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Abstract

This paper addresses the rendering of aligned regular multimodal
datasets. It presents a general framework of multimodal data fusion
that includes several data merging methods. We also analyze the
requirements of a rendering system able to provide these different
fusion methods. On the basis of these requirements, we propose a
novel design for a multimodal rendering system. The design has
been implemented and proved showing to be efficient and flexible.

1 Introduction

Volume Graphics is today used in many different areas of Scien-
tific Visualization and Realistic Image Synthesis. Various popular
volume visualization toolkits and applications exist (VolVis [Avila
et al. 1994], VTK[Schroeder et al. 1998] and VolPack [Lacroute
1995] among others) and many surface-based systems have been
extended to volume data [Eckel 1999]. However, most of this re-
search and development focuses at monoproperty and monomodal
data. Modeling and rendering various properties of the same 3D
region, measured with different registration devices (multimodal
studies) or at different instants of time (dynamic studies) have been
less addressed in the bibliography [Zuiderveld et al. 1996; Cai and
Sakas 1999]. Nevertheless, the demand for multimodal systems is
increasing in many applications. In the medical field, for instance,
the combination of data from MRI (Magnetic Resonance Imaging),
CT (Computer Tomographies), SPECT (Single Photon Emission
Computed Tomography) and PET (Positron Emission Tomography)
provides a better perception of the anatomy and its relationship with
the functional activity, a key point to detect pathologies and under-
stand behaviours.

A large number of papers on multimodality address the so-called
registration problem [Lemoine et al. 1991], [Pelizzari et al. 1989],
[van der Elsen 1993], [Ferre and Tost 2001]. The registration con-
sists of computing a set of rigid or elastic transformations that align
the datasets in a common reference system. This process is nec-
essary when the different property sampling have not been realized
simultaneously. After the registration transformation has been com-
puted, the datasets are generally resampled at the same resolution
in the common reference system. This introduces sampling errors
and it may dramatically increase memory requirements when the
initial resolution of the datasets is very different. However, keeping
the datasets in their original system and applying during rendering
the geometrical transformations computed in the registration step
would increase the visualization cost. In addition, it is not feasible
in all rendering strategies. It is straightforward in ray-casting, less
easy in splatting by sheets perpendicular to the viewing direction
and not possible in ordered traversals. In this paper, we assume that
the initial models are regular, aligned and that they have the same
resolution. The volume representations used are voxel models.

Other references focus at multimodal rendering itself. They can
be classified into two categories: 2D and 3D methods. The for-
mer ones [Hawkes et al. 1990], [Spetsieris et al. 1995] perform
the merging slice-to-slice. Either they visualize the slices in par-
allel windows or they interlace image lines or they merge color val-

ues. Three dimensional methods perform the integration of the 3D
data. In general, they give a better perception of the spatial rela-
tionships between data than 2D techniques. However, according
to [Hu et al. 1990], the interpretation of merged data is sometimes
easier on 2D images that are simpler and free from opacity accu-
mulation effects. 3D integration can thus provide means of locating
areas of interest that can afterwards be sliced and studied in 2D.
In addition, 3D techniques can profit from fitted surface rendering
effects. As an example, the “Normal fusion” strategy proposed in
[Zuiderveld et al. 1996] shows SPECT values below a brain surface
fitted into MR data. Other relevant previous work on 3D techniques
are [El-Khalili et al. 1996] and [Cai and Sakas 1999], both based
on ray-casting through volume data. The first paper analyzes the
fusion of CT and SPECT data and the second one CT, segmented
CT and radiotherapy dose. Both papers propose two types of inte-
gration: object-order merging, i.e. merging data before projection
and image-order merging, i.e. intermixing images.

The goal of this paper is to define a general framework for mul-
timodal rendering that could include different 3D fusion techniques
and adapt them to image-order rendering techniques such as ray-
casting as well as object-order ones such as splatting and texture
mapping. A classification of different fusion modes according to
the step in the rendering pipeline at which fusion occurs is proposed
in Section 2. In order to implement these techniques, the require-
ments of a multimodal system are defined in Section 3. Current vol-
ume applications are not easily adaptable to fit these requirements.
Therefore, we have designed a multimodal system that fulfills the
requirements and that can be used as a workbench to test the differ-
ent techniques. This design is discussed in Section 4. In section 5,
an implementation of it is described and some simulations results
are shown.

2 Multimodal rendering methods

In multimodal visualization, the rendering pipeline for any sample
point or voxel, takes as input the set of n property values and it
outputs one color and opacity. This color and this opacity may be
computed in two different ways:

� rendering only one property per point (OPP scheme One-
Property-per-Point), i.e. selecting at each sample only one
of the properties,

� rendering simultaneously various properties per point (MPP
scheme, Multiple-Properties-per-Point), i.e. actually mixing
properties by weighting them.

The selection of one element as well as the mixture of elements
may be realized at different steps of the rendering pipeline. There-
fore, we distinguish five fusion modes according to the parameters
that drive the fusion [Ferre et al. 2002]: PF (Property Fusion) based
on property values, P&GF (Property & Gradient Fusion) driven by
property and gradient values, MF (Material Fusion) that uses mate-
rials, SF (Shading fusion) also based on materials but that realizes
the fusion within the shading computation and, finally, CF (Color
Fusion) based on final colors.



These different fusion methods rely on decision functions that,
given a combination of properties, gradients, materials or colors, ei-
ther choose one of them (OPP scheme) or compute a set of weights
that should be applied to the input parameters in order to mix them
in a linear combination or eventually using higher order functions.
Being p1� p2� ��pn the set of n input parameters, the decision func-
tions can be defined as:

fopp�p1� p2� ��� pn� � pi�1 � i� n (1)

fmpp�p1� p2� ��� pn� � �w1�w2� ��wn� (2)

The decision functions are based on the evaluation of boolean ex-
pressions relative to the ranges of value of the different parameters.
The chosen parameter or the weight arrays that the decision func-
tion returns depend on the combination of range values in which the
input parameters fall.

The two fusion schemes and five fusion modes lead to the nine
following multimodal rendering algorithms:

� Method 1: Property fusion (PF) and OPP scheme. Given
a sample point or voxel, n property values are computed.
The decision function selects one of them and the rendering
pipeline goes on as in a monomodal study. This method is
applicable to any combination of datasets.

� Method 2: Property fusion (PF) and MPP scheme. This mode
is usable only when the datasets represent the same physical
property. An example of this case is a multimodal study based
on CT and MR which both sample tissue density at a preci-
sion of one byte per value. The n property values at a sample
point or voxel are used in the decision function to compute a
set of n weights. The resulting property is calculated as the
weighted sum of the input properties. Next, this value is used
in the classification using global transfer functions defined for
the multimodal study. The gradient vector is calculated by
weighting the individual gradients. Finally, shading is real-
ized as usual.

� Method 3: Property and Gradient Fusion (P&GF) and OPP
scheme. This method is similar to method 1, but it takes into
account the gradient values in the decision function. The def-
inition of this function and its evaluation are more complex,
but it permits to better outline isosurfaces of some of the prop-
erties.

� Method 4: Property and Gradient Fusion (P&GF) and MPP
scheme. This method resembles the second one but using gra-
dient information like method 3.

� Method 5: Material Fusion (MF) and OPP scheme. Starting
from n property values, n classification processes are done
separately. Then, the decision function selects one of the ma-
terials and shading is computed using this material. The gradi-
ent vector is calculated as the average of all the gradient vec-
tors of properties which have been classified as the selected
material. By comparison to mode 1 and 3, MF effects are less
tinged but it is more intuitive and easy to specify for the users.

� Method 6: Material Fusion (MF) and MPP scheme. This
method weights n materials and uses them for shading with
a gradient vector computed as the weighted sum of the initial
gradient vectors. It requires the materials to be of the same
type in order to mix them. As method 5, it is less flexible than
methods 4 and 2 but easier to define.

� Method 7: Shade Fusion (SF) and MPP scheme. This method
is similar to the previous one, but instead of averaging ma-
terials and gradients before shading, it uses them with their
computed weights directly in the shading equation. In com-
parison to method 6, this method outlines better the effect of
light sources on each fitted surface. When no surface shading
is done, it gives the same results as method 6.

� Method 8: Color Fusion (CF) and OPP scheme. This method
performs n complete rendering pipelines and the decision
function selects one of them. It is the simplest method and,
when applied to pre-shaded RGBα models, it is the fastest.
However, it is difficult to tune, specially if the original prop-
erties map onto the same color space.

� Method 9: Color Fusion (CF) and MPP scheme. This method
is similar to the previous one, but it weights colors instead of
choosing one.

Color Plates 1 to 9 show examples of these methods. The images
are explained in Section 5.

3 Requirements

A system able to process multimodal rendering methods such as
the ones proposed in the previous section should fulfill different
types of requirements: (i) conditions on the type of data and ma-
terial that should be supported, (ii) functional requirements on ren-
dering, classification, shading and fusion algorithms, (iii) general
requisites.

Many of these requirements apply for monomodal data as well
as for multimodal ones. However, in the latter case it should be
feasible to handle the variety of possibilities simultaneously.

The requirements of the data are the following:

� Object domain. The system should handle various types of
objects, surface representation as well as volume models.

� Property domain. For volume models, different types of prop-
erties should be handled, such as gray density values with dif-
ferent number of precision bits, RGB colors, floats and arrays
of floats.

� Gradient computation methods. Several gradient computa-
tion methods should be provided as, for instance, forward,
backward and central difference for one-dimensional property
values and per-component o per-norm for multi-dimensional
property values.

� Optical property domain. Each data set may represent differ-
ent types of materials, i.e. optical properties and textures of
surfaces (reflection coefficients, diffuse and specular colors,
transmission coefficient, etc), optical properties and textures
of volume (emission, absorption and scattering coefficients)
and hybrid volume and surface data properties.

In relation to algorithms, the conditions to be fulfilled are:

� Rendering method : Several rendering method should be
available: wireframe, z-buffer, ray-casting, by-sheet splatting,
sorted traversal, shear-warp and texture mapping. Each ob-
ject may eventually have its own rendering method in order to
compose local visualizations in a one image. In addition, each
object may have its own camera and light sources. Having
per-object camera is useful to apply different levels of zoom
to different objects. Per-object lighting permits to apply light
sources only to some chosen objects, a non-realistic effect that
can however be interesting to outline some features of these
objects.



� Classification methods. Several mechanisms to compute the
material or combination of materials existing at a sample point
inside the volume should be provided: from transfer func-
tions to explicit look-up tables or more complex probabilistic
classification schemes. It should be noted that classification
is more complex in multimodal studies, because, it may re-
quire n-parameterized transfer functions, being n the number
of properties multiplied by their dimension. The implemen-
tation of these functions via look-up table, which is usually
faster than other methods, may be infeasible in multimodal
studies, because of its huge memory occupancy.

� Shading function. The shading function computes the color
intensity contribution at a sample point. Different shading
strategies are required. First, the value shading that directly
maps the value to a gray or RGBα color scale. Next, the color
shading that maps the value to color using a color table. Fi-
nally, the actual shading functions, that use the material op-
tical properties and eventually the gradient value: emission-
only shading, emission+absorption shading and Phong shad-
ing. In addition, other parameters may be activated such as
depth cueing, light sources attenuation and constant opacity.

� Fusion With regard to fusion, the two different fusion schemes
(OPP and MPP) combined with the five fusion modes (PF,
P&GF, MF, SF and CF) described in Section 2 should be pro-
vided. In addition, the decision functions should be easily
modifiable during the application execution.

Finally, the general requisites are (i) the everlasting need for ef-
ficiency in the operations, especially per-voxel queries which are
often the bottleneck of volume management (ii) the flexibility for
the user to change any parameter during execution.

Very important from a programmer’s point of view is also the
easiness of code writing, maintenance and extensibility. These two
aspects are discussed with more depth in the design section.

4 Design

Several volume rendering applications and libraries are currently
available. Up to our knowledge, they are mostly oriented at render-
ing monomodal data. Most of them support different property data
types. The Visualization ToolKit (VTK) [Schroeder et al. 1998],
for instance, handles single valued gray-scales, rgb and 3x3 tensors
among others. VolPack [Lacroute 1995] permits variable number
of bits per property and thus, it implicitly supports different types
of property. Property Fusion (PF) can be simulated in any of these
systems by constructing a new merged model in a preprocess and
rendering it as a monomodal set. However, this is feasible only if all
the initial datasets have the same property type, so that all the vox-
els of the fusioned model share the same type. Color Fusion (CF)
may also be implemented as a post-process of n monomodal classi-
fication and shading pipelines. However, the flexibility of changing
the fusion parameters would not be achieved and the other fusion
modes would be difficult to implement. This is why we have de-
signed the new system described below.

Per-Sample queries

The common kernel to all rendering methods are the per-sample
queries. Here “sample” should be understood in a large sense either
as points for ray-casting, voxels for splatting or traversal methods
and texels for 3-D texture mapping. In a multimodal study of n
initial models, these queries are:

� the set of n property values v = fvi, i=1..ng at the sample
location, which can be of any type.

fprop�p� � v0�v1� � � � �vn (3)

� the set of n gradient vectors g = fgi, i=1..ng

fgrad�p� � g0�g1� � � � �gn (4)

� the set of n materials represented at the sample m = fmi,
i=1..ng. These materials can also be of different type (sur-
face, emission and absorption, etc)

fclas�p�v� � m0�m1� � � � �mn (5)

These three queries share the problem of data type diversity. The
query or computation of each of their output parameters is done
on a separate dataset and it can therefore be different. In addition,
the property and material queries output parameters may also be of
different types. This diversified access to values can be solved us-
ing static or dynamic verification. The former solution may result in
inefficient case evaluations throughout the algorithms. At the oppo-
site, static verification may be avoided by generating as many code
as case combinations exist, but this may be tedious to program and
difficult to maintain. Another possibility is to use automatic code
generators. However, this would reduce the flexibility to change
models while running the application. Dynamic verification and
the use of the inheritance and overloading mechanisms provided by
object-oriented design warrant a correct access to the data while
avoiding unnecessary computations and code repetition. Therefore,
in the proposed design, these query functions are methods of the
different models that compose a multimodal study.

Shading

Sample shading functions compute a color by applying a shad-
ing model to a sample given a gradient vector and a material type.
In the current implementation, there are twenty-nine different shad-
ing functions which correspond to the combinations of sample type
(point, voxel or texel), material type, shading model, depth cueing
flag and light sources attenuation flag. For each sample, the appro-
priate function should be called, without having to traverse the cases
tree. Therefore, we have designed a generic shading function class
with its corresponding specific implementations. Before rendering,
whenever the user changes parameters, the concrete shading func-
tion to be applied is installed dynamically. This solution provides
the desired flexibility and it is efficient because it avoids per-sample
checking. The generic shading function is:

SampleShading�sample�gradient�material�

viewingvector� lightmodel� � color

depthcueingscale�

Fusion and Decision

The fusion procedures, called at sample level, perform the five
pipelines described in section 2. They have also been designed as
a generic class whose five specific implementations are instantiated
dynamically previous to rendering.

Fusion�nvalues� properties�

gradients�materials� � property�gradient

colors� material�color

Inside each fusion pipeline, a decision function is called that ei-
ther selects (OPP) or mixes (MPP) elements. Similarly to shading
and fusion, decision functions may have various input parameters
(properties, gradients, material or colors) and several possible im-
plementations depending on user criteria. Therefore, a decision



function class has been designed that includes two categories of
functions OPP-based and MPP-based. These functions are also in-
stalled dynamically on user request.

The specific OPP and MPP functions can be designed ad-hoc ac-
cording to a convenient criterion. As an example the maxproperty
function, which can applied in the first method described in Section
2 for multimodal sets with the same property value type, simply
selects the maximum property value. Ad-hoc functions can be fix.
Users selects them through the interface according to a key-name.
In addition, they can be generated on line from user defined expres-
sions. This case is more flexible but less efficient because it suffers
from the processes communication cost overhead. A more general
decision function definition consists of specifying output indexes
or weight values depending on a combination of input parameter
ranges. Let rn

k a a combination of n value ranges rk � �rk
1�rk

2� ���rk
n�

with k varying between 1 and nranges, the number of range value
combination. In an OPP scheme, each range combination rk has
associated the chosen element pik . In an MPP scheme, each range
combination rk has associated a set of weights wlk � l � 1���n. Then,
the decision functions, fopp and fmpp can be defined as:

fopp�p1� ���� pn� � pik

�rk�k � �1 � � �nranges� such � j : 1 � j � n : pj � rk
j (6)

fmpp�p1� ���� pn� � �wlk � � � � �wln� n � �1 � � �n� (7)

�rk�k � �1 � � �nranges� such � j : 1 � j � n : pj � rk
j

The implementation of these functions using look-up tables, which
would be the fastest, is not always feasible because of its huge
memory requirements. For a simple multimodal study of two prop-
erties with RGBα bytes color fusion, the decision function has an
occupancy of 2568 for an OPP function and 2568 � 8 for an MPP
function. It addition, user specification of these types of functions
may be very tedious. An alternative solution is to define and store
a default output index or output weights set plus only a set of range
combinations. At run-time, a search within these ranges combina-
tion is performed. This is obviously less efficient than direct index-
ing to look-up tables but it requires less memory and it is easy to
specify.

Rendering

The different rendering algorithms are classified into three
groups depending on the type of scene traversal that they per-
form: unsorted object-order (z-buffer methods), sorted object-order
(splatting, BTF and FTB traversal, texture mapping) and ray-order
(ray-casting). A hybrid traversal mode mixing image and ob-
ject order is currently under study. In each case, the correspond-
ing database traversal is performed and, when the sample level is
reached, the queries and computation exposed above are applied.
We enclose below a simplified pseudo-code example of sorted BTF
traversal algorithm based on this design.

projection
for �i � min�0�; i! � max�0�; i�� incr�0�� do

for � j � min�1�; j! � max�1�; j�� incr�1�� do
for �k � min�2�; k! � max�2�; k�� incr�2�� do

s � SampleVoxel�i jk�
� f f usion��s�cluster� pre f group�camera� lights�

&color�
if �!BlackColRGBA�color��

�splat��color� p� pre f splat�bu f f er�;
endif

endfor
endfor

endfor
endproj

A material fusion function can be written as:

fusion
n � ObtNOb jVisCluster�cluster�;
ob jvis � ObtFirstOb jVisCluster�cluster�;
i � 0;
while �!LastOb jVisCluster�cluster�ob jvis�� do

� f prop��s�ob jvis�&values�i��;
� f grad��s�ob jvis�&grad�i��;
� f mat��s�&mat�i��;
ob jvis � ObtNextOb jVisCluster�cluster�ob jvis�;

endwhile
� f decision��n�values�grad�mat�&out putelem�;
� f shade��s�ouputelem� lights�camera�&color�;

endfus

General structure

Figure 1 sketches the internal classes structure of the system.
Blue arrows represent relationships while inheritance links. The
main class of the system is the rendering database (bdgvis). It is
a set of multimodal studies called clusters. Each cluster is com-
posed of monomodal aligned visualization objects objvis. Finally,
an objvis contains a geometrical object which can be a paramet-
ric model (spheres, cylinders, etc.), a boundary representation or
a voxel model with different property types. Each level of this
hierarchy (bdgvis, cluster and objvis) has associated a camera, a
lighting model and rendering preferences (prefvisgroup, i.e. group
preferences for the database and the clusters and prefvisobj, i.e. ob-
ject preferences for the visualization objects). These preferences
consist of general rendering parameters prefvisgen, rendering algo-
rithms preferences prefvisalgor and objects preferences prefvisobj.
Examples of general preferences are the depth cueing flag, the light
sources attenuation flag, and the 2D and 3D texturing flags. The al-
gorithm preferences are specific to the rendering method being ap-
plied, as for instance constant or adaptive sampling for ray-casting
or type of footprint for splatting methods. Finally, examples of ob-
ject preferences are the resolution at which a voxel model should be
processed and the type of gradient vector calculation. Having cam-
era, lights and preferences at these three levels opens the possibility
to apply different parameters for each object or one common to the
cluster or to the database. Material, shading, fusion and decision
classes are also shown.

5 Implementation and results

The proposed design has been implemented and tested on a Sun Ul-
tra 60 360MHz. The resulting software correctly handles the differ-
ent fusion methods with various combinations of input datasets. It
currently supports ray-casting, splatting and 3-D texture-mapping.
Much effort should still be put on the development of the user in-
terface which is, by now, simple and not very friendly for non com-
puter scientist users.

Color Plates 1 to 5 show examples of use of the system. They
represent different fusion methods applied on the same datasets.
The simulations have been realized on a 190x220x178 multimodal
study composed of 2 bytes-intensity MR images, 1 byte-intensity
labeled images and 1 byte per channel (RGB) SPECT images. The
labeled model represents the segmented anatomical regions of the
brain. In all the simulations the MR materials are hybrid (sur-
face+volume), the labeled materials are surface-only and SPECT
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Figure 1: System design

materials are emission+absorption. The shading model applied is
Phong � Emission � absorption with light sources atenuation and
depth cueing.

Color Plate 1 is an example of property fusion applying OPP
mode (method 1). MR values with high intensity SPECT values.
Color Plate 2 shows how P&G fusion between labeled data and
MR data. It is an OPP case (method 2). The decision function that
has been applied selects labeled values with a significant gradient or
MR data. Therefore, the image shows MR values everywhere but in
the cerebral cortex in which the label is shown. In is red on the right
and green on the left. Color Plate 3 is an example of material fusion
(MF) applying weighted averages (MPP mode, method 6). It uses
the three datasets. The transfer function shows SPECT everywhere
except surface MR values indicated by the labeled model. Color
Plate 4 shows an use of method 7. A weighted shading of SPECT
and MR data has been applied. Color Plate 5 is an example of color
blending of shaded MR and SPECT data. It corresponds to method
9.

Color Plate 1 to 3 images have been obtained with ray-casting
and Color Plates 4 to 5 with splatting. However, we have proved
both algorithms in all the simulation cases. The differences be-
tween the two approaches are not very significant neither in image
quality nor in computational cost, because the voxel/pixel ratio are
low (around 4).

The computational times depend more on the datatypes being
merged than on the fusion method. Specifically, the lower times,
that range from 55 seconds to 65 seconds, correspond to merging
the labeled and the MRI models (1+1 byte) as done for Color plate 2
and 3. Color plates 1 and 5 that merge MRI and SPECT (1 byte +3
bytes) require times of 185 and 165 seconds respectively. Finally,
Color plate 4, that uses the three datasets (1byte+1 byte+3bytes)
requires 215 seconds.

the five images vary between 125 and 148 seconds. The color fu-
sion simulation (CF) has also be proved using 3D-texture mapping
on a SGI Octane with 4MB of texture memory requiring a CPU
time of 3.7 seconds in front of 1.2 seconds for a monomodal study,
due to the memory swap overhead.

In order to have an estimation of the efficiency of the design,
we have implemented a program that realizes the particular case of
simulation of the first color plate. The program assumes the given
dataset type and fusion method so it does not realize any checking.
Next, we have introduced in the code all the verifications that would
be necessary in the general case. The computational cost of the
simulation with our design is 185.92 seconds. In the simulation

without checking it is 184.26 and when all the dynamic verifications
ar done, the CPU time is 225.44 seconds. These results show that
the system efficiency is close to the specific implementation case
and lower than the dynamic verification one. It therefore provides
the needed flexibility without loss of efficiency and it avoids code
redundancy.

6 Conclusions

In this paper, the direct rendering of multimodal aligned volume
models has been addressed. First, different techniques for mixing
datasets in the rendering process have been proposed, that may ei-
ther select one property per point or perform a weighted averaging
of them. These techniques also differ in the type of parameters that
are used in the fusion (property values, gradients, materials or col-
ors) and in the step of the rendering pipeline at which the fusion is
realized.

The requirements of a multimodal rendering system able to pro-
vide these different techniques have been analyzed. Next, a design
of such a system have been proposed. Finally, an implementation
based on this design has been described and some simulations re-
sults have been shown.

The next step of our research is the use of the system in order to
evaluate in a systematic way how the different fusion methods can
be used to outline a specific relationship. This depends on the input
datasets, their classification and the shading model applied. We will
continue working on medical images.

In addition, we plan to extend our system to other rendering algo-
rithms, such as run-length encoding. According to [H-Pfister et al.
2001], finding good transfer functions is one of the top ten prob-
lems in visualization. Finding good decision functions for fusion
is not easier. The development of intuitive user interfaces that may
help users to define them is therefore an open problem. Automatic
decision functions should also be investigated. Another important
problem that should be studied is rendering non-aligned datasets.
Finally, our system handles scenes in which each object may have
its own camera and light sources. An interesting feature to be added
would be the composition of different rendering schemes, one per
object in a single process.
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Figure 2: PF example.

Figure 3: P&GF example.

Figure 4: MF example.

Figure 5: SF example.

Figure 6: CF example.


