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Universitat Politècnica de Catalunya
Barcelona, Catalonia, Spain

chiang@cis.scu.edu.tw, robert@lsi.upc.es

March 13, 2002

Abstract

Variable-radius circles are common constructs in planar constraint
solving and are usually not handled fully by algebraic constraint solvers.
We give a complete treatment of variable-radius circles when such a
circle must be determined simultaneously with placing two groups of
geometric entities. The problem arises for instance in solvers using tri-
angle decomposition to reduce the complexity of the constraint prob-
lem.

This work offers a set of basic constructive methods that permits to
determine variable radius circles simultaneously with placing two rigid
geometric objects when geometric constraints are defined on both the
circumference and center point of the constraint circle. The problem
has been classified by the geometric entities in two groups, one is fixed
and the other has translational and rotational movement, so that the
variable radius circles satisfy the constraints on the geometric entities
in these two groups. The number of solutions for each problem is also
given.

Keywords: Geometric constraint solving, variable radius circles, con-
structive solvers, algebraic solvers, cyclographic maps.
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1 Introduction

In constraint-based geometric design, the designer creates a rough sketch of
an object made out of simple geometric elements. Then the intended exact
shape is specified by annotating the sketch with constraints. A geometric
constraint solver then checks whether the set of geometric constraints coher-
ently defines the object and, if so, determines the position of the geometric
elements.

Many techniques have been reported in the literature that provide pow-
erful and efficient methods for solving systems of geometric constraints. For
example, see [2] and references therein for an extensive analysis of work
on constraint solving. Among them, our interest focuses on constructive
techniques,

Constructive solvers have two major components: the analyzer and the
constructor. The analyzer symbolically determines whether a geometric
problem defined by constraints is solvable. If the problem is solvable, the
output of the analyzer is a sequence of construction steps, known as the
construction plan, that places each geometric element in such a way that
constraints are satisfied. After assigning specific values to the parameters,
the constructor interprets the construction plan and builds an object in-
stance, provided that no numerical incompatibilities arise.

The complexity of geometric constraint solving is doubly exponential, a
fcat that derives from the ability to express polynomial algebraic equations
by geometric constraint configurations. As a result, it is accepted that prac-
tical solvers are not complete, that is, they solve a subclass of geometric
problems.

A practical useful class of problems are twodimensional constraint prob-
lems where the geometric elements are points, straight lines, and circles with
fixed radii, and in which the constraints are like distance between two points,
distance from a point to a line, angle between two lines, line-circle tangency
and so on.

Various extensions to the geometric repertoire that constructive solvers
can handle in two dimensions can be considered. Exemples are circles with
variable radius, conics and Bézier curves. Of them, variable radius circles
are common constructs in two dimensional constraint solving and are usually
not handled fully by constructive solvers. Probably they are the most useful
extension as they permit auxiliary construction in addition, as explained
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by Hoffmann and Vermeer, [9], Hoffmann and Joan-Arinyo, [8], and Joan-
Arinyo and Soto, [10].

When the underlying solver is numerical and good initial guesses are
available for the geometric elements, variable radius circles pose no partic-
ular problem. But the numerical approach to solving constraints has many
drawbacks, including reliance on good starting values and the inability to
explore solution variants, [2]. What is needed is a constructive solution,
preferable one in which there is no need to solve high-degree polynomials.

Recently, Hoffmann and Chiang, [6, 7], reported on an extension of the
basic constructs to deal with variable radius circles in constructive solvers.
Here, the constraints on the variable radius circle are placed only on the
circumference.

In this work we further extend the basic constructions to consider con-
straint problems in which variable radius circles occur with constraints de-
fined on their center points.

The rest of the paper is organized as follows. In Section 2 we give a short
overview on related work. Next in Section 3 we define a minimal set of tools
a user interface should provide to define variable radius circles. Section 4
recalls the fundamental concepts of the cyclographic model geometry we
will make use of. General algorithms for the constructions which solve the
problem considered here are given in Section 5. In Section 6 we present
solving estrategies to keep to a minimum the complexity of the algorithms
implementation. Finally we offer some conclusions in Section 7.

2 Prior Work

There is a paucity of published works reporting on variable radius cir-
cles in constructive geometric constraint solving. Ramanathan, [14], stud-
ied the Apollonious problem which consists in constructing a circle tan-
gent to three given circles. The work addressed two problems: Devising a
coordinate-independent enumeration method of the eight possible solutions
and performing the computations efficiently. The technique was applied to
constraint-based, variable radius fitting of fillets to two lines.

Joan-Arinyo and Soto described in [10] a hybrid technique that allows to
solve constraint problems involving geometric elements with more than two
degrees of freedom. In particular it is shown how the method solves variable
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Figure 1: Variable radius circle C(C0, r) attached to one cluster.

radius circles attached to one geometric object which is determined up to
position and orientation, from now on referred to as a cluster [3], through
three constraints. See Figure 1.

Hoffmann and Chiang recently, [6, 7], reported on a more general ap-
proach to constructively solving constraint problems involving variable ra-
dius circles. The approach uses cyclographic maps, a special case of Laguerre
geometry, [5], and handles the situation where the variable radius circle,
C(C0, r), (see Figure 2) is attached to two clusters, S1 and S2, which share
a common geometric element, E. The total number of degrees of freedom
that need to be canceled for S1, S2 and the variable radius circle to define
a cluster is four: three for the circle itself plus one due to the possible rela-
tive motion between S1 and S2 along E. These constraints are canceled by
attaching the variable radius circle to each cluster through two constraints.
Note that, otherwise the problem could be reduced to the previous case. A
limitation of the method is that it only considers constraints placed on the
circumference of the variable radius circle.

The DCM is a commercial solver, [1], which permits sequential construc-
tions of variable radius circles when they are attached to one given cluster
through three constraints. As far as we know, [11, 12], no details have been
disclosed about how the variable radius circles are handled.

3 Definition of Variable Radius Circles

To define geometric problems involving circles with variable radius, the user
interface should provide an appropiate set of tools. A minimal set of tools
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Figure 2: Variable radius circle C(C0, r) attached to two clusters.

would include an explicit command to trigger the variable radius circle def-
inition along with operations to place geometric constraints on its circum-
ference and on its center.

We assume that the geometric elements from which constraint problems
are built are points, straight lines and circles. A sufficient set of constraints
to define variable radius circles includes tangencies and distances.

3.1 Constraints Placed on the Circumference

We define the tangency constraints placed on the circumference as follows.
See Figure 3. The circumference of the variable radius circle can be tangent
to
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Figure 3: Constraints placed on the circumference of a variable radius circle.
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• The circumference of a fixed radius circle.

• A straight line.

• A point. This is the usual on constraint.

Distance constraints placed on the circumference of the variable radius circle,
see Figure 3, are defined as follows

• Distance to a fixed radius circle Q: The minimum distance between
the two circles measured along the straight line defined by their center
points.

• Distance to a straight line L: The minimum distance between the
circle and the line measured along the perpendicular to the given line
through the circle center point.

• Distance to a point P : Distance between the circle and the point
measured along the straight line defined by the point and the center
of the circle.

3.2 Constraints Placed on the Center Point

Center points of variable radius circles have no privileges over other points.
Therefore the set of constraints that apply to generic points apply also to
center points of circles with variable radius. We assume that the constraints
available at the user interface are, see Figure 4,

• The center point can be at a given distance from another geometric
element.

• The center point can be on (tangent to) another geometric element.

To facilitate the user interaction, other constraints could be added to the
repertoire so far presented.

4 The Cyclographic Model

Several geometric design problems can be solved in a surprisingly simple
way if one uses Laguerre geometry. A specific case of this geometry, known
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Figure 4: Constraints placed on the center of a variable radius circle.

as the cyclographic model, results particularly useful to solve the problem
we have at hand, [14].

For the sake of completness, we recall the fundamental concepts of the
cyclographic model for the embedding of space R

2 in R
3 we will make use

of. For a general and more in depth discusion on the cyclographic model
and its applications to computer aided geometric design see Hoffmnann [5],
and Pottmann and Peternell [13].

The fundamental elements in R
2 we consider are rays and cycles. A ray

is an oriented straight line. A cycle is an oriented circle or a point (cycle
with radius 0). The orientation is fixed by a unit normal vector field in the
case of rays and by a signed radius in the case of the cycle.

The basic relation is that of oriented contact between cycles and rays.
Refer to Figure 5. An oriented cycle and a ray are in oriented contact, if
they are tangent and the unit normals coincide at the point of contact. For
a point and a ray, oriented contact equals incidence.

L

C

a b

L

C

Figure 5: Contact ray-cycle. a) Oriented. b) No oriented.
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Figure 6: Cyclographic maps. a) Cycle. b) Point.

Let C(a, b, r) denote a cycle with center point (a, b) and signed radius
r. We assume that when r > 0, the cycle is oriented counterclockwise; if
r < 0, the cycle is oriented clockwise. When r = 0, the cycle represents a
point and is considered to have both orientations simultaneously.

With each cycle C(a, b, r) there is an associated cyclographic map, de-
noted by γC, defined as the cone whose apex is the point (a, b, r) in R

3,
whose axis is parallel to the Z axis and whose angle is equal to π/4. Fig-
ure 6 illustrates this concept.

Consider the line in R
2 whose equation is ax + by + c = 0. Note that,

depending on the orientation, a straight line can support two different rays.
The orientation of a ray, given by its direction vector, is defined as the vector
[b,−a]; that is, the result of rotating clockwise by 90◦ the vector [a, b], which
is normal to the line. We shall denote a ray by L(a, b, c) or just L.

With each ray L(a, b, c) there is an associated cyclographic map, denoted
by γL, defined as the plane in R

3 which intersects the XY plane at L and
at an angle with [b,−a] equal to π/4. See Figure 7.

n
L

L
π/4

γ L

Figure 7: Cyclographic map of a ray.
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The distance of a point to a ray is measured as a positive quantity if
the point is to the left of the ray as seen in the ray’s orientation. The
angle between a pair of rays, ∠(Li, Lj) is measured from the direction of Li

clockwise to the direction of Lj.

5 Solving Variable Radius Circles

The set of constraints given in Section 3 refer to the tools available at the user
interface to provide a friendly interaction. To facilitate the solving proces, we
first show how to transform the problem defined at the user interface into an
equivalent problem, where distance constraints on the variable radius circle
are expressed as tangencies.

Next, to handle the constraints defined on the center point of variable
radius circles in a uniform and consistent way, we extend the cyclographic
model with two new auxiliary maps.

Then we give general algorithms that compute variable radius circles that
are attached to two rigid clusters through constraints placed on both, the
circumference and the center point of the circle. Following [6, 7], we consider
two different scenarios: 1) The geometric element E shared by clusters S1

and S2, see Figure 2, is a straight line and relative motion is translational,
and 2) E is a circle or point and the relative motion of clusters is a rotation.

5.1 Problem Transformation

First we consider the distance constraints placed on the circumference of the
variable radius circle to be determined, C(C0, r). The circle-line distance
constraint, dis(C,L) = d, see Figure 8, is equivalent to a tangency constraint
between the circle C and a line L′ which has been translated a distance d
along its normal. Let Q(Q0, r) be a circle with center Q0 and fixed radius
r. the distance constraint dis(C,Q(Q0, r)) = d is transformed into the tan-
gency constraint t(C,Q(Q0, r+d)). Finally, the distance constraint between
C and point P , dis(C,P ) = d, is transformed into the equivalent tangency
constraint t(C,Q(P, d)).

Distance constraints placed on the center point C0 of C(C0, r) are trans-
formed into tangency (on) constraints as follows. The center point-point
distance, dis(C0, P ) = d is transformed into t(C0, Q(P, d)). The center
point-line constraint dis(C0, L) = d is transformed into t(C0, L

′), where L′
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Figure 8: Transforming constraint dis(C,L) = d into t(C,L′).

is the line resulting from translating L a distance d along its normal. The
center point-circle distance constraint dis(C0, Q(Q0, r)) = d is transformed
into the tangency t(C0, Q(Q0, r + d)).

All the transformations are performed with respect to the cluster the
geometric elements belong to.

5.2 Auxiliary Maps

Hoffmann and Chiang’s solution to the construction of variable radius circles,
[6, 7], relays on the following fact. Let C be a variable radius circle. Let
E be either a ray or a fixed radius circle related to the circumference of
C by a tangency constraint. Then, if C and E are placed with respect to
each other in such a way that the tangency constraint holds as an oriented
contact, their γ-cyclographic maps, γC and γE, are tangent regardless the
realtive location of C and E or which the radius of C is.

γ-cyclographic maps capture properties derived from the cycle-cycle or
ray-cycle oriented tangency relationships, but they do not capture directly
the relationships between the center of a cycle and other geometric elements.
Since a variable radius cycle and its center are related through an unknown
distance, constraints placed between the center point of a cycle and other
geometric elements cannot be translated into γ-cyclographic maps. Note,
for example, that the distance between the center point of C and a ray
or a fixed radius circle depends on their relative position. Therefore, the
abovementioned fact no longer holds. To handle in a uniform way constraints
placed on the center point, on the circumference or on both, we extend the
cyclographic model with two new auxiliary maps.
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Let C ′ denote a fixed radius cycle related to the variable radius circle C
through a tangency constraint. We define the τ -map of C ′, denoted by τC ′,
as the cylinder in R

3, whose intersection with the XY plane is C ′ and whose
axis is parallel to the Z axis. We will also call to τC ′ a τ -cylinder.

Let L(a, b, c) be a ray related to the variable radius circle C through a
tangency constraint. We define the τ -map of L, denoted by τL, as the plane
in R

3 which intersects the XY plane at L and at an angle with [b,−a] equal
to π/2. We will also call to τL a τ -plane.

5.3 Algorithm for the Translational Merge Problem

To illustrate the problem we solve, consider the exemple in Figure 9 where
di denotes a distance constraint, t denotes a tangency and an arc betwen
two straight lines denotes an angle constraint. The set of constraints defines
two clusters which can be determined up to position and orientation in the
plane. See Figure 10. When these two clusters are combined through the
common straight line L0, there is still one degree of freedom: a translation
along L0. Since the variable radius circle has three degrees of freedom, four
constraints are needed to combine the clusters and circle into a rigid object.
In the exemple the circle is atached to each cluster through two tangency
constraints.

The rational for the solution is the following. We consider two clusters,
S1 = {L0, L1, L2} and S2 = {L0, L3, L4} sharing the line L0 and located
in the XY plane. If S1 is fixed at a given position in the plane, cluster S2

can be translated along L0 and positioned such that rays L2, L3 and L4 are
tangent, with the correct orientation, to a common circle C whose center is
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Figure 10: Translational Exemple. Clusters with a translational degree of
freedom along L0.

on a plane which is perpendicular to the XY plane and that intersects it in
a line parallel to the ray L1.

Note that, when the variable radius circle C is properly placed, its γ-
cyclographic map, γC, is tangent to the γ-cyclographic maps of those geo-
metric elements related to C by constraints on its circumference. Moreover,
the appex of γC lies on the τ -cyclographic maps of those geometric elements
related to C by constraints on its center point. Therefore, the appex of γC
is the intersection point of the γ- and τ -cyclographic maps.

To express our algorithms we shall make use of the following concepts.
Geometric elements in the clusters are denoted generically by E. T (E, d)
denotes the operation that translates E along the X axis by a distance d
and E(d) denotes the translated element. Similarly, R(E, θ) denotes the
operation that rotates E an angle θ around the center of the circle shared
by the two clusters and E(θ) denotes the rotated element.

The Boolean function circum(E,C) returns true whenever there is a
constraint between E and the circumference of the variable radius circle
C. We will call these constraints circumference constraints. The Boolean
function center(E,C) returns true whenever there is a constraint between E
and the center of the variable radius circle C. We will call these constraints
center constraints.

Functions γ(E) and τ(E) return, respectively, the γ-cyclographic and
the τ -cyclographic maps of the geometric element E.

The general algorithm for clusters with a translational degree of freedom
is as follows.
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Algorithm TranslationalMerge
1. Select Sf , St ∈ {S1, S2} such that Sf �= St with Sf the cluster

considered fixed and St the cluster to be translated.
2. Place the coordinate system in such a way that line L0, the

geometric element common to S1 and S2, defines the X axis.
3. For i ∈ [1..4] do
3.1 If Ei ∈ St then Ei(d) = T (Ei, d) endif
3.2 If circum(Ei, C) then
3.3 Mi := γ(Ei(d))

else if center(Ei, C) then
3.4 Mi := τ(Ei(d))

endif
endfor

4. Compute the displacement d to be applied to St so that
Mi, 1 ≤ i ≤ 4, intersect at a common point, P (x, y, z).

5. If P (x, y, z) is a finite point then
The variable radius circle seeked has (x, y) as center point
and r = z as radius.

endif

5.4 Algorithm for the Rotational Merge Problem

Consider now the exemple in Figure 11 where constraints are denoted as
before. The set of constraints defines two clusters, S1 and S2 which can be
determined up to position and orientation in the plane. See Figure 12.
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Figure 12: Rotational Exemple. Clusters with a rotational degree of freedom
with respect to C.

Now clusters S1 and S2 share as a common element the point C. Recall
that points are circles with radius zero. When these two clusters are com-
bined through the common point C, there is still one degree of freedom: a
rotation about C. In the example, the four constraints needed to combine
the clusters and the variable radius circle into a rigid object are two tan-
gencies placed on the circle circumference and two distances placed on the
center point.

If S1 is fixed, S2 can move relatively to S2 by a rotation about the
point (in general, a rotation about the center of the shared circle). In these
conditions, the rational given for the translational clusters applies here if
translation T (E, d) is replaced with rotation of an angle θ with respect to
the center of the shared circle, R(E, θ).

If C is the variable radius circle, the general algorithm for clusters with
a rotational degree of freedom is as follows.

Algorithm RotationalMerge
1. Select Sf , Sr ∈ {S1, S2} such that Sf �= Sr with Sf the cluster

considered fixed and Sr the cluster to be rotated.
2. Place the coordinate system in such a way that the origin is the

center point of the fixed radius circle shared by S1 and S2.
3. For i ∈ [1..4] do
3.1 If Ei ∈ Sr then Ei(θ) = R(Ei, θ) endif
3.2 If circum(Ei, C) then
3.3 Mi := γ(Ei(θ))
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else if center(Ei, C) then
3.4 Mi := τEi((θ))

endif
endfor

4. Compute the rotation θ to be applied to Sr so that
Mi, 1 ≤ i ≤ 4, intersect at a common point, P (x, y, z).

5. If P (x, y, z) is a finite point then
The variable radius circle seeked has (x, y) as center point
and r = z as radius.

endif

6 Implementation Strategies

Algorithms given in Section 5 are conceptual and an straightforward imple-
mentation would result in the need to solve polynomials with degree higher
than strictly required. Next we present solving estrategies to keep to a
minimum the degree of the polynomials involved.

6.1 Notation

If E is either a ray, L, or a cycle, C, we will denote the translational and the
rotational merge problems by E0(E1, E2, E3, E4), where S1 = {E0, E1, E2}
is the cluster considered fixed, S2 = {E0, E3, E4} is the cluster to be moved
and E0 is the geometric element shared by S1 and S2. If E0 = L, the problem
is a translational merge while if E0 = C, the problem is a rotational merge.

All of the constraints for the merge problem considered by Hoffmann and
Chiang in [6, 7] are tangencies on the circumference of the variable radius
circles, that is circumference constraints. According to the type of geometric
elements involved, Hoffmann and Chiang in [6, 7] classify the translational
merge problem into six classes. Similarly, rotational merge problems are
classified into six classes. These classes are listed in the first column of
Table 1. Translational and rotational cases are individualized by replacing
E() with L() and C(), respectively.

Here we consider also constraints defined on the center of the variable
radius circles, that is, center constraints. Since a point has two degrees of
freedom, in wellconstrained problems, there are at most two constraints on
the center of the variable radius circle to be determined. In what follows,
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Problem 2 constraints 1 constraint
E1: E(LL,LL)(1,4) E11: E(LL,L’L’)(1,2) E13: E(LL,LL’)(1,2)

E12: E(LL’,LL’)(1,2)
E2: E(CL,LL)(2,8) E21: E(CL,L’L’)(2,4) E25: E(CL,LL’)(2,4)

E22: E(CL’,LL’)(2,4) E26: E(CL’,LL)(2,4)
E23: E(C’L,LL’)(2,4) E27: E(C’L,LL)(2,4)
E24: E(C’L’,LL)(2,4)

E3: E(CL,CL)(4,16) E31: E(CL,C’L’)(4,8) E35: E(CL,CL’)(4,4)
E32: E(CL’,CL’)(4,4) E36: E(CL,C’L)(4,16)
E33: E(C’L,CL’)(4,16)
E34: E(C’L,C’L)(4,4)

E4: E(CC,LL)(4,16) E41: E(CC,L’L’)(2,4) E44: E(CC,LL’)(2,4)
E42: E(CC’,LL’)(4,16) E45: E(CC’,LL)(4,16)
E43: E(C’C’,LL)(2,4)

E5: E(CC,CL)(8,32) E51: E(CC,C’L’)(4,8) E55: E(CC,CL’)(4,4)
E52: E(CC’,CL’)(8,16) E56: E(CC,C’L)(4,16)
E53: E(CC’,C’L)(8,16) E57: E(CC’,CL)(8,16)
E54: E(C’C’,CL)(4,8)

E6: E(CC,CC)(16,64) E61: E(CC,C’C’)(4,8) E63: E(CC,CC’)(8,16)
E62: E(CC’,CC’)(16,64)

Table 1: General merge problem classification.

we will denote by L′ and C ′ the geometric elements in a merge problem on
which center constraints have been defined. For example C(LL′, C ′L) will
denote that one line in the fixed cluster and the circle in the moving cluster
support center constraints with respect to the variable radius circle.

A general classification for the translational and rotational merge prob-
lem is shown in Table 1. The first column indicates the problems with
circumference constraints only, the second and third columns show the dif-
ferent problems with two and one center constraints respectively. The pair
(m,n) after each problem indicates the maximum number of solutions, m
for translational and n for rotational problems. We will explain later on how
these figures have been derived.
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6.2 Degree of the Equations

To simplify the problem, we assume that in the translational case the straight
line shared by the clusters is coincident with the X-axis and that in the
rotational problem the cycle shared by the clusters is centered at the origin.

Using the notation alreay introduce in Section 5 and with simple geom-
etry, we have the following theorem

Theorem 6.1 The equations for γL, τL, γL(d), and τL(d) are degree one.
The equations for γC, τC, γC(d), τC(d), γL(θ), and τL(θ) are degree two.
And, the equations for γC(θ) and τC(θ) are degree 4 equations.

Notice that the equations for γL, τL, γC and τC have 3 variables x, y, z,
and the equations for γL(d), τL(d), γC(d), τC(d), γL(θ), τL(θ), γC(θ) and
τC(θ) add one more variable, d.

As mentioned in Section 5, the variable radius circle can be found by
intersecting four surfaces, each surface being a γ-map or a τ -map, depend-
ing on whether the constraint on the variable radius cycle is a circumference
constraint or a center constraint. The system of equations can be easily gen-
erated by generating the equations of the maps associated to each geometric
element involved. For example, the solution to the problem L(CL′, C ′L) can
be figured out by finding the intersection

γC1 ∩ τL′
2 ∩ τC ′

3(d) ∩ γL4(d)

Since equations τL′
2, and γL4(d) are degree one and γC1 and τC ′

3(d) are
degree two equations, from Bezout’s theorem, [4], we know there are 4 so-
lutions for this system. By using Bezout’s theorem, every subproblem Eij
of problem Ei, see Table 1, has the same number of solutions. For example,
every subproblem of L1, including L11, L12 and L13, has only one solution,
and every subproblem of C1, including C11, C12 and C13, has four solu-
tions. The number of solutions for each problem is summarized in Table 1.
In the following section, we will derive strategies for each merge problem
subclass to reduce these numbers to compute a variable radius circle.

Notice that the number of solutions given is based on our approach
by using the γ cyclographic maps and τ maps. If we do not use these
maps, the number of solutions must be multiplied by 8, the number of
essentially distinct orientations of lines and cycles. For example, the number
of solutions to the problems L(LL,LL) and C(LL,LL) would be 8 and 32,
respectively.
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6.3 Algorithms for the Translational Merge Problem

The subproblems given in Table 1 are individualized as translational merge
problems by replacing Eij with T ij. To derive strategies to reduce the de-
gree of the equations to be solved, we group the translational merge problems
intol three different classes as follows:

1. Problems with two center constraints defined in the same cluster. This
includes T11, T21, T24, T31, T41, T43, T51, T54 and T61.

2. Problems that can be transformed into the intersection of three planes
and one surface. This includes T12, T13, T22, T23, T25, T26, T27,
T32, T34, T35, T44, T55, and part of the problems in the previous
class.

3. Problems that can be transformed into the intersection of one γC, one
τC, and two planes. This includes T33, T36, T42, T45, T52, T53,
T56, T57, T62 and T63.

In the following three subsections we present, from easy to hard, the
solution of the problems listed above.

6.3.1 Two center constraints in the same cluster

This problem can be solved by forcing the cluster with two center constraints
to be the moving cluster, so the problem becomes L(E1E2, E

′
3E

′
4). Notice

that if the moving cluster has two center constraints the cluster fixed has
no center constraints. From the fact that the cone-cone intersection can
be transformed into cone-plane intersection, [6, 7], the intersection of the
geometric elements in the first cluster can always be represented by the
intersection of the map of the first element E1 with a fixed plane. The
algorithm to solve the problem is:

Algorithm L(E1E2, E
′
3E

′
4)

1. Find the point (x, y) = τE′
3 ∩ τE′

4.
2. Substitute the point (x + d, y) into the equation of the plane

generated in the first cluster and find z(d) which is a degree
one equation of variable d.

3. Substitute the point (x + d, y, z(d)) into the equation of E1

to yield one equation in d.
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4. Solve the equation to find the value of d.
5. The variable radius circle seeked has (x + d, y)

as center point and z(d) as radius.

The following three theorems give the tools needed to figure out the
intersection of τE′

3 and τE′
4. The first theorem is trivial and applies when

both E′
3 and E′

4 are straight lines.

Theorem 6.2 Two different straight lines Li = [ai, bi, ei] and L2 = [aj , bj , ej ]
which are not parallel, intersect at point

(−eibj + ejbi, −aiej + ajei, aibj − ajbi)

The second theorem reduces the line-circle intersection to two line-line
intersections.

Theorem 6.3 Let L = [a, b, e] be a straight line and C = (x, y, r) a circle.
Intersecting L and C is equivalent to intersecting L and L′ = [a′, b′, e′] where

a′ = a(2t) + b(1 − t2)
b′ = −a(1 − t2) + b(2t)
e′ = −M(1 − t2) − N(2t)

and

t = ±
√

−(ax + by + e − r)/(ax + by + e + r)
M = bx − ay

N = ax + by

Furthermore, the intersection points are (Ax + Cxt, Ay + Cyt, 1) where

Ax = bM − ae, Cx = b
√

r2 − (N + e)2

Ay = −aM − be, Cy = −a
√

r2 − (N + e)2

Notice that t is real if and only if −r ≤ ax + by + d ≤ r and that each
different value for t represents a different line.

Notice further that when intersecting a circle C with a line L(d) =
[a, b, e−ad], the above theorem applies just replacing e by e−ad or replacing
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x by x − d. In this case, the relation between t and d becomes ad(1 − t2) =
(e − r)(1 − t2) + N(1 + t2).

The third theorem transforms the intersection of two circles into a line-
circle intersection.

Theorem 6.4 Let Ci = (xi, yi, ri) and Cj = (xj , yj , rj) be two circles.
Intersecting Ci and Cj is equivalent to intersect either circle Ci or Cj with
the line L = [a, b, e] where

a = xj − xi

b = yj − yi

e =
1
2
(x2

i + y2
i − r2

i − x2
j − y2

j + r2
j )

The number of solutions in each case can be easily calculated. Two lines
intersect at most in one point and a line and a circle or two circles intersect
at most in two points. If the cluster fixed has two cycles, we can transform
the intersection of their cyclographic maps into the intersection of one cone
with a plane, which has two equations of degree one. This increases the
number of solutions by a factor of 2. Therefore, there is one solution for
T11, two solutions for T21, T24, T41, T43, and four solutions for T31, T51,
T54 and T61.

6.3.2 Intersection of three planes and one surface

In [6, 7], cone-cone intersections are transformed into cone-plane intersec-
tions. Let Π(C1, Ci) denote the plane that contains the intersection curves
of the cones γC1 and γCi or τC1 and τCi. an consider, for example, the
subproblem E(CC,CC). First three planes, namely Π(C1, C2), Π(C1, C3)
and Π(C1, C4) are intersected. Then this intersection is substituted in the
map γC1. We apply this approach here to find the intersection of four cones,
with the degree of freedom that the third and fourth cones move along the
X-axis or rotate about the origin. We use the similar approach to solve the
problem in this criterion. Notice that the intersection of τC1 and τC2 can
be convert into the intersection of τC1 with a plane τL.

Table 2 summarizes the problems we consider here. The third, fourth
and fifth columns give the planes, generated as γ and τ maps, whose common
point defines the distance d that the moving cluster must be translated along
the X-axis. This common point is then substituted in the equation given in
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Problem Equation Π1 Π2 Π3 Degree
T12: L(LL’,LL’) γL1 τL′

2 γL3(d) τL4(d) 1
T13: L(LL,LL’) γL1 γL2 γL3(d) τL4(d) 1
T22: L(CL’,LL’) γC1 τL2 γL3(d) τL4(d) 2
T23: L(C’L,LL’) γC ′

1 γL2 γL3(d) τL4(d) 2
T25: L(CL,LL’) γC1 γL2 γL3(d) τL4(d) 2
T26: L(CL’,LL) γC1 τL2 γL3(d) γL4(d) 2
T27: L(C’L,LL) τC ′

1 γL2 γL3(d) γL4(d) 2
T32: L(CL’,CL’) γC1 τL2 P (C1, C3(d)) τL4(d) 4
T34: L(C’L,C’L) τC ′

1 γL2 P (C ′
1, C

′
3(d)) γL4(d) 4

T35: L(CL,CL’) γC1 γL2 P (C1, C3(d)) τL4(d) 4
T44: L(CC,LL’) γC1 P (C1, C2) γL3(d) τL4(d) 2
T55: L(CC,CL’) γC1 P (C1, C2) P (C1, C3(d)) τL4(d) 4

Table 2: Classification of the three planes and one surface intersection prob-
lem.

the second column, yielding an equation on the variable d whose degree is
shown in the last column. The specific algorithm to solve the problem can
be written as follows.

Algorithm L(E1E2, E3E4)
1. Find the point (x(d), y(d), z(d), w(d)) = Π1 ∩ Π2 ∩ Π3.
2. If circum(E1, C) then

M := γE1

else if center(E1, C) then
M := τE′

1

endif
3. Generate one equation with one variable d by replacing

(x(d), y(d), z(d), w(d)) in the equation of M .
4. Solve the system of equations to find variable d.
5. The variable radius circle seeked has (x(d)/w(d), y(d)/w(d))

as center point and z(d)/w(d) as radius.

6.3.3 Intersection of one γ-cylinder one τ-cylinder and two planes

The Table 3 summarizes the problems we consider in this section. These
problems are transformed into the intersection of two planes with a cone,
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Problem γC τC′ Π1 Π2 Deg 1 Deg 2 Degree
T33: L(CL′, C′L) γC1 τC′

3(d) τL2 γL4(d) (1,1,0) (0,0,0) 4
T36: L(CL, C′L) γC1 τC′

3(d) γL2 γL4(d) (1,1,0) (0,0,0) 4
T42: L(CC′, LL′) γC1 τC′

2 γL3(d) τL4(d) (1,0,0) (0,0,0) 4
T45: L(CC′, LL) γC1 τC′

2 γL3(d) γl4(d) (1,0,0) (0,0,0) 4
T52: L(CC′, CL′) γC1 τC′

2 d P (C1, C3(d)) τ(L4(d)) (2,2,0) (0,0,1) 8
T53: L(CC′, C′L) γC1 τC′

2 P (C′
2, C

′
3(d)) γL4(d) (2,2,0) (0,1,1) 8

T56: L(CC, C′L) γC1 τC′
3(d) P (C1, C2) γL4(d) (1,1,0) (0,0,0) 4

T57: L(CC′, CL) γC1 τC′
2 P (C1, C3(d)) τL4(d) (2,2,0) (0,1,1) 8

T62: L(CC′, CC′) γC1 τC′
2 P (C1, C3(d)) P (C′

2, C
′
4(d)) (2,3,0) (0,1,1) 18(16)

T63: L(CC′, CC) γC1 τC′
2 P (C1, C3(d)) P (C3, C4)(d) (2,2,0) (0,1,1) 8

Table 3: Classification of the γC, τC ′ and two planes intersection problem.

γC, and a cylinder, τC. The planes Π1 and Π2 , are given in the fourth and
fifth columns, the second column lists the γ map and the third column the
τ map.

Note that when the moving cluster is translated along the X-axis, the
line common to planes Π1 and Π2 defines the distance d. Assume that

Π1 = (a1(d), b1(d), c1(d), w1(d))

and
Π2 = (a2(d), b2(d), c2(d), w2(d))

are two planes in Table 3, the parametric form of the line where Π1 and Π2

intersect is

L = (a1(d), b1(d), c1(d), w1(d)) + s (a2(d), b2(d), c2(d), w2(d))

The degrees on the variable d of each component in (a1(d), b1(d), c1(d)) and
(a2(d), b2(d), c2(d)) are shown in the sixth and seventh column in Table 3.
The algorithm for finding the solution to this class of problems is the fol-
lowing

Algorithm L(CE2, E3E4)
1. According to the subproblem at hand and following Table 3,

generate γC, τC ′, Π1 and Π2)
2. Find the parametric form of the line L = Π1 ∩ Π2.
3. Generate two equations in d and s by substituting the

explicit form of L into the implicit forms of γC and τC ′.
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4. Figure out d by solving the system of two equations derived
in step 3.

5. Point (a1(d), b1(d)) + s(a2(d), b2(d)) is the center of the
variable radius circle and c1(d) + s ∗ c2(d) is the radius.

Applying Bezout’s theorem to the equations derived in step 3 in the
Algorithm L(CE2, E3E4), we find the maximun number of solutions to the
problem, which is given in the eight column of Table 3. Notice that compared
to the system of equations generated in Section 6.2, this approach yields 2
more solutions for the problem L(CC ′, CC ′).

6.4 Algorithms for the Rotational Merge Problem

The classification for rotational clusters is the same as in the translational
case. All what is needed is to replace Eij with Rij in Table 1 to indicate
that the problem has the same constraint pattern but the moving cluster is
now rotated. We also separate these problems into three different classes.
They are:

1. Problems with two center constraints defined in the same cluster. This
includes R11, R21, R24, R31, R41, R43, R51, R54 and R61.

2. Problems which can be transformed into the intersection of three
planes and one surface. This includes R12, R13, R22, R23, R25, R26,
R27, R32, R34, R35, R44, R55, and part of the problems in the pre-
vious class.

3. The remainder of the problems, including R33, R36, R42, R45, R52,
R53, R56, R57, R62, R63.

6.4.1 Two center constraints in the same cluster

If the cluster with two center constraints is the one that will be rotated, the
problems in this class are formally solved in the same way as L(E1E2, E

′
3E

′
4).

The intersection of the geometric elements in the cluster fixed can always
be represented by the intersection of the map of the first element E1 with
a fixed plane. If θ is the rotation angle and t = tan(θ/2) the algorithm to
solve the problem is
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Algorithm C(E1E2, E
′
3E

′
4)

1. Find the point (x, y) = τE′
3 ∩ τE′

4.
2. Rotate the point (x, y) by an angle θ yielding (x(t), y(t)).
3. Replace (x(t), y(t)) into the equation of the plane generated

in the first cluster and find z(t) which is a degree one
equation in t.

4. Substitute (x(t), y(t), z(t)) into the equation of E1 to yield
one equation in t.

5. Solve the equation to find the value of t.
6. The seeked circle is centerd on (x(t), y(t)) and z(t) is the radius.

6.4.2 Intersection of three planes and one surface

Problems in this class, C(E1E2, E3E4), are solved as problems in the corre-
sponding translational class L(E1E2, E3E4) replacing the translation with
the rotation α If t = tan(θ/2), the algorithm is

Algorithm C(E1E2, E3E4)
1. Find the point (x(t), y(t), z(t), w(t)) = Π1 ∩ Π2 ∩ Π3.
2. If circum(E1, C) then

M := γE1

else if center(E1, C) then
M := τE′

1

endif
3. Generate one equation with one variable t by replacing

(x(t), y(t), z(t), w(t)) in the equation of M .
4. Solve the system of equations to find variable t.
5. The variable radius circle seeked has (x(t)/w(t), y(t)/w(t))

as center point and z(t)/w(t) as radius.

To justify the degree reduction, we need the following result.

Theorem 6.5 Consider three planes with constant coefficients except for t:

Π1 = [a2, b2, c2, −d2]

Π2 = [a3(1 − t2) − b3(2t) + e3(1 + t2), a3(2t) + b3(1 − t2) + f3(1 + t2),
c3(1 + t2), −d3(1 + t2)]

Π3 = [a4(1 − t2) − b4(2t) + e4(1 + t2), a4(2t) + b4(1 − t2) + f4(1 + t2),
c4(1 + t2), −d4(1 + t2)]
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Then Π1,Π2 and Π3 intersect in a point (x(t), y(t), z(t), w(t)) whose com-
ponents are expressions of degree 2 in t.

Now it is easy to show that problems in this class have two solutions
when the first component E1 is a ray, such as in problems C12 and C13.
Otherwise, they have 4 soultions, such as in problems C22, C23, C25, C26,
C27, C32, C34, C35, C44 and C55. The number of solutions is given in the
Table 1.

6.4.3 Remainder Problems

The remainder subproblems of rotational merge problems are C33, C36,
C42, C45, C52, C53, C56, C57,C62 and C63.

Unfortunately, the strategy presented in Section 6.3 does not work here
because the degree of the parametric line generated at an intermediate step
does not allow to reduce the final degree of γC and τC ′.

We need to derive some results before presenting our algorithm. Let C
be a cycle centered at (x1, y1) with (signed) radius z1 and let L and L′ be
rays with equations a2x + b2y + d2 = 0, and a2

2 + b2
2 = 1 respectively. Let

δ = (a2, b2, d2) · (x1, y1, 1) = (a2x1 + b2y1 + d2).

Theorem 6.6 The intersection points for γC and γL are given by
⎧⎪⎨
⎪⎩

x(u) = x1 + z1
1−u2

1+u2 − δ
w(u)(1 − u2)

y(u) = y1 + z1
2u

1+u2 − δ
w(u)(2u)

z(u) = 2z1 − δ
w(u)(1 + u2)

Notice that when z1 = 0, the locus of the intersection points in the above
theorem can be written in homogeneous form as:

⎧⎪⎪⎨
⎪⎪⎩

x(u) = x1w(u) − δ(1 − u2)
y(u) = y1w(u) − δ(2u)
z(u) = δ(1 + u2)
w(u) = (a2, b2,−1) · (1 − u2, 2u, 1 + u2)

Theorem 6.7 The intersection points for γC and τL′ are
⎧⎪⎪⎨
⎪⎪⎩

x(u) = x1w(u) − δ(1 − u2)
y(u) = y1w(u) − δ(2u)
z(u) = z1w(u) − δ(1 + u2)
w(u) = (a2, b2, 0) · (1 − u2, 2u, 1 + u2)
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Let C ′ be a cycle centered at (x1, y1) with (signed) radius z1 such that
supports a center constraint.

Theorem 6.8 The intersection points of τC ′ and γL are given by
⎧⎪⎪⎨
⎪⎪⎩

x(u) = x1(1 + u2) + z1(1 − u2)
y(u) = y1(1 + u2) − z1(2u)
z(u) = δ(1 + u2) + z1((a2, b2) · (1 − u2, 2u))
w(u) = 1 + u2

Notice that the intersection points in the above three theorems when z1 = 0
are all degree 2 equations for (x(u), y(u), z(u), w(u))

Consider the problem E(C1E2, E3E4). It is advantageous to ”lift” the
plane in which we solve the problem in the Z-direction by a distance equal to
the (signed) radius of the first cycle C1. This has the effect of reducing C1 to
a point simplifying the cone equation γC1. The solution can then be dropped
back down, to the original problem plane, by shifting the line, re-inflating the
cycle, and increasing or diminishing the variable radius cycle. The details
are routine. Notice that in this approach, the above three theorems for
cases γC∩γL, γC∩τL′ and τC ′∩τL′ can be all represented in homogenous
coordinates with degree 2 in its components.

Many problems have the patterns γC ∩ γL, γC ∩ τL′ and τC ′ ∩ τL′

in the same cluster, including C33, C36, C42, C45, C52, C53, C56, C57 and
C63. We assume they are the fixed cluster while the two elements in the
second cluster are E3 and E4. Without loss of generality, we assume that
if the first element is a cycle which has a circumference constraint with the
variable radius cycle, its cyclographic map γC1 has the apex located in the
XY plane. That is, the apex of γC1 has 0 as its z-component value. With
these assumptions, the algorithm for these problems is:

Algorithm C33, C36, C42, C45, C52, C53, C56, C57, C63
1. Find the intersection point (x(u), y(u), z(u), w(u)) for the

geometric elements in the cluster fixed.
2. Find the equation for the geometric element in the moving

cluster after its rotation. Intersection is given by two
degree 4 equations, f(x, y, z, t) = 0 and g(x, y, z, t) = 0.

3. Substitute point (x(u), y(u), z(u), w(u)) into f and g to
find two equations with two variables t and u.

4. Solve these two equations
F (u, t) = f(x(u)/w(u), y(u)/w(u),z(u)/w(u), t) = 0
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G(u, t) = g(x(u)/w(u), y(u)/w(u), z(u)/w(u), t) = 0
to figure out u and t.

5. Point (x(u)/w(u), y(u)/w(u)) is the center of the circle and
the radius is (z(u)/w(u).

We need to prove that functions F and G in the above algorithm are
degree 4. We use the subproblem C33 = C(CL′, C ′L) as an example, the
others are routine. Applying Theorem 6.7, we can find the parametric form
for the intersection of the elements in the fixed cluster. Then we substitute
this parametric form into the implicit form of F and G, which are τC ′

3(t)
and γL4(t) respectively, to get the following two degree 4 equations with
two variables:

F (u, t) = (x2
1 + y2

1 − z2
1 + x2

3 + y2
3 − z2

3)w(u)(1 + t2)
−2δ(1 + t2)((x1, y2,−z1) · (1 − u2, 2u, 1 + u2))
−2(x3(1 − t2) − y3(2t))(x1w(u) − δ(1 − u2))
−2z3(1 + t2)(z1w(u) − δ(1 + u2)) = 0

G(u, t) = (a4(1 − t2) + b4(2t))(x1w(u) − δ(1 − u2))
+(a4(2t) + b4(1 − t2))(y1w(u) − δ(2u))
+(d4w(u) − z1w(u) + δ(1 + u2))(1 + t2) = 0

where δ = (a2, b2, d2) · (x1, y1, 1) and w(u) = (a2, b2, 0) · (1 − u2, 2u, 1 + u2).
Therefore the number of solutions in this class of problem is 16.

A similar analysis applies to the subproblems C36, C42, C45, C52, C53,
C56, C57 and C63.

We did not reduce the number of solutions for the case C62 = C(CC ′, CC ′).

7 Conclusion

After adding the center constraints into the variable radius circle clusters,
we classify the problem into three classes:

1. Two center constraints are on the same cluster.

2. The problem can be modify into the intersection of three planes with
either a γ-map or a τ -map.
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3. Neither one of above.

The solution strategy for solving variable radius circle clusters has dif-
ferent pattern for the problems in each class.

For problems in the first class, we transform the system of equations for
the fixed cluster into the equation of a cone or cylinder plus the equation
of a fixed plane. If n is the number of solutions for the intersection of two
geometric entities supporting a center constraint, the maximum number of
solutions for translational merge problem is 2n if the fixed cluster has a
cycle, or n if the fixed cluster are all planes. As for the rotational merge
problem, the number of solution are 4n if the fixed cluster has a cycle, or
2n if the fixed cluster only has planes.

Problems in the second class are transformed into the intersection of
three planes with either a plane, a cylinder or cone. The number of solutions
in this class is reduced by the fact that the intersection point of one fixed
plane with two rotated planes with the same degree is a degree 2 equation.

In the third class and with the aim of reducing as much as possible
the maximum number of possible solutions to the problems in the third
class, we apply different approaches to the translational and rotational merge
cases. In the translational merge case, we transform the problem into the
intersection of two planes from the fixed cluster and a cone and a cylinder
from the moving cluster. The number of solutions depends on the degree of
a parametric line generates in an intermediate step of the computations. In
the rotational merge problem no matter which are the maps of the geometric
entities in the moving cluster (plane, cone or cylinder), we always get two
degree 4 equations with two variables. Therefore the maximum number of
solution for the poblems in this class is 16.

Except for the subproblem C62 = C(CC ′, CC ′) for which we do not
reduce the number of solutions, the degree reduction achieved by the specific
algorithms with respect to the conceptual algorithms is significative.
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8 Appendix

In this section we collect some results concerning properties used in previous
sections.

Theorem 8.1 Let L = [a, b, c] be a straight line. For every point (x, y) on
the line the relation c = −(a, b)(̇x, y) holds.

Proposition 8.2 The line or ray from point P1 = (x1, y1) to point P2 =
(x2, y2) is

L = [y1 − y2, x2 − x1, x1y2 − x2y2].

Proposition 8.3 The line or ray L = [a, b, c] when translated along the X-
axis by the distance d, becomes the line or ray L′ = [a, b, c− ad]. Moreover,
when rotated counter-clockwise about the origin by the angle θ, it becomes

L′′ = [a cos(θ) − b sin(θ), a sin(θ) + b cos(θ), c]

Proposition 8.4 The plane Π = [a, b, c, w] when translated along the X-axis
by d, becomes the plane

Π′ = [a, b, c, w − ad].

Moreover, when rotated counter-clockwise about the Z-axis by the angle θ,
it becomes the plane

Π′′ = [a cos(θ) − b sin(θ), a sin(θ)b cos(θ), c, w]

Proposition 8.5 The cycle C = (x, y, r, 1) translated along the X-axis by
d, becomes C ′ = (x + d, y, r, 1). When rotated counter-clockwise about the
Z-axis by θ, it becomes

C ′ = (x cos(θ) − y sin(θ), x sin(θ) + y cos(θ), r, 1)
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Proposition 8.6 The plane Π = [a, b, c, w] spanned by three points Pk =
(xk, yk, zk,−wk), k = 1, 2, 3 is

a =

∣∣∣∣∣∣
w1 y1 z1

w2 y2 z2

w3 y3 z3

∣∣∣∣∣∣
b =

∣∣∣∣∣∣
x1 w1 z1

x2 w2 z2

x3 w3 z3

∣∣∣∣∣∣

c =

∣∣∣∣∣∣
x1 y1 w1

x2 y2 w2

x3 y3 w3

∣∣∣∣∣∣
w =

∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣

Proposition 8.7 The intersection point of three planes Πk = [ak, bk, ck,−wk], k =
1, 2, 3 is the point P = (x, y, z, w) where

x =

∣∣∣∣∣∣
d1 b1 c1

d2 b2 c2

d3 b3 c3

∣∣∣∣∣∣
y =

∣∣∣∣∣∣
a1 d1 c1

a2 d2 c2

a3 d3 c3

∣∣∣∣∣∣

z =

∣∣∣∣∣∣
a1 b1 d1

a2 b2 d2

a3 b3 d3

∣∣∣∣∣∣
w =

∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣

Proposition 8.8 Let Π1 = [a1, b1, c1, w1] and Π2 = [a2, b2, c2, w2] be two
planes. Define qmn = m1n2 − m2n1, where m,n ∈ {a, b, c, d}. If these two
planes intersect, the intersection line has direction [qbc, qca, qab]. If qbc �= 0,
this line passes through the point (0,−qdc, qdb, qbc). If qca �= 0, this line passes
through the point (qdc, 0,−qda, qca). If qab �= 0, this line passes through the
point (−qdb, qda, 0, qab).

Proposition 8.9 A line or ray that has distance d to a point (x0, y0, 1) has
the coordinates [a, b, d

√
a2 + b2 − (ax0 + by0)].

Proposition 8.10 The ray that intersects the X-axis at an angle θ, measur-
ing the angle clockwise from the X-axis to the ray, is [−sin(θ),−cos(θ), d].
Furthermore, for every point (x, y, 1) on the ray, d = x sin(θ) + y cos(θ).

Theorem 8.11 The intersection curve of two normal cones whose apices
are P0 = (x0, y0, z0, 1) and P1 = (x1, y1, z1, 1) lies in the plane with normal
[x1 − x0, y1 − y0, z0 − z1]E and passing through the point (P0 + P1)/2. That
is, the intersection of these two cones is equal to the intersection of either
one of the cones with the plane:

C((x0, y0, z0, 1)) ∩ C((x1, y1, z1, 1)) = C((x0, y0, z0, 1)) ∩ Π
= C((x1, y1, z1, 1)) ∩ Π
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where Π = [x1 − x0, y1 − y0, z0 − z1, (x2
0 + y2

0 − z2
0 − x2

1 − y2
1 + z2

1)/2].

Theorem 8.12 The cyclographic map for the ray [a, b, d] rotated about the
origin by θ has the form

[a(1 − t2) − b(2t), a(2t) + b(1 − t2), c(1 + t2), d(1 + t2)]

where t = tan(θ/2), −π < θ < π, and c = −√
a2 + b2. When θ = π, the

cyclographic map becomes [−a,−b, c, d].

Theorem 8.13 Let L = [a, b, d] be a ray. The maps γL(θ) and τL(θ) have
the form

[a(1− t2)− b(2t) + e(1 + t2), a(2t) + b(1− t2) + f(1 + t2), c(1 + t2), d(1 + t2)]

where t = tan(θ/2), −π < θ < π, e = f = 0, and c = −√
a2 + b2, c = 0

for the γL(θ) and τL(θ) respectively. When θ = π, the γL(θ) and τL(θ)
becomes [−a,−b, c, d].

Theorem 8.14 Let C ′
1 = (x1, y1, z1) and C ′

3 = (x3, y3, z3). The intersection
plane of τC ′

1 and τC ′
3(θ) has the form

[a(1− t2)− b(2t) + e(1 + t2), a(2t) + b(1− t2) + f(1 + t2), c(1 + t2), d(1 + t2)]

where t = tan(θ/2), −π < θ < π, a = x3, b = y3, e = −x1, f = −y1, c = 0,
and d = (x2

1 + y2
1 − z2

1 −x2
3 − y2

3 + z2
3)/2. When θ = π, the cyclographic map

becomes [−a + e,−b + f, 0, d].
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