
Heterogeneous distribution in Atlas

D� S�anchez�Crespo� M� Fair�en and �A� Vinacua

Department of Software� U�P�C�

Diagonal ��	� 
ena planta

E�
��
 Barcelona� Spain

April �� 
���

Abstract

The Atlas platform allows unsophisticated programmers to include

advanced features in their applications with no or very little extra infor�

mation and e�ort� These features include network distribution of cooper�

ating processes� a powerful macro�language� a �exible journaling system

and some other mechanisms directly related to graphics applications prob�

lems� In this report we describe how Atlas is able to distribute the appli�

cation processes among di�erent architectures without needing a previous

con�guration information of the available processes for each architecture�

� Introduction

Atlas is a software package designed to allow users to share resources across
local area networks� Its main features include transparent distributed execu�
tion of processes� IPC �inter�process communication� mechanisms� as well as
journaling and other speci�c services �see �	
 for a more generic description��

As Atlas is a multiplatform environment� supporting features that ease the
execution of processes over heterogeneous local area networks� one important
feature is transparent execution of processes� which allows a user to run a process
in the network by simply knowing its name� regardless of�

� which machine�s� have the desired process available
� which machine is the user connected to

Atlas selects from the di�erent machines that can execute the program the
one that better accomplishes the task� In fact� although it is not implemented
in the version this document presents� one of the Atlas aims is to make a load






balancing of processes among the network� The user�s view will be that of a
virtual machine he talks to �the Atlas system� which will encapsulate and hide
all the complexity� but also o�ers all the power� of the network�

� Global architecture managing the distribution

Before we enter in details concerning speci�c mechanisms� it may be useful to
give an overview of the generalities of the Atlas kernel� It has two components�
servers and distr� As Atlas is a distributed system� it requires a component
to be used on a per�host basis� which de�nes that host as an Atlas�capable
machine� This component is the server �the server atlas process�� Servers do
not communicate between them� but only with the distr process� which gives
them orders to execute speci�c processes for the application�

Second� we need another piece of Atlas to manage the distribution and give
the execution orders to the servers� This piece is the distr process� The name
distr �distributor� is because one of its main tasks is the distribution of the
processes to the di�erent hosts �thus� the servers� available�

There are also some con�guration �les which are important to several mech�
anisms Atlas uses for the distribution� These are�

AtlasSettings This is a user�s con�guration �le� It must be located in the
user�s home directory� under the name �HOME��AtlasSettings� This
�le con�gures two things� the directories where a process can �nd shared
libraries and the hosts allowed by the user to be used by Atlas for his
applications� We will see its structure in more detail later�

AtlasCon�g This is an Atlas internal con�guration �le� It should be located
in the Atlas installation directory� under the name bin�AtlasCon�g�
It must be changed only under special circumstances� and always by the
Atlas system administrator� It is used by both the server atlas and
also the distr processes�

ATLuserid Each Atlas user has a unique identi�er that prevents faked iden�
tities� This identi�er is contained in the �le �HOME��ATLuserid� and
is a 	��byte hash of random information from the system at the time of
creation �essentially 	� random bytes� that Atlas will use for all user
identi�cation� In this way security is guaranteed� The �le is used by both
the server atlas and the distr processes� It must be generated the �rst
time a user runs an Atlas application by using the �genid� utility also
included in the Atlas installation �les�

�



��� The server atlas process

The server atlas process is a daemon which should be running in each of the
hosts willing to provide Atlas execution services� It is connected to the distr
process by a connectionless protocol �meaning each command is self�contained
and there are no command sequences� and it is running with root privileges�
The server implements as of today two main functions� a broadcast response and
a process execution� We will see them later when discussing the corresponding
mechanisms�

Keep in mind that the server atlas process is stateless� which means that
it does not keep internal data structures permanently� In other words� each
command processed by the server is independent� and it implies starting from
zero� performing some tasks� and returning to the starting point� This fact is
important to understand the internals of the server atlas�

��� The distr process

The distr process� on the other hand� is more complex� We will see in this
report that it manages the broadcast mechanism� keeps the needed information
of each process available for the application and decides the host where a pro�
cess must be executed depending on availability of the process in the host� But
the distr process is also the center of every interprocess communication in an
Atlas application and also controls other mechanisms important for those ap�
plications like journaling� fault�tolerance to crashes or disruptions� asynchronous
user input data� etc� �You can see ��� 	
 for a more general description of the
whole Atlas system��

The distr process is the process the user executes in order to start an
Atlas working session� It has an execution cycle similar to the rest of the
Atlas processes �such as server atlas�� They work in a per�event basis�
they do nothing but waiting for requests from the processes connected to them
�normally distr is connected to all the others�� When one such event arrives�
the process �wakes up�� processes the request and sleeps until another request
arrives� distr is somehow analogous� but it has a more complex start up process
because it must control most of the Atlas mechanisms� including the broadcast
and the process execution mechanisms�

��� The Atlas �Sysid� to recognize architectures

To make Atlas able to �nd a process across the network and execute it� obvi�
ously it is required some setup work and following certain guidelines�

First of all� Atlas does not scan whole hard disks looking for processes to
execute� Whenever a user wants to execute a �le with Atlas� he or she must

	



put it in a special directory� The key items to access this feature are System
Identi�ers� Sysid�

An Atlas SysId �System Identi�er� is an ASCII string used by Atlas to
group together several binary�compatible machines in a local network� This
means that all computers sharing a unique SysId must be able to execute the
same binary �les� For example� two PCs can execute exactly the same �les�
because they share the same processor architecture� Thus� their SysId should
be the same�

The SysId is therefore not a computer identi�er� but a �binary architecture�
code� It is built automatically by the Atlas system� and has the following
format�

sysname�release�machine

where each substring �sysname� release and machine� are derived from the uname
system call� In fact� writing on a system shell the command uname �srm� it
will print the three members� and in the desired order� Sysname identi�es
the family of computers your system belongs to� For example� �SunOS� would
identify Suns� as �Linux� would identify Linux based machines� The second
term� release� is used to identify what version of the OS is the system running�
The uname call will return a full version number� such as �����

As far as Atlas is concerned� only the major release number is required�
so any minor version number or additional information will be stripped away�
Finally� the machine identi�er is a vendor�dependent code which identi�es the
hardware implementation� For example� some Silicon Graphics systems have
machine code IP��� and some others have the IP	� code�

There are� however� some observations to be made� First� some machines
have sysnames that are mixed�case� �SunOS�� for example� would be such case�
The Atlas SysId� following the naming convention of Unix� is case�sensitive�

Second� there are some machines with OS release numbers containing non�
numerical information� Some HP machines exhibit this behavior� having release
numbers such as B�
��
�� In these cases� Atlas will consider that the major
release number is the �rst number found scanning the release number from left
to right� This means that in our example �B� will be dropped and the version
number would thus be 
��

Last� but not least� sysnames and machines can contain some special char�
acters� such as slashes� points� or other printable characters� Atlas strips these
characters away from the names� and so machine names such as �����	
���

will be converted to �����
����

To avoid problems deciding which is the correct Atlas Sysid for a given
architecture� Atlas comes with a handy utility which will tell you the SysId of
any machine� This program is called gensysid� and may be invoked at any time
from the shell command line by writing�

�



gensysid �CR


and its output will be a message telling you the desired string identi�er�

When the Sysid is used by the developer to identify binary�compatible ar�
chitecture directories� this Atlas Sysids can be also wildcarded� thus allowing
a unique identi�er to be shared by di�erent architectures� This adds �exibility
to the system� For example� a Sun machine could have Sysid �SunOS���sun�u�

which would mean a Sun UltraSparc with Solaris and a di�erent machine could
have the Sysid �SunOS���sun�m� which would mean an older Sun machine� but
also with the Solaris Operating System� Now� there is no need to use two dif�
ferent identi�ers� as both machines are binary compatible� Thus� it would be
useful to allow Sysids to de�ne which of the three �elds �vendor� os� and ma�
chine� should be taken into consideration� and which should be simply ignored�
The way to achieve this results is by using the wildcard �any� as a substitute
of the undesired �eld� For example� the two Sun machines described earlier
in this section had Sysids �SunOS���sun�u� and �SunOS���sun�m�� So� a well�
constructed global Sysid for them both would be �SunOS���any� as we consider
the machine �eld to be irrelevant�

In case the Atlas daemon �server atlas� is also working in a not binary
compatible machine also working with Solaris �SunOS���� for example a SunOS�
��X��� the distinction should be done for this machine in order to avoid a process
compiled for the others to be sent to this machine�

� The broadcast mechanism

Every time a distr process is started somewhere in the network� it issues a
broadcast message to the network where some servers will be in turn listening
to these kind of messages� This message is thus called Distr Broadcast Message�
and has the following structure�

bytes containing

���	 length of the message �network formatted int�
���� user identi�er of the user executing Atlas �net formatted int�
���

 group identi�er of the user executing Atlas �net formatted int�

���k Sysid for distr� Variable length string
k�
 Null�terminator character
k����l Execution path for distr� Variable length string
l�
 Null�terminator character
l����m ATLuserid of the user executing Atlas
m�
 Null�terminator character

This broadcast message tells the servers who �uid and gid� is running the
newly�created distr process� which machine architecture �Sysid� is the distr

�



using� where �absolute pathname� has been the distr started� and �nally the
ATLuserid of the user who started Atlas�

��� distr sending the message

When the distr process is started up it must send the broadcast message in or�
der to �nd out the information of the hosts available to executeAtlas processes�
Before sending the message it must do some initializations� These are�

� Port customization� Atlas does not require speci�c ports to work�
In fact� the Atlas system manager may specify which ports �two are
required� will be used throughout the execution by changing the contents
of the AtlasCon�g �le� This �le may only be changed by theAtlas system
manager� and speci�es vital information for Atlas� This �le should only
be touched when strictly needed� and can be found in the bin directory
of your Atlas distribution� The only lines needed to customize the ports
are�

�PORTS

stream � ����

datagram � ����

Here you can change the values of any two ports �not necessarily contigu�
ous�� The only requirement is that both ports must be free� You may
check this with the netstat command�

This port customization� of course� is also done by each server atlas

process when they are started� This is usually done by the Atlas system
manager at the installation time�

� Process�Host Table initialization� Before receiving any server re�
sponse to the broadcast message� the Process�Host Table is created� First
the AtlasSettings �le is scanned in order to �nd the allowed host list� This
list is a part of the �AtlasSettings �le �located in the user�s home directory�
and is not mandatory� It is useful for those users that want to �ban� hosts
from the network� The syntax is�

�HOSTS

host�name��host�name������host�nameN

If the Atlas distr process �nds a record like this it will only treat those
responses sent by servers running over the hosts in the list� As we said
previously� this node of the �AtlasSettings �le is optional� So� if not present
distr will process all messages from servers that respond to the broadcast
message� without further �ltering�

�



After these initializations� the distr process is ready to send the broadcast
message to the network� Thus� the message is sent� and also a handler is attached
to the �ACE Reactor� object ��
 to easily detect the responses coming from the
servers� A timer is also added into the Reactor so that we give some time for
the servers to respond� In this �rst prototype distr only listens during this
given time interval� This interval has the default value of 	 seconds� and is
built into Atlas with the variable DEFAULT BROADCAST TIMEOUT de�ned in the
�globals�in� �le� However� the Atlas system manager can customize this value
to speci�c needs� For example� on a very fast and reliable network maybe 

second of timeout will do� On the other hand� a slow network may need more
time� It can be customized by changing a parameter into the AtlasCon�g �le�
The node to be changed is�

�BROADCAST

timeout � �

and the substitution must be on the number of seconds of timeout� Remember
that if the default 	�second delay is enough� there is no need to have this node
on the AtlasCon�g �le�

To sum up� the distr process generates the broadcast message� sends it�
and waits for responses to arrive within a speci�ed time interval�

��� Response construction in server atlas

We can see the broadcast processing divided in four steps�


� Message reception� Let�s now see how the broadcast message is received
and processed by a server atlas� Servers keep two sockets open through�
out their execution cycle� One of them is a datagram socket� and is used
only to process broadcasts and send responses to them� The read function
�BCastRcv��ReceiveBCast� peeks at the socket when it is noti�ed that
there is data available to read� and then consumes it� Then� the di�erent
�elds of the message are extracted �function BCastRcv��DecodeBCast��

�� User authentication� First� let�s remember that servers must be avail�
able all the time to process requests �either other broadcasts or execu�
tion requests�� So� it is mandatory that steps two �user authentication�
three �response generation� and four �response emission� do not block the
server� Thus� a sub�process is created� and all processing is performed
concurrently by the main and secondary threads� one taking care of the
sockets and waiting for requests� and the other performing steps �� 	 and
� of the broadcast processing� After message reception� comes the sec�
ond part� which is the user authentication� Atlas attempts to prevent
situations such as�

�



� faked identity by the poster of the message
� non�registered user

by performing simple veri�cations� These veri�cations consist of�

� First� the broadcast message contains the uid and gid of the user� It
also contains an ATLuserid code� which is �lled by the distr process
with the code for that user� An illegal request could probably fake
the uid and gid of a certain user� but faking also the ATLuserid would
be more di�cult� as this information is contained in a �le readable
only by its owner�

� Second� if an illegal request arrives with a uid� gid and ATLuserid�
the server will access the information on the ATLuserid for that uid
and gid� and check if that ATLuserid is the same we were sent by
the socket� The way to do this is to access the �etc�passwords �le
with the command getpwuid� This �le contains �among other infor�
mation� the home directory for every user� So� given the uid and gid
we can access his home directory� perform a setgid and setuid and
read his �ATLuserid �le� This way we perform the veri�cation of all
data sent being correct�

This provides user authentication as secure as the user�s �le system and
network� The network security could be improved using cryptographic
protocols� which is not done at present� It seems however unnecessary to
provide stronger security than the user�s �le system under any circum�
stances�

Once this step is completed� the server knows the request is valid� and is
thus ready for the central step� which is the response generation�

	� Response generation� The response of a broadcast message is a list
containing the following information�

� Host name �server which generated the response�
� Server�s Sysid
� Available process list

The �rst two �elds are straightforward� the distr process needs to know
who is answering the broadcast message and what architecture does the
responder have� The third element is a list containing all the �les that the
responding server found on its directory scan� We will now explain the
exact contents of this list� and its creation algorithm�

Whenever a server replies to a broadcast message� it scans certain areas
of the �le system searching for executable �les� Once done� it returns
that �le list to the distr process� This way when the user asks distr to
execute a �le� it is easy to check which hosts have that process available
for execution�

This list is priority�ordered� This is useful whenever a process in avail�
able in two di�erent places of the disk� For example� with the following
structure�

�



�HOME

Atlas

bin

SunOS���any

process�

IRIX���any

process�

any

process�

�����

�����

we have the process �process�� available at two di�erent locations� the
speci�c SunOS���any and a generic one located at �any�� Logically� the
�rst instance should be prioritized� as it refers to a more speci�c loca�
tion� Thus� in the executable �le list which will be returned to the distr
process the process �HOME	Atlas	bin	SunOS���any	process� should be
before the same name process located at �any�� The way to build such a
list is scanning the selected areas of the disk in importance order� most
important ones �rst� secondary after� So� the algorithm for scanning the
disk is�

� Scan the area of the disk around the path where distr has been
started� If that path is inside an architecture directory �such as the
path �HOME	process	bin	SunOS���any� we will �rst locate the di�
rectory corresponding with the server�s Sysid� and then scan it� After
we have scanned that directory� we will scan the several wildcarded
versions ��rst wildcarding machine� then OS� and �nally sysname��
Finally� we will scan the �any� directory and also the base directory�
So� the order in which directories are checked is� �assuming the Sysid
is in the form S�R�M�

i� ����	S�R�M

ii� ����	S�R�any

iii� ����	S�any�M

iv� ����	S�any�any

v� ����	any

vi� ����	

� Scan the �HOME	Atlas	bin area� including the architecture directo�
ries for the server� Again� the order of checking is�

i� �HOME	Atlas	bin	S�R�M

ii� �HOME	Atlas	bin	S�R�any

iii� �HOME	Atlas	bin	S�any�M

iv� �HOME	Atlas	bin	S�any�any

�



v� �HOME	Atlas	bin	any

vi� �HOME	Atlas	bin	

Note how we scan this Atlas	bin section after we scanned the region
around the distr boot path� This behavior is intentional� As we said
in preceding sections� placing executable �les in the same path where
we start the distr process is a convenient way of working withAtlas
while developing and testing new code� Thus� in case we have the
same process in the starting path and in one of the �HOME	Atlas	bin
sections� we wish to use the �rst one as the preferred�

� Third and last� we will scan the installation directories of Atlas�
These directories should contain only binaries related to the Atlas
distribution� such as server atlas� distr� and several utilities� So�
it makes sense to make this the last �less priority� location for ex�
ecutable �les� Here again we will scan directories using the Sysid
wildcarding feature as described in the two preceding steps�

For every �le and directory we encounter during this phase� some tests are
made to ensure proper execution� Then� for every FILE� it is considered
executable if� and only if�

a� It is a �le and has execution permission by its owner� or

b� It is a symlink� and the �le linked by it satis�es a� step�

And for every DIRECTORY� it will be expanded if� and only if�

a� The process of scanning determines that directory as a possible loca�
tion of �les �a matching architecture directory� �any�� etc��� and

b� The user has read and execution rights over that directory� No sym�
links are accepted here in the current prototype�

�� Response emission� Once the scanning process is complete� we have a
list of �les� along with the Sysid and domain name address of the server
which performed the scanning� Thus� it is now time to format this list into
a network packet� and send it through the network to the distr process�
So� we build a message with the structure�

address � own Sysid � 
fprocess namegN

�where ifxgj means repeat fxg from i to j�

Between �elds we use null characters �ASCII code �� as delimiters� and
end�of message is noti�ed with two null characters in sequence� Albeit
redundant� the message is preceded by a network�formatted integer value
which contains the total length �this is� the four bytes for the integer and
all the message data� of the message which is used by the driver to simplify
the processing of datagrams�


�



Whenever the distr process receives a server response� it wakes up �specif�
ically� the routine BCast��handle input is woken up by the Reactor�� This
routine is fairly simple� First� it decodes the broadcast response which is re�
ceived through the datagram socket and then the message is passed to the PHT
�Process�Host Table�� where it will be divided into its main elements� and in�
serted into the structure �if and only if the host that responded is allowed by
the AtlasSettings �le��

��� Process�Host Table

During normal distr operation� one of the main tasks to be carried out is to
decide� each time the user wants to execute a process� which server is best suited
�in terms of process availability and also performance� to execute it� The distr
process has a data structure specially designed to aid in this complex decision�
the Process�Host Table �PHT�� The PHT is a variation of a multilist� as can be
seen in the following scheme�

Host 
 X X X
Host � X X

Process 
 Process � Process 	

The above drawing tells us that Host 
 has Processes 
� � and 	 available�
and that Host � only has processes � and 	� The above drawing would depict
the classical multilist as found in countless data structures and algorithms text�
books� Our PHT works in a similar way� but adding priorities� In sections ��	
and 	�� we said users are allowed to store their binary �les in di�erent locations�
and that Atlas will scan the disk in order so more priority areas are searched
before less relevant ones� So� we will use the following data structure� which is
just a variation of the one explained previously�

Host 
 
fpathgN 
fpathgM 
fpathgN
Host � 
fpathgO 
fpathgP

Process 
 Process � Process 	

Here� each Host�Process node keeps a list of all instances of the process in
the host�s �le system� The list is priority�sorted� so the �rst element has the
most priority� and so on�

This data structure can be found in the �le �HostProc� of the Atlas distri�
bution� and it has two main relevant operations� inserting a new list of processes
available in a particular host� and �nding the most suitable host for executing
a process�







The insertion routine

This insertion has the disadvantage �due in part to the nature of the broadcast
system� that it does not insert host�process pairs� but lists in the form�

hostname sysid process� process
 process� ���

Process�i� are the processes available at that host� So� our routine reads the
�rst two elements in the list �host name and Sysid�� builds the Host Information
block �named �InfoHost��� and thus opens a new �row� in our multilist� which
is really a hash table to speed�up access� Now� for every process in the list� it
appends it to the corresponding list� As the initial list is priority�sorted� we can
ensure that the lists created will also be sorted�

The selection routine

As we have seen� the insertion routine is row�wise� or horizontal� The selection
routine will be vertical� or column�wise� What we will do is scan from top to
bottom each host in the host list� and keep track of the number of processes
currently running at each one� Then� for each host� we seek the process we want
to execute� selecting it from the �rst position of the corresponding list� Now�
as we scan top to bottom� we will select a new host as the executor if and only
if it has less processes currently under execution� but has the desired process
available�

It is important to note some behaviors which may seem strange at �rst sight�
but are fully normal�

First� two hosts �say H
 and H�� have the desired process� and H
 has less
processes currently running �thus making it a best candidate than H��� Then�
H
 will be chosen as the executor� regardless of where the process resides� For
example� if H
 is best�suited� but has a process in a low�priority location� but
H� is a bit more occupied� but has a high�priority location process� H
 will be
chosen� So� host choice is considered more important than location choice�

Second� Atlas does not really support full load balancing by now� As of
today� what Atlas really does is keep track of how many Atlas processes are
being run and where� Thus� the decision criteria of �choosing the host with less
processes� should be understood better as �choosing the host with less Atlas
processes�� Keep in mind that this criteria is still too weak� For example� if
H
 has ��� processes in run state �and 	 of them are Atlas processes� and H�
has only � processes �all of them being Atlas processes� and we perform a host
selection for a process available at both locations� H
 will be chosen� as it has
	 Atlas processes and H� has �� The di�erent computing power of the hosts
is not taken into account either at present�


�



� A process execution

��� Deciding which host

Once the broadcast interval has ended� the PHT now has information about the
processes and hosts available� It is time then to start the execution of Atlas�
The distr process has to start then the Command Subsystem process and send
to it the ATL �le having the initialization of the application �see �

 for more
details of what an ATL �le is��

Whenever a certain process must be executed the distr process uses the
information contained in the PHT to locate the best server to execute this
process� and will then try to communicate with it� The core routine here is
QuinHost which� given a process name� scans the PHT to �nd the best possible
host� The mechanism used by QuinHost has been explained in section 	�	� �The
selection routine��

��� The actual execution

To execute a process� distr� having decided which host is the best one to do it�
generates a message to be sent to the server on that host� ordering the execution
of the process�

This message includes information about the environment that must be set
to execute the process� But this information is the same for every process during
the application execution� so distr stores it during its initialization�

The environment information is a list which includes the following informa�
tion�

� User identi�er �result of a getuid call�
� Group identi�er �result of a getgid call
� ATLuserid value �from the �ATLuserid �le�
� DISPLAY environment variable
� HOME environment variable
� PATH environment variable
� PWD environment variable
� ATLAS ROOT environment variable �only if it is de�ned�
� LD LIBRARY PATH environment variable �only if de�ned�

All this information is kept throughout the execution cycle�

The message sent to the server then has the �elds corresponding to the list
above having the ATLAS ROOT and the LD LIBRARY PATH as optional�

We will now focus on the events following the reception of this execution
message by a given server� explaining the algorithm and tests it performs� This
function can be subdivided in the following steps�


	



� Message reception� First of all� the server�s �MessRcv� object is noti�
�ed �via the handle input method of the ACE library ��
� of the avail�
ability of data in the stream socket� Keep in mind that datagram sockets
are used for broadcasting purposes only� and stream sockets are used for
execution messages� The Atlas process execution message is a variable�
length ASCII string� with some di�erences with the broadcast message
which are worth noting�

First� �elds can be optional� The broadcast message is �xed�structure�
variable�length� This new message is variable�structure �and of course
variable�length��

Second� there is no order in the sequencing of the �elds� As far as the
message contains the required information� this data can be ordered in
many di�erent combinations� This didn�t happen with broadcast message�

Once the message is read into a list of bu�ers� we reconstruct the several
�elds and create a list of parameters�

� User authentication� Before processing an execution request we must
be sure that the sender of the message is really allowed to execute the
process� and that no security violations can arise� So� we re�check the
ATLuserid using the �etc�passwd �le exactly the same way we explained
in the broadcast section �	����

� Environment setting� Before executing the process� we must set its
environment� The reason is simple� Remember we said the server pro�
cess starts when the machine boots� and is always under execution as a
daemon� So� it has the environment set at boot time� To ensure security�
the process spawns a child process whenever operations are needed� thus
keeping always an eye on the sockets� This child then performs a setgid
and a setuid command� releasing its root privileges� Still� it lacks envi�
ronment� which should be set in a per�command basis� Every time we
want to execute a process� we will set some environment variables �PATH�
LD LIBRARY PATH� etc�� accordingly� and then execute the process
with the exec command� This way we ensure that processes are executed
within their right environment and as user processes�

The environment variables that are set are �in the following order��

First� we set the variables received within the execution message�

Second� we set the ATL LOCAL EXECUTION PATH with the path to
the executable �le� As Atlas executes processes with the exec call and it
wants that the PWD environment variable sent by distr be inherited� the
child process will not have access to the path where its binary �le resides�
So Atlas must allow and alternate mechanism to allow child processes
access to their directory structure� This is particularly useful whenever
our binary �le must access some data �les in its installation tree� If we
do not know the path where the process was executed� how can we access
�les located in paths relative to this one� �see also section ��	��


�



The ATL LOCAL EXECUTION PATH is used so user processes can ac�
cess local �les� Whenever a binary �le starts �and wishes to access its disk
data�� it must get the value of the ATL LOCAL EXECUTION PATH
variable� and use it as its home directory�

Third� we set LD LIBRARY PATH adding to its value the libraries spec�
i�ed in the ��AtlasSettings� �le� This �le �located in the home directory
of every Atlas user� contains useful information� Among other data �see
speci�c section�� it contains which library paths should be considered when
executing under any of the available platforms� For example� a �le con�
taining�

�LIBRARIES

SunOS���sun�u � 	homes	husers��	atlas	danis	Atlas	Atlas	�

lib	Sun�� �

	usr	usuaris	sig	mfairen	proves�Atlas	ACE����	�

ACE�wrappers	build�Sun�	ace	��

	usr	local	tcl�tk���	Solaris	lib� �

	homes	hsoftsol�	Atlas	ACE����	ACE�wrappers	ace	 �

	usr	usuaris	sig	mdtl	nq	libbonsai	��

	usr	local	mesa���	SOLARIS	lib��

	usr	usuaris	sig	newdmi	nq	oscarsan	newdmi	lib

IRIX���IP���	usr	usuaris	sig	mfairen	vonsai	Atlas	�

build�IRIX�	lib�	homes	hsoftsol�	Atlas	ACE���� �

	ACE�wrappers	build�IRIX�	ace	

SunOS���sun�m�	usr	usuaris	sig	danis	atlas	Atlas	Atlas	�

lib	Sun�� �

	usr	local	tcl�tk���	Solaris	lib�	homes	hsoftsol�	 �

Atlas	ACE����	ACE�wrappers	ace	

HPUX��������
�� � 	usr	usuaris	sig	danis	atlas	Atlas	�

Atlas	lib	HP��� �

	usr	local	tcl����	lib�	usr	local	tk����	lib

tells Atlas that hosts with the Sysid �SunOS���sun�m� should check the
following directories for libraries�

	usr	usuaris	sig	danis	atlas	Atlas	Atlas	lib	Sun�

	usr	local	tcl�tk���	Solaris	lib

	homes	hsoftsol�	Atlas	ACE����	ACE�wrappers	ace

So� these three entries will be prepended �added at the beginning� of
the LD LIBRARY PATH we received through the network� As processes
executed by calling exec inherit the environment of the caller� we can be


�



sure that the process being executed will be able to access its libraries
correctly�

� Sub�process execution� Once all three steps have been completed� and
no error has occurred� it is �nally time to execute the binary �le� Atlas
will only perform one �nal step� it will redirect the process� standard error
and output channels to two �les� This is only for logging and maintenance
purposes� These two �les are called �if the process is called �A��� �A�err�
and �A�out�� and will be in the same path the distr process has been
started� As interaction with the Atlas environment should be through
the built�in graphical interface� these �les are mainly used as log or debug
info �les of the process �A��

After these have been opened� Atlas will only execute the process with
a call to exec� passing the following command line arguments into argv�

argv���� full name �absolute path included� of the process

argv���� process name �executable �le name�

argv���� OOB Hack info� Used to prevent the Out Of Band Data error
in Solaris ��� ��

And the execution will then overwrite the server�s child process logical
space with that of the desired process� and begin its execution�

� What the Atlas user must be aware of

	�� Directories structure

As said in section ��	� Sysids are used to refer to compatible machine groups�
So� two binaries are compatible if they were generated in machines which share
a common Sysid� The idea then is to organize binaries in a directory structure�
using Sysids as their names� Sun machines will keep their binaries in a directory
named with their Sysid� for example� This will prevent architectures from trying
to execute code other than their own�

So� it seems now clear that users need to follow some directories structure
guidelines in order to use the Atlas multiplatform feature� To begin with�
they should provide a directory called �Atlas� in their account�s HOME� This
directory will be used to store everything related to the Atlas system� Then�
this directory must have a subdirectory called bin� which will be the storage for
Atlas binaries�

�In Solaris ��� the select call doesn�t wake up with only a � byte OOB data� so we adapt
Atlas communications to send in this case � bytes with the OOB data� this problem has been
corrected in ��� 	we have not checked ��
��


�



This Atlas	bin directory can be organized in turn in a multiplatform struc�
ture� to allow the storage of binaries for several architectures� For example� a
possible directory layout would be�

�HOME

Atlas

bin

SunOS���any

IRIX���any

any

�����

This structure would provide a place to store Solaris �Sun �� �les� and a
di�erent place to keep IRIX � �les� These two folders do not need to check
the machine member of the Sysid� as all possible variations can be considered
compatible� so this part can be substituted by the wildcard �any��

Finally� the user has a directory called any� which will be useful to store
generic binary �les� shell scripts� for example�

The above explanation may su�ce for most applications� Some situations�
however� may require a higher level of customization� For such uses Atlas
provides an extended mechanism� which allows you to keep your executables in
di�erent places of your disk� For example� you may have a �stable� version of
an executable �le under a certain path� and a di�erent copy �for example� a
debug version� somewhere else� The guidelines to follow in this case are�

� Place the stable binary �les under �HOME	Atlas	bin� as explained above

� Then� place yourself in a directory of your choice� and place binaries there�
You may do so directly� or using a directory structure such as the one found
around the Atlas	bin area� Now� start the distr process from this same
directory� If you do so� distr will scan as the most�priority area the path
you placed these new binaries in� For example�

�HOME

Atlas

bin

SunOS���any

proc�

debug

SunOS���any

proc�

IRIX���any

�����


�



With the �le structure described above� you can execute distr from the
path �HOME	debug �this pathname is arbitrary�� If you do so� the �rst exe�
cutables it will scan for are the ones placed in that path in the correspond�
ing architecture directory� So� if you askAtlas to execute the �le proc�� it
will always take as a �rst guess the �le �HOME	debug	SunOS���any	proc��
assuming it has more priority than the version stored at the directories
tree �HOME	Atlas	bin	��� This criterion is intentional� Atlas	bin is a
place to store stable �les� whereas placing them in the distr initial path
is a useful mechanism for debugging� However� if you still wish to give
higher priority to the �le stored at Atlas	bin� you just have to execute
distr from a di�erent path than the one containing the debug version�

	�� The ��AtlasSettings� 
le

As we have seen in section ���� using only one de�nition of the environment vari�
able LD LIBRARY PATH is not enough because we usualy will need di�erent
de�nitions for di�erent architectures�

The ��AtlasSettings� �le� as has already been described� should have the
directories to be added to the default value of the variable for each architecture
and it can also include a set of host names that will act as a �lter to avoid using
in the application other hosts �also able to run Atlas processes�� This �le
must be placed in the �HOME directory and con�gured by the Atlas application
developer�

	�� How a process knows its relative path

Also in section ��� we have talked about an environment variable giving to the
process being executed information about the path where its binary code is�

In order that the developer can use easily this information� Atlas o�ers an
API call which has the prototype

String atl�get�local�path ���

that gives a String which contains the absolute path for the directory contain�
ing the binary code for the executable process� Since Atlas is able to decide
depending on the architecture which directories look to search executable �les�
these executable �les can be placed on directories di�erent from the current

working directory� then the process can access to relative paths �even though it
doesn�t know where its binary has been started� by pre�xing this relative path
with the result of the atl get local path routine�


�



	�� Debugging Atlas proceses

One of the mechanisms used by Atlas to o�er fault�tolerance requires processes
to regularly send messages to distr in order to notify their state� A process
stopped in a debugger will certainly stop sending this �keep me alive� messages
for a while� thus making the Atlas distr process believe it is malfunctioning�
In normally executed processes this would force distr to kill the user process�
but it should not be applied to a process being debugged�

Atlas introduces a mechanism which allows process debugging in a conve�
nient way� A process being run can be entered in �debug state� at any time
with a user command� From that moment on� the Atlas distr process will
keep in mind this situation� thus allowing the process to stop sending keep�alive
messages� This way� the user can then attach a debugger to the involved pro�
gram� and behave as if Atlas really wasn�t there� debugging normally� Once
done� the process can be put again in �normal running mode�� This restores its
state� thus re�establishing the keep�alive message protocol�

The two commands involved in establishing and ending debugging sessions
within Atlas are�

atl�init�debug �string process�name�

atl�end�debug �string process�name�

They require the process name to be an already running process� Thus�
to debug a process called �TestProc� with Atlas� �rst� you would start the
process with the command�

USE TestProc�

Second� you would start the debugging session by entering�

atl�init�debug ��TestProc���

There is� however� something to keep in mind� Atlas is a multiplatform
environment� A user process can be executed anywhere in your network� and
you won�t necessarily know where� The USE command will make Atlas decide
where to execute your process depending on the workload of each machine�
and the availability of the given process across the network� So� when you
start debugging your process� you will need the information about the host that
is actually running your program� in order to attach a debugger to it� This
information will be printed out for your convenience by the atl init debug

command� This way you can �nd where you should place your debugger to
work�


�



Once Atlas knows you want to debug a certain process �by means of the
init debug call�� it is time to e�ectively debug it� Here we will use gdb as the
debugger� but you may use the debugger of your choice to accomplish this task�
Remember you need to execute gdb at the host currently executing your process�
In our example� we would do�

gdb

attach �process�identifier�

You need to know the pid of the process to debug� To �nd it� use for
example the ps shell command at the machine executing the process �you know
which machine it is because atl init debug gives you this information�� Once
you enter the attach command� your process is fully debuggable� You may set
breakpoints� examine data� and perform step�by�step execution�

Once you have �nished� you should restore the process state back to normal�
This means you have to �rst detach the debugger from the process� Do this by
entering�

detach

After doing this� you just need to issue the atl end debug command to end
your Atlas debugging session� and revert the process� state to normal� Do this
by simply typing�

atl�end�debug��process�name���

as an Atlas command� and this will end the debugging session�

� Conclusions and future work

We have described how Atlas is able to distribute the application processes
among di�erent architectures without needing a previous con�guration infor�
mation of the available processes for each architecture� This information is
automatically found out by Atlas at its starting time� Although in the cur�
rently implemented prototype this information is only checked once at distr

starting time� it is not the de�nite treatment for this mechanism which in future
versions will be able to dynamically check this availability�

Another extension not yet implemented �as has been said before� is the real
load�balancing mechanism� This mechanism will be the base for the decision of
the host where a process should be executed�

��



References

�

 M� Fair en and A� Vinacua� ATLAS� Sistema de Comandes� Manual t!ecnic
�in Catalan�� Report LSI�������T� 
���� http���www�lsi�upc�es�" mfairen�

��
 M� Fair en and A� Vinacua� Atlas� a platform for distributed graphics
applications� In Proceedings of Eurographics Workshop on Programming

Paradigms in Graphics� 
����

�	
 M� Fair en and A� Vinacua� Atlas� a platform for transparently developing
distributed applications� In Proceedings of the Tenth IASTED International

Conference on Parallel and Distributed Computing and Systems� pages ����
��
� 
����

��
 D� C� Schmidt� The ADAPTIVE communication environment� Object�
oriented network programming components for developing client�server ap�
plications� In ��th Sun Users Group Conference� 
����

��
 D� C� Schmidt� Reactor� An object behavioral pattern for concurrent event
demultiplexing and event handler dispatching� In Proceedings of the �st

Pattern Languages of Programs Conference� August 
����

�



