Performance Scalability Analysis of
JavaScript Applications with Web Workers

Javier Verd* and Alex Pajuelb
Department of Computer Architecture, BarcelonaTECH (UPC)
Barcelona, Spain
Email: *jverdu@ac.upc.eddmpajuelo@ac.upc.edu

Abstract—Web applications are getting closer to the performance of apps, unlike Thread—Level-Speculation techniques of JavaScript en-
native applications taking advantage of new standard-based technologies. gines that automatically extract parallelism from sequential codes [5].
The recent HTMLS standard includes, among others, the Web Workers proq-ammers currently use the processor resources availability as
API that allows executing JavaScript applications on multiple threads, L .
or workers. However, the internals of the browser's JavaScript virtual —Neuristic to find out how many workers should be.spawned to
machine does not expose direct relation between workers and running get the highest performance. Although HTML5 provides support
threads in the browser and the utilization of logical cores in the processor. to take advantage of hardware acceleration and better use of re-
As a result, developers do not know how performance actually scales gorces, JavaScript is not able to retrieve the underlying hardware
on different environments and therefore what is the optimal number ificati h th b f loical ka hard
of workers on parallel JavaScript codes. This paper presents the first specinications, ;uc .as € num er. Of logical cores, aka har Ware
performance scalability analysis of parallel web apps with multiple threads, comprised in the CPU. Major browser vendors address this
workers. We focus on two case studies representative of different worker constraint in different manner [12]. Google Chrome, Safari, and Opera
execl?tilon models. Our anﬁlyses showdperfohrmance scalinbgbon different jmplement a new attribute on the browser’s navigator object, called
parallel processor microarchitectures and on three major web browsers in . .
the market. Besides, we study the impact of co—running applications on the navigator.hardwareConcurrencso obtain the number of hardware
web app performance. The results provide insights for future approaches threads, regardless of the system workload. Other W?b browsers, such
to automatically find out the optimal number of workers that provide as Internet Explorer and FireFox, do not support it yet and users
the best tradeoff between performance and resource usage to preservehave to develop a benchmark to estimate the number of logical
system responsiveness and user experience, especially on environmentsras available. But. this estimation is sensitive to both system
with unexpected changes on system workload. o . . L .

_ workload variations, since other co—running applications can deviate

Index Terms—HTMLS, Web Workers, JavaScript, web apps, paral- the performance of the benchmark, and optimizations of JavaScript
lelism, multithreading. o

engines, since a particular benchmark can be highly optimized by
some browsers, but badly interpreted by others. Thus, both approaches
o provide biased information to developers to determine what is the
Web applications follow the new HTML5 standard developed béfptimal number of web workers for any particular web app.

the World Wide Web Consortium [4] to address the requwem_ents.l-his paper presents the first performance scalability analysis of
of current apd future platforms, web gontgnts, and ,ClOUd SerV'C‘?l%vaScript web apps that comprise multiple workers. We introduce a
HTMLS provides new HTML elements, I|br§r|es extensions, and AF’Lé:iassification of web apps according to the worker execution models
o tak_e further advan_tage of _the underlymg hardware, as well 8fd focus specifically on two representative case studies. We compare
reducing the_n(_eed to install thlrd—part_y pIugm;. I_-ience, current Wﬁgrformance scalability between parallel microarchitectures, single—
apps show similar performance to native applications. threaded and multi-threaded multi—cores, as well as between Chrome

So_?_weApglogframmiln_ghIang_uages eéglzitoparallijlellzi)sm_ t;]y the fuse d other two major web browsers. Besides, this work also analyzes
specitic s for multithreading (e.¢- » OpenMP) with a perfor- the impact of co-running applications on the performance of highly

mance scaling closely rglated to the underlying hard\(vare resourcr?gra"el JavaScript web apps. The results offer insights towards future
Other parallel programming languages, that require virtual machnnﬁ}ﬁ

I. INTRODUCTION

. e N proaches to find out the optimal number of workers to exploit
(e.g. Erlang, Java), increase deviations of performance scalabili

- o arallelism.
since it is not only related to hardware resources, but also to

the internals of the virtual machine [1, 2]. This paper focuses on
JavaScript, an interpreted language, largely employed to develop web 0
apps executed in web browsers. HTML5 pays special attention to the
support of JavaScript and brings, among others, a new mechanisrgome studies characterize JavaScript programs using single—
and the API called Web Workers [6]. Even though JavaScript followreaded benchmarks [10, 7]. Other authors propose fine grain
a single—thread execution model, Web Workers API allows multiplgarallelization of JavaScript codes. Fortuna et al. [3] analyze the
JavaScript codes to concurrently run in background threads, from ngétential speedup limit of parallelizing tasks and events. Martin-
on workers, communicated by message passing with the main thregeh et al. [5] implement and analyze Thread-Level-Speculation for
As JavaScript web apps run on top of a web browser’s virtual machingowsers’ JavaScript engines to take advantage of parallel processors.
it increases the unpredictability of performance scaling of languagegmally, Watanabe et al. [11] describes a technique to parallelize
that run on virtual machines. interactive animation JavaScript using Web Workers, but the authors
By the use of Web Workers API, the developers are responsikjg not study its scalability.
of extracting the parallelism and properly express it in the web none of these works are focused on either analyze the performance
J. Verds and A. Pajuelo are with the Universitat Patinica de Catalunya, Scalability of workers based web apps or related differences among
Spain. email:{jverdu,mpajuelo}@ac.upc.edu major web browsers.

. RELATED WORK

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

DOI 10.1109/LCA.2015.2494585

I1l. CLASSIFICATION OF WORKER EXECUTION MODELS This paper delves into the analysis of two case studies and, due to

Parallel JavaScript web apps comprise the main thread, responsﬁﬂ@ce Ilmlta_tlons, we use one representative benchmark for eaain._Eve
of the UI, since workers cannot do it due to access constraints [6], d10U9N particular performance numbers of other web apps may,differ
background threads for Web Workers aimed at computing intensif# rends shown in this paper are the same:
tasks to preserve responsiveness and enhance user expeAgnce. o Multiple asynchronous workers: Hash Bruteforcer [13],
though communication channels can be created among Web Workers, HashApp, is a web app with dedicated workers that computes
in this paper we focus on the default message passing between MD5 hashes. We use the default configuration and data sets.
workers and the parent thread. Besides, workers are classified imto tw From a given 128-bit MD5 encoded input, the application uses a
categories: dedicated workers, aka standard workers, only #uleess brute force attack to decode the string. Thus, the workers perform
by the script that spawned it; and shared workers, accessible frpm an continuous CPU intensive workload.
script running in the same domain. Other emerging types of workerse Multiple synchronous workers: The raytracer web app [12],
are still experimental [6]. RayApp, performs highly CPU intensive mathematical calcula-

We introduce a classification of parallel web apps based on worker tions to simulate components of a scene, like ambient lights and
execution models, regardless of worker origins. In fact, this work Sshadows, to render every frame. We use the default configuration,

is focused on the web app code behavior and how parallelism is but enlarging the default canvas size up to 300x300 pixels. The
exploited: scene is split into a number of slices that depends on the canvas

size. Thus, in our experiments every frame rendering consists of
15 slices distributed along a configurable pool size of dedicated

tasks, like Al and physics, to sustain responsiveness and frame WOrkers. We have done experiments with other canvas sizes,
rate. Web apps that comprise multiple computing intensive tasks showing different performance numbers, but with similar trends.
suitable to run in several threads are conveyed to one of the otheBoth benchmarks have been slightly modified to do experiments
categories. from 1 to 20 Web Workers. We fix this limit since it is the maximal

« Multiple asynchronous workers: large/continuous workload is number of workers that Firefox supports. We prevent measuremen
distributed among available workers to be processed in parall@gviations due to previous experiments, mainly due to internal opti-
like spell checking. These applications have no synchronizatigizations and garbage collector issues, by closing and restarting the
points among workers. As soon as a given worker notifies to tMéeb browser after every experiment. Finally, we take average results
parent thread that the task is done, a new workload is delivers@m ten runs of every experiment running 30 seconds each, time

« Single worker: all computing intensive tasks are done by a
single worker. Videogames, for example, offload CPU intensive

to the worker thread for processing. enough to reach steady performance.
« Multiple synchronous workers: inherent parallel codes, such
as image/video processing, use to have a synchronization point V. EXPERIMENTAL RESULTS

among workers, like the presentation of a new frame. Every nex wicroarchitectural Impact
workload, a frame, can be split into multiple jobs, slices, to be Fi 1 4 1(b) depict th ; ¢ HashA q
processed by different workers. However, workers cannottiyre igures 1(a) and 1(b) depict the performance of HashApp an

start processing new frames until all workers have finished thé%ayApp, respgctlvely,.runnlng in Chrome on two <_1|fferent microarch
getures. That is, multi-threaded Cores MT) and single—threadeah (

;’;?;kv'v;?(lé;theii igs:fg tg:annsdii]znfg;i?t periods of time Wl_té:ores S7 multi—core processor, beimgthe number of cores ayailable

in the CPU. Y-axes denote performance measurements in terms of
Strings per Second, SPS, for HashApp and Frames per Second, FPS
™ for RayApp. X—axes indicate the number of Web Workers.

We use a personal computer with an IfitelCore i7-3960X Figure 1(a) plots higher performance running HashApp on multiple
processor at 3.3GHz with 6 hyperthreaded cores, for a total gsihgle-threaded cores (solid circle line) than using a multi-threaded
12 logical cores, with 16GB DDRAM:-IIl and a Nvidfa GTX560 multi—core architecture (open circle line), due to lower contention on
videocard, running Microsoft Windows Server 2008 R2. We use shared hardware resources. The execution on a processor wili-sing
Windows since it is the operating system most widely used by enthreaded cores shows roughly double performance compared to multi—
users that run web applications in desktop computers [9]. All northreaded multi—core architecture. In both cases, performance linearly
critical services and applications have been disabled to preventsasles up until there is a worker running on every core. Using more
much as possible any deviation in the measurements. workers shows marginal or non performance improvement. Contentio

We use Process Explorer v15.21 [8] to select, by the use of Sethardware resources is sustained, since there are no synchramizatio
Affinity, the available logical cores used in the experiments to mimisarriers among threads and therefore Web Workers constantly deman
different parallel processor architectures. shared hardware resources. Nevertheless, running more wahaer

Web apps run in updated releases of the three major wiggical cores in both microarchitectures does not degrade perfaenan
browsers [9]: Google Chrome v42.0.2311.90m (the default beows In contrast RayApp presents similar performance scalability on both
in our experiments), Mozilla Firefox v37.0.2, and Microsoft Internemicroarchitectures as seen in Figure 1(b). Performance increments
Explorer v11.0.9600.16476, IE from now on. are limited by the inherent barriers, at every render frame, of the

There are no standard JavaScript benchmarks comprising workeggichronous workers execution model, as explained in Section lIl.
Several well known web apps and web browser portals thougdihat is, since Web Workers are idle during periods of time, there
provide parallel JavaScript demos. Most of them are implemented with lower contention on shared hardware resources and therefore
dedicated workers. Actually our analysis is independent of whethitie performance difference among microarchitectures is lower. The
workers are dedicated or shared, but it is focused on the executsingle—threaded multi-core CPU presents up to 2.85x of speedup,
model of web apps with multiple workers, see Section lll. We havgsing 5 Web Workers, whereas the multi—-threaded architecture shows
run several web apps that have no human interaction requirementsto 2.22x of speedup, running the same number of workers. Unlike

IV. FRAMEWORK

1400 1400
‘ ©3 Cores MT @6 Cores ST £FF 3 Cores MT #FF 6 Cores ST
1200 1200
/—0—4—0—0—%0\._._._._.,_’\'/. #IE 3 Cores MT #IE 6 Cores ST
2 1000 2 1000
2 23
2 2
o 800 o 800
@ @
wv wv
g 600 00 0-6=6-0 g 600
@ @
= oo
£ £
S 400 £ 400
wv w
200 200
0 0
12 3 45 6 7 8 9 10111213 14 1516 17 18 19 20 12 3 45 6 7 8 9 10111213 14 1516 17 18 19 20
Workers Workers
(a) HashApp (a) HashApp
18 18
16 16
14 _ 14
wv [’d
s &
=12 =12
-] -]
c c
810 + 810
13 (1]
w wv
g 8 g 8
@ «
£ 6 £ 6
© (]
“ 4 < 4
2 2
0 0
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20
Workers Workers
(b) RayApp (b) RayApp

Fig. 1. Performance scalability on architectures with 6 logical cores Fig. 2: Performance scalability on different web browsers

the asynchronous workers, running more Web Workers than logicalThe impact of using single—threaded versus multi-threaded cores on
cores slightly degrades performance. the performance scalability of HashApp (Figure 2(a)) is much smaller

This analysis suggests to JavaScript developers that they haventboth Firefox and IE than in Chrome. Nevertheless, single-threaded
consider not only the number of logical cores, but also specificatibnsraulti-core CPU increases the performance of HashApp compared
the processor architecture to estimate the optimal number of work&wsmulti-threaded cores up to 8% and 28% for Firefox and IE,
taking into account potential contention on shared hardware resourgespectively.

In addition, we use Chrome’s memory profiling tools to analyze In spite of absolute performance differences among web browsers,
memory management, that is garbage collector behavior. HashApp Ragure 2(b) indicates that multiple synchronous workers present sim-
sustained memory consumption with reduced memory areas, few KBar performance scalability running in the three web browsers on
regularly cleaned during the execution, whereas RayApp presebtgh assessed architectures. That is, single—threaded multicores show
larger memory sizes, tens of MBs, recurrently released. Nevertheles speedup of 3.07x (FF) and 2.91x (IE), while multi-threaded cores
due to space limitations, it is out of scope of this paper, but addresggdsent a speedup of 2.47x (FF) and 2.17x (IE). All of them similar
in our future work, to analyze the garbage collector impact isolatéd the speedups obtained from Chrome on respective architectures.
from the impact of contention on shared hardware resources.

C. Co-Running Applications Impact

B. Web Browser Impact Scaling the number of Web Workers without having into account

Every web browser includes its own implementations and optimizaystem workload variations due to co—running applications can either
tions of the JavaScript virtual machine. This Section delves into tlegerload the machine or increase contention on shared hardware
repercussion of using other web browsers, Firefox (FF) and letermesources leading the system to a performance degradation phase.
Explorer (IE), on the performance scalability. Figures 2 also presentFigures 3(a) and 3(b) depict the results of running HashApp and
measurements using the same 6 logical core microarchitectures tRayApp, respectively, in Chrome in conjunction with co—running
Figure 1. Square lines stand for Firefox performance, whereagkeianapplications using a CPU with 6 single—threaded cores. Each bench-
lines denote IE performance. Besides, open and solid shape lingsrk is setup to comprise 6 Web Workers. Vertical axes indicate
refer to multi-threaded and single-threaded multi—core architecturpsrformance and the X-—axes denote the timeline in seconds. We
respectively. present results of the benchmarks when the web browser’s window

1400

---No Focus —With Focus ‘

1200

1000

800

600

Performance (SPS)

400

200

100
120

Time (sec)

(a) HashApp

---No Focus —With Focus ‘

not

-
N

-
o
<

Performance (FPS)
oo

15% for HashApp and 17% for RayApp, whereas the impact is more
significant when there are two co—running applications, about 37% and
49% for HashApp and RayApp, respectively. On the other hand, when
a co—running application has the focus instead of the benchmark’s
window, performance is significantly reduced. In fact, HashApp show
constant performance reduction, about 55% on average, while firayA
shows nearly 45% and 73% slowdown when there are one and two
co—running applications, respectively. Besides, the performance of
executions without focus, during stageis considerably reduced after

5 and 20 seconds on HashApp and RayApp, respectively, but sectain
from then, including stag€.

VI. CONCLUSION

We presented the first performance scalability analysis of JavaScript
web apps consisted of multiple workers classified according to their
execution model. Our results demonstrated that current approaches to
estimate the number of Web Workers of highly parallel web apps do

provide enough information to developers. An optimal worker

pool size depends on the worker execution model, the underlying
CPU architecture, and even web browser internals. In most cases
few workers show similar or even slightly higher performance than
spawning larger number of workers. Besides, co—running application
may significantly impact on the web app performance.
; From the results of this paper we can conclude that dynamic
6 mechanisms, such as performance monitoring based, are suitable
PYAN to determine the optimal number of Web Workers. These type of
approaches can detect at runtime performance scalability variations
and contention on shared hardware resources due to co-running

0 applications or workers overloading.

o o o
© <

100
110
120

Time (sec)

(b) RayApp
Fig. 3: Performance impact of co—running applications

has the focus (solid lines) and without the focus (dashed lines), thid
is a co—running application’s window is selected.

The co—running applications are two different web browsers execut-
ing HashApp with 3 Web Workers each, that is half of the total avail{2]
able logical cores in the CPU. We use these co—running applications
as representative multithreaded CPU intensive applications, especiafg
parallel JavaScript web apps, that demand nearly 100% of the CP
when both run at the same time. As Chrome is the browser undét]
study, the co—running applications are Firefox and IE to simulate Bl
real system workload with multiple independent applications.

The timeline is divided into four stages labeled AsB, C, and [g]

ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry of Economy
and Competitiveness (MINECO) under contract TIN2012—-34557.

REFERENCES

S. Aronis, N. Papaspyrou, K. Roukounaki, K. Sagonas, ¥oiris, and
I. E. Venetis. A Scalability Benchmark Suite for Erlang/OTR.Procs.
of the Eleventh ACM SIGPLAN Workshop on Erlang Worksliofang
12, pages 33-42, New York, NY, USA, 2012.

K.Y. Chen, J.M. Chang, and T.W. Hou. Multithreading invda Per-
formance and Scalability on Multicore System&EE Trans. Comput.
60(11):1521-1534, November 2011.

E. Fortuna, O. Anderson, L. Ceze, and S. Eggers. A Limitd$tof
JavaScript Parallelism. IRrocs. of ISWCpages 1-10, Dec 2010.
Hickson, I. et al. HTML5 Specificationhttp://www.w3.0org/TR/htmlI5
J. Martinsen, H. Grahn, and A. Isberg. Using SpeculatrEnhance
JavaScript Performance in Web ApplicatiohBEE Internet Computing
17(2):10-19, March 2013.

Mozilla Developer Network. Web Workers API. https://developer.

D. Every phase takes 30 seconds and denotes a particular status of mozilla.org/en-US/docs/Web/API/Watorkers API, March 2015.

the system workload. During the first periodl, there is a single co— [7]
running application that requires half of the resources. The secend co
running application starts off execution at sta@eDuring this phase 8]
the CPU suffers the highest contention. The OS has to manage bqt)
co—running applications, that ask for the total number of logical cord&0]
in addition to the benchmark, which also demands all logical cores.
At the beginning of the perio€ the second co-running appli(:ation[11
finishes and thus there is theoretically similar resource contention than
the stepA. The other co-running application stops when the stage
D starts. From then on, all hardware resources are available to thd
benchmark, since the web app is running alone, its performance is
similar to the one shown in Figure 1. [13]
On the one hand, when the benchmark has the focus it suffers slight
performance impact running with one co—running application, nearly

G. Richards, S. Lebresne, B. Burg, and J. Vitek. An Analysf the
Dynamic Behavior of JavaScript ProgranSlGPLAN Not. 45(6):1-12,
June 2010.

M. Russinovich http://technet.microsoft.com/sysinternals/bb896&a5@3x
StatCounter Global Statéttp://gs.statcounter.com/

D. Tiwari and Y. Solihin. Architectural Characteriat and Similarity
Analysis of Sunspider and Google’s V8 Javascript BenchmankBrocs.
of ISPASSpages 221-232, Washington, DC, USA, April 2012.

] Y. Watanabe, S. Okamoto, M. Kohana, M. Kamada, and T. YorekA

Parallelization of Interactive Animation Software with We¥prkers. In
Procs. of NBiSpages 448-452, September 2013.

Web Hypertext Application Technology = Working Group
(WHATWG) Wiki. Navigator ~ Hardware Concurrency.
https://wiki.whatwg.org/wiki/NavigatoHW_Concurrency July 2014.

O. Zara. Hash Bruteforcer. Demo Studio Mozilla Developer
Network, https://developer.mozilla.org/es/demos/ ilbtesh-bruteforcer
April 2013.

