
Automatic code generation for Atlas

communications drivers

M� Viv�o� M� Fair�en and �A� Vinacua

Department of Software� U�P�C�

Diagonal ���� �ena planta

E���	� Barcelona� Spain

December �� ����

Abstract

Atlas is a software development platform created in our Department�
Among other bene�ts� it provides support to easily distribute applications
over a network� In these applications� communications issues among the
di�erent processes should be faced� Pursuing to isolate application de�
velopers from the intricacies of these issues� communication drivers are
automatically generated from an interface declaration of each process�
This automatic code generation �not unlike the generation of stubs in
CORBA �	� 
� from the IDL speci�cation� is the main topic of this re�
port�

� Introduction

Atlas is a software development platform designed and implemented in our
Department with a twofold objective�

� To transparently o�er a collection of services to applications developed
over it and

� To facilitate the integration and reuse of di�erent components developed
in the Department�

Among the services provided under the �rst of these is included the possibil�
ity of breaking up the application into modules that can be distributed between
nodes of a LAN� This gives rise to many di�erent problems that need to be
addressed ��	
 and the emphasis in Atlas�s design is to relief the programmer
from most of them� We have made great e�orts to make the use of the platform
as easy and transparent as possible�

Atlas is an evolution of a system described in ��	� It inherits some aspects
of the architecture of the previous one
 and adds robust and fault�tolerant net�
work distribution transparently
 a meta�journaling system
 a much more 
exible

�



B-Rep

Volume

Command
Subsystem

Input
Subsystem

Solver
Constraints

distr

server@host

Octree
Machine

Figure �� A sample execution of an Atlas application�

control language and an orthogonal design which a�ords much more 
exibility
to the applications built in it�

In this report we will emphasize the Atlas approach to achieve a total
transparency to the developer with respect to the mechanisms related to the
processes communications� To this end
 we shall widely explain the way the
Atlas communications drivers work and how they are automatically generated
by Atlas in order to hide all of their internal intricacies to the developer�

��� Overview of the Atlas architecture

The Atlas architecture is represented in �gure �
 where the ovals denote pro�
cesses and the arrows represent communications between them� It is a central�
ized architecture where the process distr acts as the master process and is the
center of each Atlas application� This architecture allows to implement easily
an intelligent distribution of processes� The distr process decides the processes
distribution dynamically depending on availability
 load and aptitude of each
host in the network to run each application process�

The Atlas communications mechanism is implemented using sockets
 and
its implementation uses the wrapper classes for sockets o�ered by the public
domain package ACE Wrappers �see ��	 and ��	��

Figure � shows a typical Atlas application� The processes belonging to
the Atlas platform are shaded
 whereas white balloons denote user application
processes� The processes depicted with a thick line represent the main compo�
nents of Atlas� All other processes are regarded equally by the system
 and
they don�t need to know about each other�

�



Of these three main processes
 the most crucial is the master process distr�
This is the process that the user starts up to invoke the application� It acts as
a communications center for the duration of the execution
 and provides some
essential services to all other modules� It is also responsible of the journaling
mechanism �which allows replays of sessions and supports undo�s and redo�s�
enforcing also the consistency of data recorded in the journal after editions or
modi�cations of it� the fault�tolerance of the system
 recovering processes after
disruptions of communications or failures of individual processes� and the dis�
patching mechanism that assigns an input datum
 provided by an input system

to the corresponding request
 normally issued by another process�

The process server is a daemon that runs on each host con�gured to run
Atlas applications in the network� A user can select a speci�c list of hosts
via variables in his environment
 or else Atlas attempts to use all resources
con�gured by the administrator �depending on their load�� A broadcast message
sent by distr periodically is answered by the server of each host which includes
in this answer information about the name of the host
 the architecture
 the
current load and the list of processes that this host is able to execute� All this
information is kept by distr
 and each time a new process needs to be loaded
and connected to the rest of the application
 distr looks up this information in
order to decide which is the best host to execute this process at that moment and
connects to the server on this target machine requesting that such a process
be started for him� server then forks a copy of itself
 makes the appropriate
veri�cations
 loads the adequate environment and execs the desired process�
Figure � only shows one such server for legibility
 although there will be a
server running on every node available to Atlas�

The third of the Atlas main processes is the command subsystem which
guides the application behavior by interpreting programs and instructions writ�
ten in a language �ATL� designed for Atlas and described in ��	� ATL is a
powerful control language which allows the developer to describe his applica�
tion and aspects of its user interface �see section ���� and also allows the �nal
user to introduce his own macros� ATL is a modular language where a module
is a �le written in this language which can be�

� a description of the interface of the corresponding Atlas process
 includ�
ing also the de�nition of commands adequate to that process


� a de�nition of some commands useful for the application
 but without
being directly related to any Atlas process de�nition� e�g� commands
de�ning the interaction among several processes�

��� Motivation

Since Atlas� �rst priority is to o�er the maximum transparency to the devel�
oper
 the design of its architecture must hide the intricacies of the interprocess
communications from the programmer�

The communications mechanism has to address problems like how to start a
process in an application
 how to manage the interchange of information between

�



processes and also how to detect failures in the application�s communications in
order to know when the fault�recovery mechanism should be activated�

The interchange of information between processes has also an added di��
culty when they are running in an heterogeneous network because data can be
interpreted with di�erent meaning depending on the architecture where they
are used�

The problem of actually transferring the data robustly has long since been
solved� Indeed we just rely on XDR��	 for that purpose
 because it is a standard
representation known by most of the di�erent architectures� However other
problems remain� Atlas wants to hide from the application developer every�
thing related to this encapsulation of data and its conversion from and to the
corresponding XDR representation
 making this mechanism as transparent as
possible�

Moreover the Atlas process communications require quite a bit of code
in each process devoted to handshaking with distr
 generating the heartbeat
messages at the adequate rate
 preparing the arguments for process routines or
collecting results and encoding them for being transported over the network

and dispatching calls to processes routines� But the programmer should be
relieved from these tasks�

� Communications driver

An Atlas application process execution is based on a remote�procedure�call
paradigm� A process can be then considered as a set of routines to do the
process related work plus a communications driver to manage the interchange
of messages with the rest of the application�

The communications driver is the main program of the process
 and its role is
to listen to requests or messages from the master process and other connections
added and dispatch them as needed� The most frequent requests or messages
sent by the master process are routine calls
 data answering a request
 or an
Atlas event noti�cation�

Driver

add timer

add channel

routine call

ATLAS event treatment

answer data
dispatchdisp

atch

dispatch

timeout handling

timeout

sub channel

optional

Figure �� Driver role scheme�

�



The execution of an Atlas process is based then on the �Dispatch� method
of its communications driver� It enters in a loop listening to the group of chan�
nels of this process �the default is only the connection with the distr process��
When a message arrives
 it serves this message and keeps on listening for the
next one �see �gure ��� Apart from receiving and serving messages the driver
can also pay attention to interruptions �like signals��

The default for an Atlas process driver is to manage the channel connecting
with the master process and serving the interruption of SIGALRM
 which is used
in the heartbeat mechanism� Users may add other channels for special purposes
�for example to listen to X�windows events��

The heartbeat mechanism makes every process being executed in the ap�
plication send a short message periodically to the master process giving the
required information to control the global status of the execution� This mech�
anism detects if a process or the communication with it fails
 therefore making
it necessary to activate the fault�recovery mechanism�

But the actual driver is much more 
exible �as can be seen in �gure ��� It also
allows the process to add channels to listen to
 add a timer treatment or remove
channels added before� This 
exibility only requires to have implemented the
treatment for messages being received by these new channels�

Aside from routine calls
 parameters and answers to requests �see section ��

a process may receive other kinds of messages from distr
 including�

� The contents of some input data item that the user introduced and is still
in the system�s internal structures� This message is produced in response
to an explicit request of this information made by the process


� an order to �nish the process execution� This order causes the call to a
�nishing routine that the developer can de�ne specially for each process


� a system event noti�cation� The Atlas events mechanism gives the op�
portunity that an application process be informed about changes inAtlas
internal structures �what processes are in execution
 if there is some re�
quest waiting for an input data
 etc�� The process asks for a subscription
to a particular Atlas event and distr sends this event noti�cation to it
when this event is produced�

There are also other special messages a driver may receive
 but they are
only used by the Command Subsystem �a command
 a return value or a return
parameter�� Although it is not advisable to change the Command Subsystem
process �because it is a heavy�weight component of Atlas�
 if some application
intended to replace the Command Subsystem
 it would have the possibility to
use these special messages for its communications�

�



� About the ATL language

��� De�ning the process interface

The process interface is a module written in ATL language which de�nes the
prototype of the public routines of the process and the needed types for their
parameters and return results�

The ATL language �described in detail in ��	� is an imperative and modular
language designed for Atlas applications� It allows the de�nition of types
 vari�
ables
 functions and procedures that can be exported �visible to other modules�
or local� It also accepts the most common control structures inside functions
and procedures �conditionals
 loops
 etc�� and routine calls both synchronous
and asynchronous�

Although only the prototypes of its remotely invocable routines and its types
are needed for a process interface
 the module de�ning the process interface
can also include functions or procedures de�ned in ATL which describe the
interaction with other processes in the application or with the user �e�g� asking
for input data�� ATL modules which are not the interface of any process but
de�ne the execution coordination and interaction between processes can also
be de�ned in the application
 and users may dynamically add their own� This
possibility allows con�gurability of the application execution at run time
 rapid
prototyping by recompiling ATL modules also at run time and o�ers a macro�
de�nition language to the end user�

USE se�
EXPORT �deftype point STRUCT

x �� real�
y �� real�
z �� real�

ENDSTRUCT
EXPORT �deftype simplex STRUCT

name �� string�
vertices �� VECTOR ��� OF point�

ENDSTRUCT
EXPORT �deftype scene VECTOR �	

� OF simplex
EXPORT �deftype property integer

EXPORT scene totalsc�
���

PROT
EXTERN PROCEDURE segmentation �scene 
sc� property p��
EXTERN PROCEDURE display�scene �scene sc��
EXTERN FUNCTION contained�in �point p� RETURNS simplex�

���
ENDPROT

���
EXPORT PROCEDURE SegmentSimplex �� IS
segmentation �totalsc� GETDATA��Input the property value����
display�scene �totalsc��
se��Sortida ��Segmentation completed���m���

ENDPROCEDURE

Figure �� Portion of the interface de�nition in Atlas for the volume modeling
process ��volum���

An example of an ATL module with part of the interface of a process called
volum can be seen in �gure �� This example is not complete
 but it shows the
de�nition of a set of types exported by the module �some of them are needed

�



as parameters of external routines�
 the prototypes of two external routines
�these prototypes and the types of its parameters would form the interface of
the process�
 and the description of a procedure �being also exported to make it
visible to other modules� that combines the execution of the process routines

asks for an input datum �through GETDATA� and also calls a procedure of
another module �se��Sortida��

��� The code generator and the compiler grammar of the

Command Subsystem

The Atlas process communications require quite a bit of code in each process
devoted to handshaking with distr
 generating the heartbeat messages at the
adequate rate
 preparing the arguments for process routines or collecting results
and encoding them for being transported over the network
 and dispatching calls
to process routines� To handle this
 Atlas automatically generates code stubs
that the developer must link with his program� These stubs are constructed from
the interface declaration of the process �like in �gure ��
 which contains the type
de�nitions used for variables to be exported and the prototype de�nitions of the
process external routines�

Since the same language �ATL� is used to de�ne the process interface �sec�
tion ���� and also to describe the application behaviour �interpreted at run time
by the Command Subsystem �see section ��
 we use the same grammar to parse
the �le in both cases� when the generator is going to generate the code stubs
for the communications mechanism �section �� and when the interpreter of the
Command Subsystem is interpreting the ATL code at run time� The di�erence
between the two is determined by the value of a 
ag that indicates whether the
parser is doing a code generation or it is directly interpreting code �run time��

When the parser is doing a code generation �which is the main subject of this
report�
 it is mainly interested in extracting information from the exported type
de�nitions and from the prototypes of extern functions or procedures
 because
this is the relevant information to build the code stubs for the communications
driver�

� Automatic code generator

��� Overview

We can distinguish between two main goals that the automatically generated
driver solves� On one hand
 we have the heartbeat mechanism �explained in sec�
tion ��
 used byAtlas in order to detect communication failures with processes�
On the other hand
 calling remote routines implies handling data interchanges
between processes
 both for parameters and results�

The automatically generated code addresses both objectives� The generator
creates the driver�s code in three �les �explained in detail in section ���� that
are eventually linked with the developer�s code�

�



In this section we will talk in depth about the design decisions these re�
quirements lead to
 and we will show how the automatically generated code
works�

��� Calls� parameters and results

The distributed environment proposed by Atlas follows a remote routine call
paradigm� Processes are waiting for requests to execute their routines� In At�

las
 it makes no di�erence whether these requests come from the user
 through
the command system
 or from another process �in fact
 the command system is
itself another process��

In the ��atl� �le de�ning its interface
 each process o�ers �makes public� some
types and routines� These routines are of one of the two following kinds� The
�rst one is composed by those routines implemented in the ATL module itself

written in ATL language� Routines in the second category are external rou�
tines
 implemented in C��
 by the process developer� They are called external
routines
 because they are executed by the Atlas process and not by the At�
las Virtual Machine� Once running
 each process will be waiting for requests
coming from the system to execute its external routines� So
 the need for com�
munication between the system and the process arises� calls and parameters
should be passed from distr to the process and results should go the other way
�see �gure ���

For each external routine call
 distrwill send the involved process a message
communicating the request
 and one additional message for each parameter of
the routine� After executing that routine
 the process will send back a message
with the return value �that may be void� and an additional message for each
parameter passed by reference�

��� Bridge types

In order to make type control checking
 types of the parameters of the external
routines declared in the ��atl� �le must be de�ned �or imported� there� As
these are ATL type de�nitions and not C�� types
 conversions must be made
somewhere from the internal Atlas storage of variables to C�� variables�

Atlas handles internally all variables using a general wrapper class called
Variable �see ��	�� Objects of this class are passed through the network encoded
in an XDR stream� The driver will receive this XDR messages
 extract the
Variables from it
 and convert them into appropriate C�� variables�

The automatic code generator produces code that carries out the conversion
from the XDR message to a bridge C�� type� The communications driver is
able to recover the Variable from the XDR message� On the other hand
 the
bridge class de�nition and conversions from and to it are provided in auxiliary
routines �see section �����

In �gure � we can see an example of an ATL type and its corresponding
C�� bridge type� All the information needed to construct this C�� class is
provided by the ATL de�nition of the type
 and therefore all the code for the

�



ATL type definition�

EXPORT �deftype point STRUCT
x �� real�
y �� real�
z �� real�

ENDSTRUCT

Bridge type�

struct atl�point �float x� float y� float z�
atl�point�� ��
atl�point�Variable 
v� �

if �v�Arbre����NULL� atl�exit��	�� �� Invalid variable
x � ��nodereal �����v�Arbre�����accedir�
����Getvalor���
y � ��nodereal �����v�Arbre�����accedir�	����Getvalor���
z � ��nodereal �����v�Arbre�����accedir������Getvalor���
�

operator Variable�� �
Type t��volum��point���S�x real�y real�z real����
Variable v�t�����
v�crea�arbre���
�����v�Arbre�����accedir�
�� � x�
�����v�Arbre�����accedir�	�� � y�
�����v�Arbre�����accedir���� � z�
return �v��
�
��

Figure �� Conversion from an ATL type to the corresponding bridge type�

bridge type shown in �gure � has been automatically generated� As can be
seen
 the conversion from and to an Atlas Variable has been automatically
generated� The �rst direction is provided with a constructor of the bridge class�
The other one is made using a conversion operator�

With this mechanism
 the conversion from the received XDR message to
the bridge C�� type is made transparently to the developer
 as also is the
conversion from a bridge type to a Variable
 a step needed in order to send back
results and parameters of the call passed by reference�

So
 the only step where the process developer must act is in the last con�
version� from the bridge type to the actual parameter type in the C�� side�
This last step is kept manual in order to o�er more 
exibility� ATL types need
not exactly �t the de�nitions of the application�s C�� classes� Furthermore

incompatibilities between C�� and ATL types can be circumvented�

In counterpart
 the developer must write the routines to convert an object
from and to the bridge type� The automatically generated code will use this
conversions to translate parameters and results� It should be noted that this
conversion is usually very simple and easy to write
 as the bridge class members
may match the actual class ones� This two�step design has been adopted so that
developers need not handle Variables directly in most situations� A scheme of
the di�erent representations a parameter has in its �trip� through the network
can be seen in �gure ��

��� Auxiliary routines

In order to isolate application developers from communications topics
 an auxil�
iary routine is generated for each external routine� The auxiliary routine carries

�



transparent to the developer

Command

System
distr

process
application

Variable XDR Variable bridge type actual type

Figure �� Scheme of the di�erent parameter representations along its trip
through the network�

out all the type conversions
 from and to the XDR representations that travel
through the network and to the actual C�� classes of the parameters and re�
turn value of the external routine� This is done using the bridge types explained
in the previous section� Figure � shows one way of this conversions� The other
way is necessary in order to send return values and pass�by�reference parameters
back to the external routine requester�

From the ATL declaration of an external routine
 the automatic code gen�
erator extracts the information on the type and number of parameters and the
type of the return value �see section �����

When an Atlas process requests the execution of an external routine from
another Atlas process
 distr receives this request� As many requests for the
same routine may arrive at a time
 an identi�er has to be assigned to each of
them in order to be able to send the return value and the existing pass�by�
reference parameters back to the appropriate process� So
 distr assigns each
call a di�erent identi�er code�

An auxiliary routine receives two parameters� The �rst one is the code
identifying the call� This code will be included in the return messages the
auxiliary routine will send to distr� The second parameter consists of the list
of actual parameters of the external call� These parameters will be translated to
the appropriate C�� types through the bridge types and passed to the process
routine for which the auxiliary routine acts as an interface�

When the actual execution of the process routine �nishes
 the auxiliary rou�
tine sends a message for each pass�by�reference parameter back to distr� An
additional message is sent for the return value of the routine� If this return
value is of type void
 a special message is sent to indicate the end of the exe�
cution� In this last situation
 if there exists any pass�by�reference parameters

the return�void message is not necessary �as the parameter itself is enough to
indicate the end of the execution�
 and thus it is not sent�

An example is shown in �gure �� In this example the process routine receives
a parameter passed by reference and has no return value
 so only the parameter
is sent back to distr at the end of the process routine� As has been pointed out

��



	 void aux�segmentation�String codi�DLList�Variable �� 
parametres� �

 Pix p�parametres�first���
� atl�scene ptp
���parametres�p����

 scene par
�ptp
��
� parametres�next�p��
� property ptp	���nodeenter ��parametres�p���Arbre�����Getvalor����
� parametres�next�p��
� segmentation�par
�ptp	��
� ptp
�par
�conversio�a�tipus�pont���
	� Variable �rp
�new Variable�ptp
��
		 ReturnParam �retpar
�new ReturnParam�codi�rp
��
	
 distrib�envia�retpar
��
	� �

Figure �� Example of an auxiliary routine�

before
 the routine receives two parameters
 the code identifying the call and the
parameter list� Line � contains the conversion from the Variable representation
to the bridge class� The conversion from the bridge class to the actual parameter
class happens in the next line� The actual routine is called in line �� The pass�
by�reference parameter is translated to the bridge type in line � and to Variable
in the next one� The last two lines construct the message and send it back to
distr� The message contains the identi�er of the call and the parameter itself�
A more complete example can be seen in section ��

��� Management of remote procedure calls in an Atlas

process

In order to carry out the dispatch of calls to the routines o�ered by an Atlas

process �its external routines�
 some more code is needed in the automatically
generated code� The missing piece is a structure bridging between messages
and the auxiliary routines introduced in the previous section� This structure is
provided by the class gestio crida a rutina �that is
 routine call management��
The class de�nition is shown in �gure �� One instance of this class is created in
the automatically generated code for each process� It is in charge of receiving
and storing routine calls and parameters and of calling auxiliary routines�

Let�s take a closer look at this structure� Basically
 it consists of two maps�
each external routine is linked with its auxiliary routine �through the class mem�
ber crida a� and each external call is linked with its parameter list �through the
class member crides pendents�� The �rst link is established in the initialization
step of the process
 inside the automatically generated procedure ini per crides
�an example is shown in section ��� The second link is created each time that a
request for a routine reaches the process� Notice that an external routine cannot
be linked with a unique parameter list
 because many calls to that routine may
be arriving at the same time�

When a routine call message sent by distr arrives to the process driver
 the
method nou missatge crida �that is
 new call message� is invoked� The param�
eters of the method are the code identifying the call �see section ����
 the name
of the routine and the number of parameters of the routine �this information is
extracted from the routine call message�� If the number of parameters is zero

the corresponding auxiliary routine is instantaneously invoked� Otherwise
 the

��



typedef void ��rut�tract�crida��String�DLList�Variable �� 
��

class gestio�crida�a�rutina �
VHMap�String�rut�tract�crida� crida�a� �� table to store the routines to be

�� called for each function
VHMap�String�dades�crida �� crides�pendents� �� table to store the routines and

�� parameters while they are arriving
public�
gestio�crida�a�rutina�� � crida�a��rut�tract�crida�NULL��
��

crides�pendents��dades�crida ��NULL��
� � �
void lligar�nom�crida�String nom�rut�tract�crida rut� �crida�a�nom��rut��
void nou�missatge�crida�String codi�String nom�int npars� �

if �npars��
� crida�a�nom��codi�DLList�Variable ������
else �

dades�crida �aux � new dades�crida�nom�npars��
crides�pendents�codi��aux�
�

�
void nou�missatge�param�String codi�Variable �v� �

crides�pendents�codi���afegir�parametre�v��
if �crides�pendents�codi���ja�tots�els�parametres��� �

crida�a�crides�pendents�codi���nom��� �codi�
crides�pendents�codi���obtenir�parametres����

crides�pendents�codi���alliberar�parametres���
delete crides�pendents�codi��
crides�pendents�del�codi��
�

�
��

Figure �� Class gestio crida a rutina

call is stored and the auxiliary routine will be e�ectively invoked when all the
parameters of the call have arrived�

When a parameter message sent by distr arrives to the process driver
 the
method nou missatge param �that is
 new parameter message� is invoked� It
adds the parameter to the call�s parameter list� If all the parameters of the
involved call have arrived
 the call to the auxiliary routine is done� Notice that
the parameters of an external call arrive in order
 because they are sent in order
by distr�

class dades�crida �
String funcio� �� function name
DLList�Variable �� parametres� �� pointers to the received parameters
int quants�parametres�falten� �� how many parameters are missing

public�
dades�crida�� � funcio�����quants�parametres�falten�
� ��
dades�crida�String n�int np� � funcio�n��quants�parametres�falten�np� ��
String nom�� �return funcio��
DLList�Variable �� 
obtenir�parametres�� �return parametres��
bool ja�tots�els�parametres�� �return �quants�parametres�falten��
���
void afegir�parametre�Variable �v� �

parametres�append�v��
quants�parametres�falten���
�

void alliberar�parametres�� �
for �Pix p�parametres�first���p��
�parametres�next�p��

delete parametres�p��
parametres�clear���
�

��

Figure �� Class dades crida

An auxiliary class is used to temporally store the parameters of the calls�
This structure
 dades crida �that is
 call data�
 is shown in �gure �� For each call


��



it stores the name of the routine
 its parameter list and how many parameters
are still missing�

��	 main�� part of processes

The code generator also constructs the main�� module of the Atlas process�
It consists of the code needed to control the network communications plus code
for the auxiliary routine introduced in subsection ����

Part of this code is the same for every Atlas process� So
 the generator
simply appends the process�dependent code with the process�independent part�

�pragma implementation �taula�h�
�pragma implementation �Map�h�
�pragma implementation �VHMap�h�
�include �globals�H�
�include �ComunicDistr�H�
�include �Driver�H�
�include �String�h�
�include �gestio�crides�H�
�include �Variable�H�
�include �DLList�h�

Comunic�Distr distrib�CANAL�COMUNIC�DISTR��
String nomprogram�
gestio�crida�a�rutina gestor�crides�ext�
Driver driv�distrib��

Figure �� Process�independent code� �head�

void main�int argc�char ��argv� �
nomprogram�argv�
��
ini�per�crides���
driv�set�name�program�nomprogram��
ini�process���
driv�Dispatch���
close�CANAL�COMUNIC�DISTR��
exit�
��
�

Figure ��� Process�independent code� �tail�

Figures � and �� show the two pieces of code that remain the same for every
process� As can be seen
 they de�ne and use global variables that are in charge
of communications and external routine call management�

� The distrib object encapsulates the communication channel with distr

and is responsible of the dispatching of messages depending on its contents�
The description for this Comunic Distr class is�

class Comunic�Distr � public MyEventHandler
�

ACE�SOCK�Stream canal�com�
Receiver�socket rebuts�
FILE �fd�stream�
typfunc Events�NEVENTS�	�� �� to keep the callbacks for ATLAS events
bool waitsemph� newimalive�
ImAlive im� �� This message cannot be created dynamically because

�� it is used in the interruption call�
bool oob�dos�bytes� �� flag to bypass the Out�Of�Band Data error

�� detected in Solaris ���

��



void soc�viu ���
void Handle�Message �Message �miss��

public�
Comunic�Distr �ACE�HANDLE fd��
void ini�event�function �int ev� typfunc f��
void initialize �char �c� � oob�dos�bytes � �c�
����T��� �
bool is�oob�dos�bytes �� � return oob�dos�bytes� �
int envia�oob ���
int envia �Message �miss�� �� method to send a message to distr

ACE�HANDLE get�handle �� const � return canal�com�get�handle��� �
int handle�input �ACE�HANDLE fd�� �� method called when there is input

�� through this channel
int handle�signal �int signum� siginfo�t � � 
� ucontext�t � � 
��

��

� The driv object encapsulates the process driver itself
 it manages the loop
listening on the process� channels �at least the channel communicating it
with distr�� It also o�ers the possibility to add and remove other channels
to be listened on� The description for this Driver class is shown below�

class Driver
�

ACE�Reactor reactor�
String nomprogram�

public�
Driver �Comunic�Distr 
d��
Driver �Comunic�Comp 
d� String nom�

�
nomprogram � nom�
reactor�register�handler �
d� ACE�Event�Handler��RWE�MASK��

�
void set�name�program �String nom� � nomprogram � nom� �
void Add�handler �ACE�Event�Handler 
e�

ACE�Reactor�Mask mask�ACE�Event�Handler��RWE�MASK�
� reactor�register�handler �
e� mask�� �

void Add�handler �int signum� ACE�Event�Handler �new�sh�
ACE�Sig�Action �new�disp�
� ACE�Event�Handler ��old�sh�
�
ACE�Sig�Action �old�disp�
�

� reactor�register�handler �signum� new�sh� new�disp� old�sh� old�disp�� �
void Remove�handler �ACE�Event�Handler 
e�

ACE�Reactor�Mask mask�ACE�Event�Handler��RWE�MASK�
� reactor�remove�handler �
e� mask�� �

void Add�timer �ACE�Event�Handler 
e� const ACE�Time�Value 
delta�
const ACE�Time�Value 
interval� const void �a�NULL�

� reactor�schedule�timer �
e�a�delta�interval�� �
void Dispatch �� � for ���� reactor�handle�events ��� �

��

� The gestor crides ext object has been explained in subsection ���

It is also worth mentioning that the ini process routine called in the main
function ��gure ��� is here in order to allow the developer to make some ini�
tializations of the process before entering the dispatching loop� This routine
does nothing by default
 but the developer can rede�ne it to include the process
initializations at this point�

The process�dependent code simply consists of the auxiliary routines and
the procedure ini per crides� The task of this procedure is to initialize the
structure that links external routines with their corresponding auxiliary routines
�see subsection ����� An example is shown in section ��

��



��
 Automatically generated �les

The names of the �les containing the automatically generated code consist of
the name of the process �procname� pre�xed by atl 
 and the extension depends
on each �le� These are�

atl procname�hh This �le de�nes the C�� prototypes for the process routines
declared as external routines in the ATL module� It also may include
the header �le implemented by the process developer �procname�h� and
includes the generated atl procname�H �le�

atl procname�H This �le has the bridge types implementation for those types
used by the external routines of the process �exported types in the ATL
module�� It includes the Variable�H �le needed for the conversion of
bridge types and those generated ��H� �les corresponding to the modules
used by it �in the example of section � the volum�atl module uses the se
module so the atl volum�H generated �le includes also the atl se�H �le�

atl procname�C This �le implements the main code for the communications
driver and also the auxiliary routines introduced in section ����

� Putting everything together� an example

��� Automatically generated code

Using the portion of the volum process interface shown in �gure � the Atlas

code generator makes automatically the �les atl volum�hh
 atl volum�H and
atl volum�C which are depicted below�

atl volum�hh

�ifndef ��ATL�volumhh��
�define ��ATL�volumhh��
�ifndef NOHEADER
�include �volum�h�
�endif
�include �atl�volum�H�
void segmentation�scene 
�property��
void display�scene�scene��
simplex contained�in�point��
�endif

File atl volum�H shows the code generated to de�ne the C�� prototypes
for the external routines declared in the interface� This �le also includes the
volum�h �le implemented by the developer because the prototypes use process
types only known by the developer code�

��



atl volum�H

�ifndef ��ATL�volumH��
�define ��ATL�volumH��
�include �Variable�H�
�include �atl�se�H�

namespace volum �
struct atl�point �float x� float y� float z�
atl�point�� ��
atl�point�Variable 
v� �

if �v�Arbre����NULL� atl�exit��	�� �� Invalid variable
x � ��nodereal �����v�Arbre�����accedir�
����Getvalor���
y � ��nodereal �����v�Arbre�����accedir�	����Getvalor���
z � ��nodereal �����v�Arbre�����accedir������Getvalor���
�

operator Variable�� �
Type t��volum��point���S�x real�y real�z real����
Variable v�t�����
v�crea�arbre���
�����v�Arbre�����accedir�
�� � x�
�����v�Arbre�����accedir�	�� � y�
�����v�Arbre�����accedir���� � z�
return �v��
�
��

�
namespace volum �
struct atl�simplex �String name� atl�point vertices����
atl�simplex�� ��
atl�simplex�Variable 
v� �

if �v�Arbre����NULL� atl�exit��	�� �� Invalid variable
name � ��nodestring �� ���v�Arbre�����accedir�
����Getvalor���
for �int i��
�i����i���� �

Variable v���S�x real�y real�z real������� v��crea�arbre���
��v��Arbre������������v�Arbre�����accedir�	����accedir�i����
atl�point tpaux�v��� vertices�i���tpaux�
�

�
operator Variable�� �

Type t��volum��simplex���S�name string�vertices V���S�x real�y real�z real�����
Variable v�t�����
v�crea�arbre���
�����v�Arbre�����accedir�
�� � name�
for �int i��
�i����i���� �

��������v�Arbre�����accedir�	����accedir�i��� � ����Variable� vertices�i����Arbre����
�

return �v��
�
��

�
namespace volum �
struct atl�scene�

atl�simplex cont�	

��
operator Variable�� �

Type t��volum��scene���V�	

�S�name string�
sides V���V���S�p	 S�x real�y real�z real��

p� S�x real�y real�z real��
id integer�����

Variable v�t�����
v�crea�arbre���
for �int i	�
�i	�	

�i	��� �

�����v�Arbre�����accedir�i	�� � ����Variable� cont�i	���Arbre����
�

return �v��
�

atl�scene�� ��
atl�scene�Variable 
v� �

if �v�Arbre����NULL� atl�exit��	�� �� Invalid variable
for �int i	�
�i	�	

�i	��� �

Variable v���S�name string�
sides V���V���S�p	 S�x real�y real�z real��

p� S�x real�y real�z real��
id integer��������

��



v��crea�arbre��� ��v��Arbre���������v�Arbre�����accedir�i	���
atl�simplex tpaux�v��� cont�i	��tpaux�
�

�
��

�

using volum��atl�point�
using volum��atl�simplex�
using volum��atl�scene�
�endif

In �le atl volum�H we can see the bridge type de�nitions corresponding to
the exported types de�ned in the interface� these are atl point
 atl simplex

and atl scene� Their methods show how these bridge types are made from an
Atlas Variable and backwards�

atl volum�C

�pragma implementation �taula�h�
�pragma implementation �Map�h�
�pragma implementation �VHMap�h�
�include �globals�H�
�include �ComunicDistr�H�
�include �Driver�H�
�include �String�h�
�include �gestio�crides�H�
�include �Variable�H�
�include �DLList�h�
�include �inc�atlas�H�

Comunic�Distr distrib�CANAL�COMUNIC�DISTR��
String nomprogram�
gestio�crida�a�rutina gestor�crides�ext�
Driver driv�distrib��

�ifndef NOHEADER
�include �volum�h�
�endif
�include �atl�volum�H�
�include �atl�volum�hh�

void aux�segmentation�String codi�DLList�Variable �� 
parametres� �
Pix p�parametres�first���
atl�scene ptp
���parametres�p����
scene par
�ptp
��
parametres�next�p��
property ptp	���nodeenter ��parametres�p���Arbre�����Getvalor����
parametres�next�p��

��� segmentation�par
�ptp	��
ptp
�par
�conversio�a�tipus�pont���
Variable �rp
�new Variable�ptp
��
ReturnParam �retpar
�new ReturnParam�codi�rp
��
distrib�envia�retpar
��
�

void aux�display�scene�String codi�DLList�Variable �� 
parametres� �
Pix p�parametres�first���
atl�scene ptp
���parametres�p����
scene par
�ptp
��
parametres�next�p��

��� display�scene�par
��
ReturnVoid �rv�new ReturnVoid�codi��
distrib�envia�rv��
�

void aux�contained�in�String codi�DLList�Variable �� 
parametres� �
Pix p�parametres�first���
atl�point ptp
���parametres�p����
point par
�ptp
��
parametres�next�p��

��



��� simplex res�contained�in�par
��
atl�simplex restp�
restp�res�conversio�a�tipus�pont���
Variable �vr�new Variable�restp��
ReturnValue �rv�new ReturnValue�codi�vr��
distrib�envia�rv��
�

void ini�per�crides�� �
gestor�crides�ext�lligar�nom�crida��segmentation��
aux�segmentation��
gestor�crides�ext�lligar�nom�crida��display�scene��
aux�display�scene��
gestor�crides�ext�lligar�nom�crida��contained�in��
aux�contained�in��
�

void main�int argc�char ��argv� �
nomprogram�argv�
��
distrib�initialize�argv�	���
ini�per�crides���
driv�set�name�program�nomprogram��
ini�process��� �� inicializations of the process itself
driv�Dispatch��� �� loop
close�CANAL�COMUNIC�DISTR��
exit�
��
�

The last one
 �le atl volum�C
 shows the main code of the driver� This
code includes the auxiliary routines for each external routine in the interface

and the main routine of the communications driver� The arrows have been
added pointing to the places where the process routines are actually invoked�

��� Process code for translating to and from bridge types

The process code necessary for the types de�ned in this example depends on
what the developer wants to add to the exported structure� The following code
is the most common and easy class structure for the given types�

class point �
float x�y�z�

public�
point �float a� float b� float c�� x�a�� y�b�� z�c� ��
point �atl�point p� � x � p�x� y � p�y� z � p�z� �
atl�point conversio�a�tipus�pont ��

� atl�point p� p�x � x� p�y � y� p�z � z� return p� �
point 
operator � �const point 
p�

� x � p�x� y � p�y� z � p�z� �
float pos�x �� � return x� �
float pos�y �� � return y� �
float pos�z �� � return z� �

��
class simplex �

String name�
point vertices����

public�
simplex �String n� point �vp�� name�n�

� for �int i�
� i��� i��� vertices�i� � vp�i�� �
simplex �atl�simplex s�� name�s�name�

� for �int i�
� i��� i��� vertices�i� � s�vertices�i�� �
atl�simplex conversio�a�tipus�pont ��

� atl�simplex s� s�name � name�
for �int i�
� i��� i���

s�vertices�i� � vertices�i��conversio�a�tipus�pont ���
return s� �

String Name �� � return name� �
point �Vertices �� const � return vertices� �

��
class scene �

simplex cont�	

��
public�

��



scene �simplex �vs�
� for �int i�
� i�	

� i��� cont�i� � vs�i�� �

scene �atl�scene sc�
� for �int i�
� i�	

� i��� cont�i� � sc�cont�i�� �

atl�scene conversio�a�tipus�pont ��
� atl�scene sc�
for �int i�
� i�	

� i���

sc�cont�i� � cont�i��conversio�a�tipus�pont ���
return sc� �

simplex Cont �int i� � return cont�i�� �
��

Acknowledgements

This research has been partially supported by grants TIC�������� and TIC����
�����C����� of the CICYT�

The �rst author has been supported by grant ����FI�����PG of the Gene�
ralitat de Catalunya�

References

��	 Jon Siegel� CORBA Fundamentals and Programming� OMG
 �����

��	 Steve Vinoski� CORBA� Integrating Diverse Applications Within Dis�
tributed Heterogeneous Environments� IEEE Communications
 �����
 �����

��	 Gregory R� Andrews� Paradigms for Process Interaction in Distributed Pro�
grams� ACM Computing Surveys
 �����
 March �����

��	 Antoni Soto
 Sebasti�a Vila
 and �Alvar Vinacua� A Toolkit for constructing
command driven graphics programs� Computer � Graphics
 �������������

�����

��	 Douglas C� Schmidt� The ADAPTIVE communication environment� Object�
oriented network programming components for developing client�server ap�
plications� In ��th Sun Users Group Conference
 �����

��	 Douglas C� Schmidt� Reactor� An object behavioral pattern for concurrent
event demultiplexing and event handler dispatching� In Proceedings of the
�st Pattern Languages of Programs Conference
 August �����

��	 Marta Fair�en and �Alvar Vinacua� ATLAS� Sistema de Comandes� Manual
t�ecnic �in Catalan�� Report LSI�	
����T
 ����� http���www�lsi�upc�es� 
mfairen�

��	 R� Srinivasan� Rfc ����� Xdr� External data representation standard
 Au�
gust �����

��	 Marta Fair�en and �Alvar Vinacua� Interprocess data transfer in Atlas
 a
platform for distributed applications� Report LSI�	���	�R
 �����

��


