrá monitorizar su movimiento en tiempo real

sin la limitación del GPS. Los métodos propuestos involucran la emisión y recepción tanto de

ondas electromagnéticas como acústicas, además de un claro domino de los sensores del

móvil. Los resultados obtenidos demuestran dificultades para lograr el principal objetivo del

proyecto, debido a la fluctuación de la potencia de las ondas electromagnéticas en ambientes

urbanos. Aún así, la monitorización de la propia trayectoria y un preciso sistema de medida de

distancias cortas basado en la emisión de señales acústicas funcionan adecuadamente.

 4

Acknowledgements

I would like to thank Dr. Ilker Demirkol for believing, from the very beginning, in my

capabilities to carry out this thesis. Moreover, his advices and supervision during the whole

project have been of great help.

I would also like to thank Guillermo Ortas for being a great co-developer of this collaborative

project.

Finally, I would also like to thank Anna and my parents for letting me borrow their

smartphones for my experiments, as well as for their unconditional support.

 5

Revision history and approval record

Revision Date Purpose

0 15/05/2016 Document creation

1 23/06/2016 Document revision

2 25/06/2016 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Nèstor Bonjorn nestorbonjorn@gmail.com

 Ilker Demirkol ilker.demirkol@entel.upc.edu

Written by: Reviewed and approved by:

Date 20/06/2016 Date 23/06/2016

Name Nèstor Bonjorn Name Ilker Demirkol

Position Project Author Position Project Supervisor

 6

Table of contents

Abstract ... 1

Resum .. 2

Resumen .. 3

Acknowledgements.. 4

Revision history and approval record ... 5

Table of contents ... 6

List of Figures ... 8

List of Tables .. 9

1. Introduction ... 10

1.1. Statement of purpose .. 10

1.2. Requirements and specifications ... 10

1.3. Project background ... 10

1.4. Work Plan, milestones and Gantt Diagram .. 11

1.5. Incidences ... 15

2. State of the art of the technology used or applied in this thesis ... 16

3. Pedestrian Dead Reckoning .. 17

3.1. Fundamentals ... 17

3.2. Step detection ... 17

3.2.1. Accelerometer ... 17

3.2.1.1. Reading accelerometer values ... 17

3.2.1.2. Global coordinate system acceleration ... 18

3.2.2. Peak detection ... 19

3.2.2.1. Low-pass filtering ... 19

3.2.2.2. Local maximums and minimums algorithm .. 19

3.3. Step size estimation ... 20

3.3.1. Static method .. 20

3.3.2. Dynamic method .. 20

3.4. Device orientation calculation ... 21

3.4.1. Accelerometer and magnetometer ... 21

3.4.2. Gyroscope values integration ... 22

3.4.3. Sensor Fusion .. 24

3.4.3.1. Qualitative explanation .. 24

3.4.3.2. Simplified implementation .. 25

 7

3.4.3.3. Gyroscope overwriting .. 26

3.5. Position updating ... 27

4. Relative position estimation .. 28

4.1. Heuristic method ... 28

4.1.1. Weighting system .. 29

4.1.2. Kalman Filter .. 29

4.1.3. Development ... 31

4.1.3.1. Direction .. 31

4.1.3.2. Position .. 32

5. Acoustic distance .. 34

5.1. Sample counting method.. 34

5.2. Signal generation .. 35

5.3. Audio playing ... 36

5.4. Audio recording ... 38

5.5. Matched filter ... 38

6. Results... 42

6.1. PDR ... 42

6.2. Relative positioning ... 44

6.3. Acoustic distance method .. 45

7. Budget ... 48

8. Conclusions and future development .. 49

Bibliography .. 50

Appendices .. 51

Glossary ... 53

 8

List of Figures

Figure 1. Coordinate system (relative to a device) that's used by the Android Sensor API [1]. 18

Figure 2. Smartphone's azimuth, pitch and roll angles [4]. ... 21

Figure 3. Quaternion rotation representation [6]. ... 23

Figure 4. Block diagram of the Sensor Fusion method via complementary Filter 25

Figure 5. Improvement of position estimation representation .. 33

Figure 6. Block diagram of a filter implementation.. 38

Figure 7. Block diagram of the acoustic distance estimation process ... 39

Figure 8. Block diagram of the Matched Filter process followed in this work .. 41

Figure 9. Z-axis acceleration measurements (29 steps).. 42

Figure 10. Step detection (29 steps) .. 42

Figure 11. Orientation estimation test .. 42

Figure 12. PDR performance ... 43

Figure 13. Five PDR trials in a specific trajectory .. 44

Figure 14. Relative positioning test in a straight walk towards the remote device. 44

Figure 15. Relative positioning test performing properly .. 45

Figure 16. Recording during the acoustic distance process .. 45

Figure 17. Matched filtered recording in both devices .. 46

Figure 18. Estimated distance against real distance .. 46

Figure 19. Absolute error mean and standard deviation ... 47

Figure 20. Average relative error ... 47

file:///C:/Users/Néstor/Google%20Drive/Telecomunicacions/BSc%20Eng%20Sistemes%20de%20Telecomunicació%20(UPC)/4B/Documents%20oficials/Final%20Report%202016-06-23.docx%23_Toc454557828
file:///C:/Users/Néstor/Google%20Drive/Telecomunicacions/BSc%20Eng%20Sistemes%20de%20Telecomunicació%20(UPC)/4B/Documents%20oficials/Final%20Report%202016-06-23.docx%23_Toc454557829
file:///C:/Users/Néstor/Google%20Drive/Telecomunicacions/BSc%20Eng%20Sistemes%20de%20Telecomunicació%20(UPC)/4B/Documents%20oficials/Final%20Report%202016-06-23.docx%23_Toc454557830
file:///C:/Users/Néstor/Google%20Drive/Telecomunicacions/BSc%20Eng%20Sistemes%20de%20Telecomunicació%20(UPC)/4B/Documents%20oficials/Final%20Report%202016-06-23.docx%23_Toc454557831
file:///C:/Users/Néstor/Google%20Drive/Telecomunicacions/BSc%20Eng%20Sistemes%20de%20Telecomunicació%20(UPC)/4B/Documents%20oficials/Final%20Report%202016-06-23.docx%23_Toc454557833
file:///C:/Users/Néstor/Google%20Drive/Telecomunicacions/BSc%20Eng%20Sistemes%20de%20Telecomunicació%20(UPC)/4B/Documents%20oficials/Final%20Report%202016-06-23.docx%23_Toc454557834
file:///C:/Users/Néstor/Google%20Drive/Telecomunicacions/BSc%20Eng%20Sistemes%20de%20Telecomunicació%20(UPC)/4B/Documents%20oficials/Final%20Report%202016-06-23.docx%23_Toc454557835
file:///C:/Users/Néstor/Google%20Drive/Telecomunicacions/BSc%20Eng%20Sistemes%20de%20Telecomunicació%20(UPC)/4B/Documents%20oficials/Final%20Report%202016-06-23.docx%23_Toc454557836
file:///C:/Users/Néstor/Google%20Drive/Telecomunicacions/BSc%20Eng%20Sistemes%20de%20Telecomunicació%20(UPC)/4B/Documents%20oficials/Final%20Report%202016-06-23.docx%23_Toc454557837
file:///C:/Users/Néstor/Google%20Drive/Telecomunicacions/BSc%20Eng%20Sistemes%20de%20Telecomunicació%20(UPC)/4B/Documents%20oficials/Final%20Report%202016-06-23.docx%23_Toc454557838
file:///C:/Users/Néstor/Google%20Drive/Telecomunicacions/BSc%20Eng%20Sistemes%20de%20Telecomunicació%20(UPC)/4B/Documents%20oficials/Final%20Report%202016-06-23.docx%23_Toc454557843
file:///C:/Users/Néstor/Google%20Drive/Telecomunicacions/BSc%20Eng%20Sistemes%20de%20Telecomunicació%20(UPC)/4B/Documents%20oficials/Final%20Report%202016-06-23.docx%23_Toc454557845

 9

List of Tables

Table 1. Discrete Kalman Filter equations .. 31

Table 2. PDR performance .. 43

Table 3. Personnel costs ... 48

Table 4. Software costs ... 48

Table 5. Total costs.. 48

 10

1. Introduction

1.1. Statement of purpose

The main objective of this project is to create an Android application that allows any Android

smartphone user to find another smartphone (or any other device supporting Wi-Fi Direct1

communication) without the need of Global Positioning System (GPS) availability or cellular

network coverage. This enables its usage even in challenging scenarios, such as indoor or

isolated ones.

In order to find each other, a relative positioning system approach has been proposed. This

approach makes use of self-movement tracking and distance estimations based on radio

waves’ received power. However, for close distances, the received signal power-based

estimations are substituted for a high-accuracy ranging approach based on the time of flight

(ToF) of acoustic waves.

Moreover, the ToF-based approach enables different use cases of the application, such as the

measurement of small objects’ sizes.

1.2. Requirements and specifications

The Android application must give information to its user about the direction of a remote

Wi-Fi Direct device relative to himself, as well as distance estimations between them. Both

devices are required to have the Wi-Fi Direct connectivity available –which does not mean an

established connection–; once this is done, the user must choose the device that he intends to

find, according to a list of all the available devices’ names. Moreover, in order to get and

update the distance and direction measurements, the user must walk carrying his smartphone

pointing towards his direction of displacement.

The close-proximity ranging approach, i.e. the acoustic waves-based one, does require an

established Wi-Fi Direct connection, so in this case, the other device has to accept the

connection. However, the received signal power-based approach does not require any

connection; therefore, it works even without the acceptance of the other device.

The methods used in order to find the remote device work for distances lower than 250

meters, while the high-accuracy ranging approach for close distances works up to 1.3 meters.

Finally, the application also permits the user to track his movement in real time regardless of

any connectivity.

1.3. Project background

This thesis has been performed within a collaborative project (called RADIUS) that involves

two people: Guillermo Ortas and myself. However, all the methods and procedures stated in

this report are from my own work.

This project is not a continuation of any previous one, thus it starts from the scratch.

However, the main project initial ideas were provided by the supervisor Dr. Ilker Demirkol.

From these initial ideas along with some research inputs we have developed the whole project.

1 Wi-Fi standard that enables devices to connect with each other without requiring a wireless access point.

 11

The work stated in this report follows three main methods: pedestrian dead reckoning,

relative positioning and acoustic distance, explained in the sections 3, 4 and 5 of this report,

respectively. Both the former and the latter are based on several journal papers ideas but

following original algorithms and code, since they were not available in the consulted data.

Regarding the relative positioning approach, as well as the integration of all the methods in a

pleasant Android application, a completely original work is performed.

1.4. Work Plan, milestones and Gantt Diagram

Project: Radius Responsible: Both WP ref: 1

Major constituent: Research Sheet 1 of 9

Short description:

Research on similar projects and mobile apps.

Planned start date: 08/02/2016

Planned end date: 23/05/2016

Start event: Project start

End event: -

Internal task T1:

Paper research about the usage of

smartphones’ sensors in other projects

Internal task T2:

App research and evaluation

Project: Radius Responsible: Both WP ref: 2

Major constituent: Develop Test App Sheet 2 of 9

Short description:

Test app development block. We develop an app that reads

all of the smartphone’s sensors.

Planned start date: 15/02/2016

Planned end date: 29/02/2016

Start event: Project start

End event: -

Internal task T1:

Environment installation: Android Studio

Internal task T2:

Interface design

Internal task T3:

Android Language learning

Internal task T4:

Code writing

Internal task T5:

Testing

Project: Radius Responsible: Nèstor WP ref: 3

Major constituent: User movement monitoring Sheet 3 of 9

Short description:

Monitor the user’s movement in order to know the source

of the changes in the distance estimations between two

smartphones (i.e. how much has the user moved between

two distance estimations). This allows calculating the

relative direction, and hence the relative position, between

the two devices.

Planned start date: 22/02/2016

Planned end date: 01/04/2016

Start event: Test app developing

End event: -

Internal task T1:

Parameter acquisition

Internal task T2:

Orientation calculation

Internal task T4:

Simulation

Internal task T5:

Testing

 12

Project: Radius Responsible:

Nèstor (sound ToF)

Guillermo (RSSI, Bluetooth)

WP ref: 6

Major constituent: Distance estimation Sheet 6 of 9

Short description:

Estimate the distance between two devices using different

systems.

Planned start date: 26/03/2016

Planned end date: 03/06/2016

Start event: -

End event: -

Internal task T1:

Wi-Fi Direct RSSI

Internal task T2:

Bluetooth RSSI

Internal task T3:

Audio ToF

Project: Radius Responsible: Nèstor WP ref: 7

Major constituent: Direction estimation Sheet 7 of 9

Internal task T3:

Pedestrian Dead Reckoning

Project: Radius Responsible: Guillermo WP ref: 4

Major constituent: Wi-Fi Direct Sheet 4 of 9

Short description:

Design a communications protocol between two devices

for the Wi-Fi Direct connectivity

Planned start date: 29/02/2016

Planned end date: 20/05/2016

Start event: Test app developing

End event: Project end

Internal task T1:

Research on papers and projects that have

already used this connectivity

Internal task T2:

Design communications protocol

Internal task T3:

Testing

Internal task T4:

Chat implementation

Project: Radius Responsible: Nèstor WP ref: 5

Major constituent: Kalman Filter Sheet 5 of 9

Short description:

Implement the Kalman Filter (signal processing) to

improve the computed estimations.

Planned start date: 26/03/2016

Planned end date: 09/05/2016

Start event: -

End event: -

Internal task T1:

Research on papers and projects that have

already used this filter for other applications

Internal task T2:

Simulation

Internal task T3:

Design and developing

Internal task T4:

Testing

 13

Short description:

Estimate the relative direction between two devices using

different approaches.

Planned start date: 05/04/2016

Planned end date: 24/05/2016

Start event: Distance estimation

End event: -

Internal task T1:

Research

Internal task T2:

Develop several methods

Internal task T3:

Testing

Project: Radius Responsible: Guillermo WP ref: 8

Major constituent: Bluetooth Sheet 8 of 9

Short description:

Design a communications protocol between two devices

using Bluetooth. The objective is to get RSSI values with a

higher rate to get a better average and thus, a better

distance estimation.

Planned start date: 10/05/2016

Planned end date: 13/06/2016

Start event: Project Critical

Review delivery

End event: Project end

Internal task T1:

Research on papers and projects that have

already used this connectivity

Internal task T2:

Design communications protocol

Internal task T3:

Testing

Project: Radius Responsible: Both WP ref: 9

Major constituent: Develop final app Sheet 9 of 9

Short description:

Final app development block: it includes all previous

calculations

Planned start date: 10/05/2016

Planned end date: 13/06/2016

Start event: -

End event: Project end

Internal task T1:

Interface design

Internal task T2:

Code writing

Internal task T3:

Testing

WP# Task# Short title Milestone / deliverable Date (week)

3 4 Test Android App Basic sensor reading Android app 26/02/2016

4 2 Wi-Fi Direct protocol Wi-Fi Direct protocol design 29/04/2016

5 2 Filter design Kalman Filter implementation 29/04/2016

6 1 RSSI distance RSSI distance estimation 05/04/2016

- - CDR Critical design review 09/05/2016

7 - Direction Direction estimation 16/05/2016

4 4 Chat Wi-Fi-Direct chat implementation 20/05/2016

6 3 Sound distance Sound distance estimation 03/06/2016

8 2 Android App Final Android app 13/06/2016

- - FR Final report 27/06/2016

 14

 15

1.5. Incidences

The most remarkable incidence during the development of the project has been the

impossibility of achieving a high rate of received signal strength indicator (RSSI)

measurements. With this high rate, it would be possible to consider the average of some

samples instead of a single one before processing it to obtain a distance estimation;

consequently, the RSSI measurement’s error would diminish. However, the best rate achieved

is about one measurement per second; thus, the use of averaging would reduce the dynamism

of the application.

Without this RSSI averaging, the distance estimations are really inaccurate, so the initial idea

of exactly locating a remote device turns into approximated estimations that allow the

smartphone user to find the remote device by updating the estimations while walking.

Regarding the user movement monitoring, one of the methods initially proposed also had to

be discarded. We thought that by integrating twice the accelerometer values of the 3-axis

accelerometer embedded in smartphones, we could obtain a good monitoring of the user

movement. However, doing some research, we soon realised that this would accumulate too

much measurement error and would become unfeasible in large distances. Therefore, we

opted for a pedestrian dead reckoning based on algorithms for both step detection and step

length estimation, as well as some orientation methods.

 16

2. State of the art of the technology used or applied in this

thesis

Currently, the problem of the smartphone’s relative distance or location is not too well

resolved. It is true that there are plenty of mobile applications that try to fix the position of a

remote smartphone from your own device but they either lack precision or just do not work

in many challenging situations. One of the most famous “Friend locator application” is Find

My Friends, which is only useful for situations where you and your friend have a good GPS

signal. Likewise, in the current market, we can find other similar applications that also have

the GPS availability and precision limitations already mentioned.

On the other hand, there are a few applications ensuring that they work without GPS or

Internet like Friends Tracker. The truth is that this app in particular requires SMS coverage and

cellular network accessibility (e.g., travelling abroad without roaming would hinder this

option), so it also has availability restrictions. Moreover, it is not able to reach a better

precision than GPS and its interface is both unpleasant and difficult to handle.

In the application that concerns this thesis, a true GPS-less phone locator that works in

challenging situations within a range of 250 meters is developed.

 17

3. Pedestrian Dead Reckoning

In the last few decades, the human movement monitoring has been a popular topic of

research. A priori, there are several methods to achieve this tracking but not all of them work

equally. For example, the GPS tracking could be useful in some outdoor scenarios but never

in indoor ones such as in shopping malls or office buildings. It would neither work in some

urban environments, e.g., among buildings with very high altitudes blocking line-of-sight links

to GPS satellites. In these scenarios, the multipath propagation would severely affect the

position estimations, making it impossible to reach a great precision in short distances.

However, there are other technologies that allow both an outdoor and indoor tracking that

are based on sensors measurements from the device itself.

The 3-axis accelerometers embedded in current mobile devices could allow for a user

positioning monitoring based on a double integration of the accelerometer readings.

Nevertheless, the smartphones’ accelerometers are not as accurate as needed in this double

integration method, so the measurement errors would be too difficult to handle.

On the other hand, although it is only useful for a user that keeps walking, the pedestrian

dead reckoning method (PDR) is the best way to track the user walking movement, which is

the scenario that concerns this thesis. This method does not need such a measurement

precision as the previously mentioned one and works properly in most environments.

In this chapter, the methodologies that involve the PDR method are presented.

3.1. Fundamentals

The PDR is based on three particular methods: step detection, step size estimation and

heading calculation. The combination of these three methods will allow the user to track his

movement in real time.

The relative position of the user is updated every time a new step is detected. When this

happens, the application estimates a step size for this particular step, and looks for the

current device heading . After this, it simply applies

 (3.1)

in order to obtain the new relative position, taking into account that the heading is always

relative to magnetic North and the positive and axes point to East and North respectively.

To acquire a good performance, the user will have to hold his phone pointing towards his

direction of displacement.

3.2. Step detection

3.2.1. Accelerometer

3.2.1.1. Reading accelerometer values

This project is made in a smartphone context; specifically, in an Android environment. The

software used is Android Studio, which is the official integrated development environment

 18

(IDE) for Android app development, based on IntelliJ IDEA. In this context, it is not

difficult to obtain sensor readings from the embedded hardware of a smartphone.

First of all, it is necessary to get an instance of the SensorManager Java class, by calling

Context.getSystemService() with the argument SENSOR_SERVICE. After that, a

SensorEventListener for the desired sensor and at the desired frequency rate has to be registered.

Then, whenever new sensor data is available, the program calls the method onSensorChanged

for the specific SensorEvent2. Finally, overriding this method, the sensor values can be obtained.

In the case of the accelerometer, three values are obtained for each SensorEvent instance,

which belong to three different axes relative to the smartphone body’s coordinates shown in

Figure 1. Moreover, the Android API can also directly provide a linear acceleration, that is, a

software-based sensor that provides the acceleration along each device axis excluding gravity.

3.2.1.2. Global coordinate system acceleration

The accelerometer readings in the device’s coordinate system, however, are not useful enough

for the step detection method because they depend on how the user carries the device. In

order to get a robust method that works in every situation, a global coordinate system (GCS)

acceleration must be achieved. This means that, whatever the device’s inclination, the axis

will always be pointing towards the sky and perpendicular to the ground, while and axes

point to East and North respectively.

These GCS acceleration measurements cannot be obtained directly from any of the Android

sensors, so the methodology proposed includes the acquisition of a rotation matrix that

represents the rotation of the device with respect to the GCS. One of the properties of this

specific matrix is that its inverse allows the measurements for a coordinate system conversion

from the device coordinate system to the GCS, following the equations (3.2) and (3.3):

 (3.2)

2 SensorEvent is a Java class that represents a sensor event and holds information about it

Figure 1. Coordinate system (relative to a device) that's used by the Android Sensor API [1].

 19

 (3.3)

where

 is a vector of some measures in local coordinate system, and

 the same in GCS.

The SensorManager class provides a method called getRotationMatrix that computes the rotation

matrix, as well as an inclination matrix, based on accelerometer and magnetometer data. Thus,

after the acquisition of both the accelerometer and magnetometer sensor measurements, the

rotation matrix will be obtained by calling the getRotationMatrix method with the specified

parameters.

After that, the methods from the Matrix Java class will be used to obtain the inverse of the

rotation matrix, as well as to multiply this matrix by the desired vector in order to perform

the coordinates’ conversion, as shown in equation (3.3). The linear acceleration vector will be

directly chosen in order to perform the conversion. This yields to three axis acceleration

measurements relative to the Earth and without the influence of gravity. In this case, the new

 axis values tracking will be enough to detect the user steps as will be explained in the next

section.

3.2.2. Peak detection

3.2.2.1. Low-pass filtering

When a person walks, the impact of the foot with the ground causes a certain variance of the

device’s acceleration. In this way, the acceleration measurements are characterized by the

reach of high and low peaks on each step. However, the values obtained from the embedded

accelerometer of a smartphone are very noisy and this causes unexpected peaks.

In order to reduce the noisy values obtained, a low-pass filtering is applied. The filter consists

on a simply sampling average that smooths the noisy acceleration measurements. This allows

an easier step detection based on high and low peak detection. The equation (3.4) represents

the low-pass filtering, where represents the noisy measurements, and the average-

filtered output.

 (3.4)

3.2.2.2. Local maximums and minimums algorithm

Now, a method for peak detection is required. It is very easy to find an absolute maximum or

minimum given an array of values, but it is not so easy to find local maximums and

minimums. The algorithm proposed accomplishes this objective in real-time, i.e. as the sensor

values arrive, and is explained below, as well as showed in the appendices of this document.

The algorithm is divided regarding the search of a maximum or a minimum. After finding one

of them, the algorithm keeps searching the other. Starting with a maximum searching, when a

 20

sensor measurement has been found, the algorithm compares if the actual value is higher than

the highest value found. In this case the maximum value is updated, as well as its index, i.e. its

number of sample. The process of the maximum updating continues until the current value is

lower than the maximum found minus a certain threshold. In this precise instant, the last

maximum obtained is considered as one local maximum, i.e. a high peak has been detected.

Then, a minimum searching process begins in an analogous way. However, before that

happens, it resets the value of the minimum value to the current value.

In this case, the algorithm considers a minimum value as one of the local minimums when

the current value is higher than the minimum value found plus the threshold mentioned

before. After that, it resets the maximum value to the current value.

The algorithm will keep working while the sensor values keep arriving and it will consider that

a step has been done when a pair of one local maximum and minimum has been found.

3.3. Step size estimation

3.3.1. Static method

Some PDR methods use a static step size for the updating of the position in each step. In this

case, the constant that represents the size is set experimentally, so it is independent of the

measures obtained while walking. In a simple way, this value can be determined equally for

every user (3.5):

 (3.5)

In a more sophisticated way, it can change depending on the user’s height (3.6):

 (3.6)

For both methods, if the person changes its velocity during his walking, the step size remains

constant. Therefore, the static methods are not accurate enough.

3.3.2. Dynamic method

A dynamic step length method tries to avoid this situation. This means that the current step

length will be estimated according to the acceleration measurements represented by in

equation (3.7):

 (3.7)

There are not perfect mathematic formulas that determine the step length of a person

according to the acceleration measurements obtained from a device that he carries. However,

there are good approximations, although they also depend on experimental constants.

Several papers have proposed different dynamic methods in order to estimate the step length

of a person as accurately as possible. The model proposed by [2] and validated by [3] is used

in this project. In this way, the step size will be determined through the following equation:

 21

 (3.8)

where is an experimental constant set to 0.52, and
 and

 are the maximum and

minimum acceleration values, respectively, that represent the step.

3.4. Device orientation calculation

A priori, there are two methods to estimate the orientation and inclination of a smartphone.

Through the Android API, we can directly obtain the orientation from the accelerometer and

magnetometer sensors. Another way is to make use of the gyroscope sensor measurements,

which indicate the velocity of rotation of the device in three local axes.

However, the best way is to make a combination of these two methods in order to get

information with less uncertainty than if the sources had been used individually. This concept

is called Sensor Fusion.

3.4.1. Accelerometer and magnetometer

The straightest way to obtain the orientation of an Android smartphone is by means of the

getOrientation method from the SensorManager class. The parameter needed to use the

getOrientation method is the rotation matrix obtained with the getRotationMatrix method, with

the accelerometer and magnetometer sensor values, as explained in the section 3.2.1.2 of this

report.

The result is a three-dimensional vector containing the values of azimuth, pitch and roll in

GCS. All three angles are positive in the counter-clockwise direction and are shown in Figure

2, as well as described below:

- Azimuth: rotation around the axis, i.e. the opposite direction of axis.

- Pitch: rotation around the axis, i.e. the opposite direction of axis.

- Roll: rotation around the y axis.

Figure 2. Smartphone's azimuth, pitch and roll angles [4].

 22

3.4.2. Gyroscope values integration

Actually, it is impossible to obtain an orientation in GCS with only the gyroscope sensor.

What can be measured by this sensor are changes of orientation, i.e. a relative orientation.

The gyroscope sensor’s data do not represent angles of rotation, but they represent the

rotation speed of the device in the three device’s coordinates. However, integrating the data

acquired, a rotation change can be obtained, although the accomplishment of this method is

not trivial in Android platform. The method followed in this work is based on the Android

Developers page proposed code in [5], and will be explained in the following lines:

In order to perform the discrete integral, every angular speed acquired from the gyroscope

has to be multiplied by its corresponding delta time, obtaining a delta rotation. Both the

angular speed and the delta time are obtained from the SensorEvent class information. The

former is directly obtained from the sensor’s data of every gyroscope SensorEvent; however,

the latter cannot be directly obtained.

Firstly, the event time-stamp, i.e. the time when a specific event takes place, is obtained. In

this way, the program stores the timestamp of each gyroscope event and then, by subtracting

the last gyroscope event timestamp, the delta time for each event is acquired. Since the

timestamps are stored in nanoseconds, a conversion from nanoseconds to seconds must be

done before proceeding.

Now, it is time to express the rotation change; however, there are many ways to do that,

although not all of them work properly in every situation.

One of the most famous methods is the Euler angles, which represent a rotation as a

sequence of three elemental rotations starting from a known orientation. These elemental

rotations are the rotations in three different axes, typically denoted as yaw, pitch and roll.

However, the pitch, i.e. the rotation around the axis, cannot go up to 90 degrees in this

method because, in this situation, the definitions of yaw and roll become ambiguous.

Therefore, if an application without any constraint is needed, it may be necessary to change

the Euler angles definitions on the fly, which becomes too complex. Still, if you constraint

your application, Euler angles work fine.

Another way to express the rotation angles is within a rotation matrix. This matrix contains

nine numbers that fully represent the rotation of a three-dimensional object.

Finally, there is other method based on quaternion vectors. This four-element vector can

represent every rotation of an object in a three-dimensional Euclidean space with only four

numbers and without any constraints.

 (3.9)

 23

Figure 3. Quaternion rotation representation [6].

In equation (3.9), the definition of a quaternion that represents a rotation is shown, where ,

 and represent the normalized axes where the rotation has taken place, and represents

the rotation magnitude, as shown in Figure 3.

The method proposed in this thesis makes use of a quaternion vector in order to represent

every delta rotation, by then transforming it into a rotation matrix, applying the rotation to

the current orientation, and finally converting the new orientation into azimuth, pitch and roll

angles. All this is further explained in the following lines:

First of all, the speed magnitude is calculated within the equation (3.10)

 (3.10)

where , and are the speed rotation values directly obtained from the

gyroscope sensor’s data.

Now, the magnitude of the rotation angle can be obtained following the equation (3.11)

 (3.11)

where is the delta time mentioned before, i.e. the time passed between two gyroscope

event timestamps.

The , and parameters from equation (3.9) can be obtained by normalizing the gyroscope

sensor’s data, i.e.:

 (3.12)

Now, both the rotation normalized axes and the rotation magnitude are obtained, so the

quaternion is already computable. Thus, a rotation matrix can be calculated from it through

the getRotationMatrixFromVector method from the SensorManager class, which can transform a

rotation vector, i.e. the quaternion obtained, into a rotation matrix of nine elements. This

rotation matrix stores the delta rotation performed in each gyroscope event so it will be called

gyroDeltaMatrix (in equation (3.13)).

 24

The multiplication of two rotation matrices yields another rotation matrix whose application

to a point effects the same rotation as the sequential application of the two original rotation

matrices [7]. So, in order to obtain a rotation matrix that represents the current device

orientation, the gyroDeltaMatrix has to be multiplied by the rotation matrix that represents the

last orientation (or rotation). This last matrix will be called gyroMatrix (in equation (3.13)).

 (3.13)

In order to do that, a MatrixMultiplication method is created and the operation order shown in

(3.13) must be followed. However, the first time that we access to the gyroscope sensor event

the gyroMatrix does not exist yet, thus, it should be initialized. For this reason, the rotation

matrix obtained from the accelerometer and magnetometer sensors is used as the initial

gyroMatrix .

Finally, after all the calculations have been done, the gyroMatrix has to be transformed into

azimuth, pitch and roll angles, and this is made by the getOrientation method from the Android

API, as it is done for the accelerometer and magnetometer orientation; however, in this case,

the parameter passed to the method will be the gyroMatrix.

3.4.3. Sensor Fusion

3.4.3.1. Qualitative explanation

Both accelerometer/magnetometer and gyroscope orientation are reached. In order to get

benefit from both methods, a sensor fusion method has to be performed.

The downside of the accelerometer/magnetometer orientation is that their data are very noisy,

especially the output from the magnetic field sensor. Moreover, if there is an abrupt change in

the device orientation, some spikes appear in the data captured by these sensors. The

application of a low-pass filtering would reduce the noise and the spikes but, at the same time,

would decrease the dynamic response of the output, i.e. the fast changes in orientation would

be slowly captured by the output of the filter.

On the other hand, the gyroscope sensor is far more accurate and has good dynamic

response; i.e. very short response time. However, its coordinate system reference is always

local, which means that it needs an external source to situate the obtained gyroscope’s

orientation in the world’s coordinate system.

Another drawback of this method is a popular phenomenon called drift. The origin of this is

the integration performed to obtain the computed rotations, which leads the integrated

gyroscope data to accumulate white noise during the reading. Consequently, the gyroscope-

based orientation begins to drift, i.e. to move away from the correct value, although the

device is not moving.

However, the accelerometer/magnetometer orientation has a stable output because no

integration is performed, so it does not suffer any drift. Therefore, the output from the

sensor fusion needed would be mostly gyroscope data but with the

accelerometer/magnetometer usage to correct drift, as well as to set up a GCS for the

orientation.

 25

Figure 4 represents the sensor data fusion that will be followed in this thesis, via a

complementary filter, i.e. a filter that manages both high-pass and low-pass filters

simultaneously.

3.4.3.2. Simplified implementation

This Sensor Fusion method is implemented in the following way:

Firstly, a summary of the section 3.4.2 is represented in the following simplified Java code

line:

gyroOrient = gyroOrient + dT * gyroRotation;

where gyroOrient is the orientation calculated from the gyroscope sensor,
gyroRotation the speed vector acquired from the gyroscope, and dT the time elapsed

between the last and the current gyroscope event.

The low-pass filtering of the accelerometer/magnetometer orientation is represented in the

following Java code line:

accMagOrient = k * accMagOrient + (1 - k) * newAccMagOrient;

where accMagOrient is the orientation estimation calculated from the accelerometer and

magnetometer sensors, newAccMagOrient the new orientation measure from these same

sensors, and k a coefficient that controls how slowly the new orientation measures are

introduced in the current orientation estimation.

The term k * accMagOrient can be seen as the high-pass component of the filter,

although in the above code this definition does not make sense. However, replacing this term

by a weighted output from the gyroscope orientation leads to high-pass filtering the

gyroscope data.

Therefore, the code line that will represent the complementary filter and that will be executed

in a loop is:

orientation = k * gyroOrient + (1 – k) * newAccMagOrient;

Accelerometer

Gyroscope

Magnetometer

ʃ

Orientation

Orientation from

Android API

Figure 4. Block diagram of the Sensor Fusion method via complementary Filter

 26

In order to complete the Sensor Fusion proposed, the gyroscope orientation has to be

overwritten by the output of the complementary filter every time the above line is executed.

This leads to correct the gyroscope drift mentioned before.

In this way, the following two simplified code lines represents the full proposed Sensor

Fusion method:

orientation = k * gyroOrient + (1 – k) * newAccMagOrient;

gyroOrient = orientation;

The constant k defines the time constant of the filter in the following way:

 (3.14)

where is the operation time interval; i.e. the time elapsed between two executions of the

above code lines.

 sets the time from which the low-pass component signal will be considered. Likewise, only

the high-pass component signals shorter than this time constant will affect the output.

Finally, the constant can be set according to the desired constant , as shown in equation

(3.15):

 (3.15)

3.4.3.3. Gyroscope overwriting

The code lines about the complementary filter written above work well with the correct

syntax in Java platform and do not require further explanation, except for one of them; the

one used to overwrite the gyroscope orientation from the output of the complementary filter.

As it is explained in section 3.4.2, the gyroscope delta rotations are performed by rotation

matrices multiplication, so the orientation vector from the sensor fusion output has to be

converted into a rotation matrix. This can be made following the definitions of coordinate

rotations 3 from [7]. Regarding every axis separately, the three coordinate rotations are

represented in the following way:

(3.16)

3 A coordinate rotation is a rotation about a single coordinate axis

 27

where , and are pitch, roll and yaw (or azimuth) angles respectively.

A single rotation matrix that can represent three rotations in the three Euclidean angles can

be obtained by multiplying the above three matrices in the correct order as shown in the

following equation:

 (3.17)

This yields to the general rotation matrix that will finally represent the orientation output:

 (3.18)

3.5. Position updating

In order to update the new position some issues have to be considered.

In the Java code three timerTasks4 are created so as to perform the PDR method. In this case,

the three of them will be executed every 50 ms.

The first one is in charge of calculating the acceleration in GCS in the three axes, and will be

firstly executed one second after the creation of the application.

The second one is in charge of performing the sensor fusion method between the

accelerometer/magnetometer-based and gyroscope-based orientation, obtaining the fused

orientation. It is executed at the same time than the previous one.

Finally, the last one performs the position updating by means of both the GCS acceleration

and the fused orientation obtained from the other two timers. In this case, this timer will be

executed 40 ms after the others for the first time, in order to leave time for the previous

calculations.

The third timer will also be the one in charge of detecting the user steps from the

accelerometer measurements, and only after a step is detected the current fused orientation

will be used in the position updating, following the equation (3.1).

This timer also creates a graphic interface where the user will be able to visualize his

pedestrian movements in real-time. The interface is based on the androidplot library and will

consist on a 2-D dynamic plot. As new positions are calculated, the plot will update its

appearance, showing the current position as well as the previous ones. A blue dot will

represent the calculated positions, and a yellow line will join these dots. Since this work is

based on relative positions, the first position will be considered as the [0, 0] point, which will

be in the centre of the plot, and the others will be relative to that.

Finally, the and axes of the plot will always be in meters and will always represent the

magnetic North and East, respectively.

4 The timerTask is a Java class that represents a task to run at a specified time.

 28

4. Relative position estimation

The main purpose of this project –and specifically of the methods explained in this section–

is to determine the relative position between two smartphone devices, considering that one is

moving (henceforth A) while the other one remains static (henceforth B).

In order to design a successful method, two different approaches are previously required: A’s

movement tracking and the relative distance measurement between A and B. Integrating

these two concepts, i.e. assigning different distances measurements to different positions of A,

a relative position between the two devices can be estimated.

The theory claims that with three distances measured from three different positions that are

not in the same straight line, a relative position can be directly obtained. This process is called

trilateration, and makes use of the geometry of circles and triangles. In practice, however, this

is not so easy, due to all the possible measurement errors.

The user’s movement tracking, which is performed by means of PDR, allows the estimation

of your current position with respect to your previous ones quite accurately, at least for short

user displacements. However, the distances measurements will be significantly less accurate.

The distance estimation method will be based on radio waves’ RSSI measurements from a

Wi-Fi Direct communication between two devices. It is true that RSSI-based estimations do

not allow for a high estimation accuracy, but they do allow for an easy approximation of the

distance. Other methods like the ToF of radio waves have been discarded due to its

impossible implementation in the software environment that concerns this project, which is

an Android smartphone app. Nevertheless, all the Wi-Fi Direct issues and methodology are

not explained in this report, where it is directly considered that RSSI-based distances are

available.

As it is said, RSSI does not enable high distance precision, since the radio waves can be

disturbed by many factors. This perturbation could cause that the power received is lower

than the expected from a certain distance, making it impossible for the receiver to obtain a

good distance measurement. Therefore, the initial idea of exactly determining the relative

position of a remote device resolves into a simpler approach: to dynamically calculate and

update the relative direction and distance estimations while walking towards the current

estimated direction, in order to finally meet the remote user.

4.1. Heuristic method

In this method, the purpose is to dynamically update a relative direction which makes A and

B get closer, if A follows this direction. In order to accomplish that, a weighting system for

different directions is implemented; however, before proceeding, a coordinate system has to

be defined for both the self-position of A and the estimated position of B. This consists of a

relative 2-D plane in which the x and y axes point to East and North, respectively. In the first

steps, the origin of this coordinate system is set to the start position of A; however, this

reference position might be actualized during the walking, as will be explained later. Finally,

polar coordinates will be considered in order to situate in the plane all the relative positions.

 29

4.1.1. Weighting system

During the walking of A, a weight is assigned for each direction walked relative to the

reference position with an associated distance measurement, following the equation (4.1)

 (4.1)

where
 is the distance between A and B measured in the reference position,

 the

distance between A and B measured in the step position and the current rho

coordinate of A’s position.

If the direction walked was the same direction of B and the measured distance was correct,

the weight would be 1 and the user would know that he is walking in the correct direction. If

the direction walked was the opposite direction of B, i.e. , the weight would

be -1 and the user would know that he has to walk exactly towards the opposite direction.

For other weights, the closer to 1 in absolute value they are, the closer the real relative

direction and the current angular coordinate of A will be –considering for negative weights

the current direction plus 180 . Therefore, this method allows for determining the goodness

of different directions.

As previously mentioned, the relative distance estimations are very noisy, therefore it is not

attempted to estimate the exact relative direction of the remote device basing on the weights.

However, a heuristic method implementation based on this direction weighting system, as

well as some filtering, will be done in order to improve the overall process.

4.1.2. Kalman Filter

Obviously, this method is not called heuristic for the Kalman Filter implementation.

However, this filter helps in the final performance of the method.

This filter is a set of equations that operate recursively in order to minimize the mean square

error of an estimation. It is mainly used in navigation systems but has a wide variety of use

cases. In this work, a simplified discrete implementation of it is used, since it will be used as

an estimator of a random constant instead of a stochastic process. This is because A does not

have a priori knowledge of the movement of B, so it will be considered that B remains static.

The Kalman filter tries to estimate the state of a process governed by the linear

stochastic difference equation represented in (4.2) with a measurement represented in

(4.3).

 (4.2)

 (4.3)

The matrix relates the state at the previous time step to the state at the current step.

The matrix relates the optional control input to the state . The matrix

 relates the state to the measurement . Finally, the random variables and , which are

independent of each other, represent the process and measurement noise respectively, which

is assumed to be white and with normal probability distribution.

 30

Now,
 is defined as the state estimation at step without the knowledge of

(4.4)

and as the state estimation at step given the measurement . Therefore, a priori

and a posteriori estimate errors can be defined as

 , and

 ,

respectively.

Deriving the equations of the Kalman Filter, the equation that represents the a posteriori state

estimate is obtained. It consists of a linear combination of the a priori estimate
 and a

weighted difference between the actual measurement and a measurement prediction

as shown in the equation (4.5).

 (4.5)

The matrix in (4.5) is calculated to be the gain that minimizes the a posteriori error

covariance

 (4.6)

Likewise, the a priori estimate error covariance is

 (4.7)

In order to calculate the optimal , the expression from (4.5) has to be substituted into the

above definition of , to then perform (4.7), take the derivative of the trace of the result with

respect to , set the result equal to zero and finally solve for . One of the resulting forms of

this is given by

(4.8)

where R is the measurement error covariance.

The computed in equation (4.8) can be understood as: the lower the measurement error

covariance is, the more the measurement is trusted.

At this point, the a priori estimate error covariance has to be redefined in equation (4.9), since

it is needed in order to calculate in equation (4.8), and cannot be obtained from equation

(4.7) because the errors are unknown.

 (4.9)

 from equation (4.9) corresponds to the process noise covariance and is the same than in

equation (4.2).

 31

Note that the a priori error covariance
 in the step depends on the a posteriori error

covariance from the step. Therefore, the a posteriori error covariance also has to be

redefined:

 (4.10)

Now, all the required equations have been exposed and they can be divided into two groups:

time update equations (prediction) and measurement update equations (correction). The

former are in charge of projecting forward –in time– the current state and error covariance

estimates in order to obtain the a priori estimates for the next time step. The latter are

responsible for incorporating the new measurement into the a priori estimate in order to

obtain a better estimation. Before proceeding in stating the final equations, the specific case

of this work has to be considered.

For this case, the state is the relative direction of the device B and the measurement is an

estimated direction. Since the state is considered as static, will be the identity matrix.

Moreover, there will not be any control input and will also equal the identity matrix

because the measurements are directly from the state. Therefore, the final equations that will

be implemented in the Android context are the following ones:

Time update equations Measurement update equations

State projection

Kalman Gain computation

Error covariance projection

Estimation updating (with measurement)

 Error covariance updating

Table 1. Discrete Kalman Filter equations

Following these equations, the Kalman Filter allows the improving of the estimation in real

time and without too much computational cost, since it satisfies the Markov property, i.e. the

calculations of the future state are made regarding only the current state and data and not all

the previous accumulated ones.

The implemented Java equations of the filter, as well as its initialization and a MATLAB

simulation of it, are shown in the appendices of this document.

4.1.3. Development

4.1.3.1. Direction

As said before, this method will follow some heuristic implementations. The first one refers

to how the direction estimations of A are considered as measurements for the Kalman Filter,

even though, actually, they are not real direction estimations.

 32

Firstly, the directions that have an assigned weight in absolute value lower than 0.5 are

discarded. The other directions are considered as direction measurements; however,

depending on their value, they can be considered as more than one measurement in order to

provide a specific estimation with more or less credibility than others, since it is not the same

a direction weighted with 0.5 than a direction weighted with 1.

Theoretically, the weight cannot be higher than one; however, in practice it certainly can,

because of all the possible measurement errors. This does not mean that the directions that

correspond to a weight higher than one are discarded; quite the contrary: the higher it is, the

more credible this direction will be. In this way, five different stages are considered according

to the weight value: from 0.5 to 0.8, from 0.8 to 1.5, from 1.5 to 4, from 4 to 9 and from 9 to

15. For these five stages the measurement will be considered once, twice, thrice, four times

and five times, respectively.

For the negative value weights, the method will perform in an analogous way, considering in

this case the current opposite weighted direction instead of directly the current one.

It is considered a weight limit of 15 both for positive and negative values. For positive values,

this high weight would probably mean that the distance measured in the reference position

 was made in a zone with bad coverage while the measurement in the current position is

in a good coverage zone. An example scenario would be two users that had had a wall or a

building between them in the reference position measurement, and now they have good

visibility. Therefore, they would have passed from a Non-line-of-sight (NLOS) environment

to a Line-of-sight (LOS) one. This yields to update the reference position as the current

position of A.

On the other hand, weights lower than -15 would probably mean that the users have passed

from a LOS to NLOS environment. In this case, however, the reference position is not

updated and the current direction is simply discarded.

In order to improve the precision of the direction estimations during the walking, the

reference position will be also updated when the estimated distance has become one fifth of

the estimated distance in the reference position.

In any case in which the reference position is updated, the Kalman Filter will be reinitialized.

4.1.3.2. Position

Once direction estimation is obtained, an approximate relative position can be calculated. The

most straightforward way is to consider the distance estimation from the reference position,

since the relative direction is always in regard to this position. In this way the remote position

of B
 would be

 (4.11)

where
 and

 are the Cartesian coordinates of B’s position in the step,
 and

 the

Cartesian coordinates of A’s reference position,
 the distance measurement between the

two devices in the reference position, and the relative direction between the two

devices –regarding the reference position.

 33

However, as A and B get closer the absolute error of the distance measurement diminishes.

Therefore, it would be better to consider the closer distance measurements rather than the

reference position one. In order to accomplish that, a method based on Figure 5

representation is performed.

Figure 5. Improvement of position estimation representation

In Figure 5, represents the reference position of A, the position of A in the step,

 the distance measurement between A and B in the reference position, the distance

measurement between A and B in the step, the estimated direction in the step,

 the estimated position of B in the step following the estimation represented in

equation (4.11), and and two estimated positions of B in the step following the

method explained right after.

In order to obtain and estimations, an intersection between a circumference and a

straight line has to be performed as shown in Figure 5. The circumference is represented as

(4.12)

where
 and

 represent the position of A in the step, and the straight line as

 (4.13)

Therefore, the values that represent the two intersection points are defined by

(4.14)

Solving for and substituting in (4.13) the two intersection points are acquired. The furthest

point will be the chosen one, since it is considered that the user A has not surpassed B yet.

Therefore, this point will be the one representing the remote device in the 2-D dynamic plot

detailed in the section 3.5 of this report.

 34

5. Acoustic distance

In this section, a high-accuracy software-based acoustic ranging solution is presented.

Typically, the ranging methods are achieved through measuring the ToF of acoustic or radio

signals. In this case, the distance between two devices is the product of the ToF and the

signal speed –speed of sound for acoustic signals and speed of light for radio signals.

Obviously, it is easier to perform this method with acoustic signals, since their velocity is

much lower than that of radio signals; however, at the same time, the range is smaller. In this

thesis, the acoustic ranging is used to perform a high-accuracy distance estimation between

two smartphone’s users when they are close enough to hear each other by emitting acoustic

signals. Likewise, it can also be useful for other kind of use cases, as simply calculating the

length of an object.

The biggest problem of the ToF methods is the precision of these time measurements, which

are often taken by timestamps’ recordings of local devices’ clocks at the moment the signal is

emitted or received. In this case, there could be three uncertainty factors that would lead to

measurement inaccuracies: the clock skew between the two devices involved in the process,

the misalignment between the sender timestamp and the current acoustic emission, and the

delay between the sound arriving and the current recognition of it at the receiver.

The former can be solved with internet access, by considering the same remote clock.

However, without internet coverage this would not be possible. The latter two uncertainties

could be caused by several intrinsic factors and are impossible to be sufficiently minimized.

Therefore, the timestamp-based approach is discarded.

For this project, the method to achieve the acoustic ranging resides on sample counting

instead of timestamps difference, as it is performed in [8].

5.1. Sample counting method

In this method, two devices emit an acoustic signal and each of them records both its own

and the remote’s signals. With a good detection approach, both signals will be detected and

the amount of recording samples between them will be easily calculated. Then, this can be

transformed into time measurements, following the equation (5.1):

 (5.1)

where is the time elapsed between the two signals recorded in a single device, and the

samples in which the signals are detected, and the sample frequency of the recording.

If this equation is calculated in both devices, and the sounds emitted from each device do not

interfere between them, i.e. they do not share space-time, the distance measurement between

the two devices is calculated by the following equation:

 (5.2)

 35

where, is the time calculated from (5.1) in the device that first sends the sound, the time

calculated in the other device, and the speed of sound. Therefore, in order to calculate the

distance in a device, calculations from the other device are needed; thus, a communication

between them will be compulsory. This communication will be also based on the Wi-Fi

Direct protocol but, as mentioned before, all these issues are not explained in this report.

If the detection has been done properly, the distance measurement granularity is limited only

to the sound sampling rate. In this way, the accuracy would be:

 (5.3)

where is the maximum distance error, the sampling frequency and the speed of sound.

With a of 44100 Hz and considering a sound speed of 340 m/s, the maximum error is only

about 8 mm.

In order to perform this detection in an optimal way, a chirp signal is chosen, due to its wide

spectrum and, hence, good detectability. Moreover, a Matched Filter is implemented at the

receiver, as it will be explained later.

5.2. Signal generation

The Android API does not have any method to directly play a specific acoustic sound as, for

example, a simple pure tone or a chirp signal. Therefore, the desired signal has to be firstly

generated.

As it is previously said, the chosen acoustic sound is a chirp signal, specifically a linear up-

chirp. This signal is characterised by an instantaneous frequency that increases linearly with

time, following the equation (5.4):

 (5.4)

where is the starting and lowest frequency, and is the rate of frequency increase or chirp

rate that can be defined as (5.5):

 (5.5)

where is the final frequency and T the time taken to sweep from to .

Once the chirp main characteristics are defined, it can be generated in a Java context.

However, in this digital context the previous analogous definitions cannot be directly applied

and the continuous time domain has to be transformed into a discrete one. In this way, the

generated signals will have a finite number of samples.

Firstly, an array of the desired number of samples has to be created. Then, the values for each

sample are calculated as shown in equations (5.6) and (5.7):

 (5.6)

 36

Where is the chirp signal value in the sample, the current sample, the instant

chirp frequency for each sample – defined in (5.7) – and the sample rate.

 (5.7)

In equation (5.7), and follow the same definitions as in the equations (5.4) and (5.5), and

 is the number of samples of the signal.

The parameters selected for the chirp signal generation are:

These parameters allow for a signal duration of 34 ms approximately.

The selection of the initial and final chirp frequencies are made based on human listening

capabilities, since it is preferable than the emitted sounds are practically inaudible. Moreover,

the bigger the difference between them is, the more bandwidth the signal will have, and this

will allow for an easier detection.

On the other hand, the sample rate is set bearing in mind the Nyquist–Shannon sampling

theorem. This theorem guarantees that if a signal contains no frequency higher than B hertz it

can be sampled and then perfectly reconstructed –by means of interpolation–, whenever the

sample rate is higher than 2B (5.8):

 (5.8)

Therefore, has to be higher than 36 kHz, that is the highest frequency of the chosen chirp

signal multiplied by two. However, the Android smartphones do not allow every sample rate,

so the final parameter will be set to 44.1 kHz, which is allowed by them.

Finally, the selection of , i.e. the number of samples, is made following an agreement

between the time of processing and the detectability of the signal, because the larger the

signal is, the easier to be detected by a receiver it becomes, but at the same time, the longer

the process of detecting will be.

5.3. Audio playing

In order to play a sound in Android, the AudioTrack class is used. As it is said in the Android

developers’ reference page, this class allows streaming of Pulse Code Modulation5 (PCM)
audio buffers to the audio sink for playback. This is achieved by the method write(byte[],

int, int), which push the data to the AudioTrack object. Then, the play() method is only

required in order to finally play the sound.

5 Method to digitally represent sampled analog signals.

 37

Before that, the AudioTrack object has to be initialized, and this will be made with the

following class constructor: AudioTrack(int streamType, int sampleRateInHz, int
channelConfig, int audioFormat, int bufferSizeInBytes, int mode).

- The streamType selected is the default audio stream for music playback, i.e.

AudioManager.STREAM_MUSIC.

- The sampleRateInHz parameter is the sample rate defined in the previous section (5.2).

- The channelConfig is AudioFormat.CHANNEL_OUT_MONO, since only one audio output

channel is required.

- The audioFormat parameter is AudioFormat.ENCODING_PCM_16BIT. This format will

allow a 16-bit PCM encoding, which is the largest one available for the AudioTrack class.

This encoding allows , i.e. , different levels for the digital representation of a

signal. Specifically, the available values will be from -32768 to 32767.

- The bufferSizeInBytes parameter is the number of samples that will be written to the

AudioTrack object and subsequently played. Since the signal is generated as short (16

bits) values, and the AudioTrack object will be written in bytes (8 bits), the length of the

AudioTrack buffer will be the original number of samples multiplied by 2 –two bytes per

sample.

- The mode chosen is AudioTrack.MODE_STATIC, since it is the mode recommended

when dealing with short sounds that fit in the memory and that need to be played with

the smallest latency possible.

Since the 16-bit PCM is the chosen encoding, the generated signal will be set as short6 type, as

well as set with values from -32768 to 32767. However, in order to “push” the data into the

AudioTrack object by the write(byte[], int, int) method, an array of bytes is required.

Therefore, each short type sample will be converted into two byte7 type. This will be made by

the following two code lines executed in a loop:

byteValues[i++] = (byte) (shortValues & 0x00ff);
byteValues[i++] = (byte) ((shortValues & 0xff00) >>> 8);

where byteValues and shortValues are the arrays that store the byte and short values of

the signal respectively. On the other hand, & is the bitwise AND operator8 and >>> the zero

fill right shift operator 9 . In this way, the first line will copy the lowest 8 bits of the

shortValues to the byteValues, while in the second line the 8 bits copied will be the

highest ones of shortValues. This follows the little-endian format, which is the required for

the data representation in the AudioTrack object. In this format, the least significant byte is

stored at the first location and the most significant byte in the last one.

Finally, the chirp signal will be played by executing the two following code lines:

audioTrack.write(byteValues, 0, byteValues.length);
audioTrack.play();

6 The short data type is a 16-bit signed two's complement integer. It has a minimum value of -32,768 and a
maximum value of 32,767 (inclusive).
7 The byte data type is an 8-bit signed two's complement integer. It has a minimum value of -128 and a
maximum value of 127 (inclusive).
8 This operator copies a bit to the result if it exists in both operands
9 The left operands value is moved right by the number of bits specified by the right operand and shifted values
are filled up with zeros.

 38

5.4. Audio recording

For the audio recording, an AudioRecord class object will be used. As it is said in the Android

developers’ reference page, this class manages the audio resources for Java applications to

record audio from the audio input hardware of the platform. In order to acquire the data

from the AudioRecord object, the read(short[] audioData, int offsetInShorts,

int sizeInShorts) method will be used.

Before that, the AudioRecord object has to be initialized, and this will be made with the

following class constructor: AudioRecord(int audioSource, int sampleRateInHz,

int channelConfig, int audioFormat, int bufferSizeInBytes).

- The audioSource selected is the microphone audio source

MediaRecorder.AudioSource.MIC.

- The sampleRateInHz parameter is the same than in the AudioTrack object initialization.

- The channelConfig is the AudioFormat.CHANNEL_IN_MONO, since only one audio

input channel is required.

- The audioFormat is the same than in the AudioTrack object initialization.

- The bufferSizeInBytes is the desired number of samples of the recording.

After the AudioRecord object initialization is done, the following two code lines are executed

in order to commence the recording:

audioRecord.startRecording();

audioRecord.read(receivedByteValues, 0, receivedByteValues.length);

where the receivedByteValues parameter will store the recorded signal in bytes following

the 16-bit PCM modulation.

Finally, in order to get an array of the same type as the one generated for the playing, the

receivedByteValues will be transformed into a short data type array by means of the

ByteBuffer class methods.

5.5. Matched filter

The acoustic range is the main drawback of the proposed acoustic distance method. For that

reason, some filtering is done at the receiver in order to improve the detection process.

Firstly, the block diagram of Figure 6, which represents a filter implementation, will be defined

by equations (5.9) and (5.10), where is the input of the filter, the filter impulse

response, the output of the filter, and , and its respective frequency-

domain functions.

 (5.9)

 (5.10)

y[n] h[n] x[n]

Figure 6. Block diagram of a filter implementation

 39

y[n] h[n] s[n]

w[n]

Now, the emitting and receiving process of the proposed acoustic method can be

schematised as shown in Figure 7, where s[n] represents the emitted sound, i.e. the chirp signal,

w[n] an Additive White Gaussian Noise (AWGN), h[n] the impulse response of the filter and

y[n] the output signal of the filter:

In the above block diagram, y[n] can be defined in the following way:

 (5.11)

where and are the filtered signal and noise parts of the input of the filter,

respectively.

Now, the optimal impulse response for the filter is calculated in order to maximize the Signal

to Noise Ratio (SNR) of the detected peak, which is defined in the following equation:

 (5.12)

where

 is the peak SNR, the received sample in which the sound arrives and the

noise power.

Firstly, and will be expressed regarding the filter response in equations (5.13) and

(5.14):

 (5.13)

 (5.14)

where represents the inverse Fourier transform operator and the expectation

operator. Therefore, substituting (5.13) and (5.14) in (5.12):

 (5.15)

Figure 7. Block diagram of the acoustic distance estimation process

 40

Now, the Cauchy–Schwarz inequality will be applied in order to find the maximum value of

,

as well as the value of in order to obtain it. The inequality is represented in the

following equation:

 (5.16)

where is the inner product.

Moreover, ‘ ’ from equation (5.16) becomes ‘ ’ if

 (5.17)

so

 (5.18)

The Cauchy–Schwarz inequality can also be rewritten as:

 (5.19)

Now, defining and as

 (5.20)

 (5.21)

and applying the Cauchy-Schwarz inequality

 (5.22)

 41

the optimum

 value is obtained:

.

Therefore, the greater the bandwidth of the signal is, the greater the peak SNR will be.

Finally, in order to obtain the optimum

 in the system, the condition represented in the

equation (5.17) must be met, so

 (5.23)

This can be expressed in the time domain as:

 (5.24)

This impulse response of the filter can perfectly be designed since the same signal is always

emitted and the receiver knows it.

Setting and for commodity, the final block diagram is shown in Figure 8.

In Figure 8, s[n] represents the chirp signal generated and played, w[n] an AWGN, x[n] the

chirp signal with AWGN, i.e. the chirp signal recorded, s*[-n] the filter impulse response,

which is the conjugated time-reversed version of the generated chirp signal, and y[n] the

matched output from the filter, represented in the equations (5.25) to (5.28).

 (5.25)

 (5.26)

 (5.27)

 (5.28)

y[n]
x[n]

s*[-n] s[n]

w[n]

Figure 8. Block diagram of the Matched Filter process followed in this work

 42

6. Results

6.1. PDR

In Figure 9, the acceleration measurements in the axis (in GCS) for a walk of 29 steps are

represented.

In Figure 10, the low-pass filtered acceleration measurements shown in Figure 9 are

represented. Moreover, the algorithm that detects local peaks is performed, obtaining the red

and green asterisks for every maximum and minimum detected, respectively. Each pair of

consecutive high and low peak detections represents a single step. Thus, as seen in Figure 10,

all the 29 steps have been correctly detected.

In Figure 11, it is shown a comparison between the orientation from the

accelerometer/magnetometer sensors alone (coefficient of the complementary filter equal to

zero), and the orientation from the sensor fusion method with a coefficient of 0.95, which is

the coefficient chosen. It is clearly seen that the sensor fusion method allows the orientation

measurements to not have undesired spikes, as well as to be smoother. Moreover, it also

allows a better dynamic response than the application of a low-pass filter to the

accelerometer/magnetometer measurements.

Figure 10. Step detection (29 steps) Figure 9. Z-axis acceleration measurements (29 steps)

Figure 11. Orientation estimation test

 43

Figure 12. PDR performance

In Figure 12, the walking trajectory of a user is represented following all the methods

explained in the section 3 of this report. This 2-D plot is what the user can see in the

application during his walking –with the exception of the red dashed line, which represents

the real walking of the user and is drawn for a comparative purpose between the real and the

estimated trajectory. In this case, after 54 steps and returning to the initial position, the

accumulated estimation error is about 95 cm.

In order to quantify the performance of this method, five repetitions of the trial represented

in Figure 12, but only in one way, have been tested.

Figure 13 illustrates the five trials, and Table 2 shows the overall performance of the method.

 Steps

done

Steps

detected

Distance

travelled

Real final

position

Estimated final

position

Accumulated

absolute error

Accumulated

relative error

Trial 1 28 28 17.3 m [-3.4,-0.4] m [-3.55, -0.22] m 0.23 m 1.35 %

Trial 2 28 28 17.3 m [-3.4,-0.4] m [-3.21,-0.04] m 0.41 m 2.35 %

Trial 3 28 27 17.3 m [-3.4,-0.4] m [-3.66,-0.13] m 0.37 m 2.16 %

Trial 4 28 28 17.3 m [-3.4,-0.4] m [-4.67,-0.09] m 1.3 m 7.55 %

Trial 5 28 28 17.3 m [-3.4,-0.4] m [-3.89,-0.76] m 0.6 m 3.5 %

Table 2. PDR performance

Considering the above table, the relative error is less than 5 % of the distance travelled in

most cases, and always less than 10 %.

On the other hand, 139 out of 140 steps walked by the user throughout the five trials have

been correctly detected. This represents more than 99 % of accuracy in the step detection.

 44

Figure 13. Five PDR trials in a specific trajectory

6.2. Relative positioning

It is very difficult to quantify the performance of this method, since it is very variable and it

can be analysed in many ways. However, it can be said that, overall, the method does not

work as expected.

In a straight approaching of A towards B, the method usually works well. In this case, the

application indicates that user A is walking in the correct direction, and the distance

estimation is updated recursively while walking as shown in Figure 14, where the red points

represent all the estimated positions of B and the yellow line the trajectory travelled by A.

In the test shown in Figure 14, the estimated distance in the reference position between both

of them was about 20 meters, while the real distance was about 50 meters. However, this

does not affect the approaching between them, since by following the estimated direction

both users finally meet. Moreover, as A approaches B, the distance estimation –and hence the

relative position estimation– becomes more accurate.

Figure 14. Relative positioning test in a straight walk towards the remote device (the arrow A0 represents the
initial position of A and the arrow B the real position of B during the entire walk).

A0

B

 45

On the other hand, if A starts walking in a random direction the method usually goes wrong.

However, there have been some trials in which the method clearly enables both users to find

each other, as shown in Figure 15.

Figure 15. Relative positioning test performing properly (the arrow A0 represents the initial position of A and the
arrow B the real position of B during the entire walk).

In the above figure, the user A walks following the estimated relative direction, and after 113

steps he gets B in a distance shorter than 1 meter.

6.3. Acoustic distance method

In this method, the choosing of the chirp frequency is critical, since depending on the

smartphone it will be properly reproduced and heard, or not. In the experiments done, three

smartphones have been tested: Google Nexus 5, Motorola Moto G (2nd generation) and BQ

Aquaris E4.5. While the microphones and speakers of the first two are able to receive and

reproduce any frequency between 0 and 22 kHz, the latter’s are unable to hear frequencies

higher than 8 kHz. Moreover, this one also has difficulties to reproduce high frequencies like

17 kHz or higher. This yields to finally set the chirp frequency between the audible

frequencies 3 kHz and 7 kHz, instead of the ones proposed in the section 5.2 of this report.

Figure 16. Recording during the acoustic distance process

A0

B

 46

In Figure 16, the recording of the whole acoustic distance process is represented. The

recording input consists of two chirp signals in a noisy environment; one emitted from a

remote device and the other from the own device. Applying the Matched Filter at both

devices, the plot shown in Figure 17 is obtained, where the blue line represents the filtered

recording in one device (the one represented in the recording of Figure 16) and the red line

the filtered recording in the other device. The difference in the distance between the two

highest peaks in each device yields to a distance estimation between them, as it is explained in

the section 5.1 of this report.

Figure 18. Estimated distance against real distance

In Figure 18 the acoustic distance method performance is represented, taking five samples for

each distance measurement. The red line represents the real distance, while the blue diamonds

represent the estimated distances in each measurement. Beyond 1.2 meters, the method starts

failing in most trials.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

E
st

im
a

te
d

 d
is

ta
n

ce
 (

m
m

)

Distance (mm)

Figure 17. Matched filtered recording in both devices

 47

Figure 19. Absolute error mean and standard deviation

In Figure 19, the average absolute error (black points) and the standard deviation (vertical red

lines) from the five measurements shown in Figure 18 are represented.

Figure 20. Average relative error

In Figure 20, the average relative error of the five distance measurements done for each

distance is represented. It is clearly seen that between 0.2 and 1.2 meters, the five sampling

average relative error is less than 10 % for every distance measurement.

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

A
v

e
ra

g
e

 r
e

la
ti

v
e

 e
rr

o
r

(%
)

Distance (mm)

 48

7. Budget

Personnel Time Cost/hour Total cost

Junior Engineer 720 h 8 € 5760 €

Project Supervisor 10 h 18 € 180 €

Total 730 h 5940 €
Table 3. Personnel costs

Software Cost

Android Studio - €

MATLAB 105 €

Total 105 €
Table 4. Software costs

Cost activities Cost

Personnel 5940 €

Software 105 €

TOTAL 6045 €
Table 5. Total costs

 49

8. Conclusions and future development

Clearly, the results that represent the main objective of this thesis are not good enough.

However, we were aware of the difficulty of this project, so it cannot be considered as a

failure, quite the contrary; it can be the beginning of a further research on this topic that may

allow a proper performance in the future.

Some of the methods performed in this thesis do work properly, like the pedestrian dead

reckoning approach, that allows a smartphone user to track his pedestrian movement in a two

dimensional plane and in real time, even in indoor scenarios. This could be improved so that

the user movement could be tracked in three dimensions, using the suitable accelerometer

and gyroscope data, as well as the barometer sensor embedded in some current smartphones.

Regarding the RSSI measurements, we realised how bad they are in order to estimate

distances based on them. For this reason, all the tried methods for estimating a relative

position between two devices by means of the RSSI measurements show poor results. Maybe

a better implementation of the Kalman filter or the use of different signal processing

methods like the particle filter would improve the overall performance. Undoubtedly, it is a

great challenge to handle the RSSI fluctuation in order to obtain useful information about the

environment from it.

Concerning the acoustic distance estimations, a good measurement precision that will allow

the measurement of little objects or distances has been reached. However, this method is not

able to be useful in the users approaching method, since it has a very limited range. The

matched filter designed for the detection of the chirp signals seems to work properly, since

the detected peaks power for short distances are usually at least a hundred times the power of

the detected noise, even in very noisy scenarios. Nevertheless, for distances longer than two

meters, it seems that the smartphone’s microphones do not record the chirp signal. In this

case, it is impossible to detect it even with the best signal processing at the receiver.

Finally, I think that this degree thesis has been very useful to complete my bachelor’s degree

education, since it makes me face real problems and learn autonomously. For instance, before

starting this project, I did not have any prior knowledge in Android development, and now I

am able to develop full Android applications of many types. Moreover, I learned to deal with

real time information as well as to manage multiple sensors’ data at once, and I experimented

with real processing approaches learned theoretically during the degree.

 50

Bibliography

[1] Android Developers, API Guides, Sensors Overview, Sensor Coordinate System. [Online] Available:
http://developer.android.com/guide/topics/sensors/sensors_overview.html [Accessed: 15 May 2016]

[2] H. Weinberg, “Using the ADX1202 in pedometer and personal navigation applications,” 2002.

[3] D. Alvarez, R. C. González, A. López, and J. C. Alvarez, “Comparison of step length estimators from
wearable accelerometer devices,” in Proc. IEEE EMBS, Aug. 2006, pp. 5964–5967.

[4] MathWorks Mobile Sensor Connectivity Team, 2013. [Online] Available: http://www.mathworks.com/
matlabcentral/mlc-downloads/downloads/submissions/40876/versions/8/screenshot.jpg [Accessed: 16
May 2016]

[5] Android Developers, Sensor Event. [Online] Avaliable:.
http://developer.android.com/intl/es/reference/android/hardware/SensorEvent.html [Accessed: 16 May

2016]

[6] DF Malan (Own work), Public Domain. [Online] Available:
https://commons.wikimedia.org/w/index.php?curid=1354297 [Accessed: 16 May 2016]

[7] James Diebel. “Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors”. October
2006, Standford University.

[8] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan. Beepbeep: A high accuracy acoustic ranging system
using cots mobile devices. In Conference on Embedded Networked Sensor Systems (Sensys), 2007.

 51

Appendices

REAL-TIME LOCAL PEAKS DETECTION ALGORITHM:

public void localPeakDetect(Float z) {

 current = z;

 if (current > max) {

 max = current;

 maxpos = index;

 }

 if (current < min) {

 min = current;

 minpos = index;

 }

 if (lookForMax) {

 if (current < (max - threshold)) {

 maxValues.add(max);

 maxIndex.add(maxpos);

 min = actual;

 minpos = index;

 numMaxs++;

 lookForMax = false;

 }

 } else {

 if (current > (min + threshold)) {

 minValues.add(min);

 minIndex.add(minpos);

 max = current;

 maxpos = index;

 numMins++;

 lookForMax = true;

 }

 }

 index++;

}

 52

KALMAN FILTER INITIALIZATION:

public void initKalmanFilter() {

 kalmanQ = 0.00001f;

 kalmanR = 0.001f;

 kalmanP = 1.f;

 firstKalman = true;

}

KALMAN FILTER ALGORITHM:

public float kalmanFilter(float direction) {

 if (firstKalman) {

 xhat = direction;

 firstKalman = false;

 return xhat;

 }

 // time update

 xhatminus = xhat;

 Pminus = kalmanP + kalmanQ;

 // -179º <--> 179º transition

 measurementInnovation = direction-xhatminus;

 if (measurementInnovation > 180.f) {

 measurementInnovation -= 360.f;

 }

 else if (measurementInnovation < -180.f) {

 measurementInnovation += 360.f;

 }

 // measurement update

 kalmanK = Pminus / (Pminus + kalmanR);

 xhat = xhatminus + kalmanK * (measurementInnovation);

 kalmanP = (1 - kalmanK) * Pminus;

 // -179º <--> 179º transition

 if (xhat > 180.f) {

 xhat -= 360.f;

 }

 else if (xhat < -180.f) {

 xhat += 360.f;

 }

 return xhat;

}

KALMAN FILTER MATLAB SIMULATION:

 53

Glossary

GPS: Global Positioning System

ToF: Time of Flight

RSSI: Received Signal Strength Indicator

PDR: Pedestrian Dead Reckoning

IDE: Integrated Development Environment

GCS: Global Coordinate System

NLOS: Non-line-of-sight

LOS: Line-of-sight

AWGN: Additive White Gaussian Noise

SNR: Signal to Noise Ratio

