
1

Transforming N-ary Relationships to Database Schemas:
An Old and Forgotten Problem

Author:
Rafael Camps
 UPC/Barcelona(Spain)
 RCAMPS@LSI.UPC.ES
 FAX:93.896.77.00
 TF: 93.645.01.11

Abstract:

The n-ary relationships, have been traditionally a source of confusion and still
are. One important source of confusion is that the term "cardinality" in a
relationship has several interpretations, two of them being very popular. But
none of the two approaches, nor the two together, allow us to express all the
possible cardinality patterns. The transformations from all the possible patterns
to database schemas have never been fully discussed by the existing text-
books and papers that deal with database design. Using the fourteen ternary
patterns as example, we discuss these transformations particularly the
transformations from the patterns ignored in the literature.

Index terms:

Relational database design, Functional dependencies, N-ary relationships,
UML, SQL.

2

Transforming N-ary Relationships to Database Schemas:
An Old and Forgotten Problem

Rafael Camps, Universitat Politècnica de Catalunya (Barcelona, Spain). rcamps@lsi.upc.es

1. Introduction

Although 25 years have past from the birth of the ER model (Chen paper [3]) and several
hundreds of papers and books have been written about it, relationships of degree greater than
two, the n-ary relationships, have been traditionally a source of confusion and still are. The
majority of database designers are confused about n-ary relationships and do not use them or
often use them wrongly. Mistakes in choosing the degree of relationships, wrong cardinalities,
and errors in transforming ER models to relational schemas, are very common. The confusion
should not surprise us after reading the literature. Some general examples: Teorey [19] says
that ternary relationships are needed to express concepts that cannot be represented by
several binary relationships, but other authors, as Dey-Storey-Barron [5] or Ullman-Widom [21],
say that a higher-degree relationship may always be expressed as several binary relationships.
The authors of UML [17] say that it is better to avoid n-ary associations because the definition of
cardinalities is complicated.

One important source of confusion is that the term "cardinality" in a relationship has several
interpretations or meanings. Although the cardinality is always defined as a way to express the
desired structural restrictions in a relationship, there are several different approaches to the
concept, two of them being very popular. The differences between these two approaches are
not relevant for binary relationships, but they become important for a degree greater than two.

During the last decade several researchers have fully analyzed the n-ary relationships, trying to
clarify their meaning and use in a systematic way. Very good examples of such a task can be
Jones-Song [10] [11] and McAllister [15]. But they don't deal with the transformation of the
relationships to a relational schema. Moreover, the text-books and papers that deal with
database design are usually limited to a very general description of this transformation, and
assume only one of the two popular approaches for the cardinality. But none of the two
approaches, nor the two together, allow us to express all the possible cardinalities. So, these
transformations have never been fully discussed by the existing literature.

The main purpose of this paper is to discuss the transformation of n-ary relationships to
relational database schemas, specially the transformations from some patterns ignored in the
literature. In discussing these transformations we disprove some very common beliefs about n-
ary relationships. In sections 2 and 3 we present the two major approaches and introduce, using
examples, the main concepts to be discussed. The transformation to relational model of ternary
relationships using the two popular approaches is discussed in section 4. In sections 5 and 6,
functional dependency patterns and embedded cardinalities are analyzed. The transformation
for all the functional dependency patterns to normalized tables is presented in section 7. In
sections 8 and 9 we discuss about minimum cardinality values and we do some comments on
the traditional decomposition problem. And in the last section we summarize some conclusions.

3

Work

2. Two popular kinds of cardinality

Let's see the example of fig.1. Work is a typical one-to-many, 1:N , relationship that associates
instances of the entity Department with instances of Employee entity. The symbol used in fig.1
to represent the relationship is the traditional diamond. The symbols that can be found in the
literature to represent the classical one and many cardinality values are very varied, but we will
use here a 1 and an N respectively.

Anyway, here we are not worried about the symbols but about the semantics. The most popular
approach to the concept of cardinality is the adopted by authors such as Chen [3], Teorey [20],
Howe [9], Ullman-Widom [22], Jones-Song [11], Loizou-Levene [12], McAllister [15][16], and
Mannila-Raiha [13], or by methods as UML [18]. We will name this approach as Look-Across
(following Song-Evans-Park [19]) or LA for short. McAllister names it as Chen style. According
to the LA approach, the meaning of the 1 and N symbols in fig.1 is: Each instance of Employee
cannot be associated to more than one instance of Department via the relationship Work, but
many instances of the entity Employee can be associated to each instance of the entity
Department.

The other popular approach is the adopted by authors as Elmasri-Navathe [7], Batini-Ceri [1],
Dey-Storey-Barron [5], and by methods as Merise [17] or Yourdon-Method [23]. We will label
this approach as Look-Here (following Song-Evans-Park [19]) or LH for short. McAllister names
it as Merise style. According to the LH approach, the meaning of the 1 and N symbols in fig.1 is:
Each instance of Employee participates in no more than one instance of the relationship and
each instance of Department can participate in many instances of the relationship Work. We
could see the difference as a cardinality notation difference, simply a change of side of the
cardinality symbols. In fact, the meaning of 1:N relationships in terms of functional
dependencies between keys, is exactly the same in both approaches:

Emp-id ➔ Dep-id

When the cardinalities in the two sides are symbols N, i.e. no functional dependencies exist,
actually there is no differences between the two approaches. But the difference of meaning
between them becomes very relevant when the degree is greater than two and at least one
cardinality 1 exists, as we will see below.

If in an ER diagram, R is a relationship between n entities, E1, E2, ..., En then each instance of R
is an instance of the n degree product E1 x E2 x ... Ei ... x En.

A cardinality symbol in the leg of Ek represents :

- in LA approach: The maximum number of instances of Ek that can be associated
to each instance of the n-1 degree product E1 x E2 x..xEk-1 x Ek+1 x ...x En. In other
words, the maximum number of instances of Ek that may appear in association with
a set of the other n-1 entities.

- in LH approach: The maximum number of instances of R where Ek can participate.
That is equivalent to say; the maximum number of instances of n-1 degree product
E1 x E2 x..xEk-1 x Ek+1 x ...x En that can be associated to each instance of Ek .

Hence, if R is a ternary relationship between A B and C, and we are using LA cardinalities, and
a 1 symbol appears in the leg of A, then each pair of instances b,c (b from B and c from C)

Department Employee1 N

N 1

Look-Across

Look-Here

Dep-id
Budget

Emp-id
Salary

 Fig.1: Two cardinality approaches: Only a difference of side

4

cannot be associated to more than one instance a (from A). But in the LH approach, each
instance a cannot be associated to more than one pair of instances b,c.

At first glance it could look like the two approaches are complementary, so that using they
together we could express all the structural constraints we need in n-ary relationships. But this
is not true. In a ternary relationship, for example, there could be 12 different cardinalities (as we
will see in section 5) but each one of the two popular approaches explicitly expresses only 3 of
these cardinalities.

Note than in an n-ary relationship R each one of its instances involves n entity instances.

An n-ary relationship displaying n cardinalities, all of them according to the LA approach, will be
qualified as LA n-ary relationship. And it will be qualified as LH n-ary if the n cardinalities are
according to the LH approach.

Very often two values are used for each cardinality, the minimum and the maximum values. But
the traditional cardinality notation it is only using the maximum value. We will assume that the
minimum value is zero. We will discuss the case of minimum value = 1 in section 8.

5

3. An example: the 1:N:N case

We will analyze all the ternary patterns and their transformation to relational database schemas.
But we will start facilitating the comprehension of the importance of the differences between the
two popular approaches, LA and LH, using an example. We will interpret the diagram of a
ternary relationship with 1:N:N cardinalities, fig.2, according to both approaches, and we will
discuss their transformation to relational schemas. The entities are Product (identified by Pro-
id), State (identified by Sta-id) and Dealer (identified by Dea-id). The relationship is named
Concession. Each instance of the Concession relationship, is a concession of distribution to a
dealer of a product into a state, and has a date of concession (Con-date).

3.1. LA approach

According to LA, Look-Across, approach, the semantics of fig. 2 is as follows: a dealer company
can distribute several products and a product can be distributed by several dealers (each pair of
one dealer and one state can be associated to many products and each pair of one product and
one dealer can be associated to many states). But in each state a product cannot be distributed
by more than one dealer.

In terms of functional dependencies, FDs, this semantics can be expressed as follows (the
obvious internal dependencies in each entity, between their identification and their attributes,
are not represented):

(Pro-id , Sta-id) ➔ Dea-id because the 1 in the side of Dea-id
(Pro-id, Sta-id, Dea-id) ➔ Con-date because Con-date is an attribute of the ternary relationship

These two dependencies can be reduced to: (Pro-id , Sta-id) ➔ (Dea-id, Con-date)

A relational representation of this LA ternary relationship could consist of one table for each
entity and one table for the Concession relationship (keys are underlined):

State (Sta-id, Sta-capital) Product (Pro-id, Pro-type) Dealer (Dea-id, Dea-address)

Concession (Pro-id, Sta-id, Dea-id , Con-date)

Each one of the attributes Dea-id, Pro-id and Sta-id in the table Concession should be declared
as not null foreign key.

The possible lack of a dealer with a concession for a given pair product-state (because min=0)
is expressed by the non-presence of a row in the Concession table for that pair of Pro-id Sta-id.
Note that it is not possible to reduce the number of tables without losing their normalization
(BCNF).

Dealer

Product State

Concession

1

N N
Sta-id
Sta-capital

Pro-id
Pro-type

Dea-id
Dea-adress

Con-date

Fig.2: An example of 1:N:N relationship

6

3.2. LH approach

Now let us interpret the fig.2 according to the LH, Look-Here, approach. Now, the 1 cardinality
in Dealer, means that a dealer cannot participate in more than one instance of Concession, so it
cannot be associated to more than one pair (product,state). In other terms, each dealer can
distribute only one product and only in one state. The N in Product means that a product can be
associated to many pairs (state,dealer). Expressing the model in terms of FDs we can write
Dea-id ➔ (Sta-id , Pro-id) because of the 1 in the side of Dealer. The attribute of the
relationship depends also on Dea-id, so Dea-id ➔ Con-date. So, each dealer has only one
concession date. Also there are the obvious FDs from the key of an entity to its own attributes.
The tables for the three entities will be the same as in the LA case, but for the Concession
relationship could be (with same three not null foreign keys than before):

Concession (Dea-id, Pro-id, Sta-id, Con-date)

When a dealer has no concession, the fact is represented by a lack of a corresponding row in
the Concession table.

If by error we input the diagram of fig.2, being an LH (or LA) ternary, to an automatic tool that
interprets it as being LA (or LH) ternary, it would do completely erroneous assumptions, and the
resulting relational schema would be wrong. But now we cannot solve the problem by simply
reversing the position of cardinalities as we did in the binary case! It is very important to note
that it is not possible to represent the semantics of this LH ternary (that corresponds to the
pattern #6 (fig.4) that will be discussed in sections 7.3 and 8.2) by an LA ternary. And the
semantics of the LA ternary case (3.1) cannot be represented by an LH ternary.

3.3. Non-basic constructs

Note that the case of fig.2 interpreted as an LA ternary, cannot be modeled by binary
relationships without adding textual constraints, except if we use some non-basic constructs.
Remember, in the LA case a dealer can have the concession of several products in several
states, but no more than one dealer can distribute a given product in a given state. We can
express this LA ternary case semantics using binary relationships if we give them the ability of
being related to a third entity; it is the special construct named associative entity (intersection
entity or gerund). In UML class diagrams it is represented by the associative class. In figure 3
the associative class PS, implicitly identified by the pair (Pro-id, Sta-id) can have attributes that
are not from the ternary but from the binary relationship, as for example the price of the product
in the state. The binary relationship Concession becomes the equivalent of the ternary. Other
non-basic constructs as the weak entity (ID-dependency) [3] or the composite entity [7] could
allow us to model the case using binary relationships, but that is not possible if we use only the
ER basic constructs. To a study of decomposition of ternary relationships into two binary, see
Jones&Song [11] and McAllister [16].

 Dealer

 Product State

*

1

*

*
Concession

PS

 Fig.3: A binary UML alternative to the LA ternary of fig.2

7

4. Relational representation of LA and LH ternary relationships

In fig.4, we show translations of all the LA and LH ternary relationships R between entities A, B
and C, to equivalent and normalized (at least in BCNF) tables R. We assume that the
relationships are properly used, so all the FDs in the actual domain to be modeled, are exactly
the same FDs implied by the diagram. The attributes of the relationship R are represented by
the letter r. Keys are underlined. The FDs between the keys of A, B and C, are also
represented. The N:N:N case has no FDs between keys, but obviously there still is the
dependency of the attribute r on the ternary key: (A-id,B-id,C-id) ➔ r.

In figure 4 we see the seven different FD patterns that are possible with the LA andLH
approaches: four of them are using LA and other four are using LH, but one pattern is common
to both approaches. As we will see in section 7 there still are seven more possible FD patterns,
and three of them are special cases that cannot be represented using none of the two popular
approaches. In the literature only four patterns are considered, the LA or the LH patterns
depending on the approach adopted by the author.

In each of the ER diagrams of fig.4, except in the last one, it exists at least a 1 symbol. Then the
relational representations for each of the two approaches are very different because the
meaning of the 1 differs. In the last diagram, when the three symbols are N, the two approaches
have the same relational representation because in this case there is no FD between the keys
of the entities A, B, C.

Each LA ternary relationship, if properly applied, cannot be represented by less than four
normalized (BCNF) tables. The table R will have as much two-attribute keys as 1s exist in the
relationship. If no 1s exist, the N:N:N case, then the key will be a three-attribute key. Each R
table for the LH approach will have as much one-attribute keys as 1s exist. The N:N:N case is
exactly like in the LA approach. More details can be found in section 7.

Remember that we are assuming that the minimum cardinallity value is 0. The relational
representation when the minimum cardinality value is 1, is discussed in section 8.

8

 ER-Diagram Relational translation of R FD pattern

Fig.4 FD patterns and relational representation of LA and LH ternary relationships

5. Cardinality and three types of FD

As we have just seen, an n-ary relationship with all-N cardinalities, is translated to a table with
an n attribute key. But in all the other cases, the keys have less than n attributes. The keys of
LA relationships are always composed by n-1 attributes, and the keys resulting from LH
relationships are all single attribute. In terms of FDs, this can be expressed as follows for
ternary relationships: The FDs represented by the value 1 in an LA cardinality, are of the form
(X,Y) ➔ Z. The FDs represented by the value 1 in an LH cardinality, are of the form X ➔ (Y,Z).

A

C B

R
1 1

1

LA approach:
 R (A-id , B-id , C-id , r) (A , B) ➔ C

(B , C) ➔ A #1
(A , C) ➔ B

LH approach:
 R (A-id , B-id , C-id , r) A ➔ (B, C)

B ➔ (A, C) #4
C ➔ (A, B)

LA approach:
 R (A-id , B-id , C-id , r) (A , B) ➔ C #2

(B , C) ➔ A

LH approach:
 R (A-id , B-id , C-id , r) A ➔ (B, C) #5

 C ➔ (A, B)

LA approach:
 R (A-id , B-id , C-id , r) (A , B) ➔ C #3

LH approach:
 R (A-id , B-id , C-id , r) C ➔ (A, B) #6

LA approach = LH approach:
 R (A-id , B-id , C-id , r) Not FD between keys #0

A

C B

R
N 1

1

A

C B

R
N

 N

1

A

C B

R
N N

N

9

Between each one of the three pairs of entities of a ternary relationship, we can figure an
embedded binary relationship. A 1 in a cardinality of such embedded relationship is a
dependency of the form X ➔ Y. These embedded binary dependencies are often labeled as
Semantically Constraining Binary, SCB [10]. We will label them depending on their form, as:

LA FD if it is (X,Y) ➔ Z
LH “ “ “ " X ➔ (Y,Z)

 Binary “ “ “ " X ➔ Y

In order to describe all the structural constraints between three related entities, so to fully
describe a ternary relationship, we should define twelve different cardinalities:

- Three ternary cardinalities, where a 1 means an LA FD, to describe the maximum
 number of Zs associated to each pair XY
- Three ternary cardinalities, where a 1 means an LH FD, to describe the maximum
 number of pairs YZ associated to each X
- Six binary cardinalities (two for each pair of entities) where a 1 means a binary FD,
 to describe the maximum number of Ys associated to each X.

Figure 5 is like a framework for FD patterns and it shows graphically the 12 possible
cardinalities (it is equivalent to the "cardinality tables" from McAllister [16]). The external lines,
the triangle sides, are to describe the binary dependencies and can be viewed as if they were
binary relationships (SCB relationships [10]) being an integral part of the ternary relationship. In
order to maintain an uniform notation, the binary FDs will be always noted with a 1 in the side of
the dependent entity.

In figure 6 we represent the frameworks of the FD pattern for the Concession example of fig.2,
for each one of the approaches LA and LH. Note that in the graphical FD pattern of fig.6b, we
express the binary dependencies with a 1 in the side of the Product and State entities, although
we are representing an LH case.

 De De

Fig.5: Twelve cardinalities

Bin

Bin Bin

Bin Bin

Bin

LA

LA LA

LH

LH

LH

 A

 C B

 a) FD pattern (#3) for LA ternary b) FD pattern (#6) for LH ternary

 Fig.6: The example of 1:N:N relationship (fig2) revisited

1
1

N

1

 N N N

1
N

 1

N

N

N
N

N

N

 N 1 N

N
N

 N

N

N St PrPr St

10

In figure 7 we represent the framework for the FD patterns for all the LA and LH ternary
relationships (patterns #0 to #6) that appear in fig.4.

N

N

N

 N N N

N
N

 N

N

NC

 A

B

N
1
N

N

 N 1 N

1
N

 N

N

N
C

 A

B
1

1

1

1

 1 1 1

1
1

 1

1

1C

 A

B

pattern #1 pattern #4

 pattern #0

Fig.7: Frameworks for the FD patterns #0 to #6

N
1
N

N

 N 1 N

N
N

 N

N

N

 A

B
1

1

N

1

 1 1 N

1
1

 1

N

1C

 A

B

pattern #2 pattern #5

N
1
N

N

 N N N

N
N

 N

N

N

 A

B
N

N

N

N

 1 1 N

1
1

 N

N

1C B
pattern #3

pattern #6

C

C

11

6. Implied and imposed cardinalities

In practice, during the preliminary steps of a database design, the relationships are often not
used strictly. But, when the diagram is to be translated to a relational schema, perhaps using an
automatic tool, it should be complete, with true n-ary relationships used properly, expressing the
full set of FDs from the domain being modeled. But, as we will see in this section, the LH or LA
approaches are not powerful enough to represent the full set of FDs of some cases.

6.1. Implied cardinalities

Each 1 in an LH ternary is an LH dependency and it is equivalent to two binary dependencies
because

X ➔ (Y,Z) ⇔ X ➔ Y and X ➔ Z

So, each 1 in an LH ternary, implies two 1s in the binary cardinalities. In the example of fig.6b,
the 1 in the LH cardinality near the Dealer, produces two implied 1s because the dependency
Dealer ➔ (Product,State) implies two binary dependencies. The arrows in fig.6b are showing
the FD implications:

Dealer ➔ Product and Dealer ➔ State.

But for an LA ternary (without imposed binary relationships) no binary FD is implied, so the
implied binary cardinalities are always N:N. For example, in fig.6a, the LA dependency
(Product,State) ➔ Dealer does not produce any binary dependency between pairs of entities.

Each 1 corresponding to a binary embedded cardinality, implies a 1 in an LA dependency
because

X ➔ Y ⇒ (X,Z) ➔ Y

For example, in fig.6b the 1 in the binary dependency Dealer ➔ State, produces an implied 1 in
the LA cardinality near State because (Dealer,Product) ➔ State . Symmetrically, the 1 in the
binary dependency Dealer ➔ Product produces an implicit 1 for (Dealer,Sate) ➔ Product. So,
each 1 in an LH cardinality produces four derived 1s: two binary and two LA.

A third type of implication is due to the transitivity property (see pattern #9 in section 7.4):

X ➔ Y and Y ➔ Z ⇒ X ➔ Z

A consequence of the FD implications is that not all the FD patterns obtainable combining the 1
and N values of the 12 cardinalities are valid. For a detailed analysis of implications between
FDs (Armstrong rules) see McAllister [15]. The FD patterns in fig.4, do not show the implied,
derived, dependencies.

Note that the set of bold 1s in each framework of figures 7, 10 and 12, correspond to a minimum
set of FDs from wich all the non-bold 1s are derived.

6.2. Imposed cardinalities

Remember that the semantics of fig.6a (or fig.2) is mainly a restriction; "A product in a state
cannot have more than one dealer". It is an LA constraint: (Product,State) ➔ Dealer

Now let us assume that we add the following constraint, "Each dealer cannot distribute more
than one product": Dealer ➔ Product . This new imposed restriction is an binary FD and it is
not an independent binary relationship, but an integral part of the ternary, because each
concession, each instance of this ternary, must relate one product, one state and one dealer.
See fig.8. This imposed FD, produces a derived LA dependency: (Dealer,State) ➔ Product.

12

Note that this pattern cannot be represented by any of the two popular approaches, LA and LH,
because each one is expressing only three of the twelve possible cardinalities. They don't allow
us to explicitly express the binary cardinalities for a ternary relationship. We will analyze this FD
pattern in 7.5 (pattern #12 in fig 12).

Elmasri and Navathe [7] propose the use of an ER notation representing LA and LH
dependencies. So, in practice, what they are suggesting for n-ary relationships is the
simultaneous use of both approaches. But this would not allow us to explicitly express binary
cardinalities and therefore some FD patterns would be impossible to be expressed.

See Dullea [6] and Jones-Song [11] for an analysis of the permitted impositions.

7. Valid FD patterns and their transformation to relational tables

As we have seen, it is possible to define 12 cardinalities for a ternary relationship. For n = 5
there are 180 cardinalities. For a relationship of degree n, it is possible to define 3n-2n+1+1
different cardinalities (see McAllister [15]).

Each one of the cardinalities can have two values, 1 or N. For a ternary relationship, combining
all the cardinality values we obtain 212 = 4096 possibilities. But not all the combinations are
valid. Moreover some combinations are equivalent because the symmetry of the ternary
relationship. After eliminating all the impossible and all the redundant patterns, we obtain 14
unique FD patterns (see McAllister [15]) or closed set of FDs. In fact each different pattern
corresponds to a closure operation (see Demetrovics [4]).

We will classify these fourteen FD patterns in five groups:

The first three groups are the patterns in fig.4 and fig.7 (patterns #0 to #6). Their translation to
relational tables has been discussed in section 4.

In order to facilitate the task of the reader that is also consulting the papers from McAllister [16]
Jones-Song [11] and Thalheim [21] it follows an equivalence numbering of the cases:

our pattern # 0 1 2 3 4 5 6 7 8 9 10 11 12 13
McAllister [16] -- -- -- -- 10 6 3 1 2 5 7 4 8 9
Thalheim [21] -- -- -- 8 6 -- 3 1 9 2 4 7 -- 5
Jones-Song[11] 12 -- -- -- -- 2,3,4 5 10 7 9 8 11 6 1

 Fig.9: Equivalencies

1

N

N

 N 1 N

N

N

 N

N

N
Pr St

1

LA FD: (Product,State) ➔ Dealer
Binary FD: Dealer ➔ Product

The 1 in the LA cardinality, near the
entity De, represents the implied LA FD:
(Dealer,State) ➔ Product

 De

Fig.8: An imposed binary FD, to an LA ternary

No-FD-pattern : #0 SCB-patterns : #7 #8 #9 and #10
LA-patterns : #1 #2 and #3 Special-patterns : #11 #12 and #13
LH-patterns : #4 #5 and #6

13

7.1. No-FD-pattern

The pattern with no FDs (all the twelve cardinalities are N) is the pattern #0 (fig.4 and section 4).
It is the only pattern that can be represented by any of the two approaches, LA or LH.

7.2. LA-patterns

The three patterns #1 #2 and #3 (fig.7 and section 4), together with pattern #0, correspond to
the four classical LA ternaries that can be represented by the notations of Chen, Teorey, Howe,
Ullman-Widom, Jones-Song, Loizou-Levene, McAllister, Mannila-Raiha, UML, IEFDX1, etc. The
three patterns of this group are characterized by having at least one LA FD, but neither binary
FDs nor LH FDs. As we will see later, all the other ten patterns (#4 to #13) can be viewed as
one LA ternary relationship with imposed binary dependencies, SCBs. Observe that in pattern
#1 all the implied binary cardinalities are N although all the ternary cardinalities are 1.

Note that none of these three LA n-ary relationships can be represented by LH relationships.

7.3. LH-patterns

The three patterns #4 #5 and #6 of fig.7, along with pattern #0, correspond to the four classical
LH ternaries that can be represented with the notations of Elmasri-Navathe, Batini-Ceri, Dey-
Storey-Barron, Merise, Yourdon-Method, etc. The three patterns of this group are characterized
by having: at least one LH FD, and all their binary FDs are implied by the LH FDs (each 1 in an
LH ternary implies two binary FDs) and all the LA are implied by the implied binary FDs. We
show now the LH FDs and the implied FDs.

 pattern LH FDs implied FDs view as LA ternary
 #4 A ➔ (B,C) ⇒ (A,C) ➔ B

B ➔ (A,C) ⇒ (A,B) ➔ C 1:1:1 LA + two imposed 1:1
C ➔ (A,B) ⇒ (C,B) ➔ A

 #5 A ➔ (B,C) ⇒ (A,C) ➔ B 1:1:1 LA + two imposed 1:N
 ⇒ (A,B) ➔ C A ➔ B C ➔ B

C ➔ (A,B) ⇒ (C,B) ➔ A or + one imposed 1:1
 C ↔ A

 #6 C ➔ (A,B) ⇒ (C,A) ➔ B 1:1:N LA + one imposed 1:N
 ⇒ (C,B) ➔ A C ➔ A

For example, in the pattern #6 (is the case of fig.2 considered as LH) the LH dependency is
C ➔ (A,B) that is equivalent to C ➔ A and C ➔ B. From C ➔ A we can derive the LA
dependency (C,B) ➔ A , and from C ➔ B we can derive the LA dependency (C,A) ➔ B.

In the column "view as LA ternary" we show that all the three patterns of this group can be seen
as produced by one LA ternary relationship with some imposed binary FDs. Note that this LA
view has some redundancy, for example the pattern #6 can be expressed using a single LH
dependency, C ➔ (A,B) but the LA view oblige us to explicitly express three 1s.

The transformation to a relational schema of the ternary relationships produced by these three
patterns, especially the pattern #6, is discussed in sections 3.2 and 8.2.

7.4. SCB-patterns

The seven FD patterns of the remaining groups (SCB-patterns and Special-patterns) are
characterized by having some imposed binary FDs. The SCB-patterns group, patterns #7 to
#10, is characterized by having all its LA and LH FDs being implied by the binary FDs (the bold
1s in figure 10). The four SCB patterns, as the four patterns we have just seen in the previous
section, can be viewed as produced by one LA ternary relationship plus some imposed binary
constraints:

14

 pattern binary FDs implied FDs view as LA ternary.
 #7 A ➔ B ⇒ (A,C) ➔ B N:1:N LA + one imposed 1:N

 #8 A ➔ B ⇒ (A,C) ➔ B
B ➔ A ⇒ (B,C) ➔ A 1:1:N LA + one imposed 1:1

 #9 A ➔ B ⇒ (A,C) ➔ B
B ➔ C ⇒ (A,B) ➔ C N:1:1 LA + two imposed 1:N

⇒ A ➔ C ⇒ A ➔ (B,C)

 #10 A ➔ B
C ➔ B ⇒ (A,C) ➔ B 1:1:N LA + one imposed 1:N
B ➔ A ⇒ (B,C) ➔ A + one imposed 1:1

 ⇒ C ➔ A ⇒ C ➔ (A,B)

Note that because an LH FD is equivalent to two binary FDs, the three LH patterns (#4 #5 #6) in
section 7.3, could be seen as members of the SCB group.

We will discuss now relational representations for the four SCB patterns (fig.10). We will use
one table for each entity:

A (A-id, a) B (B-id, b) C (C-id, c)

and we can add two tables in order to represent the relationship R with the attributes r , and the
imposed binary FDs. For example, the FDs A ➔ B and B ➔ A can be represented by a table S
:

S (A-id , B-id) with A-id and B-id defined as two alternative keys, not accepting nulls
and as two foreign keys referencing tables A and B

Fig.10: SCB-patterns

N N

N

1

 N 1 1

1N

 N

N

N

C B

A

N N

N

1

 N N N

1N

 N

N

N

C

A

B

N 1

N

1

 1 1 1

1N

 1

N

N

C B

A

1 N

1

1

 N N N

11

 N

N

1

C

A

B

pattern #7

pattern #10pattern #9

pattern #8

15

The attributes r of a ternary relationship R, are functionally dependent on (A-id,B-id,C-id). But
because the binary FDs of the patterns, the dependency of r can be simplified to:

pattern #7 (A-id,C-id) ➔ r
pattern #8 (A-id,C-id) ➔ r or (B-id,C-id) ➔ r
pattern #9 (A-id) ➔ r
pattern #10 (C-id) ➔ r

For example, the table R will be R (A-id, C-id, r).

As a result, the schemas for the four SCB patterns can have five tables: the three tables A, B
and C, and two additional tables, R and S, as in figure 11. Because all the instances of the
tables are to be an integral part of the ternary relationship, we must add some inclusion
restrictions [12] in each schema.

For example, for pattern #7 the two following conditions must be true:

- If an instance of A is related to, at least one instance of C, it should be related
to one instance of B. This is expressed by the restriction (1) in figure 11.
- If an instance of A is related to an instance of B, it should be related to, at least
one instance of C. This is expressed by the restriction (2) in figure 11.

Obviously, the attributes R•C-id, S•B-id and S•A-id should be declared as foreign keys of tables
C, B and A respectively.

The restrictions (1) and (3) are key-based inclusions [12] so they can be expressed as foreign
key restrictions. But restrictions (2) and (4) are non-key based inclusions, and can be declared
in SQL, using IN conditions. For example, restriction (2) can be declared in the definition of
table S, as follows:

CHECK (A-id IN (SELECT A-id FROM R))

Note that each pair of inclusions (1,2 and 3,4) in figure 11 is a referential loop, so the
transactions that maintain the tables R and S, must do the controls at commit time
(DEFERRED, in SQL terms).

It is possible to represent these SCB patterns, using less than five tables. For example the
pattern #7 can be transformed to a schema with only four tables, collapsing S with A:

Pattern Additional Tables Additional restrictions

#7 S (A-id , B-id) R•A-id ⊆ S•A-id (1)

 R (A-id , C-id , r) S•A-id ⊆ R•A-id (2)

#8 S (A-id , B-id)
 R (B-id , C-id , r)

#9 S (B-id , C-id) R•B-id ⊆ S•B-id (3)

 R (A-id , B-id , r) S•B-id ⊆ R•B-id (4)

#10 S (A-id , B-id)
 R (C-id , B-id , r)

Fig.11: Additional tables and restrictions

16

A (A-id , B-id , a) B (B-id , b) C (C-id , c) A (A-id , C-id ,r)

Now A•B-id must accept nulls. Remember that we are assuming that the minimum values for
the cardinalities are equal to zero. But to enforce A and R as being both an integral part of the
ternary, the two restrictions (1) and (2) are now to be expressed in a slightly different way. We
can declare the following assertion:

CHECK (((SELECT A-id FROM A WHERE B-id IS NOT NULL) IN
 (SELECT A-id FROM R))

 AND
 ((SELECT A-id FROM R) IN

 (SELECT B-id FROM A WHERE B-id IS NOT NULL)))

17

7.5. Three special patterns

In this section we will discuss the last three remaining ternary patterns, the Special-patterns.
These three patterns have specific and interesting characteristics:

 pattern LA and binary FDs implied FDs view as LA ternary

#11 A ➔ B ⇒ (A,C) ➔ B
C ➔ B N:1:N LA + two imposed 1:N

#12 (B,C) ➔ A 1:1:N LA + one imposed 1:N
A ➔ B ⇒ (A,C) ➔ B

#13 (B,C) ➔ A
A ➔ B ⇒ (A,C) ➔ B 1:1:1 LA + one imposed 1:N
A ➔ C ⇒ (A,B) ➔ C A ➔ B

 ⇒ A ➔ (B,C)

We present graphically in figure 12, the three patterns:

As we see, it is possible to represent these three cases using an LA ternary relationship if we
augment it with one or two dependencies. But, we must add a restriction to express the
inclusion of the binaries into the ternary. There is no way, in any of the two popular approaches,
LA and LH, to properly represent these special cases in an ER diagram without a textual
description of this additional restriction.

Observe that all the fourteen ternary patterns can be obtained using an LA ternary relationship
plus some imposed binary FDs (in patterns #5 to #13). But that is not possible using an LH
ternary.

We will discuss now relational representations of the three special patterns. Remember that the
ternary relationship, R, has its own attributes, r, and therefore they are functionally dependent
on, at most, the three keys of entities A, B and C.

1
1

N

1

 N 1 N

1
N

 1

N

NC

 A

B

N
N

N

1

 N N N

1
N

 N

N

1C

 A

B
N

N

N

1

 N 1 N

1
N

 N

N

NC

 A

B

pattern #11 pattern #12

 pattern #13

Fig.12: Three special cases

18

Pattern #11:

If we represent directly the full set of FDs for this pattern, the following database schema is
obtained:

A (A-id, B-id, a) B (B-id, b) C (C-id, B-id, c) R (A-id, C-id, B-id , r)

We must declare five single-attribute foreign keys; R•A-id, R•B-id, R•C-id, C•B-id and A•B-id.
The attributes C•B-id and A•B-id must accept nulls. And R•B-id must be declared as not null.

But the table R is not in 3NF (nor in 2NF) because of the binary dependencies A-id➔ B-id and
C-id➔ B-id (see fig.12). These two FDs, represented in tables A and C respectively, already
imply the LA dependency expressed in table R, (A-id,C-id) ➔ B-id. So, we can take out the
attribute B-id from table R and express the DB schema simply by:

 A (A-id, B-id, a) B (B-id, b) C (C-id, B-id, c) R (A-id, C-id, r)

Note that this pattern can be considered as an SCB pattern because it can be seen as simply
formed by the two binary FDs, the LA FD being implied by them.

Now the DB schem is normalized in 3NF (and also in BCNF) without loss of data and preserving
all the FDs. But this DB schema (as the former non-normalized one) is not fully representing
the semantics of our ternary relationship. The problem is that the two binary dependencies
should be defined as forming part of the ternary, but in our schema they are independent of R.
So we must add restrictions to enforce that R is not independent of the two binary FDs implied
by the tables A and C. We could enforce:

 a) π A-id,C-id R ⊆ π A-id,C-id A*C

 b) A•A-id ⊆ R•A-id iff A.B-id is not null

 C•C-id ⊆ R•C-id iff C.B-id is not null

The constrain a) is more complex than an inclusion dependency. It involves a natural join
operation that could be expressed in SQL92 using the following restriction in table R:

CHECK ((A-id, C-id) MATCH (SELECT A-id, C-id FROM (A NATURAL JOIN C)))

The constraints b) could be expressed as an assertion:

CHECK (NOT EXISTS
((SELECT A-id FROM A WHERE B-id IS NOT NULL)

 EXCEPT (SELECT A-id FROM R))
 AND NOT EXISTS

((SELECT C-id FROM C WHERE B-id IS NOT NULL)
 EXCEPT (SELECT C-id FROM R)))

It is a very common belief among designers and educators, that given a set of FDs over a table
resulting in a non-3NF situation, it is always possible to obtain a fully equivalent set of 3NF
tables without adding other restrictions than the ones that can be expressed with candidate
keys and inclusion dependencies (key or non-key based). But that is not actually true in this
pattern #11. In order to obtain a representation in BCNF we need more powerful restrictions.

Other alternatives and a detailed analysis of this case #11 can be found in [2].

Pattern #12:

According to the bold 1s in pattern #12 (figure 12) the relationship of this case can be
represented by:

19

R (A-id, C-id, B-id, r) plus the FD A-id ➔ B-id

Note that this pattern is the pattern of the example of figure 8. The table R is not in BCNF
because the FD A-id ➔ B-id , but it is in 3NF. It is the example used in the literature to illustrate
the case of a 3NF table that cannot be decomposed in BCNF without losing FDs. We can
rearrange the DB schema to obtain BCNF tables, as follows:

R (A-id, C-id, r) A (A-id, B-id, a) B (B-id, b) C (C-id, c)

and declaring the three obvious single-attribute foreign keys. The attribute A•B-id must accept
nulls. But then we lose the dependency (B-id,C-id) ➔ A-id. We should enforce this lost FD, with
an additional constraint that we can write in SQL-92, as the following assertion:

CREATE ASSERTION pattern#12
(CHECK (UNIQUE (SELECT B-id, C-id FROM (A NATURAL JOIN R))))

Observe that for pattern #12, as for pattern #11, it is not possible to obtain a fully equivalent set
of tables in BCNF using only keys and inclusion dependencies (key or non-key based).

Pattern #13:

The pattren #13 (see fig.12) can be reduced to: (B,C) ➔ A plus A ➔ (B,C). Therefore, it can be
represented by the simultaneous utilization of LA and LH approaches, both with the values
pattern 1:N:N . So, the table R for the relationship, can be represented by:

R (A-id, B-id, C-id, r)

The two keys (one is single-attribute and the other is two-attribute) must be declared as not
accepting nulls. The DB schema must be completed with the tables A, B and C, and the
corresponding three single-attribute foreign keys, but no additional restrictions are needed.

This case is the only one among the fourteen possible cases, that produces a table R with a mix
of multiple-attribute and single-attribute keys. Note that the table R is at least in BCNF (even in
4NF, because it has a single-attribute key).

20

Work

8. Min-Max values and participation

8.1. Binary relationships

From the very beginning [3] the participation restriction was introduced to express for each
entity participating in the relationship, if its participation was mandatory or was optional. The
traditional cardinality, as defined in section 2, only considers its maximum value, but not the
minimum. We assumed that the minimum value is zero. To express the participation, especial
symbols are used. Several authors and methods, from both LA and LH approaches, explicitly
express minimum and maximum values, min and max, for each cardinality. The min value can
be 0 or 1 (in this paper we do not consider cardinality values other than 0, 1 or N). The meaning
of max values, 1 or N, is describable in terms of FD. But the meaning of min values, is
conceptually different. The min value in binary relationships is equivalent to the participation
restriction, but not in LA n-ary (n>2) relationships. A detailed analysis of the semantics of
participation and min values can be found in Ferg [8].

In figure 13 we show a sample of different notations to express a case of Project and Employee
(fig1) when projects can have no employees, but every employee works for at least one project
and he/she can work for many projects. The Project entity is optionally participating in the Work
relationship, but the entity Employee participation is mandatory in this relationship. In the case
of binary relationships if the min value is zero, then the corresponding entity (which one,
depends on the approach: LA or LH) is optional, but if the min value is one, then the entity is
mandatory. So, in binary relationships the min value allow us to express, for both approaches,
the participation restriction.

From now we will use the notation (min,max). So, a single symbol 1 in previous sections is a
(0,1) and a single N is a (0,N). Note that in some notations, as for example in UML [18], the
implicit minimum value for a single 1 is (1,1).

8.2. N-ary relationships

When we consider the cardinality of n-ary relationships, the meaning of the min value will be
very different according to which one of the two approaches is adopted. Let us interpret the
cardinalities of the example of fig.2 as being LH cardinalities (as in pattern #6) and assume that
the cardinality near the Dealer is (1,1). The meaning of these values is that every dealer has
one and only one concession. So every dealer must be associated to a single pair product-
state. Every dealer must participate in the Concession relationship, but note that a pair product-
state can be without concession to any dealer. This meaning is exactly the meaning of the
classical participation restriction.

Project Employee

 (0,N)
Work

Project Employee

Project Employee

(1,N)

Yourdon-Method:
 All values are LHWork

Work

Fig.13: Projects can have no employees.
 Each employee works in one or more projects

1..* 0..*

Oracle Designer 2000:
 Max value is LA
 Min value is LH

UML:
 All values are LA

Work

21

If we consider the cardinalities in fig.2 as being LA (it is a pattern #3) then the (1,1) cardinality
near the Dealer entity will mean that every possible pair product-state must be associated to
one and only one dealer. So, a product in a state must be distributed by one and only one
dealer, but note that a dealer can have no concession at all. So, this restriction has not the
same meaning of the participation restriction.

Let us now assume that the cardinality near the Dealer is LH and (0,1). The meaning of the zero
is now that a dealer does not need to have a concession. The zero is expressing the optionality
of Dealer entity. But if the cardinality is LA, the meaning of the zero is that a product in a state
does not need to have a dealer. So, in LA approach, the min value constraint is no more the
participation constraint for the entity. In n-ary relationships (n>2), the concept of participation of
an entity in a relationship can not be expressed by the min value (zero or one) if it is an LA
cardinality.

LH cardinalities, min= 1:

If in a ternary relationship R between entities A,B and C, it exists an LH (1,1) cardinality in the
leg of entity A, this entity is mandatory. So, each instance of A has an associated instance of R,
and vice versa. In the relational representation, table R will have the same key than table A, A-
id, and we can enforce the restriction min = 1 using a referential loop or, easier, collapsing table
A with table R:

In the example of figure 2, with the pattern 1:N:N, assuming an LH approach, the Concession
table schema was

Concession (Dea-id, Pro-id, Sta-id, Con-date)

Obviously, the Pro-id and Sta-id attributes are to be defined as not null foreign keys. The key of
the table Concession is Dea-id, the same key than Dealer table. But now every dealer must
have associated a pair product-state, so the attributes Dea-id of the two tables can be defined
as foreign keys referencing each other. Then the two tables can be collapsed to only one
(without losing the normalization). We could eliminate the Concession table by moving Pro-id,
Sta-id and Con-date to Dealer table as follows:

Dealer (Dea-id, Pro-id, Sta-id, Dea-address, Con-date)

In fact the functional dependency Dea-id ➔ (Sta-id , Pro-id) can be decomposed into two more
simple: Dea-id ➔ Sta-id and Dea-id ➔ Pro-id, and the diagram can be transformed to a pair
of binary relationships.

All the LH ternaries could be represented by less than four tables if all the 1 cardinalities were
(1,1) instead of (0,1). In the LH 1:1:1 case, the four tables could be collapsed to a single one,
with three single-attribute candidate keys.

Let us now consider the LH (1,N) cardinality in the leg of entity A. Each instance of A has to be
associated to at least one instance of R at least. That is a non-key based inclusion:

A•A-id ⊆ R•A-id

In the example of figure 2 assuming the LH approach (it is a pattern #6), and the cardinality
near Product is a (1,N) cardinality. That means that each Product has to be associated to at
least a concession. So:

Product.Pro-id ⊆ Concession.Pro-id

that can be expressed in SQL as the following restriction in the definition of Product table.

CHECK (Pro-id IN (SELECT Pro-id FROM Concession))

22

LA cardinalities, min= 1:

Now we will analyze the translation of LA cardinalities having a min=1. The meaning of this
restriction is that each possible combination of B instances with C instances, must have
associated at least one instance of A. In practice, this is an extremely unusual case. To enforce
this semantic we can utilize an inclusion involving a Cartesian product:

B•B-id x C•C-id ⊆ π B-id,C-id R

In the 1:N:N example of fig.2, if the cardinality for Dealer is (1,1) but LA (pattern #3) then the
Concession table will still be as in section 3.1

Concession (Pro-id, Sta-id, Dea-id , Con-date)

but now an additional restriction is needed to enforce the min=1 restriction. Every possible pair
of (Pro-id, Sta-id) must have one concession. So, we can express it, in SQL-92, as :

CHECK ((SELECT Pro-id, Sta-id FROM Product CROSS State) MATCH
 (SELECT Pro-id, Sta-id FROM Concession))

Another way to enforce this restriction is controlling that the number of concessions is equal to
the result of multiplying the number of products by the number of states:

CHECK ((SELECT COUNT(*) FROM Concession) =

(SELECT COUNT(*) FROM Product) * (SELECT COUNT(*) FROM State))

Note that now it is not possible to reduce the number of tables without losing their normalization
(BCNF). Although it is possible to draw an LA ER diagram for the LH case using two binary
relationships, it is not possible to model the LA case using an LH ER diagram.

Remember that the min=1 in LA approach for relationships of degree greater than two, is no
more the mandatory participation restriction, but a rather bizarre restriction. If we need to
express the mandatory participation restriction, it will suffice an inclusion restriction as we
explained for the LH min=1 case.

9. Decomposition

In this paper we have transformed from n-ary relationship to relations, through the analisys of
the FDs. It could help a previous decomposition of the n-ary relationship to a set of relationships
of lower degree. The decomposition to binary relationships is a classical problem and is tightly
related with our problem. Although decomposition is not the subject of our paper, we will do
some comments about it here.

Teorey [20] says that we should define a ternary relationship only when the concept cannot be
represented by several binary relationships. But, some authors like Dey-Storey-Barron [5] say
that a higher-degree relationship may always be expressed as several binary relationships.
Apparently it exists a great confusion about the subject. Some researchers have published
detailed analysis about decomposition from ternary to binary relationships: McAllister [16] says
that ten patterns (#4 to #13) are decomposable. And more recently, Jones-Song [11] observes
that patterns #10 to #13 cannot be considered truly decomposable.

In fact all the authors are right, but each one use different meanings for essential words as
relationship or cardinality: Teorey is only considering the three cardinalities that we labeled as
LA. Dey-Storey-Barron use several non-basic constructs as aggregate entities, association
entities and weak entities (as we saw in section 3 the use of ad-hoc non-basic constructs allow
us to decompose n-ary relationships) and moreover they only consider the three cardinalities
we labeled as LH. McAllister uses 12 cardinalities but he uses a non-basic construct, an ad-hoc
graphical notation to add FDs to an ER diagram, Song-Jones also use 12 cardinalities but, as

23

all other authors, are not analyzing the influence of the minimum value of these cardinalities on
decomposability, etc.

In this paper we have seen that if we do not limit the participation restriction to only the optional
value, and we accept cardinalities with minimum values 0 or 1, none of the fourteen patterns
can be always transformed to a database schema with tables having only single-attribute or
two-attribute keys, without the need of adding other inclusion restrictions than the foreign keys.
Then, if we accept that a ternary can be said decomposable only if the resultant ER diagram is
limited to the use of basic constructs and not additional restrictions are to be added, none of the
fourteen ternary patterns is always decomposable.

10. Final comments

To finish we summarize some of the conclusions, mainly the conclusions that do not coincide
with very common beliefs.

It is a very common belief that transformation from ternary relationships to a database schema
is a simple, well known and documented subject. One of the purposes of this paper has been to
show that this is false.

LA style (Chen style) is more powerful than LH style (Merise style). All the possible FD patterns
for ternary relationships can be obtained using the LA style: one LA ternary relationship plus
some additional imposed binary FDs that can be seen as imposed LA binary relationships. But
this would be not true for LH style. See section 7.

According to Loizou [12] "the central idea in relational databases design is that all the integrity
constraints in the database should be describable in terms of keys and foreign keys". But, they
are not. Many cases of n-ary patterns are not translatable to relational schemas using keys and
key based inclusions (foreign keys) alone: non-key based inclusions are to be declared. But,
moreover, several n-aries (two in the ternary case) cannot be translated even with such
inclusions; more complex restrictions are needed. See 7.4, 7.5 and 8.2.

It is a very common belief that given a non-3NF table and a set of FDs, it is always possible to
obtain a fully equivalent set of 3NF tables without adding other restrictions than the ones that
can be expressed with keys and foreign keys. But that is not true. It is also a very common
belief, that a ternary ER can always be represented by a BCNF set of tables, without using
other restrictions than the ones that can be expressed with keys and inclusion dependencies
(key or non-key based). But that is wrong as can be seen in patterns #11 and #12 in section
7.5.

Lastly, against a very common belief, none of the fourteen ternary patterns is always
decomposable to binary relationships. See section 9.

References

[1] C.Batini, S.Ceri and S.B.Navathe, Database Design: An Entity-Relationship
Approach, Prentice-Hall, (1991).

[2] R.Camps, "From Ternary Relationship to Relational Tables: A Case Against
Common Beliefs", ACM/SIGMOD-Record (June 2002).

[3] P.P.S.Chen, "The entity relationship model: toward a unified view of data", ACM
Transactions on Database Systems, 1 (1), 9-36 (1976).

[4] Demetrovics et al, "Minimum representations of closure operations", Discrete
Appl. Math. 11 (1985).

24

[5] D.Dey, V.C.Storey and T.M.Barron, "Improving Database Design through the
Analysis of Relationships", ACM Transactions on Database Systems, 24 (4),
453-486 (1999).

[6] J.Dullea and I.Y.Song, "An Analysis of Structural Validity of Ternary
Relationships in Entity Relationship Modeling", Proceed. 7th Intl. Conf. on
Information on Knowledge Management, 331-339 (1998).

[7] R.Elmasri and S.B.Navathe, Fundamentals of Database Systems, 3th ed.,
Addison-Wesley (1999).

[8] S.Ferg, "Cardinality Concepts in Entity-Relationship Modeling", Proceed. 10th

Intl. Conf. on Entity-Relationship Approach, pp.1-30, T.J.Teorey (editor) (1991).

[9] D.R.Howe, Data Analysis for Data Base Design, Chapman&Hall (1990).

[10] T.Jones and I.Y.Song, "Analysis of binary/ternary cardinality combinations in
entity-relationship modeling", Data & Knowledge Engineering, 19 (1), 39-64
(1996).

[11] T.Jones and I.Y.Song, "Binary Equivalents of Ternary Relationships in Entity-
Relationship Modeling: a Logical Decomposition Approach", Journal of
Database Management, April-June 2000, pp 12-19 (2000).

[12] G.Loizou and M.Levene, A Guided Tour of Relational Databases and Beyond,
Springer-Verlag (1999).

[13] H.Mannila and K.J.Raiha, The Design of Relational Databases, Addison-
Wesley, (1992).

[14] J.Martin, Information Engineering:Planning & Analysis. Prentice-Hall, (1990)

[15] A.J.McAllister, "Complete rules for n-ary relationship cardinality constraints",
Data & Knowledge Engineering, 27 , 255-288 (1998).

[16] A.J.McAllister and D.Sharpe, "An Approach for Decomposing N-ary Data
Relationships" Software Practice & Experience, 28(2) , 125-154 (1998).

[17] A. Rochfeld and H. Tardieu, "MERISE: An information system design and
development methodology", Information & Management, 6, 143-159 (1983).

[18] J.Rumbaugh, I.Jacobson and G.Booch, The Unified Modeling Language
Reference Manual, Addison-Wesley (1999).

[19] I.Y.Song, M. Evans and E.K. Park, "A comparative Analysis of Entity-
Relationship Diagrams", Journal of Computer and Software Engineering, 3 (4) ,
427-459 (1995).

[20] T.J.Teorey, Database Modeling & Design, 3th ed., Morgan Kaufmann (1998).

[21] B.Thalheim, Entity-Relationship Modelling, Springer Verlag (1998).

[22] J.D.Ullman and J.Widom, A First Course in Database Systems, Prentice-Hall
(1997).

[23] Yourdon,Inc., Yourdon Method, Prentice-Hall (1993).

