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ABSTRACT: One of the factors causing the acceleration of landslides is the loss of strength of 6 

the soil involved in the potential unstable mechanism. The travelled distance and the landslide 7 

velocity, a key factor in risk analysis, will be determined by the loss of resistant forces. Brittle 8 

behaviour, commonly associated with cemented soils, overconsolidated plastic clay formations 9 

and sensitive clays, lead to the progressive failure phenomenon explained by the reduction of 10 

the strength with increasing strain. In the present study, this phenomenon has been analysed in 11 

the case of a saturated slope which becomes unstable by increasing the boundary pore water 12 

pressure. A Mohr-Coulomb model with strain softening behaviour induced by increasing 13 

deviatoric plastic strain is used. The paper focusses not only on the stability of the slope but also 14 

on the post failure behaviour (run-out and sliding velocity). A coupled hydro-mechanical 15 

formulation of the Material Point Method has been used to simulate the whole instability 16 

process. The influence of the brittleness of the material on the triggering of instability and run-17 

out is evaluated by means of a parametric study varying peak and residual strength. The onset of 18 

the failure and the failure geometry are controlled by both peak and residual values. Good 19 

correlations between run-outs and brittleness are found. The decay of the strength determines 20 

the acceleration of the landslides and the travelled distance. 21 

1 INTRODUCTION  22 

The dynamic behaviour of landslides receives increasing attention because landslide risk 23 

analysis and spatial identification of vulnerable areas require estimations of the slide run-out 24 

and the velocity of the unstable mass [1]. Special attention is given to reservoirs, lakes and 25 

fjords potentially affected by landslides on their margins [2–4]. In fact, slope instabilities may 26 

affect dams and their foundations and they may lead to partial or complete blockage of rivers, 27 

creating dangerous “natural” dams or the generation of a destructive wave due to the impact of 28 

the landslide against the stored water [5–7]. The potential damage caused by landslides can be 29 

determined by several factors related with the volume of the mobilized mass, the run-out, 30 

velocity and acceleration. One of the factors that control the acceleration of the slide is the loss 31 

of resistant forces associated with the drop of available soil strength. This phenomenon is 32 

typically observed in first time failure developed in “intact” sites in materials exhibiting a brittle 33 

behaviour. This is the case of hard soils and soft rocks, overconsolidated and cemented clayey 34 



soils with special relevance in the case of high plasticity soils. These materials exhibit a 35 

softening behaviour from a peak value, associated with a low value of shearing displacements, 36 

to a low residual strength when bonds are destroyed and clay particles orient in the direction of 37 

shearing. This reduction of strength leads to the propagation of the failure surface following a 38 

process of progressive failure. 39 

When a point exceeds the maximum available strength, a degradation process initiates due to 40 

the strain softening associated with the constitutive response of the material. The unbalanced 41 

stresses are transferred to the surrounding areas which in turn may overstress neighbouring 42 

points in the process, leading eventually to residual strength conditions. This stress transfer 43 

phenomenon develops during slip surface propagation. This mechanism was first recognized by 44 

Terzaghi and Peck [8] and Taylor [9]. It was further discussed in the context of 45 

overconsolidated clays and clay shales by Skempton [10], Bjerrum [11] and Bishop [12]. 46 

Further contribution are made by Palmer and Rice [13], Stark and Eid [14], and Puzrin and 47 

Germanovich [15]. 48 

Several real cases involving progressive failure are collected and analyzed in the literature [16–49 

20]. Troncone [21] presents a 2D numerical analysis of well documented Senise large landslides 50 

in Southern Italy and a 3D extension in [22]. Other real cases of landslides involving 51 

progressive failure mechanism in the Iberian Peninsula have been collected in [23]. 52 

Contributions mentioned above mainly concentrate on the analysis of the generation and 53 

evolution of the failure surface but the run-out stage, once instability occurs, is not explored. 54 

Modelling large displacement involves the use of alternative calculation techniques to the 55 

Lagranian approaches generally used in FEM. Soga et al. [24] reviews current numerical 56 

methods capable of analysing the slide motion. In this work, the Material Point Method (MPM) 57 

[25] is selected to analyse the stability of slopes and their post failure response in strain 58 

softening materials. MPM is a numerical technique able to simulate large displacements by 59 

means of combining two discretizations of the media: (a) a set of material points which move 60 

through (b) a fixed computational grid. This dual description prevents mesh distortion problems 61 

and contacts between different bodies are automatically solved. 62 

A fully coupled hydro-mechanical material point code was developed for saturated soils within 63 

the MPM Research Community framework [26–29]. A strain softening elastoplastic constitutive 64 

law was has been implemented with the purpose of analysing progressive failure phenomena 65 

that take place in materials exhibiting a reduction of the strength with increasing strain [30]. 66 

This MPM formulation was recently applied in Alonso et al. [31] to model the Selborne failure 67 

experiment [32]. Failure of the Selborne slope was triggered by forced water recharge. Field 68 



instrumentation data indicated that the failure was a progressive mechanism in overconsolidated 69 

brittle clays. The numerical MPM analysis presented in [31] provided consistent and accurate 70 

results in the prediction of the shape and position of the failure surface, the development of 71 

progressive failure and the slide motion after failure. 72 

The aim of the paper is to explore the response of saturated slopes in brittle materials. It 73 

focusses on exploring the material properties controlling the run-out distance and velocity of the 74 

unstable mass in brittle materials. First, a synthetic slope is presented in which the shear stress 75 

distribution and the progression of failure mechanism are discussed. Afterwards, by means a 76 

parametric analysis, the brittle behaviour of the material soil (defined in terms of brittleness 77 

index IB) is shown to be a key factor of the slope response. The results are discussed with the 78 

aim of deriving practical conclusions. 79 

2 BASIS OF MPM FORMULATION 80 

The MPM [33] discretizes the continuum as a set of subdomains. In the standard approach, 81 

presented by Sulsky et al. [25], the mass of each subdomain is considered to be concentrated in 82 

a point, the material point (Fig. 1). Other properties such as velocities, strains and stresses, are 83 

also carried by the material points. This information is projected on to a background mesh 84 

where governing equation are solved. The support computational mesh covers the full domain 85 

of the problem and remains fixed during calculation. Calculations on the mesh serve to update 86 

the material point properties and location. Linear interpolation shape functions are used to 87 

provide the relationship between material points and nodes at any point of the domain. This 88 

approach allows MPM to combine the advantages of Eulerian and Lagrangian formulations.  89 

 90 
Fig. 1. Scheme of the spatial discretization used in MPM formulation. 91 



The MPM formulation for a mechanical problem was presented by Sulsky and Schryer [34]. 92 

Different authors have extended the MPM to solve coupled hydro-mechanical problems under 93 

saturated conditions [20,27,35]. More recently, Yerro et al. [28] extended MPM for unsaturated 94 

soils. 95 

The numerical approach considered in this work to simulate saturated soils is based on [27]. It 96 

assumes that each material point represents a portion of the soil, moves attached to the solid 97 

skeleton and carries information of solid and liquid phases. Solid and liquid accelerations are 98 

calculated in the computational mesh solving the dynamic momentum balances of both phases. 99 

Velocities, displacements and strains are obtained in the material points; and liquid mass 100 

balance equation is established in the material points to provide liquid pressures. An explicit 101 

Euler-Cromer scheme [36] is used to update displacements and velocities from calculated 102 

accelerations. 103 

In order to avoid non-physical vibrations, it is common to include a damping term in the balance 104 

equations. The approach adopted here was presented by Cundall [37]. It introduces a damping 105 

force proportional to the corresponding out-of-balance force (proportional factor 𝛼) and 106 

opposite to the phase velocity. In dynamic problems, the proportional factor should be very 107 

small (0-5%) in order to approximate the correct solution and avoid an overdamped system. 108 

The standard MPM approach [25,33] in which the mass of each material point is assumed to be 109 

concentrated at the corresponding material point, suffers from spurious oscillations when 110 

material points cross from one element to another one. It is caused by a jump discontinuity in 111 

the gradient of low-order shape functions that are used for the integration. In order to reduce this 112 

numerical problem, a simple technique of low computational cost is introduced in this work 113 

[38]. It arises from considering that the stress on each element is constant and corresponds to the 114 

average of the stresses of the material points located within a given cell. Other authors proposed 115 

more accurate techniques. For instance, Bardenhagen and Kober [39] proposed to distribute the 116 

mass of each material point in a certain region. This idea results in a family of methods known 117 

as Generalized Interpolation Material Point (GIMP) methods. More recently, MPM has been 118 

extended to convected particle domain interpolation methods (CPDI1 and CPDI2) which are 119 

developed to improve the tracking of material point domains [40,41].  120 

3 CONSTITUTIVE MODELLING 121 

In this paper the basic non-associated Mohr-Coulomb law is generalized to introduce strain 122 

softening plasticity with the aim of modelling a strength loss after peak strength conditions. In 123 

order to reduce the singularities of Mohr-Coulomb yield surface (edges and tip) that involve 124 



some numerical problems during the elasto-plastic integration, the modifications proposed by 125 

Abbo and Sloan [42] have been implemented. 126 

Following previous contributions [43–47], the softening behaviour is accounted for by reducing 127 

the strength parameters (friction angle φ’, and cohesion c’) exponentially with the accumulated 128 

deviatoric plastic strain p
dε  according to the following softening rules: 129 

( ) p
d

r p rc c c c e ηe−′ ′ ′ ′= + −      (2) 130 

( ) p
d

r p r e ηeφ φ φ φ −′ ′ ′ ′= + −      (3) 131 

 132 

The deviatoric plastic strain invariant is defined as: 133 

2
3

p p p
d ij ijε = e e           (4) 134 

where p
ije  is the deviatoric part of the plastic strain tensor. 135 

The model requires the specification of peak (cp’,φp’) and residual (cr’,φr’) effective strength 136 

parameters. An additional parameter η, a shape factor parameter, is also necessary in order to 137 

control the rate of strength decrease. 138 

The effect of η in a simple shear test simulation is shown in Fig. 2. The soil parameters of the 139 

material considered in these simulations are summarised in Table 1. A vertical stress of 50 kPa 140 

and a horizontal one of 25 kPa are applied to confine the sample. Then, a prescribed velocity is 141 

imposed at the upper boundary maintaining the bottom fixed. High values of η lead to faster 142 

degradation of the soil strength.  143 

 144 

 145 



 146 
Fig. 2. Evolution of shear stress in a numerical model of a simple shear tests for different values of 147 

parameter η. 148 

4 A REFERENCE SLOPE INSTABILITY PROBLEM 149 

The instability of a synthetic slope, 6 m high and 37º steep, was analysed (Fig. 3). The slope 150 

failure was triggered by increasing the pore water pressure at the lower boundary simulating a 151 

phreatic level rise. This is a plane strain simulation in which the boundary conditions on the 152 

vertical contours are rollers and the base is fixed. The water pressure is zero along the slope 153 

surface, the lateral contours are impermeable and saturated conditions are considered during the 154 

calculation. The mesh was refined in the region where the failure is expected in order to get 155 

more accurate results and to optimise the computational cost. 156 

Initially the slope remains in equilibrium. The calculation starts with the application of a 40 kPa 157 

increase in pore pressure (ΔP) along the lower boundary during 1 second. Afterwards the water 158 

pressure on the boundary is maintained constant during the entire simulation. 159 

The Mohr-Coulomb strain softening model described in the previous section was used to 160 

simulate the brittle behaviour of a soil. The properties of the slope material are given in Table 1. 161 

The particular values selected are not relevant for the discussion presented here. The only 162 

requirement to select such values has been to ensure that the failure occurs for the imposed 163 

increment of pore water pressure. The effect of the shape factor parameter on the drop of the 164 

strength is shown in Fig. 2. 165 



 166 
Fig. 3. Scheme of the MPM model. Initial distribution of the material points and computational mesh.  167 

Table 1. Soil parameters of the slope. 168 

Soil parameters Value 
Porosity [-] 0.2 
Intrinsic permeability [m2] 10-10 
Young’s modulus [kPa] 20000 
Poisson’s ratio [-] 0.33 
Peak cohesion [kPa] 5   
Residual cohesion [kPa] 0.5   
Peak friction angle [º] 35 
Residual friction angle [º] 20 
Shape factor parameter  500 
Dilatancy angle [º] 0 
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An explicit Euler-Cromer scheme is used to discretise the governing equations. Because it is 170 

conditionally stable, very small time steps are required in the calculation. Since permeability is 171 

not a relevant parameter in the analysis presented here, a high value (0.001 m/s) has been 172 

adopted to simulate the slope failure in a relatively short time. 173 

In order to reduce numerical instabilities a damping force has been included in the momentum 174 

balance equation. It is proportional to the corresponding unbalanced force by means a 175 

proportional factor α = 0.05.  176 

The increase of pore pressure reduces the effective stresses in the slope leading some points to 177 

reaching peak conditions. The strain softening effect decreases progressively the strength 178 

parameters of the plastic zones down to the residual yield surface. As a result, the gravitational 179 

stresses are sufficient to induce a progressive failure in the case analysed. 180 

Failure development is illustrated in Fig. 4 by representing the shear strain contours at two 181 

different times. At 8.3 s a shear band localises providing a failure mechanism and afterwards the 182 

instability initiates. During the movement, the shear band spreads. Finally, when the new 183 

geometry becomes stable, a wider shear zone is observed (Fig. 4b). Fig. 5 shows the final 184 



displacements field. In this case, the achieved maximum displacement is 9.1 m and the 185 

displacement between the toe of the initial and the final slope geometries is 9.5 m. 186 

 187 
(a) 188 

 189 
(b) 190 

Fig. 4. Distribution of the shear strain at different times. Note the different scales of the shear strain. 191 

 192 
Fig. 5. Distribution of the calculated total displacement at 25 s after the initiation of the failure. The 193 

maximum displacement of the toe is also indicated.  194 

Following Skempton [10], a mobilised friction angle (MFA) ˆ 'ϕ  is defined as 195 

( )ϕ
ϕ

′′+
=′

tan
ˆsin

cp
q      (5) 196 

Where q and p’ are the deviatoric and effective volumetric stress components defined as 197 

follows: 198 

2
31 σσ ′−′

=q        ;      
2

31 σσ ′+′
=′p      (6) 199 

This measure of the mobilised strength is used to analyse the stress evolution of points 200 



homogeneously distributed along the initial failure surface. Note that ˆ 'ϕ  coincides with the 201 

peak or residual friction angle values (φp’, φr’) when the stress state of such a point is on the 202 

peak or residual yield surface envelopes respectively.  203 

A similar analysis of the progressive failure mechanism presented in [31,50] has been carried 204 

out. In Fig. 6a the progressive failure phenomenon is represented by plotting the evolution of 205 

the MFA (Eq. 5) in 7 material points located along the shear band. It indicates that the 206 

degradation of the material initiates at the foot of the slope and propagates upwards. 207 

According to Fig. 6a, it is clear that points along the failure surface reach the peak yield 208 

envelope at different moments depending on the evolution of the progressive failure 209 

mechanism. Note that time is controlled by the evolution of pore pressures because the internal 210 

mechanical transfer of stresses in the slope is an instantaneous process. 211 

In Fig. 6b, the evolution of the progressive failure is represented in terms of the mean mobilised 212 

friction angle. It is obtained by averaging the MFA of 20 material points distributed along the 213 

initial shear band and it is a measure of the mean mobilised strength in the failure surface. A 214 

very similar behaviour was observed in modelling of the Selborne experiment in [31]. Due to 215 

the increase of water pressure in the slope induced by the pressure condition imposed along the 216 

bottom boundary (see Fig. 3), the mean MFA increases up to a maximum value. Afterwards, 217 

there is a drop of the available mobilised strength. Then, the progressive failure develops, 218 

maintaining the mean mobilised friction angle approximately constant. This process ends 219 

abruptly at t=8.6 s, when the final point in the failure mechanism reaches the peak condition and 220 

immediately afterwards it softens down to the residual state. This leads to the onset of instability 221 

and the motion begins. 222 

The maximum average mobilized friction angle is attained at t = 8.25 s, when the lower part of 223 

the failure surface has already entered into a post-peak strength. This maximum is intermediate 224 

between peak and residual strengths and, in the case analyzed, close to the residual value. If a 225 

Limit Equilibrium method is used to analyze the slope stability, the maximum calculated at t = 226 

8.25 s is reasonable choice for the soil strength.  227 

Beyond the maximum the average friction decreases somewhat but the process of progressive 228 

failure develops at a fairly constant value of the average friction. When the last point in the 229 

failure surface reaches peak conditions there is a sudden reduction in average friction and the 230 

slope accelerates. This is indicated in Figures 6b and 7a as the “outset of instability”. Up to this 231 

time slope displacements are small and unnoticeable at the displacement scale selected to plot 232 

Figure 7a. 233 

 234 



The behaviour of a material point (P5) is analysed in Fig. 7. Fig. 7a presents the time evolution 235 

of the effective cohesion and the displacement experienced by point P5. Fig. 7b shows the stress 236 

path of P5. Initially, stress conditions are given by point A in Fig. 7b. The slope remains stable. 237 

Due to the increase of pore pressure imposed at the bottom boundary, the effective mean stress 238 

clearly decreases. The calculated slight increase of the deviatoric stress is a consequence of the 239 

stress redistribution during the initiation of the progressive failure at the toe of the slope. At 8.2 240 

s (indicated by point B in Fig. 7b), this particular material point reaches the peak yield surface. 241 

The material point plastifies, triggering a sudden drop of the cohesion (controlled by η), from 242 

peak to residual value. At t=8.6 s (the time required to develop the global failure mechanism) 243 

the slope becomes unstable and it accelerates. During the instability process, the stresses remain 244 

on the residual yield surface despite some numerical oscillations. At t=15 s, after 5 m of 245 

displacement, the material point stops when equilibrium has been established for the final 246 

geometry. Beyond t=15 s the stress stated of point P5 unloads slightly and enters into the elastic 247 

domain. 248 

 249 
(a) 250 



 251 
(b) 252 

Fig. 6. (a) Distribution of the mobilised friction angle along the initial shear band at different times. (b) 253 
Evolution of progressive failure in terms of mean mobilised friction angle. 254 

 255 

 256 
 (a)  257 



 258 
(b) 259 

Fig. 7. Evolution of a material point located on the sliding surface. (a) Effective cohesion and calculated 260 
displacement; (b) Stress path in terms of deviatoric stress q and mean effective stress p’. 261 

5 PARAMETRIC STUDY AND RESULTS 262 

A parametric study was carried out with the aim of studying the slope stability and the post-263 

failure behaviour as a function of the soil brittleness. 264 

The brittleness of the soil is defined in terms of the brittleness index (IB) proposed by Bishop 265 

(1967). It is a measure of the decrease of the strength from a peak value (τp) to a residual one (τr) 266 

and it ranges from 0 to 1.  267 

p

rp
BI

τ
ττ −

=      (7) 268 

where 269 

tanp p n pct σ φ′ ′ ′= +      (8) 270 

tanr r n rct σ φ′ ′ ′= +      (9) 271 

Being nσ ′  the average of the normal stresses to the sliding surface distributed along the initial 272 

failure mechanism at the moment in which the global failure develops. This means that IB is not 273 

a local parameter but it is a global measure of the material brittleness, and therefore, a 274 

representative value of IB can be calculated for each simulation that becomes unstable. For 275 

stable slopes in which a sliding surface cannot be defined, it is not possible to determine IB. 276 

A total of 82 simulations have been calculated considering different values of peak and residual 277 

strengths. The initial geometry is the same for all of them and it is identical to the case described 278 



previously. Two different maximum excess pore pressures (∆P) were introduced at the lower 279 

boundary, 40 and 70 kPa, to examine the effect of the destabilizing action on the slide run-out 280 

and velocity. Common material properties were given in Table 1. The strength parameters that 281 

vary for each particular case are indicated in Tables 2 and 3. Note that the selection of the 282 

strength values is not intended to strictly represent a certain type of soil but a strain softening 283 

material. 284 

In order to evaluate the post-failure slope response, the run-out is an important parameter to 285 

determine. Published data on run-out, based on simple approaches, consider a landslide 286 

represented by the centre of mass of the total mobilised volume, hence the run-out calculated in 287 

those cases is considered as the movement of such a point [51–53]. However, these models do 288 

not consider the changes in geometry that may experience the moving mass during the 289 

instability. 290 

In this paper, run-out is defined as the distance between the toe of the initial slope and the toe of 291 

the slope after failure once equilibrium has been re-established. This is a convenient parameter 292 

to evaluate the extent of the slide and it is directly related with the associated risk. It is 293 

important to highlight that this definition is not necessarily equivalent to the maximum 294 

displacement achieved by any point of the slope. 295 

5.1 Common peak strength and varying residual friction 296 

Accepting a common peak envelope defined by cp’=5 kPa and φp’=35º, 61 simulations have 297 

been carried out in order to study the effect of residual strength on the onset of instability and 298 

post-failure behaviour. A list of these numerical simulations is presented in Table 2, in which 299 

values of IB and run-out are also indicated.  300 

A comparison between initial failure mechanisms obtained with MPM and with a Limit 301 

Equilibrium Method LEM (Morgensten-Price) is shown in Fig. 8. The shape of the failure 302 

surfaces is very similar to LEM prediction when considering peak strength values. However, the 303 

depth of the failure surface slightly depends on the case simulated, ie.: the higher cr’, the deeper 304 

the failure surface. More will be said below on the appropriate value of strength parameters to 305 

be used in LEM in the case of brittle soils. 306 



 307 
Fig. 8. Comparison between the initial failure mechanisms obtained using MPM and LEM analysis. 308 

Fig. 9a shows the correlation between run-out and IB. The results converge in a unique curve 309 

which indicates that run-out increases with IB. Note that the maximum run-out observed in this 310 

parametric analysis is limited by the right boundary of the computational domain (Fig. 3). 311 

Therefore, the maximum run-out calculated is 26 m. Moreover, when IB >0.75, mobilised 312 

material points abandon the dense computational mesh and enter into a rougher mesh (Fig. 3). 313 

In these cases the integration becomes less accurate and results may be slightly less reliable. 314 

If the maximum displacement achieved by a point of the slope is considered as a suitable 315 

indication of the slide displacement instead of the defined run-out, a similar trend of results is 316 

observed in Fig. 9b. However the dispersion is significantly higher in this case. 317 

Note that different values of pore water pressure increase (∆P) lead to the same IB-run-out 318 

relationship (Fig. 9a). However, the minimum brittleness index required to induce instability (319 

ˆ
BI ) varies with ∆P. If ∆P=40 kPa, ˆ

BI  is around 0.5 ( 40ˆ
BI ), whereas for ∆P=70 kPa it decreases 320 

to 0.22 ( 70ˆ
BI ). The higher the intensity of the triggering mechanism the lower the IB to induce 321 

instability. 322 

Fig. 10 shows the final geometries of two simulations characterised by the same value of IB. 323 

Despite having a similar value of the run-out (14 m), the maximum displacements are very 324 

different (9 and 13 m) as well as the distribution of final displacements. Materials having a low 325 

residual cohesion cr’ lead to shallow failures (Fig. 10b), while higher residual cohesion results 326 

in a deeper failure and a rotational pattern (Fig. 10a). 327 

Table 2. Run-out and IB for all simulations performed with a common peak strength envelope 328 
(cp’=5kPa and φp’=35º) for different residual strengths and two water pressure recharges (∆P). 329 

 

cp’=5kPa φp’=35º 
∆P=40 kPa ∆P=70 kPa 

cr’ [kPa] φr’[º] IB Run-out [m] IB Run-out [m] 
5 35 stable 0.0 stable 0.0 
5 25 stable 0.0 stable 0.0 



5 20 
 

  0.32 1.4 
5 15 stable 0.0 0.43 3.4 
5 10 

 
  0.54 6 

5 5 stable 0.0 0.63 11.6 
5 0 0.68 14.5     
4 30 

 
  stable 0.0 

4 25 
 

  0.28 1.45 
4 20 

 
  0.39 2.8 

4 15     0.48 5.2 
2.5 35 stable 0.0 0.22 0.7 
2.5 30 

 
  0.33 2.25 

2.5 25 
 

  0.41 3.35 
2.5 20 stable 0.0 0.49 5.26 
2.5 15 0.57 6.9 0.57 8.25 
2.5 10 0.66 12.1 0.67 12.7 
2.5 5 0.74 14.9 0.75 17 
2.5 0 0.83 25 0.87 21.1 
1.5 30 

 
  0.37 2.92 

1.5 25 
 

  0.46 4.86 
1.5 20 

 
  0.56 6.45 

1.5 15 
 

  0.64 10 
1.5 10     0.73 14.6 
1.2 25 stable 0.0 0.5 5.7 
1.2 20 0.58 7 0.6 7.5 
1.2 15 0.67 11.2 0.67 11.7 
1.2 10 0.75 14.8 0.75 15.6 
0.5 35 stable 0.0 0.39 3.5 
0.5 30 stable 0.0 0.45 5.4 
0.5 25 0.58 7 0.55 6.5 
0.5 20 0.65 9.5 0.63 8.9 
0.5 15 0.72 14 0.7 13.01 
0.5 10 0.8 20 0.79 17.5 
0.1 35 stable 0.0     
0.1 30 0.52 6     
0.1 25 0.62 8.8     
0.1 20 0.68 12.6     
0.1 15 0.76 17.4     
0.1 10 0.83 26     
0.1 5 0.91 26     

Fig. 11 illustrates the final geometries after failure for 5 simulations with the same cr’= 0.5 kPa. 330 

The same pattern of displacements is observed in all cases. However, the run-out increases and 331 

the slope becomes flatter with increasing values of brittleness. 332 

In order to highlight the dynamics of the failure, Fig. 12 shows the evolution of the 333 

displacement (Fig. 12a) and the velocity (Fig. 12b) of a material point initially located just 334 

above the initial shear band. These results correspond to the unstable simulations presented 335 

previously in Fig. 11. These plots illustrate different phases of an instability process.  336 



The patterns of displacements, after a sliding mechanism was fully developed, follow the 337 

description given when interpreting Figures 6 and 7a. Figure 12a shows the effect of IB on 338 

displacements of point P, located at the lower part of the slope. Velocities are also given in 339 

Figure 12b. The slide accelerates, reaches a maximum velocity and moves forward towards a 340 

new stable profile. 341 

Additionally it can be observed that in slopes exhibiting larger values of IB, for the same peak 342 

strength: (1) the instability occurs earlier; (2) the velocity increases more suddenly; (3) the peak 343 

velocities reach higher values; (4) more time is required to reach the final position at rest; and 344 

(5) the run-out is longer. 345 

 346 
(a) 347 

 348 
(b) 349 

Fig. 9. (a) Relationship between run-out and IB. (b) Relationship between maximum displacement 350 
achieved by a point and IB. All simulations have the same peak strength (cp’=5 kPa and φp’=35º). ∆P 351 

indicates the imposed pore water pressure which induced the failure.  352 



 353 
Fig. 10. Final geometry for two simulations with same IB. The displacements of the material points are 354 

indicated in the colour scales. Also indicated is the run-out. 355 

 356 
Fig. 11. Final geometries of simulations with cr’=0.5 kPa. The displacements of the material points are 357 

indicated in the indicated colour scale. Also indicated is the run-out. 358 



 359 
                                         (a)                                                                                          (b) 360 
Fig. 12. (a) Displacement and (b) velocity of the material point P for simulations characterized by cr’=0.5 361 

kPa. 362 

5.2 Change in peak strength and varying residual friction 363 

In the previous Section it was found that a unique relationship developed between run-out and IB 364 

when the peak friction strength envelope was constant (and the residual strength varied in a 365 

wide range). The next step was to check if such uniqueness would also hold if peak strength 366 

parameters change. In order to explore this scenario three different peak strength parameters 367 

were selected, rather arbitrarily, but always ensuring that the slope would fail under the imposed 368 

water pressure increase at the lower boundary (∆P=70 kPa,):   369 

• cp’=5 kPa, φp’=35º (already analysed in the previous section) 370 

• cp’=5 kPa, φp’=45º 371 

• cp’=9 kPa, φp’=20º 372 

For each case, several simulations have been carried out varying the residual strength 373 

parameters according to Table 3. 374 

Following the procedure described previously, the brittleness index IB has been calculated for 375 

each unstable simulation. The effect of IB on run-out is presented in Fig. 13a. Although it is 376 

clear that the run-out increases for increasing IB, two different relationships can be 377 

distinguished. Whereas the combination of cp’=5 kPa and φp’=45º matches with the correlation 378 

defined in Fig. 9a, those simulations with cp’=9 kPa and φp’=20º define higher run-outs. Fig. 379 

13b shows the variation of the maximum displacement achieved by a point depending on IB, 380 

and, as shown in Fig. 9b, the scatter increases especially for higher values of IB. 381 

Since the obtained IB-run-out relationship (Fig. 13) is not unique, three simulations with 382 

different peak strengths and the same IB are analysed in detail (Figs. 14 and 15). The evolution 383 

of strain contours (Fig. 14) indicates that the shear strains localise along a single band in the 384 

first two simulations (Figs. 14a and 14b). By contrast, a deeper mechanism is developed in the 385 



third simulation (Fig. 14c) which is characterized by a higher cohesion and a lower friction 386 

angle with respect to the other two cases. A deeper seated failure involves a larger volume of the 387 

mobilized mass and also a longer length of the sliding surface. It seems that the IB-run-out 388 

relationship is also dependent on the failure mechanism. Final displacement fields are given in 389 

Fig. 15. Note that values of run-out and maximum displacements are different.  390 

Table 3. Run-out and IB for all simulations performed with three peak yield surface envelopes. 391 

 

∆P=70 kPa 
cp’=5 kPa φp’=35º cp’=5 kPa φp’=45º cp’=9 kPa φp’=20º 

cr’ [kPa] φr’[º] IB Run-out [m] IB Run-out [m] IB Run-out [m] 
6 20         stable 0.0 
6 15         0.3 1.45 
6 10         0.42 4.8 
6 5         0.56 13.41 
5 35 stable 0.0         
5 25 stable 0.0         
5 20 0.32 1.4   

 
0.25 1.3 

5 15 0.43 3.4   
 

0.36 3 
5 10 0.54 6     0.48 8.7 
5 5 0.63 11.6     0.63 15 
5 0             
4 30 stable 0.0         
4 25 0.28 1.45         
4 20 0.39 2.8         
4 15 0.48 5.2         

2.5 35 0.22 0.7         
2.5 30 0.33 2.25         
2.5 25 0.41 3.35         
2.5 20 0.49 5.26   

 
0.38 5.37 

2.5 15 0.57 8.25     0.5 9 
2.5 10 0.67 12.7     0.63 13.9 
2.5 5 0.75 17         
2.5 0 0.87 21.1         
1.5 30 0.37 2.92         
1.5 25 0.46 4.86         
1.5 20 0.56 6.45 0.65 9.3 0.46 8 
1.5 15 0.64 10     0.57 12.55 
1.5 10 0.73 14.6     0.68 17.02 
1.2 25 0.5 5.7         
1.2 20 0.6 7.5         
1.2 15 0.67 11.7         
1.2 10 0.75 15.6         
0.5 35 0.39 3.5         
0.5 30 0.45 5.4         
0.5 25 0.55 6.5 0.65 10     
0.5 20 0.63 8.9 0.7 13.1 0.52 12.7 
0.5 15 0.7 13.01 0.77 15.4 0.61 15.07 
0.5 10 0.79 17.5 0.84 19.5     
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 393 
                                          (a)                                                                                 (b) 394 

Fig. 13. Relationships between IB and (a) run-out and (b) maximum displacement achieved by a point. 395 

 396 
                           (a)                                                   (b)                                                     (c) 397 

Fig. 14. Distribution of the shear strain at three different times (the initiation of failure mechanism, an 398 
intermediate time, and final geometry) for three simulations with similar IB but different peak strength 399 

envelopes.(a) cp’=5 kPa, φp’=35º; (b) cp’=5 kPa; φp’=45º; (c) cp’=9 kPa, φp’=20º. 400 

 401 

 402 
                             (a)                                                        (b)                                                     (c) 403 



Fig. 15. Final distribution of total displacements field for 3 cases with similar IB but different peak 404 
strengths. (a) cp’=5 kPa, φp’=35º; (b) cp’=5 kPa, φp’=45º; (c) cp’=9 kPa, φp’=20º. 405 

5.3 Effect of cohesion and friction angle decrease in the onset of failure  406 

The onset of failure is analysed depending on the cohesion and friction decrease (Eqs. (10) and 407 

(11) respectively) and on the external triggering action (pore water pressure increase in the 408 

lower boundary ∆P). Consider the following “brittleness” ratios for effective cohesion and 409 

friction: 410 

( )p r pdc c c c′ ′ ′ ′= −      (10) 411 

( )' tan tan tanp r pdϕ ϕ ϕ ϕ′ ′ ′= −      (11) 412 

Zero values of these indices corresponds to a ductile behaviour whereas a unit value represents a 413 

highly brittle response. 414 

All the combinations of dc′  and 'dϕ  shown in Table 2 for ∆P =40 kPa and ∆P=70 kPa are 415 

shown in Fig. 16. It is clear that the lower the increments of water pressure, the higher is the 416 

required strength reduction to make the slope unstable. For instance, in the case of ∆P =40 kPa, 417 

in order to reach failure, the soil should exhibit a full brittleness in one of the strength 418 

parameters and a full ductility in the other, or the combination given by the threshold straight 419 

line separating failure from stability. 420 

These results suggest that both cohesion and friction angle play a similar role in determining a 421 

threshold that define whether the slope will become unstable, or on the contrary, will remain 422 

stable. 423 

 424 
(a) 425 



 426 
(b) 427 

Fig. 16. Stability of the slope depending on the combination of cohesion drop ( dc′ ) and friction angle 428 
decrease ( dϕ′ ). The increase of pore pressure at at the lower boundary is (a) ∆P =40 kPa and (b) ∆P=70 429 

kPa. The same peak strength is maintained in all these simulations (cp’=5 kPa and φp’=35º). 430 

5.4 Effect of peak and residual strength in run-out 431 

In previous sections, the IB-run-out relationship is analysed but the relevance of peak and 432 

residual strength is not discussed. This is because IB combines both effects in a single parameter.  433 

The influence of peak and residual strengths on the value of run-out is shown in Fig. 17. It is 434 

clear that simulations having the same residual strength have quite similar values of run-out 435 

even if different peak yield surface envelopes define the material (Fig. 17).  436 

 437 
Fig. 17. Influence of residual strength on run-out for three different peak Mohr-Coulomb envelopes. 438 



6 DISCUSSION 439 

6.1 Run-out vs maximum displacement 440 

It has been shown that run-out, defined as the distance between the toe of the initial slope and 441 

the toe once equilibrium has been re-established after the instability, is not equivalent to the 442 

maximum displacement achieved by any point of the slope (see Figs. 9 and 13). While a clear 443 

relationship cannot be obtained between IB and maximum displacement, IB and run-out correlate 444 

well. 445 

The difference between run-out and maximum displacement is evident especially when the 446 

failure mechanism is deep and the landslide is essentially a rotational movement (Fig. 10a). The 447 

deeper the failure surface (cohesive component of strength dominates) the larger the ratio 448 

between run-out and maximum point displacements. However, both lengths are similar when 449 

the initial failure is shallow (Fig. 10b). 450 

6.2 Effect of peak and residual strength in the whole instability process  451 

Here the role played by peak and residual strengths in the stability of the slope, in the slip 452 

surface geometry and in the post-failure response is discussed. 453 

According to the results presented in Fig. 6, it is clear that the peak envelope controls the 454 

initiation of the progressive failure because it determines when the first point reaches the 455 

maximum strength. However, the redistribution of stresses due to the strain softening of the 456 

material and the propagation of the progressive failure is a complex process governed by both 457 

peak and residual states. Note that the mean mobilised strength in the slope (Fig. 6b) remains 458 

always below the peak value. 459 

In agreement with this, it has been observed that the geometry of the failure mechanism is 460 

definitely influenced by both peak and residual strengths (Figs. 8 and 14) but peak strength has 461 

a stronger effect. Especially the peak cohesion highly influences the depth of the mechanism. 462 

Finally, the run-out is essentially influenced by the residual state (Fig. 17). It makes sense 463 

because when the post-failure stage initiates the soil in the shear band has experienced enough 464 

plastic shear strain to be totally softened. This behaviour is also shown in Fig. 6b. 465 

6.3 Residual cohesion in brittle soils 466 

In brittle soils, peak friction angles may take values ranging from 5º to 45º depending on the 467 

type of soil. The variability of peak cohesion can be also very large (from 0 kPa to more than, 468 



say, 200 kPa in very stiff clays). However, residual effective cohesion is very low or non-469 

existent. 470 

The selection of peak and strength values presented in the parametric analysis (Section 5) 471 

represents a large variability of strain softening materials, and some of them include unlikely 472 

values for the residual cohesion (up to 6 kPa).  473 

In order to analyse if this restriction have some effect on the results, an additional figure is 474 

included here (Fig. 18) in which only those simulations from Table 3 having a small cr’ (cr’≤1.5 475 

kPa) are presented. The number of cases in the simulations performed decrease substantially but  476 

the relationships between IB and run-out and maximum displacement look essentially the same 477 

as those obtained when interpreting the complete set of simulations (Fig. 13). 478 

 479 
                                          (a)                                                                                 (b) 480 

Fig. 18. Relationships between IB and (a) run-out and (b) maximum displacement achieved by a point. 481 
Cases with cr’≤ 1.5 kPa.  482 

7 CONCLUSIONS 483 

The stability and post-failure behaviour of a saturated slope have been analysed by means the 484 

MPM which has been proved that it is capable to simulate both the initiation of failure, which 485 

involves small strains, and the post-failure stage, generally characterised by large displacements. 486 

A homogeneous slope with a regular geometry has been analysed. The slope failure is triggered 487 

by increasing the water pressure on the lower boundary of the domain. 488 

The slope material has been defined by a strain-softening elastoplastic constitutive law that 489 

allows the simulation of the strength decrease (from a peak to a residual value). The progressive 490 

failure mechanism, typically observed in brittle materials, is reproduced and analysed. Both, 491 

peak and residual values of the strength control the slope failure which progresses from the toe 492 

to the crest of the slope. On the contrary, the post-failure behaviour is mainly controlled by the 493 



residual strength and it has an important effect on the run-out. The results show that the 494 

geometry of the failure surface determines the final displacement field.  495 

The effect of the material brittleness, defined in terms of brittleness index IB (proposed by 496 

Bishop [12]), on the post-failure behaviour has been identified by means of a parametric 497 

analysis combining peak and residual values of cohesion and friction angle. Both run-out and 498 

the maximum displacements have been represented in terms of the brittleness index. Run-out 499 

was defined here as the distance between the toe of the initial slope and the toe of the slope after 500 

failure once equilibrium has been re-established. It was found that run-out increases with IB and 501 

both correlate well when a common peak strength envelope is adopted. On the contrary, a clear 502 

relationship has not been obtained between IB and maximum displacement.  503 

The onset of failure also depends on the magnitude of the triggering mechanism. The higher the 504 

intensity of the triggering mechanism, the lower IB is sufficient to induce instability. This fact 505 

allows defining a brittleness threshold ˆ P
BI ∆  which determines the minimum brittleness required 506 

to induce instability for a certain excess pore pressure. However, the magnitude of the applied 507 

excess pressure (∆P) does not change the general observations discussed above. 508 
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