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Abstract Memory stalls are a significant source of performance degradation
in modern processors. Data prefetching is a widely adopted and well studied
technique used to alleviate this problem. Prefetching can be performed by
the hardware, or be initiated and controlled by software. Among software
controlled prefetching we find a wide variety of schemes, including runtime-
directed prefetching and more specifically runtime-directed block prefetching.

This paper proposes a hybrid prefetching mechanism that integrates a soft-
ware driven block prefetcher with existing hardware prefetching techniques.
Our runtime-assisted software prefetcher brings large blocks of data on-chip
with the support of a low cost hardware engine, and synergizes with existing
hardware prefetchers that manage locality at a finer granularity. The run-
time system that drives the prefetch engine dynamically selects which cache
to prefetch to.

Our evaluation on a set of scientific benchmarks obtains a maximum speed
up of 32% and 10% on average compared to a baseline with hardware prefetch-
ing only. As a result, we also achieve a reduction of up to 18% and 3% on
average in energy-to-solution.
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1 Introduction

Modern high-performance processors incur large latencies in accessing off-chip
memory, causing CPU stalls and reducing performance [36, 23]. Many pro-
cessors include latency hiding mechanisms to reduce the number of stall cy-
cles; examples include non-blocking caches, out-of-order execution and data
prefetching. Although the size of on-chip memories keeps increasing, current
memory hierarchies continue working at the granularity of a cache line. This is
problematic for software-based prefetching mechanisms because one prefetch
instruction must be executed per cache line requested, adding significant in-
struction overhead [7].

Block prefetching is a good solution to this problem. Some proposals rely
on compiler analysis [18], others on manual insertion of prefetch directives in
the code [1] and others use a runtime system to guide the prefetch engine [26].
While all approaches are valid, compiler analysis is still limited, and manually
inserting prefetch instructions in the code is difficult and time-consuming.
Using a runtime system to guide prefetching, on the other hand, is a simple and
efficient way of performing block prefetching. A runtime system can see further
into the future than current compilers are able to, has dynamic information
of the application and requires minimal user intervention.

In particular, the runtime systems of task-based programming models pro-
vide a perfect opportunity for dynamic block prefetching. On these program-
ming models computation is divided into tasks that can be executed concur-
rently. The runtime system knows exactly when a task is going to execute,
the data that it is going to access (as specified by the user, see Section 2.3)
and the CPU on which it will be scheduled. The runtime system is therefore
able to perform data prefetching while minimizing (if not completely avoid-
ing) commonly associated problems such as prefetch mispredictions and cache
pollution.

This paper presents a hybrid prefetching scheme that integrates a runtime-
assisted block prefetcher with existing prefetching mechanisms. The runtime
system guides a prefetch engine in bringing on-chip large blocks of data. Once
the data is on-chip, other prefetching mechanisms are used to manage locality
at cache line granularity by bringing data closer to the CPU.

The runtime system leverages its information about application schedule
to decide when to start prefetching. In addition, it compares the task input
data and cache sizes to dynamically select the best prefetch destination for
each task.

The main contributions of this work are:

– A new block prefetcher guided by the runtime system that integrates with
existing hardware prefetchers to effectively reduce memory access time.

– A mechanism that uses runtime schedule and cache information to dynam-
ically decide when to prefetch and which cache to prefetch to.

– An implementation of a hardware block prefetch engine called Multi-core
Data Transfer Engine (MDTE).
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2 Background And Motivation

This section discusses the motivation for block prefetching and explains why
it is best performed by a runtime system.

2.1 Block Prefetching

Traditional software and hardware prefetching techniques work at a cache
line granularity. This is especially problematic for software-based prefetchers,
where an additional instruction must be executed per cache line requested.
The effect on the instruction cache and the resulting overhead caused by these
prefetch instructions can be significant [7]. In order to maximize memory band-
width and avoid unnecessary overheads, it is more beneficial to use block trans-
fers than to work at a cache line basis [18]. Transfering larger blocks of data
allows also for better overlapping of data transfer and computation.

Previous block prefetching proposals have relied either on the compiler or
on the programmer to insert prefetch instructions in the code. Manually insert-
ing prefetch instructions is time consuming and error prone, while compilers
require complex program analysis and lack any form of dynamic feedback. We
argue that in contrast, runtime-assisted prefetching is the simplest and most
effective way of performing block prefetching.

2.2 Runtime-Directed Prefetching

Using a runtime system to guide the prefetch engine has multiple advantages,
specially those found on task-based programming models (see Section 2.3).

First, it requires minimal user intervention and does not rely on complex
compiler analysis. Second, if the runtime system has knowledge of what data is
accessed by each task, it can prefetch only that data without speculation, de-
creasing cache pollution. Third, the runtime system is in charge of scheduling
work. Having knowledge of the execution flow simplifies the timeliness consid-
erations of prefetching, since it is known when and where the data is required.
Fourth, if the runtime system has knowledge of the data used by each task
and it is provided a map of the cache hierarchy, it can dynamically choose
which cache level to use as a destination for the prefetched data. The advan-
tage of this approach is two-fold: it brings the data as close to the processing
elements as possible, and it also guarantees that no data of the current task
will be evicted by the prefetched data.

2.3 Task-Based Programming Models

In a task-based programming model the programmer divides the work into
multiple tasks that can be executed concurrently. These task are enqueued into
a task queue from where they are pulled by the runtime system and scheduled
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#pragma omp task in(a, b) inout(c)
void sgemm_t(float a[M][M], float b[M][M],

float c[M][M]);

#pragma omp task inout(a)
void spotrf_t(float a[M][M]);

#pragma omp task in(a) inout(b)
void strsm_t(float a[M][M], float b[M][M]);

#pragma omp task in(a) inout(b)
void ssyrk_t(float a[M][M], float b[M][M]);

--------------------------------------------

float A[N][N][M][M]; // NxN blocked matrix,
// with MxM blocks

for (int j = 0; j<N; j++) {
for (int k = 0; k<j; k++)

for (int i = j+1; i<N; i++)
sgemm_t(A[i][k], A[j][k], A[i][j]);

for (int i = 0; i<j; i++)
ssyrk_t(A[j][i], A[j][j]);

spotrf_t(A[j][j]);

for (int i = j+1; i<N; i++)
strsm_t(A[j][j], A[i][j]);

}

Fig. 1: Example code for a task-based

based on the available resources. In this manner, the runtime system can see
the future simply by looking at the task queue, and hence can effectively
perform block prefetching for the upcoming tasks.

Cilk [17], OpenMP [9], Sequoia [15], OmpSs [13], StarPU [2], X10 [6],
Chapel [5] and Intel TBB [27] are examples of task-based programming mod-
els. Some of these allow the programmer to specify additional information
for each task, such as the device where it can run or the input and output
data used [9, 13, 2]. Figure 1 shows a code snippet of a Cholesky factoriza-
tion programmed in a task-based programming model. Pragma annotations
are used to identify and declare tasks. The keywords in, out and inout are
used to specify input and output dependencies, corresponding to the read-only,
write-only and read-write task data respectively. This information allows the
runtime system to prefetch only data that is known to be needed. In addition,
data locality can be better exploited by taking informed scheduling decisions.
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3 Related Work

Hardware and software prefetching techniques have been studied extensively [10,
33, 11, 25, 24, 31, 4]. Hardware-controlled prefetchers are highly effective for
applications with regular data access patterns [4]; they have been integrated
into all modern high-performance processors, including Intel Core i3/i5/i7,
AMD Opteron and IBM POWER, and many embedded and mobile proces-
sors, such as ARM’s Cortex-A9 and Cortex-A15.

Most software-based prefetchers require executing one prefetch instruction
per cache line prefetched, adding a non-negligible overhead and straining the
instruction cache [7]. The benefit of prefetching large blocks of data instead of
individual cache lines was first noted by Gornish et al. [18]. In their approach,
the compiler performs static program dependence analysis on array references
in nested loops, inserting a block prefetch command before the data is ref-
erenced. Our proposal, in contrast, exploits the runtime system’s knowledge
of the upcoming task schedule to control the block prefetcher, and it is not
restricted to nested loops.

Wall [35] presented a study on the effect of different code optimizations on
the memory subsystem, including software block prefetching using the MOV
instruction. This approach requires the programmer to insert MOV instruc-
tions by hand, and, as the author found, in some cases it may not work well
with other compiler optimizations.

ARM includes a block prefetcher in their Cortex-A8 and Cortex-A9 proces-
sors [1]. Their Preload Engine, as it is named, allows the user to load selected
regions of memory into the L2 cache. The Preload Engine expects the pro-
grammer to add load directives by hand, requiring a good understanding of
the code and some knowledge of the underlying architecture. ARM’s Preload
Engine is attached to the cores, and is only able to direct the data transfers
to the last level L2 cache. By targeting a task-based programming model we
simplify this process, leaving the decisions to the runtime system that is able
to dynamically decide when to initiate the prefetch and where to prefetch into.

Lu et al. [21] propose a dynamic optimization system that uses hard-
ware profile information gathered at run-time to dynamically insert software
prefetch instructions in the code. They take into account the variability and
impact of micro-architectural constraints and memory behavior on the per-
formance and effectiveness of software prefetching. Even with this dynamic
behavior, their proposal relies on data access pattern detection. The specula-
tive nature of this approach can be more error-prone, as the runtime system
may incorrectly insert prefetch directives for data that will not be used, with
all the negative effects it can cause such as additional contention in the in-
terconnect and cache pollution. In addition, the performance monitoring and
dynamic recompilation adds significant overhead. In our approach, the run-
time system only prefetches data that is declared to be an input of a task, and
so it will never fetch data that is not needed.

Papaefstathiou et al. [26] also propose a software prefetching and cache
management mechanism for task-based programming models. However there
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are several differences with our approach. First, whereas their proposal is an
alternative to traditional hardware prefetchers, we propose a hybrid hardware-
software prefetching scheme, where software prefetching brings data on-chip
to hide the large DRAM latencies, and hardware prefetching moves the data
closer to the processing units. We evaluate multiple hardware prefetching con-
figurations and perform an extensive design space exploration of parameters
such as prefetch degree and distance, and evaluate the best configuration on
each case running in conjunction with our proposed software prefetching tech-
nique. Second, whereas Papaefstathiou et al. evaluate their approach using a
simple in-order processor, our evaluation uses an advanced out-of-order pro-
cessor that can hide on itself some memory latency. We therefore establish that
the approach is also applicable to high-performance processors implementing
aggressive instruction-level parallelism techniques where there is lower ben-
efit from additional prefetching. Third, they propose a prefetch engine per
core, while our proposed hardware engine (MDTE) may be shared by multi-
ple cores, reducing chip area and power consumption. Additionally, grouping
prefetch commands in a common engine allows for the coordination of pri-
orities among the cores, and also allows us to introduce effective throttling
mechanisms. Finally, while their approach prefetches only to the Last Level
Cache, we believe a key aspect of runtime-assisted prefetching is leveraging all
the information the runtime system has by letting it dynamically choose the
prefetch destination.

4 Runtime-Assisted Block Prefetching

This section describes the implementation details of the runtime-assisted block
prefetcher, as well as the accompanying hardware support, the Multi-core Data
Transfer Engine (MDTE). We also introduce the multi-core architecture tar-
geted in this work.

4.1 Target Architecture

Previous runtime-assisted block prefetching proposals target simple in-order
cores [26]. In contrast, we aim to validate that this technique is also effective
reducing memory access time when using out-of-order cores.

Figure 2 shows a high-level overview of the architecture targeted in this
work. The cores have private L1 and L2 caches. All the cores are connected
through a crossbar to a shared Last Level Cache/L3 (LLC), itself connected
to off-chip main memory. The MDTE can be placed next to a core’s L2 or
the shared LLC. If placed next to a private cache it will only process prefetch
commands from that core. If placed next to the LLC it can receive and process
prefetch commands from every core. Our proposed technique would work with
only the shared MDTE, but ideally we also want private MDTEs to let the
runtime system decide which one to use in every case.
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Fig. 2: Targeted multi-core architecture.

4.2 Prefetch Commands

Prefetch commands are simple instructions that reference a contiguous block of
memory. They contain a starting address and data size. They are generated by
the runtime system based on a task’s input data and have unrestricted length.
These commands initially contain logical addresses, but since the physical
pages they map to may not be contiguous in memory, the need to be split
at page boundaries. Splitting prefetch commands and address translation is
performed in the MDTE (see Section 4.4 for details).

4.3 ISA extensions

In order to enable the runtime system to issue prefetch commands we extend
the ISA with the following user mode instruction:

prefetchX r1, r2

r1 is the register holding the base address of the block to be prefetched, r2 is
the register holding the size of the block in bytes, and X takes the value of the
cache level to which the prefetch command is to be sent. In this manner, the
instruction prefetch2 r1, r2 would send a prefetch command with the address
in r1 and the size in r2 to the MDTE corresponding to the core’s L2 cache.
In order to send a prefetch command to the LLC’s, i.e., L3 in Figure 2, the
runtime system would issue the instruction prefetch3 r1, r2. If the runtime
system has not been provided with a cache hierarchy map and there is no L3
cache in the system, the instruction is ignored. In the targeted architecture
(Figure 2), one bit in the instruction word is enough to specify whether the
prefetch instruction targets the L2 or the L3.
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Fig. 3: Multi-core Data Transfer Engine components

4.4 MDTE Architecture

The MDTE is a programmable DMA-like controller that receives and pro-
cesses the prefetch commands generated by the runtime system. It does not
require any modification to existing caches. Figure 3 shows its design. The
main components are:

– An input buffer to store the received prefetch commands until they are
queued.

– A prefetch command queue where commands are inserted in FIFO order.
Each command in the queue can prefetch up to one memory page. Each
entry in the queue holds the starting address, size, address space identifier
(ASID), a translated bit and a translation requested bit.

– A Translation Lookaside Buffer (TLB) to speed up address translation.
– An output buffer to store translated commands until they are sent to mem-

ory.

The MDTE reads the input buffer for new commands. When a new com-
mand is received, it is split into page aligned commands and enqueued in the
prefetch command queue. New commands are discarded when the queue is full.
The commands received contain logical addresses that need to be translated.
There are two main advantages to delaying the translation until the command
arrives at the MDTE: First, if address translation were to be done at the core’s
MMU, a prefetch command for a big block of data (e.g. a few megabytes)
would be split into a large number of page-sized prefetch commands. These
would have to travel to the corresponding MDTE, increasing traffic on the
interconnect and reducing available bandwidth. Second, address translation
at the MMU’s is in the critical path. The additional translations would delay
the translation of demand requests, further degrading performance.

The MDTE contains a TLB to speed up address translation and reduce the
traffic caused by the translation requests. The impact of adding these TLBs
is not significant since they need not be very large (see Table 1). We also use
a TLB directory to minimize the overhead of TLB shootdowns [34].
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Once a translation response is received, the prefetch command is updated
and moved to the output buffer. Interrupts and exceptions can modify the
logical to physical address mapping, rendering the prefetches useless. In these
situations we flush the TLB and the entries in the prefetch command queue
whose translation has been requested, as well as the translated commands
from the output buffer.

On every cycle at most one request will be issued, either a prefetch com-
mand or a translation request. Commands from the output buffer are sent to
their target cache where they are issued one cache line at a time in round robin
fashion. These prefetches coexist with hardware-based prefetch requests but
are much less time sensitive, hence the need for some form of coordination.
See Section 4.7 for more details.

4.5 Prefetch Consideration: Timeliness

An important aspect of any prefetch mechanism is deciding when to issue a
prefetch request. In our implementation, prefetching for a task is triggered
right before the execution of the preceding task begins, in the following man-
ner: when task A completes, the core executes the runtime scheduler to obtain
the next two ready tasks B and C. The core then executes the instruction to
prefetch the inputs of task C, an operation that represents an overhead in the
order of tens of assembly instructions and is negligible compared to the cost of
running the scheduler algorithm. After executing the prefetch instruction, the
core begins executing task B while the data for task C is being prefetched, suc-
cessfully overlapping data movement with computation. At that point task C
is pinned to the hardware thread executing task B, disabling work stealing and
guaranteeing that task C will be scheduled to execute on the core whose caches
hold the prefetched data. By doing so the runtime system implicitly applies
an affinity-based scheduling policy, allowing for simpler scheduler algorithms.

4.6 Prefetch Consideration: Destination

The private MDTEs will always forward the translated commands to the pri-
vate cache they are attached to, and the shared MDTE to the LLC. Thus,
another important aspect to determine is where to send the prefetch com-
mands to, i.e., the prefetch destination.

It is always desirable to allocate the prefetched data as close to the proces-
sor as possible without affecting the performance of the current task. Although
the runtime system does not know exactly the content of each cache, it has
knowledge of the input data used by each task. Using that information it is
able to approximate where the prefetched data can be placed without evicting
the working set of the current task. The runtime system can then dynamically
decide the best prefetch destination before issuing the prefetch command.

We initially attempt to prefetch data into the private L2 cache (L1 caches
are too small for block prefetching). Once the runtime system estimates the
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prefDatanext = 0
while inputnext > 0:

capacity = sizeL2 - inputcurr - prefDatanext

if capacity > 0 then:
L2 prefetch up to capacity bytes
increase prefDatanext

decrease inputnext

else
L3 prefetch inputnext bytes

endif

Fig. 4: Algorithm used by the runtime system to decide the prefetch destina-
tion.

L2 cache cannot hold more data without evicting the current task’s working
set, we direct the remaining prefetch commands to the shared MDTE.

Figure 4 summarizes the algorithm used by the runtime system to decide
the prefetch destination. The amount of data that can be placed in the L2
is calculated as: capacity = sizeL2 - inputcurr - prefDatanext, where sizeL2 is
the size of the L2 cache, inputcurr the size of the input data from the task
currently executing and inputnext from the task that will be executed next.
prefDatanext represents the amount of data already prefetched from the next
task.

Figure 5 shows the destination of the prefetched data for two executions of
the same benchmark with two different cache configurations. In this example,
for simplicity, all tasks have 160 KB of input data.

The caches are initially assumed to hold old data, so the data for task 1 is
always placed in the L2. On a system with a 128 KB L2 cache, only 128 KB
of data fit; the remaining 32 KB are then prefetched into the L3 cache. When
the runtime system begins prefetching for task 2, the L2 is filled with tasks’
1 working set, therefore the 160 KB of data are prefetched into the L3. This
behavior repeats until the end of execution.

On a system with a 256 KB L2 cache, the 160 KB of input data from task 1
are initially placed on the L2. When the runtime system begins prefetching for
task 2, 96 KB of it’s input data are prefetched into the L2 and the remaining
64 KB into the L3. On this configuration the working set of the currently
executing task co-exists with a portion of the following tasks input data.

The L3 cache is assumed to be large enough to hold the working set of each
of the executing tasks plus the prefetched data. As it will be further discussed
in Section 5.2, it is usually desirable to divide computation into small enough
tasks to improve load balancing. Table 2 shows the average task input data size
for our workloads, and Table 1 the configuration parameters of the simulated
architecture. This shows that even for tasks with the largest input data size,
the L3 cache is large enough to fit all the required data.

Since the runtime system can be informed of the characteristics of the
memory hierarchy, if the ratio of task input data to last-level cache size were
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to change, it would be trivial to modify the runtime system to stop prefetching
when necessary.

Fig. 5: Prefetch destination of the input data for each task for two runs with
different L2 configurations. Input data size: 160 KB.

4.7 Coordinating Hardware, Software Prefetch and Demand Loads

The main goal of our mechanism compared to previous prefetching work is to
bring data on-chip at a coarser granularity (blocks vs cache line) with the help
of the runtime system, and combine it with other traditional hardware and/or
software prefetching mechanism to move data closer to the core, i.e. the L1 or
L2 caches.

Unfortunately, prefetching has potentially a high cost in terms of band-
width usage and network contention, specially if multiple and simultaneous
prefetching mechanism are used. Throttling policies [14] can be used to coor-
dinate them, slowing or even stopping completely one of the prefetch engines
in order to maintain fairness or avoid contention on shared resources.

We take into account some priority considerations to ensure that requests in
the critical path are always processed first. The first such consideration is that
demand requests generated by the CPU are always prioritized over prefetch
requests. This ensures no prefetch instruction will delay a CPU request. Also,
software prefetches are not as time sensitive as hardware prefetches, since the
data prefetched is only required for the next task which is usually hundreds of
thousands or millions of cycles in the future (see Table 2). Hardware prefetch
engines predict future accesses and generate requests for data that will be
needed in the near future, and therefore are prioritized over the runtime-
generated prefetches.

In addition, while demand requests are always prioritized, in-flight prefetches
may still stall the memory subsystem if any of the hardware structures becomes
full (input buffers, MSHR queues, etc)̇. We apply a simple throttling policy
to deal with this issue. Any time that a cache level is unable to process a
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Table 1: Memory hierarchy configuration parameters

Parameter Value Parameter Value
Cache (L1/L2/L3) DRAM DIMM

Size (KB) 32/256/2048 per core autoprecharge disabled
Latency (cycles) 2/12/45 data rate (MT/s) 1600
Associativity 2/8/16 bursts per access 8
MSHR entries 8/32/8 per core tRCD,tRP,CL,tRC,tWR,tWTR 1

MDTE (L2/L3) Memory Controller
TLB size 16/16 Access queue size 128
Prefetch queue size 256/1024 Number of DIMMs 4

new request, prefetch issue is stopped in that cache until demand requests
can again be successfully processed. By doing so we give time to the in-flight
requests to complete and we avoid getting the hardware structures filled with
new prefetch requests that would further stall demand requests.

5 Evaluation Methodology

In this section we describe the simulation infrastructure and the benchmarks
used to evaluate our proposed mechanism.

5.1 Simulation Infrastructure

We use a trace-driven cycle-accurate simulator that models an x86 multi-
core processor [28]. We model the timing of an out-of-order processor, cache
hierarchy, interconnection network and the off-chip memory. Our simulation
framework uses the dynamic binary instrumentation tool Pin [22] to obtain
the traces. The out-of-order cores are configured with a reorder buffer of 128
entries. The configuration parameters of the cache hierarchy are shown in
Table 1. The cache line size is 128 bytes divided into 16 sub-blocks of 8-bytes
each for all cache levels. All caches are inclusive, non-blocking and implement
an LRU replacement policy. The bandwidth of all on-chip network links is 8
bytes per cycle with a latency of 3 cycles. The MDTEs are implemented as
described in Section 4.4 and configured using the parameters shown in Table 1.
For energy estimations we use CACTI version 6.5 with the memory parameters
specified in Table 1, and technology parameters based on ITRS predictions for
a 32nm technology.

5.2 Workloads

We evaluate our proposal using a set of scientific benchmarks including PBPI,
a parallel implementation of Bayesian phylogenetic inference method for DNA

1 DRAM timing parameter values match the Micron DDR3-1600 specification.
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Benchmark Input size T. creation T. duration
histogram 256KB 18µs 546µs
matmul 128KB 14µs 631µs
reduction 256KB 17µs 145µs
LU 128KB 16µs 1000µs
PBPI 200KB 13µs 114µs
jacobi 258KB 15µs 245µs
MD5 512KB 14µs 2021µs

Table 2: Benchmarks evaluated, average task input size, average task creation
overhead and average execution time per task

sequence data [16], an implementation of the MD5 hashing algorithm, and a set
of kernels representing algorithms commonly found on scientific applications.
The full list can be found on Table 2. All applications were compiled for x86-64
with the GCC compiler version 4.6.3 using the -O3 optimization flag.

In this work we target scientific codes such as those used in high perfor-
mance computing (HPC). HPC applications usually operate on regular data
structures and can therefore benefit both from our runtime directed software
prefetching and from hardware-based prefetching techniques. Our runtime di-
rected prefetching scheme also works on applications with less regular data
structures as long as the tasks’ input and output data is specified as described
in Section 2.3.

An important aspect to consider in high performance computing is the
granularity at which the work is divided. In order to fully utilize all the sys-
tem’s processing elements and maximize the benefits of the cache hierarchy,
the programmer must choose an appropriate block or task size to work with.
This decision is usually taken considering the size of the cache memories and
the number of processing elements. To improve load balancing, it is usually
desirable to split computation into small tasks, allowing the scheduler to keep
the processing elements busy at all times. On the other hand, working at
a too small granularity adds non-negligible overheads in the form of thread
or task creation. There is plenty of literature on the topic of how to best
choose this parameter and the impact it has on the overall system perfor-
mance [8, 20, 29, 30, 32]. We create tasks as small as possible to obtain good
load balancing and exploit L1 cache locality, but keeping the overhead of task
creation relatively small over the total execution time.

Table 2 shows the average size of the inputs for each task, the average
overhead of task creation and the average execution time per task. These
numbers were obtained on a 16-core, dual-socket AMD Opteron 6128 machine
running at a frequency of 2.4 GHz.

6 Experimental Evaluation

We evaluated the MDTE using the seven scientific benchmarks shown in Ta-
ble 2 and three different configurations of 4, 8 and 16 cores. Each core has a
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Benchmark Best HW pref.
histogram L1 Nextline + L2 Stride
matmul L1 Stride
reduction L1 Nextline
LU L2 Nextline
PBPI L1 Nextline + L2 Stride
jacobi L1 Nextline + L2 Stride
MD5 L1 Nextline + L2 Stride

Table 3: Best standalone hardware prefetch configuration

private L1 and a private L2 cache, and all the cores share the L3 LLC. The
LLC is multi-banked, with an 8 MB bank per each 4 cores. We also add an
additional memory controller per each additional LLC bank to sustain the
traffic generated by the out-of-order cores.

6.1 Hardware Prefetchers

We first explored the effectiveness of the standalone hardware prefetchers for
each of the benchmarks. Table 3 shows which hardware prefetching mecha-
nisms works better in each case. The Next-line configuration prefetches the
next N lines after a cache miss. The Stride configuration is a reference pre-
diction table based stride prefetcher [3]. We evaluated a range of values for
the prefetch degree and found N=2 to be optimal for both configurations. We
then executed the benchmarks with all the hardware prefetching configurations
combined with our software prefetching mechanism. For all benchmarks but
one, the hardware prefetch configuration that obtains better results standalone
is also the best configuration in our hybrid hardware + software approach. The
exception is LU, where every hardware + software configuration degrades per-
formance by at least 5% over no prefetching. For the rest of this section, we
use the best standalone hardware prefetch configuration shown in Table 3 as
the baseline for each benchmark. This configuration is labelled as “HW” on
the figures.

6.2 Compiler Based Software Prefetching

We evaluate our proposal against other traditional software prefetching tech-
niques by compiling every benchmark with the GCC flag -fprefetch-loop-arrays.
With this optimization the compiler attempts to insert ISA specific prefetch
instructions in loops that traverse large data arrays.

As stated before, our hybrid approach combines runtime-assisted block
prefetching with other traditional prefetching mechanisms that move data
closer to the cores once it is brought on-chip by the MDTE. Therefore we
not only use this configuration to compare our proposal against, but we also
evaluate the impact of combining both. We first execute the benchmarks com-
piled with the prefetch flag in conjunction with every hardware prefetcher
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(a) 4 cores (b) 8 cores

(c) 16 cores

Fig. 6: Average memory access time for 4, 8 and 16 cores and multiple prefetch
configurations

and select the best performing; this configuration is labelled on the figures as
“HW+SW”. Then we take this configuration and run it with the proposed
runtime-assisted block prefetcher (labelled as “HW+SW+MDTE”).

6.3 Performance Analysis

6.3.1 Average Memory Access Time

Figure 6 shows how for six of the seven benchmarks the MDTE is able to reduce
the Average Memory Access Time (AMAT). As expected, applications that
display a high AMAT (even with hardware prefetching) benefit more from our
software block prefetcher. In particular, jacobi, MD5, reduction and histogram
obtain on the 8 cores configuration an AMAT reduction of 18%, 28%, 48% and
49% respectively over executions with the best hardware prefetching configu-
ration only. On the other hand, the benefit obtained by our hybrid scheme is
limited to a 5% AMAT reduction for PBPI . The reason is that the AMAT for
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this application is already very low (20 cycles) with no prefetching mechanism,
and it is even further reduced to 14 cycles by the hardware prefetcher. Since
the latency of our L2 caches is 12 cycles and we model out-of-order cores that
can hide some of that latency, the benefit attainable is very limited.

6.3.2 Cache Hit Rates

The cache hit rates shown in Figure 7 explain why matmul barely obtains any
AMAT reduction and LU slightly increases it. Our implementation of matrix
multiply uses blocking and the BLAS library. These commonly used optimiza-
tions fully exploit the size of the L1 cache, obtaining 99.9% L1 hit rate. LU
factorization also uses blocking, with a block size of 128 KB that fits comfort-
ably in the L2 cache. Prefetching provides no additional benefit after the initial
cold state of the caches, and can even hurt performance by causing additional
contention on the interconnection network and on the memory controllers, as
is the case for LU . Nevertheless, L3 cache hit rate is significantly increased
in all benchmarks with our hybrid approach compared to the execution with
only the baseline hardware prefetcher, reducing memory access time whenever
an application does not display such high L1 or L2 hit rates.

6.3.3 GCC-Based Software Prefetching

Executing the benchmarks compiled with the GCC prefetch flag has mixed
results, including a large degradation in performance of up to 50% on LU .
reduction, PBPI, jacobi and MD5 obtain the best results with the software
+ hardware configuration, while histogram barely improves and matmul sees
no benefit. As explained in GCC’s documentation [12], compiling with the
prefetch flag may generate better or worse code and is highly dependent on
the structure of loops, hence it is an unreliable mechanism to consistently
improve performance. Nevertheless, our proposed technique is designed to work
in conjunction with any other fine-grained prefetching mechanism, so it is at
the discretion of the user whether to use GCC-based software prefetching or
not.

6.3.4 Performance Evaluation

Figure 8 shows the speed up over the execution with the best hardware prefetch
configuration standalone. On the 4 core system, our hybrid hardware + MDTE
configuration obtains a 19% speed up over execution with the best hardware
prefetcher standalone for histogram and reduction, and over 2x compared to
execution with no prefetch. jacobi achieves a 7% speed up while PBPI does
not improve over hardware prefetching only. matmul and LU do not obtain
any benefit out of software block prefetching, with a slight performance degra-
dation on LU . reduction obtains an even larger speed up when the compiler
inserts prefetch instructions, reaching almost an 80% increase on the configura-
tion with the best hardware prefetcher, compiler-inserted prefetch instructions
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(a) L1 hit rate (b) L2 hit rate

(c) L3 hit rate

Fig. 7: Cache hit rates for the execution with multiple prefetch configurations

and our proposed block prefetcher working together. This is due to the large
L1 hit rate increase caused by the compiler-inserted prefetches. On average,
the hybrid hardware + MDTE configuration obtains an 8% speed up over the
baseline. Although the configuration including compiler-inserted prefetch in-
structions may perform best in some benchmarks, in others such as LU the
performance drop is considerable, and overall the best results are obtained
with hardware prefetching + MDTE.

On a system with 8 cores we double the number of L3 banks and mem-
ory controllers. In this context our hybrid prefetching scheme shines obtaining
a 30% and 25% speed up in histogram and reduction respectively, with an
average of 10% for all benchmarks. The configuration with compiler-inserted
prefetch instructions experiences a large drop on the speed up observed on
reduction with the 4 core configuration. The additional traffic caused by these
prefetch instructions saturates the interconnect network and memory con-
trollers, diminishing the benefits obtained. PBPI suffers a small performance
degradation because, as explained before, block prefetching does not provide
any benefit over an already low AMAT, and because, as in the case of LU,
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(a) 4 cores (b) 8 cores

(c) 16 cores

Fig. 8: Application speed up normalized to the execution with the best hard-
ware prefetcher standalone

the overhead caused by the prefetch requests travelling through the memory
subsystem is non-negligible.

These results are maintained on the 16 core configuration with one ex-
ception: reduction loses about 10% performance gain with our hybrid HW +
MDTE configuration. The reason is that the LLC saturates with the increased
number of requests and our throttling mechanism stops all prefetching. More
complex throttling policies could be applied to lessen the impact of the in-
creased traffic, and are left for future work.

The performance results acknowledge the hypothesis of this work: the
runtime-assisted MDTE brings data on-chip in advance (as confirmed by the
increased L3 hit rates), and the hardware prefetcher brings the data closer to
the cores (hit rates in L1 and L2 are kept). The synergy between the MDTE
and the stock hardware and software prefetchers translates into the increased
performance shown in Figure 8.
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6.4 Energy Consumption

Prefetching is usually considered a trade-off between performance and en-
ergy consumption, especially on speculative hardware based prefetchers [19].
Runtime-directed prefetching however brings only data known to be needed,
and the additional hardware required to support our software block prefetcher
has an almost negligible cost in area and power.

Figure 9 shows energy-to-solution for every benchmark. We see how energy
consumption is dictated primarily by static power, and therefore by execution
time. The increase in power caused by the MDTEs has been included in the
dynamic power of the cache level they are attached to, i.e., L2 for the pri-
vate MDTEs and L3 for the shared. The speed ups obtained using our hybrid
prefetching scheme translate into energy-to-solution gains of 3% on average
for all benchmarks. On all but two benchmarks we consume less energy by
using our hybrid scheme compared to hardware prefetching only. On the best
performing benchmark, reduction with an 8 core configuration, we obtain an
18% decrease in energy-to-solution compared to the best hardware prefetch
configuration standalone. PBPI and LU see an slight increase in energy con-
sumption of 4% and 2% respectively due to an increase in execution time.

7 Conclusions

In this paper we propose a hybrid hardware and software block prefetching
scheme. We have demonstrated that by using a runtime system to guide a
block prefetch engine we increase L3 cache hit rates and therefore reduce large
off-chip access latencies. This approach is simpler and more robust than man-
ually inserting prefetch instruction in the code or relying on complex compiler
analysis. For best results, we combine our runtime-guided block prefetcher
with other traditional hardware and software prefetching techniques that man-
age locality at cache line granularity, moving the data closer to the CPU and
increasing L1 and L2 cache hit rates. We apply throttling mechanisms to coor-
dinate the prefetchers and reduce the overhead caused by the prefetch engines.

By using a runtime system with knowledge of the upcoming task schedule
and accessed data, we prefetch only data that will be used, avoiding cache
pollution. In addition we let the runtime system leverage this information to
dynamically make decisions such as prefetch destination and timeliness. Our
proposal benefits memory-sensitive applications and does not harm compute-
bound applications.

The evaluation on a set of scientific workloads shows that our hybrid
prefetching scheme is able to obtain up to 32% performance improvement
with an average of 10% compared to the execution with hardware prefetching
only. The performance benefits offset the increased power from the extra hard-
ware and the increase in dynamic power caused by prefetch activity, leading
to a reduction of up to 18% with an average of 3% in energy-to-solution.
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(a) 4 cores (b) 8 cores

(c) 16 cores

Fig. 9: Energy consumption normalized to the execution with the best hard-
ware prefetcher standalone. From left to right for each benchmark: no prefetch,
hardware + MDTE prefetch, hardware + software prefetch, hardware + soft-
ware + MDTE prefetch.
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