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Abstract 

A relative positioning system that enables two Android smartphone pedestrian users to find 

each other without the need of GPS availability is presented. Moreover, the smartphone user 

will also be able to track his movement in real time without the GPS constraint. The methods 

proposed involve both radio and acoustic waves emission and reception, as well as the 

mastery of several embedded phone sensors usage. Obtained results show difficulties to 

accomplish the main objective of the project, due to the radio waves power fluctuation in 

urban environments. However, the self-movement tracking and a high-accuracy ranging 

system for short distances based on acoustic signals emission work properly. 

 

 

  



 

 2 

Resum 

En aquesta tesi es proposa un sistema de posicionament relatiu que permet a dos usuaris 

d’smartphones Android que vagin a peu trobar-se l’un a l’altre sense la necessitat de cobertura 

GPS. A més a més, l’usuari també podrà seguir el seu moviment en temps real sense la 

limitació del GPS. Els mètodes proposats involucren l’emissió i la recepció tant d’ones 

electromagnètiques com acústiques, a més d’un clar domini dels sensors del mòbil. Els 

resultats obtinguts demostren dificultats per assolir el principal objectiu del projecte, degut a 

la fluctuació de la potència de les ones electromagnètiques en ambients urbans. Tot i això, la 

monitorització de la pròpia trajectòria i un acurat sistema de mesura de distàncies curtes basat 

en l’emissió de senyals acústics funcionen adequadament. 
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Resumen 

En esta tesis se propone un sistema de posicionamiento relativo que permite a dos usuarios 

de smartphones Android que vayan a pie encontrarse el uno al otro sin la necesidad de 

cobertura GPS. Además, el usuario también podrá monitorizar su movimiento en tiempo real 

sin la limitación del GPS. Los métodos propuestos involucran la emisión y recepción tanto de 

ondas electromagnéticas como acústicas, además de un claro domino de los sensores del 

móvil. Los resultados obtenidos demuestran dificultades para lograr el principal objetivo del 

proyecto, debido a la fluctuación de la potencia de las ondas electromagnéticas en ambientes 

urbanos. Aún así, la monitorización de la propia trayectoria y un preciso sistema de medida de 

distancias cortas basado en la emisión de señales acústicas funcionan adecuadamente. 
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1. Introduction 

1.1. Statement of purpose 

The main objective of this project is to create an Android application that allows any Android 

smartphone user to find another smartphone (or any other device supporting Wi-Fi Direct1 

communication) without the need of Global Positioning System (GPS) availability or cellular 

network coverage. This enables its usage even in challenging scenarios, such as indoor or 

isolated ones.  

In order to find each other, a relative positioning system approach has been proposed. This 

approach makes use of self-movement tracking and distance estimations based on radio 

waves’ received power. However, for close distances, the received signal power-based 

estimations are substituted for a high-accuracy ranging approach based on the time of flight 

(ToF) of acoustic waves.  

Moreover, the ToF-based approach enables different use cases of the application, such as the 

measurement of small objects’ sizes. 

1.2. Requirements and specifications 

The Android application must give information to its user about the direction of a remote 

Wi-Fi Direct device relative to himself, as well as distance estimations between them. Both 

devices are required to have the Wi-Fi Direct connectivity available –which does not mean an 

established connection–; once this is done, the user must choose the device that he intends to 

find, according to a list of all the available devices’ names. Moreover, in order to get and 

update the distance and direction measurements, the user must walk carrying his smartphone 

pointing towards his direction of displacement. 

The close-proximity ranging approach, i.e. the acoustic waves-based one, does require an 

established Wi-Fi Direct connection, so in this case, the other device has to accept the 

connection. However, the received signal power-based approach does not require any 

connection; therefore, it works even without the acceptance of the other device. 

The methods used in order to find the remote device work for distances lower than 250 

meters, while the high-accuracy ranging approach for close distances works up to 1.3 meters. 

Finally, the application also permits the user to track his movement in real time regardless of 

any connectivity. 

1.3. Project background 

This thesis has been performed within a collaborative project (called RADIUS) that involves 

two people: Guillermo Ortas and myself. However, all the methods and procedures stated in 

this report are from my own work.  

This project is not a continuation of any previous one, thus it starts from the scratch. 

However, the main project initial ideas were provided by the supervisor Dr. Ilker Demirkol. 

From these initial ideas along with some research inputs we have developed the whole project. 

                                                
1 Wi-Fi standard that enables devices to connect with each other without requiring a wireless access point. 
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The work stated in this report follows three main methods: pedestrian dead reckoning, 

relative positioning and acoustic distance, explained in the sections 3, 4 and 5 of this report, 

respectively. Both the former and the latter are based on several journal papers ideas but 

following original algorithms and code, since they were not available in the consulted data. 

Regarding the relative positioning approach, as well as the integration of all the methods in a 

pleasant Android application, a completely original work is performed. 

1.4. Work Plan, milestones and Gantt Diagram 

Project: Radius Responsible: Both WP ref: 1 

Major constituent: Research Sheet 1 of 9 

Short description: 

Research on similar projects and mobile apps. 

 

Planned start date: 08/02/2016 

Planned end date:  23/05/2016 

Start event: Project start 

End event: -  

Internal task T1: 

Paper research about the usage of 

smartphones’ sensors in other projects 

Internal task T2: 

App research and evaluation 

 

Project: Radius Responsible: Both WP ref: 2 

Major constituent: Develop Test App Sheet 2 of 9 

Short description:  

Test app development block. We develop an app that reads 

all of the smartphone’s sensors. 

 

Planned start date: 15/02/2016 

Planned end date: 29/02/2016 

Start event: Project start 

End event: - 

Internal task T1:   

Environment installation: Android Studio 

Internal task T2: 

Interface design 

Internal task T3: 

Android Language learning 

Internal task T4: 

Code writing 

Internal task T5: 

Testing 

Project: Radius Responsible: Nèstor WP ref: 3 

Major constituent: User movement monitoring Sheet 3 of 9 

Short description: 

Monitor the user’s movement in order to know the source 

of the changes in the distance estimations between two 

smartphones (i.e. how much has the user moved between 

two distance estimations). This allows calculating the 

relative direction, and hence the relative position, between 

the two devices. 

Planned start date: 22/02/2016 

Planned end date: 01/04/2016 

Start event: Test app developing 

End event: - 

Internal task T1: 

Parameter acquisition 

Internal task T2: 

Orientation calculation 

Internal task T4: 

Simulation 

Internal task T5: 

Testing 
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Project: Radius Responsible: 

Nèstor (sound ToF) 

Guillermo (RSSI, Bluetooth) 

WP ref: 6 

Major constituent: Distance estimation Sheet 6 of 9 

Short description:  

Estimate the distance between two devices using different 

systems. 

Planned start date: 26/03/2016 

Planned end date: 03/06/2016 

Start event: - 

End event: - 

Internal task T1: 

Wi-Fi Direct RSSI 

Internal task T2: 

Bluetooth RSSI 

Internal task T3: 

Audio ToF 

 

Project: Radius Responsible: Nèstor WP ref: 7 

Major constituent: Direction estimation Sheet 7 of 9 

Internal task T3: 

Pedestrian Dead Reckoning 

Project: Radius Responsible: Guillermo WP ref: 4 

Major constituent: Wi-Fi Direct Sheet 4 of 9 

Short description:  

Design a communications protocol between two devices 

for the Wi-Fi Direct connectivity  

 

Planned start date: 29/02/2016 

Planned end date: 20/05/2016 

Start event: Test app developing 

End event: Project end 

Internal task T1: 

Research on papers and projects that have 

already used this connectivity 

Internal task T2:  

Design communications protocol 

Internal task T3: 

Testing 

Internal task T4: 

Chat implementation 

Project: Radius Responsible: Nèstor WP ref: 5 

Major constituent: Kalman Filter Sheet 5 of 9 

Short description:  

Implement the Kalman Filter (signal processing) to 

improve the computed estimations. 

Planned start date: 26/03/2016 

Planned end date: 09/05/2016 

Start event: - 

End event: - 

Internal task T1: 

Research on papers and projects that have 

already used this filter for other applications 

Internal task T2: 

Simulation 

Internal task T3: 

Design and developing 

Internal task T4: 

Testing 
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Short description:  

Estimate the relative direction between two devices using 

different approaches. 

Planned start date: 05/04/2016 

Planned end date: 24/05/2016 

Start event: Distance estimation 

End event: - 

Internal task T1: 

Research 

Internal task T2: 

Develop several methods 

Internal task T3: 

Testing 

 

Project: Radius Responsible: Guillermo WP ref: 8 

Major constituent: Bluetooth Sheet 8 of 9 

Short description: 

Design a communications protocol between two devices 

using Bluetooth. The objective is to get RSSI values with a 

higher rate to get a better average and thus, a better 

distance estimation. 

 

Planned start date: 10/05/2016 

Planned end date: 13/06/2016 

Start event: Project Critical 

Review delivery 

End event: Project end 

Internal task T1: 

Research on papers and projects that have 

already used this connectivity 

Internal task T2: 

Design communications protocol 

Internal task T3: 

Testing 

 

Project: Radius Responsible: Both WP ref: 9 

Major constituent: Develop final app Sheet 9 of 9 

Short description: 

Final app development block: it includes all previous 

calculations 

 

Planned start date: 10/05/2016 

Planned end date: 13/06/2016 

Start event: - 

End event: Project end 

Internal task T1: 

Interface design 

Internal task T2: 

Code writing 

Internal task T3: 

Testing 

 

WP# Task# Short title Milestone / deliverable Date (week) 

3  4  Test Android App  Basic sensor reading Android app  26/02/2016 

4  2  Wi-Fi Direct protocol Wi-Fi Direct protocol design  29/04/2016 

5  2  Filter design  Kalman Filter implementation  29/04/2016 

6 1 RSSI distance RSSI distance estimation 05/04/2016 

- - CDR Critical design review 09/05/2016 

7 -  Direction  Direction estimation  16/05/2016 

4 4 Chat Wi-Fi-Direct chat implementation 20/05/2016 

6 3 Sound distance Sound distance estimation 03/06/2016 

8  2  Android App  Final Android app  13/06/2016 

- - FR Final report 27/06/2016 
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1.5. Incidences 

The most remarkable incidence during the development of the project has been the 

impossibility of achieving a high rate of received signal strength indicator (RSSI) 

measurements. With this high rate, it would be possible to consider the average of some 

samples instead of a single one before processing it to obtain a distance estimation; 

consequently, the RSSI measurement’s error would diminish. However, the best rate achieved 

is about one measurement per second; thus, the use of averaging would reduce the dynamism 

of the application. 

Without this RSSI averaging, the distance estimations are really inaccurate, so the initial idea 

of exactly locating a remote device turns into approximated estimations that allow the 

smartphone user to find the remote device by updating the estimations while walking. 

Regarding the user movement monitoring, one of the methods initially proposed also had to 

be discarded. We thought that by integrating twice the accelerometer values of the 3-axis 

accelerometer embedded in smartphones, we could obtain a good monitoring of the user 

movement. However, doing some research, we soon realised that this would accumulate too 

much measurement error and would become unfeasible in large distances. Therefore, we 

opted for a pedestrian dead reckoning based on algorithms for both step detection and step 

length estimation, as well as some orientation methods. 
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2. State of  the art of  the technology used or applied in this 

thesis 

Currently, the problem of the smartphone’s relative distance or location is not too well 

resolved. It is true that there are plenty of mobile applications that try to fix the position of a 

remote smartphone from your own device but they either lack precision or just do not work 

in many challenging situations. One of the most famous “Friend locator application” is Find 

My Friends, which is only useful for situations where you and your friend have a good GPS 

signal. Likewise, in the current market, we can find other similar applications that also have 

the GPS availability and precision limitations already mentioned. 

On the other hand, there are a few applications ensuring that they work without GPS or 

Internet like Friends Tracker. The truth is that this app in particular requires SMS coverage and 

cellular network accessibility (e.g., travelling abroad without roaming would hinder this 

option), so it also has availability restrictions. Moreover, it is not able to reach a better 

precision than GPS and its interface is both unpleasant and difficult to handle. 

In the application that concerns this thesis, a true GPS-less phone locator that works in 

challenging situations within a range of 250 meters is developed. 
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3. Pedestrian Dead Reckoning 

In the last few decades, the human movement monitoring has been a popular topic of 

research. A priori, there are several methods to achieve this tracking but not all of them work 

equally. For example, the GPS tracking could be useful in some outdoor scenarios but never 

in indoor ones such as in shopping malls or office buildings. It would neither work in some 

urban environments, e.g., among buildings with very high altitudes blocking line-of-sight links 

to GPS satellites. In these scenarios, the multipath propagation would severely affect the 

position estimations, making it impossible to reach a great precision in short distances. 

However, there are other technologies that allow both an outdoor and indoor tracking that 

are based on sensors measurements from the device itself. 

The 3-axis accelerometers embedded in current mobile devices could allow for a user 

positioning monitoring based on a double integration of the accelerometer readings. 

Nevertheless, the smartphones’ accelerometers are not as accurate as needed in this double 

integration method, so the measurement errors would be too difficult to handle. 

On the other hand, although it is only useful for a user that keeps walking, the pedestrian 

dead reckoning method (PDR) is the best way to track the user walking movement, which is 

the scenario that concerns this thesis. This method does not need such a measurement 

precision as the previously mentioned one and works properly in most environments. 

In this chapter, the methodologies that involve the PDR method are presented. 

3.1. Fundamentals 

The PDR is based on three particular methods: step detection, step size estimation and 

heading calculation. The combination of these three methods will allow the user to track his 

movement in real time.  

The relative position of the user    is updated every time a new step is detected. When this 

happens, the application estimates a step size    for this particular     step, and looks for the 

current device heading   . After this, it simply applies  

    
  

  
   

    

    
      

     

     
  (3.1) 

in order to obtain the new relative position, taking into account that the heading is always 

relative to magnetic North and the positive   and   axes point to East and North respectively. 

To acquire a good performance, the user will have to hold his phone pointing towards his 

direction of displacement. 

3.2. Step detection 

3.2.1. Accelerometer 

3.2.1.1. Reading accelerometer values 

This project is made in a smartphone context; specifically, in an Android environment. The 

software used is Android Studio, which is the official integrated development environment 
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(IDE) for Android app development, based on IntelliJ IDEA. In this context, it is not 

difficult to obtain sensor readings from the embedded hardware of a smartphone. 

First of all, it is necessary to get an instance of the SensorManager Java class, by calling 

Context.getSystemService() with the argument SENSOR_SERVICE. After that, a 

SensorEventListener for the desired sensor and at the desired frequency rate has to be registered. 

Then, whenever new sensor data is available, the program calls the method onSensorChanged 

for the specific SensorEvent2. Finally, overriding this method, the sensor values can be obtained. 

In the case of the accelerometer, three values are obtained for each SensorEvent instance, 

which belong to three different axes relative to the smartphone body’s coordinates shown in 

Figure 1.  Moreover, the Android API can also directly provide a linear acceleration, that is, a 

software-based sensor that provides the acceleration along each device axis excluding gravity. 

3.2.1.2. Global coordinate system acceleration 

The accelerometer readings in the device’s coordinate system, however, are not useful enough 

for the step detection method because they depend on how the user carries the device. In 

order to get a robust method that works in every situation, a global coordinate system (GCS) 

acceleration must be achieved. This means that, whatever the device’s inclination, the   axis 

will always be pointing towards the sky and perpendicular to the ground, while   and   axes 

point to East and North respectively.  

These GCS acceleration measurements cannot be obtained directly from any of the Android 

sensors, so the methodology proposed includes the acquisition of a rotation matrix   that 

represents the rotation of the device with respect to the GCS. One of the properties of this 

specific matrix is that its inverse allows the measurements for a coordinate system conversion 

from the device coordinate system to the GCS, following the equations (3.2) and (3.3): 

 
  

  

  

     
 
 
 
  (3.2) 

 
                                                
2 SensorEvent is a Java class that represents a sensor event and holds information about it 

Figure 1. Coordinate system (relative to a device) that's used by the Android Sensor API [1]. 
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    (3.3) 

where  
  

  

  

  is a vector of some measures in local coordinate system, and  
 
 
 
  the same in GCS.  

The SensorManager class provides a method called getRotationMatrix that computes the rotation 

matrix, as well as an inclination matrix, based on accelerometer and magnetometer data. Thus, 

after the acquisition of both the accelerometer and magnetometer sensor measurements, the 

rotation matrix will be obtained by calling the getRotationMatrix method with the specified 

parameters.  

After that, the methods from the Matrix Java class will be used to obtain the inverse of the 

rotation matrix, as well as to multiply this matrix by the desired vector in order to perform 

the coordinates’ conversion, as shown in equation (3.3). The linear acceleration vector will be 

directly chosen in order to perform the conversion. This yields to three axis acceleration 

measurements relative to the Earth and without the influence of gravity. In this case, the new 

  axis values tracking will be enough to detect the user steps as will be explained in the next 

section. 

3.2.2. Peak detection 

3.2.2.1. Low-pass filtering 

When a person walks, the impact of the foot with the ground causes a certain variance of the 

device’s acceleration. In this way, the acceleration measurements are characterized by the 

reach of high and low peaks on each step. However, the values obtained from the embedded 

accelerometer of a smartphone are very noisy and this causes unexpected peaks. 

In order to reduce the noisy values obtained, a low-pass filtering is applied. The filter consists 

on a simply sampling average that smooths the noisy acceleration measurements. This allows 

an easier step detection based on high and low peak detection. The equation (3.4) represents 

the low-pass filtering, where    represents the noisy measurements, and    the average-

filtered output. 

   
 

 
   

 

   

 (3.4) 

3.2.2.2. Local maximums and minimums algorithm 

Now, a method for peak detection is required. It is very easy to find an absolute maximum or 

minimum given an array of values, but it is not so easy to find local maximums and 

minimums. The algorithm proposed accomplishes this objective in real-time, i.e. as the sensor 

values arrive, and is explained below, as well as showed in the appendices of this document. 

The algorithm is divided regarding the search of a maximum or a minimum. After finding one 

of them, the algorithm keeps searching the other. Starting with a maximum searching, when a 
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sensor measurement has been found, the algorithm compares if the actual value is higher than 

the highest value found. In this case the maximum value is updated, as well as its index, i.e. its 

number of sample. The process of the maximum updating continues until the current value is 

lower than the maximum found minus a certain threshold. In this precise instant, the last 

maximum obtained is considered as one local maximum, i.e. a high peak has been detected. 

Then, a minimum searching process begins in an analogous way. However, before that 

happens, it resets the value of the minimum value to the current value.  

In this case, the algorithm considers a minimum value as one of the local minimums when 

the current value is higher than the minimum value found plus the threshold mentioned 

before. After that, it resets the maximum value to the current value. 

The algorithm will keep working while the sensor values keep arriving and it will consider that 

a step has been done when a pair of one local maximum and minimum has been found. 

3.3. Step size estimation 

3.3.1. Static method 

Some PDR methods use a static step size for the updating of the position in each step. In this 

case, the constant   that represents the size is set experimentally, so it is independent of the 

measures obtained while walking. In a simple way, this value can be determined equally for 

every user (3.5): 

     (3.5) 

In a more sophisticated way, it can change depending on the user’s height (3.6): 

               (3.6) 

For both methods, if the person changes its velocity during his walking, the step size remains 

constant. Therefore, the static methods are not accurate enough. 

3.3.2. Dynamic method 

A dynamic step length method tries to avoid this situation. This means that the current step 

length will be estimated according to the acceleration measurements represented by   in 

equation (3.7): 

        (3.7) 

There are not perfect mathematic formulas that determine the step length of a person 

according to the acceleration measurements obtained from a device that he carries. However, 

there are good approximations, although they also depend on experimental constants. 

Several papers have proposed different dynamic methods in order to estimate the step length 

of a person as accurately as possible. The model proposed by [2] and validated by [3] is used 

in this project. In this way, the step size will be determined through the following equation:  
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 (3.8) 

where   is an experimental constant set to 0.52, and   
    and   

    are the maximum and 

minimum acceleration values, respectively, that represent the     step.  

3.4. Device orientation calculation 

A priori, there are two methods to estimate the orientation and inclination of a smartphone. 

Through the Android API, we can directly obtain the orientation from the accelerometer and 

magnetometer sensors. Another way is to make use of the gyroscope sensor measurements, 

which indicate the velocity of rotation of the device in three local axes. 

However, the best way is to make a combination of these two methods in order to get 

information with less uncertainty than if the sources had been used individually. This concept 

is called Sensor Fusion. 

3.4.1. Accelerometer and magnetometer 

The straightest way to obtain the orientation of an Android smartphone is by means of the 

getOrientation method from the SensorManager class. The parameter needed to use the 

getOrientation method is the rotation matrix obtained with the getRotationMatrix method, with 

the accelerometer and magnetometer sensor values, as explained in the section 3.2.1.2 of this 

report. 

The result is a three-dimensional vector containing the values of azimuth, pitch and roll in 

GCS. All three angles are positive in the counter-clockwise direction and are shown in Figure 

2, as well as described below: 

- Azimuth: rotation around the    axis, i.e. the opposite direction of   axis. 

- Pitch: rotation around the    axis, i.e. the opposite direction of   axis. 

- Roll: rotation around the y axis. 

Figure 2. Smartphone's azimuth, pitch and roll angles [4]. 
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3.4.2. Gyroscope values integration 

Actually, it is impossible to obtain an orientation in GCS with only the gyroscope sensor. 

What can be measured by this sensor are changes of orientation, i.e. a relative orientation. 

The gyroscope sensor’s data do not represent angles of rotation, but they represent the 

rotation speed of the device in the three device’s coordinates. However, integrating the data 

acquired, a rotation change can be obtained, although the accomplishment of this method is 

not trivial in Android platform. The method followed in this work is based on the Android 

Developers page proposed code in [5], and will be explained in the following lines: 

In order to perform the discrete integral, every angular speed acquired from the gyroscope 

has to be multiplied by its corresponding delta time, obtaining a delta rotation. Both the 

angular speed and the delta time are obtained from the SensorEvent class information. The 

former is directly obtained from the sensor’s data of every gyroscope SensorEvent; however, 

the latter cannot be directly obtained.  

Firstly, the event time-stamp, i.e. the time when a specific event takes place, is obtained. In 

this way, the program stores the timestamp of each gyroscope event and then, by subtracting 

the last gyroscope event timestamp, the delta time for each event is acquired. Since the 

timestamps are stored in nanoseconds, a conversion from nanoseconds to seconds must be 

done before proceeding. 

Now, it is time to express the rotation change; however, there are many ways to do that, 

although not all of them work properly in every situation. 

One of the most famous methods is the Euler angles, which represent a rotation as a 

sequence of three elemental rotations starting from a known orientation. These elemental 

rotations are the rotations in three different axes, typically denoted as yaw, pitch and roll. 

However, the pitch, i.e. the rotation around the   axis, cannot go up to 90 degrees in this 

method because, in this situation, the definitions of yaw and roll become ambiguous. 

Therefore, if an application without any constraint is needed, it may be necessary to change 

the Euler angles definitions on the fly, which becomes too complex. Still, if you constraint 

your application, Euler angles work fine. 

Another way to express the rotation angles is within a rotation matrix. This matrix contains 

nine numbers that fully represent the rotation of a three-dimensional object.  

Finally, there is other method based on quaternion vectors. This four-element vector can 

represent every rotation of an object in a three-dimensional Euclidean space with only four 

numbers and without any constraints. 
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Figure 3. Quaternion rotation representation [6]. 

In equation (3.9), the definition of a quaternion that represents a rotation is shown, where  , 

  and   represent the normalized axes where the rotation has taken place, and   represents 

the rotation magnitude, as shown in Figure 3.  

The method proposed in this thesis makes use of a quaternion vector in order to represent 

every delta rotation, by then transforming it into a rotation matrix, applying the rotation to 

the current orientation, and finally converting the new orientation into azimuth, pitch and roll 

angles. All this is further explained in the following lines: 

First of all, the speed magnitude     is calculated within the equation (3.10) 

         
        

       
  (3.10) 

where     ,        and       are the speed rotation values directly obtained from the 

gyroscope sensor’s data. 

Now, the magnitude of the rotation angle   can be obtained following the equation (3.11) 

         (3.11) 

where    is the delta time mentioned before, i.e. the time passed between two gyroscope 

event timestamps. 

The  ,   and   parameters from equation (3.9) can be obtained by normalizing the gyroscope 

sensor’s data, i.e.: 

 
 
 
 
  

 

   
 

    

      

     

  (3.12) 

Now, both the rotation normalized axes and the rotation magnitude are obtained, so the 

quaternion is already computable.  Thus, a rotation matrix can be calculated from it through 

the getRotationMatrixFromVector method from the SensorManager class, which can transform a 

rotation vector, i.e. the quaternion obtained, into a rotation matrix of nine elements. This 

rotation matrix stores the delta rotation performed in each gyroscope event so it will be called 

gyroDeltaMatrix (   in equation (3.13)).  
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The multiplication of two rotation matrices yields another rotation matrix whose application 

to a point effects the same rotation as the sequential application of the two original rotation 

matrices [7]. So, in order to obtain a rotation matrix that represents the current device 

orientation, the gyroDeltaMatrix has to be multiplied by the rotation matrix that represents the 

last orientation (or rotation). This last matrix will be called gyroMatrix (  in equation (3.13)).  

                 (3.13) 

In order to do that, a MatrixMultiplication method is created and the operation order shown in 

(3.13) must be followed. However, the first time that we access to the gyroscope sensor event 

the gyroMatrix does not exist yet, thus, it should be initialized. For this reason, the rotation 

matrix obtained from the accelerometer and magnetometer sensors is used as the initial 

gyroMatrix   . 

Finally, after all the calculations have been done, the gyroMatrix has to be transformed into 

azimuth, pitch and roll angles, and this is made by the getOrientation method from the Android 

API, as it is done for the accelerometer and magnetometer orientation; however, in this case, 

the parameter passed to the method will be the gyroMatrix. 

3.4.3. Sensor Fusion 

3.4.3.1. Qualitative explanation 

Both accelerometer/magnetometer and gyroscope orientation are reached. In order to get 

benefit from both methods, a sensor fusion method has to be performed. 

The downside of the accelerometer/magnetometer orientation is that their data are very noisy, 

especially the output from the magnetic field sensor. Moreover, if there is an abrupt change in 

the device orientation, some spikes appear in the data captured by these sensors. The 

application of a low-pass filtering would reduce the noise and the spikes but, at the same time, 

would decrease the dynamic response of the output, i.e. the fast changes in orientation would 

be slowly captured by the output of the filter. 

On the other hand, the gyroscope sensor is far more accurate and has good dynamic 

response; i.e. very short response time. However, its coordinate system reference is always 

local, which means that it needs an external source to situate the obtained gyroscope’s 

orientation in the world’s coordinate system. 

Another drawback of this method is a popular phenomenon called drift. The origin of this is 

the integration performed to obtain the computed rotations, which leads the integrated 

gyroscope data to accumulate white noise during the reading. Consequently, the gyroscope-

based orientation begins to drift, i.e. to move away from the correct value, although the 

device is not moving. 

However, the accelerometer/magnetometer orientation has a stable output because no 

integration is performed, so it does not suffer any drift. Therefore, the output from the 

sensor fusion needed would be mostly gyroscope data but with the 

accelerometer/magnetometer usage to correct drift, as well as to set up a GCS for the 

orientation. 
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Figure 4 represents the sensor data fusion that will be followed in this thesis, via a 

complementary filter, i.e. a filter that manages both high-pass and low-pass filters 

simultaneously. 

3.4.3.2. Simplified implementation 

This Sensor Fusion method is implemented in the following way: 

Firstly, a summary of the section 3.4.2 is represented in the following simplified Java code 

line: 

gyroOrient = gyroOrient + dT * gyroRotation; 

where gyroOrient is the orientation calculated from the gyroscope sensor, 
gyroRotation the speed vector acquired from the gyroscope, and dT the time elapsed 

between the last and the current gyroscope event. 

The low-pass filtering of the accelerometer/magnetometer orientation is represented in the 

following Java code line: 

accMagOrient = k * accMagOrient + (1 - k) * newAccMagOrient; 

where accMagOrient is the orientation estimation calculated from the accelerometer and 

magnetometer sensors, newAccMagOrient the new orientation measure from these same 

sensors, and k a coefficient that controls how slowly the new orientation measures are 

introduced in the current orientation estimation.  

The term k * accMagOrient can be seen as the high-pass component of the filter, 

although in the above code this definition does not make sense. However, replacing this term 

by a weighted output from the gyroscope orientation leads to high-pass filtering the 

gyroscope data. 

Therefore, the code line that will represent the complementary filter and that will be executed 

in a loop is: 

orientation = k * gyroOrient + (1 – k) * newAccMagOrient; 

Accelerometer 

Gyroscope 

Magnetometer 

ʃ 
 

Orientation 

Orientation from 

Android API 

Figure 4. Block diagram of the Sensor Fusion method via complementary Filter 
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In order to complete the Sensor Fusion proposed, the gyroscope orientation has to be 

overwritten by the output of the complementary filter every time the above line is executed. 

This leads to correct the gyroscope drift mentioned before.  

In this way, the following two simplified code lines represents the full proposed Sensor 

Fusion method: 

orientation = k * gyroOrient + (1 – k) * newAccMagOrient; 

gyroOrient = orientation; 

The constant k defines the time constant   of the filter in the following way: 

  
    

   
 (3.14) 

where    is the operation time interval; i.e. the time elapsed between two executions of the 

above code lines. 

  sets the time from which the low-pass component signal will be considered. Likewise, only 

the high-pass component signals shorter than this time constant will affect the output. 

Finally, the constant   can be set according to the desired constant  , as shown in equation 

(3.15): 

  
 

    
 (3.15) 

3.4.3.3. Gyroscope overwriting 

The code lines about the complementary filter written above work well with the correct 

syntax in Java platform and do not require further explanation, except for one of them; the 

one used to overwrite the gyroscope orientation from the output of the complementary filter. 

As it is explained in section 3.4.2, the gyroscope delta rotations are performed by rotation 

matrices multiplication, so the orientation vector from the sensor fusion output has to be 

converted into a rotation matrix. This can be made following the definitions of coordinate 

rotations 3  from [7]. Regarding every axis separately, the three coordinate rotations are 

represented in the following way: 

    
   
         
          

  

    
         

   
           

  

    
         

           
   

  

(3.16) 

                                                
3 A coordinate rotation is a rotation about a single coordinate axis 
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where  ,   and   are pitch, roll and yaw (or azimuth) angles respectively. 

A single rotation matrix that can represent three rotations in the three Euclidean angles can 

be obtained by multiplying the above three matrices in the correct order as shown in the 

following equation: 

         (3.17) 

This yields to the general rotation matrix that will finally represent the orientation output: 

   

                                                  
                                                    

                      
  (3.18) 

3.5. Position updating 

In order to update the new position some issues have to be considered. 

In the Java code three timerTasks4 are created so as to perform the PDR method. In this case, 

the three of them will be executed every 50 ms.  

The first one is in charge of calculating the acceleration in GCS in the three axes, and will be 

firstly executed one second after the creation of the application. 

The second one is in charge of performing the sensor fusion method between the 

accelerometer/magnetometer-based and gyroscope-based orientation, obtaining the fused 

orientation. It is executed at the same time than the previous one. 

Finally, the last one performs the position updating by means of both the GCS acceleration 

and the fused orientation obtained from the other two timers. In this case, this timer will be 

executed 40 ms after the others for the first time, in order to leave time for the previous 

calculations. 

The third timer will also be the one in charge of detecting the user steps from the 

accelerometer measurements, and only after a step is detected the current fused orientation 

will be used in the position updating, following the equation (3.1). 

This timer also creates a graphic interface where the user will be able to visualize his 

pedestrian movements in real-time. The interface is based on the androidplot library and will 

consist on a 2-D dynamic plot. As new positions are calculated, the plot will update its 

appearance, showing the current position as well as the previous ones. A blue dot will 

represent the calculated positions, and a yellow line will join these dots. Since this work is 

based on relative positions, the first position will be considered as the [0, 0] point, which will 

be in the centre of the plot, and the others will be relative to that. 

Finally, the   and   axes of the plot will always be in meters and will always represent the 

magnetic North and East, respectively. 

 

  

                                                
4 The timerTask is a Java class that represents a task to run at a specified time. 
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4. Relative position estimation  

The main purpose of this project –and specifically of the methods explained in this section– 

is to determine the relative position between two smartphone devices, considering that one is 

moving (henceforth A) while the other one remains static (henceforth B).  

In order to design a successful method, two different approaches are previously required: A’s 

movement tracking and the relative distance measurement between A and B. Integrating 

these two concepts, i.e. assigning different distances measurements to different positions of A, 

a relative position between the two devices can be estimated. 

The theory claims that with three distances measured from three different positions that are 

not in the same straight line, a relative position can be directly obtained. This process is called 

trilateration, and makes use of the geometry of circles and triangles. In practice, however, this 

is not so easy, due to all the possible measurement errors. 

The user’s movement tracking, which is performed by means of PDR, allows the estimation 

of your current position with respect to your previous ones quite accurately, at least for short 

user displacements. However, the distances measurements will be significantly less accurate.  

The distance estimation method will be based on radio waves’ RSSI measurements from a 

Wi-Fi Direct communication between two devices. It is true that RSSI-based estimations do 

not allow for a high estimation accuracy, but they do allow for an easy approximation of the 

distance. Other methods like the ToF of radio waves have been discarded due to its 

impossible implementation in the software environment that concerns this project, which is 

an Android smartphone app. Nevertheless, all the Wi-Fi Direct issues and methodology are 

not explained in this report, where it is directly considered that RSSI-based distances are 

available. 

As it is said, RSSI does not enable high distance precision, since the radio waves can be 

disturbed by many factors. This perturbation could cause that the power received is lower 

than the expected from a certain distance, making it impossible for the receiver to obtain a 

good distance measurement. Therefore, the initial idea of exactly determining the relative 

position of a remote device resolves into a simpler approach: to dynamically calculate and 

update the relative direction and distance estimations while walking towards the current 

estimated direction, in order to finally meet the remote user. 

4.1. Heuristic method 

In this method, the purpose is to dynamically update a relative direction which makes A and 

B get closer, if A follows this direction. In order to accomplish that, a weighting system for 

different directions is implemented; however, before proceeding, a coordinate system has to 

be defined for both the self-position of A and the estimated position of B. This consists of a 

relative 2-D plane in which the x and y axes point to East and North, respectively. In the first 

steps, the origin of this coordinate system is set to the start position of A; however, this 

reference position might be actualized during the walking, as will be explained later. Finally, 

polar coordinates will be considered in order to situate in the plane all the relative positions. 
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4.1.1. Weighting system 

During the walking of A, a weight is assigned for each direction walked relative to the 

reference position with an associated distance measurement, following the equation (4.1) 

   
   

      
    

  
   (4.1) 

where   
    is the distance between A and B measured in the reference position,   

    the 

distance between A and B measured in the     step position and    the current rho 

coordinate of A’s position. 

If the direction walked was the same direction of B and the measured distance was correct, 

the weight would be 1 and the user would know that he is walking in the correct direction. If 

the direction walked was the opposite direction of B, i.e.           , the weight would 

be -1 and the user would know that he has to walk exactly towards the opposite direction. 

For other weights, the closer to 1 in absolute value they are, the closer the real relative 

direction and the current angular coordinate of A will be –considering for negative weights 

the current direction plus 180  . Therefore, this method allows for determining the goodness 

of different directions. 

As previously mentioned, the relative distance estimations are very noisy, therefore it is not 

attempted to estimate the exact relative direction of the remote device basing on the weights. 

However, a heuristic method implementation based on this direction weighting system, as 

well as some filtering, will be done in order to improve the overall process. 

4.1.2. Kalman Filter 

Obviously, this method is not called heuristic for the Kalman Filter implementation. 

However, this filter helps in the final performance of the method. 

This filter is a set of equations that operate recursively in order to minimize the mean square 

error of an estimation. It is mainly used in navigation systems but has a wide variety of use 

cases.  In this work, a simplified discrete implementation of it is used, since it will be used as 

an estimator of a random constant instead of a stochastic process. This is because A does not 

have a priori knowledge of the movement of B, so it will be considered that B remains static. 

The Kalman filter tries to estimate the state      of a process governed by the linear 

stochastic difference equation represented in (4.2) with a measurement      represented in 

(4.3). 

                          (4.2) 

           (4.3) 

The       matrix   relates the state at the previous time step to the state at the current step. 

The       matrix   relates the optional control input      to the state  . The       matrix 

  relates the state to the measurement   . Finally, the random variables    and   , which are 

independent of each other, represent the process and measurement noise respectively, which 

is assumed to be white and with normal probability distribution. 
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Now,    
     is defined as the state estimation at step   without the knowledge of    

   
                       

(4.4) 

and         as the state estimation at step   given the measurement   . Therefore, a priori 

and a posteriori estimate errors can be defined as 

  
        

  , and 

          , 

respectively. 

Deriving the equations of the Kalman Filter, the equation that represents the a posteriori state 

estimate     is obtained. It consists of a linear combination of the a priori estimate    
  and a 

weighted difference between the actual measurement     and a measurement prediction     
  

as shown in the equation (4.5). 

       
           

   (4.5) 

The       matrix   in (4.5) is calculated to be the gain that minimizes the a posteriori error 

covariance 

         
    (4.6) 

Likewise, the a priori estimate error covariance is 

  
      

   
     (4.7) 

In order to calculate the optimal  , the expression from (4.5) has to be substituted into the 

above definition of   , to then perform (4.7), take the derivative of the trace of the result with 

respect to  , set the result equal to zero and finally solve for  . One of the resulting forms of 

this   is given by 

   
  

   

   
     

 
(4.8) 

where R is the measurement error covariance. 

The   computed in equation (4.8) can be understood as: the lower the measurement error 

covariance   is, the more the measurement    is trusted.  

At this point, the a priori estimate error covariance has to be redefined in equation (4.9), since 

it is needed in order to calculate    in equation (4.8), and cannot be obtained from equation 

(4.7) because the errors are unknown. 

  
        

    (4.9) 

  from equation (4.9) corresponds to the process noise covariance and   is the same than in 

equation (4.2). 
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Note that the a priori error covariance   
  in the     step depends on the a posteriori error 

covariance from the         step. Therefore, the a posteriori error covariance also has to be 

redefined: 

            
  (4.10) 

Now, all the required equations have been exposed and they can be divided into two groups: 

time update equations (prediction) and measurement update equations (correction). The 

former are in charge of projecting forward –in time– the current state and error covariance 

estimates in order to obtain the a priori estimates for the next time step. The latter are 

responsible for incorporating the new measurement into the a priori estimate in order to 

obtain a better estimation. Before proceeding in stating the final equations, the specific case 

of this work has to be considered. 

For this case, the state   is the relative direction of the device B and the measurement   is an 

estimated direction. Since the state is considered as static,   will be the identity matrix. 

Moreover, there will not be any control input and   will also equal the identity matrix 

because the measurements are directly from the state. Therefore, the final equations that will 

be implemented in the Android context are the following ones: 

Time update equations Measurement update equations 

State projection 

   
       

  

Kalman Gain computation 

     
    

       

Error covariance projection 

  
         

Estimation updating (with measurement   ) 

       
          

   

 Error covariance updating 

           
 

 

 

Table 1. Discrete Kalman Filter equations 

Following these equations, the Kalman Filter allows the improving of the estimation in real 

time and without too much computational cost, since it satisfies the Markov property, i.e. the 

calculations of the future state are made regarding only the current state and data and not all 

the previous accumulated ones.  

The implemented Java equations of the filter, as well as its initialization and a MATLAB 

simulation of it, are shown in the appendices of this document. 

4.1.3. Development 

4.1.3.1. Direction 

As said before, this method will follow some heuristic implementations. The first one refers 

to how the direction estimations of A are considered as measurements for the Kalman Filter, 

even though, actually, they are not real direction estimations. 
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Firstly, the directions that have an assigned weight in absolute value lower than 0.5 are 

discarded. The other directions are considered as direction measurements; however, 

depending on their value, they can be considered as more than one measurement in order to 

provide a specific estimation with more or less credibility than others, since it is not the same 

a direction weighted with 0.5 than a direction weighted with 1. 

Theoretically, the weight cannot be higher than one; however, in practice it certainly can, 

because of all the possible measurement errors. This does not mean that the directions that 

correspond to a weight higher than one are discarded; quite the contrary: the higher it is, the 

more credible this direction will be. In this way, five different stages are considered according 

to the weight value: from 0.5 to 0.8, from 0.8 to 1.5, from 1.5 to 4, from 4 to 9 and from 9 to 

15. For these five stages the measurement will be considered once, twice, thrice, four times 

and five times, respectively. 

For the negative value weights, the method will perform in an analogous way, considering in 

this case the current opposite weighted direction instead of directly the current one.  

It is considered a weight limit of 15 both for positive and negative values. For positive values, 

this high weight would probably mean that the distance measured in the reference position 

  
    was made in a zone with bad coverage while the measurement in the current position is 

in a good coverage zone. An example scenario would be two users that had had a wall or a 

building between them in the reference position measurement, and now they have good 

visibility. Therefore, they would have passed from a Non-line-of-sight (NLOS) environment 

to a Line-of-sight (LOS) one. This yields to update the reference position as the current 

position of A. 

On the other hand, weights lower than -15 would probably mean that the users have passed 

from a LOS to NLOS environment. In this case, however, the reference position is not 

updated and the current direction is simply discarded.  

In order to improve the precision of the direction estimations during the walking, the 

reference position will be also updated when the estimated distance has become one fifth of 

the estimated distance in the reference position. 

In any case in which the reference position is updated, the Kalman Filter will be reinitialized. 

4.1.3.2. Position 

Once direction estimation is obtained, an approximate relative position can be calculated. The 

most straightforward way is to consider the distance estimation from the reference position, 

since the relative direction is always in regard to this position. In this way the remote position 

of B   
  would be 

  
   

  
 

  
    

  
 

  
     

            

           (4.11) 

where   
  and   

  are the Cartesian coordinates of B’s position in the     step,   
  and   

  the 

Cartesian coordinates of A’s reference position,   
    the distance measurement between the 

two devices in the reference position, and      the relative direction between the two 

devices –regarding the reference position. 
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However, as A and B get closer the absolute error of the distance measurement diminishes. 

Therefore, it would be better to consider the closer distance measurements rather than the 

reference position one. In order to accomplish that, a method based on Figure 5 

representation is performed. 

 

Figure 5. Improvement of position estimation representation 

In Figure 5,    represents the reference position of A,    the position of A in the     step, 

   the distance measurement between A and B in the reference position,    the distance 

measurement between A and B in the     step,    the estimated direction in the     step, 

    the estimated position of B in the     step following the estimation represented in 

equation (4.11), and     and     two estimated positions of B in the     step following the 

method explained right after. 

In order to obtain     and     estimations, an intersection between a circumference and a 

straight line has to be performed as shown in Figure 5. The circumference is represented as 

     
  

 
      

  
 

      
(4.12) 

where   
  and   

  represent the position of A in the     step, and the straight line as 

            (4.13) 

Therefore, the   values that represent the two intersection points are defined by 

     
  

 
            

  
 

      
(4.14) 

Solving for   and substituting in (4.13) the two intersection points are acquired. The furthest 

point will be the chosen one, since it is considered that the user A has not surpassed B yet.  

Therefore, this point will be the one representing the remote device in the 2-D dynamic plot 

detailed in the section 3.5 of this report. 
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5. Acoustic distance 

In this section, a high-accuracy software-based acoustic ranging solution is presented. 

Typically, the ranging methods are achieved through measuring the ToF of acoustic or radio 

signals. In this case, the distance between two devices is the product of the ToF and the 

signal speed –speed of sound for acoustic signals and speed of light for radio signals. 

Obviously, it is easier to perform this method with acoustic signals, since their velocity is 

much lower than that of radio signals; however, at the same time, the range is smaller. In this 

thesis, the acoustic ranging is used to perform a high-accuracy distance estimation between 

two smartphone’s users when they are close enough to hear each other by emitting acoustic 

signals. Likewise, it can also be useful for other kind of use cases, as simply calculating the 

length of an object. 

The biggest problem of the ToF methods is the precision of these time measurements, which 

are often taken by timestamps’ recordings of local devices’ clocks at the moment the signal is 

emitted or received. In this case, there could be three uncertainty factors that would lead to 

measurement inaccuracies: the clock skew between the two devices involved in the process, 

the misalignment between the sender timestamp and the current acoustic emission, and the 

delay between the sound arriving and the current recognition of it at the receiver. 

The former can be solved with internet access, by considering the same remote clock. 

However, without internet coverage this would not be possible. The latter two uncertainties 

could be caused by several intrinsic factors and are impossible to be sufficiently minimized. 

Therefore, the timestamp-based approach is discarded. 

For this project, the method to achieve the acoustic ranging resides on sample counting 

instead of timestamps difference, as it is performed in [8].  

5.1. Sample counting method 

In this method, two devices emit an acoustic signal and each of them records both its own 

and the remote’s signals. With a good detection approach, both signals will be detected and 

the amount of recording samples between them will be easily calculated. Then, this can be 

transformed into time measurements, following the equation (5.1): 

  
     

  
 (5.1) 

where   is the time elapsed between the two signals recorded in a single device,    and    the 

samples in which the signals are detected, and    the sample frequency of the recording.  

If this equation is calculated in both devices, and the sounds emitted from each device do not 

interfere between them, i.e. they do not share space-time, the distance measurement between 

the two devices is calculated by the following equation: 

  
     

 
   (5.2) 
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where,    is the time calculated from (5.1) in the device that first sends the sound,    the time 

calculated in the other device, and   the speed of sound. Therefore, in order to calculate the 

distance in a device, calculations from the other device are needed; thus, a communication 

between them will be compulsory. This communication will be also based on the Wi-Fi 

Direct protocol but, as mentioned before, all these issues are not explained in this report. 

If the detection has been done properly, the distance measurement granularity is limited only 

to the sound sampling rate. In this way, the accuracy would be: 

  
 

  
   (5.3) 

where   is the maximum distance error,    the sampling frequency and   the speed of sound. 

With a    of 44100 Hz and considering a sound speed of 340 m/s, the maximum error is only 

about 8 mm. 

In order to perform this detection in an optimal way, a chirp signal is chosen, due to its wide 

spectrum and, hence, good detectability. Moreover, a Matched Filter is implemented at the 

receiver, as it will be explained later. 

5.2. Signal generation 

The Android API does not have any method to directly play a specific acoustic sound as, for 

example, a simple pure tone or a chirp signal. Therefore, the desired signal has to be firstly 

generated. 

As it is previously said, the chosen acoustic sound is a chirp signal, specifically a linear up-

chirp. This signal is characterised by an instantaneous frequency that increases linearly with 

time, following the equation (5.4): 

            (5.4) 

where    is the starting and lowest frequency, and   is the rate of frequency increase or chirp 

rate that can be defined as (5.5): 

  
     

 
 (5.5) 

where    is the final frequency and T the time taken to sweep from    to   . 

Once the chirp main characteristics are defined, it can be generated in a Java context. 

However, in this digital context the previous analogous definitions cannot be directly applied 

and the continuous time domain has to be transformed into a discrete one. In this way, the 

generated signals will have a finite number of samples.  

Firstly, an array of the desired number of samples has to be created. Then, the values for each 

sample are calculated as shown in equations (5.6) and (5.7): 

              
 

  
  (5.6) 
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Where    is the chirp signal value in the     sample,   the current sample,    the instant 

chirp frequency for each sample – defined in (5.7) – and    the sample rate. 

        
     

   
 (5.7) 

In equation (5.7),    and    follow the same definitions as in the equations (5.4) and (5.5), and 

  is the number of samples of the signal. 

The parameters selected for the chirp signal generation are: 

          

          

            

               

These parameters allow for a signal duration of 34 ms approximately. 

The selection of the initial and final chirp frequencies are made based on human listening 

capabilities, since it is preferable than the emitted sounds are practically inaudible. Moreover, 

the bigger the difference between them is, the more bandwidth the signal will have, and this 

will allow for an easier detection. 

On the other hand, the sample rate is set bearing in mind the Nyquist–Shannon sampling 

theorem. This theorem guarantees that if a signal contains no frequency higher than B hertz it 

can be sampled and then perfectly reconstructed –by means of interpolation–, whenever the 

sample rate is higher than 2B (5.8): 

      (5.8) 

Therefore,    has to be higher than 36 kHz, that is the highest frequency of the chosen chirp 

signal multiplied by two. However, the Android smartphones do not allow every sample rate, 

so the final parameter will be set to 44.1 kHz, which is allowed by them. 

Finally, the selection of  , i.e. the number of samples, is made following an agreement 

between the time of processing and the detectability of the signal, because the larger the 

signal is, the easier to be detected by a receiver it becomes, but at the same time, the longer 

the process of detecting will be. 

5.3. Audio playing 

In order to play a sound in Android, the AudioTrack class is used. As it is said in the Android 

developers’ reference page, this class allows streaming of Pulse Code Modulation5 (PCM) 
audio buffers to the audio sink for playback. This is achieved by the method write(byte[], 

int, int), which push the data to the AudioTrack object. Then, the play() method is only 

required in order to finally play the sound. 

                                                
5 Method to digitally represent sampled analog signals. 
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Before that, the AudioTrack object has to be initialized, and this will be made with the 

following class constructor: AudioTrack(int streamType, int sampleRateInHz, int 
channelConfig, int audioFormat, int bufferSizeInBytes, int mode). 

- The streamType selected is the default audio stream for music playback, i.e. 

AudioManager.STREAM_MUSIC. 

- The sampleRateInHz parameter is the sample rate defined in the previous section (5.2). 

- The channelConfig is AudioFormat.CHANNEL_OUT_MONO, since only one audio output 

channel is required. 

- The audioFormat parameter is AudioFormat.ENCODING_PCM_16BIT. This format will 

allow a 16-bit PCM encoding, which is the largest one available for the AudioTrack class. 

This encoding allows    , i.e.      , different levels for the digital representation of a 

signal. Specifically, the available values will be from -32768 to 32767.  

- The bufferSizeInBytes parameter is the number of samples that will be written to the 

AudioTrack object and subsequently played. Since the signal is generated as short (16 

bits) values, and the AudioTrack object will be written in bytes (8 bits), the length of the 

AudioTrack buffer will be the original number of samples multiplied by 2 –two bytes per 

sample. 

- The mode chosen is AudioTrack.MODE_STATIC, since it is the mode recommended 

when dealing with short sounds that fit in the memory and that need to be played with 

the smallest latency possible. 

Since the 16-bit PCM is the chosen encoding, the generated signal will be set as short6 type, as 

well as set with values from -32768 to 32767. However, in order to “push” the data into the 

AudioTrack object by the write(byte[], int, int) method, an array of bytes is required. 

Therefore, each short type sample will be converted into two byte7 type. This will be made by 

the following two code lines executed in a loop: 

byteValues[i++] = (byte) (shortValues & 0x00ff); 
byteValues[i++] = (byte) ((shortValues & 0xff00) >>> 8); 

where byteValues and shortValues are the arrays that store the byte and short values of 

the signal respectively. On the other hand, & is the bitwise AND operator8 and >>> the zero 

fill right shift operator 9 . In this way, the first line will copy the lowest 8 bits of the 

shortValues to the byteValues, while in the second line the 8 bits copied will be the 

highest ones of shortValues. This follows the little-endian format, which is the required for 

the data representation in the AudioTrack object. In this format, the least significant byte is 

stored at the first location and the most significant byte in the last one. 

Finally, the chirp signal will be played by executing the two following code lines: 

audioTrack.write(byteValues, 0, byteValues.length); 
audioTrack.play(); 

                                                
6 The short data type is a 16-bit signed two's complement integer. It has a minimum value of -32,768 and a 
maximum value of 32,767 (inclusive). 
7 The byte data type is an 8-bit signed two's complement integer. It has a minimum value of -128 and a 
maximum value of 127 (inclusive). 
8 This operator copies a bit to the result if it exists in both operands 
9 The left operands value is moved right by the number of bits specified by the right operand and shifted values 
are filled up with zeros. 
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5.4. Audio recording 

For the audio recording, an AudioRecord class object will be used. As it is said in the Android 

developers’ reference page, this class manages the audio resources for Java applications to 

record audio from the audio input hardware of the platform. In order to acquire the data 

from the AudioRecord object, the read(short[] audioData, int offsetInShorts, 

int sizeInShorts) method will be used.  

Before that, the AudioRecord object has to be initialized, and this will be made with the 

following class constructor: AudioRecord(int audioSource, int sampleRateInHz, 

int channelConfig, int audioFormat, int bufferSizeInBytes). 

- The audioSource selected is the microphone audio source 

MediaRecorder.AudioSource.MIC. 

- The sampleRateInHz parameter is the same than in the AudioTrack object initialization. 

- The channelConfig is the AudioFormat.CHANNEL_IN_MONO, since only one audio 

input channel is required. 

- The audioFormat is the same than in the AudioTrack object initialization. 

- The bufferSizeInBytes is the desired number of samples of the recording. 

After the AudioRecord object initialization is done, the following two code lines are executed 

in order to commence the recording: 

audioRecord.startRecording(); 

audioRecord.read(receivedByteValues, 0, receivedByteValues.length); 

where the receivedByteValues parameter will store the recorded signal in bytes following 

the 16-bit PCM modulation. 

Finally, in order to get an array of the same type as the one generated for the playing, the 

receivedByteValues will be transformed into a short data type array by means of the 

ByteBuffer class methods. 

5.5. Matched filter 

The acoustic range is the main drawback of the proposed acoustic distance method. For that 

reason, some filtering is done at the receiver in order to improve the detection process. 

Firstly, the block diagram of Figure 6, which represents a filter implementation, will be defined 

by equations (5.9) and (5.10), where      is the input of the filter,      the filter impulse 

response,       the output of the filter, and     ,      and      its respective frequency-

domain functions. 

 

 

 

                

 

    

 (5.9) 

               (5.10) 

y[n] h[n] x[n] 

Figure 6. Block diagram of a filter implementation 
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y[n] h[n] s[n] 

w[n] 

Now, the emitting and receiving process of the proposed acoustic method can be 

schematised as shown in Figure 7, where s[n] represents the emitted sound, i.e. the chirp signal, 

w[n] an Additive White Gaussian Noise (AWGN), h[n] the impulse response of the filter and 

y[n] the output signal of the filter: 

 

 

 

 

 

 

In the above block diagram, y[n] can be defined in the following way: 

                  (5.11) 

where       and       are the filtered signal and noise parts of the input of the filter, 

respectively. 

Now, the optimal impulse response for the filter is calculated in order to maximize the Signal 

to Noise Ratio (SNR) of the detected peak, which is defined in the following equation: 

  

 
 

         

 
 (5.12) 

where 
  

 
 is the peak SNR,        the received sample in which the sound arrives and   the 

noise power.  

Firstly,        and   will be expressed regarding the filter response in equations (5.13) and 

(5.14): 

                             
  

                                                                             
 

  
  (5.13) 

                 

                                                                                   
 

  
  (5.14) 

where     represents the inverse Fourier transform operator and     the expectation 

operator. Therefore, substituting (5.13) and (5.14) in (5.12): 

  

 
 

                   
 

  
 
 

                 
 

  

 (5.15) 

Figure 7. Block diagram of the acoustic distance estimation process 
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Now, the Cauchy–Schwarz inequality will be applied in order to find the maximum value of 
  

 
, 

as well as the value of      in order to obtain it. The inequality is represented in the 

following equation: 

                             (5.16) 

where         is the inner product. 

Moreover, ‘ ’ from equation (5.16) becomes ‘ ’ if  

        (5.17) 

so 

                                       (5.18) 

The Cauchy–Schwarz inequality can also be rewritten as: 

          
 

  

 

 

        
 

  

          
 

  

 (5.19) 

Now, defining   and     as 

               (5.20) 

   
          

       
 (5.21) 

and applying the Cauchy-Schwarz inequality  

  

 
 

         
 

  
 
 

                 
 

  

 

                                                             
        

 

  
         

 

  

                 
 

  

 

                                                            

                  
 

  
   

          

       
 

 

   
 

  

                 
 

  

 

                                                                
          

       
 
 

   
 

  
  

                                                               
       

      
   

 

  
  (5.22) 
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the optimum 
  

 
 value is obtained:   

       

      
   

 

  
. 

Therefore, the greater the bandwidth of the signal is, the greater the peak SNR will be.  

Finally, in order to obtain the optimum 
  

 
 in the system, the condition represented in the 

equation (5.17) must be met, so 

                   
          

       
 

 

  

          
            

      
   (5.23) 

This      can be expressed in the time domain as: 

                     (5.24) 

This impulse response of the filter can perfectly be designed since the same signal is always 

emitted and the receiver knows it. 

Setting     and      for commodity, the final block diagram is shown in Figure 8. 

 

 

 

 

 

In Figure 8, s[n] represents the chirp signal generated and played, w[n] an AWGN, x[n] the 

chirp signal with AWGN, i.e. the chirp signal recorded, s*[-n] the filter impulse response, 

which is the conjugated time-reversed version of the generated chirp signal, and y[n] the 

matched output from the filter, represented in the equations (5.25) to (5.28). 

                 

 

    

 (5.25) 

                         

 

    

 (5.26) 

                             

 

    

 (5.27) 

                         

 

    

 (5.28) 

y[n] 
x[n] 

 
s*[-n] s[n] 

w[n] 

Figure 8. Block diagram of the Matched Filter process followed in this work 
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6. Results 

6.1. PDR 

In Figure 9, the acceleration measurements in the   axis (in GCS) for a walk of 29 steps are 

represented. 

In Figure 10, the low-pass filtered acceleration measurements shown in Figure 9 are 

represented. Moreover, the algorithm that detects local peaks is performed, obtaining the red 

and green asterisks for every maximum and minimum detected, respectively. Each pair of 

consecutive high and low peak detections represents a single step. Thus, as seen in Figure 10, 

all the 29 steps have been correctly detected. 

 

 

In Figure 11, it is shown a comparison between the orientation from the 

accelerometer/magnetometer sensors alone (coefficient of the complementary filter equal to 

zero), and the orientation from the sensor fusion method with a coefficient of 0.95, which is 

the coefficient chosen. It is clearly seen that the sensor fusion method allows the orientation 

measurements to not have undesired spikes, as well as to be smoother. Moreover, it also 

allows a better dynamic response than the application of a low-pass filter to the 

accelerometer/magnetometer measurements. 

Figure 10. Step detection (29 steps) Figure 9. Z-axis acceleration measurements (29 steps) 

Figure 11. Orientation estimation test 
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Figure 12. PDR performance 

In Figure 12, the walking trajectory of a user is represented following all the methods 

explained in the section 3 of this report. This 2-D plot is what the user can see in the 

application during his walking –with the exception of the red dashed line, which represents 

the real walking of the user and is drawn for a comparative purpose between the real and the 

estimated trajectory. In this case, after 54 steps and returning to the initial position, the 

accumulated estimation error is about 95 cm. 

In order to quantify the performance of this method, five repetitions of the trial represented 

in Figure 12, but only in one way, have been tested.  

Figure 13 illustrates the five trials, and Table 2 shows the overall performance of the method. 

 Steps 

done 

Steps 

detected 

Distance 

travelled 

Real final 

position 

Estimated final 

position  

Accumulated 

absolute error 

Accumulated 

relative error 

Trial 1 28 28 17.3 m  [-3.4,-0.4] m [-3.55, -0.22] m 0.23 m 1.35 % 

Trial 2 28 28 17.3 m [-3.4,-0.4] m [-3.21,-0.04] m 0.41 m 2.35 % 

Trial 3 28 27 17.3 m [-3.4,-0.4] m [-3.66,-0.13] m 0.37 m 2.16 % 

Trial 4 28 28 17.3 m [-3.4,-0.4] m [-4.67,-0.09] m 1.3 m 7.55 % 

Trial 5 28 28 17.3 m [-3.4,-0.4] m [-3.89,-0.76] m 0.6 m 3.5 % 

Table 2. PDR performance 

Considering the above table, the relative error is less than 5 % of the distance travelled in 

most cases, and always less than 10 %. 

On the other hand, 139 out of 140 steps walked by the user throughout the five trials have 

been correctly detected. This represents more than 99 % of accuracy in the step detection.  
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Figure 13. Five PDR trials in a specific trajectory 

6.2. Relative positioning 

It is very difficult to quantify the performance of this method, since it is very variable and it 

can be analysed in many ways. However, it can be said that, overall, the method does not 

work as expected. 

In a straight approaching of A towards B, the method usually works well. In this case, the 

application indicates that user A is walking in the correct direction, and the distance 

estimation is updated recursively while walking as shown in Figure 14, where the red points 

represent all the estimated positions of B and the yellow line the trajectory travelled by A.  

In the test shown in Figure 14, the estimated distance in the reference position between both 

of them was about 20 meters, while the real distance was about 50 meters. However, this 

does not affect the approaching between them, since by following the estimated direction 

both users finally meet. Moreover, as A approaches B, the distance estimation –and hence the 

relative position estimation– becomes more accurate. 

 

 

Figure 14. Relative positioning test in a straight walk towards the remote device (the arrow A0 represents the 
initial position of A and the arrow B the real position of B during the entire walk). 

A0 

B 
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On the other hand, if A starts walking in a random direction the method usually goes wrong. 

However, there have been some trials in which the method clearly enables both users to find 

each other, as shown in Figure 15. 

 

Figure 15. Relative positioning test performing properly (the arrow A0 represents the initial position of A and the 
arrow B the real position of B during the entire walk). 

In the above figure, the user A walks following the estimated relative direction, and after 113 

steps he gets B in a distance shorter than 1 meter. 

6.3. Acoustic distance method 

In this method, the choosing of the chirp frequency is critical, since depending on the 

smartphone it will be properly reproduced and heard, or not. In the experiments done, three 

smartphones have been tested: Google Nexus 5, Motorola Moto G (2nd generation) and BQ 

Aquaris E4.5. While the microphones and speakers of the first two are able to receive and 

reproduce any frequency between 0 and 22 kHz, the latter’s are unable to hear frequencies 

higher than 8 kHz. Moreover, this one also has difficulties to reproduce high frequencies like 

17 kHz or higher. This yields to finally set the chirp frequency between the audible 

frequencies 3 kHz and 7 kHz, instead of the ones proposed in the section 5.2 of this report. 

Figure 16. Recording during the acoustic distance process 

A0 

B 
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In Figure 16, the recording of the whole acoustic distance process is represented. The 

recording input consists of two chirp signals in a noisy environment; one emitted from a 

remote device and the other from the own device. Applying the Matched Filter at both 

devices, the plot shown in Figure 17 is obtained, where the blue line represents the filtered 

recording in one device (the one represented in the recording of Figure 16) and the red line 

the filtered recording in the other device. The difference in the distance between the two 

highest peaks in each device yields to a distance estimation between them, as it is explained in 

the section 5.1 of this report.  

 

Figure 18. Estimated distance against real distance 

In Figure 18 the acoustic distance method performance is represented, taking five samples for 

each distance measurement. The red line represents the real distance, while the blue diamonds 

represent the estimated distances in each measurement. Beyond 1.2 meters, the method starts 

failing in most trials. 
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Figure 17. Matched filtered recording in both devices 
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Figure 19. Absolute error mean and standard deviation 

In Figure 19, the average absolute error (black points) and the standard deviation (vertical red 

lines) from the five measurements shown in Figure 18 are represented. 

 

Figure 20. Average relative error 

In Figure 20, the average relative error of the five distance measurements done for each 

distance is represented. It is clearly seen that between 0.2 and 1.2 meters, the five sampling 

average relative error is less than 10 % for every distance measurement. 
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7. Budget 

 

Personnel Time Cost/hour Total cost 

Junior Engineer 720 h 8 € 5760 € 

Project Supervisor 10 h 18 € 180 € 

Total 730 h  5940 € 
Table 3. Personnel costs 

 

Software Cost 

Android Studio - € 

MATLAB 105 € 

Total 105 € 
Table 4. Software costs 

 

Cost activities Cost 

Personnel 5940 € 

Software 105 € 

TOTAL 6045 € 
Table 5. Total costs 
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8. Conclusions and future development  

Clearly, the results that represent the main objective of this thesis are not good enough. 

However, we were aware of the difficulty of this project, so it cannot be considered as a 

failure, quite the contrary; it can be the beginning of a further research on this topic that may 

allow a proper performance in the future. 

Some of the methods performed in this thesis do work properly, like the pedestrian dead 

reckoning approach, that allows a smartphone user to track his pedestrian movement in a two 

dimensional plane and in real time, even in indoor scenarios. This could be improved so that 

the user movement could be tracked in three dimensions, using the suitable accelerometer 

and gyroscope data, as well as the barometer sensor embedded in some current smartphones. 

Regarding the RSSI measurements, we realised how bad they are in order to estimate 

distances based on them. For this reason, all the tried methods for estimating a relative 

position between two devices by means of the RSSI measurements show poor results. Maybe 

a better implementation of the Kalman filter or the use of different signal processing 

methods like the particle filter would improve the overall performance. Undoubtedly, it is a 

great challenge to handle the RSSI fluctuation in order to obtain useful information about the 

environment from it. 

Concerning the acoustic distance estimations, a good measurement precision that will allow 

the measurement of little objects or distances has been reached. However, this method is not 

able to be useful in the users approaching method, since it has a very limited range. The 

matched filter designed for the detection of the chirp signals seems to work properly, since 

the detected peaks power for short distances are usually at least a hundred times the power of 

the detected noise, even in very noisy scenarios. Nevertheless, for distances longer than two 

meters, it seems that the smartphone’s microphones do not record the chirp signal. In this 

case, it is impossible to detect it even with the best signal processing at the receiver. 

Finally, I think that this degree thesis has been very useful to complete my bachelor’s degree 

education, since it makes me face real problems and learn autonomously. For instance, before 

starting this project, I did not have any prior knowledge in Android development, and now I 

am able to develop full Android applications of many types. Moreover, I learned to deal with 

real time information as well as to manage multiple sensors’ data at once, and I experimented 

with real processing approaches learned theoretically during the degree. 
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Appendices 

REAL-TIME LOCAL PEAKS DETECTION ALGORITHM: 

public void localPeakDetect(Float z) { 

    current = z; 

    if (current > max) { 

        max = current; 

        maxpos = index; 

    } 

    if (current < min) { 

        min = current; 

        minpos = index; 

    } 

 

    if (lookForMax) { 

        if (current < (max - threshold)) { 

            maxValues.add(max); 

            maxIndex.add(maxpos); 

 

            min = actual; 

            minpos = index; 

 

            numMaxs++; 

 

            lookForMax = false; 

        } 

    } else { 

        if (current > (min + threshold)) { 

            minValues.add(min); 

            minIndex.add(minpos); 

 

            max = current; 

            maxpos = index; 

 

            numMins++; 

 

            lookForMax = true; 

        } 

    } 

    index++; 

} 
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KALMAN FILTER INITIALIZATION: 

public void initKalmanFilter() { 

    kalmanQ = 0.00001f;  

    kalmanR = 0.001f;  

    kalmanP = 1.f; 

    firstKalman = true; 

} 

 

KALMAN FILTER ALGORITHM: 

public float kalmanFilter(float direction) { 

    if (firstKalman) { 

        xhat = direction; 

        firstKalman = false; 

        return xhat; 

    } 

    // time update 

    xhatminus = xhat; 

    Pminus = kalmanP + kalmanQ; 

 

    // -179º <--> 179º transition  

    measurementInnovation = direction-xhatminus; 

    if (measurementInnovation > 180.f) { 

        measurementInnovation -= 360.f; 

    } 

    else if (measurementInnovation < -180.f) { 

        measurementInnovation += 360.f; 

    } 

 

    // measurement update 

    kalmanK = Pminus / (Pminus + kalmanR); 

    xhat = xhatminus + kalmanK * (measurementInnovation); 

    kalmanP = (1 - kalmanK) * Pminus; 

 

    // -179º <--> 179º transition 

    if (xhat > 180.f) { 

        xhat -= 360.f; 

    } 

    else if (xhat < -180.f) { 

        xhat += 360.f; 

    } 

 

    return xhat; 

} 

KALMAN FILTER MATLAB SIMULATION: 
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Glossary 

GPS: Global Positioning System 

ToF: Time of Flight 

RSSI: Received Signal Strength Indicator 

PDR: Pedestrian Dead Reckoning 

IDE: Integrated Development Environment 

GCS: Global Coordinate System 

NLOS: Non-line-of-sight 

LOS: Line-of-sight 

AWGN: Additive White Gaussian Noise 

SNR: Signal to Noise Ratio 


