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ABSTRACT

The decision on the primary endpoint in a randomized clinical trial is of paramount importance and
the combination of several endpoints might be a reasonable choice. Gémez and Lagakos (2013) have
developed a method that quantifies how much more efficient it could be to use a composite instead
of an individual relevant endpoint. From the information provided by the frequencies of observing
the component endpoints in the control group and by the relative treatment effects on each individual
endpoint, the Asymptotic Relative Efficiency (ARE) can be computed. This paper presents the appli-
cability of the ARE method as a practical and objective tool to evaluate which components, among the
plausible ones, are more efficient in the construction of the primary endpoint. The method is illustrated
with two real cardiovascular clinical trials and is extended to allow for different dependence structures
between the times to the individual endpoints. The influence of this choice on the recommendation on
whether or not to use the composite endpoint as the primary endpoint for the investigation is studied.
We conclude that the recommendation between using the composite or the relevant endpoint only
depends on the frequencies of the endpoints and the relative effects of the treatment.
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1 INTRODUCTION

When comparing two treatment groups by means of a randomized clinical trial (RCT), the choice
of the primary endpoint is crucial. It is often the case in which several relevant events might be
chosen as the primary endpoint for the analysis and the decision on which one to choose might
be difficult. Sometimes, the event with the greatest clinical importance is the chosen one while the
other events are assessed using secondary analysis. In other situations, two or more events are of
comparable importance and, in those cases, it is common to use the union of them as the primary
endpoint. In general, the decision on which endpoint to use is, among other criteria, based on the
prior knowledge of the frequency of observing the “candidate” events as well as on the anticipated
effect that the treatment could have on each event. However, in some occassions the choice of endpoints
is controversial and the final decision is not taken on solid grounds.

Several authors have discussed the advantages and disadvantages of using a composite endpoint
from a clinical perspective (Ferreira-Gonzalez et al., 2007b; Freemantle et al., 2003; Montori et al., 2007;
Ferreira-Gonzdlez et al., 2007a). One of the main clinical arguments is that the composite endpoint
could capture the net benefit of the intervention, avoiding the need to choose a single main end-
point when different endpoints are of equal importance. From a statistical point of view, two main
arguments are: i) a composite endpoint reduces the multiplicity problem that may occur if different
endpoints are used separately (Huque et al., 2011); and ii) a larger number of events will be observed
when using a composite endpoint than for any relevant event alone. However, as it is shown in Gémez
and Lagakos (2013), a larger number of events would not necessarily imply a more powerful test for
treatment efficacy. Moreover, the use of a composite endpoint could entail certain difficulties such as
how to interpret the results of a trial when the primary endpoint is composed of events of different
clinical importance (Song et al., 2008). It is also important to keep in mind that a significant treat-
ment effect on the composite endpoint does not necessarily imply an effect on each of the components
(Goémez, 2011). Song et al. (2008) clarify some of these issues and propose to use a recurrent composite
endpoint.

Gomez and Lagakos (2013) frame this problem by considering two potential endpoints to answer
the most interesting question for the investigators. We refer to these two endpoints as relevant and ad-
ditional endpoints, corresponding, in many instances, to two feasible primary endpoints or a primary
and a secondary endpoint. Gémez and Lagakos have provided a statistical methodology, we refer to
it as ARE method, to derive efficiency guidelines for deciding whether to expand a study’s relevant
endpoint to the composite endpoint defined as the event that has occurred if either the relevant or the
additional endpoint is observed (Meinert, 2012). The method they propose is suitable for randomized
clinical trials in which the two treatments are compared with respect to the time from randomization
until the event occurs and when a logrank test is used for the comparison. The decision on whether
to design the clinical trial using the relevant or the combination of the relevant and the additional is
based on the Asymptotic Relative Efficiency (ARE). The ARE is to be interpreted as the ratio of the
needed sample sizes to attain the same power for a given significance level when using either the rel-
evant or the composite endpoint (Gémez and Gémez-Mateu, 2014). The ARE method provides a tool
that allows to make a more informed decision on the choice of the primary endpoint of a RCT during
its design and when the data is still not available. Keeping this in mind, the computation of the ARE
is based on easily interpretable parameters, possibly obtained from relevant previous studies, such
as the frequencies of observing the relevant and additional endpoints in the control group, the antici-
pated relative treatment effects on the relevant and additional endpoints given by the corresponding
hazard ratios and to a lesser extent by the dependence degree between the relevant and the additional
endpoints. Furthermore, the marginals and the joint law between the times from randomization until
the relevant and additional events occur have to be defined and, in doing so, we face the challenge of
modelling an empirical problem in such a way that is not too complex but still realistic. Gémez and La-
gakos model the joint dependence structure by means of a copula function. A copula is best described,
as in Joe (1997), as a multivariate distribution function that is used to bind each marginal distribution
function to form the joint. The copula parameterises the dependence between the marginals, while the
parameters of each marginal distribution function can be estimated separately.

Among the many clinical trials that use composite endpoints, we have chosen the studies by Packer
et al. (2001) and Tardif et al. (2008) to illustrate the ARE method. The goal of Packer’s study is to test
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the effect of carvedilol in patients who had symptoms of heart failure at rest or on minimal exertion.
The primary endpoint of the study, denoted by €7, was death by any cause. They use as a secondary
endpoint, €., the endpoint that combines death and hospitalization for any reason. We illustrate in
Subsection 3.2 how the most efficient of these two endpoints could have been chosen ahead of time
based on some parameters of the same nature of those needed for the computation of the sample size.
Tardif’s study evaluates the efficacy of the addition of succinobucol, a novel anti-oxidant and anti-
inflammatory agent, to optimal medical therapy. They conduct a double-blind, placebo-controlled
clinical trial to 6,144 high-risk patients with unstable angina or who had suffered heart attacks. The
following six cardiovascular events are of interest: Cardiovascular death, resuscitated cardiac arrest,
myocardial infarction, stroke, hospitalization due to unstable angina or hospitalization due to coronary
revascularization. The study shows that succinobucol has no effect on the primary endpoint, €, where
all six events are considered, while it has a beneficial effect on the composite secondary endpoint
defined as the union of the first 4 events. In this particular instance, the addition of the hospitalization
events (355 (67%) in the succinobucol group and 318 (60%) in the placebo group) to the previous 4
events (207 versus 252) has yielded a non significant result for the primary €, from a beneficial effect
that the treatment has on the composite secondary endpoint. This study is a good example to show
that had the ARE method been applied during the design of the trial, then a significant clinical benefit
of the drug would have been found on the reduction of the composite endpoint of cardiovascular
death, resuscitated cardiac arrest, myocardial infarction and stroke.

The main aim of this paper is to present the applicability of the ARE method. This method can
be used as a practical and objective tool to evaluate which components, among the plausible ones, are
more efficient in the construction of the primary endpoint. This tool allows clinicians and statisticians
to take a more informed decision for the final primary endpoint in a randomized clinical trial. We
first present the methodology and show how to use it with the aid of the software R. As we will see,
to use this method the investigators will have to provide values for the frequencies of observing the
candidate endpoints in the control group as well as the range of values for the anticipated hazard ratios.
Furthermore, although the choice of a copula to model the joint behavior between the two candidate
endpoints is needed, we have run a study for several families of copulas, and concluded that the
recommendations for the most efficient primary endpoint are independent of the copula chosen.

The remainder of this paper is organized as follows. In Section 2, we present the ARE method
and show how to use it in terms of interpretable parameters. In Section 3, we introduce the above
described clinical trials to motivate the problem and to show how to use this method. In Section 4 we
extend the method to several families of copulas and study the sensitivity of the ARE values to the
choice of the copula. Simulated scenarios have been set up and the ARE values have been compared
using different copulas. Finally, we make the concluding remarks in Section 5.

2 THE ARE METHOD

2.1 The theoretical framework

Consider a two-arm randomized study with assignment to an active (X = 1) or control treatment
(X =0), for example new treatment versus standard of care or placebo. Assume that several individual
endpoints are feasible to check the efficacy of the treatment and, although not all of them have to be
of equal importance, neither all of them are expected to have the same benefit. For the sake of clarity
denote by £; and £, two potential primary endpoints that could answer satisfactorily the study’s
primary clinical question and denote by €. the corresponding composite endpoint, which is considered
to have occurred if either €7 or &, is observed (Meinert, 2012). Let Ty, T, and T, = min{T;, T>} be the
respective times from randomization to €1, &, and €, and assume that the end-of-study is the only
non-informative censoring cause.

We could test the superiority of the new treatment either by means of the relevant endpoint &,
or using the composite endpoint €,. In either case, assume that the logrank test is used for the
comparison.

The ARE method is based on the Asymptotic Relative Efficiency between the logrank test based on
the observed data provided by the composite endpoint £, and the logrank test based on the observed
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data provided by the relevant endpoint £;. It can be shown (Gémez and Gémez-Mateu, 2014) that the
ARE value corresponds to the ratio of the sample sizes that one might need if using either €, or &; to
evaluate the efficacy of the treatment, for the same significance level and the same power.

The expression of the ARE depends on whether €1 and £, contain a terminating event (i.e. death)
among its components. In those cases in which death could be one of the components of €;, then
&1 will only be observed if occurs before €, and the computation of the ARE is a bit more complex
because it depends on the cause-specific hazards instead of the marginal ones. The discussion in
this paper is restricted to those cases such that the components of the additional endpoint £, do not
include death. The reader is addressed to the paper by Gémez and Lagakos (2013) for the technical
details and discussion of the assumptions for the 4 different censoring situations.

Assume that the relative treatment effects on €1 and on &, given by their hazard ratios, HR; and
HR;, are constant, let 0 be a parameter measuring the dependence between T; and T, in either group

(see Appendix A.1 for details) and denote by £10) (t;0) the density function of T, in group o, that is,
fé £10) (t;0)dt = Prob(observing £, in group o). The expression of the ARE value is as follows:

(73 1og (HR. (1;0)) 1) (1;0)at)
ARE(E4,&1) =

, 1
(log HR;4 )? Prob(observing &, in group o)Prob(observing &, in group o) ®

where HR,(t; 0) stands for the relative treatment effect on &, that is, the ratio between 7\>(k1 ) (t;0) and

AL (t;0), the hazard functions at time t for the composite endpoint for groups 1 and o, respectively.

2.2 The ARE as ratio of needed sample sizes

Although HR,(t;0) does not have to be constant even if HR; and HR; are (Gémez, 2011), to have
further insight into the ARE meaning, assume momentarily that HR.(t;0) = HR. is approximately
constant. Then, the ARE given in (1) would simplify to

2 . .
ARE(E,,€1) = (log HR,)“ Prob(observing £, in group o)

2
(log HR; )2 Prob(observing &; in group o) @)
If we recall sample size formulas (Collett, 1994) to distinguish between two treatment groups in a
survival study, the required number e; of events £; to declare that the observed hazard ratio is
different from 1 with a probability 1 — 3 for a specified significance level « is given by

4z +2z1-p)?

(log HR; )?

e] =

where log HR reflects the magnitude of the treatment difference evaluated if endpoint €7 is used
that is important to detect, and zq is the g™ quantile of the standard normal distribution. If there were
no right censoring, e; would be equal to the required sample size. Accounting for right censoring, the
sample size would be

€1
n

- Prob(observing &, in group o)

Analogous formulas apply for the total number of events £, needed to be observed, e, and for the
corresponding sample size n. to detect log HR.. Replacing accordingly log HR; and log HR, in (2),

we have
Prob(observing &, in group o) /e

ARE(E+, €1) = Prob(observing &£ in group O)/e] 4

hence ARE(E., &1) = 1, showing that ARE can be interpreted as the ratio of the required sample
sizes for a given power and significance level. Therefore, a value of ARE(E4, £1) > 1 would favour the
composite endpoint €., while if ARE(E,,E1) < 1 the relevant endpoint should be prefered.
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2.3 The ARE in terms of interpretable parameters

Since the main aim of the ARE methodology is to provide an anticipated value for the efficiency
of using either primary endpoint (the composite €, or the relevant €7), on which to base a more
informed decision to run the clinical trial, it is of uttermost importance to be able to do so in terms
of interpretable and anticipatable quantities. That is, the method requires to setup values for certain
parameters, which are often based on prior knowledge of the scientific study, of the same nature
of what is commonly done for computing the sample size before starting to collect data for a given
clinical trial.

Certain choices have to be made in order to compute the ARE. As we see in expression (1), the ARE

value depends on the law of T,, the time to the composite endpoint (through £10) (t;0) and HR.(t;0)).
The behaviour of T. depends on the joint law between the times T; and T, to €7 and &, respectively.
Goémez and Lagakos did model the joint dependence structure by means of Frank’s copula. Frank’s
copula binds the marginal laws of Ty and T, through a function (see (6) in Appendix A.2) and the aid
of a dependence parameter.

However, the election of the copula is debatable and the possibility that the ARE values depend
too strongly on this choice has to be checked. In Section 4 we present a computational study for
11 different copula families and show how the recommendation based on the ARE values is, almost
always, independent of the copula chosen. Appendix A.1 provides technical details for the general
expressions of #0) (t;0) and HR,(t; 0) in terms of an arbitrary copula function, and Appendix A.2 ex-
emplifies for three most common copulas: Frank, Gumbel and Clayton. Furthermore, since the chosen
copula binds the marginals of the endpoints Ty and T,, the marginal laws have to be characterized.
We have chosen Weibull’s laws because their flexibility allowing decreasing, constant and increasing
hazard rates. Finally, the following quantities are required to compute the ARE given in (1):

e frequencies py and p; of observing the endpoints €1 and &, in treatment group 0,
e relative treatment effects on €1 and £, given by the hazard ratios HR; and HR;,

e decreasing, constant or increasing hazard rates of the marginal Weibull distributions of the end-
points Ty and T, and

e Spearman’s rank correlation coefficient p between Ty and T, (this coefficient is in one-to-one
correspondence with the copula dependence parameter 0).

It is worth noting that the set of assumptions established in Gémez and Lagakos (2013) are often
assumed when designing a clinical trial. Furthermore, the set of parameters required by the ARE
method corresponds to those needed for the computation of the sample size in a trial. Henceforth,
neither the assumptions nor the needed anticipated values could be considered as a limitation in the
design of this type of studies.

From a pragmatic point of view, we could use Frank’s copula and exponential (constant hazard
rates) marginals by default, fix the anticipated values (p7,p2, HR1), use the criterium ARE < 1 and
ARE > 1 to base the decision between €7 and €., respectively, together with plots as in Figure 1 to
make decisions for large range of plausible values for HR; and p. How to use and interpret these plots
is postponed to Section 3. Appendix A.3 provides details on the computation of the ARE using R.

3 USING THE ARE METHOD TO CHOOSE THE PRIMARY ENDPOINT

Two randomized clinical trials will serve to illustrate how to use the ARE method in a real setting, to
compute the ARE values for several scenarios, to discuss which would have been our recommendation
for the primary endpoint and to give insight into the selection of the primary endpoint. The reader is
refered to Gomez et al. (2014), where a survey of the use of composite endpoints in the Cardiovascular
Literature is described , other interesting cases of clinical trials are presented and a set of recommen-
dations for future design choice between relevant and composite endpoints for cardiovascular clinical
trials is discussed.
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3.1 Case study 1: Treating patients after an acute coronary syndrome with succinobucol

Tardif et al. (2008) designed a randomized clinical trial to test the effect of the antioxidant succinobucol
on cardiovascular outcomes in patients with recent acute coronary syndrome. The primary efficacy
endpoint, denoted by ., was the union of £&; and £;, where £; was the first occurrence between
cardiovascular death, resuscitated cardiac arrest, non-fatal myocardial infarction and non-fatal stroke;
and &, was the first occurrence of hospitalization due to either unstable angina with objective evidence
of ischaemia or coronary revascularisation. The trial did not show statistically significant differences
in terms of the primary composite endpoint £, obtaining a hazard ratio HR. = 1.00 (95% confidence
interval (CI): 0.89 —1.13, p-value (p)=0.96).

However, the effect of succinobucol in terms of €7 yielded a hazard ratio HRy = 0.81 (95% CI of
0.68 — 0.98, p =0.029). In this trial, there were many more hospitalizations (£;) than €7 events, but,
since the number of hospitalizations were similar in both treatment groups, the effect on the composite
endpoint £, was diluted. Conclusions from a randomized clinical trial should be only based on the
primary endpoint and findings from secondary analyses must be taken cautiously, since they could be
easily explained by chance, after inflating the type I error of the study. Although this study does not
prove the efficacy of succinobucol on &1, it serves the purpose of illustrating how adding an event &,
to a relevant one €1 could lead to the disappearance of the potential significant benefit of the active
treatment that would have been found on the relevant outcome (€1) and exhibits the usefulness of the
ARE method.

For the purpose of the following discussion, assume that the expected frequency of observing
€1 (outcome given by either cardiovascular death, resuscitated cardiac arrest, non-fatal myocardial
infarction or non-fatal stroke), in the placebo group, is p; = 0.082, while the frequency of observing a
hospitalization, €3, is pp = 0.09. If the expected risk reduction of €1 is about 20% (HR; = 0.81), the
ARE values for risk reductions of €, between 5% and 70% ( HR; ranging from 0.3 to 0.95, actual value
in the trial was 1.05) are computed for weak to strong correlations between Ty and T, and for increasing,
constant and decreasing hazard functions for Ty and T, yielding a total of 567 different scenarios
(Table 1). Whenever the treatment reduces the risk of hospitalization by at most 10% (HRz > 0.9)
(126 different scenarios) we observe ARE< 1 and in these cases the relevant endpoint €1 is always
more efficient than adding hospitalisation for unstable angina or coronary revascularisation. However,
if succinobucol would reduce the risk of hospitalization by at least 15% (HR, < 0.85) (441 different
situations), then ARE> 1 and the composite endpoint combining the six individual endpoints .
should be preferred as primary efficacy endpoint.

Plots as the one shown in Figure 1 provide an extra tool to decide between £; and &., even when
the values of HR; or p are only known within a range. The plot shows the ARE values (in logarithmic
scale so that the significance of relative asymptotic efficiency is faithfully represented) for different
Spearman’s p correlation values and different effects of the treatment on the additional endpoint
&5. For those situations with HR; < 0.85, ARE> 1 for all p values while if HR, > 0.9, ARE< 1
for almost all p values. However, if the risk reduction on hospitalization is between 10% and 15%
(0.85 < HRy < 0.9) then the plot shows ARE> 1 for weak to moderate correlations and ARE< 1 for
moderate to strong correlations. Hence, considerations on the degree of association between £ and
&, will lead to different recommendations for the definition of the primay endpoint.

We also observe that the ARE values decrease as the degree of association between &7 and &,
increases, and hence, the recommendation of sticking to the relevant endpoint € is stronger as €7 and
&, are more correlated. Figure 1 has been based on Frank’s copula and assuming that the marginal
hazards are both increasing. Other hazard combinations lead to similar results.

3.2 Case study 2: Effect of carvedilol on survival in severe chronic heart failure

Packer et al. (2001) designed a randomized clinical trial to test the effect of carvedilol in patients who
had symptoms of heart failure at rest or on minimal exertion. The primary endpoint of the study (1)
was death from any cause. One of the secondary endpoints was the combined risk of death (£1) and
hospitalization for any reason (€,) and we will denote it by €... The trial showed statistically significant
lower risk for patients treated with carvedilol compared to placebo on death from any cause, €1, with
11.2% and 16.8% of deaths in the treatment and placebo groups, respectively. It was as well shown
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that carvedilol reduced the combined number of deaths or hospitalisations, €., with 36.8% and 44.7%
in the treatment and placebo groups, respectively.

We use this example to illustrate how to use the ARE method to choose the more efficient endpoint
during the design of the trial, based on the values that were assumed to compute the sample size. In
Packer et al. (2001) the sample size was estimated anticipating a 28% (p1 = 0.28) one-year mortality in
the placebo group and an anticipated risk reduction as a result of the treatment of 20% (HR; = 0.8)
(for a 920% power and two-sided o« = 0.05). In order to apply the ARE method we need, as well,
anticipated values for the probability of one-year hospitalizations in the placebo group and values
for the expected risk reductions as a result of the treatment in the number of hospitalizations. We
will use three different frequency values for the expected frequency of hospitalization in the placebo
group, p2 = 0.10,0.30,0.50, and several expected risk reductions (HR,; = 0.3 through 0.95) to cover
a large number of scenarios. The ARE value is calculated for the above parameters, for weak to
strong correlations between time to death from any cause, T;, and time to hospitalization for any
reason, T, and for increasing, constant and decreasing hazard functions for T; and T,, replicating the
scenarios from Section 3.1. Table 1 reproduces the 567 different scenarios for each of the three different
probabilities of hospitalisation p;.

Whenever the effect of the treatment reduces the risk of hospitalizations by at least 30% (HR, < 0.7)
and the expected frequency of hospitalisation ranges from 10% to 50%, the ARE value is larger than 1
and, therefore, adding hospitalisation is efficient and the primary endpoint should be the combination
of death and hospitalisation. However, if the effect that treatment has on hospitalisation only reduces
the risk by as much as 10% (HR, > 0.9), then, sticking to death from any cause as primary endpoint
would be a more efficient decision.

When the effect of treatment on the risk of hospitalisations &, is similar to that on the risk of
deaths, &1, i.e. between 10% and 30% (0.7 < HR, < 0.9), then the recommendation on whether
to use death as main primary endpoint or add hospitalisations depend on the probability of being
hospitalised and the correlation between time to death, Ty, and time to hospitalization, T,. As seen in
the plots in Figure 2, the gain in efficiency by adding €, and considering the composite of death and
hospitalization increases as the probability of being hospitalised increases. At the same time, the effect
of the degree of association between €1 and £, becomes less relevant with the increase of p;. Figure
2 has been based on Frank’s copula and assuming that the marginal hazards are both constant. Other
hazard combinations lead to similar results.

4 HOW RELEVANT IS THE CHOICE OF THE COPULA? A COMPUTA-
TIONAL STUDY

The ARE method is a powerful tool created to help in the choice of the primary endpoint during the
design of a clinical trial. As it is explained in Subsection 2.3 the election of the copula as a joint model
between T; and T, is a crucial step in the computation of the ARE value.

However, during the design stage, data is not available and the bivariate structure of T; and T, is
unknown. It is possible to obtain measures of association such as Pearson’s correlation of Ty and T,
from previous studies. However, a pair of joint distributions with different bivariate structures - given

by different copulas - could have similar values in the correlation of the two marginal distributions.

It is, hence, important to explore the impact that different copulas might have in the construction of
the bivariate survival function of (T, T;) since the recommendation on whether to use as primary
endpoint the relevant endpoint £; or the composite €, might heavily depend on this choice. The
main purpose of this section is to expand the ARE method to copulas, other than Frank, and to check
whether or not different copulas imply fundamental changes in the ARE recommendations.

4.1 Extension of the ARE method to other copulas

The law of the composite endpoint T = min{TP), Tz(j)} depends on the joint law between TP ) and

Tz(j), where the superscript (j) stands for group j = 0,1. This joint law can be characterized in many
different ways, and a bivariate copula C (function from 12 to I = [0, 1]) is a convenient choice. Copulas
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can be used to define different dependence structures for pairs of random variables (Trivedi and
Zimmer, 2007). In fact, multivariate distributions with similar degrees of dependence might exhibit
substantially different dependence structures depending on the copula chosen.

If ng)(‘q) and S 9) (t2) are the marginal survival functions of T1(j) and Tz(j ), respectively, the joint

survival function of (T](] ), TZU )) is given by

SOy (t1,12:0) =P (t1) + 89 (1) — 1+ C(1 =8P (1), 1= 87 (12);0),

where we are using the same copula C and the same association parameter 8 for both groups. The
survival function of TyEJ) = min{T1m, TZ(] )} is then given by

sV 0) =P > £, 1) > ;00 = s}, (1, t;0).

We have extended the ARE method to the following 11 families of copulas: Frank, Gumbel, Clayton,
Farlie-Gumbel-Morgenstern (FGM), Normal, ¢, Plackett, Galambos, Hiisler-Reiss, Tawn and t-EV. Table
2 gives the expression for each of these copulas and Appendix A.1 provides further technical details.
Since Frank, Gumbel and Clayton copulas are the copula families more often used, we present them
with greater detail in Appendix A.2 and discuss the type of dependencies that these 3 families might
exhibit.

4.2 Revisiting the succinobucol study for several copulas

In the randomized clinical trial introduced in Subsection 3.1, the first occurrence between cardiovas-
cular death, resuscitated cardiac arrest, non-fatal myocardial infarction and non-fatal stroke (relevant
endpoint £1) would have been recommended as primary endpoint if the risk for hospitalization of
treated patients compared to placebo would have anticipated a reduction of less than 10% (HR, > 0.9)
because, in these cases, as already discussed, the Asymptotic Relative Efficiency is, for all possible
correlations and behaviours of the marginal hazards, less than 1.

We have computed the ARE for the remaining ten possible copulas and have found that all would
have yield to the same recommendation. Figure 3 exemplifies the same ARE pattern for the eleven
different copulas. Our study has considered 504 different scenarios, which are the ones described in
Section 3.1 excluding the particular situation in which HR; = 0.85 — this relative risk value was only
chosen to illustrate ARE values close to 1. In almost all the cases (492 scenarios, 97.6%), the same
recommendation on whether to use €7 or £, would be given.

Our conclusions summarizing the findings are the following:

1. Use the composite endpoint &, if the treatment reduces by more than 10% the risk of hospital-
ization £, (HR; < 0.9) and use the first occurrence between cardiovascular death, resuscitated
cardiac arrest, non-fatal myocardial infarction and non-fatal stroke, €1, if the reduction is less
than 10% (HR; > 0.9);

2. If treatment reduces the risk of hospitalization by approximately 10% (HR; = 0.9) and Ty and T,
are moderate or strongly correlated (p > 0.25), it is more efficient to use the relevant endpoint
€1;

3. If treatment reduces the risk of hospitalization by approximately 10% (HR; = 0.9) and Ty and T,
are weakly correlated (p = 0.15 or p = 0.25), then

e It is more efficient to add hospitalization to the primary endpoint and use &, if Spearman’s
p = 0.15 and (i) the hazard function for the relevant endpoint € is decreasing while the
hazard function for the additional endpoint £, is constant or increasing; or (ii) the hazard
function for €7 is constant while the hazard function for €; is increasing;

o It is more efficient to use the relevant endpoint, that is, the first occurrence between car-
diovascular death, resuscitated cardiac arrest, non-fatal myocardial infarction and non-fatal
stroke if Spearman’s p = 0.25 and (i) the hazard function for the relevant endpoint €1 is in-
creasing while the hazard function for the additional endpoint €, is constant or decreasing;
or (ii) the hazard function for £; is constant while the hazard function for €; is decreasing;
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o We have encountered 12 situations (2.4%), corresponding to those situations listed in Table
3 in which p = 0.15 or p = 0.25 and the hazard functions for £&; and £, do not fulfill
the criteria described above, where there is not total concordance among the 12 copulas,
meaning that ARE is less than 1 for some, while larger than 1 for the others. However the
situation is not worrisome because the ARE values, in all these cases, are very close to 1
(0.94 < ARE < 1.04). Note that, in these situations, the difference in the sample size one
might need if using either . or &; would be very small. In all these cases the benefits
of using the composite endpoint over the relevant endpoint are marginal and the most
clinically relevant endpoint should be used as the primary endpoint.

4.3 Computational study

We have shown with the succinobucol illustration that the recommendation on whether to use &
or &, as the primary endpoint was, almost always, the same irrespective of the copula chosen. We
explore via a large computational study how general is this pattern and whether or not the choice of
the copula implies fundamental changes in the recommendation based on the ARE value.

The study reproduces 145,152 situations (shown in Table 4) corresponding to:

(i) Several frequency situations for events €1 and &, by taking probabilities p; and p; equal to 0.05,
0.1, 0.2, 0.3, 0.4 and o0.5.

(ii) The relative treatment effect on the relevant endpoint £, given by the hazard ratio HRy, is set to
0.5, 0.6, 0.7 and 0.8, indicating that the effect of the treatment reduces the risk of £ by 50%, 40%,
30% and 20%, respectively. Each hazard ratio is combined with eight different relative treatment
effects on the additional endpoint £;, namely HR;, and set to 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and
0.95 (reduction of the risk of £; ranging from 70% to 5%), reproducing situations where the effect
on the additional endpoint is more beneficial than on the relevant endpoint, and viceversa.

(iii) Marginal Weibull distribution with decreasing, constant and increasing hazards (shape parame-
ters equal to 0.5, 1 and 2, respectively).

(iv) Several degrees of association have been considered: from weak (Spearman’s rank correlation
p = 0.15,0.25), through moderate (p = 0.35,0.45) to strong (p = 0.55, 0.65,0.75).

(v) Censoring case 1 where death is not among the components of €1 neither among €, and Censor-
ing case 3 where death is among the components of £; but not of &;.

Since results are very similar for both censoring cases, here we only present results for Case 1. A
brief descriptive study of the ARE values is presented in Table 5 (72,576 simulated scenarios). ARE
values for Frank, Gumbel and Clayton copulas range between 0.03 and 267.3, 0.03 and 272.7 and 0.02
and 301.3, respectively, with mean (standard deviation) equal to 4.95 (15.2), 5.08 (15.4) and 5.43 (16.9),
respectively. These ranges are similar for other copulas.

We have compared the ARE values pairwise for any 2 copulas and, for each pair, the following
measures of association have been used: Pearson’s correlation coefficient p, Kendall’s T and Lin’s
concordance correlation coefficient (CCC) (Lin, 1989; 2000). Table 6 presents the association between
the ARE values obtained when Frank copula is used versus the ARE values obtained for any of the
other 10 copulas. We observe very large coefficients (larger than 92%) for all the copulas and all the
association measures. In particular, Pearson’s correlation coefficient and Lin’s concordance correlation
coefficient are always larger than 0.99 while Kendall’s is a bit lower but above 0.92 in all the cases.
Other comparisons for other pairs of copulas yielded similar results, for instance the pair Gumbel-
Clayton has Pearson’s p=0.998, Kendall’s 1=0.932 and Lin’s CCC=0.994.

Scatter plots for the ARE values for any 2 copulas complement the above association measures.
These plots have been restricted to ARE values within the range [0, 2] because an ARE value = 1 draws
the line between recommending the relevant endpoint €7 or the composite endpoint €.. Figure 4
shows three such plots for the comparisons Frank-Gumbel, Frank-Clayton and Gumbel-Clayton. We
clearly observe that the values obtained using Frank and Gumbel copulas are highly correlated, al-
though the values are, on average, slightly larger using Gumbel copula. The ARE values for the pair

9
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Frank-Clayton are also correlated with larger variability than for the pair Frank-Gumbel. The compar-
ison Gumbel-Clayton is also reproduced showing a similar behavior to Frank-Clayton. Comparisons
to other copulas are similar to these ones and are omitted.

4.4 Results

When it comes to the real application of the ARE method, and given the clear difficulty in having to
decide between one or other copula, it is of crucial importance to know how much agreement there
will be in the recommendations as a function of the copula chosen. As it will be detailed explained
below, our conclusion is that the recommendation for the choice of the primary endpoint does not
differ if the copula used is changed. Therefore, we can use Frank’s copula as we claim at the end of
Subsection 2.3.

With this in mind, we define the degree of agreement between two copulas as the percentage of
situations in which both copulas agree in either recommending the use of the relevant endpoint (ARE
< 1) or recommending the composite endpoint (ARE > 1). Based on our reproduced settings, we
find a very high degree of agreement (see Table 6). In all the comparisons, the degree of agreement is
larger than 94%, for instance 98.0% for the pair Frank-Gumbel, 94.7% for Frank-Clayton and 96.3% for
Gumbel-Clayton.

We then study the discordant situations, that is, those scenarios yielding an ARE value with copula
C7 > 1 while an ARE value with copula C; < 1, which would imply a different decision on which
primary endpoint to use. We restrict the results presented here to the most popular copulas: Frank,
Gumbel and Clayton (see Table 7) since the comparisons with the other copulas are similar to these
ones. We observe that, mostly, the difference between the two ARE values is very small (medians
< 0.09). These situations are not worrisome because, when it comes to establishing statistical effi-
ciency guidelines, the advantage of one endpoint over the other is very slight in the vicinity of one,
and whenever 1 < ARE(Z,,Z) < 1.1, the benefits of using the composite endpoint over the relevant
endpoint are marginal and, probably, too small to counteract the interpretational complications of a
composite endpoint (Gémez and Lagakos, 2013). Furthermore, ARE values in the vicinity of 1 would
imply, approximately, the same sample size whether €7 or &, is used. The recommendation in these
situations would be that the investigators choose the most convenient endpoint to answer the research
question, taking into account practical issues such as regulatory guidances. Finally, those discordant
situations where the difference is large enough and the direction of the recommendation would be
reversed is studied next. On one hand, the agreement between Frank and Gumbel is extremely good
with absolute differences at most of 0.14. For the pairs Frank-Clayton and Gumbel-Clayton, there are
respectively 1,138 (1.6%) and 617 (0.8%) discordant situations in which the distance between the two
ARE values is larger than o0.15, which would lead to a difference in required sample sizes of more
than 15%. Most of those situations (1,088 and 554, respectively) correspond to settings where the two
relative treatment effects are very close (HR; = HR; or HRy = HR; —0.1) and the relevant and the
additional endpoints are moderate or highly correlated (p > 0.35).

Summarizing, the recommendation for the choice between a relevant and a composite endpoint
does not substantially differ when using different copulas and we can safely use Frank’s copula for
the computation of the ARE value. In situations in which the ARE value is close to 1, the investigators
should consider other copulas to check the robustness of the choice of the most efficient endpoint.

5 CONCLUDING REMARKS

The decision on which endpoint to choose as the primary endpoint for the analysis of the efficacy of
two treatments is of uttermost importance for an effective clinical trial. In this paper we have presented
the applicability of the ARE method in two cardiovascular trials and have shown how the information
that the ARE would yield at the design stage of the trial, to choose between a relevant endpoint
of interest or the combination of this endpoint with an additional one, could help towards a more
informed choice of the primary endpoint. The method is based on the value of the Asymptotic Relative
Efficiency (ARE) between the logrank test for the null hypothesis of no treatment effect observed in the
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composite endpoint versus the logrank test of no treatment effect observed in the relevant component
of the composite endpoint.

The ARE method will only be of practical use if it can be computed from a very small number of
anticipatable values. We have shown that all what is needed is the expected proportion of subjects
experiencing both the relevant and the additional endpoints in the control group and the hazard ratios
as a measure of the expected relative effect of the treatment to these endpoints. This set of quantities is
part of the information required for the computation of the sample size in any trial and they could not
therefore be considered as a limitation during the design phase. Furthermore, plots like those shown
in Figure 1 are proposed to derive recommendations without the need of anticipating the degree of
association between the relevant and the additional endpoints and for several different relative effects
of the treatment on the additional endpoint.

Since the ARE value depends on the joint law between the times to the relevant endpoint and to
the additional endpoint (by means of a copula function), it is of great concern the possible influence
that this choice might have. To this end, the paper has extended the ARE method to other families
of copulas and has shown that the ARE values for any two different copulas provides, almost always,
recommendations on the same direction.

Summarizing, this methodology is widely applicable and the computation of the ARE with the
purpose of choosing the primary endpoint can be, in general, restricted to Frank’s copula. To make
the method widely applicable, we are developing a friendly interactive website, CompARE. The de-
sign of this free tool allows the user to enter their own values when designing a clinical trial and to
show ARE values in plots, as the ones reproduced in Figures 1 and 2. Beta versions can be found at
http://composite.upc.edu/CompARE or are available from the second author under request.
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A APPENDIX
A1 Joint law of Ty and T, by means of a copula

Given a bivariate copula C, marginal survival functions ng) (t;)and S g) (t2) of Ty and T, respectively,
in treatment group j (j = 0,1), and a dependence parameter 0 between T; and T, the joint survival
function of (T, Tz) in group j is given by

SOy (t1,12:0) = 87 (t1) + 89 (t2) — 1+ C(1 =8P (1), 1= 8 (12);0), (3)

where C, function from 12 to I = [0, 1], is a two-dimensional copula that binds together 1 — ng ) (t1)
and 1 — Sg)(tz) as follows:

Pr{T) < t1,T, < talgroup j} = C(1— 5\ (t;),1—8V(t2);0).

Whereas each copula parametrises the dependence between two marginals, the dependence pa-
rameter 0 quantifies the magnitude of this dependence and there is a one-to-one relationship with
Spearman’s rank correlation p between T; and T, as follows (Nelsen, 1999):

11
p(0) = uj J [C(u,Vv;0) —uvldudv
0Jo
Note here that the dependence parameter 0 has been taken equal for both treatment groups as in
Goémez and Lagakos (2013).
The survival function of T, = min{Ty, T} for group j, namely Si])(t;e) = Pr{T. > t,0|X = j}, is
given by

sV (:0) =Pr(Ty >, T, > 1,0} =S}, (1, 1,0).

)
It follows that the survival, density and hazard function for the composite endpoint T, in terms of the
copulas are given by

sPwe) = sPm+sYm-1+c0-sP(0,1-5Y )0 @
e = w1 - e -sYw,1-5Y ;0 (5)
. ()
AW = f}‘-) ’
S (¢

A2 Frank, Gumbel and Clayton copulas

The expression of Frank’s copula is given by

(e—eu—n(e—BV—U) ©

Crl(u,v;0) = %]log (1 + peca

where the dependence parameter may assume any real value, (6 € (—oo, 00)\{0}), and the limiting case
0 — 0 corresponds to the independence between T; and T,. Frank copula is a symmetric copula that
allows both negative and positive dependence between variables and exhibits the same dependence
in the left and in the right tail. A two-way scatter diagram of realizations from simulated drawings
from copulas illustrates tail dependences in a bivariate framework (see Figure 5). Frank copula is best
suited for applications in which tail dependence is relatively weak, as it is shown in the plot.

Gumbel copula is given by
Cglu,v;0) =exp (f[(qog(u))e + (—log(vj)e]‘/e) )

where the dependence parameter may assume any real number greater or equal than 1, (0 € [1,0)).
Gumbel copula only allows positive dependence and exhibits relatively weak left tail dependence and
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strong right tail dependence (Trivedi and Zimmer, 2007) (see Figure 5). Gumbel is an appropriate
choice for the joint behavior when the two endpoints are likely to simultaneously realize upper tail
values.

Clayton copula is given by

Celw,v;0) =max{u 2 +v9—-11"1° o (8)

where the dependence parameter may assume any real number larger or equal than -1 (6 € [—1, 00)\{0}).

Clayton copula only accounts for positive dependence and exhibits strong left tail dependence and rel-
atively weak right tail dependence (Trivedi and Zimmer, 2007) (see Figure 5). Clayton copula is best
suited for applications in which the two outcomes are likely to experience low values together.

A.2.1  Survival and density functions of T,

1. Frank copula

If Frank copula Cp presented in (6) is used, the joint survival function for (Ty,T,) in group j
(G =0,1) is given by

. —os(ty) —0sY(t,)
5)) ay ! (e " —1)(e™ "2 —1)
S(],Z)(t1’t2’e)_?10g <]+ efe—] .

It follows from (5) that the density of T. = min{Ty, T,} is as follows:

—0sY (1) _ 1y . e—08Y) (1) (o
)fﬁl)(t) + (
5 (410) —0s

_osl)
f&j)(t,‘e) _ ; : [e 1 (t)(f)
e Y~ e—es(]],

2. Gumbel copula

Using Gumbel copula Cg given in (7), it follows from (4) that the survival function of T. =
min{Ty, Tz} in group j (j =0, 1) is given by
. . . . . 1/0
sV t;0) = sV (1) + 5V (1) =1 +exp (— [(—1og(1 —5U(4)))® + (—log(1 —sgﬂ(t)))e} )

and from (5) that the density of T. is as follows:

(650) = 170+ 10— exp (1 1og(1 = 50 0)° + (~1ogi1 ~ 5 10°] )

1—

1-6
0

[(~10g(1 =51 (1)))° + (~ log(1 — 59" (1)))°]
(1)
_cU

—1 -I_S()) 0—1
(( oBl1 =)

3. Clayton copula

Using Clayton copula C¢ given in (8), it follows from (4) that the survival function for T, =
min{Ty, T,} in group j (j =0,1) is given by

sU50) =P (0) + 89 (1) 14101 =5 (1)) 0+ (159 (1)) 0 171/

and from (5) that the density of T. is as follows:

1+0
0

e = 0+ — 11—V )0+ —sP o -
((] *Sg])(t))_(]_'_e)f%])(t) + (] *S;])(t))_(]_'_e)fé])(t))
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A.3 Computation of the ARE values using R

As it is shown in Subection 2.3, the expression of the ARE value relates to the following parameters:
(p1,p2,HRy,HRy, p, 31, B2), representing, respectively, the frequencies of observing the endpoints €1
and &, in treatment group 0, the relative treatment effects on €1 and €,, Spearman’s rank correlation
between T; and T, in either group and the shape parameters of the Weibull marginal survivals.

Using the R-package copula (Hofert et al., 2014; Yan, 2007; Kojadinovic and Yan, 2010; Hofert and
Maechler, 2011), we have written a program to compute the ARE values for a given copula chosen
among the 11 families introduced in Subsection 4.1, taking into account whether £; contains a termi-
nating event (case) and as a function of the above parameters:

ARE(rho, betal, beta2, pl, p2, HR1, HR2, case, copula)

This function is easy to use and allows the computation of the ARE value for a large amount of
simulated situations. The body of this function can be divided into three parts:

1. the first one computes the dependence parameter 0 for a given Spearman’s correlation p;

2. the second part of the algorithm builds the marginal distribution functions from the anticipated
values (p1,p2, HRq, HR2, 81, 32); and

3. the third part of the program computes the value of the ARE for the dependence parameter and
the marginal distributions set in the first two parts of the function.

Details on the code can be requested to either author.
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TABLES AND FIGURES

Table 1: Values of the parameters used to compute the ARE value for the succinobucol and carvedilol studies
given in Section 3. We are considering: increasing (3; = 2), constant (3; = 1) and decreasing (3; = 0.5)
marginal hazard functions for Ty and T,; several relative effects of the treatment on the additional
endpoint (HR;) and several Spearman’s correlation values (p) between the relevant and the additional
endpoints.

B1 | o5 1 2
B2 | 05 1 2
HR, | 03 04 05 06 07 08 085 09 0.95

p | 015 025 035 045 0.55 0.65 0.75

Table 2: Copula expression, C(u,v;0), and domain of the association parameter 6 for the following copulas:
Frank, Gumbel, Clayton, Farlie-Gumbel-Morgenstern (FGM), Normal, ¢, Plackett, Galambos, Hiisler-
Reiss, Tawn and t-EV.

Copula type C(u,v;0) 0-domain
Frank %] log (1 + (eieuzlg(f;evq )) (—o00, 00)
Gumbel exp (—[(—log(u))e + (—log(v))e]]/e) [1,0)
Clayton max{[u=® +v=0—1]71/9 0} (1, 00)\{0}
FGM uv+9uv(1— )(1—v) [—1,1]
Normal Dy (D (u) Tv) [—1,1]
t tov(ty ' (W), 1,1 (v)) [—1,1]
Plackett [-+(0—1) (u+v)]— \/[1;(66111))(u+v)]z_4uve(e—1) (0, 00)
Galambos uv exp[{(log( u))—® (log(v))_e}_1 /9] [0, 00)
Hisler-Reiss  exp{—log(u)® [ + > Blog(llzg )1 —log(v)® —|— Glog(llgg v) )1} [0, 00)
Tawn uvexp ( 6%) [0,1]
t-EV exp (log(uv)Ae \,llfg( ))) [0,1]

®g and tg , with v degrees of freedom denote the standard bivariate normal and Student’s ¢
joint distribution function with correlation coefficient 0, respectively. ® and t, with v degrees
of freedom denote the standard normal and Student’s t distribution function, respectively.
Ag,y is the Pickands dependence function based in the bivariate Student’s tg . In this study,
the degrees of freedom have been set to v = 4.
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Table 3: ARE values for the discordant cases of succinobucol study given in Section 3.1. Reproduction of the 12

scenarios in which the ARE value is > 1 for some copulas and < 1 for the others. In these cases the
probability of observing €1 is p; = 0.082, the probability of observing €, is p, = 0.09, the relative effect
of the treatment are HRy = 0.81 and HR,; = 0.9 and the Spearman’s correlation p between Ty and T is
p < 0.25.

ARE values depending on the copula chosen

P B1 B2 | Frank Gumbel Clayton Normal t Plackett Galambos Hisler-Reiss t-EV  Tawn FGM
0.15 0.5 0.5 | 1.02 1.04 0.99 1.02 1.00 1.02 1.04 1.04 1.04 1.03  1.03
015 1 0.5 | 1.01 1.02 0.98 1.01 0.99 1.01 1.03 1.03 1.02 1.02  1.02
015 1 1 1.02 1.04 0.99 1.02 1.00 1.02 1.04 1.04 1.04 1.03 1.03
015 2 0.5 | 1.01 1.02 0.97 1.00 0.99 1.00 1.02 1.02 1.02 101  1.01
015 2 1 1.01 1.02 0.98 1.01 0.99 1.01 1.03 1.03 1.02  1.02  1.02
015 2 2 1.02 1.04 0.99 1.02 1.00 1.02 1.04 1.04 1.04 103 1.03
025 0.5 0.5 | 0.98 1.00 0.94 0.97 0.97 0.98 1.00 1.00 1.00 1.00  0.99
025 05 1 1.00 1.02 0.95 0.99 0.98 0.99 1.02 1.02 1.02 101  1.01
025 0.5 2 1.02 1.04 0.97 1.00 1.00 1.01 1.03 1.04 1.03 1.03 1.02
025 1 1 0.98 1.00 0.94 0.97 0.97 0.98 1.00 1.00 1.00 1.00  0.99
025 1 2 0.99 1.01 0.95 0.99 0.98 0.99 1.02 1.02 1.02 1.0l  1.01
0.25 2 2 0.98 1.00 0.94 0.97 0.97 0.98 1.00 1.00 1.00  1.00 0.99

Table 4: Values of the parameters used to compute the ARE values for the computational study in Section 4.2.

Table 5:

We are considering: increasing (; = 2), constant (3; = 1) and decreasing (3; = 0.5) marginal hazard
functions for Ty and T; several frequencies p; and p; for the relevant and additional endpoints; several
relative effects of the treatment on the relevant endpoint (HRy) and on the additional endpoint (HR3)
and several Spearman’s correlation values (p) between the relevant and the additional endpoint.

B1 | o5 1 2

B2 | o5 1 2

p1 | 005 01 02 03 04 0.5

p2 |005 01 02 03 04 0.5

HR; | o5 06 o7 08

HR; | 03 04 05 06 07 08 09 0095

p | 015 0.25 0.35 045 0.55 0.65 0.75

Descriptive analysis of the ARE values obtained in the computational study in Section 4.2 using several
copulas. Results for Tawn and FGM copulas are restricted to those scenarios in which the Spearman’s
correlation p between T; and T, is within the range for these copulas (p < 0.587 (n=51,840) and p < 3
(n=20,736), respectively).

ARE using mean (SD) min Q; median Q3 max
Frank copula 4.95 (15.2) 0.03 0.76 1.18 2.93 267.3
Gumbel copula 5.08 (15.4) 0.03 0.79 1.22 3.06 2727
Clayton copula 5.43 (16.9) 0.02 0.86 1.21 3.12  301.3
Normal copula 5.13 (15.7) 0.03 o0.80 1.22 3.06 280.4
t copula 533 (16.4) 0.03 0.84 1.24 3.13 283.2
Plackett copula 5.03 (15.5) 0.03 0.78 1.19 2.95 275.7
Galambos copula 5.08 (15.4) 0.03 0.79 1.23 3.07 2724
Hiisler-Reiss copula | 5.07 (15.4) 0.03 0.79 1.23 3.08 2718
t-EV copula 5.08 (15.5) 0.03 0.79 1.22 3.06 273.1
Tawn copula 5.16 (15.4) 0.06 0.81 1.29 3.21  264.1
FGM copula 5.24 (15.2) 0.08 0.82 1.35 3.42 2617
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Table 6: Pearson’s p, Kendall’s T, Lin’s concordance correlation coefficient (CCC) and degree of agreement in
recommending the main primary endpoint between the ARE value computed using Frank’s copula and
the ARE value computed using each of the other 10 copulas for the computational study in Section 4.2.
Results for Tawn and FGM copulas are restricted to those scenarios in which the Spearman’s correlation
p between T and T, is within the range for these copulas (p < 0.587 (n=51,840) and p < /3 (n=20,736),

respectively)
Copula Pearson’s p Kendall'st Lins’s CCC Agreement
Gumbel > 0.999 0.982 > 0.999 98.0%
Clayton 0.997 0.927 0.991 94.7%
Normal > 0.999 0.972 0.999 97.8%
t > 0.999 0.964 0.996 95.5%
Plackett > 0.999 0.984 > 0.999 98.8%
Galambos > 0.999 0.982 > 0.999 98.1%
Hiisler-Reiss > 0.999 0.981 > 0.999 98.1%
t-EV > 0.999 0.982 > 0.999 98.0%
Tawn > 0.999 0.971 > 0.999 97.4%
FGM > 0.999 0.997 > 0.999 99.9%

Table 7: Summary of the absolute differences between each pair of ARE values for the pairs of copulas: Frank-
Gumbel, Frank-Clayton and Gumbel-Clayton when there is no agreement between copulas C; and C;
(ARE (C1)> 1 while ARE (C;) < 1), for the computational study in Section 4.2.

Discordant cases n (%) mean (SD) min Q; median Q3 Po¢s max
|AREfr —AREG| | 1426 (2.0) 0.04 (0.03) 0.004 0.02 0.05 0.06 0.11 0.14
|AREF —AREc| | 3812(5.3) o0.11 (0.08) 0.001 0.04 0.09 0.17 0.27 0.36
|JAREg — ARE¢| | 2696 (3.7) 0.09 (0.07) 0.001 0.03 0.07 0.14 0.23 0.38
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Figure 1: ARE values for the succinobucol case study given in Section 3.1. The plots are drawn for the values
given in the study: probability of observing a cardiovascular death, resuscitated cardiac arrest, non-fatal
myocardial infarction or non-fatal stroke, p1 = 0.082; probability of observing hospitalization, p, = 0.09;
relative effect of the treatment on cardiovascular death, resuscitated cardiac arrest, non-fatal myocardial
infarction or non-fatal stroke, HR; = 0.81, for several relative effects of the treatment on hospitalization
HR, and for increasing marginal hazard functions for the times Ty and T, to either event. We plot the
Spearman’s correlation p between Ty and T, in the x-axis and the ARE values (in logarithmic scale) on
the y-axis
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Figure 2: ARE values for the carvedivol case study given in Section 3.2. The plots are drawn for the values used in
the study to compute the sample size: probability of observing a death, p; = 0.28 and relative effect of
the treatment on death HR; = 0.8, for different probabilities p, of observing hospitalization (0.10, 0.30
and 0.50), for several relative effects of the treatment on hospitalization HR, and for constant marginal
hazard functions for time to death T; and time to hospitalization T,. We plot the Spearman’s correlation
p between Ty and T, in the x-axis and the ARE values (in logarithmic scale) on the y-axis
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Figure 3: ARE values for the succinobucol case study given in Section 3.1. The plots are drawn for the values
given in the study: probability of observing a cardiovascular death, resuscitated cardiac arrest, non-fatal
myocardial infarction or non-fatal stroke, p; = 0.082; probability of observing hospitalization, p, = 0.09;
relative effect of the treatment on cardiovascular death, resuscitated cardiac arrest, non-fatal myocardial
infarction or non-fatal stroke, HR; = 0.81, for several relative effects of the treatment on hospitalization
HR, and for increasing marginal hazard functions for the times T; and T, to either event. We plot the
Spearman’s correlation p between Ty and T, in the x-axis and the ARE values (in logarithmic scale) on
the y-axis. Each plot corresponds to one of the 11 different copulas. FGM copula only allows weak
dependence (p < 1/3) and Tawn copula weak-moderate dependence (p < 0.587)
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Figure 4: Scatter plot of the pairs of ARE values in the computational study in Section 4.2 using Frank and
Gumbel copulas, Frank and Clayton copulas and Gumbel and Clayton copulas within the range [0, 2].
The diagonal line represents the situation in which both values are the same.

Frank copula

Gumbel copula

Clayton copula

1.0

!

!

\
0.0 02 04 06 0.8

!

o

\
00 02 04 06 0.8

1.0

o

\
0.0 02 04 06 0.8

1.0

00 02 04 06 08 10

u

u

00 02 04 06 08 10

00 02 04 06 08 10
u

Figure 5: Simulation of 1500 samples of the function C(u,v;0) corresponding to Frank, Gumbel and Clayton
copulas. The association parameter 6 has been set such that Spearman’s correlation p = 0.8 for the
three copulas. The conditional distribution method (Nelsen, 1999) has been used to generate these

samples.

21



	1 Introduction
	2 The ARE method
	2.1 The theoretical framework
	2.2 The ARE as ratio of needed sample sizes
	2.3 The ARE in terms of interpretable parameters

	3 Using the ARE method to choose the primary endpoint
	3.1 Case study 1: Treating patients after an acute coronary syndrome with succinobucol
	3.2 Case study 2: Effect of carvedilol on survival in severe chronic heart failure

	4 How relevant is the choice of the copula? A computational study
	4.1 Extension of the ARE method to other copulas
	4.2 Revisiting the succinobucol study for several copulas
	4.3 Computational study
	4.4 Results

	5 Concluding Remarks
	A Appendix
	A.1 Joint law of T1 and T2 by means of a copula
	A.2 Frank, Gumbel and Clayton copulas
	A.2.1 Survival and density functions of T*

	A.3 Computation of the ARE values using R


